-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
364 lines (298 loc) · 15.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import yaml
import json
import argparse
from tqdm import tqdm
from itertools import product
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
from utility import Datasets
from models.MDCLBR import MDCLBR
def get_cmd():
parser = argparse.ArgumentParser()
# experimental settings
parser.add_argument("-g", "--gpu", default="3", type=str, help="which gpu to use")
parser.add_argument("-d", "--dataset", default="Youshu", type=str, help="which dataset to use, options: NetEase, Youshu, iFashion")
parser.add_argument("-m", "--model", default="MDCLBR", type=str, help="which model to use, options: MDCLBR")
parser.add_argument("-i", "--info", default="", type=str, help="any auxilary info that will be appended to the log file name")
args = parser.parse_args()
return args
def main():
conf = yaml.safe_load(open("./config.yaml"))
print("load config file done!")
paras = get_cmd().__dict__
dataset_name = paras["dataset"]
assert paras["model"] in ["MDCLBR"], "Pls select models from: MDCLBR"
if "_" in dataset_name:
conf = conf[dataset_name.split("_")[0]]
else:
conf = conf[dataset_name]
conf["dataset"] = dataset_name
conf["model"] = paras["model"]
dataset = Datasets(conf)
# setting = "_".join(settings)
# trainData = self.bundle_train_data
conf["gpu"] = paras["gpu"]
conf["info"] = paras["info"]
conf["num_users"] = dataset.num_users
conf["num_bundles"] = dataset.num_bundles
conf["num_items"] = dataset.num_items
trainUser=np.array([],dtype=np.int32)
for i in dataset.u_b_pairs_train:
trainUser=np.append(trainUser,i[0])
print(trainUser)
conf["trainUser"] = np.array((trainUser.tolist()))
conf["trainItem"]= np.array((dataset.u_b_graph_train.indices.tolist()))
# conf["trainUser"] = np.array(list(set(trainUser)))
os.environ['CUDA_VISIBLE_DEVICES'] = conf["gpu"]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
conf["device"] = device
print(conf)
for lr, l2_reg, item_level_ratio, bundle_level_ratio, bundle_agg_ratio, embedding_size, num_layers, c_lambda1, c_lambda2,c_lambda3,c_temp,c_temp1 in \
product(conf['lrs'], conf['l2_regs'], conf['item_level_ratios'], conf['bundle_level_ratios'], conf['bundle_agg_ratios'], conf["embedding_sizes"], conf["num_layerss"], conf["c_lambdas1"], conf["c_lambdas2"], conf["c_lambdas3"],conf["c_temps"],conf["c_temps1"]):
log_path = "./log/%s/%s" %(conf["dataset"], conf["model"])
run_path = "./runs/%s/%s" %(conf["dataset"], conf["model"])
checkpoint_model_path = "./checkpoints/%s/%s/model" %(conf["dataset"], conf["model"])
checkpoint_conf_path = "./checkpoints/%s/%s/conf" %(conf["dataset"], conf["model"])
if not os.path.isdir(run_path):
os.makedirs(run_path)
if not os.path.isdir(log_path):
os.makedirs(log_path)
if not os.path.isdir(checkpoint_model_path):
os.makedirs(checkpoint_model_path)
if not os.path.isdir(checkpoint_conf_path):
os.makedirs(checkpoint_conf_path)
conf["l2_reg"] = l2_reg
conf["embedding_size"] = embedding_size
settings = []
if conf["info"] != "":
settings += [conf["info"]]
settings += [conf["aug_type"]]
if conf["aug_type"] == "ED":
settings += [str(conf["ed_interval"])]
if conf["aug_type"] == "OP":
assert item_level_ratio == 0 and bundle_level_ratio == 0 and bundle_agg_ratio == 0
settings += ["Neg_%d" %(conf["neg_num"]), str(conf["batch_size_train"]), str(lr), str(l2_reg), str(embedding_size)]
conf["item_level_ratio"] = item_level_ratio
conf["bundle_level_ratio"] = bundle_level_ratio
conf["bundle_agg_ratio"] = bundle_agg_ratio
conf["num_layers"] = num_layers
settings += [str(item_level_ratio), str(bundle_level_ratio), str(bundle_agg_ratio), str(num_layers)]
conf["c_lambda1"] = c_lambda1
conf["c_lambda2"] = c_lambda2
conf["c_lambda3"] = c_lambda3
conf["c_temp"] = c_temp
conf["c_temps1"] = c_temp1
settings += [str(c_lambda1),str(c_lambda2), str(c_lambda3),str(c_temp), str(c_temp1)]
setting = "_".join(settings)
log_path = log_path + "/" + setting
run_path = run_path + "/" + setting
checkpoint_model_path = checkpoint_model_path + "/" + setting
checkpoint_conf_path = checkpoint_conf_path + "/" + setting
run = SummaryWriter(run_path)
# model
if conf['model'] == 'MDCLBR':
model = MDCLBR(conf, dataset.graphs).to(device)
else:
raise ValueError("Unimplemented model %s" % (conf["model"]))
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=conf["l2_reg"])
print("......................")
print(dataset.train_loader)
batch_cnt = len(dataset.train_loader)
test_interval_bs = int(batch_cnt * conf["test_interval"])
ed_interval_bs = int(batch_cnt * conf["ed_interval"])
log = open(log_path, "a")
best_metrics, best_perform = init_best_metrics(conf)
best_epoch = 0
for epoch in range(conf['epochs']):
epoch_anchor = epoch * batch_cnt
model.train(True)
conf["status"]=0
pbar = tqdm(enumerate(dataset.train_loader), total=len(dataset.train_loader))
for batch_i, batch in pbar:
model.train(True)
optimizer.zero_grad()
batch = [x.to(device) for x in batch]
batch_anchor = epoch_anchor + batch_i
ED_drop = False
if conf["aug_type"] == "ED" and (batch_anchor + 1) % ed_interval_bs == 0:
ED_drop = True
bpr_loss,c_loss_u_r,c_loss_u_rr,c_u_loss_u_o,c_u_loss_u_oo,c_u_loss_u_o_r,c_u_loss_u_oo_rr,c_u_loss_u_o_r_i,c_u_loss_u_oo_rr_i= model(batch, ED_drop=ED_drop)
# bpr_loss=torch.tensor(bpr_loss,dtype=torch.float64)
# c_loss=torch.tensor(c_loss,dtype=torch.float64)
loss =bpr_loss+c_lambda1*c_loss_u_r+c_lambda1*c_loss_u_rr+c_lambda2*c_u_loss_u_o+c_lambda2*c_u_loss_u_oo+c_lambda3*c_u_loss_u_o_r+c_lambda3*c_u_loss_u_oo_rr+c_lambda3*c_u_loss_u_o_r_i+c_lambda3*c_u_loss_u_oo_rr_i
loss.backward()
# loss = bpr_loss + 0.05 * c_loss_u_r + 0.05 * c_loss_u_rr + 0.05 * c_u_loss_u_o + 0.05 * c_u_loss_u_oo + 0.15* c_u_loss_u_o_r + 0.15* c_u_loss_u_oo_rr + 0.15 * c_u_loss_u_o_r_i + 0.15 * c_u_loss_u_oo_rr_i
# loss.backward()
optimizer.step()
loss_scalar = loss.detach()
bpr_loss_scalar = bpr_loss.detach()
c_loss_u_r_scalar = c_loss_u_r.detach()
c_loss_u_rr_scalar = c_loss_u_rr.detach()
c_u_loss_u_o_scalar = c_u_loss_u_o.detach()
c_u_loss_u_oo_scalar = c_u_loss_u_oo.detach()
c_u_loss_u_o_r_scalar = c_u_loss_u_o_r.detach()
c_u_loss_u_oo_rr_scalar = c_u_loss_u_oo_rr.detach()
c_u_loss_u_o_r_i_scalar = c_u_loss_u_o_r_i.detach()
c_u_loss_u_oo_rr_i_scalar = c_u_loss_u_oo_rr_i.detach()
# c_loss_r_scalar = c_loss_r.detach()
# c_loss_r_u_scalar = c_loss_r_u.detach()
# bpr_loss_r_scalar=bpr_loss_r.detach()
run.add_scalar("loss_bpr", bpr_loss_scalar, batch_anchor)
run.add_scalar("c_loss_u_r", c_loss_u_r_scalar, batch_anchor)
run.add_scalar("c_loss_u_rr", c_loss_u_rr_scalar, batch_anchor)
run.add_scalar("c_loss_u_o", c_u_loss_u_o_scalar, batch_anchor)
run.add_scalar("c_loss_u_oo", c_u_loss_u_oo_scalar, batch_anchor)
run.add_scalar("c_loss_u_o_r", c_u_loss_u_o_r_scalar, batch_anchor)
run.add_scalar("c_loss_u_oo_rr", c_u_loss_u_oo_rr_scalar, batch_anchor)
run.add_scalar("c_loss_u_o_r_i", c_u_loss_u_o_r_i_scalar, batch_anchor)
run.add_scalar("c_loss_u_oo_rr_i", c_u_loss_u_oo_rr_i_scalar, batch_anchor)
# run.add_scalar("loss_c_r", c_loss_r_scalar, batch_anchor)
# run.add_scalar("loss_c_r_u", c_loss_r_u_scalar, batch_anchor)
# run.add_scalar("loss_bpr_r", bpr_loss_r_scalar, batch_anchor)
run.add_scalar("loss", loss_scalar, batch_anchor)
# pbar.set_description("epoch: %d, loss: %.4f,loss_bpr: %.4f,c_loss_u_r: %.4f,c_loss_u_rr: %.4f,c_loss_u_o: %.4f,c_loss_u_oo: %.4f,c_loss_u_o_r: %.4f,c_loss_u_oo_rr: %.4f,c_loss_u_o_r_i: %.4f,c_loss_u_oo_rr_i: %.4f" % (
# epoch, loss_scalar, bpr_loss_scalar,c_loss_u_r_scalar,c_loss_u_rr_scalar,c_u_loss_u_o_scalar,c_u_loss_u_oo_scalar,c_u_loss_u_o_r_scalar,c_u_loss_u_oo_rr_scalar,c_u_loss_u_o_r_i_scalar,c_u_loss_u_oo_rr_i_scalar))
# curr_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
pbar.set_description(
"epoch: %d, loss: %.4f,loss_bpr: %.4f" % (
epoch, loss_scalar, bpr_loss_scalar))
curr_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
val_str_t = (curr_time,epoch, loss_scalar, bpr_loss_scalar)
log.write(str(val_str_t))
if (batch_anchor + 1) % test_interval_bs == 0:
metrics = {}
metrics["val"] = test(model, dataset.val_loader, conf)
metrics["test"] = test(model, dataset.test_loader, conf)
best_metrics, best_perform, best_epoch = log_metrics(conf, model, metrics, run, log_path,
checkpoint_model_path, checkpoint_conf_path,
epoch, batch_anchor, best_metrics,
best_perform, best_epoch)
log.close()
def init_best_metrics(conf):
best_metrics = {}
best_metrics["val"] = {}
best_metrics["test"] = {}
for key in best_metrics:
best_metrics[key]["recall"] = {}
best_metrics[key]["ndcg"] = {}
for topk in conf['topk']:
for key, res in best_metrics.items():
for metric in res:
best_metrics[key][metric][topk] = 0
best_perform = {}
best_perform["val"] = {}
best_perform["test"] = {}
return best_metrics, best_perform
def write_log(run, log_path, topk, step, metrics):
curr_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
val_scores = metrics["val"]
test_scores = metrics["test"]
for m, val_score in val_scores.items():
test_score = test_scores[m]
run.add_scalar("%s_%d/Val" %(m, topk), val_score[topk], step)
run.add_scalar("%s_%d/Test" %(m, topk), test_score[topk], step)
val_str = "%s, Top_%d, Val: recall: %f, ndcg: %f" %(curr_time, topk, val_scores["recall"][topk], val_scores["ndcg"][topk])
test_str = "%s, Top_%d, Test: recall: %f, ndcg: %f" %(curr_time, topk, test_scores["recall"][topk], test_scores["ndcg"][topk])
log = open(log_path, "a")
log.write("%s\n" %(val_str))
log.write("%s\n" %(test_str))
log.close()
print(val_str)
print(test_str)
def log_metrics(conf, model, metrics, run, log_path, checkpoint_model_path, checkpoint_conf_path, epoch, batch_anchor, best_metrics, best_perform, best_epoch):
for topk in conf["topk"]:
write_log(run, log_path, topk, batch_anchor, metrics)
log = open(log_path, "a")
topk_ = 20
print("top%d as the final evaluation standard" %(topk_))
if metrics["val"]["recall"][topk_] > best_metrics["val"]["recall"][topk_] and metrics["val"]["ndcg"][topk_] > best_metrics["val"]["ndcg"][topk_]:
torch.save(model.state_dict(), checkpoint_model_path)
dump_conf = dict(conf)
del dump_conf["device"]
del dump_conf["trainUser"]
del dump_conf["trainItem"]
json.dump(dump_conf, open(checkpoint_conf_path, "w"))
best_epoch = epoch
curr_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
for topk in conf['topk']:
for key, res in best_metrics.items():
for metric in res:
best_metrics[key][metric][topk] = metrics[key][metric][topk]
best_perform["test"][topk] = "%s, Best in epoch %d, TOP %d: REC_T=%.5f, NDCG_T=%.5f" %(curr_time, best_epoch, topk, best_metrics["test"]["recall"][topk], best_metrics["test"]["ndcg"][topk])
best_perform["val"][topk] = "%s, Best in epoch %d, TOP %d: REC_V=%.5f, NDCG_V=%.5f" %(curr_time, best_epoch, topk, best_metrics["val"]["recall"][topk], best_metrics["val"]["ndcg"][topk])
print(best_perform["val"][topk])
print(best_perform["test"][topk])
log.write(best_perform["val"][topk] + "\n")
log.write(best_perform["test"][topk] + "\n")
log.close()
return best_metrics, best_perform, best_epoch
def test(model, dataloader, conf):
tmp_metrics = {}
for m in ["recall", "ndcg"]:
tmp_metrics[m] = {}
for topk in conf["topk"]:
tmp_metrics[m][topk] = [0, 0]
conf["status"]=1
device = conf["device"]
model.eval()
rs = model.propagate(test=True)
for users, ground_truth_u_b, train_mask_u_b in dataloader:
pred_b = model.evaluate(rs, users.to(device))
pred_b -= 1e8 * train_mask_u_b.to(device)
tmp_metrics = get_metrics(tmp_metrics, ground_truth_u_b, pred_b, conf["topk"])
metrics = {}
for m, topk_res in tmp_metrics.items():
metrics[m] = {}
for topk, res in topk_res.items():
metrics[m][topk] = res[0] / res[1]
return metrics
def get_metrics(metrics, grd, pred, topks):
tmp = {"recall": {}, "ndcg": {}}
for topk in topks:
_, col_indice = torch.topk(pred, topk)
row_indice = torch.zeros_like(col_indice) + torch.arange(pred.shape[0], device=pred.device, dtype=torch.long).view(-1, 1)
is_hit = grd[row_indice.view(-1), col_indice.view(-1)].view(-1, topk)
tmp["recall"][topk] = get_recall(pred, grd, is_hit, topk)
tmp["ndcg"][topk] = get_ndcg(pred, grd, is_hit, topk)
for m, topk_res in tmp.items():
for topk, res in topk_res.items():
for i, x in enumerate(res):
metrics[m][topk][i] += x
return metrics
def get_recall(pred, grd, is_hit, topk):
epsilon = 1e-8
hit_cnt = is_hit.sum(dim=1)
num_pos = grd.sum(dim=1)
# remove those test cases who don't have any positive items
denorm = pred.shape[0] - (num_pos == 0).sum().item()
nomina = (hit_cnt/(num_pos+epsilon)).sum().item()
return [nomina, denorm]
def get_ndcg(pred, grd, is_hit, topk):
def DCG(hit, topk, device):
hit = hit/torch.log2(torch.arange(2, topk+2, device=device, dtype=torch.float))
return hit.sum(-1)
def IDCG(num_pos, topk, device):
hit = torch.zeros(topk, dtype=torch.float)
hit[:num_pos] = 1
return DCG(hit, topk, device)
device = grd.device
IDCGs = torch.empty(1+topk, dtype=torch.float)
IDCGs[0] = 1 # avoid 0/0
for i in range(1, topk+1):
IDCGs[i] = IDCG(i, topk, device)
num_pos = grd.sum(dim=1).clamp(0, topk).to(torch.long)
dcg = DCG(is_hit, topk, device)
idcg = IDCGs[num_pos]
ndcg = dcg/idcg.to(device)
denorm = pred.shape[0] - (num_pos == 0).sum().item()
nomina = ndcg.sum().item()
return [nomina, denorm]
if __name__ == "__main__":
main()