-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBP.C
213 lines (188 loc) · 5.43 KB
/
BP.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#define MORE_ARG 1
#if NUMA
#include "ligra-numa.h"
#else
#include "ligra.h"
#endif
#include "math.h"
int maxIter=10;
using namespace std;
#define NSTATES 2
struct EdgeWeight
{
float potential[NSTATES][NSTATES];
};
struct EdgeData
{
float belief[NSTATES];
};
struct VertexInfo
{
float potential[NSTATES];
};
struct VertexData
{
float product[NSTATES];
};
template <class ET>
inline void writeDiv(ET *a, ET b)
{
volatile ET newV, oldV;
do
{
oldV = *a;
newV = oldV / b;
}
while (!CAS(a, oldV, newV));
}
template <class ET>
inline void writeMult(ET *a, ET b)
{
volatile ET newV, oldV;
do
{
oldV = *a;
newV = oldV * b;
}
while (!CAS(a, oldV, newV));
}
template <class vertex>
struct BP_F
{
EdgeWeight *edgeW;
EdgeData *edgeD_curr;
EdgeData *edgeD_next;
VertexInfo *vertI;
VertexData *vertD_curr;
VertexData *vertD_next;
intT *offsets;
static const bool use_cache = false;
struct cache_t
{
intT dstIdx;
};
BP_F(EdgeWeight *_edgeW, EdgeData *_edgeD_curr, EdgeData *_edgeD_next, VertexInfo *_vertI, VertexData *_vertD_curr, VertexData *_vertD_next, intT *_offsets) :
edgeW(_edgeW), edgeD_curr(_edgeD_curr), edgeD_next(_edgeD_next), vertI(_vertI), vertD_curr(_vertD_curr), vertD_next(_vertD_next), offsets(_offsets) {}
inline bool update(intT s, intT d, intT edgeIdx)
{
intT dstIdx = offsets[s] + edgeIdx;
for (int i = 0; i < NSTATES; i++)
{
edgeD_next[dstIdx].belief[i] = 0.0;
for (int j = 0; j < NSTATES; j++)
{
edgeD_next[dstIdx].belief[i] += vertI[d].potential[j] * edgeW[dstIdx].potential[i][j] * vertD_curr[d].product[j];
}
vertD_next[d].product[i] = vertD_next[d].product[i] * edgeD_next[dstIdx].belief[i];
}
return 1;
}
inline bool updateAtomic (intT s, intT d, intT edgeIdx) //atomic Update
{
intT dstIdx = offsets[s] + edgeIdx;
for (int i = 0; i < NSTATES; i++)
{
edgeD_next[dstIdx].belief[i] = 0.0;
for (int j = 0; j < NSTATES; j++)
{
edgeD_next[dstIdx].belief[i] += vertI[d].potential[j] * edgeW[dstIdx].potential[i][j] * vertD_curr[d].product[j];
}
//writeMult(&(vertD_next[d].product[i]), edgeD_next[dstIdx].belief[i]);
vertD_next[d].product[i] = vertD_next[d].product[i] * edgeD_next[dstIdx].belief[i];
}
return 1;
}
inline void create_cache(cache_t &cache, intT d)
{
cache.dstIdx = offsets[d];
}
inline bool update(cache_t &cache, intT s, intE edgeLen)
{
return 1;
}
inline void commit_cache(cache_t &cache, intT d)
{
for (int i = 0; i < NSTATES; i++)
{
edgeD_next[cache.dstIdx].belief[i] = 0.0;
for (int j = 0; j < NSTATES; j++)
{
edgeD_next[cache.dstIdx].belief[i] += vertI[d].potential[j] * edgeW[cache.dstIdx].potential[i][j] * vertD_curr[d].product[j];
}
//writeMult(&(vertD_next[d].product[i]), edgeD_next[dstIdx].belief[i]);
vertD_next[d].product[i] = vertD_next[d].product[i] * edgeD_next[cache.dstIdx].belief[i];
}
}
inline bool cond (intT d)
{
return 1; //does nothing
}
};
//resets p
struct BP_Vertex_Reset
{
VertexData *vertD;
BP_Vertex_Reset(VertexData *_vertD) :
vertD(_vertD) {}
inline bool operator () (intT i)
{
for (int i = 0; i < NSTATES; i++)
{
vertD[i].product[i] = 1.0;
}
return 1;
}
};
template <class GraphType>
void Compute(GraphType &GA, long start)
{
typedef typename GraphType::vertex_type vertex; // Is determined by GraphType
const partitioner &part = GA.get_partitioner();
const int perNode = part.get_num_per_node_partitions();
//offsets
intT n = GA.n;
intT m = GA.m;
mmap_ptr<intT> Degrees;
Degrees.Interleave_allocate (n);
mmap_ptr<intT> Offsets;
Offsets.Interleave_allocate (n);
parallel_for(intT j=0; j < n; ++j)
Degrees[j] = GA.getWholeGraph().V[j].getOutDegree();
Offsets[0] = 0;
for (intT i = 1; i < n; i++)
Offsets[i] = Offsets[i-1] + Degrees[i-1];
intT numEdge = Offsets[n - 1] + Degrees[n - 1];
//create vertex data
mmap_ptr<VertexInfo> vertI;
vertI.part_allocate (part);
mmap_ptr<VertexData> vertD_curr;
vertD_curr.part_allocate (part);
mmap_ptr<VertexData> vertD_next;
vertD_next.part_allocate (part);
// create edge data
mmap_ptr<EdgeWeight> edgeW;
edgeW.Interleave_allocate (numEdge);
mmap_ptr<EdgeData> edgeD_curr;
edgeD_curr.Interleave_allocate (numEdge);
mmap_ptr<EdgeData> edgeD_next;
edgeD_next.Interleave_allocate (numEdge);
partitioned_vertices Frontier = partitioned_vertices::bits(part,n, m);
int currIter=0;
while(1&&currIter<maxIter)
{
currIter++;
vertexMap(part,Frontier, BP_Vertex_Reset(vertD_next));
partitioned_vertices output=edgeMap(GA, Frontier, BP_F<vertex>(edgeW, edgeD_curr, edgeD_next, vertI, vertD_curr, vertD_next, Offsets), m/20, DENSE_FORWARD);
output.del();
swap(edgeD_curr, edgeD_next);
swap(vertD_curr, vertD_next);
}
vertI.del();
vertD_curr.del();
vertD_next.del();
edgeD_curr.del();
edgeD_next.del();
Degrees.del();
Offsets.del();
edgeW.del();
}