-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkdtree.py
697 lines (584 loc) · 19.9 KB
/
kdtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# -*- coding: utf-8 -*-
"""Kdtree.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1iJ_mzsq0z_3coWmWdD8yOfrPED5uYT0n
#Library
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import nltk
import re
from numpy import random
import pprint
import queue as que
from queue import LifoQueue
import operator
import collections
import time
#reference kd-tree split value to github: https://github.com/HolyChen/KdTree/blob/master/kdtree.py
"""#Helper Function
* Euclide_Distance
* data_pre_balance
"""
def euclide_distance(a,b):
point1 = a
point2 = b
dist = 0.0
dist = pow(point1.x - point2.x,2) + pow(point1.y - point2.y,2) + pow(point1.z - point2.z,2)
dist = np.sqrt(dist)
return dist
def euclide_distance_split(a,b):
dist = 0.0
a = np.squeeze(a)
b = np.squeeze(b)
for i in range(len(a)):
dist += pow(a[i] - b[i],2)
dist = np.sqrt(dist)
return dist
#data_pre_balance for classic kdtree
def preprocess(points,level,begin,end):
if begin >= end:
return None
check = level % 3
if check == 0:
points[begin : end] = sorted(points[begin : end], key=operator.attrgetter('x'))
elif check == 1:
points[begin : end] = sorted(points[begin : end], key=operator.attrgetter('y'))
else:
points[begin : end] = sorted(points[begin : end], key=operator.attrgetter('z'))
mid = int((begin + end)/2)
preprocess(points,level + 1,begin,mid)
preprocess(points,level + 1,mid + 1,end)
"""#Kd Tree Definition (Classic)
* class Point definition
* class Node definition
* Helper FunctionRec for class Kd Tree
* class KdTree definition
class Point definition
"""
class Point:
def __init__(self,*args):
if len(args) == 0:
self.x = 0.0
self.y = 0.0
self.z = 0.0
elif len(args) == 1 and isinstance(args[0],Point):
self.x = args[0].x
self.y = args[0].y
self.z = args[0].z
else:
self.x = args[0]
self.y = args[1]
self.z = args[2]
def set_x(self,x):
self.x = x
def set_y(self,y):
self.y = y
def set_z(self,z):
self.z = z
"""class Node definition"""
class Node_normal:
def __init__(self,point):
self.data = point
self.left = None
self.right = None
"""Helper FunctionRec for class KdTree"""
#==============================================================================
def checkPoint(a,b):
if a.x != b.x:
return False
if a.y != b.y:
return False
if a.z != b.z:
return False
return True
#==============================================================================
#==============================================================================
def insertRec(root,data,level):
if root is None:
return Node_normal(data)
check = level % 3
root_cor = 0.0
data_cor = 0.0
#gen_data of root_cor and data_cor
if check == 0:
root_cor = root.data.x
data_cor = data.x
elif check == 1:
root_cor = root.data.y
data_cor = data.y
else:
root_cor = root.data.z
data_cor = data.z
if root_cor > data_cor:
root.left = insertRec(root.left,data,level + 1)
else:
root.right = insertRec(root.right,data,level + 1)
return root
#==============================================================================
#==============================================================================
def searchRec(root,point,level):
if root is None:
return None
check = level % 3
root_cor = 0.0
data_cor = 0.0
if checkPoint(root.data,point) is True:
return root
#gen_data of root_cor and data_cor
if check == 0:
root_cor = root.data.x
data_cor = point.x
elif check == 1:
root_cor = root.data.y
data_cor = point.y
else:
root_cor = root.data.z
data_cor = point.z
if root_cor > data_cor:
return searchRec(root.left,point,level + 1)
return searchRec(root.right,point,level + 1)
#==============================================================================
#==============================================================================
def minNode(root,left,right,level):
res = root
check = level % 3
if check == 0:
if left != None and left.data.x < res.data.x:
res = left
if right != None and right.data.x < res.data.x:
res = right
elif check == 1:
if left != None and left.data.y < res.data.y:
res = left
if right != None and right.data.y < res.data.y:
res = right
else:
if left != None and left.data.z < res.data.z:
res = left
if right != None and right.data.z < res.data.z:
res = right
return res
#==============================================================================
#==============================================================================
def maxNode(root,left,right,level):
res = root
check = level % 3
if check == 0:
if left != None and left.data.x > res.data.x:
res = left
if right != None and right.data.x > res.data.x:
res = right
elif check == 1:
if left != None and left.data.y > res.data.y:
res = left
if right != None and right.data.y > res.data.y:
res = right
else:
if left != None and left.data.z > res.data.z:
res = left
if right != None and right.data.z > res.data.z:
res = right
return res
#==============================================================================
#==============================================================================
#min point of level d:
def findMinRec(root,d,level):
if root is None:
return None
check = level % 3
if check == d:
if root.left == None:
return root
return findMinRec(root.left,d,level + 1)
return minNode(root,findMinRec(root.left,d,level + 1),findMinRec(root.right,d,level + 1),d)
#==============================================================================
#==============================================================================
#min point of level d:
def findMaxRec(root,d,level):
if root is None:
return None
check = level % 3
if check == d:
if root.right == None:
return root
return findMaxRec(root.right,d,level + 1)
return maxNode(root,findMaxRec(root.left,d,level + 1),findMaxRec(root.right,d,level + 1),d)
#==============================================================================
#==============================================================================
#bugs
def deleteRec(root,point,level):
if root == None:
return None
check = level % 3
#if current_node is point
if checkPoint(root.data,point) is True:
if root.right != None:
min = findMinRec(root.right,check,level + 1)
#copy point
root.data.x = min.data.x
root.data.y = min.data.y
root.data.z = min.data.z
root.right = deleteRec(root.right,min.data,level + 1)
elif root.left != None:
min = findMaxRec(root.left,check,level + 1)
#copy point
root.data.x = min.data.x
root.data.y = min.data.y
root.data.z = min.data.z
root.right = deleteRec(root.left,min.data,level + 1)
root.left = None
else: #leaf node
root = None
return root
#not contain point
root_cor = 0.0
data_cor = 0.0
if check == 0:
root_cor = root.data.x
data_cor = point.x
elif check == 1:
root_cor = root.data.y
data_cor = point.y
else:
root_cor = root.data.z
data_cor = point.z
if root_cor > data_cor:
root.left = deleteRec(root.left,point,level + 1)
else:
root.right = deleteRec(root.right,point,level + 1)
return root
#==============================================================================
#==============================================================================
def print2DUtil(root,space = 0) -> None:
if root is None:
return None
space += 10
if root.right is not None:
print2DUtil(root.right,space)
print("\n{}{},{},{}\n".format(' '*(space - 10),root.data.x,root.data.y,root.data.z))
if root.left is not None:
print2DUtil(root.left,space)
#==============================================================================
#==============================================================================
def clearRec(root) -> None:
if root is None:
return
clearRec(root.left)
clearRec(root.right)
del root
#==============================================================================
#==============================================================================
def findNNRec(root,query_point,best_node,best_distance,depth):
if not root:
return best_distance
dist = euclide_distance(root.data,query_point)
if dist < best_distance:
best_node.append(root)
best_distance = dist
check = depth % 3
root_cor = 0.0
data_cor = 0.0
if check == 0:
root_cor = root.data.x
data_cor = query_point.x
elif check == 1:
root_cor = root.data.y
data_cor = query_point.y
else:
root_cor = root.data.z
data_cor = query_point.z
if data_cor < root_cor:
good_side = root.left
bad_side = root.right
else:
good_side = root.right
bad_side = root.left
best_distance = findNNRec(good_side,query_point,best_node,best_distance,depth + 1)
if abs(root_cor - data_cor) < best_distance:
best_distance = findNNRec(bad_side,query_point,best_node,best_distance,depth + 1)
return best_distance
#==============================================================================
"""class KdTree Definition"""
class KdTree:
method = None
def __init__(self):
self.root = None
self.size = 0
def __del__(self):
self.clear()
def clear(self):
clearRec(self.root)
self.root = None
self.size = 0
def insert(self,data):
self.root = insertRec(self.root,data,0)
self.size += 1
def search(self,point):
node = searchRec(self.root,point,0)
if node is None:
return -1
return node.data
def findMin(self,d):
return findMinRec(self.root,d,0)
def delete(self,point):
if self.search(point) == None:
print("no element in Kd tree")
else:
self.root = deleteRec(self.root,point,0)
self.size -= 1
def buildKdTree(self,points):
for point in points:
self.insert(point)
def buildKdTree_pre(self,points,begin,end):
if begin >= end:
return None
mid = int((begin + end)/2)
self.insert(points[mid])
self.buildKdTree_pre(points,begin,mid)
self.buildKdTree_pre(points,mid + 1,end)
def findkNN(self,query_point,k):
stack = []
findNNRec(self.root,query_point,stack,np.infty,0)
for i in range(k):
if len(stack) >= 1:
point = stack.pop().data
print("point{}: {},{},{} with euclide_distance: {}\n".format(i + 1,point.x,point.y,point.z,euclide_distance(query_point,point)))
def getSize(self):
return self.size
def getRoot(self):
return self.root
def printTree(self):
print2DUtil(self.root)
def setMethod(self,method):
self.method = method
"""#Kd Tree Definition (Split Value)
* class Node definition
* class KdTree-Split
class Node definition
"""
class Node:
data = None #leaf_node <=> list else None
median = None #median of the data in the node
left = None #left_child_node
right = None #right_child_node
parent = None #parent: parent_node
split = -1 #choose dimension to split
def __init__(self, data = None, split = 0, median = None, left = None, right = None, parent = None):
self.data = data
self.split = split
self.left = left
self.right = right
self.parrent = parent
self.median = median
"""class KdTree-split"""
class KdTree_split:
min_split = 1 #min_split: a leaf node contains no more than `min_split` data
method = None
def __init__(self, all_data, dimension, min_split = 1):
self.min_split = min_split
self.dimension = dimension
self.size = len(all_data)
self.root = self.buildKdTree(all_data)
def buildKdTree(self,all_data):
if len(all_data) == 0:
return None
if len(all_data) <= self.min_split:
return Node(all_data,0,all_data[0],None,None)
#dimension of variable
split_value = self.get_variance_dimension(all_data)
left_data,median,right_data = self.split(all_data,split_value)
node = Node([],split_value,median,self.buildKdTree(left_data),self.buildKdTree(right_data))
if node.left is None:
node.left.parent = node
if node.right is None:
node.right.parent = node
return node
def get_variance_dimension(self,all_data):
means = [0.0] * self.dimension
vars = [0.0] * self.dimension
for data in all_data:
for i in range(self.dimension):
means[i] += data[i]
means = [mean / len(all_data) for mean in means]
for data in all_data:
for i in range(self.dimension):
vars[i] += (data[i] - means[i])**2
max_var = -1
value = -1
for i,var in enumerate(vars):
if var > max_var:
max_var = var
value = i
return value
def split(self,all_data,dim):
length = len(all_data)
#k is number of element in partial data
def min_k(data,begin,end,k):
#partition in quicksort
pivot = data[begin]
left = begin
right = end
while left < right:
while left < right and data[right][dim] > pivot[dim]:
right -= 1
while left < right and data[left][dim] < pivot[dim]:
left += 1
if left >= right:
break
data[right],data[left] = data[left],data[right]
data[left] = pivot
return
if left - begin + 1 <= k:
return
elif left - begin + 1 < k:
#choose last k - (left - begin + 1) element from partial data: left + 1 -> end
return min_k(data,left + 1,end,k - (left - begin + 1))
else:
#choose k element from data with slice index form begin -> left -1
return min_k(data,begin,left - 1,k)
mid = int(length/2)
min_k(all_data,0,length - 1,mid)
return all_data[0 : mid],all_data[mid - 1],all_data[mid:]
def findkNN(self,data,k = 1):
best_distance = np.inf
dq = collections.deque()
def find(root):
nonlocal best_distance
nonlocal dq
if self.size == 0:
return None
if root.left is None and root.right is None: #leaf node
dist = euclide_distance_split(root.data,data)
if dist <= best_distance:
dq.append(root)
best_distance = dist
if len(dq) == k:
dq.popleft()
else:
if data[root.split] <= root.median[root.split]:
good_side = root.left
bad_side = root.right
else:
good_side = root.right
bad_side = root.left
find(good_side)
if abs(data[root.split] - root.median[root.split]) <= best_distance:
find(bad_side)
find(self.root)
res = []
for i in range(len(dq)):
node_temp = dq.pop()
res.append(node_temp)
print("point{}: {} with euclide distance: {}".format(i + 1,np.squeeze(node_temp.data),euclide_distance_split(node_temp.data,data)))
def search(self,data):
self.findkNN(data)
def getSize(self):
return self.size
def getRoot(self):
return self.root
def clear(self):
def clearRec(root):
if root is None:
return
clearRec(root.left)
clearRec(root.right)
del root
root = None
clearRec(self.root)
self.root = None
self.size = 0
def setMethod(self,method):
self.method = method
"""#Data
* genData
* readData and convert Data
"""
#genData 3D-Data
def gen_data(n,filename):
f = open(filename,"w")
f.write("{} \n".format(n))
for i in range(0,n):
l_gen = []
for j in range(0,3):
g = round(random.uniform(0,100),3)
l_gen.append(g)
if i != n - 1:
f.write("{} {} {}".format(l_gen[0],l_gen[1],l_gen[2]))
f.write('\n')
else:
f.write("{} {} {}".format(l_gen[0],l_gen[1],l_gen[2]))
f.close()
def readData(filename,method = "classic"):
points = []
with open(filename,'r',encoding='UTF-8') as f:
n = int(f.readline())
for i in range(n):
line = f.readline()
lst = re.split("\s+",line)
if len(lst) >= 4:
lst = lst[:-1]
if method == "classic" or method == "re_balance":
point = Point()
point.set_x(round(float(lst[0]),3))
point.set_y(round(float(lst[1]),3))
point.set_z(round(float(lst[2]),3))
else:
point = [round(float(x),3) for x in lst]
points.append(point)
return points
"""#Main
**BUILD MODEL**
* build_method: gen_model with method and data
* 3 - method:
* classic
* re_balance(preprocess data for balance tree)
* flip
**METHOD OF MODEL:**
* search
* findkNN
* getSize
* printTree (don't implement with split Kd-tree)
"""
#build_method
def build_method(filename,method = "classic"):
points = readData(filename,method)
if method == "re_balance":
preprocess(points,0,0,len(points))
model = KdTree()
model.buildKdTree_pre(points,0,len(points))
elif method == "classic":
model = KdTree()
model.buildKdTree(points)
else:
model = KdTree_split(points,3)
model.setMethod(method)
return model,points
def search(query_point,model):
method = model.method
if method == "split":
model.search(query_point)
else:
point_temp = model.search(query_point)
if point_temp != -1:
print("{},{},{}\n".format(point_temp.x,point_temp.y,point_temp.z))
def gen_query_point(method):
l_gen = []
for j in range(0,3):
g = round(random.uniform(0,100),3)
l_gen.append(g)
if method == "classic" or method == "re_balance":
point = Point()
point.set_x(round(float(l_gen[0]),3))
point.set_y(round(float(l_gen[1]),3))
point.set_z(round(float(l_gen[2]),3))
else:
point = [round(float(x),3) for x in l_gen]
return point
# filename = "a.txt"
# model,points = build_method(filename,"split")
# # search(points[0],model)
# point = gen_query_point("split")
# model.findkNN(point,3)