forked from TheAlgorithms/C-Sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDynamicProgrammingKnapsackSolver.cs
100 lines (93 loc) · 3.76 KB
/
DynamicProgrammingKnapsackSolver.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
using System;
using System.Collections.Generic;
namespace Algorithms.Knapsack;
/// <summary>
/// Dynamic Programming Knapsack solver.
/// </summary>
/// <typeparam name="T">Type of items in knapsack.</typeparam>
public class DynamicProgrammingKnapsackSolver<T>
{
/// <summary>
/// Returns the knapsack containing the items that
/// maximize value while not exceeding weight capacity.
/// </summary>
/// <param name="items">The list of items from which we select ones to be in the knapsack.</param>
/// <param name="capacity">
/// The maximum weight capacity of the knapsack
/// to be filled. Only integer values of this capacity are tried. If
/// a greater resolution is needed, multiply the
/// weights/capacity by a factor of 10.
/// </param>
/// <param name="weightSelector">
/// A function that returns the value of the specified item
/// from the <paramref name="items">items</paramref> list.
/// </param>
/// <param name="valueSelector">
/// A function that returns the weight of the specified item
/// from the <paramref name="items">items</paramref> list.
/// </param>
/// <returns>
/// The array of items that provides the maximum value of the
/// knapsack without exceeding the specified weight <paramref name="capacity">capacity</paramref>.
/// </returns>
public T[] Solve(T[] items, int capacity, Func<T, int> weightSelector, Func<T, double> valueSelector)
{
var cache = Tabulate(items, weightSelector, valueSelector, capacity);
return GetOptimalItems(items, weightSelector, cache, capacity);
}
private static T[] GetOptimalItems(T[] items, Func<T, int> weightSelector, double[,] cache, int capacity)
{
var currentCapacity = capacity;
var result = new List<T>();
for (var i = items.Length - 1; i >= 0; i--)
{
if (cache[i + 1, currentCapacity] > cache[i, currentCapacity])
{
var item = items[i];
result.Add(item);
currentCapacity -= weightSelector(item);
}
}
result.Reverse(); // we added items back to front
return result.ToArray();
}
private static double[,] Tabulate(
T[] items,
Func<T, int> weightSelector,
Func<T, double> valueSelector,
int maxCapacity)
{
// Store the incremental results in a bottom up manner
var n = items.Length;
var results = new double[n + 1, maxCapacity + 1];
for (var i = 0; i <= n; i++)
{
for (var w = 0; w <= maxCapacity; w++)
{
if (i == 0 || w == 0)
{
// If we have no items to take, or
// if we have no capacity in our knapsack
// we cannot possibly have any value
results[i, w] = 0;
}
else if (weightSelector(items[i - 1]) <= w)
{
// Decide if it is better to take or not take this item
var iut = items[i - 1]; // iut = Item under test
var vut = valueSelector(iut); // vut = Value of item under test
var wut = weightSelector(iut); // wut = Weight of item under test
var valueIfTaken = vut + results[i - 1, w - wut];
var valueIfNotTaken = results[i - 1, w];
results[i, w] = Math.Max(valueIfTaken, valueIfNotTaken);
}
else
{
// There is not enough room to take this item
results[i, w] = results[i - 1, w];
}
}
}
return results;
}
}