Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dataset viewer displays wrong statists #3103

Open
speedcell4 opened this issue Nov 13, 2024 · 1 comment
Open

Dataset viewer displays wrong statists #3103

speedcell4 opened this issue Nov 13, 2024 · 1 comment

Comments

@speedcell4
Copy link

Describe the bug

In my dataset, there is a column called lang2, and there are 94 different classes in total, but the viewer says there are 83 values only. This issue only arises in the train split. The total number of values is also 94 in the test and dev columns, viewer tells the correct number of them.

image

Steps to reproduce the bug

from datasets import load_dataset

ds = load_dataset('speedcell4/opus-unigram2').unique('lang2')
for key, lang2 in ds.items():
    print(key, len(lang2))

This script returns the following and tells that the train split has 94 values in the lang2 column.

train 94
dev 94
test 94
zero 5

Expected behavior

94 in the reviewer.

Environment info

Collecting environment information...
PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: CentOS Linux release 8.2.2004 (Core) (x86_64)
GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5)
Clang version: Could not collect
CMake version: version 3.11.4
Libc version: glibc-2.28

Python version: 3.9.20 (main, Oct 3 2024, 07:27:41) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-193.28.1.el8_2.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB

Nvidia driver version: 525.85.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7542 32-Core Processor
Stepping: 0
CPU MHz: 3389.114
BogoMIPS: 5789.40
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-15
NUMA node1 CPU(s): 16-31
NUMA node2 CPU(s): 32-47
NUMA node3 CPU(s): 48-63
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.4.1+cu121
[pip3] torchaudio==2.4.1+cu121
[pip3] torchdevice==0.1.1
[pip3] torchglyph==0.3.2
[pip3] torchmetrics==1.5.0
[pip3] torchrua==0.5.1
[pip3] torchvision==0.19.1+cu121
[pip3] triton==3.0.0
[pip3] datasets==3.0.1
[conda] numpy 1.26.4 pypi_0 pypi
[conda] torch 2.4.1+cu121 pypi_0 pypi
[conda] torchaudio 2.4.1+cu121 pypi_0 pypi
[conda] torchdevice 0.1.1 pypi_0 pypi
[conda] torchglyph 0.3.2 pypi_0 pypi
[conda] torchmetrics 1.5.0 pypi_0 pypi
[conda] torchrua 0.5.1 pypi_0 pypi
[conda] torchvision 0.19.1+cu121 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi

@polinaeterna
Copy link
Contributor

This is because the raw size of data files of train split is more than 5Gb but only first 5Gb are taken to compute statistics, note partial field in the /statistics endpoint response (https://datasets-server.huggingface.co/statistics?dataset=speedcell4/opus-unigram2&config=default&split=train):

Image

This is briefly mentioned in the docs but not reflected in the UI in any way, which is misleading.

@severo @lhoestq it finally happened

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants