forked from apsomas/hsdm
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathPart_6.Rmd
819 lines (643 loc) · 31.3 KB
/
Part_6.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# **Habitat Suitability and Distribution Models**
### with Applications in R
\
**by A. Guisan (1), W. Thuiller (2), N.E. Zimmermann (3) **,\
\
with contribution by V. Di Cola, D. Georges and A. Psomas\
\
_(1) University of Lausanne, Switzerland_\
_(2) CNRS, Université Grenoble Alpes, France_\
_(3) Swiss Federal Research Institute WSL, Switzerland_\
#### Cambridge University Press
http://www.cambridge.org/gb/academic/subjects/life-sciences/quantitative-biology-biostatistics-and-mathematical-modellin/habitat-suitability-and-distribution-models-applications-r
*Citation:*
@book{
title={Habitat Suitability and Distribution Models: With Applications in R},
author={Guisan, A. and Thuiller, W. and Zimmermann, N.E.},
isbn={9780521758369},
series={Ecology, Biodiversity and Conservation},
year={2017},
publisher={Cambridge University Press}
}
*If you use any of these figures and code examples in a presentation or lecture, somewhere in your set of slides we would really appreciate if you please add the paragraph: "Some of the figures in this presentation are taken from "Habitat Suitability and Distribution Models: with applications in R" (CUP, 2017) with permission from the authors: A. Guisan, W. Thuiller and N.E. Zimmerman "
If you wish to use any of these figures in a publication, you must get permission from CUP, and each figure must be accompanied by a similar acknowledgement.*
# Part VI "Developed case studies"
# Chapter 19: The Biomod2 Modeling Package Examples
## Section 19.1 - Example 1: Habitat Suitability modeling of *Protea laurifolia* in South-Africa
Loading required packages
*biomod2*, *ggplot2*, *gridExtra* and *rgbif*
```{r load packages}
setwd("~/data")
library(rgbif)
library(biomod2)
library(ggplot2)
library(gridExtra)
library(raster)
```
#### Getting species data from GBIF using *rgbif* package
```{r get_data}
spp_Protea <- name_suggest(q='Protea laurifolia', rank='species',limit = 10000)
(spp_Protea <- spp_Protea[ grepl("^Protea laurifolia$", spp_Protea$canonicalName),])
```
Get species occurrences
```{r}
data <- occ_search(taxonKey = spp_Protea$key,
country='ZA',
fields = c('name','key','country','decimalLatitude','decimalLongitude'),
hasCoordinate=T ,
limit=1000,
return = 'data')
```
print the summary of the extracted object
```{r}
data
data <- data[['5637308']]
```
```{r}
#remove blank spaces from species names.
data$name <- sub(" ", ".", data$name)
(spp_to_model <- unique(data$name))
```
```{r}
## Total number of occurrences:
sort(table(data$name), decreasing = T)
```
#### Getting the environmental data
Get some worldclim environmental variables
```{r}
dir.create("WorldClim_data", showWarnings = F)
## curent bioclim
download.file(url = "http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/bio_10m_esri.zip",
destfile = "WorldClim_data/current_bioclim_10min.zip",
method = "auto")
## GCM -> BCC-CSM1-1, year -> 2050, RCP -> 4.5
download.file(url = "http://biogeo.ucdavis.edu/data/climate/cmip5/10m/bc45bi50.zip",
destfile = "WorldClim_data/2050_BC_45_bioclim_10min.zip",
method = "auto")
## GCM -> BCC-CSM1-1, year -> 2080, RCP -> 4.5
download.file(url = "http://biogeo.ucdavis.edu/data/climate/cmip5/10m/bc45bi70.zip",
destfile = "WorldClim_data/2070_BC_45_bioclim_10min.zip",
method = "auto")
```
extract files
```{r}
unzip( zipfile = "WorldClim_data/current_bioclim_10min.zip",
exdir = "WorldClim_data/current",
overwrite = T)
list.files("WorldClim_data/current/bio/")
unzip( zipfile = "WorldClim_data/2050_BC_45_bioclim_10min.zip",
exdir = "WorldClim_data/2050/BC_45",
overwrite = T)
list.files("WorldClim_data/2050/BC_45/")
unzip( zipfile = "WorldClim_data/2070_BC_45_bioclim_10min.zip",
exdir = "WorldClim_data/2070/BC_45",
overwrite = T)
list.files("WorldClim_data/2070/BC_45/")
```
#### Environmental variables selection
```{r}
#First we want to extract species occurrences from our data table.
ProLau_occ <- data[ data$name == "Protea.laurifolia", ]
library(raster)
#stack bio-climatic variables.
bioclim_world <- stack(list.files("WorldClim_data/current/bio", pattern ="bio_", full.names=T), RAT = FALSE)
```
```{r}
#shape-file of Southern Africa in the `biomod2` package.
download.file(url = "https://sourceforge.net/projects/biomod2/files/data_for_example/south_of_africa.zip", destfile = "south_of_africa.zip")
unzip( zipfile = "south_of_africa.zip",
exdir = ".",
overwrite = T)
list.files("south_of_africa", recursive = T)
mask_south_of_africa <- shapefile("south_of_africa/South_Africa.shp")
bioclim_ZA <- mask(bioclim_world,
mask_south_of_africa[ mask_south_of_africa$CNTRY_NAME == "South Africa", ])
bioclim_ZA <- crop(bioclim_ZA, mask_south_of_africa)
```
ids of cells where Protea laurifolia occurs.
```{r}
points_laurifolia<-data.frame(ProLau_occ[1:290,c("decimalLongitude", "decimalLatitude")])
ProLau_cell_id <- cellFromXY(subset(bioclim_ZA,1), points_laurifolia)
```
#### Principal Component Analysis.
```{r}
library(ade4)
bioclim_ZA_df <- na.omit(as.data.frame(bioclim_ZA))
head(bioclim_ZA_df)
pca_ZA <- dudi.pca(bioclim_ZA_df,scannf = F, nf = 2)
## PCA scores on first two axes
plot(pca_ZA$li[,1:2])
## tail of distributions
sort(pca_ZA$li[,1])[1:10]
## ids of points to remove
(to_remove <- which(pca_ZA$li[,1] < -10))
## remove points and recompute PCA
if(length(to_remove)){ ## remove outliers
bioclim_ZA_df <- bioclim_ZA_df[ - to_remove,]
pca_ZA <- dudi.pca(bioclim_ZA_df,scannf = F, nf = 2)
}
par(mfrow=c(1,2))
## Discriminate Protea laurifolia presences from the entire South African environmental space.
s.class(pca_ZA$li[,1:2],
fac= factor(rownames(bioclim_ZA_df) %in% ProLau_cell_id,
levels = c("FALSE", "TRUE" ),
labels = c("backgroud", "ProLau")),
col=c("red","blue"),
csta = 0,
cellipse = 2,
cpoint = .3,
pch = 16)
s.corcircle(pca_ZA$co, clab = 1)
# Sub-selection of the variables.
bioclim_ZA_sub <- stack(subset(bioclim_ZA, c("bio_5", "bio_7", "bio_11", "bio_19")))
library(biomod2)
ProLau_data <- BIOMOD_FormatingData(resp.var = rep(1, nrow( ProLau_occ ) ),
expl.var = bioclim_ZA_sub,
resp.xy = ProLau_occ[,c('decimalLongitude', 'decimalLatitude')],
resp.name = "Protea.laurifolia",
PA.nb.rep = 3,
PA.nb.absences = 500,
PA.strategy = 'random')
## formatted object summary
ProLau_data
## plot of selected pseudo-absences
plot(ProLau_data)
ProLau_opt <- BIOMOD_ModelingOptions(GLM = list( type = 'quadratic',
interaction.level = 1 ),
GBM = list( n.trees = 1000 ),
GAM = list( algo = 'GAM_mgcv' ) )
ProLau_models <- BIOMOD_Modeling( data = ProLau_data,
models = c("GLM", "GBM", "RF", "GAM"),
models.options = ProLau_opt,
NbRunEval = 4,
DataSplit = 80,
VarImport = 3,
do.full.models = F,
modeling.id = "ex2" )
## get models evaluation scores
ProLau_models_scores <- get_evaluations(ProLau_models)
## ProLau_models_scores is a 5 dimension array containing the scores of the models
dim(ProLau_models_scores)
dimnames(ProLau_models_scores)
models_scores_graph(ProLau_models, by = "models" , metrics = c("ROC","TSS"),
xlim = c(0.5,1), ylim = c(0.5,1))
models_scores_graph(ProLau_models, by = "cv_run" , metrics = c("ROC","TSS"),
xlim = c(0.5,1), ylim = c(0.5,1))
models_scores_graph(ProLau_models, by = "data_set" , metrics = c("ROC","TSS"),
xlim = c(0.5,1), ylim = c(0.5,1))
(ProLau_models_var_import <- get_variables_importance(ProLau_models))
## make the mean of variable importance by algorithm
apply(ProLau_models_var_import, c(1,2), mean)
ProLau_glm <- BIOMOD_LoadModels(ProLau_models, models='GLM')
ProLau_gbm <- BIOMOD_LoadModels(ProLau_models, models='GBM')
ProLau_rf <- BIOMOD_LoadModels(ProLau_models, models='RF')
ProLau_gam <- BIOMOD_LoadModels(ProLau_models, models='GAM')
#+ 6, cache=TRUE ,opts.label = "half_page_figure"
glm_eval_strip <- biomod2::response.plot2(
models = ProLau_glm,
Data = get_formal_data(ProLau_models,'expl.var'),
show.variables= get_formal_data(ProLau_models,'expl.var.names'),
do.bivariate = FALSE,
fixed.var.metric = 'median',
legend = FALSE,
display_title = FALSE,
data_species = get_formal_data(ProLau_models,'resp.var'))
gbm_eval_strip <- biomod2::response.plot2(
models = ProLau_gbm,
Data = get_formal_data(ProLau_models,'expl.var'),
show.variables= get_formal_data(ProLau_models,'expl.var.names'),
do.bivariate = FALSE,
fixed.var.metric = 'median',
legend = FALSE,
display_title = FALSE,
data_species = get_formal_data(ProLau_models,'resp.var'))
rf_eval_strip <- biomod2::response.plot2(
models = ProLau_rf,
Data = get_formal_data(ProLau_models,'expl.var'),
show.variables= get_formal_data(ProLau_models,'expl.var.names'),
do.bivariate = FALSE,
fixed.var.metric = 'median',
legend = FALSE,
display_title = FALSE,
data_species = get_formal_data(ProLau_models,'resp.var'))
gam_eval_strip <- biomod2::response.plot2(
models = ProLau_gam,
Data = get_formal_data(ProLau_models,'expl.var'),
show.variables= get_formal_data(ProLau_models,'expl.var.names'),
do.bivariate = FALSE,
fixed.var.metric = 'median',
legend = FALSE,
display_title = FALSE,
data_species = get_formal_data(ProLau_models,'resp.var'))
ProLau_ensemble_models <- BIOMOD_EnsembleModeling( modeling.output = ProLau_models,
em.by = 'all',
eval.metric = 'TSS',
eval.metric.quality.threshold = 0.8,
models.eval.meth = c('KAPPA','TSS','ROC'),
prob.mean = FALSE,
prob.cv = TRUE,
committee.averaging = TRUE,
prob.mean.weight = TRUE,
VarImport = 0 )
(ProLau_ensemble_models_scores <- get_evaluations(ProLau_ensemble_models))
### Current projections ###
ProLau_models_proj_current <- BIOMOD_Projection( modeling.output = ProLau_models,
new.env = bioclim_ZA_sub,
proj.name = "current",
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
ProLau_ensemble_models_proj_current <-
BIOMOD_EnsembleForecasting( EM.output = ProLau_ensemble_models,
projection.output = ProLau_models_proj_current,
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
### Future projections ###
## load 2050 bioclim variables
bioclim_world_2050_BC45 <-
stack( c( bio_5 = "WorldClim_data/2050/BC_45/bc45bi505.tif",
bio_7 = "WorldClim_data/2050/BC_45/bc45bi507.tif",
bio_11 = "WorldClim_data/2050/BC_45/bc45bi5011.tif",
bio_19 = "WorldClim_data/2050/BC_45/bc45bi5019.tif"), RAT = FALSE )
## crop on our area
bioclim_ZA_2050_BC45 <- crop( bioclim_world_2050_BC45, mask_south_of_africa)
bioclim_ZA_2050_BC45 <- mask( bioclim_ZA_2050_BC45,
mask_south_of_africa[ mask_south_of_africa$CNTRY_NAME == "South Africa", ] )
bioclim_ZA_2050_BC45 <- stack( bioclim_ZA_2050_BC45 )
## Save this rasterstack on the hard drive if needed.
ProLau_models_proj_2050_BC45 <- BIOMOD_Projection( modeling.output = ProLau_models,
new.env = bioclim_ZA_2050_BC45,
proj.name = "2050_BC45",
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
ProLau_ensemble_models_proj_2050_BC45 <-
BIOMOD_EnsembleForecasting( EM.output = ProLau_ensemble_models,
projection.output = ProLau_models_proj_2050_BC45,
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
## load 2070 bioclim variables
bioclim_world_2070_BC45 <- stack( c( bio_5 = "WorldClim_data/2070/BC_45/bc45bi705.tif",
bio_7 = "WorldClim_data/2070/BC_45/bc45bi707.tif",
bio_11 = "WorldClim_data/2070/BC_45/bc45bi7011.tif",
bio_19 = "WorldClim_data/2070/BC_45/bc45bi7019.tif"), RAT = FALSE )
## crop on our area
bioclim_ZA_2070_BC45 <- crop( bioclim_world_2070_BC45, mask_south_of_africa )
bioclim_ZA_2070_BC45 <- mask( bioclim_ZA_2070_BC45,
mask_south_of_africa[ mask_south_of_africa$CNTRY_NAME == "South Africa", ])
bioclim_ZA_2070_BC45 <- stack( bioclim_ZA_2070_BC45 )
## You may save these rasters on the hard drive.
ProLau_models_proj_2070_BC45 <- BIOMOD_Projection( modeling.output = ProLau_models,
new.env = bioclim_ZA_2070_BC45,
proj.name = "2070_BC45",
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
ProLau_ensemble_models_proj_2070_BC45 <-
BIOMOD_EnsembleForecasting( EM.output = ProLau_ensemble_models,
projection.output = ProLau_models_proj_2070_BC45,
binary.meth = "TSS",
output.format = ".img",
do.stack = FALSE )
plot(ProLau_ensemble_models_proj_2070_BC45,
str.grep = "EMca|EMwmean")
## load binary projections
ProLau_bin_proj_current <- stack(
c( ca = "Protea.laurifolia/proj_current/individual_projections/Protea.laurifolia_EMcaByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
wm = "Protea.laurifolia/proj_current/individual_projections/Protea.laurifolia_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img") )
ProLau_bin_proj_2050_BC45 <- stack(
c( ca = "Protea.laurifolia/proj_2050_BC45/individual_projections/Protea.laurifolia_EMcaByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
wm = "Protea.laurifolia/proj_2050_BC45/individual_projections/Protea.laurifolia_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img") )
ProLau_bin_proj_2070_BC45 <- stack(
c( ca = "Protea.laurifolia/proj_2070_BC45/individual_projections/Protea.laurifolia_EMcaByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
wm = "Protea.laurifolia/proj_2070_BC45/individual_projections/Protea.laurifolia_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img") )
## SRC current -> 2050
SRC_current_2050_BC45 <- BIOMOD_RangeSize( ProLau_bin_proj_current,
ProLau_bin_proj_2050_BC45 )
SRC_current_2050_BC45$Compt.By.Models
## SRC current -> 2070
SRC_current_2070_BC45 <- BIOMOD_RangeSize( ProLau_bin_proj_current,
ProLau_bin_proj_2070_BC45 )
SRC_current_2070_BC45$Compt.By.Models
ProLau_src_map <- stack(SRC_current_2050_BC45$Diff.By.Pixel, SRC_current_2070_BC45$Diff.By.Pixel)
names(ProLau_src_map) <- c("ca cur-2050", "wm cur-2050", "ca cur-2070", "wm cur-2070")
## mask by environmental area
ProLau_src_map <- mask(ProLau_src_map,
mask_south_of_africa[ mask_south_of_africa$CNTRY_NAME == "South Africa", ])
library(rasterVis)
my.at <- seq(-2.5,1.5,1)
myColorkey <- list(at=my.at, ## where the colors change
labels=list(
labels=c("lost", "pres", "abs","gain"), ## labels
at=my.at[-1]-0.5 ## where to print labels
))
rasterVis::levelplot( ProLau_src_map,
main = "Protea laurifolia range change",
colorkey = myColorkey,
layout = c(2,2) )
ref <- subset(ProLau_bin_proj_current, "ca")
## define the facets we want to study
mods <- c("GLM", "GBM", "RF", "GAM", "caByTSS", "wmeanByTSS")
data_set <- c("PA1", "PA2", "PA3", "mergedData")
cv_run <- c("RUN1", "RUN2", "RUN3", "RUN4", "mergedRun")
## construct combination of all facets
groups <- as.matrix( expand.grid( models = mods,
data_set = data_set,
cv_run = cv_run,
stringsAsFactors = FALSE) )
## load all projections we have produced
all_bin_proj_files <- list.files( path = "Protea.laurifolia",
pattern = "_TSSbin.img$",
full.names = TRUE,
recursive = TRUE)
## current versus 2070 (removed the projections by 2050)
current_and_2070_proj_files <-grep(all_bin_proj_files, pattern="2070", value=T)
## keep only projections that match with our selected facets groups
selected_bin_proj_files <- apply(
groups, 1,
function(x){
proj_file <- NA
match_tab <- sapply(x, grepl, current_and_2070_proj_files)
match_id <- which( apply(match_tab,1,all) )
if(length(match_id)) proj_file <- current_and_2070_proj_files[match_id]
return(proj_file)
})
## remove no-matching groups
to_remove <- which(is.na(selected_bin_proj_files))
if(length(to_remove)){
groups <- groups[-to_remove,]
selected_bin_proj_files <- selected_bin_proj_files[-to_remove]
}
## build stack of selected projections
proj_groups <- stack(selected_bin_proj_files)
ProbDensFunc( initial = ref,
projections = proj_groups,
groups = t(groups),
plothist = FALSE,
cvsn = FALSE,
filename = paste("Protea.laurifolia/ProbDensFuncPlot.png"))
```
## Section 19.2 - Example 2: Creating diversity maps for the *Laurus* species
```{r}
## Getting species data
if(!require(rgbif)){
install.packages("rgbif")
require(rgbif)
}
## get the species list belonging to Larus genus
spp_larus <- name_lookup(query = 'Larus', rank="species", return = 'data',
status = 'ACCEPTED', limit = 1000 )
## clean up the species list
(spp_larus <- spp_larus[ grepl("^Larus ", spp_larus$scientificName),])
## get species occurrences
occ_larus <- occ_search(taxonKey = spp_larus$key, continent='europe', fields = c('name','key','country','decimalLatitude','decimalLongitude'), hasCoordinate=T , limit=500, return = 'data')
## join all data in a single data.frame
data <- NULL
for(sp in names(occ_larus)){
if( !is.null( dim( occ_larus[[sp]] ) ) ){
data <- rbind(data, occ_larus[[sp]])
}
}
## replace " " by "." in species names
data$name <- sub(" ", ".", data$name)
## keep only species having more than 20 occurrences
table(data$name)
(spp_to_model <- names(table(data$name))[ table(data$name)>20 ] )
{{length(spp_to_model)}}
## get some worldclim environmental variables
dir.create("WorldClim_data", showWarnings = F)
## curent bioclim
download.file(url = "http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/bio_10m_esri.zip",
destfile = "WorldClim_data/current_bioclim_10min.zip",
method = "auto")
## GCM -> BCC-CSM1-1, year -> 2050, RCP -> 4.5
download.file(url = "http://biogeo.ucdavis.edu/data/climate/cmip5/10m/bc45bi50.zip",
destfile = "WorldClim_data/2050_BC_45_bioclim_10min.zip",
method = "auto")
## GCM -> BCC-CSM1-1, year -> 2080, RCP -> 4.5
download.file(url = "http://biogeo.ucdavis.edu/data/climate/cmip5/10m/bc45bi70.zip",
destfile = "WorldClim_data/2070_BC_45_bioclim_10min.zip",
method = "auto")
## unzip climatic files
unzip( zipfile = "WorldClim_data/current_bioclim_10min.zip",
exdir = "WorldClim_data/current",
overwrite = T)
list.files("WorldClim_data/current/bio/")
unzip( zipfile = "WorldClim_data/2050_BC_45_bioclim_10min.zip",
exdir = "WorldClim_data/2050/BC_45",
overwrite = T)
list.files("WorldClim_data/2050/BC_45/")
unzip( zipfile = "WorldClim_data/2070_BC_45_bioclim_10min.zip",
exdir = "WorldClim_data/2070/BC_45",
overwrite = T)
list.files("WorldClim_data/2070/BC_45/")
```
```{r}
## load libraries
library(biomod2)
library(gridExtra)
library(rasterVis)
library(reshape2)
europe_ext <- extent(-11,41,35,72)
## load environmental variables within a 'RasterStack' object
stk_current <- stack( list.files(path = "WorldClim_data/current/bio/",
pattern = "bio_",
full.names = T), RAT=F )
## Clip the environmental variables to the European extent
stk_current <- crop(stk_current, europe_ext)
## convert our environmental Stack into data.frame
current_df <- as.data.frame(stk_current)
current_df <- na.omit(current_df)
## calculate Pearson correlations between pairs of variables
cor_current <- cor(current_df)
## reformat correlation table for graphical analyse
cor_current[ upper.tri(cor_current, diag = T) ] <- NA
cor_current_resh <- na.omit( melt( cor_current ) )
colnames(cor_current_resh) <- c("var1", "var2", "correlation")
## only consider absolute value of correlations
cor_current_resh$correlation <- abs(cor_current_resh$correlation)
## make a correlation plot
gg_cor <- ggplot(cor_current_resh, aes(x = var1, y = var2 , fill = correlation) )
gg_cor <- gg_cor + geom_tile() + xlab("") + ylab("") + theme( axis.text.x = element_text(angle=90, vjust=0.5))
print(gg_cor)
selected_vars <- c("bio_1", "bio_12", "bio_8")
## check correlations between selected variables
(cor_sel <- cor(current_df[,selected_vars]))
{{round(max(abs(cor_sel[upper.tri(cor_sel, diag = F)])), digits =2)}}
## keep only the selected variables
stk_current <- stack(subset(stk_current, selected_vars))
plot(stk_current)
## NOTE : respect layer names and order across stacks
stk_2050_BC_45 <- stack( c( bio_1 = "WorldClim_data/2050/BC_45/bc45bi501.tif",
bio_12 = "WorldClim_data/2050/BC_45/bc45bi5012.tif",
bio_8 = "WorldClim_data/2050/BC_45/bc45bi508.tif"),
RAT=F)
stk_2050_BC_45 <- stack(crop(stk_2050_BC_45, europe_ext))
stk_2070_BC_45 <- stack( c( bio_1 = "WorldClim_data/2070/BC_45/bc45bi701.tif",
bio_12 = "WorldClim_data/2070/BC_45/bc45bi7012.tif",
bio_8 = "WorldClim_data/2070/BC_45/bc45bi708.tif"),
RAT=F)
stk_2070_BC_45 <- stack(crop(stk_2070_BC_45, europe_ext))
```
```{r}
## build a biomod2 modelling wrapper
biomod2_wrapper <- function(sp){
cat("\n> species : ", sp)
## get occurrences points
sp_dat <- data[ data$name == sp, ]
## formating the data
sp_format <- BIOMOD_FormatingData(resp.var = rep( 1, nrow(sp_dat) ),
expl.var = stk_current,
resp.xy = sp_dat[,c("decimalLongitude","decimalLatitude")],
resp.name = sp,
PA.strategy = "random",
PA.nb.rep = 3,
PA.nb.absences = 1000)
## print formatting summary
sp_format
## save image of input data summary
if(!exists(sp)) dir.create(sp)
pdf(paste(sp, "/", sp ,"_data_formated.pdf", sep="" ))
try(plot(sp_format))
dev.off()
## define models options
sp_opt <- BIOMOD_ModelingOptions()
## model species
sp_model <- BIOMOD_Modeling( sp_format,
models = c('GLM','FDA','RF'),
models.options = sp_opt,
NbRunEval = 3,
DataSplit = 70,
Yweights = NULL,
VarImport = 3,
models.eval.meth = c('TSS','ROC'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = FALSE,
modeling.id = "ex3")
## save some graphical outputs
#### models scores
pdf(paste(sp, "/", sp ,"_models_scores.pdf", sep="" ))
try( gg1 <- models_scores_graph(sp_model, metrics = c("TSS","ROC"), by = 'models', plot=F) )
try( gg2 <- models_scores_graph(sp_model, metrics = c("TSS","ROC"), by = 'data_set', plot=F) )
try( gg3 <- models_scores_graph(sp_model, metrics = c("TSS","ROC"), by = 'cv_run', plot=F) )
try(grid.arrange(gg1,gg2,gg3))
dev.off()
## build ensemble models
sp_ens_model <- BIOMOD_EnsembleModeling( modeling.output = sp_model,
chosen.models = 'all',
em.by = 'all',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
models.eval.meth = c('TSS','ROC'),
prob.mean = TRUE,
prob.cv = TRUE,
prob.ci = FALSE,
prob.ci.alpha = 0.05,
prob.median = FALSE,
committee.averaging = TRUE,
prob.mean.weight = TRUE,
prob.mean.weight.decay = 'proportional' )
## do projections
proj_scen <- c("current", "2050_BC_45", "2070_BC_45")
for(scen in proj_scen){
cat("\n> projections of ", scen)
## single model projections
sp_proj <- BIOMOD_Projection( modeling.output = sp_model,
new.env = get(paste("stk_", scen, sep = "")),
proj.name = scen,
selected.models = 'all',
binary.meth = "TSS",
filtered.meth = NULL,
compress = TRUE,
build.clamping.mask = TRUE,
do.stack = FALSE,
output.format = ".img" )
## ensemble model projections
sp_ens_proj <- BIOMOD_EnsembleForecasting(EM.output = sp_ens_model,
projection.output = sp_proj,
binary.meth = "TSS",
compress = TRUE,
do.stack = FALSE,
output.format = ".img")
}
return(paste(sp," modelling completed !", sep=""))
}
if(require(snowfall)){ ## parallel computation
## start the cluster
sfInit(parallel = TRUE, cpus = 2) ## here we only require 2 cpus
sfExportAll()
sfLibrary(biomod2)
## launch our wrapper in parallel
sf_out <- sfLapply(spp_to_model, biomod2_wrapper)
## stop the cluster
sfStop()
} else { ## sequencial computation
for (sp in spp_to_model){
biomod2_wrapper(sp)
}
## or with a lapply function in sequential model
## all_species_bm <- lapply(spp_to_model, biomod2_wrapper)
}
## current conditons
### load binary projections
f_em_wmean_bin_current <- paste(spp_to_model,
"/proj_current/individual_projections/",
spp_to_model,
"_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
sep = "")
### sum all projections
if( length(f_em_wmean_bin_current) >= 2 ){
## initialisation
taxo_alpha_div_current <- raster( f_em_wmean_bin_current[1] )
for(f in f_em_wmean_bin_current){
taxo_alpha_div_current <- taxo_alpha_div_current + raster(f)
}
}
### mask by environmental mask (will be remove with next version of biomod2)
taxo_alpha_div_current <- mask(taxo_alpha_div_current, subset(stk_current,1))
## 2050 conditons
### load binaries projections
f_em_wmean_bin_2050 <- paste(spp_to_model,
"/proj_2050_BC_45/individual_projections/",
spp_to_model,
"_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
sep = "")
### sum all projections
if( length(f_em_wmean_bin_2050) >= 2 ){
## initialisation
taxo_alpha_div_2050 <- raster( f_em_wmean_bin_2050[1] )
for(f in f_em_wmean_bin_2050){
taxo_alpha_div_2050 <- taxo_alpha_div_2050 + raster(f)
}
}
### mask by environmental mask (will be remove with next version of biomod2)
taxo_alpha_div_2050 <- mask(taxo_alpha_div_2050, subset(stk_2050_BC_45,1))
## 2070 conditons
### load binaries projections
f_em_wmean_bin_2070 <- paste(spp_to_model,
"/proj_2070_BC_45//individual_projections/",
spp_to_model,
"_EMwmeanByTSS_mergedAlgo_mergedRun_mergedData_TSSbin.img",
sep = "")
### sum all projections
if( length(f_em_wmean_bin_2070) >= 2 ){
## initialisation
taxo_alpha_div_2070 <- raster( f_em_wmean_bin_2070[1] )
for(f in f_em_wmean_bin_2070){
taxo_alpha_div_2070 <- taxo_alpha_div_2070 + raster(f)
}
}
```
```{r}
### mask by environmental mask (will be remove with next version of biomod2)
taxo_alpha_div_2070 <- mask(taxo_alpha_div_2070, subset(stk_2070_BC_45,1))
## plot the results
levelplot( stack( c(current = taxo_alpha_div_current,
in_2050 = taxo_alpha_div_2050,
in_2070 = taxo_alpha_div_2070 ) ),
main = expression(paste("Larus ", alpha, "-diversity")),
par.settings = BuRdTheme)
```