-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathinference.py
556 lines (471 loc) · 20.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import sys
import time
from datetime import date
import tempfile
import contextlib
import numpy as np
import torch
import torch.multiprocessing as mp
import pickle
import shutil
from fastfold.model.hub import AlphaFold
import fastfold
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
from fastfold.model.fastnn import set_chunk_size
from fastfold.model.nn.triangular_multiplicative_update import set_fused_triangle_multiplication
from fastfold.data import data_pipeline, feature_pipeline, templates
from fastfold.data.tools import hhsearch, hmmsearch
from fastfold.workflow.template import FastFoldDataWorkFlow, FastFoldMultimerDataWorkFlow
from fastfold.utils.inject_fastnn import inject_fastnn
from fastfold.data.parsers import parse_fasta
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map
if int(torch.__version__.split(".")[0]) >= 1 and int(torch.__version__.split(".")[1]) > 11:
torch.backends.cuda.matmul.allow_tf32 = True
def seed_torch(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms(True)
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
fasta_file.write(fasta_str)
fasta_file.seek(0)
yield fasta_file.name
def add_data_args(parser: argparse.ArgumentParser):
parser.add_argument(
'--uniref90_database_path',
type=str,
default=None,
)
parser.add_argument(
'--mgnify_database_path',
type=str,
default=None,
)
parser.add_argument(
'--pdb70_database_path',
type=str,
default=None,
)
parser.add_argument(
'--uniref30_database_path',
type=str,
default=None,
)
parser.add_argument(
'--bfd_database_path',
type=str,
default=None,
)
parser.add_argument(
"--pdb_seqres_database_path",
type=str,
default=None,
)
parser.add_argument(
"--uniprot_database_path",
type=str,
default=None,
)
parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
parser.add_argument(
'--max_template_date',
type=str,
default=date.today().strftime("%Y-%m-%d"),
)
parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
parser.add_argument('--release_dates_path', type=str, default=None)
parser.add_argument('--chunk_size', type=int, default=None)
parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
parser.add_argument('--inplace', default=False, action='store_true')
def inference_model(rank, world_size, result_q, batch, args):
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
# init distributed for Dynamic Axial Parallelism
fastfold.distributed.init_dap()
torch.cuda.set_device(rank)
config = model_config(args.model_name)
if args.chunk_size:
config.globals.chunk_size = args.chunk_size
if "v3" in args.param_path:
set_fused_triangle_multiplication()
config.globals.inplace = args.inplace
config.globals.is_multimer = args.model_preset == 'multimer'
model = AlphaFold(config)
import_jax_weights_(model, args.param_path, version=args.model_name)
model = inject_fastnn(model)
model = model.eval()
model = model.cuda()
set_chunk_size(model.globals.chunk_size)
with torch.no_grad():
batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
t = time.perf_counter()
out = model(batch)
print(f"Inference time: {time.perf_counter() - t}")
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
result_q.put(out)
torch.distributed.barrier()
torch.cuda.synchronize()
def main(args):
if args.model_preset == "multimer":
inference_multimer_model(args)
else:
inference_monomer_model(args)
def inference_multimer_model(args):
print("running in multimer mode...")
config = model_config(args.model_name)
predict_max_templates = 4
template_featurizer = templates.HmmsearchHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=predict_max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path,
)
if(not args.use_precomputed_alignments):
if args.enable_workflow:
print("Running alignment with ray workflow...")
alignment_runner = FastFoldMultimerDataWorkFlow(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hmmsearch_binary_path=args.hmmsearch_binary_path,
hmmbuild_binary_path=args.hmmbuild_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniref30_database_path=args.uniref30_database_path,
uniprot_database_path=args.uniprot_database_path,
pdb_seqres_database_path=args.pdb_seqres_database_path,
use_small_bfd=(args.bfd_database_path is None),
no_cpus=args.cpus
)
else:
alignment_runner = data_pipeline.AlignmentRunnerMultimer(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hmmsearch_binary_path=args.hmmsearch_binary_path,
hmmbuild_binary_path=args.hmmbuild_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniref30_database_path=args.uniref30_database_path,
uniprot_database_path=args.uniprot_database_path,
pdb_seqres_database_path=args.pdb_seqres_database_path,
use_small_bfd=(args.bfd_database_path is None),
no_cpus=args.cpus
)
else:
alignment_runner = None
monomer_data_processor = data_pipeline.DataPipeline(
template_featurizer=template_featurizer,
)
data_processor = data_pipeline.DataPipelineMultimer(
monomer_data_pipeline=monomer_data_processor,
)
output_dir_base = args.output_dir
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
# seed_torch(seed=1029)
feature_processor = feature_pipeline.FeaturePipeline(
config.data
)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
if(not args.use_precomputed_alignments):
alignment_dir = os.path.join(output_dir_base, "alignments")
else:
alignment_dir = args.use_precomputed_alignments
# Gather input sequences
fasta_path = args.fasta_path
with open(fasta_path, "r") as fp:
data = fp.read()
lines = [
l.replace('\n', '')
for prot in data.split('>') for l in prot.strip().split('\n', 1)
][1:]
tags, seqs = lines[::2], lines[1::2]
output_prefix = "_and_".join(tags)
for tag, seq in zip(tags, seqs):
local_alignment_dir = os.path.join(alignment_dir, tag)
if(args.use_precomputed_alignments is None):
if not os.path.exists(local_alignment_dir):
os.makedirs(local_alignment_dir)
else:
shutil.rmtree(local_alignment_dir)
os.makedirs(local_alignment_dir)
chain_fasta_str = f'>chain_{tag}\n{seq}\n'
with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
if args.enable_workflow:
print("Running alignment with ray workflow...")
t = time.perf_counter()
alignment_runner.run(chain_fasta_path, alignment_dir=local_alignment_dir)
print(f"Alignment data workflow time: {time.perf_counter() - t}")
else:
alignment_runner.run(chain_fasta_path, local_alignment_dir)
print(f"Finished running alignment for {tag}")
local_alignment_dir = alignment_dir
feature_dict = data_processor.process_fasta(
fasta_path=fasta_path, alignment_dir=local_alignment_dir
)
processed_feature_dict = feature_processor.process_features(
feature_dict, mode='predict', is_multimer=True,
)
batch = processed_feature_dict
manager = mp.Manager()
result_q = manager.Queue()
torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
out = result_q.get()
if args.save_prediction_result:
# Save the prediction result .pkl
prediction_result_path = os.path.join(args.output_dir,
f'{output_prefix}_{args.model_name}.pkl')
with open(prediction_result_path, 'wb') as f:
pickle.dump(out, f)
# Toss out the recycling dimensions --- we don't need them anymore
batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
unrelaxed_protein = protein.from_prediction(features=batch,
result=out,
b_factors=plddt_b_factors)
# Save the unrelaxed PDB.
unrelaxed_output_path = os.path.join(args.output_dir,
f'{output_prefix}_{args.model_name}_unrelaxed.pdb')
with open(unrelaxed_output_path, 'w') as f:
f.write(protein.to_pdb(unrelaxed_protein))
if(args.relaxation):
amber_relaxer = relax.AmberRelaxation(
use_gpu=True,
**config.relax,
)
# Relax the prediction.
t = time.perf_counter()
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
print(f"Relaxation time: {time.perf_counter() - t}")
# Save the relaxed PDB.
relaxed_output_path = os.path.join(args.output_dir,
f'{output_prefix}_{args.model_name}_relaxed.pdb')
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
def inference_monomer_model(args):
print("running in monomer mode...")
config = model_config(args.model_name)
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=config.data.predict.max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path
)
use_small_bfd = args.preset == 'reduced_dbs' # (args.bfd_database_path is None)
if use_small_bfd:
assert args.bfd_database_path is not None
else:
assert args.bfd_database_path is not None
assert args.uniref30_database_path is not None
data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)
output_dir_base = args.output_dir
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
# seed_torch(seed=1029)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
if (args.use_precomputed_alignments is None):
alignment_dir = os.path.join(output_dir_base, "alignments")
else:
alignment_dir = args.use_precomputed_alignments
# Gather input sequences
with open(args.fasta_path, "r") as fp:
fasta = fp.read()
seqs, tags = parse_fasta(fasta)
seq, tag = seqs[0], tags[0]
print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
batch = [None]
fasta_path = os.path.join(args.output_dir, "tmp.fasta")
with open(fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
print("Generating features...")
local_alignment_dir = os.path.join(alignment_dir, tag)
if (args.use_precomputed_alignments is None):
if not os.path.exists(local_alignment_dir):
os.makedirs(local_alignment_dir)
if args.enable_workflow:
print("Running alignment with ray workflow...")
alignment_data_workflow_runner = FastFoldDataWorkFlow(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniref30_database_path=args.uniref30_database_path,
pdb70_database_path=args.pdb70_database_path,
use_small_bfd=use_small_bfd,
no_cpus=args.cpus,
)
t = time.perf_counter()
alignment_data_workflow_runner.run(fasta_path, alignment_dir=local_alignment_dir)
print(f"Alignment data workflow time: {time.perf_counter() - t}")
else:
alignment_runner = data_pipeline.AlignmentRunner(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniref30_database_path=args.uniref30_database_path,
pdb70_database_path=args.pdb70_database_path,
use_small_bfd=use_small_bfd,
no_cpus=args.cpus,
)
alignment_runner.run(fasta_path, local_alignment_dir)
feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
alignment_dir=local_alignment_dir)
# Remove temporary FASTA file
os.remove(fasta_path)
processed_feature_dict = feature_processor.process_features(
feature_dict,
mode='predict',
)
batch = processed_feature_dict
manager = mp.Manager()
result_q = manager.Queue()
torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
out = result_q.get()
# Toss out the recycling dimensions --- we don't need them anymore
batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
unrelaxed_protein = protein.from_prediction(features=batch,
result=out,
b_factors=plddt_b_factors)
# Save the unrelaxed PDB.
unrelaxed_output_path = os.path.join(args.output_dir,
f'{tag}_{args.model_name}_unrelaxed.pdb')
with open(unrelaxed_output_path, 'w') as f:
f.write(protein.to_pdb(unrelaxed_protein))
if(args.relaxation):
amber_relaxer = relax.AmberRelaxation(
use_gpu=True,
**config.relax,
)
# Relax the prediction.
t = time.perf_counter()
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
print(f"Relaxation time: {time.perf_counter() - t}")
# Save the relaxed PDB.
relaxed_output_path = os.path.join(args.output_dir,
f'{tag}_{args.model_name}_relaxed.pdb')
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
if(args.save_prediction_result):
# Save the prediction result .pkl
prediction_result_path = os.path.join(
args.output_dir, f'{tag}_{args.model_name}.pkl'
)
with open(prediction_result_path, "wb") as fp:
pickle.dump(out, fp)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"fasta_path",
type=str,
)
parser.add_argument(
"template_mmcif_dir",
type=str,
)
parser.add_argument("--use_precomputed_alignments",
type=str,
default=None,
help="""Path to alignment directory. If provided, alignment computation
is skipped and database path arguments are ignored.""")
parser.add_argument(
"--output_dir",
type=str,
default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
)
parser.add_argument("--model_name",
type=str,
default="model_1",
help="""Name of a model config. Choose one of model_{1-5} or
model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
parser.add_argument("--param_path",
type=str,
default=None,
help="""Path to model parameters. If None, parameters are selected
automatically according to the model name from
./data/params""")
parser.add_argument(
"--relaxation", action="store_false", default=False,
)
parser.add_argument("--cpus",
type=int,
default=12,
help="""Number of CPUs with which to run alignment tools""")
parser.add_argument("--gpus",
type=int,
default=1,
help="""Number of GPUs with which to run inference""")
parser.add_argument('--preset',
type=str,
default='full_dbs',
choices=('reduced_dbs', 'full_dbs'))
parser.add_argument('--save_prediction_result',
type=bool,
default=True)
parser.add_argument('--data_random_seed', type=str, default=None)
parser.add_argument(
"--model_preset",
type=str,
default="monomer",
choices=["monomer", "multimer"],
help="Choose preset model configuration - the monomer model, the monomer model with "
"extra ensembling, monomer model with pTM head, or multimer model",
)
add_data_args(parser)
args = parser.parse_args()
if (args.param_path is None):
args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
main(args)