forked from albertwcheng/albert-bioinformatics-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTMMNormalization.py
executable file
·151 lines (106 loc) · 3.09 KB
/
TMMNormalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
'''
Copyright 2010 Wu Albert Cheng <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''
from math import *
from sys import *
from albertcommon import *
def mean(L):
return float(sum(L))/len(L)
def log2(x):
return log(x,2)
def TMMnormalizationFactor(obs,ref,logratioTrim=0.3,sumTrim=0.05,doWeighting=True,Acutoff=-1e10):
if obs==ref:
return 1
nO=sum(obs)
nR=sum(ref)
logR=[]
absE=[]
v=[]
for o,r in zip(obs,ref):
if o==0 or r==0:
continue
if o=="nan" or r=="nan":
continue
oden=float(o)/nO
rden=float(r)/nR
try:
lo=log2(oden)
lr=log2(rden)
except:
continue
thisAbsE=(lo+lr)/2
thisLogR=(lo-lr)
if thisAbsE<=Acutoff:
continue
logR.append(thisLogR)
absE.append(thisAbsE)
v.append(float(nO-o)/nO/o + float(nR-r)/nR/r)
#finished adding valid logR (M) and absE (A) and v (wrgk)
#now trim values
logRUpper=percentileOfList(1-logratioTrim,logR)
logRLower=percentileOfList(logratioTrim,logR)
absEUpper=percentileOfList(1-sumTrim,absE)
absELower=percentileOfList(sumTrim,absE)
newLogR=[]
newAbsE=[]
newV=[]
if doWeighting:
Top=[]
Bottom=[]
for thisLogR,thisAbsE,thisV in zip(logR,absE,v):
if thisLogR>=logRUpper or thisLogR<=logRLower:
continue
if thisAbsE>=absEUpper or thisAbsE<=absELower:
continue
newLogR.append(thisLogR)
newAbsE.append(thisAbsE)
newV.append(thisV)
if doWeighting:
Top.append(float(thisLogR)/thisV)
Bottom.append(float(1)/thisV)
#now replace
logR=newLogR
absE=newAbsE
v=newV
#now compute the normalization factor
if doWeighting:
logTMM=sum(Top)/sum(Bottom)
return pow(2,logTMM)
else:
return pow(2,fpomean(logR))
def printUsageAndExit(programName):
print >> stderr,programName,"matrixFile"
exit()
if __name__=="__main__":
programName=argv[0]
try:
filename,=argv[1:]
except:
printUsageAndExit(programName)
obs=[]
ref=[]
fil=open(filename)
for lin in fil:
lin=lin.rstrip()
fields=lin.split("\t")
ref.append(float(fields[1]))
obs.append(float(fields[2]))
fil.close()
factor=TMMnormalizationFactor(obs,ref)
print >> stderr,"TMM factor:",factor