forked from multizone-quant/System_trading_ex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharry_williams4.py
288 lines (236 loc) · 11.4 KB
/
arry_williams4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Larry Williams 변동성 돌파전략(4)
# refactoring
#
# 보다 자세한 내용을 아래 tistory 참고
# https://money-expert.tistory.com/36
# https://money-expert.tistory.com/38
import json
import csv
from datetime import datetime
import time
import pandas as pd
from plot import *
import matplotlib.pyplot as plt
from pandas_datareader import data as pdr
import plotly.offline as py_offline
import plotly.graph_objs as go
from my_util import *
from my_candle import *
from TR_LW_1 import *
def save_sim_result(fname, ticker, stat) :
file = open(fname, 'w')
file.write('total # trading : '+ str(stat.num_trading))
file.write('total profit : '+ format(stat.total_profit, ",.2f"))
file.write('trading fee : '+ format(stat.total_fee, ",.2f"))
file.write('total Net Profit : '+ format(stat.total_profit - stat.total_fee, ",.2f"))
file.write('# winning : '+ str(stat.num_winning))
file.write('# losing : '+ str(stat.num_losing))
file.write('MDD : '+ format(stat.mdd,'3.2f'))
file.write('max loss : '+ format(stat.max_loss, '10,.2f'))
file.write('max gain : '+ format(stat.max_gain, '10,.2f'))
file.close()
def print_sim_result(ticker, stat) :
print('ticker : ', ticker)
print('total # trading : ', stat.num_trading)
print('total profit : ', format(stat.total_profit, ",.2f"))
print('trading fee : ', format(stat.total_fee, ",.2f"))
print('total Net Profit : ', format(stat.total_profit - stat.total_fee, ",.2f"))
print('# winning : ', stat.num_winning)
print('# losing : ', stat.num_losing)
print('MDD : ', format(stat.mdd,'3.2f'))
print('max loss : ', format(stat.max_loss, '10,.2f'))
print('max gain : ', format(stat.max_gain, '10,.2f'))
def save_mid_values(candle_data, buy_price=0, sell_price=0, profit=0, total_profit=0, dd=0, trend=0, ma7=0) :
save_mid_values_buy_sell(candle_data, buy_price, sell_price)
save_mid_values_result(candle_data, profit, total_profit, dd)
save_mid_values_jipyo(candle_data, trend, ma7)
def save_mid_values_buy_sell(candle_data, buy_price, sell_price) :
candle_data['buy_price'] = buy_price # buy 여부 저장
candle_data['sell_price'] = sell_price # buy 여부 저장
def save_mid_values_result(candle_data, profit, total_profit, dd) :
candle_data['profit'] = profit # profit 저장
candle_data['total_profit'] = total_profit # total_profit 저장
candle_data['dd'] = dd # downd draw 저장
def save_mid_values_jipyo(candle_data, trend, ma7) :
candle_data['trend'] = trend # 추세값 저장
candle_data['ma7'] = ma7 # downd draw 저장
def handle_fee(balance, stat, num_buying, price, trading_fee) :
fee = num_buying * price * trading_fee
stat.total_fee += fee
balance -= fee
return balance
class sim_stat :
def __init__(self, init_seed) :
self.init_seed = init_seed
self.num_trading = 0
self.total_profit = 0
self.total_fee = 0
self.num_winning = 0
self.num_losing = 0
self.max_loss = 0
self.max_gain = -10000000
self.mdd = 0
def get_profit_percent(self) :
return self.total_profit / self.init_seed * 100
def update_stat(self, profit) :
self.total_profit += profit # 누적 수익
if profit > 0 :
self.num_winning += 1
else :
self.num_losing += 1
# 최대 손실, 최고 이익 값 update
if self.max_loss > profit:
self.max_loss = profit
if self.max_gain < profit :
self.max_gain = profit
# draw down 계산
dd = 100.0 * (self.max_gain - self.total_profit) / self.max_gain
if dd > self.mdd :
self.mdd = dd # mdd 계산
return dd
def save_ohlc(fname, candle_data) :
with open(fname,'w',encoding="cp949") as make_file:
pos = 0
ss = 'Date,Open,High,Low,Close\n'
make_file.write(ss)
for i in range(len(candle_data)-1,-1,-1) :# 내림차순으로 저장되어 있으므로 뒤에서 한개씩
dt = candle_data[i]['candleDateTimeKst'].split('+')
dttime = candle_data[i]['candleDateTimeKst'] # 일단 datetime 모두
if 0 : # only time
dtt = dt[0].split('T') # time만 저장하기
dttime = dtt[1]
if 0 : # only date
dtt = dt[0].split('T') # time만 저장하기
dttime = dtt[0]
ss = dttime + ',' + candle_data[i]['openingPrice'] + ',' + candle_data[i]['highPrice'] + ',' \
+ candle_data[i]['lowPrice'] + ',' + candle_data[i]['tradePrice'] + '\n'# close
make_file.write(ss)
make_file.close()
def draw_chart_plotly(candle_data, ticker, stat) :
fname = 'chart.csv'
save_ohlc(fname, candle_data)
data = pd.read_csv(fname)
# plotly를 이용하여 candelstkck에 text 출력하는 부분 설명한 글
# https://info.cloudquant.com/2019/08/candlestick_plotly/
annotations = []
for i in range(len(candle_data)-1, -1, -1) :#
if 'profit' not in candle_data[i] :
continue
text = 'L'
if candle_data[i]['profit'] > 0 : # profit 이면 P lost이면 L 출력
text = 'P'
if candle_data[i]['profit'] != 0 :
annotations.append(go.layout.Annotation(x=candle_data[i]['candleDateTimeKst'],
y=candle_data[i]['highPrice'],
xshift=1, # x 축 기준으로 오른쪽으로 x칸 이동
yshift=10, # y 축 기준으로 오른쪽으로 y칸 이동
showarrow=False,
text=text))
annotations.append(go.layout.Annotation(x=candle_data[i]['candleDateTimeKst'],
y=candle_data[i]['highPrice'],
xshift=1, # x 축 기준으로 오른쪽으로 x칸 이동
yshift=25, # y 축 기준으로 오른쪽으로 y칸 이동
showarrow=False,
text=candle_data[i]['trend']))
# annotations.append(go.layout.Annotation(x=candle_data[i]['candleDateTimeKst'],
# y=candle_data[i]['highPrice'],
# xshift=1, # x 축 기준으로 오른쪽으로 x칸 이동
# yshift=40, # y 축 기준으로 오른쪽으로 y칸 이동
# showarrow=False,
# text=candle_data[i]['ma7']))
# draw할 layout 생성
width = len(candle_data) * 15
layout = dict(
title=ticker+':: # tradings : ' + str(stat.num_trading) + ' profit : ' + format(stat.get_profit_percent(), '.2f') + '% mdd : ' + format(stat.mdd, '.2f'),
xaxis=go.layout.XAxis(title=go.layout.xaxis.Title( text="Time"), rangeslider=dict (visible = False)),
yaxis=go.layout.YAxis(title=go.layout.yaxis.Title( text="Price")),
width=width,
height=800,
annotations=annotations
)
data_candle = go.Candlestick(x=data.Date,open=data.Open,high=data.High,low=data.Low,close=data.Close)
data = [data_candle]
fig = go.Figure(data=data,layout=layout)
fig.show()
def simulation(ticker, sim_file, tr_login) :
# simulation 데이터를 읽는다.
candle_data = read_csv_to_dict(sim_file)
if candle_data == [] :
print('not exist ', sim_file)
return
# simulation 중 파일에 저장할 변수들 추가
save_mid_values(candle_data[0])
# 제일 마지막 일봉이 어제 candle
yest = candle_data[len(candle_data)-1]
# 가장 오래된 일봉 데이터로 candle을 만든다.
candle = Candle()
candle.new_candle(yest)
# 어제 일봉 setting
tr_logic.update_new_candle(candle)
deposit = 1000000 # 1회 최대 1백만원 매수
balance = deposit # 현재 잔고
bought = 0 # 매수 중인지 여부
trading_fee = 0.0005 # 매매 수수료
num_buying = 0 # 현재 매수 수량
stat = sim_stat(deposit) # 통계 변수용 class
for i in range(len(candle_data)-2,-1,-1) :# 내림차순으로 저장되어 있으므로 뒤에서 한개씩
data = candle_data[i]
#현재 simulation 데이터로 candle을 만든다.
candle = Candle()
candle.new_candle(data)
# simulation 중 파일에 저장할 변수들 추가
save_mid_values(data)
# 지표 관련 변수들
trend = 0
ma7 = 0
trend = tr_logic.get_trend()
ma7 = tr_logic.get_MA(7)
save_mid_values_jipyo(data, trend, ma7)
if bought : # exit 조건 확인
sell_price, losscut = tr_logic.is_exit_condition(candle)
if sell_price > 0 : # exit 조건
# 2. 일봉 종가에 판다고 가정
profit = (sell_price - buy_price) * num_buying
balance += profit
# 3. 매도 수수료
balance = handle_fee(balance, stat, num_buying, sell_price, trading_fee) # 매도 수수료
# 4. update statistics
dd = stat.update_stat(profit)
# 5. adding log
save_mid_values_buy_sell(data, losscut, sell_price) # tick과 같이 buy/sell 가격이 틀린 경우에는 buy_price에 1을 넣는다. 차후 excel에서 검증 편함
save_mid_values_result(data, profit, stat.total_profit, dd)
# 매도 완료
bought = 0
else :
buy_price = tr_logic.is_enter_condition(candle)
if buy_price > 0 : # 매수조건임
# 1. 매수 금액 결정, min(balance, deposit) 초기 deposit 금액 혹은 balance가 초기 deposit 이하이면 balance
buying_amount = min(balance, deposit)
num_buying = buying_amount / buy_price # 매수 주수
# 3. 수수료
balance = handle_fee(balance, stat, num_buying, buy_price, trading_fee) # 매수 수수료
# 4. update statistics
stat.num_trading += 1 # 매수한 주문 수
# 5. adding log
save_mid_values_buy_sell(data, buy_price, 0)
# 매수 중이라고 설정
bought = 1
fname = ticker + '-LW-result-all.csv'
save_to_file_csv(fname, candle_data)
# print simulation results
print_sim_result(ticker, stat)
# save simulation results
fname = ticker + '-LW-result-all.txt'
save_sim_result(fname, ticker, stat)
# draw chart
draw_chart_plotly(candle_data, ticker, stat)
print('exit')
if __name__ == '__main__':
# prepare back data
fname = '.\\sim_data\\BTC_day-2017-09-25-2020-11-12.csv'
ticker = 'KRW-BTC'
# Larry William 변동성 돌파, 일봉 사용
tr_logic = TR_LW_SIM('min', 1)
# tr_logic = TR_LW_TREND('min', 1)
simulation(ticker, fname, tr_logic)
print('')