forked from apsomas/hsdm
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathPart_4.Rmd
606 lines (472 loc) · 18.6 KB
/
Part_4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# **Habitat Suitability and Distribution Models**
### with Applications in R
\
**by A. Guisan (1), W. Thuiller (2), N.E. Zimmermann (3) **,\
\
with contribution by V. Di Cola, D. Georges and A. Psomas\
\
_(1) University of Lausanne, Switzerland_\
_(2) CNRS, Université Grenoble Alpes, France_\
_(3) Swiss Federal Research Institute WSL, Switzerland_\
#### Cambridge University Press
http://www.cambridge.org/gb/academic/subjects/life-sciences/quantitative-biology-biostatistics-and-mathematical-modellin/habitat-suitability-and-distribution-models-applications-r
*Citation:*
@book{
title={Habitat Suitability and Distribution Models: With Applications in R},
author={Guisan, A. and Thuiller, W. and Zimmermann, N.E.},
isbn={9780521758369},
series={Ecology, Biodiversity and Conservation},
year={2017},
publisher={Cambridge University Press}
}
*If you use any of these figures and code examples in a presentation or lecture, somewhere in your set of slides we would really appreciate if you please add the paragraph: "Some of the figures in this presentation are taken from "Habitat Suitability and Distribution Models: with applications in R" (CUP, 2017) with permission from the authors: A. Guisan, W. Thuiller and N.E. Zimmerman "
If you wish to use any of these figures in a publication, you must get permission from CUP, and each figure must be accompanied by a similar acknowledgement.*
# Part VI "Evaluating Models: Errors and Uncertainty"
## Chapter 15: Measuring Model Accuracy: Which Metrics to Use?
### Measuring Calibration
```{r load packages, message=FALSE,warning=FALSE}
library(PresenceAbsence)
library(randomForest)
library(biomod2)
library(ggplot2)
library(ecospat)
library(boot)
library(ltm)
library(Daim)
library(mda)
library(gbm)
```
Set Working Directory
```{r setwd}
setwd("~/data")
```
Create models to evaluate from Part 3
```{r read_data1}
#First the data should be loaded to run the models
mammals_data <- read.csv("tabular/species/mammals_and_bioclim_table.csv", row.names=1)
```
Create the Random Forest model RF
```{r RF}
RF = randomForest(x = mammals_data[,c("bio3", "bio7", "bio11", "bio12")],y = as.factor(mammals_data$VulpesVulpes), ntree = 1000, importance = TRUE)
RF.pred = predict(RF, type="prob")[,2]
```
Create the FDA model
```{r FDA}
fda_mod = fda(VulpesVulpes ~ 1+bio3+bio7+bio11+bio12, data=mammals_data,method=mars)
FDA.pred = predict(fda_mod, mammals_data[,c("bio3", "bio7", "bio11", "bio12")], type = "posterior")[,2]
```
Create the BRT model
```{r GBM}
BRT.mod <- gbm(VulpesVulpes~ bio3+bio7+bio11+bio12, data=mammals_data, distribution = "bernoulli", n.trees = 2000, interaction.depth = 7, shrinkage = 0.001, bag.fraction = 0.5, cv.folds=5)
brt.mod.perf = gbm.perf(BRT.mod, method = "cv", plot.it = F)
BRT.pred <- predict(BRT.mod, newdata=mammals_data[,c("bio3", "bio7", "bio11", "bio12")], type="response", n.trees=brt.mod.perf)
```
Create the Maxent model
```{r ME, eval=FALSE}
parent.dir <- dirname(getwd()) ## get the name of the directory where data dir should be
any(file.exists("data", parent.dir))
dir.create("MaxEnt.res")
MaxEnt.layers.dir <- paste(getwd(), "/tabular/bioclim", sep="")
MaxEnt.samples.dir <- paste(getwd(), "/tabular/species", sep="")
MaxEnt.out.dir <- "MaxEnt.res"
MaxEnt.soft.path <- "../data/maxent.jar" ## the path to maxent.jar file
Java.soft.path <- "C:/Program Files (x86)/Java/jre1.8.0_101/bin/java.exe"
list.files(MaxEnt.layers.dir, pattern = ".asc", recursive = T)
list.files(MaxEnt.samples.dir, pattern = ".csv")
maxent.cmd <- paste0("\"", Java.soft.path, "\" -mx512m -jar \"",
MaxEnt.soft.path, "\" environmentallayers=\"",
file.path(MaxEnt.layers.dir, "current", "ascii"),
"\" samplesfile=\"", file.path(MaxEnt.samples.dir, "VulpesVulpes.csv"),
"\" projectionlayers=\"", file.path(MaxEnt.layers.dir, "current", "bioclim_table.csv"),
"\" outputdirectory=\"", MaxEnt.out.dir, "\" outputformat=logistic maximumiterations=500 jackknife visible=FALSE redoifexists autorun nowarnings notooltips")
system(command = maxent.cmd)
list.files(MaxEnt.out.dir)
Maxent.predict <- read.csv('MaxEnt.res/VulpesVulpes_bioclim_table.csv')
Maxent.pred <- Maxent.predict[,3]
```
Create an average model (AVER) from the three previous (average model from RF, FDA and BRT)
```{r aver}
AVER.pred<-((RF.pred+FDA.pred+BRT.pred)/3)
```
Create the dataframe with the species data and models
```{r df}
head(mammals_data)
ObsNum <- mammals_data[,8]
species <- "VulpesVulpes"
plotID <- 1:nrow(mammals_data)
EvalData <- data.frame(cbind(plotID, ObsNum, RF.pred, FDA.pred, BRT.pred, AVER.pred))
colnames(EvalData) <- c("plotID", "ObsNum", "RF", "FDA", "BRT", "AVER")
write.table (EvalData, "tabular/EvalData.txt", sep = "\t")
```
Read dataset
```{r read_data2}
EvalData <- read.table("tabular/EvalData.txt")
species <- "VulpesVulpes"
models.names = c("RF", "FDA", "BRT","AVER")
head(EvalData)
sp <- 1
```
The calibration.plot() function in the PresenceAbsence package allows drawing a calibration plot
Calibration plots for three single predictions and the averaged model
```{r calibration.plot 15.4}
par(oma = c(0, 5, 0, 0), mar = c(4, 4, 4, 1), mfrow = c(2, 2),
cex = 0.8, cex.lab = 1.4, mgp = c(2, 0.5, 0))
for (mod in 1:4) {
calibration.plot(EvalData, which.model = mod, color = mod + 1, xlab = "", ylab = "")
}
mtext("Predicted Probability of Occurrence", side = 1, line = -1, cex = 1.4, outer = TRUE)
mtext("Observed Occurrence as Proportion of Sites Surveyed", side = 2,
line = -1, cex = 1.4, outer = TRUE)
```
Calibration plots for three single predictions and the averaged model using the functions of Phillips & Elith (2009)
```{r functions calib_plot}
calibplot <- function(pred, negrug, posrug, ideal, ylim=c(0,1), xlim=c(0,1), capuci=TRUE, xlabel = "Predicted probability of presence", filename=NULL, title="Calibration plot", ...) {
if (!is.null(filename)) png(filename)
ylow <- pred$y - 2 * pred$se
ylow[ylow<0] <- 0
yhigh <- pred$y + 2 * pred$se
if (capuci) yhigh[yhigh>1] <- 1
plot(pred$x, ylow, type="l", col="orange", ylim=ylim, xlim=xlim,
xlab=xlabel, lwd=2, ...)
lines(pred$x, yhigh, lwd=2, col="orange")
lines(pred$x, sapply(pred$x, ideal), lty="dashed")
points(pred$x, pred$y, col="deepskyblue")
rug(negrug)
rug(posrug, col = "orange")
title(title)
if (!is.null(filename)) dev.off()
}
smoothingdf <- 6
smoothdist <- function(pred, res) {
require(splines)
gam1 <- glm(res ~ ns(pred, df=smoothingdf), weights=rep(1, length(pred)), family=binomial)
x <- seq(min(pred), max(pred), length = 512)
y <- predict(gam1, newdata = data.frame(pred = x), se.fit = TRUE,
type = "response")
data.frame(x=x, y=y$fit, se=y$se.fit)
}
pacplot <- function(pred, pa, ...) {
predd <- smoothdist(pred, pa)
calibplot(predd, negrug=pred[pa==0], posrug=pred[pa==1], ideal=function(x) x, ylab="Probability of presence", ...)
}
# binned calibration plot with equal width bins
ecalp <- function(preds, acts, bins=10, do.plot=TRUE, do.clear=TRUE, filename=NULL, title="Binned calibration plot", ...){
g <- floor(preds*bins)
b <- 0:(bins-1)
p <- sapply(b, function(x) if (length(acts[g==x])==0) -1 else sum(acts[g==x]) / length(acts[g==x]))
mx <- sapply(b, function(x,g) mean(preds[g==x]), g)
if(do.plot) {
if (!is.null(filename)) png(filename)
if (do.clear) {
plot(mx, p, xlim=c(0,1), ylim=c(0,1), ...)
} else {
points(mx, p, xlim=c(0,1), ylim=c(0,1), ...)
}
rug(preds[acts==0])
rug(preds[acts==1], col = "orange")
abline(0,1,lty="dashed")
title(title)
if (!is.null(filename)) dev.off()
}
return(p)
}
```
```{r calib_plot2 15.5}
Data<-EvalData[1:2000,]
#true probability of presence
RF<-Data$RF
FDA<-Data$FDA
BRT<-Data$BRT
AVER<-Data$AVER
# number of samples in data sets
ns <- 2000
# observed presence / absence, randomly drawn according to pt
oRF <- rbinom(ns, 1, RF)
oFDA <- rbinom(ns, 1, FDA)
oBRT <- rbinom(ns, 1, BRT)
oAVER <- rbinom(ns, 1, AVER)
par(oma = c(0, 5, 0, 0), mar = c(4, 4, 4, 1), mfrow = c(2, 4),
cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))
for (mod in 1:4) {
# binned calibration plot with equal width bins
ecalp(RF, oRF, title="(a) RF")
ecalp(FDA, oFDA, title="(b) FDA")
ecalp(BRT, oBRT, title="(c) BRT")
ecalp(AVER, oAVER, title="(d) AVER")
# presence-absence smoothed calibration plot
pacplot(RF, oRF, title="(e) RF")
pacplot(FDA, oFDA, title="(f) FDA")
pacplot(BRT, oBRT, title="(g) BRT")
pacplot(AVER, oAVER, title="(h) AVER")
}
```
### Measuring Discrimination and Selecting a Prediction Threshold
Contingency table for one model (AVER) and one threshold (0.5)
```{r conting_table}
table(EvalData$AVER>0.5,EvalData$ObsNum)
```
Example presence.absence.accuracy() - Showing one model (AVER), eleven thresholds
```{r accur_thresholds}
accu <- presence.absence.accuracy(EvalData,
which.model = 4,
threshold = 11,
st.dev = FALSE)
accu[, -c(1, 2)] <- signif(accu[, -c(1, 2)], digits = 2)
accu [c("threshold", "PCC", "sensitivity", "specificity", "Kappa")]
```
Effect of threshold choice in prevalence (11 thresholds)
```{r preval_thresh}
pred.prev <- predicted.prevalence(EvalData, threshold = 11)
pred.prev[, 2:6] <- round(pred.prev[, 2:6], digits = 2)
pred.prev
```
Meva.table for one model (AVER) and one threshold (0.6)
```{r meva_table}
meva <- ecospat.meva.table (EvalData$AVER, EvalData$ObsNum, 0.6)
meva
```
Calculate max.kappa with the function *ecospat.max.kappa()*
```{r kappa}
kappa100 <- ecospat.max.kappa(EvalData$AVER, EvalData$ObsNum)
kappa100 [[2]]
```
Plotting the Kappa and TSS for each model using the function *Find.Optim.Stat()* from the package biomod2
```{r kappa.tss 15.7}
n=100
dataToPlot <- as.data.frame(matrix(0, ncol=4, nrow=n*8, dimnames=list(NULL,c("Evaluation","Threshold","Metric","Model"))))
dataToPlot[,2] <- rep(seq(0,1,length.out = 100),8)
dataToPlot[,3] <- rep(c("TSS","KAPPA"),each=100, times=4)
dataToPlot[,4] <- c(rep("RF", 200), rep("FDA", 200),rep("BRT", 200),rep("AVER", 200))
wrapper <- function(x, stat, Fit, Obs){
return(Find.Optim.Stat(Stat=stat, Fit=Fit, Obs=Obs, Fixed.thresh = x)[1])
}
b=1
for(i in 3:6){
a <- EvalData[,i]
dataToPlot[b:(b+99),1] <- sapply(seq(0,1,length.out = 100), wrapper, stat='TSS', Fit=a, Obs=EvalData$ObsNum)
b <- b+100
dataToPlot[b:(b+99),1] <- sapply(seq(0,1,length.out = 100), wrapper, stat='KAPPA', Fit=a, Obs=EvalData$ObsNum)
b <- b+100
}
qplot(Threshold, Evaluation, data=dataToPlot, color=Model, facets=~Metric, geom = c("point","line"))
```
Plotting the error statistics as a function of threshold in four models
```{r error.threshold.plot 15.8}
data <- EvalData[1:6]
N.models <- ncol(data) - 2
par(oma=c(0,5,0,0), mar=c(4,4,4,1), mfrow=c(2,2), cex=0.7, cex.lab=1.4, mgp=c(2, 0.5,0))
for (mod in 1:N.models){
error.threshold.plot(data,
which.model = mod,
color = TRUE,
add.legend = TRUE,
legend.cex = 0.7)
}
```
ROC plot and AUC
```{r auc.roc.plot 15.9}
auc.roc.plot(data, color=T, legend.cex=1.4, main="")
```
Measuring calibration and discrimination with Point-biserial correlation (COR)
```{r COR_aver}
ObsNum <- EvalData[,2]
AVER<- EvalData[,6]
cor(AVER, ObsNum)
```
```{r COR_brt}
BRT<-EvalData[,5]
cor(BRT, ObsNum)
```
## Comparing Probabilistic Predictions to Presence- Only Observations
Calculate of AVI and CVI for BRT model
```{r AVI}
obs <- (EvalData$BRT * EvalData$ObsNum)
avi <- sum(obs > 0.5)/length(obs)
avi
```
```{r CVI}
avi0 <- sum(EvalData$ObsNum)/length(obs)
cvi <- avi0 - avi
cvi
```
Boyce index in the average model
```{r boyce.index 15.10}
obs <- (EvalData$AVER [which(EvalData$ObsNum==1)])
boyce<-ecospat.boyce (fit = EvalData$AVER , obs, nclass=0, window.w="default", res=100, PEplot=T)
boyce$Spearman.cor
```
POC (Presence-only calibration plots) by Phillips and Elith (2010)
```{r pocplot_fun}
#Load function pocplot()
calibplot <- function(pred, negrug, posrug, ideal, ylim=c(0,1), xlim=c(0,1), capuci=TRUE, xlabel = "Predicted probability of presence", filename=NULL, title="Calibration plot", ...) {
if (!is.null(filename)) png(filename)
ylow <- pred$y - 2 * pred$se
ylow[ylow<0] <- 0
yhigh <- pred$y + 2 * pred$se
if (capuci) yhigh[yhigh>1] <- 1
plot(pred$x, ylow, type="l", col="orange", ylim=ylim, xlim=xlim,
xlab=xlabel, lwd=2, ...)
lines(pred$x, yhigh, lwd=2, col="orange")
lines(pred$x, sapply(pred$x, ideal), lty="dashed")
points(pred$x, pred$y, col="deepskyblue")
rug(negrug)
rug(posrug, col = "orange")
title(title)
if (!is.null(filename)) dev.off()
}
smoothingdf <- 6
smoothdist <- function(pred, res) {
require(splines)
gam1 <- glm(res ~ ns(pred, df=smoothingdf), weights=rep(1, length(pred)), family=binomial)
x <- seq(min(pred), max(pred), length = 512)
y <- predict(gam1, newdata = data.frame(pred = x), se.fit = TRUE,
type = "response")
data.frame(x=x, y=y$fit, se=y$se.fit)
}
pocplot <- function(pred, back, linearize=TRUE, ...) {
ispresence <- c(rep(1,length(pred)), rep(0, length(back)))
predd <- smoothdist(c(pred,back), ispresence)
c <- mean(back)*length(back)/length(pred)
if (linearize) {
fun <- function(x,y) c*y / (1-y)
predd$y <- mapply(fun, predd$x, predd$y)
predd$se <- mapply(fun, predd$x, predd$se)
ideal <- function(x) x
ylab <- "Relative probability of presence"
}
else {
ideal <- function(x) x / (x + c)
ylab <- "Probability of presence"
}
calibplot(predd, negrug=back, posrug=pred, ideal=ideal, ylab=ylab,
capuci = FALSE, ...)
}
```
```{r poc.plot 15.11, message=FALSE}
pocplot(AVER[ObsNum==1], AVER, title="AVER")
```
## Chapter 16: Assessing Model Performance: Which Data to Use?
### Evaluation Using k- Fold Cross- Validation
To continue with the examples we are going to use a simplified and smaller version of the dataset *mammals_data.csv*, now called *s_mammals_data.csv*
```{r read_data3}
s_mammals_data <- read.csv("tabular/species/summary_mammals_and_bioclim.csv", row.names=1)
```
```{r cv_error}
set.seed(555)
cv.error.10=rep(0,10)
for (i in 1:10){
glm.fit=glm(VulpesVulpes~poly(bio3,i),data=s_mammals_data)
cv.error.10[i]=cv.glm(s_mammals_data,glm.fit,K=10)$delta[1]
}
cv.error.10
```
with *Daim* package
```{r data_prep}
vulpes_data<-s_mammals_data[c(9:13,8)]
vulpes_data$VulpesVulpes <- as.factor(vulpes_data$VulpesVulpes)
```
Evaluation of a randomForest model
```{r rf_model}
myRF <- function(formula, train, test){
model <- randomForest(formula, train)
predict(model,test,type="prob")[,"pos"]
}
```
Optimal cut point determination
```{r opt_cut-point}
set.seed(555)
vulpes_RF_cv <- Daim(formula=VulpesVulpes~., model=myRF, data=vulpes_data, labpos="1", control=Daim.control(method="cv", k=10, k.runs=10), cutoff="cv")
vulpes_RF_cv
summary(vulpes_RF_cv)
auc(vulpes_RF_cv)$auc.loob
auc(vulpes_RF_cv)$auc.samples
```
Plot a Daim object generated by the Daim function.
```{r cv.plot 16.5}
par(mfrow=c(1,2))
plot(vulpes_RF_cv, method="cv")
plot(vulpes_RF_cv, method="sample")
```
### Evaluation Using Leave- One- Out Cross- Validation (Jackknife)
LOO-CV on a glm
```{r glm_model1}
glm.fit=glm(VulpesVulpes~bio3+bio7+bio11+bio12,family="binomial",data=s_mammals_data)
coef(glm.fit)
```
```{r glm_model2}
glm.fit=glm(VulpesVulpes~bio3+bio7+bio11+bio12,family="binomial",data=s_mammals_data)
cv.err=cv.glm(s_mammals_data,glm.fit)
cv.err$delta
```
```{r cv_error1, warning=FALSE}
cv.error=rep(0,5)
for (i in 1:5){
glm.fit=glm(VulpesVulpes~poly(bio3,i),family="binomial",data=s_mammals_data)
cv.error[i]=cv.glm(s_mammals_data,glm.fit)$delta[1]
}
cv.error
```
### Evaluation Using Repeated Split Sample Cross- Validation
```{r samples}
set.seed(555)
train=sample(2488,1244)
```
```{r glm_model3}
attach(s_mammals_data)
glm.fit=glm(VulpesVulpes~bio3+bio7+bio11+bio12,family="binomial",data=s_mammals_data,subset=train)
```
```{r mean_mod}
mean((VulpesVulpes-predict(glm.fit,s_mammals_data))[-train]^2)
```
```{r glm_models}
glm.fit2=glm(VulpesVulpes~poly(bio3+bio7+bio11+bio12,2),family="binomial",data=s_mammals_data,subset=train)
mean((VulpesVulpes-predict(glm.fit2,s_mammals_data))[-train]^2)
glm.fit3=glm(VulpesVulpes~poly(bio3+bio7+bio11+bio12,3),family="binomial",data=s_mammals_data,subset=train)
mean((VulpesVulpes-predict(glm.fit3,s_mammals_data))[-train]^2)
```
### Evaluation by Bootstrap
```{r boot.fn1, warning=FALSE}
boot.fn=function(data,index)
return(coef(glm(VulpesVulpes~bio3+bio7+bio11+bio12,family="binomial",data=data,subset=index)))
boot.fn(s_mammals_data,1:2488)
```
```{r boot.fn2, warning=FALSE}
set.seed(555)
boot.fn(s_mammals_data,sample(2488,2488,replace=T))
boot.fn(s_mammals_data,sample(2488,2488,replace=T))
```
```{r boot.fn3}
boot(s_mammals_data,boot.fn,1000)
```
```{r summary_boot}
summary(glm(VulpesVulpes~bio3+bio7+bio11+bio12,family="binomial",data=s_mammals_data))$coef
```
```{r boot.fn4, warning=FALSE}
boot.fn=function(data,index)
coefficients(glm(VulpesVulpes~bio3+I(bio3^2),family="binomial",data=data,subset=index))
set.seed(555)
boot(s_mammals_data,boot.fn,1000)
summary(glm(VulpesVulpes~bio3+I(bio3^2),family="binomial", data=s_mammals_data))$coef
```
Daim bootstrap
```{r daim}
vulpes_RF <- Daim(formula=VulpesVulpes~., model=myRF, data=vulpes_data, labpos="1", control=Daim.control(number=50))
summary(vulpes_RF)
```
Plot a Daim object generated by the Daim function.
```{r daim 16.9}
par(mfrow=c(2,2))
plot(vulpes_RF, method="0.632+", legend=TRUE)
plot(vulpes_RF, method="sample")
plot(vulpes_RF, method="0.632+", main="Comparison between methods")
plot(vulpes_RF, method="0.632", col="blue", add=TRUE)
plot(vulpes_RF, method="loob", col="green", add=TRUE)
legend("bottomright", c("0.632+","0.632","loob"), col=c("red","blue","green"), lty=1, inset=0.01)
plot(vulpes_RF, all.roc=TRUE)
```
The optimal cut-point corresponding to 0.632+ estimation of the sensitivity and the specificity
```{r daim2}
set.seed(555)
vulpes_RF2 <- Daim(formula=VulpesVulpes~., model=myRF, data=vulpes_data, labpos="1", control=Daim.control(method="boot", number=100), cutoff="0.632+")
summary(vulpes_RF2)
```