-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_balanced_data.py
executable file
·176 lines (156 loc) · 7.51 KB
/
generate_balanced_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# python3.7
"""Generates a collection of images with specified model.
Commonly, this file is used for data preparation. More specifically, before
exploring the hidden semantics from the latent space, user need to prepare a
collection of images. These images can be used for further attribute prediction.
In this way, it is able to build a relationship between input latent codes and
the corresponding attribute scores.
"""
import os.path
import argparse
import pickle
import torch
import torch.nn as nn
from collections import defaultdict
import cv2
import numpy as np
from tqdm import tqdm
from models.model_settings import MODEL_POOL
from models.pggan_generator import PGGANGenerator
from models.stylegan_generator import StyleGANGenerator
from utils.logger import setup_logger
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(
description='Generate images with given model.')
parser.add_argument('-m', '--model_name', type=str, required=True,
choices=list(MODEL_POOL),
help='Name of the model for generation. (required)')
parser.add_argument('-o', '--output_dir', type=str, required=True,
help='Directory to save the output results. (required)')
parser.add_argument('-i', '--latent_codes_path', type=str, default='',
help='If specified, will load latent codes from given '
'path instead of randomly sampling. (optional)')
parser.add_argument('-n', '--num', type=int, default=1,
help='Number of images to generate. This field will be '
'ignored if `latent_codes_path` is specified. '
'(default: 1)')
parser.add_argument('-s', '--latent_space_type', type=str, default='z',
choices=['z', 'Z', 'w', 'W', 'wp', 'wP', 'Wp', 'WP'],
help='Latent space used in Style GAN. (default: `Z`)')
parser.add_argument('-S', '--generate_style', action='store_true',
help='If specified, will generate layer-wise style codes '
'in Style GAN. (default: do not generate styles)')
parser.add_argument('-I', '--generate_image', action='store_false',
help='If specified, will skip generating images in '
'Style GAN. (default: generate images)')
parser.add_argument('-K', '--key_file_path', type=str, default='./data/bald.pkl',
help='Path to save the file that records the indices of pos and neg examples.')
parser.add_argument('-SI', '--start_index', type=int, required=True,
help='The first index that is used to name the save image.')
parser.add_argument('--pretrained_clf_path', type=str,
default='./celebA-hq-classifier')
parser.add_argument('--sample_per_category', type=int, default=50000)
parser.add_argument('--threshold', type=float, default=0.9,
help='Confidence for samples to be accepted.')
parser.add_argument('--no_generated_imgs', action='store_true',
help='If specified, the program will only keep the noise-task_output pairs; thus save the disk space.')
return parser.parse_args()
def main():
"""Main function."""
args = parse_args()
logger = setup_logger(args.output_dir, logger_name='generate_data', immutable=False)
logger.info(f'Initializing generator.')
gan_type = MODEL_POOL[args.model_name]['gan_type']
if gan_type == 'pggan':
model = PGGANGenerator(args.model_name, logger)
kwargs = {}
elif gan_type == 'stylegan':
model = StyleGANGenerator(args.model_name, logger)
kwargs = {'latent_space_type': args.latent_space_type}
else:
raise NotImplementedError(f'Not implemented GAN type `{gan_type}`!')
logger.info(f'Preparing latent codes.')
if os.path.isfile(args.latent_codes_path):
logger.info(f' Load latent codes from `{args.latent_codes_path}`.')
latent_codes = np.load(args.latent_codes_path)
latent_codes = model.preprocess(latent_codes, **kwargs)
else:
logger.info(f' Sample latent codes randomly.')
latent_codes = model.easy_sample(args.num, **kwargs)
# The orginal code of interfaceGAN does not have this line.
#if gan_type == 'stylegan':
# latent_codes = model.preprocess(latent_codes, **kwargs)
total_num = latent_codes.shape[0]
logger.info(f'Generating {total_num} samples.')
results = defaultdict(list)
pbar = tqdm(total=total_num, leave=False)
"""Pretrained attribute classifier
Replace the classifier 'attr_clf' with your own task models.
"""
attr_num = 16
attr_clf = YOUR_TASK_MODEL()
logger.info(f'Classifier loaded.')
attr_clf.cuda()
attr_clf.eval()
attr_clf.requires_grad = False
downscale = nn.Upsample(size=224, mode='bilinear')
if os.path.exists(args.key_file_path):
raise ValueError(f'{args.key_file_path} has existed.')
else:
data_index = [[[],[]] for _ in range(int(attr_num))]
image_cnt = args.start_index
for latent_codes_batch in model.get_batch_inputs(latent_codes):
if gan_type == 'pggan':
outputs = model.easy_synthesize(latent_codes_batch)
elif gan_type == 'stylegan':
outputs = model.easy_synthesize(latent_codes_batch,
**kwargs,
generate_style=args.generate_style,
generate_image=args.generate_image)
with torch.no_grad():
val = outputs['image']
# Within a batch, some of images will be saved, while some of them won't.
kept_indices = []
img_tensor = torch.tensor(val.transpose(0, 3, 1, 2)).cuda().float()
img_tensor = downscale(img_tensor)/255.
# predict = torch.sigmoid(logits)
preds = attr_clf.predict(img_tensor)
for iid, image in enumerate(val):
pbar.update(1)
is_save = False
for ind in range(attr_num):
if preds[iid][ind] >= args.threshold and len(data_index[ind][0])<args.sample_per_category:
is_save = True
data_index[ind][0].append(image_cnt)
elif (1 - preds[iid][ind]) >= args.threshold and len(data_index[ind][1])<args.sample_per_category:
is_save = True
data_index[ind][1].append(image_cnt)
if is_save:
kept_indices.append(iid)
save_path = os.path.join(args.output_dir, f'{image_cnt:08d}.jpg')
if not args.no_generated_imgs:
cv2.imwrite(save_path, image[:, :, ::-1])
results['soft_labels'].append(preds[iid].reshape(1, -1))
image_cnt += 1
for key, val in outputs.items():
if key != 'image' and len(kept_indices) > 0:
val = val[kept_indices]
results[key].append(val)
if 'image' not in outputs:
pbar.update(latent_codes_batch.shape[0])
if pbar.n % 1000 == 0 or pbar.n == total_num:
print('iter: ', pbar.n)
for ind in range(attr_num):
print ("attr_index: {}, pos: {}, neg{}".format(ind, len(data_index[ind][0]), len(data_index[ind][1])))
# save data_index
with open(args.key_file_path, 'wb') as f:
pickle.dump(data_index, f)
logger.debug(f' Finish {pbar.n:6d} samples.')
logger.info(f'Saving results.')
for key, val in results.items():
save_path = os.path.join(args.output_dir, f'{key}.npy')
np.save(save_path, np.concatenate(val, axis=0))
pbar.close()
if __name__ == '__main__':
main()