Skip to content

Latest commit

 

History

History
196 lines (126 loc) · 4.4 KB

README_ZH.md

File metadata and controls

196 lines (126 loc) · 4.4 KB

项目本地启动(详细指导):smile_cat:

1. 安装neo4j 🍔

  • 安装neo4j 5.21.0 (⚠️version>=5.15)

  • Neo4j安装apoc插件

    • 下载插件地址

    • 以5.21.0版本为例,将插件apoc-5.21.0-core.jar拷贝至neo4j安装目录中的plugins文件夹下,如图所示

      • 启动neo4j (启动命令在neo4j安装目录的bin文件夹中,因此切换到bin目录中)
      ./neo4j start

      启动成功显示如下:

      Starting Neo4j.
      Started neo4j (pid:17111). It is available at http://localhost:7474
      There may be a short delay until the server is ready.

2. 准备前端环境 🚶‍♂️

  • 安装node.js (version >20) 📦

  • 安装yarn

⚠️

  • frontend文件夹下创建配置文件**.env**,配置文件内容如下:
#后端开启的端口,默认是8000
BACKEND_API_URL="http://localhost:8000"
BLOOM_URL="https://workspace-preview.neo4j.io/workspace/explore?connectURL={CONNECT_URL}&search=Show+me+a+graph&featureGenAISuggestions=true&featureGenAISuggestionsInternal=true"
REACT_APP_SOURCES="local"
LLM_MODELS="智谱,百川,月之暗面,通义千问,深度求索,零一万物,Diffbot,OpenAI GPT 3.5,OpenAI GPT 4o"
ENV="DEV"
TIME_PER_CHUNK=4
TIME_PER_PAGE=50
CHUNK_SIZE=5242880
GOOGLE_CLIENT_ID=""

👊可以根据自己的需求,自行修改,也可以使用默认配置


3. 启动前端 🍃

cd frontend
yarn
yarn run dev

运行成功显示如下:

使用浏览器访问

 http://localhost:5173/

4. 后端配置 🍡

  • backend文件夹下创建配置文件**.env**,配置内容如下:

    只需填写API key 😃

OPENAI_API_KEY = ""

#本地ollama
OLLAMA_API_KEY = "ollama"
OLLAMA_API_URL = "http://localhost:11434/v1/"

#智普ai
ZHIPUAI_API_KEY = "填写你的api key"
ZHIPUAI_API_URL = "https://open.bigmodel.cn/api/paas/v4/"

#通义千问
QWEN_API_KEY = "填写你的api key"
QWEN_API_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"

#百川
BAICHUAN_API_KEY = "填写你的api key"
BAICHUAN_API_URL = "https://api.baichuan-ai.com/v1/"

#月之暗面
MOONSHOT_API_KEY = "填写你的api key"
MOONSHOT_API_URL = "https://api.moonshot.cn/v1"

#deepseek
DEEPSEEK_API_KEY = "填写你的api key"
DEEPSEEK_API_URL = "https://api.deepseek.com"

#零一万物
LINGYIWANWU_API_KEY = "填写你的api key"
LINGYIWANWU_API_URL = "https://api.lingyiwanwu.com/v1"

DIFFBOT_API_KEY = ""
GROQ_API_KEY = ""

#使用从modelscope社区提供的embedding模型
EMBEDDING_MODEL = "iic/nlp_gte_sentence-embedding_chinese-base"
IS_EMBEDDING = "true"
KNN_MIN_SCORE = "0.94"
# Enable Gemini (default is False) | Can be False or True
GEMINI_ENABLED = False
# Enable Google Cloud logs (default is False) | Can be False or True
GCP_LOG_METRICS_ENABLED = False
NUMBER_OF_CHUNKS_TO_COMBINE = 6
UPDATE_GRAPH_CHUNKS_PROCESSED = 20
NEO4J_URI = ""
NEO4J_USERNAME = ""
NEO4J_PASSWORD = ""
NEO4J_DATABASE = ""
AWS_ACCESS_KEY_ID =  ""
AWS_SECRET_ACCESS_KEY = ""
LANGCHAIN_API_KEY = ""
LANGCHAIN_PROJECT = ""
LANGCHAIN_TRACING_V2 = ""
LANGCHAIN_ENDPOINT = ""
GCS_FILE_CACHE = "" #save the file into GCS or local, SHould be True or False

5. 后端启动 🌾

  • 安装依赖:

    pip install -r requirements.txt
  • 启动程序(两种方式), 后端程序在backend文件夹下

    • 命令行启动

      uvicorn score:app --reload
    • 在pycharm或者vscode等ide中,运行score.py

成功运行如下:


6. 回到前端即可使用本项目:earth_africa:

以上步骤顺利执行之后,即可回到前端进行操作