-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
53 lines (48 loc) · 1.94 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from peft import LoraConfig
from transformers import (
TrainingArguments
)
from trl import SFTTrainer
import wandb, os, re
from config import Config
from model_wrapper import ModelWrapper
from split_dataset import SplitDataset
class Trainer():
def __init__(self, model_wrapper: ModelWrapper, split_dataset: SplitDataset, config: Config):
self.config = config.config
self.parameter_map = config.get_parameter_map()
self.model_wrapper = model_wrapper
self.split_dataset = split_dataset
self.observe()
def observe(self):
kwargs = {}
if self.config.wandb_key:
kwargs['key'] = self.config.wandb_key
if self.config.wandb_url:
kwargs['host'] = self.config.wandb_url
if self.config.project_name:
os.environ["WANDB_PROJECT"] = self.config.project_name
else:
os.environ["WANDB_PROJECT"] = f"{re.compile('[^a-zA-Z0-9_]').sub('-', self.config.model)}-finetune"
wandb.login(**kwargs)
def train(self):
base_model = self.model_wrapper.get_model()
base_model.config.use_cache = False
base_model.config.pretraining_tp = 1
lora_config = LoraConfig(**self.parameter_map['qlora'])
training_args = TrainingArguments(**self.parameter_map['training'])
self.trainer = SFTTrainer(
**{
'model': self.model_wrapper.get_model(),
'train_dataset': self.split_dataset.get_training(),
'eval_dataset': self.split_dataset.get_eval(),
'peft_config': lora_config,
'dataset_text_field': "train_data",
'max_seq_length': self.config.max_data_length,
'tokenizer': self.model_wrapper.get_tokenizer(),
'args': training_args,
'packing': False
}
)
self.trainer.train()
self.trainer.model.save_pretrained(self.config.peft_folder)