-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathfsim.cpp
1463 lines (1321 loc) · 36.4 KB
/
fsim.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***********************************************************************
Copyright (C) 1991,
Virginia Polytechnic Institute & State University
This program was originally written by Mr. Hyung K. Lee
under the supervision of Dr. Dong S. Ha, in the Bradley
Department of Electrical Engineering, VPI&SU, in 1991.
This program is released for research use only. This program,
or any derivative thereof, may not be reproduced nor used
for any commercial product without the written permission
of the authors.
For detailed information, please contact to
Dr. Dong S. Ha
Bradley Department of Electrical Engineering
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061
Ph.: (540) 231-4942
Fax: (540) 231-3362
E-Mail: [email protected]
Web: http://www.ee.vt.edu/ha
REFERENCE:
H. K. Lee and D. S. Ha, "On the Generation of Test Patterns
for Combinational Circuits," Technical Report No. 12_93,
Dep't of Electrical Eng., Virginia Polytechnic Institute
and State University.
***********************************************************************/
/**************************** HISTORY **********************************
atalanta: version 1.0 H. K. Lee, 8/15/1991
atalanta: version 1.1 H. K. Lee, 10/5/1992
atalanta: version 2.0 H. K. Lee, 6/30/1997
Integrated HOPE with ATALANTA
***********************************************************************/
/**************************** HISTORY **********************************
hope: version 1.0
Original: H. K. Lee, 8/15/1991
Updated: H. K. Lee, 12/31/1991
hope: version 1.1
Added functional fault injection: H. K. Lee, 3/15/1993
Added static & dynamic fault grouping: H. K. Lee, 3/15/1993
Changed parser: H. K. Lee, 7/31/1993
***********************************************************************/
/*-----------------------------------------------------------------
fsim.c
contains all subroutines necessary for
zero gate delay fault simulation of HOPE:
version 0: applies heuristics for only single event faults.
converts single event faults into stemIndex faults and
applies candidacy test for a stemIndex fault:
If a dominator exists, simulates to the stemIndex of the
immediate dominator. Otherwise, checks the gates
immediately following the stemIndex.
final version of HOPE in paper.
version 1: Added functional fault injection,
static fault grouping by FFRs and
dynamic fault grouping.
-------------------------------------------------------------------*/
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include "error.h"
#include "fsim.h"
#include "parameter.h"
#include "define.h"
#include "macro.h"
extern int g_iNoGate, g_iLastGate, g_iNoPI, g_iNoPO, g_iNoFF, g_iMaxLevel, g_iPOLevel, g_iPPOLevel;
extern int* g_PrimaryIn, * g_PrimaryOut, * g_FlipFlop;
extern char xdetectmode;
extern GATEPTR* g_net;
extern STACKTYPE* g_pEventListStack, g_stack1, g_stack2;
extern level BITMASK[];
extern level g_truthTable1[MAXGTYPE][MAXLEVEL];
extern level g_truthTable2[MAXGTYPE][MAXLEVEL][MAXLEVEL];
extern FAULTPTR g_pHeadFault, g_pCurrentFault, g_pTailFault, * g_pFaultList;
extern void printFatalError();
extern int ntest;
extern level g_TABLE[Z + 1][2];
#ifdef DIAGNOSIS
extern char dropmode, dictmode, diagmode;
extern FILE* diagfile;
extern void Print_Faulty_Values();
#endif
FAULTPTR g_pPotentialFault;
int dynamic_order_flag = 0;
extern STEMTYPE* g_pStems;
extern int g_iNoStem, g_iNoRStem;
#define UNSIMULATED 32
#define SIMULATED 33
#define is_simulated(gate,val) (g_pStems[gate->stemIndex].flag[val])
#define twoBitsDifferent(V1,V2) ((V1[0]!=V2[0]) || (V1[1]!=V2[1]))
#define twoBitsCopy(Dest,Sour) Dest[0]=Sour[0]; Dest[1]=Sour[1]
#define is_outfault(f) (f->line<0)
typedef struct FLINK* FLINKPTR;
typedef struct FLINK
{
FAULTPTR fault; FLINKPTR next;
} FLINKTYPE;
typedef struct _SUT
{
GATEPTR gate; /* stem of the faulty gate */
level faultType; /* value of the stem simulated */
int faultLine; /* faulty line */
FLINKPTR extra; /* extra faults simulated */
EVENTTYPE* event;
int gateType;
int papa;
level Val[2];
} _SUT_TYPE;
_SUT_TYPE g_SUTList[SIZE_OF_FUT];
FAULTPTR g_FUTList[SIZE_OF_FUT];
int g_iFUT;
typedef struct _IN_OUT_GATES
{
int last;
GATEPTR list[SIZE_OF_FUT];
} _IN_OUT_GATES_TYPE;
_IN_OUT_GATES_TYPE g_InGatesStack, g_OutGatesStack;
extern EVENTPTR g_headEvent, g_tailEvent;
FAULTPTR g_undetectableFault; /* undetectable fault */
int g_iGroupID = 0; /* used in fault simulation */
int g_iNoDetected;
#ifdef DIAGNOSIS
int diag_id = 0;
#endif
typedef struct _SSTEMS
{
int stem;
level val;
} _SSTEMS_TYPE;
_SSTEMS_TYPE g_pSStems[3000];
int g_iSStem = (-1);
int g_iStemIndex = (-1);
level ssval;
/*------InitFaultSim------------------------------------------------
Initializes flags for the fault simulation
-------------------------------------------------------------------*/
void initFaultSim_HOPE() //InitFaultSim
{
register int i;
register GATEPTR pGate;
register FAULTPTR pFault, pNextFault;
EVENTPTR pEvent;
for (i = 0; i < g_iNoGate; i++)
{
pGate = g_net[i];
pGate->SGV = X;
setPairToX(pGate->GV[0], pGate->GV[1]);
setPairToX(pGate->FV[0], pGate->FV[1]);
pGate->Gid = g_iGroupID;
reset(pGate->changed);
}
for (pFault = g_pHeadFault; pFault->next != NULL; pFault = pFault->next)
{
pNextFault = pFault->next;
if (pNextFault->detected != REDUNDANT)
{
pNextFault->detected = UNDETECTED; //Recover detected faults !!
}
while (pNextFault->event != NULL) //Remove All Events !!
{
pEvent = pNextFault->event;
pNextFault->event = pEvent->next;
FREE(pEvent);
}
#ifdef DIAGNOSIS
pNextFault->diag_id = diag_id;
#endif
}
g_pTailFault = pFault; //Already ??
g_pPotentialFault = pFault; //g_pPotentialFault = g_pTailFault
for (i = 1; i <= g_iNoStem; i++)
{
g_pStems[i].fault[ZERO] = g_pStems[i].fault[X] = g_pStems[i].fault[ONE] = NULL;
g_pStems[i].flag[ZERO] = g_pStems[i].flag[X] = g_pStems[i].flag[ONE] = UNSIMULATED;
}
ALLOCATE(g_undetectableFault, FAULTTYPE, 1);
g_undetectableFault->gate = 0;
g_undetectableFault->line = 0;
g_undetectableFault->type = 0;
g_undetectableFault->detected = UNDETECTED;
g_undetectableFault->next = NULL;
g_undetectableFault->event = NULL;
initEventList(g_headEvent, g_tailEvent);
clear(g_stack1);
clear(g_stack2);
}
/*-----InjectFault-------------------------------------------------
Inject a given fault by modifying the circuit structure.
For each fault, inject two temprary gates (a DUMMY gate
and an AND/OR gate for stuck-at 1/0 fault) at the end of
netlist and modifies existing net connection.
Inputs: f fault to be injected
Outputs: returns the last injected gate (AND or OR)
Remarks: Increments nog by two.
------------------------------------------------------------------*/
GATEPTR injectFault(GATEPTR pGate, int iFaultType, int iFaultLine, register int iBit) //InjectFault
{
register GATEPTR pEventGate;
register int i;
GATEPTR pTempGate;
register EVENTTYPE* pEvent;
int iValue[2];
if (pGate->type < FAULTY)
{
g_SUTList[iBit].gateType = pGate->type;
g_SUTList[iBit].papa = (-1);
}
else
{
g_SUTList[iBit].gateType = g_SUTList[pGate->type - FAULTY].gateType;
g_SUTList[iBit].papa = pGate->type - FAULTY;
}
pGate->type = iBit + FAULTY;
/* Flip-Flops */
for (pEvent = g_tailEvent->next = g_SUTList[iBit].event; pEvent != NULL; pEvent = pEvent->next)
{
pEventGate = g_net[pEvent->node];
if (pEventGate->Gid != g_iGroupID)
{
pEventGate->Gid = g_iGroupID;
twoBitsCopy(pEventGate->FV, pEventGate->GV);
}
if (checkBitIs0(pEvent->value, 0))
{
pEventGate->FV[0] = resetBit(pEventGate->FV[0], iBit);
}
else
{
pEventGate->FV[0] = setBit(pEventGate->FV[0], iBit);
}
if (checkBitIs0(pEvent->value, 1))
{
pEventGate->FV[1] = resetBit(pEventGate->FV[1], iBit);
}
else
{
pEventGate->FV[1] = setBit(pEventGate->FV[1], iBit);
}
for (i = 0; i< pEventGate->outCount; i++)
{
pTempGate = pEventGate->outList[i];
if (!pTempGate->changed)
{
pushGate(pTempGate);
set(pTempGate->changed);
}
}
g_tailEvent = pEvent;
}
/* Faulty pGate */
if (iFaultLine < 0)
{
/* output line fault */
if (pGate->Gid != g_iGroupID)
{
pGate->Gid = g_iGroupID;
twoBitsCopy(pGate->FV, pGate->GV);
}
twoBitsCopy(iValue, pGate->FV);
switch (iFaultType)
{
case SA0:
iValue[0] |= BITMASK[iBit];
iValue[1] &= ~BITMASK[iBit];
break;
case SA1:
iValue[0] &= ~BITMASK[iBit];
iValue[1] |= BITMASK[iBit];
break;
default:
iValue[0] &= ~BITMASK[iBit];
iValue[1] &= ~BITMASK[iBit];
break;
}
if (twoBitsDifferent(iValue, pGate->FV))
{
twoBitsCopy(pGate->FV, iValue);
for (i = 0; i< pGate->outCount; i++)
{
pTempGate = pGate->outList[i];
if (!pTempGate->changed)
{
pushGate(pTempGate);
set(pTempGate->changed);
}
}
}
}
else
{
/* input line fault */
if (pGate->changed)
{
return(NULL);
}
pTempGate = pGate->inList[iFaultLine];
if (pTempGate->Gid == g_iGroupID)
{
iValue[0] = pTempGate->FV[0] & BITMASK[iBit];
iValue[1] = pTempGate->FV[1] & BITMASK[iBit];
}
else
{
iValue[0] = pTempGate->GV[0] & BITMASK[iBit];
iValue[1] = pTempGate->GV[1] & BITMASK[iBit];
}
iValue[0] = (iValue[0] != ALL0) ? ZERO : (iValue[1] != ALL0) ? ONE : X;
if (iValue[0] != iFaultType)
{
pushGate(pGate);
set(pGate->changed);
}
}
return(NULL);
}
void Faulty_Gate_Eval(GATEPTR pGate, level* iValue)
{
register int i;
register int iBit;
int iGateType;
level iTempValue;
GATEPTR pInGate;
iGateType = pGate->type;
for (iBit = iGateType - FAULTY,pGate->type = g_SUTList[iBit].gateType; iBit >= 0; iBit = g_SUTList[iBit].papa)
{
if (g_SUTList[iBit].faultLine >= 0)
{
pInGate = pGate->inList[g_SUTList[iBit].faultLine];
if (pInGate->Gid != g_iGroupID)
{
twoBitsCopy(pInGate->FV, pInGate->GV);
pInGate->Gid = g_iGroupID;
}
if (pInGate->changed < 3)
{
twoBitsCopy(g_SUTList[iBit].Val, pInGate->FV);
pInGate->changed += 3;
}
switch (g_SUTList[iBit].faultType)
{
case SA0:
pInGate->FV[0] |= BITMASK[iBit];
pInGate->FV[1] &= ~BITMASK[iBit];
break;
case SA1:
pInGate->FV[0] &= ~BITMASK[iBit];
pInGate->FV[1] |= BITMASK[iBit];
break;
default:
pInGate->FV[0] &= ~BITMASK[iBit];
pInGate->FV[1] &= ~BITMASK[iBit];
break;
}
}
}
FEVAL(pGate, iValue, i, iTempValue, pInGate, g_iGroupID);
for (iBit = iGateType - FAULTY,pGate->type = iGateType; iBit >= 0; iBit = g_SUTList[iBit].papa)
{
if (g_SUTList[iBit].faultLine >= 0)
{
pInGate = pGate->inList[g_SUTList[iBit].faultLine];
if (pInGate->changed >= 3)
{
twoBitsCopy(pInGate->FV, g_SUTList[iBit].Val);
pInGate->changed -= 3;
}
}
else
{
switch (g_SUTList[iBit].faultType)
{
case SA0:
iValue[0] |= BITMASK[iBit];
iValue[1] &= ~BITMASK[iBit];
break;
case SA1:
iValue[0] &= ~BITMASK[iBit];
iValue[1] |= BITMASK[iBit];
break;
default:
iValue[0] &= ~BITMASK[iBit];
iValue[1] &= ~BITMASK[iBit];
break;
}
}
}
}
/*------FaultSim---------------------------------------------------
Performs fault simulation for the given fault set based
on the good values of the circuit.
Next time events are stored at g_pEventListStack[0].
Inputs: Gid group-id of the current fault set
------------------------------------------------------------------*/
void FaultSim(int start, int stop, register int Gid)
{
register GATETYPE* gut;
register int i, j;
register GATETYPE* temp;
level Val[2], v;
for (i = start; i < stop; i++)
while (!is_empty(g_pEventListStack[i]))
{
gut = pop(g_pEventListStack[i]);
reset(gut->changed);
FEVAL(gut, Val, j, v, temp, Gid);
if (twoBitsDifferent(gut->GV, Val))
{
twoBitsCopy(gut->FV, Val);
gut->Gid = Gid;
for (j = gut->outCount - 1; j >= 0; j--)
{
temp = gut->outList[j];
if (!temp->changed)
{
pushGate(temp);
set(temp->changed);
}
}
}
}
}
level g_faultType2Value[SAX + 1] =
{
ZERO, ONE, X
//SA0 SA1 SAX
};
level g_value2Pair[Z + 1][2] =
{
{ALL1,ALL0}, {ALL0,ALL1}, {ALL0,ALL0}, {ALL1,ALL1}
};
GATEPTR SSimToDominator(register GATEPTR pGate, register GATEPTR pDomiGate, register int iGID)
{
//OUTPUT: pDomiGate !!
register int i, j;
register GATEPTR pTempGate;
register level iValue;
int iEnd;
iEnd = (pDomiGate == NULL) ? g_iPPOLevel : pDomiGate->dpi + 1;
for (i = 0; i< pGate->outCount; i++)
{
pTempGate = pGate->outList[i];
if (!pTempGate->changed)
{
pushGate(pTempGate);
set(pTempGate->changed);
}
}
for (i = (pGate->dpi >= g_iPPOLevel) ? 1 : pGate->dpi; i < iEnd; i++)
{
while (!is_empty(g_pEventListStack[i]))
{
pGate = pop(g_pEventListStack[i]);
reset(pGate->changed);
iValue = (pGate->inList[0]->Gid == iGID) ? g_truthTable1[pGate->type][pGate->inList[0]->FV[0]] : g_truthTable1[pGate->type][pGate->inList[0]->SGV];
if (pGate->inCount > 1)
{
for (j = 1; j< pGate->inCount; j++)
{
iValue = (pGate->inList[j]->Gid == iGID) ? g_truthTable2[pGate->type][iValue][pGate->inList[j]->FV[0]] : g_truthTable2[pGate->type][iValue][pGate->inList[j]->SGV];
}
}
if (iValue != pGate->SGV)
{
pGate->FV[0] = iValue;
pGate->Gid = iGID;
if (pGate == pDomiGate)
{
return(pGate);
}
for (j = 0; j< pGate->outCount; j++)
{
pTempGate = pGate->outList[j];
if (!pTempGate->changed)
{
pushGate(pTempGate);
set(pTempGate->changed);
}
}
}
}
}
return(NULL);
}
/*------CheckStem----------------------------------------------------
Candidacy test for a single event fault at a stemIndex
Checks the gates immediately following the stemIndex
Faulty stemIndex should be updated before calling
-------------------------------------------------------------------*/
GATEPTR checkStemOutputNeedUpdate(register GATEPTR pStemGate, register int iGid) //CheckStem
{
//OUTPUT: pStemGate or NULL
register int i, j;
register level iValue;
register GATEPTR pOutGate;
for (i = 0; i< pStemGate->outCount; i++)
{
pOutGate = pStemGate->outList[i];
iValue = (pOutGate->inList[0]->Gid == iGid) ? g_truthTable1[pOutGate->type][pOutGate->inList[0]->FV[0]] :
g_truthTable1[pOutGate->type][pOutGate->inList[0]->SGV];
for (j = 1; j< pOutGate->inCount; j++)
{
iValue = (pOutGate->inList[j]->Gid == iGid) ?
g_truthTable2[pOutGate->type][iValue][pOutGate->inList[j]->FV[0]] :
g_truthTable2[pOutGate->type][iValue][pOutGate->inList[j]->SGV];
}
if (iValue != pOutGate->SGV)
{
return(pStemGate);
}
}
return(NULL);
}
GATEPTR SSimToStem(register GATEPTR pGate, register int iGid) //No use by now, good for me!!!
{
GATEPTR pTempGate;
register int i;
register level iValue;
/* Check 2: stemIndex */
while (pGate->stemIndex <= 0)
{
pGate = pGate->outList[0]; //why so sure pGate has outList[0]?
iValue = (pGate->inList[0]->Gid == iGid) ? g_truthTable1[pGate->type][pGate->inList[0]->FV[0]] :
g_truthTable1[pGate->type][pGate->inList[0]->SGV];
if (pGate->inCount > 1)
for (i = 1; i< pGate->inCount; i++)
iValue = (pGate->inList[i]->Gid == iGid) ? g_truthTable2[pGate->type][iValue][pGate->inList[i]->FV[0]] : g_truthTable2[pGate->type][iValue][pGate->inList[i]->SGV];
if (iValue == pGate->SGV)
return(NULL);
pGate->FV[0] = iValue; pGate->Gid = iGid;
}
if (g_pStems[pGate->stemIndex].checkup < 1)
return(pGate);
if (is_simulated(pGate, pGate->FV[0]) != UNSIMULATED)
return(pGate);
/* Check whether the stemIndex can be propagated to next gate or not */
if ((i = g_pStems[pGate->stemIndex].dominatorIndex) > 0)
{
/* dominator */
if ((pTempGate = SSimToDominator(pGate, g_net[i], iGid)) != NULL)
{
g_iStemIndex = pGate->stemIndex;
ssval = pGate->FV[0];
return(pTempGate);
}
}
else
{
/* no dominator */
if (checkStemOutputNeedUpdate(pGate, iGid) != NULL)
return(pGate);
}
g_pStems[pGate->stemIndex].flag[pGate->FV[0]] = SIMULATED;
g_pStems[pGate->stemIndex].fault[pGate->FV[0]] = g_undetectableFault;
push(g_stack1, pGate);
return(NULL);
}
/*------DropDetectedFaults----------------------------------------------
Computes signature of primary outputs and determines
detected faults.
Outputs: returns the number of faults detected.
-----------------------------------------------------------------------*/
int DropDetectedFaults()
{
register int i;
register level iSigDetection = ALL0; /* signature for detection */
register level iSigPotential = ALL0; /* signature for potential detection */
register GATEPTR pGate;
register FAULTPTR pFault;
while (!is_empty(g_pEventListStack[g_iPOLevel]))
{
pGate = pop(g_pEventListStack[g_iPOLevel]);
reset(pGate->changed);
if (pGate->inList[0]->Gid == g_iGroupID)
{
twoBitsCopy(pGate->FV, pGate->inList[0]->FV); //Fault Value
}
else
{
twoBitsCopy(pGate->FV, pGate->inList[0]->GV); //Good Value
}
pGate->Gid = g_iGroupID;
//STOP*********************************************************STOP
if (pGate->type >= FAULTY)
{
for (i = pGate->type - FAULTY; i >= 0; i = g_SUTList[i].papa) //Why??
{
switch (g_SUTList[i].faultType)
{
case SA0:
pGate->FV[0] |= BITMASK[i];
pGate->FV[1] &= ~BITMASK[i];
break;
case SA1:
pGate->FV[0] &= ~BITMASK[i];
pGate->FV[1] |= BITMASK[i];
break;
default:
pGate->FV[0] &= ~BITMASK[i];
pGate->FV[1] &= ~BITMASK[i];
break;
}
}
if (!twoBitsDifferent(pGate->FV, pGate->GV))
continue;
}
iSigDetection |= (pGate->GV[0] & ~pGate->GV[1] & ~pGate->FV[0] & pGate->FV[1]) |
(~pGate->GV[0] & pGate->GV[1] & pGate->FV[0] & ~pGate->FV[1]);
//GV[0] GV[1] FV[0] FV[1]
// 1 0 0 1
// 0 1 1 0
#ifndef ATALANTA
//STOP************************************************STOP
iSigPotential |= (pGate->GV[0] ^ pGate->GV[1]) & (~pGate->FV[0] & ~pGate->FV[1]);
#endif
}
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
if (iSigDetection != ALL0)
for (i = 0; i < g_iFUT; i++) /* detected */
if ((iSigDetection & BITMASK[i]) != ALL0)
{
pFault = g_FUTList[i];
pFault->detected = DETECTED;
g_iNoDetected++;
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
#ifdef DIAGNOSIS
//STOP************************************************STOP
pFault->diag_id = diag_id;
if (dropmode == 'y')
{
remove(pFault->event);
}
#else
remove(pFault->event);
#endif
}
#ifndef ATALANTA
//STOP************************************************STOP
if (iSigPotential != ALL0)
for (i = 0; i < g_iFUT; i++) /* potentially detected */
if ((iSigPotential & BITMASK[i]) != ALL0)
{
pFault = g_FUTList[i];
pFault->npot += 1;
if (pFault->detected == UNDETECTED)
{
pFault->detected = XDETECTED;
if (xdetectmode == 'y')
{
g_iNoDetected++;
#ifdef DIAGNOSIS
//STOP************************************************STOP
pFault->diag_id = diag_id;
if (dropmode == 'y')
{
remove(pFault->event);
}
#else
remove(pFault->event);
#endif
}
}
}
#endif
return(g_iNoDetected);
}
/*------StoreFaultyStatus-------------------------------------------
Stores faulty status to each node.
Allocates frees memory status if necessary.
Flip-Flops which need schedule are stored in g_pEventListStack[0].
------------------------------------------------------------------*/
void StoreFaultyStatus()
{
register GATEPTR pGate;
register int i, iGateIndex;
EVENTPTR temp;
FAULTPTR pFault;
level iValueDifference;
level iFaultValue[2];
while (!is_empty(g_pEventListStack[g_iPPOLevel]))
{
pGate = pop(g_pEventListStack[g_iPPOLevel]);
iGateIndex = pGate->index;
reset(pGate->changed);
if (pGate->inList[0]->Gid == g_iGroupID)
{
twoBitsCopy(iFaultValue, pGate->inList[0]->FV);
}
else
{
twoBitsCopy(iFaultValue, pGate->inList[0]->GV);
}
if (pGate->type >= FAULTY)
{
for (i = pGate->type - FAULTY; i >= 0; i = g_SUTList[i].papa)
{
if (g_SUTList[i].faultLine < 0)
continue;
switch (g_SUTList[i].faultType)
{
case SA0:
iFaultValue[0] |= BITMASK[i];
iFaultValue[1] &= ~BITMASK[i];
break;
case SA1:
iFaultValue[0] &= ~BITMASK[i];
iFaultValue[1] |= BITMASK[i];
break;
default:
iFaultValue[0] &= ~BITMASK[i];
iFaultValue[1] &= ~BITMASK[i];
break;
}
}
}
pGate = pGate->inList[0];
if ((iValueDifference = (pGate->GV[0] ^ iFaultValue[0]) | (pGate->GV[1] ^ iFaultValue[1])) == ALL0) //GV == iFaultValue
continue;
for (i = 0; i < g_iFUT; i++)
{
pFault = g_FUTList[i];
if ((iValueDifference & BITMASK[i]) == ALL0)
continue;
#ifdef DIAGNOSIS
//STOP**************************************STOP
if (dropmode == 'n' || pFault->detected == UNDETECTED ||
#else
if (pFault->detected == UNDETECTED ||
#endif
#ifdef ATALANTA
pFault->detected==PROCESSED ||
#endif
//
//if (pFault->detected == UNDETECTED || pFault->detected==PROCESSED ||
(xdetectmode == 'n' && pFault->detected == XDETECTED))
{
//pFault->detected != DETECTED
create(temp);
temp->node = iGateIndex;
temp->value = ALL0;
if (!checkBitIs0(iFaultValue[0], i))
temp->value = setBit(temp->value, 0);
if (!checkBitIs0(iFaultValue[1], i))
temp->value = setBit(temp->value, 1);
temp->next = pFault->event;
pFault->event = temp; /* head of event */
if ((iValueDifference = resetBit(iValueDifference, i)) == ALL0)
break;
}
}
}
}
#ifndef NEW_FAULT_INJECT
/*------RemoveFault-----------------------------------------------
Restores the most current injected fault.
-----------------------------------------------------------------*/
void RemoveFault()
{
register GATEPTR gut, prev, next;
register int j, k;
gut = g_net[g_iNoGate];
prev = gut->inList[1];
for (j = 0; j< gut->outCount; j++)
{
/* next gates */
next = gut->outList[j];
for (k = 0; k< next->inCount; k++)
if (next->inList[k] == gut)
next->inList[k] = prev;
}
if (prev->outCount == 1)
{
prev->outCount = gut->outCount;
for (j = 0; j< gut->outCount; j++)
prev->outList[j] = gut->outList[j];
}
else
for (j = 0; j< prev->outCount; j++)
if (prev->outList[j] == gut)
prev->outList[j] = gut->outList[0];
g_iNoGate--;
}
/*------RestoreCircuits--------------------------------------------
Restores original circuits for all injected faults.
-------------------------------------------------------------------*/
//NO USE !!
//STOP****************************************STOP
void RestoreCircuits()
{
while (--g_iNoGate > g_iLastGate)
RemoveFault();
g_iNoGate++;
}
#endif
/*------CheckSingleEvent----------------------------------------------------
Performs candidacy test for a single event fault.
----------------------------------------------------------------------------*/
GATEPTR CheckSingleEvent(FAULTPTR pFault, GATEPTR pGate, register int iGID)
{
register int j, k;
EVENTPTR pEvent, e1;
FAULTPTR g;
FLINKTYPE* flink;
register GATEPTR pDomiGate;
register int i;
register level iValue;
while (pGate->stemIndex <= 0) //NOT Stem Gate !!
{
pGate = pGate->outList[0]; //Only 1 output !!
iValue = (pGate->inList[0]->Gid == iGID) ? g_truthTable1[pGate->type][pGate->inList[0]->FV[0]] : g_truthTable1[pGate->type][pGate->inList[0]->SGV];
if (pGate->inCount > 1)
{
for (i = 1; i< pGate->inCount; i++)
{
iValue = (pGate->inList[i]->Gid == iGID) ? g_truthTable2[pGate->type][iValue][pGate->inList[i]->FV[0]] : g_truthTable2[pGate->type][iValue][pGate->inList[i]->SGV];
}
}
if (iValue == pGate->SGV)
{
return(NULL);
}
pGate->FV[0] = iValue;
pGate->Gid = iGID;
}
//pGate is STEM GATE now !!
if ((g_pStems[pGate->stemIndex].checkup >= 1) && (is_simulated(pGate, pGate->FV[0]) == UNSIMULATED))
{
if ((j = g_pStems[pGate->stemIndex].dominatorIndex) > 0)
{
/* dominator */
if ((pDomiGate = SSimToDominator(pGate, g_net[j], iGID)) != NULL)
{
g_iStemIndex = pGate->stemIndex;
ssval = pGate->FV[0];
pGate = pDomiGate;
}
else
{
g_pStems[pGate->stemIndex].flag[pGate->FV[0]] = SIMULATED;
g_pStems[pGate->stemIndex].fault[pGate->FV[0]] = g_undetectableFault;
push(g_stack1, pGate);
return(NULL);
}
}
else if (checkStemOutputNeedUpdate(pGate, iGID) == NULL)
{
/* no dominator */
g_pStems[pGate->stemIndex].flag[pGate->FV[0]] = SIMULATED;
g_pStems[pGate->stemIndex].fault[pGate->FV[0]] = g_undetectableFault;
push(g_stack1, pGate);
return(NULL);
}
}
if (pGate != NULL)
{
j = pGate->FV[0];
if (pGate->type == PO)
{
/* PO */
if ((k = checkPair(pGate->GV[0], pGate->GV[1])) != X)
{
if (j == X)
{
#ifndef ATALANTA
pFault->detected = XDETECTED;
if (xdetectmode == 'y')
{
g_iNoDetected++;
#ifdef DIAGNOSIS
pFault->diag_id = diag_id;
#endif
}
#endif
}
else
{
pFault->detected = DETECTED;
g_iNoDetected++;
#ifdef DIAGNOSIS
pFault->diag_id = diag_id;
#endif
}
}
if (g_iStemIndex > 0)
{
g_pStems[g_iStemIndex].flag[ssval] = SIMULATED;
g_pStems[g_iStemIndex].fault[ssval] = pFault;
push(g_stack1, g_net[g_pStems[g_iStemIndex].gate]);
}
pGate = NULL;
}
else if (pGate->outCount == 1)
{
/* PPO */
create(pEvent);
pEvent->node = pGate->outList[0]->index;
pEvent->value = ALL0;
if (!checkBitIs0(g_value2Pair[j][0], 0))
pEvent->value = setBit(pEvent->value, 0);
if (!checkBitIs0(g_value2Pair[j][1], 0))