-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbn_train.py
114 lines (94 loc) · 4.09 KB
/
bn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# View more python learning tutorial on my Youtube and Youku channel!!!
# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial
"""
This code is a modified version of the code from this link:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
His code is a very good one for RNN beginners. Feel free to check it out.
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from lstm import LSTMCell, BNLSTMCell, orthogonal_initializer
# set random seed for comparing the two result calculations
tf.set_random_seed(1)
# this is data
mnist = input_data.read_data_sets('/tmp3/vicky/', one_hot=True)
# hyperparameters
lr = 0.001
batch_size = 128
training_iters = 1000*batch_size
#n_inputs = 28 # MNIST data input (img shape: 28*28)
#n_steps = 28 # time steps
n_hidden_units = 128 # neurons in hidden layer
n_classes = 10 # MNIST classes (0-9 digits)
# tf Graph input
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, n_classes])
training = tf.placeholder(tf.bool)
# Define weights
weights = {
# (28, 128)
#'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
# (128, 10)
#'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
'out': tf.get_variable('w_out', [n_hidden_units, n_classes], initializer=orthogonal_initializer())
}
biases = {
# (128, )
#'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
# (10, )
#'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
'out': tf.get_variable('b_out', [n_classes, ])
# (10, )
}
def RNN(X, weights, biases):
X_in = tf.expand_dims(X, -1)
cell = BNLSTMCell(n_hidden_units, training) #LSTMCell(hidden_size)
init_state = cell.zero_state(batch_size, dtype=tf.float32)
# You have 2 options for following step.
# 1: tf.nn.rnn(cell, inputs);
# 2: tf.nn.dynamic_rnn(cell, inputs).
# If use option 1, you have to modified the shape of X_in, go and check out this:
# https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
# In here, we go for option 2.
# dynamic_rnn receive Tensor (batch, steps, inputs) or (steps, batch, inputs) as X_in.
# Make sure the time_major is changed accordingly.
outputs, state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False)
_, final_hidden = state
results = tf.nn.softmax(tf.matmul(final_hidden, weights['out']) + biases['out']) # shape = (128, 10)
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=[1]))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run([train_op], feed_dict={
x: batch_xs,
y: batch_ys,
training: True
})
loss = sess.run(cost, feed_dict={x: batch_xs,y: batch_ys,training: False})
if step % 20 == 0:
batch_xs, batch_ys = mnist.validation.next_batch(batch_size)
print 'epoch: {},loss: {},valid accuracy: {}'.format(step,loss,sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
training: False
}))
if step % 100 == 0:
for v in tf.all_variables():
print v.name
print sess.run('rnn/BNLSTMCell/c_mean:0')
print sess.run('rnn/BNLSTMCell/xh_mean:0')
step += 1