forked from pierluigiferrari/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd_input_encoder.py
617 lines (536 loc) · 39.9 KB
/
ssd_input_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
'''
An encoder that converts ground truth annotations to SSD-compatible training targets.
Copyright (C) 2018 Pierluigi Ferrari
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
from __future__ import division
import numpy as np
from bounding_box_utils.bounding_box_utils import iou, convert_coordinates
from ssd_encoder_decoder.matching_utils import match_bipartite_greedy, match_multi
class SSDInputEncoder:
'''
Transforms ground truth labels for object detection in images
(2D bounding box coordinates and class labels) to the format required for
training an SSD model.
In the process of encoding the ground truth labels, a template of anchor boxes
is being built, which are subsequently matched to the ground truth boxes
via an intersection-over-union threshold criterion.
'''
def __init__(self,
img_height,
img_width,
n_classes,
predictor_sizes,
min_scale=0.1,
max_scale=0.9,
scales=None,
aspect_ratios_global=[0.5, 1.0, 2.0],
aspect_ratios_per_layer=None,
two_boxes_for_ar1=True,
steps=None,
offsets=None,
clip_boxes=False,
variances=[0.1, 0.1, 0.2, 0.2],
matching_type='multi',
pos_iou_threshold=0.5,
neg_iou_limit=0.3,
border_pixels='half',
coords='centroids',
normalize_coords=True,
background_id=0):
'''
Arguments:
img_height (int): The height of the input images.
img_width (int): The width of the input images.
n_classes (int): The number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO.
predictor_sizes (list): A list of int-tuples of the format `(height, width)`
containing the output heights and widths of the convolutional predictor layers.
min_scale (float, optional): The smallest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images. Note that you should set the scaling factors
such that the resulting anchor box sizes correspond to the sizes of the objects you are trying
to detect. Must be >0.
max_scale (float, optional): The largest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images. All scaling factors between the smallest and the
largest will be linearly interpolated. Note that the second to last of the linearly interpolated
scaling factors will actually be the scaling factor for the last predictor layer, while the last
scaling factor is used for the second box for aspect ratio 1 in the last predictor layer
if `two_boxes_for_ar1` is `True`. Note that you should set the scaling factors
such that the resulting anchor box sizes correspond to the sizes of the objects you are trying
to detect. Must be greater than or equal to `min_scale`.
scales (list, optional): A list of floats >0 containing scaling factors per convolutional predictor layer.
This list must be one element longer than the number of predictor layers. The first `k` elements are the
scaling factors for the `k` predictor layers, while the last element is used for the second box
for aspect ratio 1 in the last predictor layer if `two_boxes_for_ar1` is `True`. This additional
last scaling factor must be passed either way, even if it is not being used. If a list is passed,
this argument overrides `min_scale` and `max_scale`. All scaling factors must be greater than zero.
Note that you should set the scaling factors such that the resulting anchor box sizes correspond to
the sizes of the objects you are trying to detect.
aspect_ratios_global (list, optional): The list of aspect ratios for which anchor boxes are to be
generated. This list is valid for all prediction layers. Note that you should set the aspect ratios such
that the resulting anchor box shapes roughly correspond to the shapes of the objects you are trying to detect.
aspect_ratios_per_layer (list, optional): A list containing one aspect ratio list for each prediction layer.
If a list is passed, it overrides `aspect_ratios_global`. Note that you should set the aspect ratios such
that the resulting anchor box shapes very roughly correspond to the shapes of the objects you are trying to detect.
two_boxes_for_ar1 (bool, optional): Only relevant for aspect ratios lists that contain 1. Will be ignored otherwise.
If `True`, two anchor boxes will be generated for aspect ratio 1. The first will be generated
using the scaling factor for the respective layer, the second one will be generated using
geometric mean of said scaling factor and next bigger scaling factor.
steps (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either ints/floats or tuples of two ints/floats. These numbers represent for each predictor layer how many
pixels apart the anchor box center points should be vertically and horizontally along the spatial grid over
the image. If the list contains ints/floats, then that value will be used for both spatial dimensions.
If the list contains tuples of two ints/floats, then they represent `(step_height, step_width)`.
If no steps are provided, then they will be computed such that the anchor box center points will form an
equidistant grid within the image dimensions.
offsets (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either floats or tuples of two floats. These numbers represent for each predictor layer how many
pixels from the top and left boarders of the image the top-most and left-most anchor box center points should be
as a fraction of `steps`. The last bit is important: The offsets are not absolute pixel values, but fractions
of the step size specified in the `steps` argument. If the list contains floats, then that value will
be used for both spatial dimensions. If the list contains tuples of two floats, then they represent
`(vertical_offset, horizontal_offset)`. If no offsets are provided, then they will default to 0.5 of the step size.
clip_boxes (bool, optional): If `True`, limits the anchor box coordinates to stay within image boundaries.
variances (list, optional): A list of 4 floats >0. The anchor box offset for each coordinate will be divided by
its respective variance value.
matching_type (str, optional): Can be either 'multi' or 'bipartite'. In 'bipartite' mode, each ground truth box will
be matched only to the one anchor box with the highest IoU overlap. In 'multi' mode, in addition to the aforementioned
bipartite matching, all anchor boxes with an IoU overlap greater than or equal to the `pos_iou_threshold` will be
matched to a given ground truth box.
pos_iou_threshold (float, optional): The intersection-over-union similarity threshold that must be
met in order to match a given ground truth box to a given anchor box.
neg_iou_limit (float, optional): The maximum allowed intersection-over-union similarity of an
anchor box with any ground truth box to be labeled a negative (i.e. background) box. If an
anchor box is neither a positive, nor a negative box, it will be ignored during training.
border_pixels (str, optional): How to treat the border pixels of the bounding boxes.
Can be 'include', 'exclude', or 'half'. If 'include', the border pixels belong
to the boxes. If 'exclude', the border pixels do not belong to the boxes.
If 'half', then one of each of the two horizontal and vertical borders belong
to the boxex, but not the other.
coords (str, optional): The box coordinate format to be used internally by the model (i.e. this is not the input format
of the ground truth labels). Can be either 'centroids' for the format `(cx, cy, w, h)` (box center coordinates, width,
and height), 'minmax' for the format `(xmin, xmax, ymin, ymax)`, or 'corners' for the format `(xmin, ymin, xmax, ymax)`.
normalize_coords (bool, optional): If `True`, the encoder uses relative instead of absolute coordinates.
This means instead of using absolute tartget coordinates, the encoder will scale all coordinates to be within [0,1].
This way learning becomes independent of the input image size.
background_id (int, optional): Determines which class ID is for the background class.
'''
predictor_sizes = np.array(predictor_sizes)
if predictor_sizes.ndim == 1:
predictor_sizes = np.expand_dims(predictor_sizes, axis=0)
##################################################################################
# Handle exceptions.
##################################################################################
if (min_scale is None or max_scale is None) and scales is None:
raise ValueError("Either `min_scale` and `max_scale` or `scales` need to be specified.")
if scales:
if (len(scales) != predictor_sizes.shape[0] + 1): # Must be two nested `if` statements since `list` and `bool` cannot be combined by `&`
raise ValueError("It must be either scales is None or len(scales) == len(predictor_sizes)+1, but len(scales) == {} and len(predictor_sizes)+1 == {}".format(len(scales), len(predictor_sizes)+1))
scales = np.array(scales)
if np.any(scales <= 0):
raise ValueError("All values in `scales` must be greater than 0, but the passed list of scales is {}".format(scales))
else: # If no list of scales was passed, we need to make sure that `min_scale` and `max_scale` are valid values.
if not 0 < min_scale <= max_scale:
raise ValueError("It must be 0 < min_scale <= max_scale, but it is min_scale = {} and max_scale = {}".format(min_scale, max_scale))
if not (aspect_ratios_per_layer is None):
if (len(aspect_ratios_per_layer) != predictor_sizes.shape[0]): # Must be two nested `if` statements since `list` and `bool` cannot be combined by `&`
raise ValueError("It must be either aspect_ratios_per_layer is None or len(aspect_ratios_per_layer) == len(predictor_sizes), but len(aspect_ratios_per_layer) == {} and len(predictor_sizes) == {}".format(len(aspect_ratios_per_layer), len(predictor_sizes)))
for aspect_ratios in aspect_ratios_per_layer:
if np.any(np.array(aspect_ratios) <= 0):
raise ValueError("All aspect ratios must be greater than zero.")
else:
if (aspect_ratios_global is None):
raise ValueError("At least one of `aspect_ratios_global` and `aspect_ratios_per_layer` must not be `None`.")
if np.any(np.array(aspect_ratios_global) <= 0):
raise ValueError("All aspect ratios must be greater than zero.")
if len(variances) != 4:
raise ValueError("4 variance values must be pased, but {} values were received.".format(len(variances)))
variances = np.array(variances)
if np.any(variances <= 0):
raise ValueError("All variances must be >0, but the variances given are {}".format(variances))
if not (coords == 'minmax' or coords == 'centroids' or coords == 'corners'):
raise ValueError("Unexpected value for `coords`. Supported values are 'minmax', 'corners' and 'centroids'.")
if (not (steps is None)) and (len(steps) != predictor_sizes.shape[0]):
raise ValueError("You must provide at least one step value per predictor layer.")
if (not (offsets is None)) and (len(offsets) != predictor_sizes.shape[0]):
raise ValueError("You must provide at least one offset value per predictor layer.")
##################################################################################
# Set or compute members.
##################################################################################
self.img_height = img_height
self.img_width = img_width
self.n_classes = n_classes + 1 # + 1 for the background class
self.predictor_sizes = predictor_sizes
self.min_scale = min_scale
self.max_scale = max_scale
# If `scales` is None, compute the scaling factors by linearly interpolating between
# `min_scale` and `max_scale`. If an explicit list of `scales` is given, however,
# then it takes precedent over `min_scale` and `max_scale`.
if (scales is None):
self.scales = np.linspace(self.min_scale, self.max_scale, len(self.predictor_sizes)+1)
else:
# If a list of scales is given explicitly, we'll use that instead of computing it from `min_scale` and `max_scale`.
self.scales = scales
# If `aspect_ratios_per_layer` is None, then we use the same list of aspect ratios
# `aspect_ratios_global` for all predictor layers. If `aspect_ratios_per_layer` is given,
# however, then it takes precedent over `aspect_ratios_global`.
if (aspect_ratios_per_layer is None):
self.aspect_ratios = [aspect_ratios_global] * predictor_sizes.shape[0]
else:
# If aspect ratios are given per layer, we'll use those.
self.aspect_ratios = aspect_ratios_per_layer
self.two_boxes_for_ar1 = two_boxes_for_ar1
if not (steps is None):
self.steps = steps
else:
self.steps = [None] * predictor_sizes.shape[0]
if not (offsets is None):
self.offsets = offsets
else:
self.offsets = [None] * predictor_sizes.shape[0]
self.clip_boxes = clip_boxes
self.variances = variances
self.matching_type = matching_type
self.pos_iou_threshold = pos_iou_threshold
self.neg_iou_limit = neg_iou_limit
self.border_pixels = border_pixels
self.coords = coords
self.normalize_coords = normalize_coords
self.background_id = background_id
# Compute the number of boxes per spatial location for each predictor layer.
# For example, if a predictor layer has three different aspect ratios, [1.0, 0.5, 2.0], and is
# supposed to predict two boxes of slightly different size for aspect ratio 1.0, then that predictor
# layer predicts a total of four boxes at every spatial location across the feature map.
if not (aspect_ratios_per_layer is None):
self.n_boxes = []
for aspect_ratios in aspect_ratios_per_layer:
if (1 in aspect_ratios) & two_boxes_for_ar1:
self.n_boxes.append(len(aspect_ratios) + 1)
else:
self.n_boxes.append(len(aspect_ratios))
else:
if (1 in aspect_ratios_global) & two_boxes_for_ar1:
self.n_boxes = len(aspect_ratios_global) + 1
else:
self.n_boxes = len(aspect_ratios_global)
##################################################################################
# Compute the anchor boxes for each predictor layer.
##################################################################################
# Compute the anchor boxes for each predictor layer. We only have to do this once
# since the anchor boxes depend only on the model configuration, not on the input data.
# For each predictor layer (i.e. for each scaling factor) the tensors for that layer's
# anchor boxes will have the shape `(feature_map_height, feature_map_width, n_boxes, 4)`.
self.boxes_list = [] # This will store the anchor boxes for each predicotr layer.
# The following lists just store diagnostic information. Sometimes it's handy to have the
# boxes' center points, heights, widths, etc. in a list.
self.wh_list_diag = [] # Box widths and heights for each predictor layer
self.steps_diag = [] # Horizontal and vertical distances between any two boxes for each predictor layer
self.offsets_diag = [] # Offsets for each predictor layer
self.centers_diag = [] # Anchor box center points as `(cy, cx)` for each predictor layer
# Iterate over all predictor layers and compute the anchor boxes for each one.
for i in range(len(self.predictor_sizes)):
boxes, center, wh, step, offset = self.generate_anchor_boxes_for_layer(feature_map_size=self.predictor_sizes[i],
aspect_ratios=self.aspect_ratios[i],
this_scale=self.scales[i],
next_scale=self.scales[i+1],
this_steps=self.steps[i],
this_offsets=self.offsets[i],
diagnostics=True)
self.boxes_list.append(boxes)
self.wh_list_diag.append(wh)
self.steps_diag.append(step)
self.offsets_diag.append(offset)
self.centers_diag.append(center)
def __call__(self, ground_truth_labels, diagnostics=False):
'''
Converts ground truth bounding box data into a suitable format to train an SSD model.
Arguments:
ground_truth_labels (list): A python list of length `batch_size` that contains one 2D Numpy array
for each batch image. Each such array has `k` rows for the `k` ground truth bounding boxes belonging
to the respective image, and the data for each ground truth bounding box has the format
`(class_id, xmin, ymin, xmax, ymax)` (i.e. the 'corners' coordinate format), and `class_id` must be
an integer greater than 0 for all boxes as class ID 0 is reserved for the background class.
diagnostics (bool, optional): If `True`, not only the encoded ground truth tensor will be returned,
but also a copy of it with anchor box coordinates in place of the ground truth coordinates.
This can be very useful if you want to visualize which anchor boxes got matched to which ground truth
boxes.
Returns:
`y_encoded`, a 3D numpy array of shape `(batch_size, #boxes, #classes + 4 + 4 + 4)` that serves as the
ground truth label tensor for training, where `#boxes` is the total number of boxes predicted by the
model per image, and the classes are one-hot-encoded. The four elements after the class vecotrs in
the last axis are the box coordinates, the next four elements after that are just dummy elements, and
the last four elements are the variances.
'''
# Mapping to define which indices represent which coordinates in the ground truth.
class_id = 0
xmin = 1
ymin = 2
xmax = 3
ymax = 4
batch_size = len(ground_truth_labels)
##################################################################################
# Generate the template for y_encoded.
##################################################################################
y_encoded = self.generate_encoding_template(batch_size=batch_size, diagnostics=False)
##################################################################################
# Match ground truth boxes to anchor boxes.
##################################################################################
# Match the ground truth boxes to the anchor boxes. Every anchor box that does not have
# a ground truth match and for which the maximal IoU overlap with any ground truth box is less
# than or equal to `neg_iou_limit` will be a negative (background) box.
y_encoded[:, :, self.background_id] = 1 # All boxes are background boxes by default.
n_boxes = y_encoded.shape[1] # The total number of boxes that the model predicts per batch item
class_vectors = np.eye(self.n_classes) # An identity matrix that we'll use as one-hot class vectors
for i in range(batch_size): # For each batch item...
if ground_truth_labels[i].size == 0: continue # If there is no ground truth for this batch item, there is nothing to match.
labels = ground_truth_labels[i].astype(np.float) # The labels for this batch item
# Check for degenerate ground truth bounding boxes before attempting any computations.
if np.any(labels[:,[xmax]] - labels[:,[xmin]] <= 0) or np.any(labels[:,[ymax]] - labels[:,[ymin]] <= 0):
raise DegenerateBoxError("SSDInputEncoder detected degenerate ground truth bounding boxes for batch item {} with bounding boxes {}, ".format(i, labels) +
"i.e. bounding boxes where xmax <= xmin and/or ymax <= ymin. Degenerate ground truth " +
"bounding boxes will lead to NaN errors during the training.")
# Maybe normalize the box coordinates.
if self.normalize_coords:
labels[:,[ymin,ymax]] /= self.img_height # Normalize ymin and ymax relative to the image height
labels[:,[xmin,xmax]] /= self.img_width # Normalize xmin and xmax relative to the image width
# Maybe convert the box coordinate format.
if self.coords == 'centroids':
labels = convert_coordinates(labels, start_index=xmin, conversion='corners2centroids', border_pixels=self.border_pixels)
elif self.coords == 'minmax':
labels = convert_coordinates(labels, start_index=xmin, conversion='corners2minmax')
classes_one_hot = class_vectors[labels[:, class_id].astype(np.int)] # The one-hot class IDs for the ground truth boxes of this batch item
labels_one_hot = np.concatenate([classes_one_hot, labels[:, [xmin,ymin,xmax,ymax]]], axis=-1) # The one-hot version of the labels for this batch item
# Compute the IoU similarities between all anchor boxes and all ground truth boxes for this batch item.
# This is a matrix of shape `(num_ground_truth_boxes, num_anchor_boxes)`.
similarities = iou(labels[:,[xmin,ymin,xmax,ymax]], y_encoded[i,:,-12:-8], coords=self.coords, mode='outer_product', border_pixels=self.border_pixels)
# First: Do bipartite matching, i.e. match each ground truth box to the one anchor box with the highest IoU.
# This ensures that each ground truth box will have at least one good match.
# For each ground truth box, get the anchor box to match with it.
bipartite_matches = match_bipartite_greedy(weight_matrix=similarities)
# Write the ground truth data to the matched anchor boxes.
y_encoded[i, bipartite_matches, :-8] = labels_one_hot
# Set the columns of the matched anchor boxes to zero to indicate that they were matched.
similarities[:, bipartite_matches] = 0
# Second: Maybe do 'multi' matching, where each remaining anchor box will be matched to its most similar
# ground truth box with an IoU of at least `pos_iou_threshold`, or not matched if there is no
# such ground truth box.
if self.matching_type == 'multi':
# Get all matches that satisfy the IoU threshold.
matches = match_multi(weight_matrix=similarities, threshold=self.pos_iou_threshold)
# Write the ground truth data to the matched anchor boxes.
y_encoded[i, matches[1], :-8] = labels_one_hot[matches[0]]
# Set the columns of the matched anchor boxes to zero to indicate that they were matched.
similarities[:, matches[1]] = 0
# Third: Now after the matching is done, all negative (background) anchor boxes that have
# an IoU of `neg_iou_limit` or more with any ground truth box will be set to netral,
# i.e. they will no longer be background boxes. These anchors are "too close" to a
# ground truth box to be valid background boxes.
max_background_similarities = np.amax(similarities, axis=0)
neutral_boxes = np.nonzero(max_background_similarities >= self.neg_iou_limit)[0]
y_encoded[i, neutral_boxes, self.background_id] = 0
##################################################################################
# Convert box coordinates to anchor box offsets.
##################################################################################
if self.coords == 'centroids':
y_encoded[:,:,[-12,-11]] -= y_encoded[:,:,[-8,-7]] # cx(gt) - cx(anchor), cy(gt) - cy(anchor)
y_encoded[:,:,[-12,-11]] /= y_encoded[:,:,[-6,-5]] * y_encoded[:,:,[-4,-3]] # (cx(gt) - cx(anchor)) / w(anchor) / cx_variance, (cy(gt) - cy(anchor)) / h(anchor) / cy_variance
y_encoded[:,:,[-10,-9]] /= y_encoded[:,:,[-6,-5]] # w(gt) / w(anchor), h(gt) / h(anchor)
y_encoded[:,:,[-10,-9]] = np.log(y_encoded[:,:,[-10,-9]]) / y_encoded[:,:,[-2,-1]] # ln(w(gt) / w(anchor)) / w_variance, ln(h(gt) / h(anchor)) / h_variance (ln == natural logarithm)
elif self.coords == 'corners':
y_encoded[:,:,-12:-8] -= y_encoded[:,:,-8:-4] # (gt - anchor) for all four coordinates
y_encoded[:,:,[-12,-10]] /= np.expand_dims(y_encoded[:,:,-6] - y_encoded[:,:,-8], axis=-1) # (xmin(gt) - xmin(anchor)) / w(anchor), (xmax(gt) - xmax(anchor)) / w(anchor)
y_encoded[:,:,[-11,-9]] /= np.expand_dims(y_encoded[:,:,-5] - y_encoded[:,:,-7], axis=-1) # (ymin(gt) - ymin(anchor)) / h(anchor), (ymax(gt) - ymax(anchor)) / h(anchor)
y_encoded[:,:,-12:-8] /= y_encoded[:,:,-4:] # (gt - anchor) / size(anchor) / variance for all four coordinates, where 'size' refers to w and h respectively
elif self.coords == 'minmax':
y_encoded[:,:,-12:-8] -= y_encoded[:,:,-8:-4] # (gt - anchor) for all four coordinates
y_encoded[:,:,[-12,-11]] /= np.expand_dims(y_encoded[:,:,-7] - y_encoded[:,:,-8], axis=-1) # (xmin(gt) - xmin(anchor)) / w(anchor), (xmax(gt) - xmax(anchor)) / w(anchor)
y_encoded[:,:,[-10,-9]] /= np.expand_dims(y_encoded[:,:,-5] - y_encoded[:,:,-6], axis=-1) # (ymin(gt) - ymin(anchor)) / h(anchor), (ymax(gt) - ymax(anchor)) / h(anchor)
y_encoded[:,:,-12:-8] /= y_encoded[:,:,-4:] # (gt - anchor) / size(anchor) / variance for all four coordinates, where 'size' refers to w and h respectively
if diagnostics:
# Here we'll save the matched anchor boxes (i.e. anchor boxes that were matched to a ground truth box, but keeping the anchor box coordinates).
y_matched_anchors = np.copy(y_encoded)
y_matched_anchors[:,:,-12:-8] = 0 # Keeping the anchor box coordinates means setting the offsets to zero.
return y_encoded, y_matched_anchors
else:
return y_encoded
def generate_anchor_boxes_for_layer(self,
feature_map_size,
aspect_ratios,
this_scale,
next_scale,
this_steps=None,
this_offsets=None,
diagnostics=False):
'''
Computes an array of the spatial positions and sizes of the anchor boxes for one predictor layer
of size `feature_map_size == [feature_map_height, feature_map_width]`.
Arguments:
feature_map_size (tuple): A list or tuple `[feature_map_height, feature_map_width]` with the spatial
dimensions of the feature map for which to generate the anchor boxes.
aspect_ratios (list): A list of floats, the aspect ratios for which anchor boxes are to be generated.
All list elements must be unique.
this_scale (float): A float in [0, 1], the scaling factor for the size of the generate anchor boxes
as a fraction of the shorter side of the input image.
next_scale (float): A float in [0, 1], the next larger scaling factor. Only relevant if
`self.two_boxes_for_ar1 == True`.
diagnostics (bool, optional): If true, the following additional outputs will be returned:
1) A list of the center point `x` and `y` coordinates for each spatial location.
2) A list containing `(width, height)` for each box aspect ratio.
3) A tuple containing `(step_height, step_width)`
4) A tuple containing `(offset_height, offset_width)`
This information can be useful to understand in just a few numbers what the generated grid of
anchor boxes actually looks like, i.e. how large the different boxes are and how dense
their spatial distribution is, in order to determine whether the box grid covers the input images
appropriately and whether the box sizes are appropriate to fit the sizes of the objects
to be detected.
Returns:
A 4D Numpy tensor of shape `(feature_map_height, feature_map_width, n_boxes_per_cell, 4)` where the
last dimension contains `(xmin, xmax, ymin, ymax)` for each anchor box in each cell of the feature map.
'''
# Compute box width and height for each aspect ratio.
# The shorter side of the image will be used to compute `w` and `h` using `scale` and `aspect_ratios`.
size = min(self.img_height, self.img_width)
# Compute the box widths and and heights for all aspect ratios
wh_list = []
for ar in aspect_ratios:
if (ar == 1):
# Compute the regular anchor box for aspect ratio 1.
box_height = box_width = this_scale * size
wh_list.append((box_width, box_height))
if self.two_boxes_for_ar1:
# Compute one slightly larger version using the geometric mean of this scale value and the next.
box_height = box_width = np.sqrt(this_scale * next_scale) * size
wh_list.append((box_width, box_height))
else:
box_width = this_scale * size * np.sqrt(ar)
box_height = this_scale * size / np.sqrt(ar)
wh_list.append((box_width, box_height))
wh_list = np.array(wh_list)
n_boxes = len(wh_list)
# Compute the grid of box center points. They are identical for all aspect ratios.
# Compute the step sizes, i.e. how far apart the anchor box center points will be vertically and horizontally.
if (this_steps is None):
step_height = self.img_height / feature_map_size[0]
step_width = self.img_width / feature_map_size[1]
else:
if isinstance(this_steps, (list, tuple)) and (len(this_steps) == 2):
step_height = this_steps[0]
step_width = this_steps[1]
elif isinstance(this_steps, (int, float)):
step_height = this_steps
step_width = this_steps
# Compute the offsets, i.e. at what pixel values the first anchor box center point will be from the top and from the left of the image.
if (this_offsets is None):
offset_height = 0.5
offset_width = 0.5
else:
if isinstance(this_offsets, (list, tuple)) and (len(this_offsets) == 2):
offset_height = this_offsets[0]
offset_width = this_offsets[1]
elif isinstance(this_offsets, (int, float)):
offset_height = this_offsets
offset_width = this_offsets
# Now that we have the offsets and step sizes, compute the grid of anchor box center points.
cy = np.linspace(offset_height * step_height, (offset_height + feature_map_size[0] - 1) * step_height, feature_map_size[0])
cx = np.linspace(offset_width * step_width, (offset_width + feature_map_size[1] - 1) * step_width, feature_map_size[1])
cx_grid, cy_grid = np.meshgrid(cx, cy)
cx_grid = np.expand_dims(cx_grid, -1) # This is necessary for np.tile() to do what we want further down
cy_grid = np.expand_dims(cy_grid, -1) # This is necessary for np.tile() to do what we want further down
# Create a 4D tensor template of shape `(feature_map_height, feature_map_width, n_boxes, 4)`
# where the last dimension will contain `(cx, cy, w, h)`
boxes_tensor = np.zeros((feature_map_size[0], feature_map_size[1], n_boxes, 4))
boxes_tensor[:, :, :, 0] = np.tile(cx_grid, (1, 1, n_boxes)) # Set cx
boxes_tensor[:, :, :, 1] = np.tile(cy_grid, (1, 1, n_boxes)) # Set cy
boxes_tensor[:, :, :, 2] = wh_list[:, 0] # Set w
boxes_tensor[:, :, :, 3] = wh_list[:, 1] # Set h
# Convert `(cx, cy, w, h)` to `(xmin, ymin, xmax, ymax)`
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='centroids2corners')
# If `clip_boxes` is enabled, clip the coordinates to lie within the image boundaries
if self.clip_boxes:
x_coords = boxes_tensor[:,:,:,[0, 2]]
x_coords[x_coords >= self.img_width] = self.img_width - 1
x_coords[x_coords < 0] = 0
boxes_tensor[:,:,:,[0, 2]] = x_coords
y_coords = boxes_tensor[:,:,:,[1, 3]]
y_coords[y_coords >= self.img_height] = self.img_height - 1
y_coords[y_coords < 0] = 0
boxes_tensor[:,:,:,[1, 3]] = y_coords
# `normalize_coords` is enabled, normalize the coordinates to be within [0,1]
if self.normalize_coords:
boxes_tensor[:, :, :, [0, 2]] /= self.img_width
boxes_tensor[:, :, :, [1, 3]] /= self.img_height
# TODO: Implement box limiting directly for `(cx, cy, w, h)` so that we don't have to unnecessarily convert back and forth.
if self.coords == 'centroids':
# Convert `(xmin, ymin, xmax, ymax)` back to `(cx, cy, w, h)`.
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2centroids', border_pixels='half')
elif self.coords == 'minmax':
# Convert `(xmin, ymin, xmax, ymax)` to `(xmin, xmax, ymin, ymax).
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2minmax', border_pixels='half')
if diagnostics:
return boxes_tensor, (cy, cx), wh_list, (step_height, step_width), (offset_height, offset_width)
else:
return boxes_tensor
def generate_encoding_template(self, batch_size, diagnostics=False):
'''
Produces an encoding template for the ground truth label tensor for a given batch.
Note that all tensor creation, reshaping and concatenation operations performed in this function
and the sub-functions it calls are identical to those performed inside the SSD model. This, of course,
must be the case in order to preserve the spatial meaning of each box prediction, but it's useful to make
yourself aware of this fact and why it is necessary.
In other words, the boxes in `y_encoded` must have a specific order in order correspond to the right spatial
positions and scales of the boxes predicted by the model. The sequence of operations here ensures that `y_encoded`
has this specific form.
Arguments:
batch_size (int): The batch size.
diagnostics (bool, optional): See the documnentation for `generate_anchor_boxes()`. The diagnostic output
here is similar, just for all predictor conv layers.
Returns:
A Numpy array of shape `(batch_size, #boxes, #classes + 12)`, the template into which to encode
the ground truth labels for training. The last axis has length `#classes + 12` because the model
output contains not only the 4 predicted box coordinate offsets, but also the 4 coordinates for
the anchor boxes and the 4 variance values.
'''
# Tile the anchor boxes for each predictor layer across all batch items.
boxes_batch = []
for boxes in self.boxes_list:
# Prepend one dimension to `self.boxes_list` to account for the batch size and tile it along.
# The result will be a 5D tensor of shape `(batch_size, feature_map_height, feature_map_width, n_boxes, 4)`
boxes = np.expand_dims(boxes, axis=0)
boxes = np.tile(boxes, (batch_size, 1, 1, 1, 1))
# Now reshape the 5D tensor above into a 3D tensor of shape
# `(batch, feature_map_height * feature_map_width * n_boxes, 4)`. The resulting
# order of the tensor content will be identical to the order obtained from the reshaping operation
# in our Keras model (we're using the Tensorflow backend, and tf.reshape() and np.reshape()
# use the same default index order, which is C-like index ordering)
boxes = np.reshape(boxes, (batch_size, -1, 4))
boxes_batch.append(boxes)
# Concatenate the anchor tensors from the individual layers to one.
boxes_tensor = np.concatenate(boxes_batch, axis=1)
# 3: Create a template tensor to hold the one-hot class encodings of shape `(batch, #boxes, #classes)`
# It will contain all zeros for now, the classes will be set in the matching process that follows
classes_tensor = np.zeros((batch_size, boxes_tensor.shape[1], self.n_classes))
# 4: Create a tensor to contain the variances. This tensor has the same shape as `boxes_tensor` and simply
# contains the same 4 variance values for every position in the last axis.
variances_tensor = np.zeros_like(boxes_tensor)
variances_tensor += self.variances # Long live broadcasting
# 4: Concatenate the classes, boxes and variances tensors to get our final template for y_encoded. We also need
# another tensor of the shape of `boxes_tensor` as a space filler so that `y_encoding_template` has the same
# shape as the SSD model output tensor. The content of this tensor is irrelevant, we'll just use
# `boxes_tensor` a second time.
y_encoding_template = np.concatenate((classes_tensor, boxes_tensor, boxes_tensor, variances_tensor), axis=2)
if diagnostics:
return y_encoding_template, self.centers_diag, self.wh_list_diag, self.steps_diag, self.offsets_diag
else:
return y_encoding_template
class DegenerateBoxError(Exception):
'''
An exception class to be raised if degenerate boxes are being detected.
'''
pass