-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathupdateB.m
70 lines (62 loc) · 2.15 KB
/
updateB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
%{
Description: Computes the optimal value of the bias field, within every iteration.
Inputs:
img : The corrupted image
mask: The background mask
u : The class memberships
c : The class means
q : The q-parameter as specified in the slides
w : The neighbourhood mask
Outputs:
b : The updated bias field
%}
function b = updateB(img, mask, c, u, q, w)
K = size(c, 1);
sum_num = zeros(size(img)); % \sum_{k=1}^K u_{jk}^q * c_k
sum_den = zeros(size(img)); % \sum_{k=1}^K u_{jk}^q * c_k^2
for k = 1:K
temp = (u(:,:,k).^q) .* c(k);
sum_num = sum_num + temp;
sum_den = sum_den + (temp .* c(k));
end
% Convolve with w
temp = img .* sum_num; % y_j * \sum_{k=1}^K u_{jk}^q * c_k
num = conv2(temp, w, "same");
den = conv2(sum_den, w, "same"); %
b = num ./ den;
b(isnan(b)) = 0; % Set NaN to 0 that arise due to 0/0 in the background
b = b .* mask;
end
%%% Much Slower, Equivalent Code (used for verifying the above function and understanding it) %%%
% % Very slow
% [R, C, K] = size(u);
% f = size(w, 1);
%
% % Iterate over all valid pixels
% b = zeros(R, C);
% for i = 1:R
% for j = 1:C
% if mask(i, j) == 1
%
% % fxf window centered at (i, j)
% yij = extractNeighbours(img, i, j, f);
%
% tij = zeros(f);
% tij_sq = zeros(f);
% for k = 1:K
% % fxf window centered at (i, j)
% uijk = extractNeighbours(u(:, :, k), i, j, f);
% tij = tij + (uijk .^ q) .* c(k);
% tij_sq = tij_sq + (uijk .^ q) .* (c(k)^2);
% end
%
% temp = (w .* yij) .* tij;
% b_num = sum(temp(:)); % Sum over all values in the fxf window
% temp = w .* tij_sq;
% b_den = sum(temp(:));
%
% b(i, j) = b_num/b_den;
%
% end
% end
% end