-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathio.cpp
786 lines (712 loc) · 20.1 KB
/
io.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/***********************************************************************
Copyright (C) 1991,
Virginia Polytechnic Institute & State University
This program was originally written by Mr. Hyung K. Lee
under the supervision of Dr. Dong S. Ha, in the Bradley
Department of Electrical Engineering, VPI&SU, in 1991.
This program is released for research use only. This program,
or any derivative thereof, may not be reproduced nor used
for any commercial product without the written permission
of the authors.
For detailed information, please contact to
Dr. Dong S. Ha
Bradley Department of Electrical Engineering
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061
Ph.: (540) 231-4942
Fax: (540) 231-3362
E-Mail: [email protected]
Web: http://www.ee.vt.edu/ha
REFERENCE:
H. K. Lee and D. S. Ha, "On the Generation of Test Patterns
for Combinational Circuits," Technical Report No. 12_93,
Dep't of Electrical Eng., Virginia Polytechnic Institute
and State University.
***********************************************************************/
/**************************** HISTORY **********************************
atalanta: version 1.0 H. K. Lee, 8/15/1991
atalanta: version 1.1 H. K. Lee, 10/5/1992
Changed Parser and added on-line manual: H. K. Lee, 10/5/1992
Now, atalanta accepts the circuit written in the netlist format
of ISCAS89 benchmark circuits as well as the netlist format of
ISCAS85 benchmark circuits.
atalanta: version 2.0 H. K. Lee, 6/30/1997
***********************************************************************/
/*---------------------------------------------------------------------
filename io.c
gettime() returns the CPU time.
-----------------------------------------------------------------------*/
#include "stdafx.h"
#include <stdio.h>
#include <sys/types.h>
#ifdef WIN32
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#else
#include <sys/times.h>
#endif
#include <time.h>
#include <stdlib.h>
#include "error.h"
#include "io.h"
#include "parameter.h"
#include "define.h"
#include "macro.h"
//#define NULL 0
extern GATEPTR *g_net;
extern int *g_PrimaryIn, *g_PrimaryOut, *g_iHeadGateIndex;
//extern char *strcpy();
//extern void fatalerror();
extern int g_iMaxLevel, g_iPOlevel;
extern int *depth_array;
extern GATEPTR *g_dynamicStack;
extern STACKTYPE g_freeGatesStack, /* fault free simulation */
g_faultyGatesStack, /* list of faulty gates */
g_evalGatesStack, /* STEM_LIST to be simulated */
g_activeStemStack; /* list of active stems */
extern STACKTYPE g_unjustStack, /* set of unjustified lines */
g_initObjStack, /* set of initial objectives */
g_curObjStack, /* set of current objectives */
g_fanObjStack, /* set of fanout objectives */
g_headObjStack, /* set of head objectives */
g_finalObjStack, /* set of final objectives */
g_DfrontierStack, /* set of Dfrotiers */
g_stack; /* stack for backtracing */
extern struct ROOTTREE g_tree;
extern STACKPTR g_pEventListStack;
extern char gen_all_pat;
#ifdef ISCAS85_NETLIST_MODE
int lineindex[MAXLINE];
char namelist[MAXGATE][10];
char line[MAXSTRING];
/* circin
Reads an ISCAS85 benchmark circuit file
and constructs internal data stuructures.
The following information of the netlist is set in circin:
1. index field : identification of gates (same as array index)
2. type : gate type
3. ninput : number of fan-in lines
4. inlis : list of fan-in lines
5. noutput : number of fan-out lines
6. outlis : list of fan-out lines
7. po : set if the gate is a primary output
Inputs: circuit input file (circuit)
Outputs: data structures and
nog: number of gate
nopi: number of primary inputs
nopout: number of primary outputs
Note: Circuit format is the same as ISCAS85 benchmark circuits.
The circuit description should be topologically sorted,
All gates are re-numbered in sequential order from
0 to nog-1.
*/
bool circin(int *nog, int *nopi, int *nopout)
{
register int i, j;
int lineno, nfout, nfin;
int currentline = 0;
int inputs[20];
char name[10], gtype[5], fromline[10];
*nog = 0;
*nopi = 0;
*nopout = 0;
ALLOCATE(g_net, GATEPTR, MAXGATE);
ALLOCATE(g_PrimaryIn, int, MAXPI);
ALLOCATE(g_PrimaryOut, int, MAXPO);
ALLOCATE(g_iHeadGateIndex, int, MAXPI);
while (fscanf(g_fpCctFile, "%80s", line) != EOF)
{
if (line[0] == '*')
{
fgets(line, 80, g_fpCctFile);
} /* comment lines */
else
{
/* read gate descriptions in the order of
line_number, label, gtype, # of fanout, # of fanin */
sscanf(line, "%5d", &lineno);
fscanf(g_fpCctFile, "%9s%5s", name, gtype);
if (strcmp(gtype, "from") == 0) /* fan-out branch */
{
fscanf(g_fpCctFile, "%9s", fromline);
}
else
{
fscanf(g_fpCctFile, "%d%d", &nfout, &nfin);
}
while (getc(g_fpCctFile) != '\n');
/* if gate type is from, search fanin lines
and skip fanout lines from the gate list */
if (strcmp(gtype, "from") == 0)
{
for (i = currentline; i >= 0; i--)
if (strcmp(fromline, namelist[i]) == 0)
{
lineindex[lineno] = g_net[i]->index;
break;
}
}
/* else, construct gate structutes */
else
{
strcpy(namelist[currentline], name); /* store label */
g_net[currentline] = (GATEPTR)malloc(sizeof(GATETYPE));
lineindex[lineno] = currentline;
g_net[currentline]->index = currentline;/* internal netlist */
g_net[currentline]->gid = lineno; /* actual netlist */
g_net[currentline]->inCount = nfin;
if (nfin != 0)
{
g_net[currentline]->inList = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * nfin));
}
g_net[currentline]->outCount = nfout;
#ifdef LEARNFLG
g_net[currentline]->plearn = NULL;
#endif
if (nfout != 0)
{
g_net[currentline]->outList = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * nfout));
for (i = 0; i < nfout; i++)
g_net[currentline]->outList[i] = NULL;
}
if (strcmp(gtype, "inpt") == 0)
{
g_net[currentline]->type = PI;
g_PrimaryIn[*nopi] = currentline;
(*nopi)++;
}
else
{
if (strcmp(gtype, "and") == 0)
{
g_net[currentline]->type = AND;
}
else if (strcmp(gtype, "nand") == 0)
{
g_net[currentline]->type = NAND;
}
else if (strcmp(gtype, "or") == 0)
{
g_net[currentline]->type = OR;
}
else if (strcmp(gtype, "nor") == 0)
{
g_net[currentline]->type = NOR;
}
else if (strcmp(gtype, "not") == 0)
{
g_net[currentline]->type = NAND;
}
else if (strcmp(gtype, "xor") == 0)
{
g_net[currentline]->type = XOR;
}
else if (strcmp(gtype, "buff") == 0)
{
g_net[currentline]->type = AND;
}
else if (strcmp(gtype, "buf") == 0)
{
g_net[currentline]->type = AND;
}
else
{
return(FALSE);
}
/* get intput list */
for (i = 0; i < nfin; i++)
fscanf(g_fpCctFile, "%6d", &inputs[i]);
fgets(line, 80, g_fpCctFile);
/* convert input index into internal and check fan-out list */
for (i = 0; i < nfin; i++)
{
g_net[currentline]->inList[i] = g_net[lineindex[inputs[i]]];
for (j = 0; j< g_net[lineindex[inputs[i]]]->outCount; j++)
if (g_net[lineindex[inputs[i]]]->outList[j] == NULL)
{
g_net[lineindex[inputs[i]]]->outList[j] = g_net[currentline];
break;
}
}
}
if (nfout == 0)
{
g_PrimaryOut[*nopout] = currentline;
/* net[currentline]->po=TRUE; */
(*nopout)++;
}
/* else net[currentline]->po=FALSE; */
currentline++;
}
}
}
*nog = currentline;
return(TRUE);
}
#endif
/* set_cct_parameters
Set several circuit parameters (ltype) of the net data structure.
Computes the level (dpi) of each gate.
Allocates space for g_pEventListStack and various objectives.
Inputs : data structures from circin +
nog: number of inputs
npi: numeber of primary inputs
Outputs : ltype (line type among HEAD,BOUND and FREE)
dpi (distance from primary inputs)
maxdpi: maximum depth of the circuit
Note : should be called after circin
*/
#ifdef INCLUDE_HOPE
int setCctParameters(int iNoGate, int iNoPI) //set_cct_parameters
{
//OUTPUT: HEAD LFREE BOUUND
register int i, j; //,depth; not used
int iHeadCnt = 0;
/* define line type (free,head,bound) and distance from input */
if (gen_all_pat == 'y')
{
//STOP*************************STOP
for (i = 0; i < iNoGate; i++)
g_net[i]->ltype = (g_net[i]->type == PI) ? HEAD : BOUND;
iHeadCnt = iNoPI;
}
else //Default !!!
{
for (i = 0; i < iNoGate; i++)
{
g_net[i]->ltype = LFREE; //First assignment !!! --------------> LFREE
if (g_net[i]->type != PI)
{
for (j = 0; j< g_net[i]->inCount; j++)
{
if (!is_free(g_net[i]->inList[j]))
{
g_net[i]->ltype = BOUND; //HEAD | BOUND -> * ------------>HEAD | BOUND -> BOUND
//break;
//We can break here !!!
}
}
}
if (is_free(g_net[i]) && (g_net[i]->outCount != 1))
{
g_net[i]->ltype = HEAD; //LFREE + FANOUT(PO) ------------> HEAD (FANOUT)
}
//HEAD
if (is_head(g_net[i]))
{
iHeadCnt++;
}
//BOUND
else if (is_bound(g_net[i])) //(FREE -> BOUND) -------------> (HEAD(NOT FANOUT) -> BOUND)
{
for (j = 0; j< g_net[i]->inCount; j++)
{
if (is_free(g_net[i]->inList[j]))
{
g_net[i]->inList[j]->ltype = HEAD;
iHeadCnt++;
}
}
}
}
}
//PI has nothing to do with HEAD, NO USE !!!
for (i = 0; i < iNoPI; i++)
{
//STOP*********************************************STOP
g_iHeadGateIndex[i] = (-1);
}
j = iHeadCnt;
for (i = iNoGate - 1; i >= 0; i--)
{
if (is_head(g_net[i]))
{
g_iHeadGateIndex[--j] = i;
}
}
/* alloacate space for sets (needed for the fan algorithm) */
ALLOCATE(g_unjustStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_initObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_curObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_fanObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_headObjStack.list, GATEPTR, iHeadCnt);
ALLOCATE(g_finalObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_DfrontierStack.list, GATEPTR, MAXOBJ);
if (g_stack.list == NULL)
{
ALLOCATE(g_stack.list, GATEPTR, iNoGate);
}
ALLOCATE(g_tree.list, TREETYPE, MAXTREE);
return(g_iMaxLevel);
}
#else
int setCctParameters(int iNoGate, int iNoPI)
{
register int i, j, depth;
int maxdpi = 0;
int iHeadCnt = 0;
/* define line type (free,head,bound) and distance from input */
for (i = 0; i < iNoGate; i++)
{
g_net[i]->ltype = LFREE;
depth = (-1);
if (g_net[i]->type != PI)
{
for (j = 0; j< g_net[i]->inCount; j++)
{
if (!is_free(g_net[i]->inList[j]))
{
g_net[i]->ltype = BOUND;
}
depth = max(g_net[i]->inList[j]->dpi, depth);
}
}
if (is_free(g_net[i]) && (g_net[i]->outCount != 1))
{
g_net[i]->ltype = HEAD;
}
g_net[i]->dpi = depth + 1;
if (is_head(g_net[i]))
{
iHeadCnt++;
}
if (is_bound(g_net[i]))
{
for (j = 0; j< g_net[i]->inCount; j++)
if (is_free(g_net[i]->inList[j]))
{
g_net[i]->inList[j]->ltype = HEAD;
iHeadCnt++;
}
}
maxdpi = max(g_net[i]->dpi, maxdpi);
}
/* allocate memory for g_pEventListStack and reset event counter */
maxdpi++;
g_pEventListStack = (STACKPTR)malloc((unsigned)(sizeof(STACKTYPE) * maxdpi));
depth_array = (int*)malloc((unsigned)(sizeof(int) * maxdpi));
for (i = 0; i < maxdpi; i++)
g_pEventListStack[i].last = 0;
for (i = 0; i < iNoPI; i++)
g_iHeadGateIndex[i] = (-1);
j = iHeadCnt;
for (i = iNoGate - 1; i >= 0; i--)
{
if (is_head(g_net[i]))
{
g_iHeadGateIndex[--j] = i;
}
/* count the number of gates in each depth */
(g_pEventListStack[g_net[i]->dpi].last)++;
}
/* allocate space for each event list */
for (i = 0; i < maxdpi; i++)
{
g_pEventListStack[i].list = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * g_pEventListStack[i].last));
depth_array[i] = g_pEventListStack[i].last;
clear(g_pEventListStack[i]);
}
/* alloacate space for sets (needed for the fan algorithm) */
ALLOCATE(g_unjustStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_initObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_curObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_fanObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_headObjStack.list, GATEPTR, iHeadCnt);
ALLOCATE(g_finalObjStack.list, GATEPTR, MAXOBJ);
ALLOCATE(g_DfrontierStack.list, GATEPTR, MAXOBJ);
if (g_stack.list == NULL)
{
ALLOCATE(g_stack.list, GATEPTR, iNoGate);
}
ALLOCATE(g_tree.list, TREETYPE, MAXTREE);
return(maxdpi);
}
#endif
/* allocate_dynamic_buffers
Allocates dynamic buffers needed for fsim.
*/
bool allocateStacks(int iNoGate) //allocate_dynamic_buffers
{
if ((g_faultyGatesStack.list = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * iNoGate))) == NULL)
{
return(FALSE);
}
if ((g_freeGatesStack.list = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * iNoGate))) == NULL)
{
return(FALSE);
}
if ((g_evalGatesStack.list = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * iNoGate))) == NULL)
{
return(FALSE);
}
if ((g_activeStemStack.list = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * iNoGate))) == NULL)
{
return(FALSE);
}
if ((g_dynamicStack = (GATEPTR *)malloc((unsigned)(sizeof(GATEPTR) * iNoGate))) == NULL)
{
return(FALSE);
}
return(TRUE);
}
//Dschedule_output
#define outputs2EventList(pGate, i, iDFrontierCnt, pOutGate) \
for (i = 0; i < pGate->outCount; i++) \
{ \
pOutGate = pGate->outList[i]; \
if (!pOutGate->changed) \
{ \
push(g_pEventListStack[pOutGate->dpi], pOutGate); \
iDFrontierCnt++; \
set(pOutGate->changed); \
} \
}
/* initDominators
Finds the immediate dominators of all fanout stems.
Inputs : circuit structure +
nog (number of gates), maxdpi(maximum depth)
Outputs : dominators (u_path)
*/
int initFanoutGateDominators(int g_iNoGate, int iMaxLevelAdd2) /* depth of event list, number of output */ //set_dominator
{
//OUTPUT: iNoDominator
register int i, j;
register GATEPTR pGate, pTempGate;
GATEPTR pDomiGate;
int iGateCount;
int iNoDominator = 0;
for (i = g_iNoGate - 1; i >= 0; i--)
{
pGate = g_net[i];
if (pGate->outCount <= 1)
{
pGate->u_path = NULL;
}
else //outCount >= 2 (FANOUT)
{
iGateCount = 0;
outputs2EventList(pGate, j, iGateCount, pTempGate); //pGate ----> g_pEventListStack & iGateCount
//OUTPUT: g_pEventListStack & iGateCount (changed)
for (j = pGate->dpi + 1; j < iMaxLevelAdd2; j++)
{
while (!is_empty(g_pEventListStack[j])) //For every level stack
{
pDomiGate = pop(g_pEventListStack[j]);
reset(pDomiGate->changed);
if (iGateCount <= 0)
{
continue;
}
iGateCount--;
if (iGateCount == 0) //LAST ONE !!
{
pGate->u_path = (LINKPTR)malloc(sizeof(LINKTYPE));
pGate->u_path->ngate = pDomiGate;
iNoDominator++; //EXIT!!!
break;
}
else //iGateCount != 0 NOT LAST ONE !!
{
//PO
if (pDomiGate->outCount == 0)
{
pGate->u_path = NULL; //blocked
iGateCount = 0; //Empty g_pEventListStack[j] &&&&&&&& End while !!
}
//FANOUT
else if (pDomiGate->outCount > 1)
{
if (pDomiGate->u_path == NULL)
{
pGate->u_path = NULL; //blocked
iGateCount = 0; //Empty g_pEventListStack[j] &&&&&&&& End while !!
}
else
{
pTempGate = pDomiGate->u_path->ngate; //next is u_path->ngate!!
if (!pTempGate->changed)
{
push(g_pEventListStack[pTempGate->dpi], pTempGate);
set(pTempGate->changed);
iGateCount++;
}
}
}
//NORMAL GATE
else //pDomiGate->outCount == 1
{
if (!pDomiGate->outList[0]->changed)
{
pTempGate = pDomiGate->outList[0];
push(g_pEventListStack[pTempGate->dpi], pTempGate);
set(pTempGate->changed);
iGateCount++;
}
}
}
}
}
}
}
return(iNoDominator);
}
/* set_unique_path
For every fanout stem which has a dominator,
this routine finds the unique path and property of the dominator.
Used in FAN.
Should be called after setting dominators.
*/
#define setFreach(pGate, i) pGate->freach = i
#define checkFreach(pGate, i) pGate->freach == i
void initUniquePath(int iNoGate, int iMaxDPI) /* depth of event list, number of output */ //set_unique_path
{
//OUTPUT: freach
register int i, j;
register GATEPTR pGate, pInGate, pOutGate;
LINKPTR pUPath;
int iGateCount, k;
for (i = iNoGate - 1; i >= 0; i--) //For every FANOUT
{
pGate = g_net[i];
if (pGate->u_path == NULL) //pGate->output <= 1
{
continue;
}
//pGate is a FANOUT has owns a pDominator !!!
iGateCount = 0;
setFreach(pGate, i);
for (j = 0; j< pGate->outCount; j++) //For every output of pGate
{
pOutGate = pGate->outList[j];
if (!pOutGate->changed)
{
push(g_pEventListStack[pOutGate->dpi], pOutGate);
set(pOutGate->changed);
iGateCount++;
}
}
for (j = pGate->dpi + 1; j < iMaxDPI; j++) //For every g_pEventListStack after index pGate->dpi
{
while (!is_empty(g_pEventListStack[j]))
{
pGate = pop(g_pEventListStack[j]);
reset(pGate->changed);
setFreach(pGate, i);
iGateCount--;
if (iGateCount == 0) //EXIT for iteration of pGate !!!
{
//pGate == g_net[i]->u_path->ngate !!!
pUPath = g_net[i]->u_path; //g_net[i] == original pGate
for (k = 0; k < pGate->inCount; k++)
{
pInGate = pGate->inList[k]; //pInGate ---> pGate
if (checkFreach(pInGate, i))
{
pUPath->next = (LINKPTR)malloc(sizeof(LINKTYPE));
pUPath = pUPath->next;
pUPath->ngate = pInGate;
pUPath->next = NULL;
}
}
break;
}
for (k = 0; k< pGate->outCount; k++)
{
pOutGate = pGate->outList[k];
if (!pOutGate->changed)
{
push(g_pEventListStack[pOutGate->dpi], pOutGate);
set(pOutGate->changed);
iGateCount++;
}
}
}
}
}
}
/* setfanoutstem
For fault simulation.
Identifies fanout stems and builds fanout free region.
*/
void initStemGatesAndFOS(int iNoGate, GATEPTR *pStemGates, int iNoStemGates) //setfanoutstem
{
//OUTPUT: pStemGates & fos
register int i, j;
register GATEPTR pGate;
j = 0;
for (i = 0; i < iNoGate; i++)
{
if (g_net[i]->outCount != 1) //FANOUT or PO
{
pStemGates[j++] = g_net[i];
}
}
clear(g_stack);
//j == iNoStemGates
for (i = 0; i < iNoStemGates; i++)
{
push(g_stack, pStemGates[i]);
while (!is_empty(g_stack))
{
pGate = pop(g_stack);
pGate->fosIndex = pStemGates[i]->index; //Core sentence
for (j = 0; j< pGate->inCount; j++)
{
if (pGate->inList[j]->outCount == 1) //Spread fosIndex within the FFR !!
{
push(g_stack, pGate->inList[j]);
}
}
}
}
}
/* gettime: Gets CPU time used by the program. */
void getTime(double *usertime, double *systemtime, double *total)
{
#ifdef WIN32
LARGE_INTEGER m_liPerfFreq = {0};
LARGE_INTEGER m_liPerfStart = {0};
QueryPerformanceFrequency(&m_liPerfFreq);
QueryPerformanceCounter(&m_liPerfStart);
*total = (double) m_liPerfStart.QuadPart / m_liPerfFreq.QuadPart;
*usertime = *total;
*systemtime = *total;
#else
struct tms timesbuffer;
time_t totaltime;
time_t utime;
time_t stime;
times(×buffer);
utime = timesbuffer.tms_utime;
stime = timesbuffer.tms_stime;
totaltime = timesbuffer.tms_utime + timesbuffer.tms_stime; /* In 60th seconds */
*usertime = (double) utime / 60.0;
*systemtime = (double) stime / 60.0;
*total = (double) totaltime / 60.0;
#endif // WIN32
}
double getMemory()
{
double fMaxUse;
#ifdef WIN32
//进程句柄
HANDLE hProcess = GetCurrentProcess();
//HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION|PROCESS_VM_READ, FALSE, dwProcessId);
if (NULL != hProcess)
{
//内存情况
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(hProcess, &pmc, sizeof(pmc)))
{
//double fCurUse = double(pmc.PeakWorkingSetSize / (1024.0*1024.0));
fMaxUse = (double) (pmc.WorkingSetSize / (1024.0 * 1024.0));
//TRACE("[info] 主程序内存使用情况,当前所用内存:%.4fM,最大曾用:%.4fM\r\n", fCurUse, fMaxUse);
}
CloseHandle(hProcess);
}
return fMaxUse;
#else
return fMaxUse;
#endif // WIN32
}