-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain_dise_gta2city.py
537 lines (446 loc) · 21.9 KB
/
train_dise_gta2city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import sys
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.utils as vutils
import torchvision.models as models
import torch.utils.data as torch_data
import torch.backends.cudnn as cudnn
import matplotlib.pyplot as plt
import os
# from tensorboardX import SummaryWriter
from PIL import Image
from torch.autograd import Variable
from tqdm import tqdm
from util.loader.CityLoader import CityLoader
from util.loader.GTA5Loader import GTA5Loader
from util.loader.augmentations import Compose, RandomHorizontallyFlip, RandomSized_and_Crop, RandomCrop
from util.metrics import runningScore
from util.loss import VGGLoss, VGGLoss_for_trans, cross_entropy2d
from model.model import SharedEncoder, PrivateEncoder, PrivateDecoder, Discriminator, DomainClassifier
from util.utils import poly_lr_scheduler, adjust_learning_rate, save_models, load_models
# Data-related
LOG_DIR = './log'
GEN_IMG_DIR = './generated_imgs'
GTA5_DATA_PATH = '/workspace/lustre/data/GTA5'
CITY_DATA_PATH = '/workspace/lustre/data/Cityscapes'
DATA_LIST_PATH_GTA5 = './util/loader/gta5_list/train_modified.txt'
DATA_LIST_PATH_CITY_IMG = './util/loader/cityscapes_list/train.txt'
DATA_LIST_PATH_CITY_LBL = './util/loader/cityscapes_list/train_label.txt'
DATA_LIST_PATH_VAL_IMG = './util/loader/cityscapes_list/val.txt'
DATA_LIST_PATH_VAL_LBL = './util/loader/cityscapes_list/val_label.txt'
# Hyper-parameters
CUDA_DIVICE_ID = '0'
parser = argparse.ArgumentParser(description='Domain Invariant Structure Extraction (DISE) \
for unsupervised domain adaptation for semantic segmentation')
parser.add_argument('--dump_logs', type=bool, default=False)
parser.add_argument('--log_dir', type=str, default=LOG_DIR, help='the path to where you save plots and logs.')
parser.add_argument('--gen_img_dir', type=str, default=GEN_IMG_DIR, help='the path to where you save translated images and segmentation maps.')
parser.add_argument('--gta5_data_path', type=str, default=GTA5_DATA_PATH, help='the path to GTA5 dataset.')
parser.add_argument('--city_data_path', type=str, default=CITY_DATA_PATH, help='the path to Cityscapes dataset.')
parser.add_argument('--data_list_path_gta5', type=str, default=DATA_LIST_PATH_GTA5)
parser.add_argument('--data_list_path_city_img', type=str, default=DATA_LIST_PATH_CITY_IMG)
parser.add_argument('--data_list_path_city_lbl', type=str, default=DATA_LIST_PATH_CITY_LBL)
parser.add_argument('--data_list_path_val_img', type=str, default=DATA_LIST_PATH_VAL_IMG)
parser.add_argument('--data_list_path_val_lbl', type=str, default=DATA_LIST_PATH_VAL_LBL)
parser.add_argument('--cuda_device_id', nargs='+', type=str, default=CUDA_DIVICE_ID)
args = parser.parse_args()
print ('cuda_device_id:', ','.join(args.cuda_device_id))
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.cuda_device_id)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if not os.path.exists(args.gen_img_dir):
os.makedirs(args.gen_img_dir)
if args.dump_logs == True:
old_output = sys.stdout
sys.stdout = open(os.path.join(args.log_dir, 'output.txt'), 'w')
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
num_classes = 19
source_input_size = [720, 1280]
target_input_size = [512, 1024]
batch_size = 2
max_epoch = 150
num_steps = 250000
num_calmIoU = 1000
learning_rate_seg = 2.5e-4
learning_rate_d = 1e-4
learning_rate_rec = 1e-3
learning_rate_dis = 1e-4
power = 0.9
weight_decay = 0.0005
lambda_seg = 0.1
lambda_adv_target1 = 0.0002
lambda_adv_target2 = 0.001
source_channels = 3
target_channels = 3
private_code_size = 8
shared_code_channels = 2048
# Setup Augmentations
gta5_data_aug = Compose([RandomHorizontallyFlip(),
RandomSized_and_Crop([256, 512])
])
city_data_aug = Compose([RandomHorizontallyFlip(),
RandomCrop([256, 512])
])
# ==== DataLoader ====
gta5_set = GTA5Loader(args.gta5_data_path, args.data_list_path_gta5, max_iters=num_steps* batch_size, crop_size=source_input_size, transform=gta5_data_aug, mean=IMG_MEAN)
source_loader= torch_data.DataLoader(gta5_set, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
city_set = CityLoader(args.city_data_path, args.data_list_path_city_img, args.data_list_path_city_lbl, max_iters=num_steps* batch_size, crop_size=target_input_size, transform=city_data_aug, mean=IMG_MEAN, set='train')
target_loader= torch_data.DataLoader(city_set, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
val_set = CityLoader(args.city_data_path, args.data_list_path_val_img, args.data_list_path_val_lbl, max_iters=None, crop_size=[512, 1024], mean=IMG_MEAN, set='val')
val_loader= torch_data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=4, pin_memory=True)
sourceloader_iter = enumerate(source_loader)
targetloader_iter = enumerate(target_loader)
# Setup Metrics
cty_running_metrics = runningScore(num_classes)
model_dict = {}
# Setup Model
print ('building models ...')
enc_shared = SharedEncoder().cuda()
dclf1 = DomainClassifier().cuda()
dclf2 = DomainClassifier().cuda()
enc_s = PrivateEncoder(64, private_code_size).cuda()
enc_t = PrivateEncoder(64, private_code_size).cuda()
dec_s = PrivateDecoder(shared_code_channels, private_code_size).cuda()
dec_t = dec_s
dis_s2t = Discriminator().cuda()
dis_t2s = Discriminator().cuda()
model_dict['enc_shared'] = enc_shared
model_dict['dclf1'] = dclf1
model_dict['dclf2'] = dclf2
model_dict['enc_s'] = enc_s
model_dict['enc_t'] = enc_t
model_dict['dec_s'] = dec_s
model_dict['dec_t'] = dec_t
model_dict['dis_s2t'] = dis_s2t
model_dict['dis_t2s'] = dis_t2s
enc_shared_opt = optim.SGD(enc_shared.optim_parameters(learning_rate_seg), lr=learning_rate_seg, momentum=0.9, weight_decay=weight_decay)
dclf1_opt = optim.Adam(dclf1.parameters(), lr=learning_rate_d, betas=(0.9, 0.99))
dclf2_opt = optim.Adam(dclf2.parameters(), lr=learning_rate_d, betas=(0.9, 0.99))
enc_s_opt = optim.Adam(enc_s.parameters(), lr=learning_rate_rec, betas=(0.5, 0.999))
enc_t_opt = optim.Adam(enc_t.parameters(), lr=learning_rate_rec, betas=(0.5, 0.999))
dec_s_opt = optim.Adam(dec_s.parameters(), lr=learning_rate_rec, betas=(0.5, 0.999))
dec_t_opt = optim.Adam(dec_t.parameters(), lr=learning_rate_rec, betas=(0.5, 0.999))
dis_s2t_opt = optim.Adam(dis_s2t.parameters(), lr=learning_rate_dis, betas=(0.5, 0.999))
dis_t2s_opt = optim.Adam(dis_t2s.parameters(), lr=learning_rate_dis, betas=(0.5, 0.999))
seg_opt_list = []
dclf_opt_list = []
rec_opt_list = []
dis_opt_list = []
# Optimizer list for quickly adjusting learning rate
seg_opt_list.append(enc_shared_opt)
dclf_opt_list.append(dclf1_opt)
dclf_opt_list.append(dclf2_opt)
rec_opt_list.append(enc_s_opt)
rec_opt_list.append(enc_t_opt)
rec_opt_list.append(dec_s_opt)
rec_opt_list.append(dec_t_opt)
dis_opt_list.append(dis_s2t_opt)
dis_opt_list.append(dis_t2s_opt)
# load_models(model_dict, './weight_90000/')
cudnn.enabled = True
cudnn.benchmark = True
mse_loss = nn.MSELoss(size_average=True).cuda()
bce_loss = nn.BCEWithLogitsLoss().cuda()
sg_loss = cross_entropy2d
VGG_loss = VGGLoss()
VGG_loss_for_trans = VGGLoss_for_trans()
upsample_256 = nn.Upsample(size=[256, 512], mode='bilinear')
upsample_360 = nn.Upsample(size=[360, 640], mode='bilinear')
upsample_512 = nn.Upsample(size=[512, 1024], mode='bilinear')
true_label = 1
fake_label = 0
i_iter_tmp = []
epoch_tmp = []
loss_rec_s_tmp = []
loss_rec_t_tmp = []
loss_rec_s2t_tmp = []
loss_rec_t2s_tmp = []
prob_dclf1_real1_tmp = []
prob_dclf1_fake1_tmp = []
prob_dclf1_fake2_tmp = []
prob_dclf2_real1_tmp = []
prob_dclf2_fake1_tmp = []
prob_dclf2_fake2_tmp = []
loss_sim_sg_tmp = []
prob_dis_s2t_real1_tmp = []
prob_dis_s2t_fake1_tmp = []
prob_dis_s2t_fake2_tmp = []
prob_dis_t2s_real1_tmp = []
prob_dis_t2s_fake1_tmp = []
prob_dis_t2s_fake2_tmp = []
City_tmp = []
dclf1.train()
dclf2.train()
enc_shared.train()
enc_s.train()
enc_t.train()
dec_s.train()
dec_t.train()
dis_s2t.train()
dis_t2s.train()
best_iou = 0
best_iter= 0
for i_iter in range(num_steps):
print (i_iter)
sys.stdout.flush()
enc_shared.train()
adjust_learning_rate(seg_opt_list , base_lr=learning_rate_seg, i_iter=i_iter, max_iter=num_steps, power=power)
adjust_learning_rate(dclf_opt_list, base_lr=learning_rate_d , i_iter=i_iter, max_iter=num_steps, power=power)
adjust_learning_rate(rec_opt_list , base_lr=learning_rate_rec, i_iter=i_iter, max_iter=num_steps, power=power)
adjust_learning_rate(dis_opt_list , base_lr=learning_rate_dis, i_iter=i_iter, max_iter=num_steps, power=power)
# ==== sample data ====
idx_s, source_batch = next(sourceloader_iter)
idx_t, target_batch = next(targetloader_iter)
source_data, source_label = source_batch
target_data, target_label = target_batch
sdatav = Variable(source_data).cuda()
slabelv = Variable(source_label).cuda()
tdatav = Variable(target_data).cuda()
tlabelv = Variable(target_label)
# forwarding
low_s, s_pred1, s_pred2, code_s_common = enc_shared(sdatav)
low_t, t_pred1, t_pred2, code_t_common = enc_shared(tdatav)
code_s_private = enc_s(low_s)
code_t_private = enc_t(low_t)
rec_s = dec_s(code_s_common, code_s_private, 0)
rec_t = dec_t(code_t_common, code_t_private, 1)
rec_t2s = dec_s(code_t_common, code_s_private, 0)
rec_s2t = dec_t(code_s_common, code_t_private, 1)
for p in dclf1.parameters():
p.requires_grad = True
for p in dclf2.parameters():
p.requires_grad = True
for p in dis_s2t.parameters():
p.requires_grad = True
for p in dis_t2s.parameters():
p.requires_grad = True
# train Domain classifier
# ===== dclf1 =====
prob_dclf1_real1 = dclf1(F.softmax(upsample_256(s_pred1.detach()), dim=1))
prob_dclf1_fake1 = dclf1(F.softmax(upsample_256(t_pred1.detach()), dim=1))
loss_d_dclf1 = bce_loss(prob_dclf1_real1, Variable(torch.FloatTensor(prob_dclf1_real1.data.size()).fill_(true_label)).cuda()).cuda() \
+ bce_loss(prob_dclf1_fake1, Variable(torch.FloatTensor(prob_dclf1_fake1.data.size()).fill_(fake_label)).cuda()).cuda()
if i_iter%1 == 0:
dclf1_opt.zero_grad()
loss_d_dclf1.backward()
dclf1_opt.step()
# ===== dclf2 =====
prob_dclf2_real1 = dclf2(F.softmax(upsample_256(s_pred2.detach()), dim=1))
prob_dclf2_fake1 = dclf2(F.softmax(upsample_256(t_pred2.detach()), dim=1))
loss_d_dclf2 = bce_loss(prob_dclf2_real1, Variable(torch.FloatTensor(prob_dclf2_real1.data.size()).fill_(true_label)).cuda()).cuda() \
+ bce_loss(prob_dclf2_fake1, Variable(torch.FloatTensor(prob_dclf2_fake1.data.size()).fill_(fake_label)).cuda()).cuda()
if i_iter%1 == 0:
dclf2_opt.zero_grad()
loss_d_dclf2.backward()
dclf2_opt.step()
# train image discriminator -> LSGAN
# ===== dis_s2t =====
if i_iter%5 == 0:
prob_dis_s2t_real1 = dis_s2t(tdatav)
prob_dis_s2t_fake1 = dis_s2t(rec_s2t.detach())
loss_d_s2t = 0.5* mse_loss(prob_dis_s2t_real1, Variable(torch.FloatTensor(prob_dis_s2t_real1.data.size()).fill_(true_label).cuda())).cuda() \
+ 0.5* mse_loss(prob_dis_s2t_fake1, Variable(torch.FloatTensor(prob_dis_s2t_fake1.data.size()).fill_(fake_label).cuda())).cuda()
dis_s2t_opt.zero_grad()
loss_d_s2t.backward()
dis_s2t_opt.step()
# ===== dis_t2s =====
if i_iter%5 == 0:
prob_dis_t2s_real1 = dis_t2s(sdatav)
prob_dis_t2s_fake1 = dis_t2s(rec_t2s.detach())
loss_d_t2s = 0.5* mse_loss(prob_dis_t2s_real1, Variable(torch.FloatTensor(prob_dis_t2s_real1.data.size()).fill_(true_label).cuda())).cuda() \
+ 0.5* mse_loss(prob_dis_t2s_fake1, Variable(torch.FloatTensor(prob_dis_t2s_fake1.data.size()).fill_(fake_label).cuda())).cuda()
dis_t2s_opt.zero_grad()
loss_d_t2s.backward()
dis_t2s_opt.step()
for p in dclf1.parameters():
p.requires_grad = False
for p in dclf2.parameters():
p.requires_grad = False
for p in dis_s2t.parameters():
p.requires_grad = False
for p in dis_t2s.parameters():
p.requires_grad = False
# ==== VGGLoss self-reconstruction loss ====
loss_rec_s = VGG_loss(rec_s, sdatav)
loss_rec_t = VGG_loss(rec_t, tdatav)
loss_rec_self = loss_rec_s + loss_rec_t
loss_rec_s2t = VGG_loss_for_trans(rec_s2t, sdatav, tdatav, weights=[0, 0, 0, 1.0/4, 1.0])
loss_rec_t2s = VGG_loss_for_trans(rec_t2s, tdatav, sdatav, weights=[0, 0, 0, 1.0/4, 1.0])
loss_rec_tran = loss_rec_s2t + loss_rec_t2s
# ==== domain agnostic loss ====
prob_dclf1_fake2 = dclf1(F.softmax(upsample_256(t_pred1), dim=1))
loss_feat1_similarity = bce_loss(prob_dclf1_fake2, Variable(torch.FloatTensor(prob_dclf1_fake2.data.size()).fill_(true_label)).cuda())
prob_dclf2_fake2 = dclf2(F.softmax(upsample_256(t_pred2), dim=1))
loss_feat2_similarity = bce_loss(prob_dclf2_fake2, Variable(torch.FloatTensor(prob_dclf2_fake2.data.size()).fill_(true_label)).cuda())
loss_feat_similarity = lambda_adv_target1* loss_feat1_similarity + lambda_adv_target2* loss_feat2_similarity
# ==== image translation loss ====
# prob_dis_s2t_real2 = dis_s2t(tdatav)
prob_dis_s2t_fake2 = dis_s2t(rec_s2t)
loss_gen_s2t = mse_loss(prob_dis_s2t_fake2, Variable(torch.FloatTensor(prob_dis_s2t_fake2.data.size()).fill_(true_label)).cuda()) \
# prob_dis_t2s_real2 = dis_t2s(sdatav)
prob_dis_t2s_fake2 = dis_t2s(rec_t2s)
loss_gen_t2s = mse_loss(prob_dis_t2s_fake2, Variable(torch.FloatTensor(prob_dis_t2s_fake2.data.size()).fill_(true_label)).cuda()) \
loss_image_translation = loss_gen_s2t + loss_gen_t2s
# ==== segmentation loss ====
s_pred1 = upsample_256(s_pred1)
s_pred2 = upsample_256(s_pred2)
loss_s_sg1 = sg_loss(s_pred1, slabelv)
loss_s_sg2 = sg_loss(s_pred2, slabelv)
loss_sim_sg = lambda_seg* loss_s_sg1 + loss_s_sg2
# ==== tranalated segmentation====
# When to start using translated labels, it should be discussed
if i_iter >= 0:
# check if we have to detach the rec_s2t images
_, s2t_pred1, s2t_pred2, _ = enc_shared(rec_s2t.detach())
s2t_pred1 = upsample_256(s2t_pred1)
s2t_pred2 = upsample_256(s2t_pred2)
loss_s2t_sg1 = sg_loss(s2t_pred1, slabelv)
loss_s2t_sg2 = sg_loss(s2t_pred2, slabelv)
loss_sim_sg += lambda_seg* loss_s2t_sg1 + loss_s2t_sg2
# visualize segmentation map
t_pred2 = upsample_256(t_pred2)
pred_s = F.softmax(s_pred2, dim=1).data.max(1)[1].cpu().numpy()
pred_t = F.softmax(t_pred2, dim=1).data.max(1)[1].cpu().numpy()
map_s = gta5_set.decode_segmap(pred_s)
map_t = city_set.decode_segmap(pred_t)
gt_s = slabelv.data.cpu().numpy()
gt_t = tlabelv.data.cpu().numpy()
gt_s = gta5_set.decode_segmap(gt_s)
gt_t = city_set.decode_segmap(gt_t)
total_loss = \
1.0 * loss_sim_sg \
+ 1.0 * loss_feat_similarity \
+ 0.5 * loss_rec_self \
+ 0.01* loss_image_translation \
+ 0.05 * loss_rec_tran
enc_shared_opt.zero_grad()
enc_s_opt.zero_grad()
enc_t_opt.zero_grad()
dec_s_opt.zero_grad()
total_loss.backward()
enc_shared_opt.step()
enc_s_opt.step()
enc_t_opt.step()
dec_s_opt.step()
if i_iter % 25 == 0:
i_iter_tmp.append(i_iter)
print ('Best Iter : '+str(best_iter))
print ('Best mIoU : '+str(best_iou))
plt.title('prob_s2t')
prob_dis_s2t_real1_tmp.append(prob_dis_s2t_real1.data[0].mean())
prob_dis_s2t_fake1_tmp.append(prob_dis_s2t_fake1.data[0].mean())
prob_dis_s2t_fake2_tmp.append(prob_dis_s2t_fake2.data[0].mean())
plt.plot(i_iter_tmp, prob_dis_s2t_real1_tmp, label='prob_dis_s2t_real1')
plt.plot(i_iter_tmp, prob_dis_s2t_fake1_tmp, label='prob_dis_s2t_fake1')
plt.plot(i_iter_tmp, prob_dis_s2t_fake2_tmp, label='prob_dis_s2t_fake2')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'prob_s2t.png'))
plt.close()
plt.title('prob_t2s')
prob_dis_t2s_real1_tmp.append(prob_dis_t2s_real1.data[0].mean())
prob_dis_t2s_fake1_tmp.append(prob_dis_t2s_fake1.data[0].mean())
prob_dis_t2s_fake2_tmp.append(prob_dis_t2s_fake2.data[0].mean())
plt.plot(i_iter_tmp, prob_dis_t2s_real1_tmp, label='prob_dis_t2s_real1')
plt.plot(i_iter_tmp, prob_dis_t2s_fake1_tmp, label='prob_dis_t2s_fake1')
plt.plot(i_iter_tmp, prob_dis_t2s_fake2_tmp, label='prob_dis_t2s_fake2')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'prob_t2s.png'))
plt.close()
plt.title('rec self loss')
loss_rec_s_tmp.append(loss_rec_s.data[0])
loss_rec_t_tmp.append(loss_rec_t.data[0])
plt.plot(i_iter_tmp, loss_rec_s_tmp, label='loss_rec_s')
plt.plot(i_iter_tmp, loss_rec_t_tmp, label='loss_rec_t')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'rec_loss.png'))
plt.close()
plt.title('rec tra loss')
loss_rec_s2t_tmp.append(loss_rec_s2t.data[0])
loss_rec_t2s_tmp.append(loss_rec_t2s.data[0])
plt.plot(i_iter_tmp, loss_rec_s2t_tmp, label='loss_rec_s2t')
plt.plot(i_iter_tmp, loss_rec_t2s_tmp, label='loss_rec_t2s')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'rec_tra_loss.png'))
plt.close()
plt.title('prob_dclf1')
prob_dclf1_real1_tmp.append(prob_dclf1_real1.data[0].mean())
prob_dclf1_fake1_tmp.append(prob_dclf1_fake1.data[0].mean())
prob_dclf1_fake2_tmp.append(prob_dclf1_fake2.data[0].mean())
plt.plot(i_iter_tmp, prob_dclf1_real1_tmp, label='prob_dclf1_real1')
plt.plot(i_iter_tmp, prob_dclf1_fake1_tmp, label='prob_dclf1_fake1')
plt.plot(i_iter_tmp, prob_dclf1_fake2_tmp, label='prob_dclf1_fake2')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'prob_dclf1.png'))
plt.close()
plt.title('prob_dclf2')
prob_dclf2_real1_tmp.append(prob_dclf2_real1.data[0].mean())
prob_dclf2_fake1_tmp.append(prob_dclf2_fake1.data[0].mean())
prob_dclf2_fake2_tmp.append(prob_dclf2_fake2.data[0].mean())
plt.plot(i_iter_tmp, prob_dclf2_real1_tmp, label='prob_dclf2_real1')
plt.plot(i_iter_tmp, prob_dclf2_fake1_tmp, label='prob_dclf2_fake1')
plt.plot(i_iter_tmp, prob_dclf2_fake2_tmp, label='prob_dclf2_fake2')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'prob_dclf2.png'))
plt.close()
plt.title('segmentation_loss')
loss_sim_sg_tmp.append(loss_sim_sg.data[0])
plt.plot(i_iter_tmp, loss_sim_sg_tmp, label='loss_sim_sg')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'segmentation_loss.png'))
plt.close()
plt.title('mIoU')
plt.plot(epoch_tmp, City_tmp, label='City')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, borderaxespad=0.)
plt.grid()
plt.savefig(os.path.join(args.log_dir, 'mIoU.png'))
plt.close()
if i_iter%500 == 0 :
imgs_s = torch.cat(((sdatav[:,[2, 1, 0],:,:].cpu()+1)/2, (rec_s[:,[2, 1, 0],:,:].cpu()+1)/2, (rec_s2t[:,[2, 1, 0],:,:].cpu()+1)/2, Variable(torch.Tensor((map_s.transpose((0, 3, 1, 2))))), Variable(torch.Tensor((gt_s.transpose((0, 3, 1, 2)))))), 0)
imgs_s = vutils.make_grid(imgs_s.data, nrow=batch_size, normalize=False, scale_each=True).cpu().numpy()
imgs_s = np.clip(imgs_s*255,0,255).astype(np.uint8)
imgs_s = imgs_s.transpose(1,2,0)
imgs_s = Image.fromarray(imgs_s)
filename = '%05d_source.jpg' % i_iter
imgs_s.save(os.path.join(args.gen_img_dir, filename))
imgs_t = torch.cat(((tdatav[:,[2, 1, 0],:,:].cpu()+1)/2, (rec_t[:,[2, 1, 0],:,:].cpu()+1)/2, (rec_t2s[:,[2, 1, 0],:,:].cpu()+1)/2, Variable(torch.Tensor((map_t.transpose((0, 3, 1, 2))))), Variable(torch.Tensor((gt_t.transpose((0, 3, 1, 2)))))), 0)
imgs_t = vutils.make_grid(imgs_t.data, nrow=batch_size, normalize=False, scale_each=True).cpu().numpy()
imgs_t = np.clip(imgs_t*255,0,255).astype(np.uint8)
imgs_t = imgs_t.transpose(1,2,0)
imgs_t = Image.fromarray(imgs_t)
filename = '%05d_target.jpg' % i_iter
imgs_t.save(os.path.join(args.gen_img_dir, filename))
if i_iter % num_calmIoU == 0:
enc_shared.eval()
print ('evaluating models ...')
for i_val, (images_val, labels_val) in tqdm(enumerate(val_loader)):
images_val = Variable(images_val.cuda(), volatile=True)
labels_val = Variable(labels_val, volatile=True)
_, _, pred, _ = enc_shared(images_val)
pred = upsample_512(pred)
pred = pred.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
cty_running_metrics.update(gt, pred)
cty_score, cty_class_iou = cty_running_metrics.get_scores()
for k, v in cty_score.items():
print(k, v)
cty_running_metrics.reset()
City_tmp.append(cty_score['Mean IoU : \t'])
epoch_tmp.append(i_iter)
if i_iter % 10000 == 0 and i_iter != 0:
save_models(model_dict, './weight_' + str(i_iter))
if cty_score['Mean IoU : \t'] > best_iou:
best_iter = i_iter
best_iou = cty_score['Mean IoU : \t']
save_models(model_dict, './weight/')