-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizeDataset.py
executable file
·49 lines (33 loc) · 1.48 KB
/
visualizeDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import glob
import numpy as np
import cv2
import random
import argparse
def imageSegmentationGenerator( images_path , segs_path , n_classes ):
assert images_path[-1] == '/'
assert segs_path[-1] == '/'
images = glob.glob( images_path + "*.jpg" ) + glob.glob( images_path + "*.png" ) + glob.glob( images_path + "*.jpeg" )
images.sort()
segmentations = glob.glob( segs_path + "*.jpg" ) + glob.glob( segs_path + "*.png" ) + glob.glob( segs_path + "*.jpeg" )
segmentations.sort()
colors = [ ( random.randint(0,255),random.randint(0,255),random.randint(0,255) ) for _ in range(n_classes) ]
assert len( images ) == len(segmentations)
for im_fn , seg_fn in zip(images,segmentations):
assert( im_fn.split('/')[-1] == seg_fn.split('/')[-1] )
img = cv2.imread( im_fn )
seg = cv2.imread( seg_fn )
print np.unique( seg )
seg_img = np.zeros_like( seg )
for c in range(n_classes):
seg_img[:,:,0] += ( (seg[:,:,0] == c )*( colors[c][0] )).astype('uint8')
seg_img[:,:,1] += ((seg[:,:,0] == c )*( colors[c][1] )).astype('uint8')
seg_img[:,:,2] += ((seg[:,:,0] == c )*( colors[c][2] )).astype('uint8')
cv2.imshow("img" , img )
cv2.imshow("seg_img" , seg_img )
cv2.waitKey()
parser = argparse.ArgumentParser()
parser.add_argument("--images", type = str )
parser.add_argument("--annotations", type = str )
parser.add_argument("--n_classes", type=int )
args = parser.parse_args()
imageSegmentationGenerator(args.images , args.annotations , args.n_classes )