This repository has been archived by the owner on Jun 23, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkg-dog-breed.py
139 lines (107 loc) · 4.44 KB
/
kg-dog-breed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from sklearn.datasets import load_files
from keras import applications
from keras.utils import np_utils
from keras.layers import Dropout, Flatten, Dense, BatchNormalization
from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
from keras.preprocessing import image
from tqdm import tqdm
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import pandas as pd
import numpy as np
import glob
import os
train_dir = 'data_gen/train'
val_dir = 'data_gen/validation'
test_dir = 'data/test'
def path_to_tensor(img_path):
# loads RGB image as PIL.Image.Image type
img = image.load_img(img_path, target_size=(224, 224))
# convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
x = image.img_to_array(img)
# convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor
return np.expand_dims(x, axis=0)
def paths_to_tensor(img_paths):
list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]
return np.vstack(list_of_tensors)
def generate_bottleneck_features():
model = applications.ResNet50(include_top=False, weights='imagenet')
train_files = load_files(train_dir)
train_tensors = paths_to_tensor(train_files['filenames'])
train_data = applications.resnet50.preprocess_input(train_tensors)
bottleneck_features_train = model.predict(
train_data, batch_size=16)
np.save('bottleneck_features/train.npy', bottleneck_features_train)
val_files = load_files(val_dir)
val_tensors = paths_to_tensor(val_files['filenames'])
val_data = applications.resnet50.preprocess_input(val_tensors)
bottleneck_features_validation = model.predict(
val_data, batch_size=16)
np.save('bottleneck_features/validation.npy', bottleneck_features_validation)
def generate_bottleneck_features_test():
# build the network
model = applications.ResNet50(include_top=False, weights='imagenet')
files = glob.glob('data/test/*.jpg')
tensors = paths_to_tensor(files)
data = applications.resnet50.preprocess_input(tensors)
bottleneck_features = model.predict(
data, batch_size=16)
np.save('bottleneck_features/test.npy', bottleneck_features)
def load_labels(path):
data = load_files(path)
labels = np_utils.to_categorical(np.array(data['target']), 120)
return labels
def extract_Resnet50(tensor):
return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
## Create bottleneck features
#generate_bottleneck_features()
## Load bottleneck features
print('Loading training bottleneck features')
train_data = np.load('bottleneck_features/train.npy')
train_labels = load_labels('data_gen/train')
print('Loading validation bottleneck features')
validation_data = np.load('bottleneck_features/validation.npy')
validation_labels = load_labels('data_gen/validation')
## Model definition
print('Defining model')
model = Sequential()
model.add(Flatten(input_shape = train_data.shape[1:]))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(120, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
## Training
checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.hdf5',
verbose=2, save_best_only=True)
epochs = 40
batch_size = 64
history = model.fit(train_data, train_labels,
validation_data=(validation_data, validation_labels),
epochs=epochs, batch_size=batch_size,
callbacks=[checkpointer], verbose=2)
## Testing
model.load_weights('saved_models/weights.best.hdf5')
train_labels = np.array(pd.read_csv('data/labels.csv'))
classes, counts = np.unique(train_labels[:, 1], return_counts=True)
f = open('results.csv', 'w')
f.write('id')
for c in classes:
f.write(',' + c)
f.write('\n')
#generate_bottleneck_features_test()
test = np.load('bottleneck_features/test.npy')
output = model.predict(test)
filenames = os.listdir('data/test')
for [o, name] in zip(output, filenames):
f.write(name[:-4] + ',')
o.tofile(f, sep=',', format='%.17f')
f.write('\n')
f.close()