From 15da47788db29ea4fb99ecb0864bc6d954cb9e3d Mon Sep 17 00:00:00 2001 From: hivaze Date: Thu, 6 Apr 2023 02:59:13 +0000 Subject: [PATCH] Experiments and modeling updates --- ctc_training.ipynb | 1289 ++++++++++++ .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 180 -- .../experiment_info.json | 174 -- .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 404 ++-- .../experiment_info.json | 174 -- .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 114 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin .../experiment_info.json | 214 ++ .../tokenizer.pickle | Bin 0 -> 1090 bytes .../experiment_info.json | 46 - .../experiment_info.json | 414 ---- .../experiment_info.json | 414 ---- modeling/base.py | 121 ++ modeling/encoders/cnn_bilstm.py | 173 +- modeling/encoders/cnn_transformer.py | 54 +- modeling/encoders/resnet_bilstm.py | 37 + modeling/encoders/vit_bilstm.py | 4 +- training.ipynb | 1724 ----------------- trocr_seq2seq_playground.ipynb | 93 +- 29 files changed, 3093 insertions(+), 3606 deletions(-) create mode 100644 ctc_training.ipynb create mode 100644 experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/experiment_info.json rename experiments/{cnn_v2_128_64seq_alstm_2h_2l_100e => cnn_v2_128_64seq_alstm_1h_2l_100e}/tokenizer.pickle (100%) delete mode 100644 experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/experiment_info.json delete mode 100644 experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/experiment_info.json create mode 100644 experiments/cnn_v2_128_64seq_bert_4h_3l_100e/experiment_info.json rename experiments/{cnn_v2_128_64seq_alstm_2h_2l_80e => cnn_v2_128_64seq_bert_4h_3l_100e}/tokenizer.pickle (100%) delete mode 100644 experiments/cnn_v2_128_64seq_lstm_2l_80e/experiment_info.json create mode 100644 experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/experiment_info.json rename experiments/{cnn_v2_128_64seq_lstm_2l_80e => cnn_v2_128_64seq_lstma_2h_2l_100e}/tokenizer.pickle (100%) create mode 100644 experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/experiment_info.json rename experiments/{vit_128_512_6l_2h_65seq_lstm_2l_100e => cnn_v2_128_64seq_lstma_2h_2l_150e}/tokenizer.pickle (100%) create mode 100644 experiments/resnet18_128_lstm_2l_100e/experiment_info.json rename experiments/{vit_128_512_6l_2h_65seq_lstm_2l_200e => resnet18_128_lstm_2l_100e}/tokenizer.pickle (100%) create mode 100644 experiments/resnet34_128_lstm_2l_100e/experiment_info.json rename experiments/{vit_128_512_6l_2h_65seq_lstm_2l_400e => resnet34_128_lstm_2l_100e}/tokenizer.pickle (100%) create mode 100644 experiments/resnet50_256_lstm_2l_100e/experiment_info.json create mode 100644 experiments/resnet50_256_lstm_2l_100e/tokenizer.pickle delete mode 100644 experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/experiment_info.json delete mode 100644 experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/experiment_info.json delete mode 100644 experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/experiment_info.json create mode 100644 modeling/base.py create mode 100644 modeling/encoders/resnet_bilstm.py delete mode 100644 training.ipynb diff --git a/ctc_training.ipynb b/ctc_training.ipynb new file mode 100644 index 0000000..87923c9 --- /dev/null +++ b/ctc_training.ipynb @@ -0,0 +1,1289 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:36:53.558316Z", + "start_time": "2023-04-05T17:36:51.025306Z" + } + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as opt\n", + "from datasets import load_metric\n", + "from torch.utils.data import DataLoader, random_split\n", + "from tqdm.notebook import tqdm\n", + "import torchinfo\n", + "\n", + "from utils import OCRTokenizer, OCRDataset, collate_batch, save_experiment_info" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:36:53.599566Z", + "start_time": "2023-04-05T17:36:53.597295Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'cuda:0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n", + "device" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tokenizer & Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:36:53.614838Z", + "start_time": "2023-04-05T17:36:53.600753Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[(' ', 10061), ('8', 3028), ('S', 3012), ('b', 3006), ('V', 2992)]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokenizer = OCRTokenizer('./synthetic_dataset/train/labels.txt')\n", + "tokenizer.counter.most_common(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:37:09.784982Z", + "start_time": "2023-04-05T17:37:09.768545Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(20000, 1500, 5000, 5000)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_dataset = OCRDataset('./synthetic_dataset/train/', tokenizer, do_train_transform=True, image_size=(64, 256)) # need quadratic images for vit, 64 h for others\n", + "val_dataset = OCRDataset('./synthetic_dataset/val/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", + "test_dataset = OCRDataset('./synthetic_dataset/test_clean/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", + "test_captchas_dataset = OCRDataset('./synthetic_dataset/test_captchas/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", + "len(train_dataset), len(val_dataset), len(test_dataset), len(test_captchas_dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:37:10.359740Z", + "start_time": "2023-04-05T17:37:10.193226Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAEpCAYAAAAtX3BPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0kUlEQVR4nO3deVxU9f4/8NeAMCwyg6gwkAiIJeJCSYmTiRuXUcklNSVNsVzSQHNJ0Xu7uN3CXPJmubSKlZZ6c0kpFUW0FFExUlG5aij61QGXmEGURfj8/ujHuY6scwRZej0fj3nkOedzPuf9mTPTvDhzzhmFEEKAiIiIyEwWtV0AERER1U8MEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEfSXNWbMGHh6etZ2GXVCTEwMFAoFLl26VNulVOjSpUtQKBRYunRptfZb1vh79OiBHj16VOt2yqNQKDBv3jxpet68eVAoFLh58+Zj2b6npyfGjBnzWLZFDQtDBNU5CoWiSo+EhITaLtXEmTNnMG/evMfyQfzee+9h27ZtNb6d2vLjjz+afKjWF4cPH8a8efOQnZ1d26WUUpdro/qrUW0XQPSwr7/+2mT6q6++QlxcXKn5bdu2faTtfPbZZyguLn6kPh505swZzJ8/Hz169KjxIxzvvfcehg4dikGDBtXodmrLjz/+iJUrV9ZqkNizZ4/Z6xw+fBjz58/HmDFj4OjoWOX17t27h0aNavZ/xxXVlpaWBgsL/k1J5mOIoDrn1VdfNZk+cuQI4uLiSs1/2N27d2FnZ1fl7VhZWcmqj/4arK2ta7T/4uJiFBQUwMbGBjY2NjW6rcoolcpa3T7VX4yeVC/16NED7du3R3JyMgIDA2FnZ4e///3vAIDt27cjJCQEbm5uUCqV8Pb2xsKFC1FUVGTSx8PnRDz4ffunn34Kb29vKJVKPPfcczh27FiF9cTExODll18GAPTs2bPMr1x++ukndOvWDfb29nBwcEBISAhSU1Ol5fHx8bCwsEBUVJRJ3xs2bIBCocDq1asB/Pl1T25uLtatWydtp+T77JycHEydOhWenp5QKpVwdnbG3/72N5w4ccKs57eqNQN/Po+NGzfG//3f/2HQoEFo3LgxmjdvjrfffrvUc37r1i2MGjUKKpUKjo6OCAsLw2+//QaFQoGYmBipv5UrV0pjLXk8zNx9VCI1NRW9evWCra0tWrRogX/9619lHpEq65yIjz76CO3atYOdnR2aNGmCZ599Fhs2bADw53kMM2fOBAB4eXlJdZd8vaVQKBAREYH169ejXbt2UCqV2LVrl7SsrKMuN2/exLBhw6BSqdC0aVO89dZbyMvLk5aXvGZLnrsHPdhnZbWVdU7E77//jpdffhlOTk6ws7NDly5dEBsba9ImISEBCoUCmzZtwrvvvosWLVrAxsYGvXv3xoULF0rVRA0Pj0RQvXXr1i307dsXoaGhePXVV+Hi4gLgzw/0xo0bY/r06WjcuDHi4+MRFRUFo9GIJUuWVNrvhg0bkJOTgzfeeAMKhQKLFy/G4MGD8fvvv5d79CIwMBBTpkzBihUr8Pe//136qqXkv19//TXCwsKg0+nw/vvv4+7du1i9ejVeeOEF/Prrr/D09ESvXr3w5ptvIjo6GoMGDUKnTp1w/fp1TJ48GUFBQZg4caLU17hx49C5c2dMmDABAODt7Q0AmDhxIv7zn/8gIiICvr6+uHXrFn755RecPXsWnTp1Muv5rUrNJYqKiqDT6RAQEIClS5di7969WLZsGby9vTFp0iQAf/7l3b9/fxw9ehSTJk2Cj48Ptm/fjrCwMJPtvvHGG7h27VqZX2E9yj4CAL1ej549e+L+/fuYPXs27O3t8emnn8LW1rbS5+Ozzz7DlClTMHToUOnD/OTJk0hKSsKIESMwePBg/Pe//8W3336L5cuXo1mzZgCA5s2bS33Ex8dj06ZNiIiIQLNmzSr92mvYsGHw9PREdHQ0jhw5ghUrVuCPP/7AV199VWm9D6pKbQ/KzMzE888/j7t372LKlClo2rQp1q1bhwEDBuA///kPXnrpJZP2ixYtgoWFBd5++20YDAYsXrwYI0eORFJSkll1Uj0kiOq48PBw8fBLtXv37gKAWLNmTan2d+/eLTXvjTfeEHZ2diIvL0+aFxYWJjw8PKTp9PR0AUA0bdpU3L59W5q/fft2AUDs2LGjwjo3b94sAIj9+/ebzM/JyRGOjo5i/PjxJvP1er1Qq9Um83Nzc0Xr1q1Fu3btRF5enggJCREqlUpcvnzZZF17e3sRFhZWqga1Wi3Cw8MrrLMsa9euFQBEenq62TWHhYUJAGLBggUmbZ955hnh7+8vTX///fcCgPj3v/8tzSsqKhK9evUSAMTatWul+WXtcyEefR9NnTpVABBJSUnSvKysLKFWq03GL8Sfr7Hu3btL0wMHDhTt2rWrsP8lS5aU6qcEAGFhYSFSU1PLXDZ37lxpeu7cuQKAGDBggEm7N998UwAQv/32mxDif8/Hg89deX1WVJuHh4fJ66nkefr555+leTk5OcLLy0t4enqKoqIiIYQQ+/fvFwBE27ZtRX5+vtT2ww8/FADEqVOnSm2LGhZ+nUH1llKpxGuvvVZq/oN/Vebk5ODmzZvo1q0b7t69i3PnzlXa7/Dhw9GkSRNpulu3bgD+PLwrR1xcHLKzs/HKK6/g5s2b0sPS0hIBAQHYv3+/1NbOzg4xMTE4e/YsAgMDERsbi+XLl6Nly5ZV2pajoyOSkpJw7do1WbXKqblEyZGSEt26dTN5znbt2gUrKyuMHz9emmdhYYHw8HCz65O7j3788Ud06dIFnTt3luY1b94cI0eOrHSbjo6OuHr1apW/NilL9+7d4evrW+X2Dz83kydPBvDnOGrSjz/+iM6dO+OFF16Q5jVu3BgTJkzApUuXcObMGZP2r732msk5JI/6nqH6g19nUL31xBNPlHnyW2pqKt555x3Ex8fDaDSaLDMYDJX2+/AHdsmH1R9//CGrzvPnzwMAevXqVeZylUplMt21a1dMmjQJK1euhE6nw+uvv17lbS1evBhhYWFwd3eHv78/+vXrh9GjR6NVq1Y1WrONjU2pQ+NNmjQxec4uX74MV1fXUie/tm7d2qzaAPn76PLlywgICCg1v02bNpVuMzIyEnv37kXnzp3RunVrBAcHY8SIEejatWuV6/by8qpyWwB48sknTaa9vb1hYWFR45cRl/c8lXw9d/nyZbRv316aX93vGao/GCKo3irre+zs7Gx0794dKpUKCxYsgLe3N2xsbHDixAlERkZW6ZJOS0vLMucLIWTVWbLNr7/+GhqNptTyhy/ty8/Pl07IvHjxollXnQwbNgzdunXD1q1bsWfPHixZsgTvv/8+tmzZgr59+9ZYzeU9ZzWluvdRVbRt2xZpaWnYuXMndu3ahe+//x6rVq1CVFQU5s+fX6U+qnLuRUUePsG0rBNOAZQ6obWm1cb+oLqBIYIalISEBNy6dQtbtmxBYGCgND89Pb3Gt13e/9BLTnp0dnZGUFBQpf3MnTsXZ8+exdKlSxEZGYnZs2djxYoVVdoWALi6uuLNN9/Em2++iaysLHTq1AnvvvuuWSHC3JqrwsPDA/v37y8Viso6i7+i8T1qDSVHWR6UlpZWpfXt7e0xfPhwDB8+HAUFBRg8eDDeffddzJkzBzY2NtVe9/nz502OXly4cAHFxcXSCZklf/E/fAOpy5cvl+rLnNo8PDzKfE5Kvg708PCocl/UsPGcCGpQSv4ievAvoIKCAqxatarGt21vbw+g9P/QdTodVCoV3nvvPRQWFpZa78aNG9K/k5KSsHTpUkydOhUzZszAzJkz8fHHH+PAgQOltvXwdoqKikp9XePs7Aw3Nzfk5+ebNRZzajanz8LCQnz22WfSvOLiYulyzgeV91w+qn79+uHIkSM4evSoNO/GjRtYv359peveunXLZNra2hq+vr4QQkjPUXXX/fBz89FHHwGAFAhVKhWaNWuGgwcPmrQr6/VuTm39+vXD0aNHkZiYKM3Lzc3Fp59+Ck9PT7PO66CGjUciqEF5/vnn0aRJE4SFhWHKlClQKBT4+uuvH8th1aeffhqWlpZ4//33YTAYoFQq0atXLzg7O2P16tUYNWoUOnXqhNDQUDRv3hwZGRmIjY1F165d8fHHHyMvLw9hYWF48skn8e677wIA5s+fjx07duC1117DqVOnpA8Cf39/7N27Fx988AHc3Nzg5eWFNm3aoEWLFhg6dCj8/PzQuHFj7N27F8eOHcOyZcvMGotKpapSzeYYNGgQOnfujBkzZuDChQvw8fHBDz/8gNu3bwMw/UvZ398fADBlyhTodDpYWloiNDTUrO2VZdasWfj666/Rp08fvPXWW9Ilnh4eHjh58mSF6wYHB0Oj0aBr165wcXHB2bNn8fHHHyMkJAQODg4mdf/jH/9AaGgorKys0L9/f2m/mSs9PR0DBgxAnz59kJiYiG+++QYjRoyAn5+f1GbcuHFYtGgRxo0bh2effRYHDx7Ef//731J9mVPb7Nmz8e2336Jv376YMmUKnJycsG7dOqSnp+P777/n3S3pf2rz0hCiqijvEs/yLrc7dOiQ6NKli7C1tRVubm5i1qxZYvfu3aUuvyzvEs8lS5aU6hMPXS5Xns8++0y0atVKWFpaltre/v37hU6nE2q1WtjY2Ahvb28xZswYcfz4cSGEENOmTROWlpYmlx8KIcTx48dFo0aNxKRJk6R5586dE4GBgcLW1lYAEGFhYSI/P1/MnDlT+Pn5CQcHB2Fvby/8/PzEqlWrKq374Us8q1qzEH8+j/b29qX6LLlM8UE3btwQI0aMEA4ODkKtVosxY8aIQ4cOCQDiu+++k9rdv39fTJ48WTRv3lwoFAqpn+rYRydPnhTdu3cXNjY24oknnhALFy4UX3zxRaWXeH7yySciMDBQNG3aVCiVSuHt7S1mzpwpDAaDSf8LFy4UTzzxhLCwsDDpE0C5l98+XHvJc3fmzBkxdOhQ4eDgIJo0aSIiIiLEvXv3TNa9e/euGDt2rFCr1cLBwUEMGzZMZGVllfl8lFfbw5d4CiHExYsXxdChQ4Wjo6OwsbERnTt3Fjt37jRpU3KJ5+bNm03mV3TpKTUsCiF45gsR1Z5t27bhpZdewi+//GLWlQ5EVPsYIojosbl3757JFQpFRUUIDg7G8ePHodfrH/nqBSJ6vHhOBBE9NpMnT8a9e/eg1WqRn5+PLVu24PDhw3jvvfcYIIjqIR6JIKLHZsOGDVi2bBkuXLiAvLw8tG7dGpMmTUJERERtl0ZEMjBEEBERkSy8ToeIiIhkYYggIiIiWRrsiZXFxcW4du0aHBwcauwWukRERA2REAI5OTlwc3Or8OZiDTZEXLt2De7u7rVdBhERUb115coVtGjRotzlDTZElNyG9sqVK6V+tpiIiIjKZzQa4e7uLn2WlqfBhoiSrzBUKhVDBBERkQyVnQ7AEyuJiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGuzNpoiqm+fs2NouoUouLQqp7RKI6C+CRyKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGQxK0SsXr0aHTt2hEqlgkqlglarxU8//SQtz8vLQ3h4OJo2bYrGjRtjyJAhyMzMNOkjIyMDISEhsLOzg7OzM2bOnIn79++btElISECnTp2gVCrRunVrxMTEyB8hERER1QizQkSLFi2waNEiJCcn4/jx4+jVqxcGDhyI1NRUAMC0adOwY8cObN68GQcOHMC1a9cwePBgaf2ioiKEhISgoKAAhw8fxrp16xATE4OoqCipTXp6OkJCQtCzZ0+kpKRg6tSpGDduHHbv3l1NQyYiIqLqoBBCiEfpwMnJCUuWLMHQoUPRvHlzbNiwAUOHDgUAnDt3Dm3btkViYiK6dOmCn376CS+++CKuXbsGFxcXAMCaNWsQGRmJGzduwNraGpGRkYiNjcXp06elbYSGhiI7Oxu7du2qcl1GoxFqtRoGgwEqlepRhkgEAPCcHVvbJVTJpUUhtV0CEdVzVf0MlX1ORFFREb777jvk5uZCq9UiOTkZhYWFCAoKktr4+PigZcuWSExMBAAkJiaiQ4cOUoAAAJ1OB6PRKB3NSExMNOmjpE1JH+XJz8+H0Wg0eRAREVHNMTtEnDp1Co0bN4ZSqcTEiROxdetW+Pr6Qq/Xw9raGo6OjibtXVxcoNfrAQB6vd4kQJQsL1lWURuj0Yh79+6VW1d0dDTUarX0cHd3N3doREREZAazQ0SbNm2QkpKCpKQkTJo0CWFhYThz5kxN1GaWOXPmwGAwSI8rV67UdklEREQNWiNzV7C2tkbr1q0BAP7+/jh27Bg+/PBDDB8+HAUFBcjOzjY5GpGZmQmNRgMA0Gg0OHr0qEl/JVdvPNjm4Ss6MjMzoVKpYGtrW25dSqUSSqXS3OEQERGRTI98n4ji4mLk5+fD398fVlZW2Ldvn7QsLS0NGRkZ0Gq1AACtVotTp04hKytLahMXFweVSgVfX1+pzYN9lLQp6YOIiIjqBrOORMyZMwd9+/ZFy5YtkZOTgw0bNiAhIQG7d++GWq3G2LFjMX36dDg5OUGlUmHy5MnQarXo0qULACA4OBi+vr4YNWoUFi9eDL1ej3feeQfh4eHSUYSJEyfi448/xqxZs/D6668jPj4emzZtQmxs/TgznoiI6K/CrBCRlZWF0aNH4/r161Cr1ejYsSN2796Nv/3tbwCA5cuXw8LCAkOGDEF+fj50Oh1WrVolrW9paYmdO3di0qRJ0Gq1sLe3R1hYGBYsWCC18fLyQmxsLKZNm4YPP/wQLVq0wOeffw6dTldNQyYiIqLq8Mj3iaireJ8Iqm68TwQR/VXU+H0iiIiI6K+NIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkMfu210TVrb5cOklERKZ4JIKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWfhT4EQNTH35afVLi0JquwQiekRmHYmIjo7Gc889BwcHBzg7O2PQoEFIS0szadOjRw8oFAqTx8SJE03aZGRkICQkBHZ2dnB2dsbMmTNx//59kzYJCQno1KkTlEolWrdujZiYGHkjJCIiohphVog4cOAAwsPDceTIEcTFxaGwsBDBwcHIzc01aTd+/Hhcv35deixevFhaVlRUhJCQEBQUFODw4cNYt24dYmJiEBUVJbVJT09HSEgIevbsiZSUFEydOhXjxo3D7t27H3G4REREVF3M+jpj165dJtMxMTFwdnZGcnIyAgMDpfl2dnbQaDRl9rFnzx6cOXMGe/fuhYuLC55++mksXLgQkZGRmDdvHqytrbFmzRp4eXlh2bJlAIC2bdvil19+wfLly6HT6cwdIxEREdWARzqx0mAwAACcnJxM5q9fvx7NmjVD+/btMWfOHNy9e1dalpiYiA4dOsDFxUWap9PpYDQakZqaKrUJCgoy6VOn0yExMfFRyiUiIqJqJPvEyuLiYkydOhVdu3ZF+/btpfkjRoyAh4cH3NzccPLkSURGRiItLQ1btmwBAOj1epMAAUCa1uv1FbYxGo24d+8ebG1tS9WTn5+P/Px8adpoNModGhEREVWB7BARHh6O06dP45dffjGZP2HCBOnfHTp0gKurK3r37o2LFy/C29tbfqWViI6Oxvz582usfyIiIjIl6+uMiIgI7Ny5E/v370eLFi0qbBsQEAAAuHDhAgBAo9EgMzPTpE3JdMl5FOW1UalUZR6FAIA5c+bAYDBIjytXrpg/MCIiIqoys0KEEAIRERHYunUr4uPj4eXlVek6KSkpAABXV1cAgFarxalTp5CVlSW1iYuLg0qlgq+vr9Rm3759Jv3ExcVBq9WWux2lUgmVSmXyICIioppjVogIDw/HN998gw0bNsDBwQF6vR56vR737t0DAFy8eBELFy5EcnIyLl26hB9++AGjR49GYGAgOnbsCAAIDg6Gr68vRo0ahd9++w27d+/GO++8g/DwcCiVSgDAxIkT8fvvv2PWrFk4d+4cVq1ahU2bNmHatGnVPHwiIiKSy6wQsXr1ahgMBvTo0QOurq7SY+PGjQAAa2tr7N27F8HBwfDx8cGMGTMwZMgQ7NixQ+rD0tISO3fuhKWlJbRaLV599VWMHj0aCxYskNp4eXkhNjYWcXFx8PPzw7Jly/D555/z8k4iIqI6RCGEELVdRE0wGo1Qq9UwGAz8aqOOqy+3aabqxdteE9VdVf0M5W9nNFD8YCYioprGX/EkIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWXjHSjPxTpBERER/4pEIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoV3rCSiWlGf7v56aVFIbZdAVCfxSAQRERHJYlaIiI6OxnPPPQcHBwc4Oztj0KBBSEtLM2mTl5eH8PBwNG3aFI0bN8aQIUOQmZlp0iYjIwMhISGws7ODs7MzZs6cifv375u0SUhIQKdOnaBUKtG6dWvExMTIGyERERHVCLNCxIEDBxAeHo4jR44gLi4OhYWFCA4ORm5urtRm2rRp2LFjBzZv3owDBw7g2rVrGDx4sLS8qKgIISEhKCgowOHDh7Fu3TrExMQgKipKapOeno6QkBD07NkTKSkpmDp1KsaNG4fdu3dXw5CJiIioOiiEEELuyjdu3ICzszMOHDiAwMBAGAwGNG/eHBs2bMDQoUMBAOfOnUPbtm2RmJiILl264KeffsKLL76Ia9euwcXFBQCwZs0aREZG4saNG7C2tkZkZCRiY2Nx+vRpaVuhoaHIzs7Grl27qlSb0WiEWq2GwWCASqWSO8RS6tP3uERUPXhOBP3VVPUz9JHOiTAYDAAAJycnAEBycjIKCwsRFBQktfHx8UHLli2RmJgIAEhMTESHDh2kAAEAOp0ORqMRqampUpsH+yhpU9IHERER1T7ZV2cUFxdj6tSp6Nq1K9q3bw8A0Ov1sLa2hqOjo0lbFxcX6PV6qc2DAaJkecmyitoYjUbcu3cPtra2perJz89Hfn6+NG00GuUOjYiIiKpA9pGI8PBwnD59Gt9991111iNbdHQ01Gq19HB3d6/tkoiIiBo0WSEiIiICO3fuxP79+9GiRQtpvkajQUFBAbKzs03aZ2ZmQqPRSG0evlqjZLqyNiqVqsyjEAAwZ84cGAwG6XHlyhU5QyMiIqIqMitECCEQERGBrVu3Ij4+Hl5eXibL/f39YWVlhX379knz0tLSkJGRAa1WCwDQarU4deoUsrKypDZxcXFQqVTw9fWV2jzYR0mbkj7KolQqoVKpTB5ERERUc8w6JyI8PBwbNmzA9u3b4eDgIJ3DoFarYWtrC7VajbFjx2L69OlwcnKCSqXC5MmTodVq0aVLFwBAcHAwfH19MWrUKCxevBh6vR7vvPMOwsPDoVQqAQATJ07Exx9/jFmzZuH1119HfHw8Nm3ahNhYXhlBRERUV5h1JGL16tUwGAzo0aMHXF1dpcfGjRulNsuXL8eLL76IIUOGIDAwEBqNBlu2bJGWW1paYufOnbC0tIRWq8Wrr76K0aNHY8GCBVIbLy8vxMbGIi4uDn5+fli2bBk+//xz6HS6ahgyERERVYdHuk9EXcb7RBBRdeF9Iuiv5rHcJ4KIiIj+uvgrnkRElagvRyB5xIQeNx6JICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlnMDhEHDx5E//794ebmBoVCgW3btpksHzNmDBQKhcmjT58+Jm1u376NkSNHQqVSwdHREWPHjsWdO3dM2pw8eRLdunWDjY0N3N3dsXjxYvNHR0RERDXG7BCRm5sLPz8/rFy5stw2ffr0wfXr16XHt99+a7J85MiRSE1NRVxcHHbu3ImDBw9iwoQJ0nKj0Yjg4GB4eHggOTkZS5Yswbx58/Dpp5+aWy4RERHVkEbmrtC3b1/07du3wjZKpRIajabMZWfPnsWuXbtw7NgxPPvsswCAjz76CP369cPSpUvh5uaG9evXo6CgAF9++SWsra3Rrl07pKSk4IMPPjAJG0RERFR7auSciISEBDg7O6NNmzaYNGkSbt26JS1LTEyEo6OjFCAAICgoCBYWFkhKSpLaBAYGwtraWmqj0+mQlpaGP/74o8xt5ufnw2g0mjyIiIio5lR7iOjTpw+++uor7Nu3D++//z4OHDiAvn37oqioCACg1+vh7Oxssk6jRo3g5OQEvV4vtXFxcTFpUzJd0uZh0dHRUKvV0sPd3b26h0ZEREQPMPvrjMqEhoZK/+7QoQM6duwIb29vJCQkoHfv3tW9OcmcOXMwffp0adpoNDJIEBER1aAav8SzVatWaNasGS5cuAAA0Gg0yMrKMmlz//593L59WzqPQqPRIDMz06RNyXR551oolUqoVCqTBxEREdWcGg8RV69exa1bt+Dq6goA0Gq1yM7ORnJystQmPj4excXFCAgIkNocPHgQhYWFUpu4uDi0adMGTZo0qemSiYiIqArMDhF37txBSkoKUlJSAADp6elISUlBRkYG7ty5g5kzZ+LIkSO4dOkS9u3bh4EDB6J169bQ6XQAgLZt26JPnz4YP348jh49ikOHDiEiIgKhoaFwc3MDAIwYMQLW1tYYO3YsUlNTsXHjRnz44YcmX1cQERFR7TI7RBw/fhzPPPMMnnnmGQDA9OnT8cwzzyAqKgqWlpY4efIkBgwYgKeeegpjx46Fv78/fv75ZyiVSqmP9evXw8fHB71790a/fv3wwgsvmNwDQq1WY8+ePUhPT4e/vz9mzJiBqKgoXt5JRERUhyiEEKK2i6gJRqMRarUaBoOhWs+P8JwdW219ERFVp0uLQmq7BGogqvoZyt/OICIiIlkYIoiIiEgWhggiIiKSpdpvNkVERLWjvpyzxXM3Gg4eiSAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFrNDxMGDB9G/f3+4ublBoVBg27ZtJsuFEIiKioKrqytsbW0RFBSE8+fPm7S5ffs2Ro4cCZVKBUdHR4wdOxZ37twxaXPy5El069YNNjY2cHd3x+LFi80fHREREdUYs0NEbm4u/Pz8sHLlyjKXL168GCtWrMCaNWuQlJQEe3t76HQ65OXlSW1GjhyJ1NRUxMXFYefOnTh48CAmTJggLTcajQgODoaHhweSk5OxZMkSzJs3D59++qmMIRIREVFNUAghhOyVFQps3boVgwYNAvDnUQg3NzfMmDEDb7/9NgDAYDDAxcUFMTExCA0NxdmzZ+Hr64tjx47h2WefBQDs2rUL/fr1w9WrV+Hm5obVq1fjH//4B/R6PaytrQEAs2fPxrZt23Du3Lkq1WY0GqFWq2EwGKBSqeQOsRTP2bHV1hcR0V/RpUUhtV0CVaKqn6HVek5Eeno69Ho9goKCpHlqtRoBAQFITEwEACQmJsLR0VEKEAAQFBQECwsLJCUlSW0CAwOlAAEAOp0OaWlp+OOPP6qzZCIiIpKpUXV2ptfrAQAuLi4m811cXKRler0ezs7OpkU0agQnJyeTNl5eXqX6KFnWpEmTUtvOz89Hfn6+NG00Gh9xNERERFSRBnN1RnR0NNRqtfRwd3ev7ZKIiIgatGoNERqNBgCQmZlpMj8zM1NaptFokJWVZbL8/v37uH37tkmbsvp4cBsPmzNnDgwGg/S4cuXKow+IiIiIylWtIcLLywsajQb79u2T5hmNRiQlJUGr1QIAtFotsrOzkZycLLWJj49HcXExAgICpDYHDx5EYWGh1CYuLg5t2rQp86sMAFAqlVCpVCYPIiIiqjlmh4g7d+4gJSUFKSkpAP48mTIlJQUZGRlQKBSYOnUq/vWvf+GHH37AqVOnMHr0aLi5uUlXcLRt2xZ9+vTB+PHjcfToURw6dAgREREIDQ2Fm5sbAGDEiBGwtrbG2LFjkZqaio0bN+LDDz/E9OnTq23gRERE9GjMPrHy+PHj6NmzpzRd8sEeFhaGmJgYzJo1C7m5uZgwYQKys7PxwgsvYNeuXbCxsZHWWb9+PSIiItC7d29YWFhgyJAhWLFihbRcrVZjz549CA8Ph7+/P5o1a4aoqCiTe0kQERFR7Xqk+0TUZbxPBBFR3cT7RNR9Vf0MrdZLPImIiCpTX/4YY9ipXIO5xJOIiIgeL4YIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIlmoPEfPmzYNCoTB5+Pj4SMvz8vIQHh6Opk2bonHjxhgyZAgyMzNN+sjIyEBISAjs7Ozg7OyMmTNn4v79+9VdKhERET2CRjXRabt27bB3797/baTR/zYzbdo0xMbGYvPmzVCr1YiIiMDgwYNx6NAhAEBRURFCQkKg0Whw+PBhXL9+HaNHj4aVlRXee++9miiXiIiIZKiRENGoUSNoNJpS8w0GA7744gts2LABvXr1AgCsXbsWbdu2xZEjR9ClSxfs2bMHZ86cwd69e+Hi4oKnn34aCxcuRGRkJObNmwdra+uaKJmIiIjMVCPnRJw/fx5ubm5o1aoVRo4ciYyMDABAcnIyCgsLERQUJLX18fFBy5YtkZiYCABITExEhw4d4OLiIrXR6XQwGo1ITU2tiXKJiIhIhmo/EhEQEICYmBi0adMG169fx/z589GtWzecPn0aer0e1tbWcHR0NFnHxcUFer0eAKDX600CRMnykmXlyc/PR35+vjRtNBqraURERERUlmoPEX379pX+3bFjRwQEBMDDwwObNm2Cra1tdW9OEh0djfnz59dY/0RERGSqxi/xdHR0xFNPPYULFy5Ao9GgoKAA2dnZJm0yMzOlcyg0Gk2pqzVKpss6z6LEnDlzYDAYpMeVK1eqdyBERERkosZDxJ07d3Dx4kW4urrC398fVlZW2Ldvn7Q8LS0NGRkZ0Gq1AACtVotTp04hKytLahMXFweVSgVfX99yt6NUKqFSqUweREREVHOq/euMt99+G/3794eHhweuXbuGuXPnwtLSEq+88grUajXGjh2L6dOnw8nJCSqVCpMnT4ZWq0WXLl0AAMHBwfD19cWoUaOwePFi6PV6vPPOOwgPD4dSqazucomIiEimag8RV69exSuvvIJbt26hefPmeOGFF3DkyBE0b94cALB8+XJYWFhgyJAhyM/Ph06nw6pVq6T1LS0tsXPnTkyaNAlarRb29vYICwvDggULqrtUIiIiegQKIYSo7SJqgtFohFqthsFgqNavNjxnx1ZbX0REVHddWhRS2yXUmqp+hvK3M4iIiEiWGrljJRERUX1Xn44819ZREx6JICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlnqdIhYuXIlPD09YWNjg4CAABw9erS2SyIiIqL/r86GiI0bN2L69OmYO3cuTpw4AT8/P+h0OmRlZdV2aURERIQ6HCI++OADjB8/Hq+99hp8fX2xZs0a2NnZ4csvv6zt0oiIiAhAo9ouoCwFBQVITk7GnDlzpHkWFhYICgpCYmJimevk5+cjPz9fmjYYDAAAo9FYrbUV59+t1v6IiIgeVXV/1pX0J4SosF2dDBE3b95EUVERXFxcTOa7uLjg3LlzZa4THR2N+fPnl5rv7u5eIzUSERHVFep/10y/OTk5UKvV5S6vkyFCjjlz5mD69OnSdHFxMW7fvo2mTZtCoVA89nqMRiPc3d1x5coVqFSqx779mtaQx9eQxwZwfPVZQx4b0LDHV9/GJoRATk4O3NzcKmxXJ0NEs2bNYGlpiczMTJP5mZmZ0Gg0Za6jVCqhVCpN5jk6OtZUiVWmUqnqxQtGroY8voY8NoDjq88a8tiAhj2++jS2io5AlKiTJ1ZaW1vD398f+/btk+YVFxdj37590Gq1tVgZERERlaiTRyIAYPr06QgLC8Ozzz6Lzp0749///jdyc3Px2muv1XZpREREhDocIoYPH44bN24gKioKer0eTz/9NHbt2lXqZMu6SqlUYu7cuaW+YmkoGvL4GvLYAI6vPmvIYwMa9vga6tgUorLrN4iIiIjKUCfPiSAiIqK6jyGCiIiIZGGIICIiIlkYIoiIiEgWhggZoqOj8dxzz8HBwQHOzs4YNGgQ0tLSKlwnJiYGCoXC5GFjY/OYKjbPvHnzStXq4+NT4TqbN2+Gj48PbGxs0KFDB/z444+PqVrzeXp6lhqfQqFAeHh4me3r8r47ePAg+vfvDzc3NygUCmzbts1kuRACUVFRcHV1ha2tLYKCgnD+/PlK+125ciU8PT1hY2ODgIAAHD16tIZGULGKxldYWIjIyEh06NAB9vb2cHNzw+jRo3Ht2rUK+5Tz+q4Jle27MWPGlKqzT58+lfZbH/YdgDLfgwqFAkuWLCm3z7qy76ryGZCXl4fw8HA0bdoUjRs3xpAhQ0rdQPFhct+vtYkhQoYDBw4gPDwcR44cQVxcHAoLCxEcHIzc3NwK11OpVLh+/br0uHz58mOq2Hzt2rUzqfWXX34pt+3hw4fxyiuvYOzYsfj1118xaNAgDBo0CKdPn36MFVfdsWPHTMYWFxcHAHj55ZfLXaeu7rvc3Fz4+flh5cqVZS5fvHgxVqxYgTVr1iApKQn29vbQ6XTIy8srt8+NGzdi+vTpmDt3Lk6cOAE/Pz/odDpkZWXV1DDKVdH47t69ixMnTuCf//wnTpw4gS1btiAtLQ0DBgyotF9zXt81pbJ9BwB9+vQxqfPbb7+tsM/6su8AmIzr+vXr+PLLL6FQKDBkyJAK+60L+64qnwHTpk3Djh07sHnzZhw4cADXrl3D4MGDK+xXzvu11gl6ZFlZWQKAOHDgQLlt1q5dK9Rq9eMr6hHMnTtX+Pn5Vbn9sGHDREhIiMm8gIAA8cYbb1RzZTXjrbfeEt7e3qK4uLjM5fVl3wEQW7dulaaLi4uFRqMRS5YskeZlZ2cLpVIpvv3223L76dy5swgPD5emi4qKhJubm4iOjq6Ruqvq4fGV5ejRowKAuHz5crltzH19Pw5ljS0sLEwMHDjQrH7q874bOHCg6NWrV4Vt6uK+E6L0Z0B2drawsrISmzdvltqcPXtWABCJiYll9iH3/VrbeCSiGpT87LiTk1OF7e7cuQMPDw+4u7tj4MCBSE1NfRzlyXL+/Hm4ubmhVatWGDlyJDIyMsptm5iYiKCgIJN5Op2u3J9tr0sKCgrwzTff4PXXX6/wh9rq074rkZ6eDr1eb7Jv1Go1AgICyt03BQUFSE5ONlnHwsICQUFB9WJ/GgwGKBSKSn83x5zXd21KSEiAs7Mz2rRpg0mTJuHWrVvltq3P+y4zMxOxsbEYO3ZspW3r4r57+DMgOTkZhYWFJvvCx8cHLVu2LHdfyHm/1gUMEY+ouLgYU6dORdeuXdG+ffty27Vp0wZffvkltm/fjm+++QbFxcV4/vnncfXq1cdYbdUEBAQgJiYGu3btwurVq5Geno5u3bohJyenzPZ6vb7Mn23X6/WPo9xHsm3bNmRnZ2PMmDHltqlP++5BJc+/Ofvm5s2bKCoqqpf7My8vD5GRkXjllVcq/IEjc1/ftaVPnz746quvsG/fPrz//vs4cOAA+vbti6KiojLb1+d9t27dOjg4OFR6uL8u7ruyPgP0ej2sra1LhdmK9oWc92tdUGdve11fhIeH4/Tp05V+L6fVak1+POz5559H27Zt8cknn2DhwoU1XaZZ+vbtK/27Y8eOCAgIgIeHBzZt2lSlvxTqky+++AJ9+/at8Odu69O++6sqLCzEsGHDIITA6tWrK2xbX17foaGh0r87dOiAjh07wtvbGwkJCejdu3ctVlb9vvzyS4wcObLSE5br4r6r6mdAQ8UjEY8gIiICO3fuxP79+9GiRQuz1rWyssIzzzyDCxcu1FB11cfR0RFPPfVUubVqNBqzfra9rrh8+TL27t2LcePGmbVefdl3Jc+/OfumWbNmsLS0rFf7syRAXL58GXFxcWb/zHJlr++6olWrVmjWrFm5ddbHfQcAP//8M9LS0sx+HwK1v+/K+wzQaDQoKChAdna2SfuK9oWc92tdwBAhgxACERER2Lp1K+Lj4+Hl5WV2H0VFRTh16hRcXV1roMLqdefOHVy8eLHcWrVarcnPtgNAXFxcnf/Z9rVr18LZ2RkhISFmrVdf9p2Xlxc0Go3JvjEajUhKSip331hbW8Pf399kneLiYuzbt69O7s+SAHH+/Hns3bsXTZs2NbuPyl7fdcXVq1dx69atcuusb/uuxBdffAF/f3/4+fmZvW5t7bvKPgP8/f1hZWVlsi/S0tKQkZFR7r6Q836tE2r5xM56adKkSUKtVouEhARx/fp16XH37l2pzahRo8Ts2bOl6fnz54vdu3eLixcviuTkZBEaGipsbGxEampqbQyhQjNmzBAJCQkiPT1dHDp0SAQFBYlmzZqJrKwsIUTpsR06dEg0atRILF26VJw9e1bMnTtXWFlZiVOnTtXWECpVVFQkWrZsKSIjI0stq0/7LicnR/z666/i119/FQDEBx98IH799Vfp6oRFixYJR0dHsX37dnHy5EkxcOBA4eXlJe7duyf10atXL/HRRx9J0999951QKpUiJiZGnDlzRkyYMEE4OjoKvV5fp8ZXUFAgBgwYIFq0aCFSUlJM3ov5+fnljq+y13ddGFtOTo54++23RWJiokhPTxd79+4VnTp1Ek8++aTIy8srd2z1Zd+VMBgMws7OTqxevbrMPurqvqvKZ8DEiRNFy5YtRXx8vDh+/LjQarVCq9Wa9NOmTRuxZcsWaboq79e6hiFCBgBlPtauXSu16d69uwgLC5Omp06dKlq2bCmsra2Fi4uL6Nevnzhx4sTjL74Khg8fLlxdXYW1tbV44oknxPDhw8WFCxek5Q+PTQghNm3aJJ566ilhbW0t2rVrJ2JjYx9z1ebZvXu3ACDS0tJKLatP+27//v1lvhZL6i8uLhb//Oc/hYuLi1AqlaJ3796lxuzh4SHmzp1rMu+jjz6Sxty5c2dx5MiRxzQiUxWNLz09vdz34v79+6U+Hh5fZa/vujC2u3fviuDgYNG8eXNhZWUlPDw8xPjx40uFgfq670p88sknwtbWVmRnZ5fZR13dd1X5DLh375548803RZMmTYSdnZ146aWXxPXr10v18+A6VXm/1jX8KXAiIiKShedEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsvw/pzhntvmyW6EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6, 3))\n", + "plt.hist(np.array(list(map(lambda x: len(x[1]), train_dataset.data))))\n", + "plt.title('Train texts length distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T17:43:29.607506Z", + "start_time": "2023-04-05T17:43:28.993785Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAHmCAYAAADOajgCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwdVfn/P2eWu2Tf0yXpvlPaQlvagtAilIIgRXZFaAH5KouCKCo/lVVFBb+CAiIKLSIqUkER/FKg0gpYoLRN6d50SdqmTbPvyb13Zp7fH2fOZO7NTZpCl5Q87xehydy5Z86cmTlzzuc8iyAiAsMwDMMwDMMwDMMwDMMw/Q7tWFeAYRiGYRiGYRiGYRiGYZhjA4uDDMMwDMMwDMMwDMMwDNNPYXGQYRiGYRiGYRiGYRiGYfopLA4yDMMwDMMwDMMwDMMwTD+FxUGGYRiGYRiGYRiGYRiG6aewOMgwDMMwDMMwDMMwDMMw/RQWBxmGYRiGYRiGYRiGYRimn8LiIMMwDMMwDMMwDMMwDMP0U1gcZBiGYRiGYRiGYRiGYZh+CouDDMMwDMMwxzFCCNxyyy3HuhrHPcuXL4cQAsuXLz/WVWEYhmEYhjmqsDjIMAzDMMxRQwjRq5/DIdC0tbXhnnvu6fNiz7/+9S/cc889x7oaDMMwDMMwTD/FONYVYBiGYRim//Dss8/G/f2HP/wBb7zxRpft48eP/8THamtrw7333gsAmDNnzicu70jxr3/9C4899hgLhAzDMAzDMMwxgcVBhmEYhmGOGl/+8pfj/n7vvffwxhtvdNnOMAzDMAzDMMzRgd2KGYZhGIbpUziOg4cffhgnnHACQqEQCgsL8dWvfhX19fVx+3344YeYN28e8vLyEA6HMXz4cFx33XUAgLKyMuTn5wMA7r33Xs9d+WDWeQ0NDfjmN7+JYcOGIRgMoqioCNdccw1qamoAANFoFHfddRemTp2KzMxMpKam4vTTT8dbb70VV05ZWRmEEHjooYfwy1/+EkOHDkU4HMbs2bOxYcMGb7+FCxfiscceAxDvcu1vi0ceeQQnnngiQqEQ8vPzce655+LDDz/sUve///3vmDhxIoLBIE444QS89tprcZ+Xl5fjpptuwtixYxEOh5Gbm4vLLrsMZWVlPbaJvy4Huy533303NE3DsmXL4r77P//zPwgEAli3bt3HbsfHHnsMI0aMQEpKCs455xzs2bMHRIT7778fRUVFCIfDmD9/Purq6uLKGDZsGC644AK8/vrrmDJlCkKhECZMmIAXX3yxV+f9/vvv49xzz0VmZiZSUlIwe/ZsvPvuu3H7NDc347bbbvPum4KCAsydOxdr1qzp1TEYhmEYhmGOJYKI6FhXgmEYhmGY/sktt9yCxx57DP7hyA033IDFixfj2muvxdSpU7Fr1y48+uijmDBhAt59912YpomqqiqMGzcO+fn5uOGGG5CVlYWysjK8+OKL2LRpE1pbW/Hss8/ixhtvxBe+8AVcfPHFAIBJkyZh0qRJSevS0tKCWbNmYfPmzbjuuutw8skno6amBi+//DKefPJJTJkyBTU1NZg0aRK++MUvYvTo0WhubsZTTz2FnTt34oMPPsCUKVMASFFr+PDhOPHEE9Hc3Iwbb7wRHR0deOSRR6DrOtavX4/CwkKsXLkSd999dxfXamVJee2112Lx4sU477zzMG/ePFiWhbfffhtnn322l4RECIHJkyejqqoKN910E9LT0/GrX/0KlZWV2L17N3JzcwEAS5YswY9+9CPMnz8fRUVFKCsrw29+8xtkZGRg06ZNSElJ6fFa9ea6xGIxzJgxA3V1dVi/fj3S09OxdOlSnHvuubj//vvxgx/8AAAOuR2nTJmCaDSKr3zlK6irq8PPf/5znHzyyfjsZz+L5cuX48orr8T27dvx61//GgsXLsTTTz/t1VsJdlVVVfja176GgoICLFq0CBs3bsRrr72GuXPnApAJSc4880y89dZbnhv6v//9b5x33nmYOnUqLr30UmiahkWLFmHLli14++23ccoppwAArrrqKixZsgS33HILJkyYgNraWrzzzju44oorcNVVV/X8EDAMwzAMwxxriGEYhmEY5hhx8803k3848vbbbxMAeu655+L2e+211+K2v/TSSwSAVq1a1W3Z1dXVBIDuvvvuXtXlrrvuIgD04osvdvnMcRwiIrIsiyKRSNxn9fX1VFhYSNddd523bdeuXQSAwuEw7d2719v+/vvvEwD65je/6W1LbAPFv//9bwJA3/jGN7qtDxERAAoEArR9+3Zv27p16wgA/frXv/a2tbW1dSln5cqVBID+8Ic/dPnMT2+vCxHR+vXrKRAI0Fe+8hWqr6+nwYMH07Rp0ygWi3n7HGo75ufnU0NDg7f9zjvvJAA0efLkuHK/+MUvUiAQoI6ODm/b0KFDCQD97W9/87Y1NjbSwIED6aSTTvK2vfXWWwSA3nrrLSKSbTx69GiaN29eXHu3tbXR8OHDae7cud62zMxMuvnmm3tsQ4ZhGIZhmL4KuxUzDMMwDNNneOGFF5CZmYm5c+eipqbG+5k6dSrS0tI8t9OsrCwAwCuvvIJYLHZYjv23v/0NkydPxhe+8IUunylXX13XEQgEAEg327q6OliWhWnTpiV1Ib3oooswePBg7+9TTjkFM2bMwL/+9a9e1UcIgbvvvrvb+ijOPvtsjBw50vt70qRJyMjIwM6dO71t4XDY+z0Wi6G2thajRo1CVlbWQd1fe3tdAGDixIm499578fvf/x7z5s1DTU0NnnnmGRhGZ6jrQ23Hyy67DJmZmd7fM2bMACAtLP3lzpgxA9FoFBUVFXHfHzRoUNx1zcjIwDXXXIO1a9eisrIy6TmXlJSgtLQUX/rSl1BbW+udc2trK8466yz85z//geM4AOT9+P7772Pfvn09tiPDMAzDMExfhMVBhmEYhmH6DKWlpWhsbERBQQHy8/PjflpaWlBVVQUAmD17Ni655BLce++9yMvLw/z587Fo0SJEIpGPfewdO3Zg4sSJB93vmWeewaRJkxAKhZCbm4v8/Hy8+uqraGxs7LLv6NGju2wbM2ZMr+L87dixA4MGDUJOTs5B9x0yZEiXbdnZ2XHxANvb23HXXXehuLgYwWAQeXl5yM/PR0NDQ9K6++ntdVHccccdmDx5Mj744APcfffdmDBhQpcyD6UdE89PCYXFxcVJtyfGpxw1alQXQXXMmDEA0O21KC0tBQAsWLCgyzn//ve/RyQS8er685//HBs2bEBxcTFOOeUU3HPPPXHCLMMwDMMwTF+GsxUzDMMwDNNncBwHBQUFeO6555J+rpKMCCGwZMkSvPfee/jnP/+JpUuX4rrrrsMvfvELvPfee0hLSzsi9fvjH/+IhQsX4qKLLsIdd9yBgoIC6LqOBx54ADt27Dgix+wNuq4n3U6+WI5f//rXsWjRItx2222YNWsWMjMzIYTAlVde6VnAdUdvr4ti586dnri2fv36Lvsfajt2d369Oe+Pi2qTBx980IuBmIi6zy6//HKcfvrpeOmll/D666/jwQcfxM9+9jO8+OKLOO+88z5xXRiGYRiGYY4kLA4yDMMwDNNnGDlyJN58802cdtppcW6w3TFz5kzMnDkTP/7xj/GnP/0JV111Ff7yl7/gK1/5ShdLsd4c259JOBlLlizBiBEj8OKLL8aVn8z1F+i0PvOzbds2DBs2zPu7u3qOHDkSS5cuRV1dXa+sBw/GkiVLsGDBAvziF7/wtnV0dKChoeGg3z2U6+I4DhYuXIiMjAzcdttt+MlPfoJLL73USwqj6nIo7fhJ2b59O4go7ljbtm0DgLhr4Ue5aWdkZODss88+6DEGDhyIm266CTfddBOqqqpw8skn48c//jGLgwzDMAzD9HnYrZhhGIZhmD7D5ZdfDtu2cf/993f5zLIsT8iqr6/vYh2mrLuUa7HKvtsb8QsALrnkEqxbtw4vvfRSl8/UsZSlmv/Y77//PlauXJm0zL///e9x8e8++OADvP/++3GCUWpqatJ6XnLJJSAi3Hvvvd3W51DQdb3L937961/Dtu2Dfre31wUA/vd//xf//e9/8eSTT+L+++/HqaeeihtvvBE1NTVxdUk8j57a8ZOyb9++uOva1NSEP/zhD5gyZQoGDBiQ9DtTp07FyJEj8dBDD6GlpaXL59XV1QAA27a7uEIXFBRg0KBBn8jNnWEYhmEY5mjBloMMwzAMw/QZZs+eja9+9at44IEHUFJSgnPOOQemaaK0tBQvvPACHnnkEVx66aV45pln8Pjjj+MLX/gCRo4ciebmZvzud79DRkYGPve5zwGQCTgmTJiA559/HmPGjEFOTg4mTpzYbVzBO+64A0uWLMFll12G6667DlOnTkVdXR1efvllPPHEE5g8eTIuuOACvPjii/jCF76A888/H7t27cITTzyBCRMmJBWQRo0ahc985jO48cYbEYlE8PDDDyM3Nxff+c53vH2mTp0KAPjGN76BefPmQdd1XHnllTjzzDNx9dVX41e/+hVKS0tx7rnnwnEcvP322zjzzDNxyy23HFLbXnDBBXj22WeRmZmJCRMmYOXKlXjzzTeRm5t72K7L5s2b8cMf/hALFy7E5z//eQDA4sWLMWXKFNx0003461//6tXlUNrxkzJmzBhcf/31WLVqFQoLC/H000/jwIEDWLRoUbff0TQNv//973HeeefhhBNOwLXXXovBgwejoqICb731FjIyMvDPf/4Tzc3NKCoqwqWXXorJkycjLS0Nb775JlatWhVnpckwDMMwDNNnOVZpkhmGYRiGYW6++WZKNhx58sknaerUqRQOhyk9PZ1OPPFE+s53vkP79u0jIqI1a9bQF7/4RRoyZAgFg0EqKCigCy64gD788MO4cv773//S1KlTKRAIEAC6++67e6xPbW0t3XLLLTR48GAKBAJUVFRECxYsoJqaGiIichyHfvKTn9DQoUMpGAzSSSedRK+88gotWLCAhg4d6pWza9cuAkAPPvgg/eIXv6Di4mIKBoN0+umn07p16+KOaVkWff3rX6f8/HwSQsS1h2VZ9OCDD9K4ceMoEAhQfn4+nXfeebR69WpvHwB08803dzmXoUOH0oIFC7y/6+vr6dprr6W8vDxKS0ujefPm0ZYtW7rs1xM9XRfLsmj69OlUVFREDQ0Ncd975JFHCAA9//zzH7sd/bz11lsEgF544YW47YsWLSIAtGrVqrh2OP/882np0qU0adIkCgaDNG7cuC7fVWW+9dZbcdvXrl1LF198MeXm5lIwGKShQ4fS5ZdfTsuWLSMiokgkQnfccQdNnjyZ0tPTKTU1lSZPnkyPP/54r9qUYRiGYRjmWCOIDkPEZoZhGIZhGMajrKwMw4cPx4MPPohvf/vbx7o6/Zphw4Zh4sSJeOWVV451VRiGYRiGYfokHHOQYRiGYRiGYRiGYRiGYfopLA4yDMMwDMMwDMMwDMMwTD+FxUGGYRiGYRiGYRiGYRiG6adwzEGGYRiGYRiGYRiGYRiG6aew5SDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVBhmEYhmEYhmEYhmEYhumnsDjIMAzDMAzDMAzDMAzDMP0UFgcZhmEYhmEYhmEYhmEYpp/C4iDDMAzDMAzDMAzDMAzD9FNYHGQYhmEYhmEYhmEYhmGYfgqLgwzDMAzDMAzDMAzDMAzTT2FxkGEYhmEYhmEYhmEYhmH6KSwOMgzDMAzDMAzDMAzDMEw/hcVB5hOzcOFC3HPPPUf0GMuXL4cQAg0NDUf0OAxzJFm8eDHmzJnzsb+blZV1WOpxzz33oLCwEEII/P3vfz8sZR5O+HlnmE/OPffcg4ULFx7rajAMc5wxbNgwLF++/FhXg2E+NfAz1be45557MGXKlGNdjT4Ji4PHAQ888ACmT5+O9PR0FBQU4KKLLsLWrVvj9qmsrMTVV1+NAQMGIDU1FSeffDL+9re/eZ+XlZXh+uuvx/DhwxEOhzFy5EjcfffdiEajceUsXboUM2fORHp6OvLz83HJJZegrKzsE5+DEAJlZWVdxJF77rkHQgh87Wtfi9u/pKTE+84nPQbD+LFtGz/84Q/jnoX7778fROTtI4RI+vPggw96+/z4xz/GqaeeipSUlMMm2gHAnDlzsHjxYpSVlUEIkXSf+++/HwMHDkRdXV3c9nXr1iEYDOKVV17xvl9SUhK3z+bNm3Hvvffit7/9Lfbv34/zzjsPL774IqZNm4asrCykpqZiypQpePbZZ+O+t2vXLnzpS1/CoEGDEAqFUFRUhPnz52PLli3esQOBAF5++eW47/3tb39DKBTChg0bPnabKLEw2U9lZWWvy5kzZ07SMizL8vbZuHEjLr/8cuTn5yMYDGLMmDG466670NbW9rHr3x1qsLh8+XIMGzbssJfP9C1++tOfQgiB2267LW77V7/6VYwcORLhcBj5+flxz5WfxYsXY9KkSQiFQigoKMDNN9/8ievU0z24fPlynHzyyQgGgxg1ahQWL14c9/nChQuTPk/bt28/6HGTLQAcqfFHb/G3wdFY9GQYIHm/oN7fyX5eeOEFb79kn//lL3/xPu/u3Xko781k9PZZ+drXvgYhBB5++OG47UIIhEIhlJeXx22/6KKLelzQ6GnhcNiwYXj44YdRU1ODAQMG4Cc/+UmXfS6//HLMnDkTtm3HLZ6wcPPp4pO8a3fv3o3zzz8fKSkpKCgowB133BE3RjwWz5S6tw+FE088scvcWvHss88iGAyipqbmY9b245M4bsjNzcW5556Ljz766KjXxc8VV1yBU045BbZte9tisRimTp2Kq666ytv21ltv4XOf+xxyc3ORkpKCCRMm4Fvf+hYqKip6dZw5c+Z0uS8BYNWqVTjrrLOQlZWF7OxszJs3D+vWrfM+P5rjExYHjwNWrFiBm2++Ge+99x7eeOMNxGIxnHPOOWhtbfX2ueaaa7B161a8/PLLWL9+PS6++GJcfvnlWLt2LQBgy5YtcBwHv/3tb7Fx40b88pe/xBNPPIH/9//+n1fGrl27MH/+fHz2s59FSUkJli5dipqaGlx88cVH9PxCoRCeeuoplJaWHtHjMAwA/OxnP8NvfvMbPProo9i8eTN+9rOf4ec//zl+/etfe/vs378/7ufpp5+GEAKXXHKJt080GsVll12GG2+88aifw5133oni4uI4cSAWi2HBggX48pe/jAsuuKDb7+7YsQMAMH/+fAwYMADBYBA5OTn4/ve/j5UrV+Kjjz7Ctddei2uvvRZLly71yp47dy4aGxvx4osvYuvWrXj++edx4okneoP0yZMn46677sL//M//oLa2FgBQVVWFr33ta7j33nsxceLET3zeW7du7XJtCgoKDqmMG264oUsZhmEAAN577z3MmDED0WgUr776KrZt24Yf//jHWLx4MebOndtlMYVhesuqVavw29/+FpMmTery2dSpU7Fo0SJs3rwZS5cuBRHhnHPOiRuk/u///i++//3v43vf+x42btyIN998E/PmzTti9d21axfOP/98nHnmmSgpKcFtt92Gr3zlK16foDj33HO7PE/Dhw//WMc7FuMPhjmWdNcvFBcXd3mu7r33XqSlpeG8886L23fRokVx+1100UVdjpP47jzU9+bH4aWXXsJ7772HQYMGJf1cCIG77rrrsB83Ly8PTz75JO69916sX7/e2/7CCy/glVdewTPPPANd1w/7cZm+wSd519q2jfPPPx/RaBT//e9/8cwzz2Dx4sVJ79Nj8UwdCtdffz3+8pe/oL29vctnixYtwoUXXoi8vLxjULP4ccOyZctgGEaP85ajweOPP47du3fjpz/9qbft/vvvx/79+/Hoo48CAH7729/i7LPPxoABA/C3v/0NmzZtwhNPPIHGxkb84he/+NjHbmlpwbnnnoshQ4bg/fffxzvvvIP09HTMmzcPsVjsE5/bIUPMcUdVVRUBoBUrVnjbUlNT6Q9/+EPcfjk5OfS73/2u23J+/vOf0/Dhw72/X3jhBTIMg2zb9ra9/PLLJISgaDTabTkLFiygu+++u8c6A6Bdu3bRokWLaPbs2d72u+++myZPnkxz586lyy67zNu+du1a7ztERG+99RYBoPr6eiIiam1tpXPPPZdOPfVUb1t3x2AYP+effz5dd911cdsuvvhiuuqqq7r9zvz58+mzn/1s0s8WLVpEmZmZvTp2b+7N2bNn06JFi2jXrl3k76ITj7N582YKhUL0wgsvEJF8loYOHUqNjY1EJJ8H/8/s2bPp7rvv7rK9O0466ST6wQ9+QESdz2NZWVmPdbcsi6ZPn05XXHEFERFddNFFNGvWLLIsq8fvvfrqqzR69GgKhUI0Z84cWrRoUdzznvj8J2P27Nl06623xm2bP38+LViwoMd9FI7j0IQJE2jatGlxfSARUUlJCQkh6Kc//am3rby8nC688EJKTU2l9PR0uuyyy6iysjLue48//jiNGDGCTNOkMWPGdOmjhw4dSm+99Ra99dZbNHTo0G7PjTm+aW5uptGjR9Mbb7zR4z2oWLduHQGg7du3ExFRXV0dhcNhevPNNw/puHfffXfc/Z+M7u7B73znO3TCCSfE7XvFFVfQvHnzvL8XLFhA8+fPT1qu6r+S9UNEXZ/p3ow/SkpKaM6cOZSWlkbp6el08skn06pVq7xznTx5clwdfvnLX3rntHTpUgoGg136kG984xt05plnenVS+/dmXMMwn4RD7RemTJnSZewCgF566aVuv9Obd2cyVL/QU7k9PSt79+6lwYMH04YNG2jo0KH0y1/+sku9v/3tb5OmabR+/Xpve+I7+1DOJ/E4CxcupJNOOomi0ShVVVVRfn4+PfLII97n/v7xYOfLHB980nftv/71L9I0LW4s95vf/IYyMjIoEokQ0dF/pmbPnt3tuH3JkiU0YcIECgQCNHToUHrooYe8z6qrqykQCNCzzz4bd5ydO3eSEIL+7//+z9u2aNEiKi4upnA4TBdddBE99NBD3nyjoaGBNE3z3rW2bVN2djbNmDHD+/6zzz5LRUVFRERJ5xkAaNGiRd65JY4b3n77bQJAVVVV3bZPS0sLXX311ZSamkoDBgyghx56KO4a//rXv44bs7z00ksEgH7zm99428466yz6/ve/79Uzcczwj3/8gwKBAK1bt45WrVpFhmHQq6++SkREe/bsoUAgQLfddlvS+vnvh3feeYdmz55N4XCYsrKy6JxzzqG6ujpasGBBl3bZtWsXrVq1igDQ7t27vTI++ugjAkClpaVEdHTHJ2w5eBzS2NgIAMjJyfG2nXrqqXj++edRV1cHx3Hwl7/8BR0dHT261zY2NsaVMXXqVGiahkWLFsG2bTQ2NuLZZ5/F2WefDdM0j9j5ANIE/G9/+xs+/PDDg+7b0NCAuXPnwnEcvPHGG4fVpZP59HPqqadi2bJl2LZtGwDpDvvOO+90WY1XHDhwAK+++iquv/76o1nNgzJu3Dg88MADuPHGG7F06VI88MADWLRoETIyMgAAH3zwAQDgzTffxP79+/Hiiy/i29/+NhYtWgSg0zoyESLCsmXLsHXrVpxxxhkAgPz8fGiahiVLlsRZMyWi6zqeeeYZ/OMf/8CXvvQlLF26FIsXL+5xlX7Pnj24+OKL8fnPfx4lJSX4yle+gu9973sfu10+LiUlJdi0aRNuv/12aFr8q3Hy5Mk4++yz8ec//xkA4DgO5s+fj7q6OqxYsQJvvPEGdu7ciSuuuML7zksvvYRbb70V3/rWt7BhwwZ89atfxbXXXou33nrrqJ4Xc+y5+eabcf755+Pss88+6L6tra1YtGgRhg8fjuLiYgDAG2+8AcdxUFFRgfHjx6OoqAiXX3459uzZc8TqvHLlyi71nTdvHlauXNmr7ydaPq1duxa5ublen5JIb8YfV111FYqKirBq1SqsXr0a3/ve93o9NlHuOv5wK7Zt4/nnn49zGWKYo8Wh9AurV69GSUlJ0nHIzTffjLy8PJxyyil4+umn40KkKKZMmYKBAwdi7ty5ePfddw9L/bvDcRxcffXVuOOOO3DCCSd0u99pp52GCy644Ii97x955BHU1tbi/vvvx0033YSJEyfi61//+hE5FtM3+KTv2pUrV+LEE09EYWGht9+8efPQ1NSEjRs3xn3/aD1TL774IoqKinDffffFjdtXr16Nyy+/HFdeeSXWr1+Pe+65Bz/84Q+98B95eXmYP38+nn766bjyFi9ejKKiIpxzzjkAgPfffx/XX389brnlFpSUlODMM8/Ej370I2//zMxMTJkyxXO7X79+PYQQWLt2LVpaWgBID8fZs2cDAL797W/HvfsfeughpKSkYNq0aUnPr6WlBX/84x8xatQo5ObmdtsOd9xxB1asWIF//OMfeP3117F8+XKsWbPG+3z27NnYtGkTqqurvTrl5eV59Y7FYli5cmWPusiFF16IK6+8Etdccw0WLFiABQsW4HOf+xwAaXkcjUbxne98J+l3lRZRUlKCs846CxMmTMDKlSvxzjvv4POf/zxs28YjjzyCWbNmxXkwFRcXY+zYscjNzcVTTz2FaDSK9vZ2PPXUUxg/fvyxCTl0xGRH5ohg2zadf/75dNppp8Vtr6+vp3POOYcAkGEYlJGRQUuXLu22nNLSUsrIyKAnn3wybvvy5cupoKCAdF0nADRr1qyDro58EgXbr9xfeeWVnnVWd5aDmzdvpkmTJtEll1zireIwzKFg2zZ997vfJSEEGYZBQgj6yU9+0u3+P/vZzyg7O5va29uTfn64LQd7+m7icRzHoTlz5pCmaV1WSJXlztq1a+O2q9W0RBoaGig1NZUMw6BgMEhPPfVU3OePPvoopaSkUHp6Op155pl033330Y4dO5LW9Xvf+x4BoJ/97GcHPa8777yTJkyYELftu9/9blLLwdTU1Lgf//d6azlommZcGbfffjsREf3lL39J2l6Kb3zjGxQOh4mI6PXXXydd1+NW+TZu3EgA6IMPPiAiolNPPZVuuOGGuDIuu+wy+tznPnfQNmE+Pfz5z3+miRMnev1Hd9YMjz32GKWmphIAGjt2rGfJQET0wAMPkGmaNHbsWHrttddo5cqVdNZZZ9HYsWN7fA/2xnKwO0aPHt2lX3z11VcJALW1tRGRfPfruh73PF166aVdympvb6cZM2bQBRdc4FkGJrO+ONj4Iz09nRYvXtztufZkOUhEdOutt8ZZgHdnTcgwR5re9guKG2+8kcaPH99l+3333UfvvPMOrVmzhn76059SMBiMs47bsmULPfHEE/Thhx/Su+++S9deey0ZhkGrV6/usX6fxJLuJz/5Cc2dO5ccx/HKSmY5+NJLL9HGjRtJ13X6z3/+Q0S9txxMHAukpqaSEKLLcZYtW0a6rlNGRsZBPR+Y45vD8a694YYb6Jxzzonbv7W1lQDQv/71LyI6Ns9UsmfoS1/6Es2dOzdu2x133BE3Ln7ttddICEE7d+4kIjlnGDp0qOcVRET0xS9+scu49Iorroibb9x+++10/vnnExHRww8/TFdccQVNnjzZsz4cNWpUFz2BiGjlypUUCoXo+eef97YljhsA0MCBA3tsv+bmZgoEAvTXv/7V21ZbW0vhcNi7xo7jUG5urudNNWXKFHrggQdowIABRCSt+UzTpNbWViJKPmYg6vTUKCws9DyxiGQfnJGR0W0dFV/84he7aDR+ursv169fTyNHjiRN00jTNBo7duwx67PYcvA44+abb8aGDRviAg4DwA9/+EM0NDTgzTffxIcffojbb78dl19+eVy8DUVFRQXOPfdcXHbZZbjhhhu87ZWVlbjhhhuwYMECrFq1CitWrEAgEMCll16adCXycPOjH/0Ib7/9Nl5//fVu95k7dy5GjRqF559/HoFA4IjXifn08de//hXPPfcc/vSnP2HNmjV45pln8NBDD+GZZ55Juv/TTz+Nq666CqFQ6CjX9OAIIfD9738fjuPgBz/4wScqKz09HSUlJVi1ahV+/OMf4/bbb48L0H3zzTejsrISzz33HGbNmoUXXngBJ5xwAt544424clpaWvD8888jJSUFb7/99kGPu3nzZsyYMSNu26xZs5Lu+/bbb6OkpMT7+de//nXI53nVVVfFlXHnnXfGfd5TX6f6nM2bN6O4uNhbbQaACRMmICsrC5s3b/b2Oe200+K+f9ppp3mfM59+9uzZg1tvvRXPPffcQfuPq666CmvXrsWKFSswZswYXH755ejo6AAgLXFisRh+9atfYd68eZg5cyb+/Oc/o7S09JhboqqYhOrnV7/6VZd9rrvuOjQ3N+NPf/pTF6tcRW/GH7fffju+8pWv4Oyzz8ZPf/pTL35qb7nqqquwfPly7Nu3DwDw3HPP4fzzz2fvA+aocij9AgC0t7fjT3/6U1KrwR/+8Ic47bTTcNJJJ+G73/0uvvOd78QlThs7diy++tWvYurUqTj11FPx9NNP49RTT8Uvf/nLw3pOitWrV+ORRx7B4sWLu02o5mfChAm45pprDtl6MHEsUFJSkjS24Wc/+1nMnDkTV199NYYOHXpIx2COHw7Xu7Y3HO1nqju6G2OWlpZ6Hj5z585FUVGR5zG0bNky7N69G9dee21cOQcbg8+ePRvvvPMObNvGihUrMGfOHMyZM8d7n27fvr2LRd7u3btx0UUX4dvf/jYuv/zyuM/844YPPvgA8+bNw3nnndclQZFix44diEajcfXMycnB2LFjvb+FEDjjjDOwfPlyNDQ0YNOmTbjpppsQiUSwZcsWrFixAtOnT0dKSkpPzYo///nPEEKgpqYmLlkNEfWqT1OWg4dCe3s7rr/+epx22ml477338O6772LixIk4//zzk8aMPNKwOHgcccstt+CVV17BW2+9haKiIm/7jh078Oijj+Lpp5/GWWedhcmTJ+Puu+/GtGnT8Nhjj8WVsW/fPpx55pk49dRT8eSTT8Z99thjjyEzMxM///nPcdJJJ+GMM87AH//4Ryxbtgzvv//+ET+/kSNH4oYbbsD3vve9bifo559/Pv7zn/9g06ZNR7w+zKeTO+64A9/73vdw5ZVX4sQTT8TVV1+Nb37zm3jggQe67Pv2229j69at+MpXvnIMato7VDIN9e/HRdM0jBo1ClOmTMG3vvUtXHrppV3aJD09HZ///Ofx4x//GOvWrcPpp58e534AyPYNhUL473//izfffBN/+MMfPlG9/AwfPhyjRo3yfvyDfU3TuvQbyQL5ZmZmxpWhAjKPHj0aALoV7zZv3owxY8YcrlNh+gGrV69GVVUVTj75ZBiGAcMwsGLFCvzqV7+CYRhxLvqZmZkYPXo0zjjjDCxZsgRbtmzBSy+9BAAYOHAgADmRVuTn5yMvLw+7d+8+InUfMGAADhw4ELftwIEDyMjIQDgc9ralpqbGPU+qroof/ehHWLp0KV5++WWkp6d3e7zejD/uuecebNy4Eeeffz7+/e9/Y8KECV4b9eb5nz59OkaOHOkFaX/ppZfYpZg56hxKvwAAS5YsQVtbG6655pqDlj1jxgzs3bsXkUik231OOeWUXmUU/zi8/fbbqKqqwpAhQ7xzKy8vx7e+9a1u3ePuvfderFmzBn//+997fZzEscCoUaO6HQOpejCfXg7Xu7a79576rDuO5DP1SdA0DQsXLsQzzzwDx3GwaNEinHnmmRgxYsQhlXPGGWegubkZa9aswX/+8584cXDFihUYNGiQN4YGpMv2hRdeiFmzZuG+++7rUp5/3DB9+nT8/ve/R2trK373u999ovNVdXr77bdx0kknISMjwxMM/a7P3bFz50585zvfwW9+8xtcffXVWLhwodeXjhkzBo2NjUnDMfnxj496y5/+9CeUlZVh0aJFmD59OmbOnIk//elP2LVrF/7xj38ccnmfFBYHjwOICLfccgteeukl/Pvf/+6SCbCtrQ0AuqzI67oOx3G8vysqKjBnzhwvW1Pi/m1tbUnLABBXzpHkrrvuwrZt27pYRip++tOfYsGCBTjrrLNYIGQ+Ft3d58nu8aeeegpTp07F5MmTj1b1DhvKyq2nGIE94ThOjxMMIQTGjRsXlzX9jTfewO9//3s888wzmDx5Mn70ox/htttu6/FlOn78eC8+ouK999475Prm5+fHHce2bWzYsKHX3z/ppJMwbtw4/PKXv+xyL6xbtw5vvvkmFi5c6NV5z549cTHfNm3ahIaGBk/AGT9+fJc4NO+++26cwMN8ujnrrLOwfv36OOuWadOmedar3cXiJCIQkff8KeuArVu3evvU1dWhpqbmiFnDzJo1C8uWLYvb9sYbb3Rr1ZuMv/3tb7jvvvvw17/+FSNHjuxx396OP8aMGYNvfvObeP3113HxxRd7FhH5+fmorKyMEwhLSkq6HOeqq67Cc889h3/+85/QNA3nn39+r8+HYQ4Hh9ovPPXUU7jwwguRn59/0LJLSkqQnZ2NYDDY4z6JIv7h4uqrr8ZHH33UxaLvjjvu6JLpXFFcXIxbbrkF/+///b+PPV5h+jeH6107a9YsrF+/HlVVVd4+b7zxBjIyMnocux3JZwqQ4/nEZ6O7MeaYMWPizvfaa6/Fnj178OKLL+Kll17qYoE8fvz4LgZAiWPwrKwsTJo0CY8++ihM08S4ceNwxhlnYO3atXjllVfiRDciwpe//GU4joNnn322V9Z2QghomtatldzIkSNhmmZcPevr673Y8QoVd/CFF17wLBnnzJmDN998E++++26P8QYdx8HChQtx1lln4ZprrsHDDz+M5uZmL1P1pZdeikAggJ///OdJv9/Q0AAAmDRpUpexk59k11KNf/xtpf4+WvpLHMfCl5k5NG688UbKzMyk5cuX0/79+70fFfcnGo3SqFGj6PTTT6f333+ftm/fTg899BAJIbwsO3v37qVRo0bRWWedRXv37o0rR7Fs2TISQtC9995L27Zto9WrV9O8efNo6NCh3rGScbhiDip++MMfUigU6jFb8W233UaFhYW0efPmj3Vcpv+yYMECGjx4ML3yyiu0a9cuevHFFykvL4++853vxO3X2NhIKSkpcZmu/JSXl9PatWvp3nvvpbS0NFq7di2tXbuWmpubuz324Y45SNR95rRYLEbhcJh+9KMfUWVlJTU0NBBR8piDP/nJT+j111+nHTt20KZNm+ihhx4iwzC8bOdr166lCy+8kF544QXauHEjlZaW0u9//3tKTU2l++67j4hkexUXF9Odd97plWvbNp122ml0wQUXdHte5eXlFAgE6Nvf/jZt2bKFnnvuORowYEDSmINbt26N67v279/vZTJ94oknKCUlhV555RXavHkz3XDDDZSRkdHrbMVEMiZJSkoKXXTRRfT+++9TeXk5/fWvf6Xi4mI699xzvazLjuPQlClT6PTTT6fVq1fT+++/T1OnTo27ti+99BKZpkmPP/44bdu2jX7xi1+QruucEbGfk3gP7tixg37yk5/Qhx9+SOXl5fTuu+/S5z//ecrJyaEDBw54+82fP59OOOEEevfdd2n9+vV0wQUX0IQJE7z7PxmfJObgzp07KSUlhe644w7avHkzPfbYY6TrOr322mvePj1lK16/fj2lpKTQD37wg7jntba2loi69lsHG3+0tbXRzTffTG+99RaVlZXRO++8QyNHjvT67U2bNnkZxbdv306PPvooZWdnd8kCXlpaSgBo0qRJdP3113+stmGYw01376bS0tIumUUVL7/8Mv3ud7+j9evXU2lpKT3++OOUkpJCd911l7fPL3/5S/r73/9OpaWltH79err11ltJ07SDZj4/nNl7e4o5qKitraXMzEwKhUKHLVuxojdZa5lPHx/nXWtZFk2cOJHOOeccKikpoddee43y8/PjxrXH4pmaO3cuXXjhhbR3716qrq4mIqLVq1eTpml033330datW2nx4sUUDoe9rMB+zjrrLMrOzqasrKwu8dNXrlxJmqbRgw8+SNu2baNf//rXlJWV1WW+cdttt5Gu63TFFVd42yZPnky6rtMTTzzhbbvrrrsoLS2N/vvf/ybVLBYsWEDnnnuut33Tpk100003kRCix/b52te+RkOHDqVly5bR+vXr6cILL6S0tLS4a+w4DuXk5JCu616fuXbtWtJ1nQzDoJaWFm/fRP3hf//3fyknJydOF3nttdfIMAx6//33iUjGqxRC0HXXXUfLly/3xiL/8z//48Uv37p1KwUCAbrxxhtp3bp1tHnzZnr88ce963bDDTfQ9OnTadeuXVRdXU22bdPmzZspGAzSjTfeSJs2baINGzbQl7/8ZcrMzKR9+/Z12yZHChYHjwOQJCU4fGnBiYi2bdtGF198MRUUFFBKSgpNmjSJ/vCHP3ifL1q0qNty/Pz5z3+mk046iVJTUyk/P58uvPDCgwpwh1scbGxspLy8vB7FQSKir3/96zRw4EDaunXrxzo20z9pamqiW2+9lYYMGUKhUIhGjBhB3//+97sE9v/tb39L4XDYE9USSZaSHkCPL7ejKQ4SEf3ud7+j4uJi0jTNO24ycfD73/8+jRo1ikKhEGVnZ9OsWbPoL3/5i/d5dXU1feMb36CJEydSWloapaen04knnkgPPfSQl2Dg2muvpYkTJ3Zpx23btlFKSgo988wz3Z7bP//5Txo1ahQFg0E6/fTT6emnn04qDib7WblyJRHJRZIbb7yRcnJyqKCggB544IGkCUkONkn46KOP6JJLLqGcnBzvGLfccgvFYrG4/crLy+nCCy+k1NRUSk9Pp8suu4wqKyvj9nn88cdpxIgRZJomjRkzJq5PZvonifdgRUUFnXfeeVRQUECmaVJRURF96Utfoi1btsR9r7Gxka677jrKysqinJwc+sIXvhCXECcZn0QcJJLP3ZQpUygQCNCIESO6TDp6Ege7G3OofmjZsmUEIG4xpafxRyQSoSuvvJKKi4spEAjQoEGD6JZbbomb6PzmN7+h4uJiSk1NpWuuuYZ+/OMfdxEHiYhOOeUUAkD//ve/P3bbMMzhpLt305133knFxcXee9bP//3f/9GUKVMoLS2NUlNTafLkyfTEE0/E7fuzn/2MRo4cSaFQiHJycmjOnDm9uu+PtjhIJBcpAbA4yBwWPu67tqysjM477zwKh8OUl5dH3/rWt+LGf8fimVq5ciVNmjSJgsFg3Ph9yZIlNGHCBDJNk4YMGUIPPvhg0u//6U9/IgB00003Jf38qaeeoqKiIgqHw/T5z3+eHnrooS7zDTV38BtM3HrrrQQgrg1nz57do2aROHdKT0+n6dOn05IlS3psg+bmZvryl79MKSkpVFhYSD//+c+7TURoGIY3trBtm7Kzs2nmzJlx+/n1h61bt1I4HKbnnnuuy3FvuOEGGj9+PHV0dBAR0RtvvEHz5s2j7OxsCoVCNG7cOPr2t78dJ+ItX76cTj31VAoGg5SVlUXz5s3z+qytW7fSzJkzKRwOx+kcr7/+Op122mmUmZlJ2dnZ9NnPftab3xxtBNFRyDTBfKpZuHAhhg0bhnvuuedYV4Vh+jSLFy/G4sWL4xJ9MH0Xx3Fw/fXXY+nSpVixYkVcTBWG6evcc889KCsrw+LFi491Vbrwl7/8BTfccAOam5uPdVUYhklg2LBhWLx4cY9ueAzD9J7j6ZlavHgxbrvtNs9Vtq8yZ84cTJkyBQ8//PCxrsqnCo45yDAMwzBJ0DQNTz31FL773e/2KvMywzA9E4lEsGnTJjz66KOHnNGPYRiGYRiGOXJw+iaGYRiG6QZN03Drrbce62owzKeC//u//8PVV1+NU089Fb/61a+OdXUYhmEYhmEYlyNmOfjYY49h2LBhCIVCmDFjRpdslMynh4suuui4MJNmjh78/CdnypQpXsZbhvk0w33AsWfOnDm46KKLjnU14rjooovQ3NyMpUuXYsiQIce6OswRgp//45vbbrsNw4YNO9bVYI5juA+I53h6phYuXNjnXYoBYPny5exSfAQ4IjEHn3/+eVxzzTV44oknMGPGDDz88MN44YUXsHXrVhQUFBzuwzEM04fg559h+jfcBzBM/4Wff4bp33AfwDDHL0dEHJwxYwamT5+ORx99FIAM6l5cXIyvf/3r+N73vne4D8cwTB+Cn3+G6d9wH8Aw/Rd+/hmmf8N9AMMcvxz2mIPRaBSrV6/GnXfe6W3TNA1nn302Vq5c2WX/SCSCSCTi/e04Durq6pCbmwshxOGuHsP0S4gIzc3NGDRoEDTtyOUhOtTnH+A+gGGOBn21D+Dnn2GOPH31+Qe4D2CYo0Ff7QP4+WeYI8+hPP+HXRysqamBbdsoLCyM215YWIgtW7Z02f+BBx7Avffee7irwTBMEvbs2YOioqIjVv6hPv8A9wEMczTpa30AP/8Mc/Toa88/wH0AwxxN+lofwM8/wxw9evP8H/NsxXfeeSduv/127+/GxkYMGTIE21dsR1pqGogIRAAcggAgIKAJAeGqng4RiBxACOi6Dk3XQATYtgPLdgAAmqFBEwI2ObBiFmzbkeVocjsRwbFtAICp6zANE7qme9uJCEITEEK4ZduwHd92XQACIJCsoQCEkPs7jgNySP7r8+AWEPJ8hIAmNECTqyOOLfeFWz+hCThEcBwbtu0ARNB0XdZd07zjqB9A1oPIcX86jynP1z1ndz8HcNtY1h7u/kII6KpMIrcOjvcj3PY2DQOGYQAQINuB7diyfdwfVbYqU9Vb0zUIt/7e8Umdu6++7j4KIoLt2HBs2a4ggiY06IYur7+6L0BwyAGRe4/IRgcJeMcRADQhYOg6dKFDePVw3Ppq6qAgcu8ZeWU621yVC8i2BMF2HDiOvG9J3gzuuegQgLyWVgy2bQFEnfei9yMghAYB4Z6DrK+/TQFA1+U5e9eeANuxYTm2PD9NXiNd09HS2oIxc0YhPT299w/nUaK7PmDPnj3IyMg4hjVjPi0kRs+IxWLQdR1tbW1oaGjAgQMHsHPnTmzevBm7d+9GbW0tmpqacODAAcRiMaSmpiInJwc5OTnIysrC8OHDMXz4cOTl5SErKwuFhYXIycmBaZrec+k/turnFP7++mjR1NSE4uLiPtcHdP/8r0NGRt+qK8McrzQ1NaO4eHKfe/4BHgMwzNHgeBsDlJWVec+/Gkf1hkPZ9+PS1+rTl+hrbdPX6nOsaGpqwrBhw3r1/B92cTAvLw+6ruPAgQNx2w8cOIABAwZ02T8YDCIYDHbZHkhJQSglFQ4RBAGaJmAIHboSjCAnW7Zld4osmpACjK5JcUWJYAQ4rjAY02NwbBtCaDAMA7orJpHjeEKN7oqGwhV2AFdQIpLCG+AJQkoQhJD6nhLA4sQ6QrwAlijE+URKy7ZhW7Ynvum6DgHRKQw58niaJkVSJShBCJDjeHUEObJOmgbNFZCQROiTAmfn8W3bdttHtoOu69Dc73rini7/diwbMSsGx5YCnREyoGmd5Vi2FPEcV2zTfNdOiV7qPJWoZ1vyHDQhoOsGdN09ntvWjuPAsmw4lhLKHJ/AJkVj4baH94Crc3d/yL2eBIJG7nVzBWglqGqaBl3XAA2wbQuWFQPZjjxPTYcmpNCn7geH1P0A7/gOEWxbtrf/esIVe4mczjYVGtwCXXG3Uyz1rhMEdF2DrumAgGxbxwGBXKFSuPvbIE8cNDqvIXDEO71Dff6B7vuAjIwMnhgwhx3/AkRWVhYGDBiAkSNH4oQTTsDUqVNRVVWFmpoa7N69G9u2bUNlZSWam5tRV1eHiooKaJqGLVu2IC8vD3l5eRg8eDAmTpyIUaNGYejQoZ5IqPo7wzC8Z1nTNK/fO1YDkL7WB3T//KezOMgwh5m+9vwDPAZgmKNJX+sDunv+09PTP/HzfzjFnsNR1qdVfOprbdPX6tOX6M05HXZxMBAIYOrUqVi2bBkuuugiAHIytmzZMtxyyy29LycYRCAUktYWrjjiEAGCIHRA0zVoRCBBsEnAsmxQzAGE5RPoNKm3uKIPCDCFBs3UoRsGDF2XlnkOwbYsT4QhuMdShh6uoOQJgr521VzrMik4OZ44I9ApVAnX0lGJbH7xzHZsUMwCIKDpGgxTRzAclCKbQ3BsWYmgGYAmZFtaMSmQ+W1hyHFcizUpxhHIFdW0TktLAah5sW7o0KGDbAeWbcOypMCq6zqCoVCcpYt/Ims7NqLReAs2TZMimqNEOl1a8gUAOE6n1VunGAkETBOGIdsfjrKYJEAX0KjzmERALOYKjZ5Fn4Bu6DBMQ7YpxR8DjgOhabBJlukQpFBmGPKYkJaF8JWnCYDgwHHkedhWFNGYEjXlOWm6LtvZtmGT5X5Xg9B09/pqrlDoin8QMAwBCN2zYIzFYrI8935wHELMskBu2yuLo2gshmg0CiKCaZoIBIMwdB22ZSFmxeQ11HUEggEp/rr3geM4ILvTwlPdG+QTRI4kh+v5Z5jDSaLlYKIlXyAQQH5+PrKzszF+/HhEIhHU1taioqICNTU12L9/P9avX4/169ejrKwMZWVl2LZtG0zTRFZWFj744AOccMIJmDJlCkaOHInMzEzk5uaisLAQ4XA4bgFE1efTOOgAuA9gmP4MP/8M0785XH3A4RgjHc5xVqfBz8cfv31ax318rT5dHBG34ttvvx0LFizAtGnTcMopp+Dhhx9Ga2srrr322l6XEQBguu6xthLr4Aoslu25DBMRyNBgmEEIIV0ybctCLBqDFe2AgJDiSiAQ5+olIKQLKDlwyIYtHDhCWtsJDdA13bUe0wFyXUFtG2Q7gHtsZcWlaTocx0HMlu7MEAK64VrI2VK0s23bdYGmOPdaQ9MB14UZAARJsUwKiI7n7kw+6z6CA6G5++uQgilcz2SpfMEm12LS5wbsmVGSA8tyBSPXQjBgGJ7Fo99iTYmAqs66rnvtqfbrtISR9Y5ZtudKbSv3XwgYhgHTkLecHbURaYt01g0+l1zPck+HoevQdCnmaq57r23biFk2NMCznhSQgqcGXba3O+/XDQOmpnv3ihWNeddfWhK6AiZIWl667sCa0KHrpizfrR2IQBCwNep02dUNT+RT18t2rfkAwIbmuZlrAiBNAOTAtuxOy1G3eCsaQ9SOAO49m5Ga7roNS1HXsR3ABgRp0rrQhnw2XMtZIlJGrLJcobmWkPIcjxaH4/lnmCOF6m/Uv37RzjAMCCEQCAQQDodRUFAAy7LQ1NSESZMmYcuWLSgpKcHOnTtRW1uLhoYG1NfX46OPPsLevXuxYcMGFBYWIjc3FyNHjsSJJ56IMWPGIC8vD2lpaV7/quv6p1og5D6AYfov/PwzTP/m09wHHMlxW18dF/bVeh0MvlYfjyMiDl5xxRWorq7GXXfdhcrKSkyZMgWvvfZal+CkPRGLRhHtiMBxXS8N3YRumBC6BkcJRAkx2DRdh0ZSRDNMaRloGFLM0nQNtmUj0hFBLCatCw1TxsvTTMONBedahTkObNuCTvJYmhv/TdN0+bs0A5MWazEbjpDuYoFAAEFNgwNpYSdFIjn5NFz3YPmfQOd1E67opCCQZYNckUe5PYOo0zLQZxXmOI5nlaJENL8rtFeqsookGUdRiVhCCJCmAa7rm3/CrOLZqeOo9rFcSzdlZQlXfJJushpM04QZMGGaATi2g1jMktcrZsGyLE8YNU1TedJ21lUAEDLWot8azrIs1zJRWmtqmg5NU27frpjpiraGG/cLmrQ8VHEcNbgWQ64lnUOucEsqfqRPkBQCGgkIV2RVLsPSbJTgOIDtOEAs6mqMwnXd7bR4VK7ZKnah5/INuIKjssgUbjxEzYuVaMcstMUsz8pQ16ULvGGYngir2ty2O+MkqvtA0zT3mklh+2iKg4fj+WeYI4GKA6tEukQLaaDzxWqaJkzTBACkpqYiKysLRUVFOOGEE1BeXo76+nrs3bsXmzdv9sTCbdu2Yfv27QgGgygoKMBHH32ECRMmYPTo0SgqKkJGRgZSUlKQm5uLtLS0uD42MSZhMmvH44Wj3we44T2Y4wC+Vp92eAzAMP0b7gM+Hn11nNdX63Us6attclisOClxBnKMaWpqQmZmJqpXVyE1nCqTTwAwdKNT5POJg0r48MdxUvECNVewUe68fmHNL345jgPLtmA7MtadpmteHDgB18UV6HQzdsUl2XLuQFeTJofkJRDpjBVHXvILzUvyQY5vu65LixU3HpVDbhITUJxopgQqL2aeJ9CpcHqd9SWiTmsyn6im6zp00Wkp435BWtBRp2tuXIw8ICEZRqfljXcTunopKD6RiL8d1HcAxP3dU/wtf8IS/zZ1TFLxHP3fF4BfbgXk5ZFxGuPLdFxLRemyru4XDRo095r74vjBTQLiWj9aloWY645tGJrnpi7FRAdCoNMaE/DEXaU2CpUhxWsHJSSqJDmOJ/r5zzuxTaRVp3CPrc7JiZuCNbU0oWjmADQ2Nvb5GD6qDzge6sp8uolbYCHyrAhbW1vR3NyMPXv2YMuWLdiwYQO2bt2KiooKtLW1ueEDNOTk5GDEiBEYM2YMBg4ciMLCQmRlZWHChAkoKipCOBzu0vd1hlSIP/YnjVN4vDxXnfXcyTEHGeYw0dTUjMzMEX3++QeOj74qcUzLMH2d4+G5AjrrWVdX16fryTDHE01NTcjJyenV83/MsxV3hyUAR9O8xB02OXCsGIQtlAmXm0xCB3R4QpgnhrkCkQVy3VolSrgiIkQiEW+boRswdemSHO2IghwHmq7DNA0YuqmyjUirQU2TPz5xDkJ4iT80173T754LN9YelDinkTJCc11+pbuvEjQd0Wnh58BNWuJatCmB0HGt5kDxQhgReZl3VZINKWAShPsr4LP804QnEuq6TMShEpgQXMs9V3CS9XVdVpEYy0uKpCSEPDcBQHPdaqlTsJNWdq44hngrmWRatRAyZqAUIKW1n6yHr028JlSuzE5nbEJDd+M1SjFZnYRwr73utie57txkO7CFEoWFZ8momtqK2m6yESlMy0TTuht7UACuYK0sLb2Yk7oGwwh0ETelSzK5CVwsEMhLBqNrhidMS6HZTYrj1g9CxtSMWfKYqq2klWvnoFXT+uyj3q/hCcbxgbo+uq4jJSUFgUAAaWlp0lo8GPQC5w8ZMgS1tbWorq5GQ0MDotEo9u/fj0gkgt27d6OgoABpaWloaWmBbdsYMWJEl0Dc/oUf5fLM90dvOFwWaYdSDlvBfTz4WjGfDvqqaxnDMAzDfBz6rGJg2TZscjxrLpXQQ6BTJFGZXT3hRIlXmpvNV9eh6W72Wvd7tnI/JUcKL9QpUoGk5aCKi+fKWK7IJkUqm8hzGQbguXBqmhLLXPdby/YsAwOBgLRGEwBIxjrUNGmdBtfNNxqNSTdi1zJNuaTK2H02bCsmXXINQ7rsGtLdTSY2cbzaunoR3MaBIIIgeYbSlrJzECMEOq0cpSkbNF245+KKW06nZaISPwXiYxMCnW7IMlux8Kw54QqJjqNi36m6qtaFJ0T6szzL6+mehxCe6KULle1Yxne0bNttT91rO11zpMjmEARZsGM2LKgMweRZ9KlYhVBWpoab+Rmy/pbluph74rKQsQg1AROAoenSXVfAFSBlFuao5bju0wKBoImAaQAkE49EIjHpau6zEpSWi/BEbEFuJmJbJpWRrs7SklXFNpRu0Z4HOYSmwdCVmAlPkFS/60affdQZ5rhB0zSEQiEA8rnKzMxEcXExTjzxRMycORPNzc2oqalBeXk5ysvLUVNTg7q6Oi+BiQoBsXLlSsyZMwcXXnghxowZg4yMDM9KO9FC+FhmNu7bJIo9h6uNDqWcxH0/jgB1vIlWh+Mc+VodHY63+jIMw/Rv+tqCQ1+rT1+ir7XN4apPn1UMTBgy5p8SmeBIizQvcYRM1CE0DUJ3XYQ1aeElU3ZIIc+yHThWvLUYNAHHlsIaCDB1HQHDgKEbgEOeC61ty8QdgAPdF8vN0DQYKhQg4LoIE0i4cQDJ6bTmU0IXHBWm0Iuz58XV013hEIADgNxzgxDQTROaMOV5u5Z+RA6isajnimrquiuiKjFIHoDc+IAxK+bG3JMWklIAc+0PXfHO0AQ0Q4duyjZ0iBCLWrAdC46yfhMCuuYmBxGa54Ks/pWWa1Lw6vTBVqcipICma51x/GwpotqOcldWFnOuSOdzQXZsx0tKo6wcSQnBbiIaTfOJoyTcuwAQGiA0HZpmQgjhZlyWMS01ocE0AzB0HbGYjVisQ8Y3hOsSrBtScHTFOTgEqKQpQoNhanCIEI1GYNky2Ylm6DADAQgBWDEbsUjUDaUooAvdi2EpXPdhcuQ943cRV7EDhXsfx6JRKbC67Znoau1l53atHUnIlDtwr5uj9anoAf2SpK7xTJ/Gf538v6vnTwiBYDAI0zSRk5MDIkI0GkVLSwuamprQ0tKCiooKbNy4EVu3bkVpaSkaGhqwd+9eLFmyBFVVVfjsZz+LGTNmYMCAAQiHw0ktBtnCNBl9sS0+Tp364nn0xKflHD8t59ETx1t9jw4Hi6aU2NcfbJ+Pc9yejsH9PMP0X/ra89/X6tOX6Gttc7jq02fFQY0EdEe47rFS+NFdEUyKgzpUTlgSMmurIAdwhCugdP5fWYcpAU2JXKahXHIFHAjEbFt+briWWg7BsaR1mm07Mr6cisXnWpiRI91ciZxOYU4TXnILL14hoALkyW1upmNduQmrOIrRGKxYTCZicRNRaFr8xRaQiUo0TZYhNClQWrYFy+rMLqwyDIfCIQgSrhWcdBHWhLKsFK6wKq0wbduWbrOuEKViDyphMmZbsGzbs0AkkHuemidQeYlCXDdgx47PfKzOQYMsO2gGoetSsJSJRexOC0OfFU1nM5Lr0u2KsJqQ4p8u/4zZUcSiMYBk9tGAHvDOwXHkPRIwgjD1oJdVOebEIIRAwDQRDAY9y0VyE4SQ7cB2z1e4lqpwALJJynyagKnLBCuOQ3Bilm9C77rHOwSLbIAsaXFIJCMbasJzAZbFEiwrJsVP917RdB26mzgHiE8Y47hWiZZtIeZaUgrHtZ7VVHIS+xM9j32Bngb0fa2DPhh9bbWpL3A8Xd/EfsmffTgcDiMcDiM/Px9EhDFjxmDKlCk4cOAAtm/fjqamJuzYsQMrVqzAf/7zH2zatAnr1q3DGWecgc985jNIS0vz4rQqa2rmcMFuqMcPfK2Yw09PIWyATovtZN/paZ9k5ST7fmIirO7qyP0+wzAMcyzos+KgcjxVrqgOAZbjSKFECAhDune69lFQiTwc23UbdV1RdXKzuro+mNIgTSYEsUlau5FrPSddTTvFHMchOHCk+GQYMFyrLCENGT1h0bPaci3XpEsugWxbxtzTOzPWgpSgKWCDYJPrNuwmnxCGBsMMSndj16rOtuVAQdM1161WuguTl5RFHk9ZnwG+2IpKfAS5cfJcQU3XoUG6FVvRiLTec5NoKDdfwLMv9OIFei6rwj196rSUJCIIOHANMn1fdp2aNZ8VjGsRqgRD25FCa8yKwbHszniBbkxBOFL8Va7GJAggx7OodCwLlhOT7sWGBsMIy3vHshFxLfek1aR0JbcsS7aFkBN7mYRG3Xsk21loIAJsx4JtW65g68aW1PTO66kGeSomoPuvEJrMhu26C8pEM7KtNN0fH9CflEWoKvgsRdXj0JlsR9738n4nALouoOkmDFJitRQtdV0Kl4bGA82+QOKgnycAfZeerDySTfySXUsiQjgcRigUQl5eHkaMGAHHcVBVVYUJEybg3//+N/7973/jhRdewJYtW1BbW4uTTjoJw4cPR1paWtxElu+VQyBx3i26/NILRNdyEoqg5Jt9H5DKOeV9TknqkLRW1NOHfYUklexJMxFddxEHvVbdtnIvtndHtwc9BvSluvRPDiUvY3fCYeJ7vbv9ukvOl1jGx6nbweiNqNlTXRiGYZhPP31WHKRoDCLkwNA0wFAx8MgTAeG4op1wM8TCFfMsCyAHNmT8QF0I18pOWrfJGIJyOKaB4AjptukQYBNg267yJ6hTEIOSKt1stpqAZkiR0EGnIOQo8coV8iCkICTdejutBpVwp9xL4R1S82LwEcnkIcJNMqG7Ao8UhGxEiaRloWFAN3UZV9CxZTxFV4jzhEQ3PqNOgBBK1BKALSAcwBAGdGGAIOMkupKU5worhAbobtxGoFP8gnB9dl2rREuJd66rr+iMIai72XQ1IUDkwLJsWHbMbTMbgmR7KeFNuO3gELzELCDH2y7cnDC6rsHzZHYH1YIEQEK2p6arqkvBzU06AiGgG5or9skybNcN27Ztz6pRc93UbVeIlKKcVD29QxI860hBsr100xWMXYFbZtHWAV3zsh/btg0nJu0RlSuxbkirVOEX81yBGyQAzedyTaLzntSlBaJt24AdkwlKiEC23N+KxQ7r83m06TlhTWdstoOt8Pv/PpSBcmKZiXU52LZEy4HEc+spW3ciB3Mx7e6c+oIwebD2TtZOKoFUb1xru4vR19094N/Wm/olQ7kAd3dvOo4DTdNgmiYCgQAAIC0tDfn5+Rg+fDiysrLw4YcfYv369aiursa0adMwf/58nHzyyUhLS4Npmkndi48nS8ujCvn/FfDiWCQTpjwBUMR/Uf2ZTJci4eqGbpgT+AUub7nSLcm/tObGhPX97f3f9/3OwsjbTnHXkzzL/e5PPhHh+5d8u/nEPYrfLXH8E1/Hzm/L8B3q3NyakddYnf96hxbu+Qh3sxNfe3cs4A2M/PWIOz2R9Nee1Un/Pt2pr4fStqL7z737Ktk+5Nvsr0f3x6C4fRP36MfP+2EgMSnewfrPg1kfJisj8d3W3Viluxiz3YmLByPxPdpTvRPr4v+7r8Ou2f2DZM+V4yagPJRnwu+Z0Z2nhj+mvvpe4ri+L91nqk4qfnXiZwr/OQNwvcvkHFbFxT6cixKHC38fqbwRAXmd1DhZ1VudSywWg+HmcbBtG4ZhdOmLVTn+6+/vi/2ejD2N9w9Wd1UvNSfQOi2SvPBs6tr576/Eevnvy487jz0YfVYcFESwYzFXlIEXV1DTBGySrpQgAU2HzP4rBDTS4BgaAAe6gBTxpGbiWpFJ90tpaQcA0h0VrpCl6YBuApopXFddwLaFtM4i6cZKjoOYayknQJ54JuMHaj7xSgqasKS1nm1bAFwrNdLcJCFu/DkBGLo7gXHUAJgA3QAZjpxsCEda9rltIc8SsB3bdSV1JxqatC7UNQ26kAImOcqS0f2SK2CpRC+qbyOhS/HRHZAL4Rt0kvDmDiTNBz1BTt6YssE8Adets+poBAkIm+DAhkPyR52TTQDZjnsMASIp4koLOQ0GBAyDoBHBcSxYjg3YDgxNh6EZ0A0dDuBaiEJ+n1zh1bVyBNykHyAIjWBq7jUmB5ZtwbHlZEE3dRgBwxVu5WVwSArRNjnSfdt1L9e8jsIVQIUGaNJlXdN0yMQsnZmTlYUpQHBsmaFYExoMQ1o7+t8xMjmJsq50LQTJdfHWACHkPSz367QQlM+OjG3oZtsBlMXip4TEwbFt23GdbG8Hz73pUP2DiIN972BuQqpOPU1C1Esj8TvJsH2xQNWL3u/umvg9/4s1sb6J53g08beHejmqc/PXKZn1nv8FeiiDw2THT1Z+svK6m7j5BxA9XQcAME0TWVlZOPHEE5GRkYEZM2ZgyZIlWLNmDV599VXU1dVhz549mDZtGkaMGIFQKARN0zxLa6NfJRjyq1aHghKgEoXBZOUlilk914d8Qo6KHxtfluP+JJbYeezkZ9UpyankUl35uJMRv1CVoHyqP0kAGnXf5ATEvag8oTLx/P3CXefIwVcICG7sY/IpscLfqv6DwlfGkZiM+cs93MfoQUDsUgfmaPNx3xkHswDs7TghcTKa+Huy7xxKPf2/9yRY+uvyaeBQRVTm+EA9e35B5+OW4//X87ZLGI8mG8sljuGPlEj4ccpNPC+ZHFOLE8WI5DyWiGTC1IQ2TAzrdaxRghrQ2SZqWzAYBNAplKn7Ql0vtV1d28Tr6BeF/UKg//qr8ba675IJsD1dK/88xS/KqnNQwqZfNPTfd0SEWCwmQ9q5IYz8bdPTfOXj0mdnGGQa0EIhGZNPuANFIaSo57rgkgMAGmx3JV+51xLZiMKGcN1kNQ1efD49ZMDUZKw2uAaItiMzEDsOgaKAsFydzpGJMGxb3ZgyZbFuyBhwEIATs1xrPXhimzwB98WkAUFhALoOy44h1hFDhxODoQcQCGgQ7g1mk5zE6FJfAshxsyJbgHBvXsOEbsg4gZoQrjjouLEGLTcTswVbKIs5aS0JoQG6G4tRSAENQmZxJtEpHkK42ZJ1eVs4nigFyIF7582q/tXcj5TlHDkEQ3fL0QAiacnmWG7CDUHQdMA0dGi6AUcAlu0gZhMc0qAJA4AOKTrKxDFtMQd2jODYgCATuh6AYQg4uoBtCxnLzyLEorbcB4CmA8rW0U1i7T5AgGEKhEIaTKHuKeElXdEhs0g7toNYTArJ0qIvANPwux473oNtO7Z0aYcUR2Mqu7GyYNR06JoBCA26JuVOnQSEa6lpxwCyCLouoBtSzHQcaV3puB2Xrsvvy3rZcr4rOq0ILccVWD27T/8URwrqxzv+wV7iwCDRIs7pRgz1v8x7c7zedLg9CUiJFgLJrOHUqp1/28Gs31QZyX5PrH932xLFxJ6OfbhIbPvuLCjUC9KyLC+2ZuI+6l9VZm+Fs+4mRN2tHh4M/zVN9ll3wqumaUhPT0dBQQFqamqQl5eHYDCI2tpalJeXo6KiAmPGjEEkEkEgEJD9k29V0fEtOiSey6drYnSI5+DqgQnmbuj8S/WKonNRLaEIUuXA148Kf218JZHjLui5JuxCdP5LgCCjyzESlgR8oqXPXk8Ayjo82beS4xPakkK+otz9SPMJePKYclUx8ZBCjiVIvnMB93kWnV/xIj4L8h3NN3boVCHl+Mw9/7jTkwGQ3U3uNXIvgDpO9+Juss+StUeioJmsrG6O4dcqcbBFN0qyj1+UFYASSeOsCRXdTXxZSOyOZAtxit6Ib6pv7c5yJHEhym/Fot7jie+s7t5z/rokTur977Zkk/XeWEsltoX/XeQfIyUuSCaODY4mie2UKLr6t/fWgqa7e0G1SU8LwL05/+7et90JyIfSpskEKb+gkXjNerrvPw0kepL4x0S9RY2lEoUeNQb0/+63qlNjS8vqNPZR5R0JDrVc/3kpownHcRCLxTwLOsMwPE8Wf1+nDHlUX3asjAW6Q4l0tm0jFotB0zQEAgFP/FR1Vt5/oVAIlmXBMAx3Pm1BCIGOjo64HASqzdS5q2OpdkzE316J9eup7upz0zQByHsoEokAgGfZqMpMvL9isRg6OjpkDgV3LuB/7xyJ2OR9Vhxsi7YjZIdhmAEYhrQCU5qLJnQQ6SByFXAv5h1c8c6ErpvQdDVpdBCzHLR12LCiEViu0AS4CUo8t2MZg89x7E5rO3e8JjQdhm5CMzQ4thv/TxfQNSBgArqAGwORpEAXs2BZMdhOzMuyqxkawmYAgA7LctDe2g6gA8GggXA4gEDAjU3nALYlxTGCJs/NnanEYjbsDilGAeiMV0cCwtFA7mBTQIcDDbYNN2MxwbZl2Y4tRTfZfq6Lj+upqiwt5Ygfcu6gki+TmkrJf5Xnq2EIhIICoaAJ05BCWywag2Xb0DQBQxcwDNc92R2TE9y4jw7gkIAVA9rabbS2R9DY1IHammbU1zejob4JLc3tsKJylUODgGkY0A0BCAcObBCpSYYASIdwdIB0ODZgxSxoGiEtLYzs7AzkF2ShcEAWsrJTkZ4eQCgoJyIaSNbTlAlVLEuAHGkNKW083UmJLeCQDcu2EI1GYVlRQABmwEQgFHQ7XvehdRxYMVuKtrDde1RaFBIBDgQc0tzzIpUIGboOCHeFQCdlTSEzXgsB6I5w7TU6M2Hb3oBBvswMXYdr1AgCEIj12Uf9kEgcAKlBkn+wkEzcOdgqfKJolrjv4Rjc+ctUlnHqd/USUyt66kXR00pU4iqXbdudlrrdrI4lE5KSuVQcC3FJvXCVIKgmWuo8/dc9cbXW/2JNRm8EYTU4ONhqbU+TT/V5d5NI/+fqpZ6fn4/TTz8dxcXFmDVrFl5//XVs2rQJTz75JFasWIG5c+fivPPOw8iRIxEIBOJcPz5Ng/7Dil/88m3s0lqU8IvwfyTgCPke1uQbC0q8U0bZ8V9yY+F6f6uFQscNdeHuLQRIdJYnhbPuBT1lp9i9wEW+f7uB4Ptc1VNViGT9vLr7xDECIPyuvY4U77xC5f6iy7HJG0JIp2PXTpD8dobq/J3OmgkhE8tB6xRchea2QaeARgnHSy7x+k69y0bpldBZAPn29v+eOEHyt3mi6JdwfE8gTVRZ/b9r8XclEdAlCKP/W/7rzXxcEgU3//tEvSNjsRii0Sja2tq8H/8ClJqoGYbhJaFSEzd1jLiFdHecot73sVgsLkmfEhVV367+VSQKgYl/9zRu8Y+X/KJgopiUuDh4sHfh0aA7wS1R0EtmQdObRb5k7didkNjT9xPb1o/fWiiZgJe4yKfqkWwxFehZzD0Ukex4g4gQjUa7jGX9C9u9JVEcVqJTOBz2rqV6HiORSNy+wJF16fykqGfDMAyYpgnLkvNV9ZnfIjISicC2bQQCAa//6mvCIND5LLe3t2PPnj2IRqNIS0tDMBhEfn4+bNtGMBhEIBBAR0eHJ76Fw2Gvr1XJRtXzqO4ZJb7puu4JdX4vrlgs5s3RlLjX2+vuf479Zao6hkIhT8D1u3Sr+xGQImF6ejo6Ojo8kVD1I6o+h5s+qxikpQURCGpw7CgiUelSqeLbwXXFhQY3m7EjLbe8zldH0AxA1zREOhy0NFmoOtCEPburUbG3ClWVdWhpjUCDDt0wvMzC0ADHjdsnL6gGFaPPisVAcBAOB5GRkYa8vCwMGpiLgvxM5OSkIj01ABs2yLGg64Ch6wiYGsgxYTk2LMcdYBMghA1dJ4Q0edPohhxcSwGPYDnSMqwzQ61rQmsTQNIVVVcZbjWV5ZdAolMw1DVdurgKAUGEttZ2VNc240BVPfbtr0VNTQOam9vQ1tYBgqxvZ2cpBVhN6NCF7i6Qu7EVpS+rvAwg6AJIz0hBYUE2Bg7Ix+CBecjOTkM4HEI4pME05GCWSMYYtG1LWg+aBnTdhGFqCBoa9JhAeySClpYo9uxuwvbtFdizZx8q9laiuqoOHe0x2JYlLRMNHbouQLBc8dWN2wcBAQNwDAhXHIxGo9B1gYK8LBQVFWL06GJMmDAMw0cMQDCQhdQUHQJqxcCGE4vJKYGuIRSWIrQVs2BFO0ARguZ2DgEjAE0YiOkBz7I00mYhonW6Q+q6DjNgIKRLa0CCI8VZB3B0AWELNw4kPCsEggMLMjmMvAelOCnUTr65ieNATjKFgCncxDcgADaIZLZj+TwICBE9Go/tEYdImle3t7ejra0Nuq4jIyMDoVAIQghEo1GvMzZN86AWdclWqdUqk38Q4O+MAXgrNupaJxtgJg7k/QNHKSxbaGtrQ0tLC9rb270XR2FhIXJzc7sMdBLrrF5wahJDRDDdbNv+lxqAuBdI4stKWTz4Jz3+4x0JEidOtm2jubkZHR0dyM7OjlvxVKu2iddNrf75X9jdDWy6e5Gra62ut3/w15Mw6xelAXgvdeWikey+8p+3bduIRCKIRCLQNA2hUAgjRozAkCFD8JnPfAarVq3CH//4R6xZswY7d+7E+vXr8dnPfhannXYahgwZErfymUwUPdYTumNNF7Gq23Fc90KMkr2837xrmmQC6MUoduA30ibVLxBcQYq8Uj3XY//kT6jauwtAIpkM1ClGxgtZPXEQAdF/EPLXUY4HpJhoubsKt55uSA0IJFrA+XpCqLvTa0+S+5GQcU5IdMZg9GIdU2f56ixFXLnJzu9QJmkqULG/TZKVoa51ohAL33b3X/+F70bgiy/LL8RSwuf+bU6Sz5juSHzvAl37/2STen8f3dHRgbq6Ouzfvx+7d+/G/v37UV1djfb2dm/xKhAIIDc3FwMGDMCwYcMwdOhQ5Obmdpk8+kWIWCyGtrY21NXVobq6GvX19ejo6PAW9kzTRHp6OrKyspCTk4OMjAykpKR4C4X+cYRfIFLbkllRxWIxRCIRRKNRRKNRT5D0iwf+f/2ih7+djtY7pSeRK/H9rNqjuzomCnDdjamS1aEnsfVg9U52vyWKWYn3abJxaaJ1aHcipv8eUyR61SSr1/GIsoAD4IkoSvjp7T2qnhk1dgbkGFm5d6rFZvU8tba2IhwOo7W1FUSElJQUT1TqaRH/SJJMDPUvcEQiETQ2Nnr9CtBpgRaNRmGappcsT42zlQCmFuf7CkTkiX3bt2/Hv/71L5SXl6O4uBhnnHEGTNNEc3MzhBBIT0+HbdvIz8/3rqdhGGhra0N9fT1isRiEEEhNTUVmZmZc32rbNhoaGtDW1obW1lYAQDAYRFpaGtLT07154KE+R36hz/9cKkHWcRxEo1GEw2Fv346ODlRXV6OlpQWBQACZmZne/v5FqCO1KNBnxUGKEZyYFMsckjHshAA0Q4dhaDDMTjHPtmS2W811MxbQYdkC0YhAWwuhpclBTU07dmyvxIaPtmHbtjLU17fANAMwAwGQG/uOhPzxhoskrQZAAjLsnIBp6DB0gfS0MAYNKsCQIYMxfHgRhg0diPzcNGSkh5CaasImAHCDZRIA4SYJMTTpFuzL3GuTg4jdAceS9YfQQUKDbRGiMddNwXNJVWKbdHl2LPlQe1ZlQnMdY6XlmxACGhGiHTFUV9ajdFs5tm4rR8W+KjQ2tqC1rQNCEwiYJsghRCIRxKIxgDSYZhCmYcJxgFg0hlhM+lvrmo6AqUMTMn5ffl4mxowehqgtkJqRjpTMNJiC4OgATHc4SxoMMgAbsMmG5diI2A40x0CATDgkE3GYRgCmEYQuTJCjwYoR7FhnAhRp5WlACJk8xrIc2A4gXEFU101omglN6BCWA00GNITtECxb/khhQVp8Ghpg2YRY1JFCnHCFz5gDkO0N+IXQIHQ5yYtFLRB5nlUwdAOGrkF3k9BYrtUgOXInBwTbsRCNRtw2FDD0AAzNcK3/IO84QW6b+p4DAES2jBcJgoCMj+kJhcqni6RQLoR0Y5aithSTQdLa8NNCa2srNm7ciLKyMgwaNAiTJ09GMBhEJBLBvn37sH//fpimieHDhyMnJyduIJE42PWLPO3t7Whvb0ckEsH+/fvR1taGcDiMAQMGIDs72+uQOzo60NDQgIaGBpimiczMTK/jThSmEgdtlmWhpaUFBw4cwL59+1BVVYWmpibPmiAQCODkk09GZmZmlwC7iS8ly7Jw4MAB7Nq1C5WVlbAsCzk5OZ7IpGkaSktLYVkWxo0b58Xm8JdRU1OD8vJyWJaF1NRUDBgwADk5OXGC05Ec+Kiyo9Eotm3bhgMHDuAzn/kMQqEQ2tra8NFHH6GysjLpSrmmaQiHw975HmxwmHj9iQitra2oqanB3r17UVdXFxcsuCf8940S94qKilBQUIDs7Ow412Z/0GQl4tbV1WHXrl04cOAAHMfB8OHDMXLkSGRnZ2P48OEoLCxEcXEx/vOf/+Cdd97Bu+++iw8//BBz5szB5z73OZxwwgkoLCz0VrkTrRH6tziYIJgljpkI8PpPPyJxVyn2SZlMiUkJ1mQESIHLBsGCIyyQCmni2svZkO8PzadDySrI/tnVA+OOqMYxGnTXws0nQiUlTt3z/e373R2HdJ5lvFjoTkfhWbN55+bAgYy3IiCt4KWtnw4dBjQyocGQ7xrhOy4BwrNQlGMUR1n+CQsOYtLyHypqo+6OXAQgDAiYUloUBgA5FvPO0n+cuH+TtYFA9+1HCT/d0SlRemIdwScCqnKVQJr4Pfg+V0JiolhLSURFp/OzxP3VfZzstPoxPfWBiZZliQtCSrw7cOAAysvLsXXrVmzduhX79+9HTU2NJ64pa8EhQ4YgEokgOzvb69uB+OQf/gXFSCSCmpoabNu2Ddu2bcOuXbvQ0NCASCTiLczl5ORg6NChGDduHEaNGoWBAwd6i5+qPL8g6LcE8lvbKyur2tpa7N+/H/v27UNtba0nRhqGgdTUVOTl5aGwsBADBgxAenq69x492ILnkaI3k9zERU0AXRZp1e89hQk52HghUYBLtNY/2GJiMkEycbt/PNLb7/v3TyYcHovrdrQIh8NxonCyxfneYFkW6urqsHPnTtTX1yM/Px9Dhw5FYWFhXHy+aDSKyspKVFVVobm5GVlZWRg7dixyc3M9Uf/j8EmvS0/fdRwHe/bsQUlJCdrb2xEMBj3rQMMwEAwGMXDgQAwcOBDp6elITU31xqcADskarafzOFz3nhJqLctCR0cHNmzYgFWrVmHYsGHIzc1FamoqNm7ciIqKCqSmpiI1NRUXXHAB8vLyvIX7qqoqrFy50psfnnDCCV7SP2WMsHv3bmzduhX79u1Dc3MzbNtGamoqhg4ditGjR2PQoEFIT08/ZHdyJQQCQHNzM9ra2hAMBhEMBj23aNWXtLe3Y9u2bSgvL/fmdkr0LCoqwqhRozB27Fjk5OR49T4UUby39FlxEGRCkAkNDoSQmYfVCrxj2YhYFtx0vnK1WahVMw0gHXAEbAuIxgRiMQHb1mE7BkiYgBYAaSZs4a6SST0OmgaQIC/WYDRqSdEIOgKBEILBAEho6IjG0FbTgNr6JmzdXoasrAwMKR6IYcOKMXxYEYqLByArKwVp6UGEw2qwKC3TZAIJG8J248KR6zDqDVpkfTS4OfwcaRlpOVIA9Ya4gqALguFmTiaSqrdDNmBrIHIAYUox0tSQEggiJRhCyAjCgAlh63CiQKxdWt3BdAU2GBCGATdUIOyoBUBAEwaCATX5lhOriBWBFemA2dKBhtZ2tHRE0B6z0GFbMGwB3QHIEe6Z2HLgq7txG10RU2gGoGuwY0DMdmM/kpw4kBMDOVGQEwGcKITjSNsBxwRgSLFWN6FpOhzHFZJtC7pGMDSZkEPTLeg6wQwSzABBNwjQCLZDiFkyQ7XQNBhmAI4dg2XHQO4AyzBMbwXFtmR8QF13hWnAW7FyLAtRW8a0FJpsG024Iettae0oBCFoGAjo8t4UboxJOTF0r7vwuW0LNTBR7uWAmpgKaK5wLedjaqKhAtjLTeT9LSCA2JExPT7aOI6DxsZGlJaWYteuXUhLS/MGyWrVZ82aNYhGo16w2vT09LhgtED8ajsRoa2tDZWVlSgvL/csBsLhMIqLiz0rPiGEJxxu2rQJZWVlyM7O9gbxqvMHuq7mqJWvuro67NixAzt37kRVVRVM00Rubi7y8vK8F3d6erpXhnphJA72YrEYdu7ciZKSEtTV1XmrmBUVFSgvL8dnPvMZjBgxwrN6GDhwIAoKCuLKaGtrw7Zt27BmzRqkpKRg9OjRKCgo6PaY/vP6pCS2TzQaxd69e9HQ0OCdd21tLT744AO0tLQgIyMjztVYvRBTUlKQl5fXxU3gYAMn1V41NTVYv349PvroIzQ3NyM7OxuhUOigLt3qHJTlYmpqKjIyMpCZmRlnVQrAsxBtaGhAVVUV2tvbsXfvXtTX1wOQ7gVlZWWorKzE6aefjqysLITDYUyfPh2jRo3C9OnT8eabb2LVqlVYvnw5tm7digkTJmD27NmYOnUqioqK+lmCEiBe/Onu80RrrB6+EycM+oWnRHEmUWRyAGHDETFYaEcUbbAQAZHthu0TcARAQkAjQJAACc1N+iWLEQS1ggi4IpkuTAQQgClMACY0BBDnBptM2ez2dyUgKWErUThLUlSclWQMNiKIUQci1IaYiMKGA12YCCMFIZGCAIUgEECncErue98BwYaNGKKIwkIUMURhORHEKOImJtOgCwO6CCCAAIIiABMmNAShIeRWSUe8+60/o3GiGJdwXgTExYP0Fm7thF39QmN391Z3IqLjHsNJ2C/R2jGxfiTHsd0eK74s77ufghjCR5ruLGsU/s/U4lx9fT327t2Lbdu2Yfv27di+fTv27NmD5uZmLz4UESEYDCIUCiEUCiErK8vrs5W3QuKioBIz2tvbUV1djZ07d2LLli3Yvn07GhoaEI1GvT48IyMD9fX1Xkza7Oxsz6pPleW3IFRWTn5rM3VOra2t2LdvHzZs2IBNmzZh9+7daGtrQywWg2maKCgowJgxYzB+/HhkZGQgNTXVa5dE182+QkdHBxobG1FXV4empiZ0dHR4dVbWUBkZGUhLS0NqairC4XC3Ak5345zEcZv68Xsw+McIKoab2pY4hkomNHYnNir8onLiNvVdf5n+sU+yOnwaBEJ1bm1tbWhsbEQsFkMoFEJqauohWfCp9quursaKFSuwfv16FBcX47TTTsN5553nxalTgn5lZSWefPJJxGIxL4lcbm5u0nFXbwWxI3E9VPtEo1Fs374df//737F3715PUFWx+UzTRHFxMU488URMnz4d48aNQ3p6epwH0aEcszeffRKhUD17gUDAOxd/eAYiws6dO/H222+DiJCZmYmRI0di2rRpSElJARGhtLQUr7zyCvbt2+dZAU6aNAmhUAjt7e3YvXs33nnnHSxfvhx79+715hqBQAD5+fmYMGECZs2ahZNPPhk5OTmHVH/Vj6g5186dOxEMBjF06FCMGTMGaWlpniDd0NCADz/8EKtXr8bu3btRXV0Nx3G8vmz8+PGYP38+pk6divT0dE8gP9i16M3nfvrsjIIMQJgaDKG5rqzKT9wGbDf+jHAgNCn2yIdCDq2le60mdUJBsAXBBoF0DSIQgBYMwNYEotEI2mMd0AxCIKjBMAWEcJNLODJLsK4JCNKgQYp0NhxYwoZFNqKWhYhjIWLbaGhpxcZtZcjOzsSIEUMxZvQIjB0zDEVF2UhL1REM6tB0HbYVhWPJxCO6rkMz5ICVIOP+CGUVBk1qnCRg2TasmAXHjeEXDJoIBg1ZNzcLMbmhgBxHDkcJuky0EQUsG2hvsxHrsOFYDoRD8scmwJZWeTYIui6FJw0CcLMZS8Mzt04OYHnXwUE0ZslsyTGCDQPCCMIIhhEMBxFK0RAMy3iDtiXrJ83fRKdVJjSQI60oheth5VgEO2oj2hFDe1sEHW0dsGOWm7HY8C2W23Ac4ZYr4we5TQkAcMiCtHqIAZqA0G0I3YKm29ANB2aAEAgBRlDWzQGgaTpMA1AZTARkDEqhaTCDcnIpr5QNx7Zg2ZbroiFg6Ia0DnEtAclxIw25wamkCC3jO9pwELNt2LYDIWSmYk3oIDehDJHKFi3bRtNMaHp8BiNHtZUjJx+6IWMlOgRpTWkp1xOZ4dvqu4/6QfEPmGzbRmNjI6qqqgDAE3OEEAiHw8jOzkZ6ejq2bNmCrVu3YuDAgUhJSYkb6CZa4LW3t2P//v348MMPsWfPHgBygD5ixIg4VyElqO3btw87duxAeXk5xowZE2dF5k8s4se2bdTX16O0tBRr1qxBR0cH8vPzMWbMGBQXF3uWh/44J8p9wp+UQ00KamtrsXbtWjiOg5NOOgkDBw4EEaGyshKbNm1CRUUFhg0bhoKCAmzZsgW1tbXIy8uLi+FXUVGBzZs3Y+jQoUhLS8OoUaOQmZnpmc4fyvVJtFhQ7Qx0inHJvqfqolwg1Cqmekm2trZi0qRJGDduHIB4iww1SUtJSfGuj5/urgUgxchYLIaGhgbs378fTU1NKC4uxvjx4zFkyJBu3XX9+AfdKiaIcgFT9Wtvb0dtba0nZivXh4KCApxyyinIyMiA4zhYu3Yt1qxZg5ycHJxyyikIBALQdR35+fn4zGc+g3HjxmHLli0oKSnBq6++in/+85945513cNZZZ2H+/PmYMGECsrOz4yYGifQlN5FPTg8WH1CSjBR5RJyspPkEIrmwiLh7szNOYKc46AAwO7erBTJACoOIIYY2tKABzdSAFrsJ7R1tsGM2CAQLlpS23PiyJDTYJMclmiZkmbaMzKfBgKkFEDZSkBXKRIaZgbBIQwBprkAo4uupTlgJR8meWyLf/upf373gfV/FQlRNLFuSYCOGDjRQHeoiNWjoaESMYkgPpSMnmIdsLQvpyIYppLDZ6V7tuKJgO9qoFc1OC1qdNrREmtDY1oBorA2ObYMcIBAIIz2YgczUDKQaKUjXMxAW6QiBYBBJ4VFlNRYCnrAXfxJJkedju/eE+8x2+b4fv6WmWoHzFeaJeW59vAU6p7P9KdHS0CfsCb91YbJ6JxN+BeLKiBOqe28N0N9ITOThF1P8iTmUBfmuXbuwdetWbNq0CXv27MGBAwfQ2trape80DAMZGRkYMGAAioqKkJ+fj3A4HDdGSxRoYrEYWlpaUFNTg6qqKtTW1qKlpQWRSCRO0GtpaUF1dTUOHDiA6upqDB48GKFQKM6VTJXfnfipJqNNTU3Yv38/ysvLUV5ejj179nixE9VkU2XLDAaDnsCVjL4gLkWjUdTU1GDHjh3YsmULdu/ejZqaGk8gyMjIwMCBAzF69GgMGzYMRUVFPZ6Tn+6EuZaWFtTV1aGqqgqNjY1oa2vzBJSUlBSkpqYiOzsbubm5yMjIgGmacBwHHR0daG9vR1NTE9ra2jyrLCGE58YdDoc9ETMYDMYJXN1ZFCZeh8TYmUrUArrGxesL1/BQ8FsIGobhuYTu3bsXL7/8Mjo6OhAOh3HRRRdh2LBhnkUsAC92N4Au7arcZ7OyslBTU4PS0lLs2bMHRUVFXqgXZT2nLLm2bdsG27Yxbtw4T0T3j/3VPehP9KHruldHvweJGrv6+wdVL/91TNaXKPyJDNUPEXl9iFp0rq6uRlpaGlJSUryFAdu2sX37ds9QYcGCBZg4caI3lu3o6EjqiaOOr6z4/OGMlCipEoGoa6XmZ6q/VVbS6ryVEOtvH3/CFHXtVTiEUCiEjIwMaJrmWXIXFBTg1FNPxfvvv4+NGzdi4MCBWLFiBYYPH46UlBTU1tZix44d2Lt3L5qamjBo0CCMHTvWGzPHYjG8++67WLZsGUpKSiCEwIABA5CZmYnm5maUlJSgtLQUBw4cQCgUwqxZs+KMA5SLul+cV8+guh9V6KR169bh9ddfh2VZmDlzpte/q/arqqrC+vXrsXHjRkQiERQUFCAzMxO1tbWoqKjwFo7S0tIwderUpHOfw0GfVQwcnWBrNmRyEAdEgHA7PRl7zpLJQIIGAqb0kbcdkhleId1PITTopoZA0EQwFIQZCACaBttd0ReaCV0X0DQHghyQ5VrxOQQiDbrQYQQMaYVok5tARA7oNV2A4CBqR9HR0gFqltl2a+oaUVVdj23byrBuXSFGjSzC0GEDMKS4AHm5aTBNFZfKzbysylPClpBTGZmFWJ6/A5JJWYQBchxEI+3oaHegQcYKVGKCcLMSyxiFUlSMxWxEIg6am1vR1taOWMyGgICpGzDNAAwtgpgdk3H1YpaMv6hp0HWZ1EUYunQrtmQSDlsladEB3RDQYSIYDiIcDiAYlNmULVtDW7sAOQLBgHSVNXSCpmsQmkzI4dgyGYkAoIMAXSCoAwFdh6kHENDcHz2IgBGALqR1qG1JkdRxVUJD06Ubra9zlC9H6bcfaW9HVNhoC2noaE9HLBaFZduIWoRojBCNyemP5cQgXYrdh8xxO0JyIDyXXAfkWHAcGxAODEP3OlBy1EvZghpHCiHFQN0VP6UIKe9lCB2aIYf1NhzYDgFCZqR2bwMAgO3YiMQs2JYMiKu7cWIM3YCuaQgYbns6QNSSFoe6ocEM6CocJQiAET2+BgXJUJZ7dXV16OjoQF5eHvLz8xEKhTxLrby8PIwbNw779+9HRUUFKioq4sQ99TL3x+vbu3cvVq9eje3btyMrKwsDBgzA2LFjUVxcjJSUFK9zj0ajaGxsRGVlpddBZ2dnewJld6vARISWlhbs3r0b27ZtQ3V1NQYNGoQRI0Zg+PDhyMvLA4C4AaxlWWhubkZ1dTVs28bAgQORkZHhlV9aWoqmpiacfvrpGD16tBc0ecCAASgoKPBiIg0ZMgS5ubnYuXMnhg0bhnA4DABobGzEmjVrYBgGZs6ciVAo5H2m2tp/HgcbVCa6/fp/9w9OEydnajCkMowNGDDAGwTW1dVB0zSMGjUKo0aN6lIP/wBYlZUYwF19x599TV2nSCSC+vp6NDc3Iy0tDaNHj8b48eMxaNCgLueQjGRipP9cW1paUFZWhvXr16O8vBxCCIwYMcKbUBYXF3v3ZWZmJtra2rBlyxaMHTsWBQUFcYOPQYMGITc3FzNmzMC0adPw+9//HqtXr8Zzzz2HDz74AGeeeSYuvfRSjB49GoFAoMtq4qG4Hhz/qPPUoUQU8v1f7tIp2JASb3wxAdEZwMNdHFOW2EqkIVdAlJaDNqJotZuwp6kc5TXlqKmrRaQjKhczhS2dZUm97eTYwQIBmgDZcrEJENCFgaARRFZaNoYOKMaw/GHID+gwKezVt6tQBCRauyVMJ72NApCiH/lW0rxvSDHTiyEopNWfI6KIUDuq26qwee9mVDbsQ9SOoiCrAKMLxyCUE0CqlgbAlO1FDixYsKgDUbSjxWlBVXsVdtftRlVDFRpaGtHS3grLbocTi8GxgIAeRFpqOnLSc1GYPwCDsgdiYOpg15tBc6+i6bW/8J9kopEg+TYJ93wBGTOS/HuqHTVvE3WxzuxcFOzcyXcPqH1E4rXwXwEtfltcv5EQ09CzCPQJgj7XZe+bAt6+ovPM+z3JhJTu+nAi8t4Be/bsQWlpKbZs2YJdu3Z5k8iOjo64ybv6PRgMIjs7G4MGDcKAAQOQlZXVZTKtJtrqWGqhaP/+/di/f79nMagmzup9pt79lZWVqKiowODBg5Genp5UfFRlJ25T4pTygjhw4AAaGhrQ3t7uWQ2mp6ejsLAQgwYNQn5+PlJTU7uN03y03x1qHA90vq+VULd//36UlpZi3bp12LlzJw4cOOAtoBYUFCAajSI/Pz/Ozftgx0pEHU9N1rdt24YNGzZg9+7dXvgRXdc9F/CxY8d6CcOUONDa2oq9e/di8+bNKC8vR21trSd8KFGwsLAQQ4cOxZAhQ1BYWNglrlmiUOivs/+aq/q2trZ6PwCQmpqKlJQUzxvieFsg9IstSkhqbGzEgQMHsHbtWlRWVnoLqIMGDfLGguq5U8K3Em+UG7CytM3MzERxcbEXk66yshLt7e1xY2GVAEMlK1Gikcooq+L3qcV9FTPO7wqrYoyrhBmxWAxNTU3evaCun23bnhWxClOkygDgiXDqPlLH8lu0hkIhT3xra2uDpmnIzMzE5MmTMXjwYNi2jfLycrz33nvYvn072traMH78eAwePBipqald4qsnop5NNcZUz6cSFJXrbzgc9urhj6saiUQ8by5l7KFcnf33dVtbG4QQ3vVT5+LPVKzmZmlpaRg7dixmzZqF5uZmNDQ0YMeOHdi9ezdyc3NRXV3tLYykpaVh2LBhKC4uRjgc9p7xjRs3ory8HESE8ePHY8aMGSguLkZjYyNWr16NDRs24L333vOE/alTpyIajaKlpSXuHlWWyqreKuFLMBhEamoqYrEYdu/ejWg0iuLiYjQ0NGDAgAEwTdMLZ6HcmtPT0zFp0iSMHj0alZWVWL58Ofbs2YONGzdi8+bNGDNmDHJyco6I+N9nxUGbHFgkxTEAMquwEYAJDaYpE1wI4UA3pC2XysZr2Q40zYFpyrhylgW0CoJtObBtggYNpm4iaIQAyGzFEDakG2cMVoxgxRw4tgNNCOi6O/kU7kADNsiWApFhaginhGGaBhwiRKIxRCMx1NfVoK6mGhV7yrF1y1bk5mVh6JBBGDlyCIYMGYTiokJkZQZhGgKmKRAwpYUYwYHlWIg5MvmJdGE1EHCD0JEjMwAamgnHXdAmCFikwXakW6vKXqzpQEAHQqlAGgGOyERjSzuClfWAbsAmTZYBAEJ48fKU4aINaRUI33haM8i1KgRURl7HsaGJGMiOwolFQLEOBISFtJCJlJBcoY9FI4hGYzJmoi4tN2SWYkAIA5oIwLJ0RKNApMNCR3sU0ai0yNM0A0Iz3LrYsIncuEVSVJVNI+P7xSxXRBYGNKEjYATgBGwIzUEgEIZhBKEJUyai0WQMR10HHId88yTX2kRoADQpslq2FJ0dG0LI7My6pkvHJNvNQmy75UBZ+6mVKiHrrFymXcsHzXAtWx0HliXb2TRMGIEAdE0H2Q5ilgVybBiaQCAUcLNhC3d+JK1oLUsmiZHJeGS9NBgwhHQ9dtSNkiQl+/FAotgUjUbR3NwMx3GQl5fnBZRVA9pwOOzFftu1axcqKiowdOhQb2CtylGDJDXI2LVrl2c5lpGR4a3mAIhLgFJVVYXq6mq0trYiEAh4maYaGxu9QLEqoK/KcGVZFvbt24ft27dj9+7dXoBZZSGnBnJCCM8Efvv27Vi/fj327dsH27YxaNAgzJkzB4MGDUJLSwt27dqFlJQUDBw40JtYqPoWFxd7bZaSkoKsrCzs27cPra2tnpBaXl6OlpYWnHLKKcjPz5fCs0+c7K0LQKJLS+JLSq2GqqyP7e3t3nVSgwcAaGpqQiwWQ1pamicWtrS0eC/UxNgafhcJJQyqz7uzEFWDCiUWRqNRNDU1eRnNMjMzvUDTikN52arjKouNXbt2Yc2aNaioqEBhYSHGjx+P4cOHIz093XOTVnUcOHAghg8fjrVr16KhocFzlVYrpipwfTAYxKxZszBw4ED85z//wdNPP421a9di586dqKiowNy5czFhwgQUFxfHiclHYmWxLyNc6/k4lDWX0sqEA8DySS6yz5chH2zAXdwhaNDc0A2k0hR7z4e0rCPYiNox1DbUomz3LuyrrERHa0Qez3AjCJKMqUdCJvRwCG5CqU4LRSIBXTORk5kL3dCRnZ6LjEAUKV3PRp1Ukt8TVvuFI4VP7172S6V+oTGuAd3tMdjoQAc1obalCrv3l2PvgT2IWh2I5rcjP1yAWFYMtiZjEQIxQDiwKYImpwFV7VXYX7cPu6p2oPxAGZqbmmFHHVgxC7ZjgciW3g4OwdQMpIRTsS83D/WDh8MeagNZMtxLGKmAIAgRcAc+fgvOeEGP4k6JfC2irEDJ9z3N+17n334xjhLaSAnDcMVhzSeyJiQOEb7vCf/iifxJ3rWoeggo69ZOC071/4TzEt1cw35K4jso8Z0BwHPxPXDgAMrKyrB582Zs2bIFZWVlqKur86zD1ATPH9suEAh4VoMDBgxAXl4e0tLS4hKRJLNOVLGGd+/ejX379qGxsTEuEVai9WBVVRX27duH6upqFBQUID09PS50if9Y6v3rFwdbW1tRW1vrWSA2Nzd7ljZpaWneQmhhYSGysrK8sj+J+9/HoTtxLvH6+a0qVQxIZQWp6zrS0tK8+IkFBQXIycnxrkui2NaTaKzwC6x79+7F9u3bvfsDgGchpWLPKTFYJXVRY8CqqirPMk1lKFVJDoYPH45IJOKFv1GeB/6FbH+b+NvMf80dx/EE5b1796K6uhpEhMLCQgwbNsyLW3k8kihW67qOhoYG7NmzB+Xl5V48PfWcKrdZNXZSIrESdP0xyNPT0zFx4kS8/PLLnghYU1ODwsJCT3BWQpNlWcjKyvI8bZRLs0pq4heI1JhUXUPTNL1kRoFAwIv/ra5pU1MThJBx5fyLCo2NjZ5FqbKUU+fo7zfU+F3toxaIOzo6oGkaCgoKMHfuXMycORORSAS7du2CpmlYtmyZ5zU1Z84cZGVlefdud0KyCqelhDt1//ljAqpnoKOjA4AUUIPBIAzDQHNzM5qamrzQDKqNlFCohHNlMKCSKSkvIdUP2rbtxYknIhQUFOCcc85BTU0NXn75ZezevRsbNmxAUVERKioqPIF38ODBmDBhAgYNGgRlrVdZWYmysjI0NTUhKysLM2bMwIUXXohBgwahtbUVw4cPh6ZpWLlyJT766CNMmDAB48eP9+Zw6pmtq6tDfX09AoEA0tLSPKFWtYsSSZVxQlVVFXbu3InMzEwUFhYiGAyipaUF9fX1iEQiGDx4ME455RTMmTMHtbW1aGtrQ3V1NcrLy7FhwwbMmjXLs3483PRZcdCiKKA50l3TtTSzYjIbsBBCWlAJE8Idg0lBRoNhqBUGAdsGNLIhHAtwYoAdBeyI/HE6IIQOzY1NJ3NNCEDXQKRDaARdM2HoJjRhuA+hFKygy/hwugDgAHbMkSKMBeikSRdQ11W0vq4VdTXN2FN2AOvX7UBeXg6GDxuM4SMGo7i4EEVFOcjODiEQMBAIGDBMHTqZ0uIANsi2YTmuNaOtBjjywYPQpAMPSdfgmB3zhD7ddEU4EojGCG2RDrRHOhCJdSAaa0cs1u7+2wGbHJAmBTNpgQcQOTILr+vupHuWeTLZhu0QyJbZBuG2MdkxkGXBjlqw2nU4mo5AwIBuAoAmre7IgYCGoGlA0wMg6HAgELWAWJTgasHSmo8cRG0LESsGcmSQd4J08xUALHLgxGRyEJnBWXc7KoJlxWDZFmKRGDSdEI1Y6GiPoL29A+0dMumKEgV1Q15zghTxHNuC42ggWwccDSAVENWNC+hmpiTHFSmFDiOgQwhDnidJodB2Jz1EMqYkkZtlGwKOJdtaF4Ch++Y5lkDMIdgWwbIEBKT7OAxdanyOLdtCk9akpiHr5LkSEIHIgmV3igJEBNs5/rMVK0s/5Z6RkpKSdLCsaZpndt7a2uq9oNQLSL3IVPaqSCTiiWgpKSmetaASkVpaWtDS0oLa2lovKHFbWxtSU1PR1NSEmpoaqPiGKhhuIBDwxCc10K+trUVjYyOi0Sja29tRX1/vvWCVKDho0CDPas6yLKSkpHirjE1NTRg4cGDcAMgfgy8xQDMg79vU1FQvMy4ArzzlFqMG1/5JVeLA/GAkuu8q9wbbttHR0YGmpibU19ejra0NALwBQEpKihenz39cda3Viqwf/z7qmnZ0dKCtrQ3p6eneINg/Uaqvr4dt28jNzfVWH9XAQ7Wl+vEfJ9kEortVOr9bhLq+KgOZcndPS0vzXEz8bQ5IV3bloqDaVAmNKnGNSrCjhOETTjjBG2zt3r0bGzdu9O6l0aNHewlLVDv1B6R2p6wAXaEYSoCzPWs+B25sW5VgQ0BaqQkdAgYEdIDkYktnuA/5bhKeoZ4OaQ2owQEQicXQ1NyChoYmdLREoBs6gmkBhIIBmJpMQiVrI0C6CoGiLBClWKdrJkKhEEzDcDUlJVC54pVPDOq8e7p/TjtjzyphTMmCOlQyK2VB50Y6loaDRK6FYwxtdhsaWxvQUFeH5oYGQNiws2LQ3LqRm6iEXIvBJqcRe5v3Yse+Hdi5dycqqvegNdIMQ9MR1MMIZ6RBNwzY5Hir7y0trWhpa0J9SwPaIx3QDBOaacBMM2AKEyYMV5DTIbO7CO/Kwjszt118FoaexOfP9JXglq1coVUMa69Nybvibpv52lmYrujnJi9TmarjrAgF4q6Nl5m503JVePXxZ1AW7uHVte7Mht1ZlgN1L3nXuR+SzFow8W+/YKfe6ZWVldi8eTM2bNiA7du3o6qqCh0dHUhJSUFGRoZneeN3/VVxAAcOHIghQ4Zg4MCBSEtL65LAK9FaXlkoqoRparHHPwH3L16qMBtVVVU4cOAABg8ejKysLG/hMdG9MLE91NhDfd9/PLUI6RfSMjMzPREisU2PllCYeEx/e6jJdFNTkycOquQqajyn4j/m5+cjLy8PGRkZca7YyZLFdXd8Nf5oaGjAvn37sHv3bhw4cMATI5WlU2ZmJgoKClBYWIjs7GzPelTVJz09HZmZmV5MPJVxVS2Ypqamoq6uDq2trYhEIkmF3oO1l3JXVMkUSktLUVtb6wlNBQUF3iLq8eg94H9GmpqaUFFRgdLSUrS3t3su47t27fJcysPhMNrb271sr1VVVZ7wlpeXh9zcXG+MZBgGhgwZgszMTNTX16Ourg4HDhzAiSee6D3DlZWV2L9/PzRNQ35+PgoKChAIBLx+QVkCq7A4Q4YMgWma2LRpE9rb2zF48GCMGjUKmzZtQmlpKdLT0zF9+nTk5+cDAHbt2oWSkhKkpqZi5syZyMjIQFtbG7Zv345169ahoKAAEyZMgK7rXj+lLPDU/aYsC0OhECZPnuwlFVT3kWmayMnJQXp6OkzTxNixYzF+/HiUlJSguroaNTU1cV48PbnhK0FSeb2oOdDevXu9OOpTpkyBaZooKSlBQ0MDMjIyvPh+77zzDmpra1FUVIRp06YhIyMDkUjEs84dNGgQZs6ciWAwiKamJmzduhXbtm1DWloapk2b5sUdVKJba2sr2tvbkZWVhYkTJ2LatGl4++23UVVVhTVr1mDYsGHYtWtXXIz3ESNGeLHd1fPT3t4OwzCQn5+PkSNHori4GGlpad67QNVPxSk/5ZRTMGnSJOi6jrq6Om/8reZWeXl5GD16NEaPHo1QKISysjLPAlH1EZWVlVi2bBlKS0vxuc99DiNGjEBeXp43h1Tzt+zsbDiOg6KiIuTl5aG0tBQ1NTVoamry+r/DbQDQZ8XBgKHDcK3pBKTgZWpm52AWAiCCY9mwybXeggAgBT9BOmxbgCw5yDU0BwHdQcAgmLoNTURlbDZbWp+RKbMIQ7MhNBsyMQgBujtAjpE3uTJ0XVp+QcZ3I9sVrUgKgmr8LbMP6646raGqqgVV1c3YVb4fGSVbkJubhSFDB2D48EEYOrQQxcW5yMkKIxjQYRoC5BCsqC3FL82AbhjQhBu3yHFdXEmKZrqhQTcN6KYb2w4Clg0v0zMJkq7ApnQ51U1NWkXqAEjANHXohuui664EOETSHZbk7xoRhNDc+HoCFmKwrCismI1Y1JIiqfTZhibcH3QKZIC7CA553Rw7JuNF6gYMXSBgQtZJqAEWoNRfacEh3WfVUFi68srJkhAaSOjQhBQ3obkOQloMakCtVkQ8F2w11hau2xB1TgE0CBnzXAhoQoemy/oQZFuQmkSpgbyuwXE0tLVZaGxsQ1NjO1rbIlI09p2PJmScRMdtEwGZvETXhbyvNMO7r2IxFQQ5Bk04CIcDSM9IQ0ZGKlJSQyC4lrI6+drKnUb4OwoBfBqSFavBemtrq/eyU5mmAHgvwczMTAwcOBClpaXewK6wsNBb5VEramVlZdiwYQMaGhowYsQI76WqOmUlzFRUVGDHjh3Yt28f9u3bh8rKSjQ3NyMnJwfbt29HbW0tUlNTPRcFZa5eV1eHsrIy7NmzBxUVFdi9ezfq6+sRDAZRXl7uWYKpl10gEEBKSgqqqqqwZcsW5OTkYOzYsWhoaMAHH3yAkpISDBs2zBP3srKyvNVrJRQmuiiZpom8vDxEIhHPgk2ZrisXVyWI+eMGHuog0m/BoFYvlfvHnj17vMGT6kNN0/QyQE+cOBF1dXXeSi4Ab1VQZU9MXEVXqAFcdXU1SktLvRVBv1gZjUaxceNG6Lruib/Nzc1oaWlBQ0MDiAi5ubneBCmZC0/iMf3b/VYiakC6YcMGbN26FZZlYeTIkZg0aRIGDhzorZ4mCpyapnmJbxoaGjyht6qqCps3b8bWrVvR1NSElJQUTJ8+HVOmTMHs2bMxaNAgTJs2DUuWLMG2bduwY8cOrFy5EhMmTMAll1yCiRMneq5K/cl6sFMyUi7D0v2XYIEQhSWiiKAdUYogRlHYZAEgaOQmA9EDMBBEACGYCILIkH290FzrbWV+CFdM1N3FKQ2WQ4jZMpFZaigNOTkZyMvNQ3ZaJgJ6SC42AtKl2Gc1CCHcRS4DqcFUFGTlIyuUiQACnuUbuVZrapGp80x7e21tV05KsJrzlansCpXoZIPQ4XSgraMF0Y4OWNEYzKCGgBFwE5zJdCGAjRgiaEEzKtr2YmvFZmzbtR2VVZWIWO1ITUtBbk4e8nMKkJmRjWAoBZbjoKm9GVVVlajcV4H62io0tzdhX/U+hNPSkJGZhaxQFlLNdBgIuu9pACSFNBJybENuNmRKaIdOqU2Kq0KNHb1/lFgK750eL8Bp7qear82UVaD0JIFrgdr5u//IyrVdWiSSZ71ogeC4DtMa5FDcLySqejnud1QCFb87vJKNDYi+O5Q/oiT2wQfbNxqNepniN2/ejPXr12Pnzp2e5X9hYaGX4VK9v5R7m3JrTEtLQ35+PgYPHowBAwZ4lu1+8cVfH8uy0NjY6IU6UZ4HKgyG/zvqfaYs/6qqqjwruYKCAk9k8p9Topik3JIPHDgQdzzl6qhirRUWFnqiln9B1C+kAkdPHOzunFR7+K0pVfw/JYoEAgFPqFPJ15SFUXdJVXpyxSMiL3nMnj17PIsy5WZumibS0tKQk5ODvLy8OCtFhXLdzs3N9ULPNDQ0eFZfahGxpaUFbW1tXRKeKBLvKX+7KBF4z549XmK13bt3w3EcDBkyJM6i7HgUBpVIqxZKq6ur8de//hX/n7w3e5Isu+/7PucuuS+VWVn7vvXe0zM9AwwWESQoSJYpm7RML3I49OB3vzj8D1hPevKLH/SiUFgORTgUwQgrHBJEygIBguRgBjOD2afXqura98rKfbnb8cO55/StQg+AAYcgBjyIQk93ZebNu57f+f6+yzvvvEOv1yObzXJycsIf/dEfcX5+zu///u9TLpc5ODjgvffe47333mNnZwdQDemFhQW+8Y1vcP/+fcrlMkIIKpUK8/Pz7O7u0u/3OTo6Ms3bbrfLxsaGUQppf3Ato3327Bl/+qd/yoMHDzg5OWF8fJyXXnqJQqHAG2+8QbPZ5Dvf+Q7FYpE333yTf/fv/h2VSgWA3/u936Pf7/PGG2/w3e9+1yihXnvtNc7Pz/n+97/P//f//X8GXAL4t//23/Lhhx+SyWRMIyMptR0fHzfPCcAAeJp9p/dLNwKSLEC9btA1+mddM0nigPZjfOedd/jhD39Iq9UiDENu377NwsIC+/v7/OQnP2FpacnI6P/8z/+cd999lxs3blAqlfja177G6ekp3/ve9/jBD37A8vIy+Xyee/fucX5+zl/8xV/wn/7TfzKN/7t37xq/1KQySTOi7927x9e//nV+8IMf8PHHHzM6OsrZ2Rnn5+ek02lmZ2eZnp6+RDrQDETt5Tc2NmYYqY7jMDo6yu3bt3nllVeM9Fgr2M7Pz/mzP/sz/vIv/5KPP/6Y4XBomMx37tzhO9/5Di+//DLD4ZA333yTN998k16vh+u6nJ6e8ud//ufk83nGx8eZm5tjcnKSsbExw1I+Pj6m3++bACxNmNDnVZ/7L3r82lYUMrIAG0uqbq0lVNqflJIo0Iw2GfvjOWChWF+RRIYRYWQRRILQJ2Z/WYSRZDD0GAw9ogjSmRxuKoWUIWHoKaAr8olCJU8N4hsHlO+elBLbsbFSLrbrIAQEoU8kFLBkCUvJlCPN5IolsFKFRTgpB9t1kBacXjTYPzni8cZTisUcE+OjrK7MsbY2z/LiNHMz4xQLaWwrha12HBmqxY0lQFgSaSn/PwWaRfhDD88XWLaDbblIoRJ9HQEpO0PazZJ2Yw8/W7HcwkgShKFaEAQRlhViWQpks4WN7drxRBZ7DQob23KwbBsZxf6NoUvgO/iewB9C4JtGugoZieLCHIGIi+cokkQyQNgC17FxXIGTin9cxQB1bEv5Gtp2zKCwYnmsmiQdx0HYiqnn+wF9r4+U4NopdQNp6jYRrpvFttMIXGRkIwOLKE5kRqBk5BY4loVlq/0Hmyi08P0I3wuIpMRxBW7ajo8feB60Wj6NixYnJxfs7Byxu3fM0dEpZ+cNPM9HCuWB6cZeBcIS8Xo1TliN5ci25WBbDlGoiob+oIcQEem0Q6WcZ3FplmvXllhanmcynUXaFpGMcJBYFvFPnICmj5IGbewvX2GQHJqJpllSxWKR8fHx556P8e+lVIa1egJYX19nc3OTtbU1Ixntdrvs7Ozw7rvv0mg0WFxc5O7du0xOTl7yI9FFlZaAuK5rTGdrtRqrq6vUajWTUqiZYRpcdF3XeBF6nofneeRyORYWFpidnWVkZMR0kDR7MIoi6vU6k5OTvPLKK9RqNQaDAe12m42NDbOI0ewHbaycBOauFta1Wo1cLsf+/j7z8/N88sknpFIprl+/boqOq4zDX2bo7XW7XQOo7uzs0Gq1DBioi5lut2so8lEUmSJfFzXazHt8fPyS/8tVaZAeWh52/fr1S6+1LIt2u82jR48YHR3l7t27ptvZaDTodDpm8i8Wi2bh9VnS4qvsguTiNAgCGo0GT5484cMPP6TX63H79m1efvllJicnL0mW9bFKGoYXCgXS6TS9Xs8sDt966y0ODw8plUrUajV2d3d56623qFarrK2tGfBvd3eXarXK4eGhYQ/U63X+wT/4B3z9619nZmbmFzJl/80ZSUmMRIoAKQJCPIb06IZtOlGb5rBBo1unM+gShAFIi7SbpZgrUc1VqGVqlEQJR2RRc5iDhW4C2iiVscAWyv/WcW0sRyKsCMe1KJWLzM8ssjy3xGR5nKyTxxGuAuOkauZYhrWmWWAWjuWSc/IUrDxpMigTi4GqJ9Bg1xVW2vO9TfztuSg2QhgepeZAqolIXHr9c4BQvy+iHwxpD7r0/AHDyMeys6QyWXKZPK5wsbEByZA+jaDBzvkeT3bX2T3cw/MCRqoVFhaWWZ5eYKY6TTlTIm2lCZF0gj6H1QMeuQ9YD+Dk7IRer8vFxRkXzTO6tTa+OyQkr4BN8Vyaa9ig+IR4MRs0SvD8LCwcLGIGKKruuczmixKfE8VJ0vr60e93QAu7hW48JIA74RMxNACjiEE7zSwVaN1DgMRX70GialwN/mqgMOIyUzBAgYkBkQxi+bY6m0LY2GRisNT+WQTS39iRbExdXeQmJXrtdpuTkxMePHjABx98wIMHDzg8PMTzPKrVKvPz8ywuLlIul2k2m0YGmPQqS3oNah9YXYNcBdb0s93zPM7Pzw3IdHFxYVg6moGmpY6+7xvpqZa0Hh0dcXR0xPT0tLGKSLKCkscAML7MWkqnQS1tU6EXv1NTU0xMTFAul408UI/Pqxz4q5y7X+T3mnm5v7/P3t6eUXzohrBmhSXPi7aSeVEw2Yvm9GRtoZubh4eH7O3tGQmznrNTqRSVSsUArLpRq2vHJJBcrVYvNbI1AKjBQa0K0aElyaTYz6rJdL1xfn7O5uYmH3/8MR988AGbm5t0Oh3TZNXedS+qa74MI3lfg7o/Dg4OjM+kBg3Pz89ptVoA1Ot1fvSjH/G9732PTz75xDTPu90u7733nvELf/XVVxkZGSGfz3Pz5k3efvtthsMhBwcHdDodCoUCFxcXPHjwACkl+Xye1dVVI+O8uLjgP/7H/8gf//EfmzpWp2hHUWRASa0eGQwGhliwu7tr1iKPHj3iyZMnnJycsLW1xf379xkMBsYqJpfLGV/DbrdrmuzNZpNms2mYqLVa7ZJXtT4+GmAFDIlgZ2fHPPu0p7WuvX/eOkD/3rIsWq0W77//Pv/xP/5HNjc3zVrmjTfe4N133yWdTnN6emrWSJpp3Ww22dzc5ODgwICwm5ub7O7u4nkejx8/5pVXXgEwzZFisWjS23O5nLFsSj7nhVC+3v/5f/6fs7u7y/r6Oj/+8Y+NsmhycpKbN28yMTFxyaZIg6datq2fycmQGQ0o1+t1MpkMS0tLSCnZ2Njg+9//Pu+8844BbB3H4fj4mHq9Trvdptvtcu/ePVZXV9nZ2eHp06fme+fzecNS7Pf7xvP+8ePH1Ot1Pv74Y27evGm8E9vttlG6aZDwakPhixi/tuBgGKoIWdtWPj1REOL5AZHvQ6QZVwoYkzIGiIKQMFRMtLRr4VgWwlZhEwNviBeGYNtYbprI6tP3AgZ+GDO3FDvPkRCKkEjopFcHiUUYqXTZUIYM/ABLxgwbVeUjgEhEqriPGWeqzpOEMsAPA4aRh/At4yWYzeWxLWh3BjSaWxzsH/HpJ0+ZnZ7g2soiy0uzzM1MMDFeIpNSSbiOo4AgYUmzNjDCpFjKGoYKKA1CH2HZRJGFNwzo9wZ0uz2VWOQNkTLCiVNwHddBCKVv1cwIJaNVMl3t2SilRSQFVqQYDpmMRTabJ5XOYlkuEZZi1sVMRcsWgBOfIwVuYqFk4bYNwkZYgsCHwFeyXgWpKtmXlIodCVH8nZ7Lg6SMiCIfBLgpocBAKYhCZfIehkoK7jgqKVoIB4mNDC2CQG0zCsF2iKXaEUKESKm8H2UUEkYKdXMzNpEUSCnoD6DfjxgMApqtLhsbe3zyyWMePVxnb++IgRfi2EpyZMVyZNAd0FABo+FzpqJlKRZjEKhgGNuxyKRTlEoF5uenWV5eZHllgeWVaUarabJZh3RGMRGC0FL+VZcWw8Tbi6WmCfDlyzSuFnO6e6xBo0KhcOn1SWp1rVZjaWmJ3d1d9vb2ODw8pFqtGr+9t99+m5OTE9bW1rh9+zYTExOmk5T08NAyUG0I7vu+keR89atfNZOqniy1NFUIYWTGSV+SYrHIa6+9xurqKtVq1eynfr9lWSYIZXJyEoBiscj09DQPHjwgDEPDNHz27BkbGxtcu3YNwEwUyYVKEARUq1VWVlZ48uSJkRHcu3fPyJSuHvPPM8lcXZz0+312dnb48Y9/zM7ODqVSiZs3b7K4uMjIyIgp2Hu9nlm0/OQnPzHApS5i+/2+ST7TvjFJRqQuvkEVX5oBmDSi1t+t0+nQbDYNS9L3fc7Ozjg7O6PZbJpzDBj5zWf5rfwsEHU4HLK3t8eTJ09ot9tMTU1x/fp1wxjU3y2ZSJc83vpztVflp59+yrNnz7h16xZ37twhl8uxu7vLv//3/56HDx+yvLxsrudSqcQ/+Sf/hG63y0cffcS///f/nu9+97t8+umn/KN/9I/4+3//77O4uPgLn9ffjKEBFpUoHODRkx2aQZ1G/5yD8312TrY5aZzQ6XfwQp8gjHAsh1J+hMnKJCuTS8zUZhjNjZETBVIih0NKseMRyJhJGFcicWCUjW0DjiSTSTM6UmO6NstMZoo8ecVEjNnp6n8S7W0nEeZJ7qC8cyEiFENC6ROqSKs4kOv5fj6H+/Q+Px9qGy4WSpqbEjYSNwavjKZYK1l5DjqGRCLEI2AQDOl5fYahTyTASaXIFApkcgUsYcf7EDGUPhfdBgfHBxydnNAbDshm8ozVpri2eJPViWWq1ghFFKjoE9C3B6QqDt2JFhcXynqhNxzg+QHD4YAgUKAfQgNqQQziBQTSU+xP+gwZEkZDwkgV+LrB6VgpUlZWsUBFGjs+FiIGCSNUoIwvB3gMCKWynnBshxRpXJHBJaNeL59LeyOhgL4ID0/28GSPIPKQRGq7IkNa5GOmaIQvfbWNaEAkfWwsslaBrFVQ/EJhq2A8BErerBmGHiFDhnKAJwf4ofKyTNkp0mRJYeOQ/iJvnC/FSIKCyZ+rvxsOh8an9/Hjx3zwwQcmGEwvWK9fv86tW7eo1WomubjRaNButy+lblYqFWZmZlhYWDDskqRHnB7JebHb7XJ0dMTu7i5HR0d0u13z7E+lUlSrVSqVCq7rGk89bT+ifY739vaYmZkxthJX2YPJ/9aMN133aD9fLQXUjVXtl6iDSJLf/VfBHPxZwGCy2anDCE5OTkyCtPYZk1Ka5u3o6Cjj4+NGNpqcx3+RuiZ5znq9HgcHB5fCaTTIqG09qtUqExMTjI6OmiAHeC5fdl3XSAJrtRqVSsVYvGh7m8FgwMXFBefn57TbbeN/nGQCXbWL0dfU+fk5jx494ic/+Qkff/yx8UzT51gHJ2j/ty8bMAhc8gmUUpLNZvmd3/kder0eDx48oNvtsra2xksvvWRq2gcPHvD973+fTz/9lCAIjAf5xcWFUQtp6agGdZeWlnAcx4QGtVotMpmMsWsRQhg/cw3QX1xc8MYbb5g04JmZGcrlMicnJ2xvb+N5HiMjI+ZHA1u+7xvg6PDwkJ2dHcMk3tnZodfrGRse3YzQDNWvfe1rhomqwxQfPHjA8fGxIUaUy2UDbAGGWajBxOPjY/78z/+cDz/8ECmVL6UOtvh514lep+j7qdfrsbGxwSeffGIkuF/72tfI5XK8/fbbHBwcGDWMDinRQPlgMGB/f98wpDVoW6/X2djYoN1uMxgM6HQ6hvih1X/6PtSEEf37fr9PoVDglVde4eWXXzY2DqDWR5rUoe2akooa/XlJX8Bk0rAG+ZNrkHq9zoMHDwwZ4ObNm+a60rLwDz/80ASm/Hf/3X/H6uoq//pf/2sePXpEPp/nW9/6Fr/927/Nq6++ap5l3/jGN9jd3eVP//RP+bM/+zPq9TpCCBOqUiqVGB8fv2Rl8LOe2b8MePhrCw5aEqIwxAsj0/+1HSWt1fIMHcQQSYklBKlMBst2EJZA2OAFIIdAzPZTSbnE3cAAJfm1VL841MwrB8vRVHQLnQQbaSkoEZaWyVqxsEOpjeLFveq6SykhiiVjUnkSGQmQhMgP8YIAIaViKkbQ7A9pnR2zv1nnyScHjNcqzM5OcG11jpXlSWZna9RqGYSlwNNIaI8bC+FYShacsrBRPXCC2LQ7lAgnxE1JshmbbMYlm3LoOzZD20YKsFMOCAXshaFKSh54ETLUQKySTVlCL4UiBZgGHn6QAnyclCSdsbBTNpGw8CIg0ufKJwyHhGEAcbfPxYplzfFJT0isHMcim3HJZdN0XJtB/3kH17KV157lWDiOOuaWECAlUYQyR5cyXmoJUq7yOEw5Fm78WksAUvlSqi6zByJQP3FZLqUFlqPCQFyBN4xoNAOOjzusbxyxubHL9vYuO9v7XNQbDAdDfD9UHoSuwI4XdjF+rMDAmGkipA4uEYqx6AoyWQe35DIxWWVldZHr11dZvTbP5GSZfN4lm42To321RnFdyKRtEBZhEKrE4yjmS9jKS1MKibQiUu6Xc/GQfKjpiVtKaQoyPTTYokGhdDrN/Pw8s7OzbG5usrm5aQr/9957j9PTU1ZWVnj11VeZnp42k4DuQOnCM5VKGQ8O3alKpVJMTU2Zzns6nTaef9rIV3u86U6d7jzqpNrp6WlyuZzZpgaMAJNeBhhTa704CcOQXC7H3bt3+Q//4T/wve99j9PTU2ZnZ01XLmksrvdlenqat956i7feeovXX3+dxcXFS7T6vwotXR8rLdV+8803efz4MUtLS7zyyitcu3btkuRGCEG5XGZ0dJThcMjp6Skff/wxKysrl0Ja6vU6u7u7/OQnP7l0fqIoolQqsbS0ZNLGGo2GMThOehVJqZKiPc8zRZM2ID49PTVF/8HBAY7jsLe3Z7aTHFpqob2EKpUK5XLZyJY0cH1wcMDZ2RmlUokbN26YBLjkSPo66f1JXsOWZdFoNHj//feZmZkxPjRCKK+oJ0+eGEP7TqfDe++9x+rqKl//+tdJpVJ87WtfY3l5mX/xL/4FDx8+5F//63/NX/7lX/K//+//+y99jr9cQybUmRFSKmCpI1ucBCccNfbZPthke3eTs7Mzuv0uQ98jFBG+DIj8EEe67GS32BnfYmFhgZWlZRYri4zZ4+RECZuiYtzJ2DYCC1s4OI6LJR1EJAgD1WiyXUHGTlMQRXKUEKRQjDILGbPcknm2Ej13xfMsQwaySzdq0fG7dKMhQwKkBQ4CAlX/ELPeIgGBFakPDcGJLFK2S9bJM2JXqMgRHKHAP9ANTtC+h8qDQtUFXsy19MIug16LYDjERpBxUuTTWVJuClu4aG9CT/bp9No06228tk8UStK5FDOTkyzWZhizq5QYIUUmlsMOQUjybop8PoWbVp7Cjq3CuZxUCstWzD1VHfjxbg3oyR6tqM1F0KQ1bNHsNel32wy9AUSBmltdm2wmR7VYo5IdZcQpUxAFMmRxRBpwCInoyw6N8Ijj3gmtfg8hLMqFErXsGKNyApdcDA4Sg3cqiCbAZyDbNKNTTrrHNDotIhkwUigxVpikJCzSpPBlh1ZY56RX56LbwPM9yvkRpgqTVN2QkqjiyIwBs7W0O8THp09Xtjn3TznpnFJvn5N2U8yUJpnITuBYOZ4XUX+7h2Zk6aGBuY2NDd5//32ePn3Kzs4Og8GAYrHI8vIyN2/eNCn1mnV3dnZmfPr0oiubzZqAh7m5OSqVyk89y+Gyd6AOPdne3jaMN93oEkKYxOD5+XmKxSLn5+emhtCyWe1VeHR0xMzMjDG6h8vAEah5qtVqmaTj09NT4/Nr2zbZbJZarWakt9rn9m9COnx1fNYC1/d9kyitWXzJFGnt/acDYvQ8f1WG+/O2r0cURTQaDXZ2dgy7qdvtmvdowEZvr1qtmoRS/dl6Hk/KncfGxgwrTasDkn7M3W73krXLi1QSvu/T6/XY2tri0aNHvP/++zx48ICDgwPjh6jlh1rJkqyJvmwjWY/bts3CwgL5fJ6DgwMeP35MuVxmYWGBf/JP/gljY2M0m03eeustdnd3qdfrfOUrX+F/+B/+B27evMn777/Pv/pX/4r9/X0++ugjvv3tbzMzM4PneSwvLzM1NWU8/c7Pzw3Qp9ed169fZ3l5mUwmw/n5Oe+++y4nJycAXLt2jT/4gz/g1q1b7Ozs8C//5b/k4cOH5prwPI/V1VVs2+bw8JCTkxOCIGB9fZ29vT0ymQxCCI6Ojmg2m8YrUVsdjI+PMz09zT/+x//YSFmFEPzRH/2RIQ3Mz8/zO7+jQgs1czqbzdJoNNjb2+Nf/It/wf/z//w/DIdDjo6OaDQaZDIZvvnNb/Lbv/3bJixQWxX9LKWJXpNcXFzw5MkTMpkMhUKBv/f3/h7/zX/z31AoFHjppZf4P/6P/4N6vW5Yho7jcOfOHb73ve+ZZom2SdIe7IC51zUrUsuBa7UaACMjIyY92vM8Tk9PDblAr5W++c1v8ujRIz766COCIGBmZoaVlRUT4qj3QbO3i8WiYYxrFqq+BzV5IPms1fJhzRotFovMzMzwj//xP+b69eu8//77/PN//s/50Y9+xKNHj3j27JmRW09PT/Pxxx9Tr9dJp9PcvHnTkD7CMOT11183Xsybm5u8//77Jsgyl8tx584dvvWtbzE/Pw9cJhxcVSfp//6849cWHBSR8rvTXfVAaq83EacIq+APQBlnS/Ua6Su2nI1tEnFVp113YlXKreu4IGwcx1XOMLHxdxiFBGFA4AcxtKRNwC0cJ4WI/emeJwwS/ylUN18qCakQ6jNlLEcWUYQQFnbMEguDkDDwCcJQbcVSrL0oEgyHkrPTNvXzLjs7Jzxd32VqssLs3DirqzPMzIwzPj5CpZollRKKRWipfYzCAAQ4lsCy1YXhR4CMiOLYc9/z8HyfYRAwDAJCKZUAxlGSYZP0FIREYagk3DGqKQ3IJZFxYi6ECFtguw5O2iWVcXDTQgWRWCCDCGEJMqkslq1CTXw/YOgNQQSk0mksy8Z1LCUlFhZREDEcePR7A3UTW4oZqAq/2OkvkkhPi4Dkc+BVy6QkSmJuJVOvNZAoEJG6AWzbAieNZblIodiXymvIojeA02OPeqPJzt4JWzsHbG8fsLt7yHm9yaA3xBv6WJZDvpAFKQl8n9APETJOILYcZARhGBAFAVJGCAGua5FK2aQzLuMTI8wvTLGwOMPK6gxTUzXK5Rz5QgrbUWxQ34/pw/Fx9/oRQxlh23FKmq1YmKCAdXV+FDgbBv5f05361zuSD7Vut0ur1TKMvhcVtfrhqKWiKysr7O3tsbGxYSSm7XabtbU17t+/z9TU1M/8HE3JbzabpuuvpSI6WU4XgsmuGjz3oKvX63Q6HTKZjDHKTm5Tf98kuAnPC38pJc1mk3K5bKQpN2/epNVq8ejRI370ox9RKpWYn5/n5ZdfZn5+3rAIdaetWCwa2atOzNVg5l9FQqT3NQgC6vU6jx8/Zmtri8nJSb7yla+YLtqLilPNstSG6KOjo6Z712g0uLi4MAU0YLp5ugOovVV6vR6NRsNIiZLhJpolKKWkXC5jWZbxldHJYr7v8+zZM87Pzy+xR5PXgP674zhUKhWWlpZMOrVmaF5cXJhwmomJCSYnJ40p+NVrK8lw0f+m2b25XM74jXz72982x8/3fdLpNMvLy4YRsrm5ied53Lx507yuUCjw+7//+3iexx/90R/h+z7vv/++OY5frpFgtn3u90klGRUBfdmhGTbYPd9mY/cJ2wdbnJ6dEvgBruswks/jpF3lr9cfMOwO6A27bOxtcN4+5aR5RG+1w+3Ju0xkUiAcbDLYwibpdWej2GoqnEqaZzD6mYCNJdPIGBzUjMPn8l/dSYpU8UBAJCL6cshx74yds31O22e0gx4hAVYYISKBFalPiIRUMStS+VfZkSAtXIqFApNjUyyNLpNOpciLTMxW0y00vV3M95BxEzaSIX7g4/keUejjCJtsKkPWzeLabuybp+ediCAI8Yc+ga9YuGk3Rdp2tCA73pplPj+UIYNgQHfQZTgMsC2bTMqhnC9SKVUopcqxtFoolh59WuEFJ4MTjppnHF4cc9Y6p91rEXo+YahY/5FUAGnKTVHKl5mqTjE/Ps/MyAxjzjg2MaMPnwvvnKenj1k/eMpZo0Uml2V1YYX0ZJqKU1P7J+NnmCBmDPoEDGkFFzw72+DxzmPO2he4KYfFmXkymQLZ1AgCSTdqs9fY4+neBnunB4RSMj0+g73gUCiXjFwcKZAiNGchImQge5wMjniy95Sn+09peQ3Gq2OUUnkmslNGLP63dbyIPajDK3Z3d3n8+DEPHjzg0aNHnJ+fA5h0+Lt37xrlQBiGxuNJy0j1M1kHkUxPTzMzM8Po6OhPpb8mwRwNDGo58fb2NicnJ/T7faIoMoml1WqVqakpFhYWjKeWZvh0Oh3TdDo7O+Po6IizszPDQLu6ENSLSe3ze3R0ZEAoPVdVKhWmpqaYnJw0nr9/1UXkLzs+CyDUf+o5sdPpGHnv8fGxsVOxbdswLycnJ5menjZMSA2w6prsZ23zqhy93+8bRpeeZ/XiW9ee4+PjxnNSexXr2i9ZO2hgoVqtGuuSVCplAFvNimy1WjSbTQN6JqWCui7UNdb+/j7vv/8+H330EY8fP+bk5IThcGgYg1NTU1y7do0bN24wNzdHqVR6YdDMl2FcvcZB7YP2mNPgsPbu1sEsFxcXlEol7t69y71795ienqbZbDI3N2dYavv7+9y/fx/Lssjn80xPT/P06VM6nY6x9tnf3zeWAhrAl1JycXFh/Eh1TXbr1i3m5+cJgoCxsTEePXpkJKp6zVAul9nb2zOAWKPRMGFHuoY8OTmhXq/T7/cRQjAzM2Nk4kII02h/8803WV9fp9PpMD8/z1e+8hXu3r1rrsOkF3sYhqZZoD9XX1dazj4yMgJg7Ac+61rRrD0hhAl81F7vS0tLjI2NkclkjM+7TvfW91ixWGRkZISdnR1OT0/Z3Nxkb2/PJCtrZuXu7i6O4xjQO5vNkslkDAlAsyP1taCf1a7rmhBADZK3Wi2z9tP3nj4u2v5JK5SSAH2SaKEJIPrZ43ke3W7X2EQUi0XGxsbMfi8sLPBbv/Vb2LZtmJ79fp90Ok02myWdTptAFW0PpZ/F7Xab8/NzTk9PqdfrJphEMyVPT0+NxFh7YH7R49cXHEQgJIr5JLX7TWzYbdtKKmrFTi4yZhGGCiAjFGBZRKFm/WmTV7CduLtvCYIwwo8jyHFsns8hcXkcqcIVnjM6LO1HjU6wVUm+iDgPUWJSfjUIZFsoOSyBAddsCyzXwnVsszSIIhEDmpJBHIM+CDzagz67h8c8WN/h40fPmJ4aZ3FhkqWlCaamRhgbK1IsprEsga2By0gqYgARVigQoZLQhqEgiBwikUY4GSw3JAwCokgg/YjIUh33KFQLgjAIYzmzg2XrtN0YiJSRAl+lIAxlHKIR4vtxUq9EfRcBUob4QYgMYkBVKkDUjsNIAhOkqcBYZXHuIISDZTloo2+VEhy/NLIMfKvlsxJUqIplI4UkkJIwVAEfQaCk4RaSdEqSyaik4MCLGA59HNfCTTsEIbS7PhcXPbZ3mjzbOWZ375CdvUNOz+v0uj36gz5+EKplkRCKAxIG8Zo0Zn1ECiiUIgZ8BGTyKdJpl0zGZWyszPzCNIuLsywtTTE2ViSbS5PLpnBTKjkyCj3F5BACO2aoYseitNgsXT+4gtCH6DmDVd1ACiEX4stVFMBlLxjtxddoNLBt28gBdEF3tYCwLItsNsvc3Byzs7PGu61Wq3Hz5k3u3btnfNiSANmLvoM2fdZAUj6fp1QqXZJ/vKiI8TyPdrttGAjanLpUKl2S8SSLwSTrQEtPzs7OODk5YW5uzrDQRkdH+eY3v8n8/Dzb29s8ffqUH/3oR5ydnfF7v/d7zM3NAVwqOjqdjvFN+mWDR66eG8BMqgcHB2xvb5PL5Yy/hma8XS00kkBqNps1xzTJwhsZGeHevXuMjY1dOi6acaET5zqdDt1ul7m5uZ/yTtKAqOM4FItFA9jqZErt3adZiPraSS6WkoW6DjXRXpPJgnUwGBiGQalUMslwyX2+ymZIyiV0kSiEYHNzk2q1ytLSktl3LacYGRkxBaqWm83NzZn7RIeb3L17l8PDQ9bW1nj77bdJp7+M7OG/StGjJJme7NOjzVn/hN2zHbYPdzg5P2UQDSmOFJmsTTAxOkG5WMV10vT6XU5Pjzg42uP47ITzRp3BoI/wwA3TiBmb0cwkBWEhSMXAoIL7XEsl61oxYBOFIVEQPn+WoRhnalLUxryJoiJ+lUA35OKQExnR9Yacdi7YOz+kO+wQSQ8ZSSxpYUcWROBHIV4Y4A89/KGH9CNSVorySInAC6nlJhjYPllLuxvGNh1CT9igm54CFXYmo4igH+D1fMIwwnFS5NIFCpk8rkgpb2IsJA6OcEmn0mSyKSwHoiDCG3q0ey3agyYlt4glbFIESGAgFdB30Dzm8OSMbneA46QoFsrMTs4yXZ2i5JRwsFVDTPQ5D0/Zbj1jfX+Dg9NjOt0uEuVdnLJdUo5LFIUMhwOGwyGDzpB2o4M38HFTDrl8loJTJE02/g496v1ztg+2Wd/coNXpUhsbZzA5g4xieXcMDErDsIyI8BnILvXeOZt7WzzefEp30KVSqTA7Po1jOThCXQle5HHerrN3uM/23q5iNKay9Ka6BMTGx9KNy1wdPgKB9DgPztg43uDhk0ccnh5gFSTT41Nk0nkcKx0D0X+7AUI9tCzs8PCQra0tPv30U548ecL+/j6dTsdIA2/cuMGtW7dYWVlhfHycKIpMKunBwQHn5+f0+31jSK9tPubn5433X9KSIznn6GaRts7Y3983gVzaw0qz+KrVKjMzM8zPz5vUY50w7Lqu8cLSC8KTkxPGxsaMT2ASkOp2u5yenprtNRoNvHh94zgO+Xye0dHRS6xBLUlLfver45eRpH0RQ8+pZ2dnHB4eGlaVPoapVIpCoUCtVjMm/smE4qug4GcBoMlmrGaaaqZnvV43x1CDDjoReXx83FilJOuE5Gdqz2otKU16Eyb38eLiwsjJx8bGLgEF+prWcssHDx7w/vvvs729bVJmbdumVCoxOzvL7du3eemll7h9+/Ylr+MvGzD4WUMDJFoWqm1hbNs2jM92u838/DwvvfQS09PTZLNZ47Ppui71ep2Dg4NLPpzLy8v84Ac/MD6fc3NzbGxsGAn72toa+XzeBKPs7+8bGbheZxQKBfL5/CVZuwbmy+UylUrF2Ors7e1xdHREEARkMhkjFd/a2uLw8JDBYMDIyAgzMzMGpEqy1j766COePHlCGIbcvHmT+/fvs7CwYIDxJPOvVCqxvLzM2NiYYczt7+/z+PFj3nvvPZaWlowsOggCo2p60dDPE11ba7Ax6V3oOI55Rumh1xyjo6PMzc3x5MkTGo0Gm5ubHB0dEUURlUqFwWBAo9FgY2ODarVqfBF1U0SDrel02tgvJMFBfY1ob0ptqdBoNIwPoX7e6np5ZGTE7HMURapuGAx+ypNdky2S1g5BjNUkGwJCCObn5/nDP/xDk7BcqVQoFAomOEUHEOlrWR8r3/d5+PAh7777Lnt7e2SzWe7du8fS0hLn5+eGAf/d734XIQTf+MY3GBsb+8Lv719bcPDyg1b5/znCVqm1MZtHRpoRpqTHQlgmWdYWgtjvW9W7UrHeDKgVxYwEocEHVYyFMToMEsvWLIB4ER0Hj0SRKmxdJ0OhkKNcLDEyMkIpX8K2XdUxrJ9zfn5Gt98mjHyiKCAIg5i9aGEJF9uKDbJlDG4JsFMWroi7xpECGCMZMPQj/OaQdqfBxuY673+YYXKiyszUGEtLMywtzTIxWWNsbIRSSYWY6EDeMJDI0CL0LfyhYiYOBxJvCL4viKQCWrFiBp6UCFuQtlOI9PNjqAAvBQhKVJpyJGUcLgIyirvrsTefBkoVaOUjRPhcfm3byqvIimWxEYQ6uETYSKkWzr6v5MQSFbYhhMByLJMdqEG4SCqXQilRiZPxN5ZYyjNRSkKp3IUiKwQ7QjgSHJBSMOw7XFx4dLttjk8v2Nk9Y3fvlK3tY07OGnS7PTrdPn1vSBQFMVckDsRRJpDIKA4CUepeJCFhFCBtSSaVIpfNUBursDA/zezcFPPz00xMVikVMxTyKXI5C9cRinFKYNh/oGRrxIxHJEZOTqxsC2PWK0IF49gydoGSamHqyy8ncxCeS0m73S6e55FKpQwNPwmoXR2WZZHJZCiVSgYgq9VqhqZ/tXi8WiTrzw+CgH6/b7q6qZQKvNGg4lUg6WpRp7v3mUyGXC5nitfke656zOjf68TkbrfLysqKkVjobufCwoLZv52dHba2tmg2m5cYkVqipAsh3R37ouREGuRqtVrG82NiYsIUpT9rG5rloaUA+rnf7XaN7Gt6etpsRzd6dFqg7nxqOU3ymGppRa/X+ymWny4kdFLd2tqambj1tZP8rCQbVDMWkqCylpHrbrZmRV4Fnq8Cl8l/S76/2WxSrVYvpSfr76Q7t57n0e/3mZ2dNQvFJFiuu6c3b940BdXfpqFgOBVA0olaHFzssXe8w9nFKUNvSKGYY2FmjtX5VeZG5xhJj5KysvihR2PmlJ3jLT5df8DWzhaddodnO89IO1lS6TTupIvruAjjOajzbAW2UKm4YRQy9H16gwEDf8ggPcQWPWzhx36CWhmR9BpUFipCCtTkZGPjkrNyjORGmBiZAAGe1yUKPYJYkYCEIAjpDLo02i363R7ddgd/GJJNZ8nms6jQK8Uul1ix3kFw+fbUBaYCqCQhQRgyHPj4XoiU4DgumVSWbCoXh5E4WLjYWKSsNMV8kZHRCvnjAsMLj163z+HxEZvFTYIooJIdJWVn8GVIa9DmvHXCzsEWB8f7+KFHqVpmcW6J5YUVxvJj5EQaGxjS5yI4Z/timwfbD3m2t0V/OKSQLzA+Nk5tpEopWyKVcvH9gHavTbPTotlu0ev3yGTS6p607JjtCD4+nbDFcfOY/dNDzhoXik3gOJRyJfJOARc3ZvQJ1acjBAICOaATNTluHbN7vMdp4wzLVlLCQq5Exsri4iCReFFAd9in2+sx6PWwMymCKIh9qtV5f/7/av735JBmdMFec48nO0/YOdgBGTFRHGNqfJqR3ChpUcAilXjnb9ZINghfJDnVI4oiw/A/PDzk4cOHPHz4kKdPnxppoPYhvnv3Ljdv3jRzpxCC8/Nzw87TdhOe5wEY2erExATT09OMjY0Z1cBVtqCeo8IwvJQ2rAM0ko0ezTTR8lQdSDY+Ps7e3p753hporNfrnJycMDU1xdjYGPl83sxpYRjS7/c5OTlhf3+fk5MT422o56tkum6lUiGbzf6U53ASKPvrBgRfBFhdrZ90iIxOKNZADTxPA9ZsHS3vhefewVfnb72N5He4ur3Dw0PjbahZRsmaq1qtGm/Dq+nRL5rrHccxoKJmjyWvL80e0s1vzS7SKgoN+q6vr/PRRx8ZiaJmNLqua8CfO3fu8NJLL7G6usrU1NSltOYvIzj4ou+sbWS0fYD2zvZ930i2AcPw1LWZXg+AAtf0taTvD91c1iqhs7Mz9vb26Ha7ZDIZFhYWTD2mpaeahKBZuDpQSG/PcRxzj2mWq05Cf/r0qQF/xsbGODk5od1us76+ztHREVJKxsbGjO2RJjJoK5m33nqL4+NjZmZmuHfvHouLi5fqRb3dKIqYnJzkv/wv/0teeeUVhFApw3/xF39BvV5nb2+P73//+7zyyit89atfNQ32z7pe9L2ga+sk8zG5tknue9I6Z3R01MjDtaej9kycnp4mDEM2NzdZX19namrKBLokn7uaeadBwWTAE2CO7/n5OZZlMTExQbfb5fDwkL/4i79gcXGRl19+2TTltV+iZVnm+up0OibtGdQzW183mjmowX8plU9pkpUppTQKs1KphOd5Zg5IPnv1MdThOoPBgE8//ZQPP/yQbrfLzZs3+f3f/31effVVut0uf/Inf8K/+Tf/hp/85CdUKhVWVlYM8/2LHL+24CBollic/xYo7yAptdA49uqxwBZW7LkTg1dEhJYkihRg6DiuQWW9wdBQYR1X0ZFVynDs9iMlkRCKNRgGSPk85tvWzLm4w247Ful0ipGREtdWFrm+tsLY6Ci+77G/d8CT9Q02tp5xdHJEvXmBH/q4qQy2k8L3JYO+SkhGqglcJS/HgSNIA35KGSoGWAiRa+MKh27fY31zj4cP18lmUszPz7B2bZlbN9dYWJymWilRLGTJ5EBiYTtp0qk8mbT6cd02ttXHsW0sxyWdUZJpzx/i+UNkGGIRp+DqExKp8JcoTsaTxECUo/wIVWEEfgDDoTo3rq32wxIhth2j68SMCjTgp63ZnzOd1E+kQmCC2AspZnBq0DOIgphdFcbnxFJMRn9INBwoUDAIcF2bMMopIM0WhLaFLyy6voCBZDAQHB57bK7vsL6+wdOnm+ztH9PuDBgMIyzLIZPJkkpniSyL3rBHGAZYlo3lujh2bPiL9skMiKKAtGtTyGaoVSvMz04zNzfNwuIM01PjlEo58vkUmYyNsCS2pRZjUSQRIkIIiWXFywZNSdVgrOaqiNiZylIvErYFQvFSwkjJ6IXCW40i6ss6hsOhKZx0l+eqJ8ZVgE+zvHTKlfbq05O87rD9rKFlLScnJzSbTSzLolRSzYCrLDU9iejFgX5vp9NBywGS/i/JRUUSALIsyxiob25uUq/XqdVqzM/PX+oo6/1zXZevfe1rZLNZfvjDH7K+vs7a2ppJNd7b22Nra4s7d+5wcnLCzs4Oi4uLf2XWoP5TF7c6RU0bgye/qz4uScNjfez7/b6RJWgZQbvdNoV/uVw2xVayQ6c/VzM8tOQ6CdZqKr/u5gKGyWlZFuPj48awWi8skiBvcj/1SJ4/PaHrZLgkMKmvgxed76vb8X2f09NTU+D0+31u3rx56XhpeYt+ny5OkkBwcnGlwexKpcLf+Tt/50vKHPwlhwQU9xqPAd2wzXnzhPrFGf7QI+dmmRqdZGlmkZXxZabS0+RFCZcM0goZd0eopEuknBS2sFh/tkmn32PneIeRaplyqUi2lMfBxcVFR4sY2wpUA7Pb61Jv1DluHFNIF/BcDxsbBxuh53UspFC0cAeXDBnSZNSMKCws6ZAVeSYyk6SmMszVpkHG0tkoQtrgSZ+e3+esU2fv6AAZwbA/RIiAfLHA+PgE0+NzlPMjpKwcz6FMPeKJgiBm6ceeejLCCzwGwyFD30cisB2bTDpDJpXFwcHGQbkfSlLCpZQvMjk5wcHZGL1Bj0Gvz87eLsNgyMn5CZVSBSeVwosCWu0OFxd1LhrneP6AUqnI7PQc15aus1ieZ8QqkRIpBJK+7HDQ2+fp3jrrm5s0Oy1GRkaYm5xlZX6J8dIYBbeEKxSY14v6tPwOzW6Lfr9H2kkxVqpRS42RIQtIAunR9luctk6od5oEMiKXzVIpjTCaHyVv5bCMBNyKj4tiDQ7p0RzUObo44OTilIE3pDxSplqpMVGepGgVSeES4COFylMOZWQanY5r49qKdanYiAG62ooI6Mgmx/0DNg832T7YwQs9xkZrrM6vslhdomyN4pBF8NneUF/2oZ+lcLlRc/X5rBlmW1tbPH78mE8++YSDgwPq9TqO4zA2Nma8BW/evMnMzIyR0XW7XdrtNvV63QRD6HTf5OK/VquZdNMXgWr6e2lARwcOHB8fG4aLlqoVi0UDMtVqNarVqgkuS4ZX9Pt9hsOhCUk5Pj7m/PycbrdrmpSg5mANauzv7xvmI2DAj3K5zNjYmJG3JhUEV2unFykhvsjx89iKurHaaDQ4OTnh5OTEhBrAZcBNg6taRqjnws9qyultJl+j2ULNZpOTkxMj2fN93xwjvT1tGZL0GrzaJE7ul1ZraPZguVzm9PTUMJp0DdHpdLi4uKDZbBp7lG63y8HBARsbG3z88ccmYbvRaJiG6MTEBMvLy9y7d49bt26xuLhoGou6DvmrKkX+psaLvm+v16PZbJpaSYM6w+HQWK/oOltf+/C8gatZWlpKqo+LDug5Pj7m+PiYx48fc35+ThAEBmxNgvtJ9qqW+etzqtmc6bRqSOkgwcnJSdLpNI1Gg0ePHnF0dMT4+DivvPIKjx8/5smTJzx9+tSoXWZnZ5mYmDCNZlB+fH/yJ3/CRx99RCqV4t69e9y/f5+JiYlLcvqkx7cOTFlaWjL7G4ahYe/t7e2xubnJ/fv3f+q4JEfy2asbD8nnhK5JdWqxbkgnn9uFQsGwOU9PT42HdhiGzMzMmOC99fV1Y7GgE9Y1IKhTuJMkDCGEkepqKymt2FpbW6Ner7O+vs4777zD2toas7OzRpWUyWTMc10HOg0GAwMC6jlGnyPP88jn81y7ds28bzAYmGRifU/rECgNmurrQj9/tTRZK45UHoZvmgfa33Rubo7p6Wksy6LZbPLBBx/wzjvvGE/FmZkZKpXKF3rv/dqCg6lUGtdNKXAMVLfXUhIbCarIipl1xOCQlEB80VoCsFFgm1Bec65jk86kyWbSdJweMgrwh8rM245lxUGoGH6hlIqt6LhYVjKNLEJYFrYtkFHIoNeh3bLpdsoMhzVy+SozUxVevjfCb7Vv8Gx7nwePN/jk4QY7e0e0Oj06nQGhHyEsF9cVRDIGxkAFgEQSK+4oC6G8FRXbzlL7hcT3JEgLQQ5vIHj6+Ij1x4e8+Zcfs7Q4z7Ubq1y7tsLs7DiFQgp/aGEJR0l5BQgREMkhnt9FehI/cOMHn3LwEyIGokIlr46iCIGFbbnYtoPruIShJAzVxW47NrbrkErZZLOCQkFSyAtcxyEMc8gwIIp8IhkSSRVwYsXn1HYglCAsJf1GKN9Gy1a/B+sS4KJBL8e1cV0H27WJIv07qfwJY3ZAGKjvUCjkKY1UKZbGsZ0anV6Z/m7E6dk+6+tPefT4EfsHB/S6PQYDnzCQ2Li4jkXg+7QafSLAdl0y6TRWPHkHYYgX+hBKLFvguIJ02qGQK7AwN8nq4hxry/MszExQKucp5DPk8ikcByxbAahIGS9mYyBYqGvP1te7VCExMgaRXcuKQVgVrBP46j3CQl0jtkDYtpIgC7WcEXaKL9tIMsXOzs7Y2dnB8zwmJiYu+dglPV6SQxdGuoCYmZnh/v37zM7OXpJ1vIh9qLetO8kHBwf4vs/09DQTExOXvOReVFh7nsfZ2Rm7u7s0m00j6UnKkfT7kmbi+t91cMpbb73F+Pg4/9V/9V+ZdONksafBxImJCV577TWOj4+NCXkmk6HdbvP48WOy2Szf+c53+NGPfsTW1havvPKKKZq+iILR8zyazSagkqK1N8tVsFYPzf4GBdYVi0XD4tALtZmZGcMQ1V1Yfb70gnEwGNBsNnEch5GRkUuFupSSRqNBs9lkaWnJFD3aIDmbzTI/P8/4+LiRV32WxDy5gNHnKQnW6Q6967p4nke9XjcG4y/6DP392u22uX6fPn1qvKz0tabBziQrRYen6O8wOjpqAnP0Puiio1wuk81mmZycpNFo/FVP85dj6MMsLYRw8Ahp91u02i16nR6B51Mo5hmrjDFbmWUsPUFZVMhSROACASnhIFIQTod4gUdnMODZ7hb11jm7B9uMVWtUczXybgFbufcBar5yHQdhWfhRQLPTYGtvAyEiGu0LSvkRLEfJw9FWGJaFtGzSbopytsx4ZpSaVSEvirrvQ4ocI7gU7RyhHZgGkSAkxKdLjwvZIiDkLHWmTLazGYqlFFOTE6wtrrI0uciIPUJWZHFiSEokj5cwOgt1+ITEjwJ6/oDOcIAXxAberksmmyWbzpISTszS180oizRpSoUSpXKRdCpNt9XhonHBMBzQaDXIpNJYto0nAwa9IYO2YnCUKwWqIxWWphdYKs0wZtfIU8BCMJAezbDDYeOYreNdjlp1LCEoFYtMj02wUJllzBkjSw5L2PhAyZJUHB8v6xHJCFfa5ESGrMiQwsWXPgP6NAbnnDSPafY6SAGFUonx0Qmqmar6PKnC2oSwlTUMIYEc0os6nLSPOTjZp9VrIxybYrHEWGWcUqZCmgwODgEekZQEURR7X4Nj2WTcNCkngy3cuOkcIkWEFAED2eXI3+Xxwads7jyl229TrpRZWlxgdfoak+lZ8qKEI1MxiPyruLH+5saLFqmg5sJWq2VS4j/55BM2NjbY29sjCAIKhQJzc3Osrq4aadbU1BT5fB7tP6vlfFq6qptHgAHVpqenzWIyKSN9Ue2RbChqJqL2ydMS5ZGRERNSUa1WjRzW930jWd3b2zNAZdLf6uTkhLOzM+O/pdnzmul0cHBgJMV6YaqDTzTzUafZJo9lEtz66waRPosFmmw4aq9FDbAm2XYagNAsKM2A0tYpyfGc3PFcBZasnfSivdPpsLW1xdbW1iVvQ/1enVA8OTnJ1NSUAQd/XtiHBokKhQLlcplyuUwmkzEprEnZsPbDK5fLDIdD9vb2+OSTT3j48CGPHz9mf3+ffr9vWIwzMzPcuHGDu3fvcufOHaanp408XR+n37TR6/XodDoGINIAlK59tDrH8zxTY+p7VbPcNPiuJeqg6taFhQWOj485PDw0De9sNsu3vvUtU3/rbejrKRkGoRUc+jrNZDKmSZ8M0Wu1WmxsbNBsNnnttdd47bXXGA6H5vnV7XZxHMesNTQzstFo8OGHH/LGG28ghODGjRt84xvfYG1tzdjsJK/vJOnA933DRNbNeK2+8X2fo6Mj2u022WzWSJ2T4+pzQlsVaIZrFEVcXFyYcxFF0SUmbxKY1TYAW1tbbG5umuN87do1arUa77//Pjs7O/T7ffr9PlNTU2bNp4+t4zjGk1yHN1mWCvN7+vQp6+vrJsDx/v37ptFwdnbG97//febn5/nWt75FLpdjdHSU2dlZRkdHOTo6Ymtri9PTU6ampsw+d7tdPvroI/74j/+Y4+Nj1tbWmJubY2JiglKpZLwiDw4OWF1dNaDw2dmZCX/RqfSaBdlsNmk0GiYYUa9XtS+hEMKEsgyHQzN/aBmxtpT6xje+wejo6M8lu3ye8WsLDir/NiXbJO6gRxFIGcUHMe66CwX+GfQaBdw5jpK1qqAR7Y+XmPwsSzXthQDxPDnWdR2ELXAkWLaDbcc68CAgCmNtORJsF8d1yGTSFAsZSuUM5VKKctmiUFTbd9MWleoCt+8s8M2j13n4+BmfPnjMo8cbnJ43CULwfMlwGBDGqcw6fl4ICGNGigKMFDMhCpUkWkYRQqqbPhJKyksUUb/o0Ww94cHDTWpjNZaXl1haWqJSreB5Pv1+gGVbZNIObsrCdSGMwLY1WKWlhrFvYhgq6YsVy7ClkhP7vvpuYegzGLj0+z36vY6SzQzyZLMpfN8min0dZegpRkLsvxeh2JdCWASRhR8IwsDCthX4lk6ncGKmpmUrI3PLEriplCmEVQdfIgPFEtWy3ufyLhvbtXFslzAQNBs9trePOD1rgQWDYY92p0mjeUGjcUG321b+i6Fi6UkZYMV+QxnbUUieEESB8pEKIrVEsx2BsAX5XIbJ6Rrz81MsL85yfXWamYkK45UCpYKjeCyRRHlhaacq5Qco7Dj1WjwvbKIoigNhUCCtVJ6XCkRVbouu6yqmBFp1rMJK9PsUQCieLwC/REODIkEQGNlPPp9nYmLCTLgv6ohqsE8XjmdnZ9i2bYx99WSmwRzdfUqytPR2W62WSRdzHMd0+pOyouR31WM4HHJ8fMze3h6e5zE1NWXCSJLv0++Fy+yDkZERXn/9daampnj33XfZ3t5mbW3NeNQlu3X677po0aBVv9/n448/5ujoiN/+7d9mamqK27dv8+/+3b9jc3PTeIJc3b7+71902LZtJn/gOTM79iXRhUry8wEji9XJcBocrNfrDIdDY2ycLHCTHU3tH9hqtUin08aPMVkI7u/vc3FxwVe/+lWy2Sz9fp9Go0GhUDAsAG0Snjz+n8U80IzN5O+SPn+1Ws2Ypz99+pRiscjk5KQp1q9ep7o4KhaLnJ6e8q1vfYtisWjkI8khhKDT6RgQsVQqEYYhw+HQnAf9fc7Oznj69KlJ1dRd9t/cEc9PQNwRQUjLzDWDoYfv+eqZKCyymTQjhRHK2SoFq0xGFhAyC9IGbBzboSAEY6mQpak+x/U6pxfndJsNLhoNjupHzEycUXFHY+agjOcKRzHbhWocBX2f0/opvh9wcnpGOp0hsgRSKCGxQFkkYzkUcwVmR2fwxldIj9ik3SwpAYqVZ2HjYuMCUj3nFX8ejyFDGRIGId1Oh1arydDrkclmmBqb5NrCKmvT1xhLT5IXJVIyHbPh4paktONDpxQBCqkKCQkJhI8nhwzDPr4MkUKFuaVSKVJuClc4sd9giI+HLz0GUY/esIfvBwgBqZSLFQls4SAjSRhIfH/I0BvQ7w0ZdD0c24ZIJT5nnQwZK02GNA4uIREDAtphj2ZfSYW7vS75TFbVccIilIKQiFCoGjBNioywyUllN4IlcKSLLW0saanzw4B+2KXZO+eiXWfgebhuhsrIKBPVCUpOgZzIGOsXLbWO4mPe8pscnh1yeHrMYDAgl88zVhlnsjrFiFsmIxQ4KLCIpFKihDGYZNs2KSdFSqRwcNX5EOqzh3Q5DY7YPN7k6c4TTuvHZDMpFufmubV8i5niIgVRwUGdx+cGK7+5I7no0c/QwWDA+fk5GxsbPHr0iIcPH/Ls2TMajYZpmC0tLXHjxg1WVlZYXl42qgO9eB0Oh7TbbcPK00Ek2itMN/Wmp6fNAlUzsK/O+fp76kbZ6ekpZ2dnhoGmwYNMJnOJgZaU+GrZqmb46TAzLRtuNpsmSVlL1nSarzap1ww7fcz09mq1GmNjY2Z7n5VG+qL574sav4i0VYeCXFxccHR0xNHRkWFCJptkmlU3GAzY2toyMusk8KebiprJpKWZGvDT/623qT0iNdCoayltT6MlzKOjoy9Ur8BP11F6sa99lbUfcbfbNYQHHUBwdnbG6ekpruvS6/V49OgRH374Idvb2xwdHZm6amxsjLm5OW7fvs3t27dZXV1lfHzc1Eu/SqD3Vz0Gg4EB/ZI1u/aCc13XgGDJZGgtFdWe5VrGn5SM64asfh70ej3K5TJ37twxYA9g7mO9jXa7bdiBmv11VTWSy+WYmJggk8lQr9ep1+tIKZmcnGRpaYn19XWEECaNW4fdJNnIT5484YMPPjAe5Hfu3OH69esmcDAZMqh/9P5JKU2DXQON5+fnBkDTTGJ9v7yI9JBc7wghyOfzFAoFjo6OGA6HnJ6eGkugZKK4Brk0k65WqzE7O8tPfvIT4+s5MzPD6uqqSVPf2tqi1+uZc6Of2/pZqodu8OhrotVqsbW1RafTIZfLMTMzY8DXra0t3nrrLZ48ecI777zD8vIyq6urjIyMsLq6ykcffcTR0RG7u7tsbGxc8iLv9XocHh7y7NkzDg4ODFNZs9CPj4+NBYAGWQ8ODnjjjTfY399ndnaWr3zlK4bZOzY2ZkBoHUyTXMfZtm3WN5qNqJ9hjuMYJqx+xvwiz9bPM35tVwu2ZSFixlQUs/gsc9Gr10gZewCKOJUzDqIQlo2MBJ4P/X5Ir+8zHHqEQYAVszzSmTRhrEaVkQqrSIKIqhaMsKwYzIouP2xFEqCSEWHkE8ohYeQRRVnCUIBUgI/jwMREltHaTV5/fY3j0yYbm/usb+zydH2X45NzOt0+vd6Qoe/h+bFvHzqARftJCYSlAKNQhkQyUNJnMMEYkVTBIIMgpHdwwmmjzccP18lk0ti2hQxDPG9Iv98j9Hxcy0EQIqP4M8Vz0810KoUlbGSo0oXDIA5nsRws20FYAisQpFyXVMzic10Fzj4/jzZWKo2UDkiVIKgBXhlKpBVhSQ2MafA3QMoAiLCExLYEwtKT+HN6ciTjayRSicpRqCTmbjpDJqWYQL43ZDDwGBydcn5+gZvexrJtEFKBaDIkinwjISeScbltYwv7+SIqEjFBVUmtJRIrUh6KxXyekWqZmZlJ1q7Ps7o2x9LCFLPTWXIpFRJjodKpZegbZiRxkeOHAVEUX8Naom3FB8RSUKclhPJ0JL5mpYIW1V9CZBzMg5CKRRjL5LVUXvaHf/037Rc8kuwwXRjNzc1Rq9UumXF/FtNL++CdnZ2RSqWYmpoyE0zSKBeeywSSxacuFo+PjwmCgPHxcSMneRHAp9+nE3L39/c5Pj42xuN6YaFfl5QA6L/rz3Rdl5WVFRYXF5FSsrGxYUCzTqdzqVOo36OLFP39NjY2ePjwIXfv3jWR97Ozs1QqFR4/fsza2hqVSsV89190ckkCknrosJWdnR12d3fZ399naWnJTGZ6EoPnMuTNzU0ajQbb29t85StfMYCv9pOpVCqXPBZfFDyjJ1A9qeqCzPd9tre3eeedd+j1etRqNdN1bLfbzM3NGflz0qfl5xXSLyqW9LZHR0e5du0a7XabR48e8d5772FZFnfv3r2Ubpm8bl3X5b333kNKyVe/+lXW1tZMkbO3t8fdu3eNTMrzPD755BPq9TqvvPKKkVvv7u6ytrZmvlu/3+fBgwcmxTi5f7+5Q1z+T6F9/ARCque46idKLBuwVaMp7WSxSSFQCcJSSIRIxQ6AIRmRp5qpMl4bp1qpMOx06fV6nDfOaPaaDPMDciIfx2fZOJYNtrJ6EIocSOhHDIYebTr0+0OwBJIQIUKEULYpwkohBx4tK8eg1Ec7KYcSbGxtooKFo34jQyQBvgjoS58Lv8P+6SG7u9tcnJ8hkEyMj3N94RprEytMpCcpihFS5BCkeG4WImPfCs0a1LVHQCBCAnyGQZ/+oEsQeAbsS2dcXEtLigUBIV3Zo+6ds3exw/bOFhcXF1jCojJSIZcvUC6VKeQKpJ0UfujR7DSoN5vUzy7o9bsMegOa9Sbn53WmCj2qmdB8NwtbZWtFKlDMkRH+YMBF/YKDkyNy6QLDYkgpNSRnZcmJbAy82bFnYEqBfPF8LvHwCegMOpzXz2g0LgiDiJFikWq5xmi+Rt4q4Mi0ep/QydIhEp+B7HPWPufo9JBG84IojCjny0zVphkvTlCwSjikYoZnfKwjrcQQWLZDyk2TtjK4uLFg2cejx0V4ztbFJo+fPeLk7BjLgtmpaW4s3WBmZJ4RMUqGArZ0/1YAg1elxBrQ29/f5+nTp4Zto2uEbDbLzMwMKysr3Lx5k9XVVaM20POJbmYlfQFPTk4MO82ylHekBoS0YiAZBAKX5wM992ufvKusQb2Iy+fzVCqVn/Kt0wz0crlspLI6pML3fSNV1uwXDQb1+32Ojo7Y29u7BG5qkEwz3jRLsVAo/JTfcLL59dd5Hn+R12iwTHsNXg0iEUIYvzMd5pFsEl9lBiZVFp/173rb2lOs3+8bEEJLgsfHx5mamjJMoWRjNQmCXN3Pq8zBkZERE6KhgS5d1x0fHxvPuXq9ztOnTw2zyvd9isUitVqN69evc/PmTZOQq3334LmyIbnPvylD37tJkCjp2aaZma1Wi1qtxpMnT7h16xapVIpPP/2Up0+fEkURhUKB2dlZI0PXIO/S0hLpdJrDw0PDRHvppZcolUqXQKl8Ps/c3BzvvvuuYfzpmkzLghV5JjS2OVJKc9+fnZ3R7XaZmppicXGRSqXCwsICtVqNra0tpJQGANYhKK1Wi7feeou33nqLfD5vQDaAnZ0dE9BSq9VMranrYw2kb21tmab8Bx98wP7+PlJK81latvtZjQN4/qyIooi5uTleeeUVHjx4QLfbNYE5KysrxrcRVM2rk+KFENRqNbNvnU4HKaUBBXWCuz63+vzoMBchhAHBU6mUkZNrZuLe3h4ffPAB/X6fXC7HtWvXmJ2dRQjBa6+9xoMHD+j1evz4xz9mdnaWcrlMrVbjxo0brK2tGTunH/7wh4yOjnL9+nUymQybm5tsbGyY+1DLva9fv87KyopJpP/Rj37E3Nwca2trHB4e8t577/H+++8bj9vZ2VmT2Kyv6SdPnnDnzh2jaltZWWF6eprHjx+zs7PDj3/8Y6rVKtPT0+zs7HBwcGCOa7vdNl6HX+Tz+9cWHJRSMcssS7HVIikJ/djA3bKwHZXWSiwt1g8NIiWvdBzFEHAcm3RKdbodxwWhHp6+5xNJxdQSECOxKrAkiOmdKiVZDSvWKUdRoMCmgTKlzqbLOK5DKpXGsh0iCUFI7JeowCMbScYFO2shHJfySI25uRFefXWF/YMmO7snbO3ss/Vsn6PjOq1Wh25HeebZlgUyxB96eJGS+9oxUGjblmERKpm1hLjwdFwHaUG336Pd6QACx7JxbQdQKbqe7xNKibBtHFvLl59PcIEfEkUBSGWS7jpOXIzG6cxCghXh2AoYTKXUj22rgjWK1OJIRjG707axhUUUSgIZKOadlMj4KhTP8bB4/wS2o70e488MVbpyGCmmpQ6NsRyBtB0F2goIohiMsG1SmTRBFOAHAYPOACGUX6Rjq8+2hYVju0SRQ2QYk6CtDm2dqiwgjBRbUgqJ68QpzjKie9Fmbxjid4c0j1qc7tSpL08wNVmmNpqnWLQQtgJbdYiIusQlju0gbcUllFLihxEi0uBwXOzELEp1vhXop4+XEMKAyRoclCLmJkq9PPni6Ma/yqFNouv1Or1ezwBA/X7fGN7qDnBySCmNQXerpbypRkdHLxnmvmhoFpguPnVHXvtPSCmN4bEeOuxCe2DoBcfR0RG+7zM7O2tYB3r7VwG2JFCY7PY6jsPU1BTr6+t4nsfe3h5vv/02nU6H69evG1lLvV43E+LS0hJHR0e8+eabLC4ucvv2bVzXNTT/l156yZgZl8vlnwmyvmhcBUV1Z295edl4l3z/+9836Wka5NMLJ90d151BLX/V4N3x8bFZSLVarUvfSy8SdcKcZvJdXFwYBmK/32d/f59Hjx6ZIlGzCnUneXl5mWq1apikf9UOu15ELC8vm+bKs2fPePvttzk4OGB5eZm5uTnDUnQcxxRsrVaLXC5nOsC+77O6usr777/P8vIyKysrDIdDNjc3effdd1lbW2N5eZkwDKlUKvzkJz9hYWGB6elpBoOBkSDdvn2bmZmZS53j3+yhgCSjKkYSxv/mumoREImIQAZEqLAnSxI778XPzfh9ikPnkCJNzs4zWq4yUhrhzDnB95QnTKvToF/pUXIVEGRjYwsH23WwHZuUqyw4qpUKY6M1qvkqKTcNllQseisw4JewHLKpPLXiOJV8GddSicdWEvwRAmUeq/YsZEhHtqkH52yfbvP02RMOTw6JZMh4tca1pWtcm7zGRGqCkqjikkfINAogk1eOm96OqjeEiECGhNJTLL9hnyDwTOBGNpPFtRwsFMewJ/ucDk/ZOHjKs/11tg/3GXhDKqURJsemmByfoVYZo5jK4wobX3rU+xccnh+ytbfFzvYOvU6f45MzCoVtqiM1iqkqtp3BJY2LQ87NUi6WqZQrtC5U+FHjos66fEyr3aBWHWekWKacLTKSHWEkO0LBLZIVWTIUFNNOuICFj0c/6tPsNTmvKw83SwhK+RJjIxOU0iOkyQIuKrtOIkRIhI8vPVpBm6P6Ecenx/R7fTKpDBPVCWZGZym76r0WDiGqcaem4riRYyn2ZdpJ49quYo8yJCCgFTbYbjzj4ean7B3uEYYRk+NT3Fy6xeroNarWGGmRx5YphLR+ijD7mzaugm/D4ZCTkxM2Nzd58OABjx8/Nk0mz/OMx/Do6CjlcplUKmU8pLStggbifN/n5OSEjY0Nnj17ZqSkV0GhkZERkzwfhqHxDrwKSOmGok471RLlXq9ngAYtLRsfH2d8fJxyuXwpMTjpDTgxMWHCRfTCN+mNeHFxgeM4dDodDg4O2NvbM8wdvcDXjcmJiQkT2pHL5Qzz5G96XGUjaSa8Tmc+Pj42XtO6RtFyUi2r1nWZZoElG6bJv2uANrld/Z6k17m2MNKv04EfOjzmRazBq/XDVeZe0iNRX0+6FtTbbrfbbG1tGearllXr4IuRkREWFhZYW1vj3r17rKysmIb3VbZg8s/ftKGBXR3299FHH5FOp7l3754Bc9544w2Oj4956623CMOQbDbL22+/zaNHj6hWq6ytrTE/P28ktICR/Y6OjrK5uWlAqOXlZaO+gOcBH7r+Hg6HvPvuuyY5+5NPPmF9fd34VSYtjIrFogF9tEJIy9O1l3kmk8F1XfMM0w2ABw8e8OGHH3J6espwOGRycpKPPvrI1Mt6P7/zne+YprJmlO3t7fGDH/yAZ8+emQb53t4eOzs7RFHE9PQ0MzMz5PN5cx9+FrCs7w+9Nrlx4wZLS0scHBzw4YcfUiqV+OijjwzDTr9H31ugnnPaa1Xfl/pZWCqVWFlZYWxsjN3dXaSUl5LVNRNXkyMA09DRcm3NiBwZGWFlZcXIeb/61a/y0Ucf8f3vf58nT57w4x//mLW1NWq1GouLi3zzm99kd3eXN954gx//+MeAAowrlQonJyfs7e3RarWoVCosLi5SLBbJZrP89m//NgcHB7zzzju8+eabWJbFnTt32N3d5b333uP4+PiSJ6QOuHIch7OzM9577z0ymQw3btzg+vXrTE9Pc/v2bT788EN2d3f5/ve/bzwZt7a2DFNTS4xLpdLfHubgcDggk85i2XF3R08iQgVSGOaeUEWXesjHhb0UsU+gznF4bhAfRc/9qswQOuQk0UmLmYhaZiuJWW2hli9LXDeFBPwgxAsC5ZtnO9hpQcpFyXVkQBD4yCAkigQitEk5DpmyTWWkyPhYgevXJri4uMb2zhnPtvbZ2tpn89keZ6d1Op0+g76i5zq2WsaEEmQUA5/pNMKyCIOQoefh+7H8WUgsS93EYaCOjWu7hG6EYztgO7iW4iGoxYpaFoVRhIxi6SLx5BbvexgRg1VSpTH6AZ4/ZDBwGQ4G+MMhoR8QBRFhqKwgI4sYzIogjLkcQvkAplKW8hZ0LQIfBk6kmJEo2bju7qpOkWY3KcTOMizDKAbbIoW2xaxFqUEzAREhYeQTSJUabQmBLV1lHg+qox9JZAQyFMjQiuXbCngWVohthYrV5whcN6WIBDGYN+h7BP6AVqNLs97mcPeErY09dp5NMT83wfzCOHPzVUaqOQqFFKmUYiGGUcxQjcNHbIuYMaiTVhXoSyQRUsmITQS3BOLkbXVs1HuVzErEizu9WJbY7t98IfjLDE2h1lLgp0+fGsnp4uIia2trlEqlS+9JFuoXFxfYtm18hq5KPl60veRwXZd8Ps/e3h7Pnj0z1H7dudLmujMzM1SrVVPUHR4eUq/XSafTptucTLbTE28ytML3/Uvg5VXGRCqVYnl5me3tbX74wx/y4MEDE4xyenqKlJJ79+5RKpX48MMPyeVyvPrqq2bC10X00tISn376KScnJywvLxvvweTx+zxDSmXMvLCwwOuvv45lWWxtbXF+fs7ExARjY2NGbqF9+EqlEuPj42bRozudnucZX6U///M/p1AomOMEinWoQbiXX36ZXC7H3NwcH3/8MX/8x3/M6uoqnufR6XRMOmW9XjcLQs/zcByH0dFRRkZGLvlH/aL7/lmMC9u2KRQKXLt2jWq1ysbGBltbW+zv73NwcGAWm3pxplkDr776Kufn55dkF/fv32d9fZ0//dM/5fHjxwY0nZub4/XXXzcg4v379/nud7/Lf/gP/4GFhQV6vR4nJyfcuXOH119//afA6N+skURGSPy3TPy/kuNm0zkl3XNtBn6I5w8M4IUbgAgQ2FhY6pkfCRA2jnBJkaaYyVPI5Um5KXpeQK/fp9NtMfR7hG4AuFgSZWVhpxC2asTlczmmp6ZZW1hlvjZPMVNEWBbCkkgUSKkCuWwckSJr5ynYRfJWARsn9gSMG11qsiASvpLEyhan3iE79V2e7jzh4HifIAoYrdVYnltmZWyZyfTUc2CQdNzcs1EBGJE5XFIkZZuqFogIGIZ9+v0uw/6AKAhJp1JkMllymRxO7DcY4NMML9iub/N45wm7e8/oDoaMVsdYmV9lZXaZyZEZym4FFzfeesR4oUO1PEoqm2Lgeew826Hd6bB/esR084TJkTkKdhmHNCmRYcSuMF+ZxV/0cEhzeLyP5/VpdxoMvA5Hp3u4rvp+I6Uqk2NTjJXHGC+NM5GZpCBKpMlg4aik4bDNefucs4s63tAjkylQLVcYGxkj7xSxSYN04qssis+Xh8eQ894ZR6dHNFotIhkxUhxhdmKW6coMBbuETQqkElwjiGXFSqlg2eC4DrbjYgkLScSAAa2oyWFnnyfbj9nc3mIw8JgYG+P6wnVWJq5Rc6fIihI2GXSD1kjDf+F75Ms39PNfN90ePXrExx9/zKNHj4xthGYTaZnfwcEBvV6Pvb29S+wgvVjXDcBWq2VAqLOzMwP8JWuIk5MTHj9+TKfTMcwvrQTQDDI9f3c6HU5PTw1rsN1uXwIGk0xEDQ4mrTP0HDI6OmrmzsPDQzzPYzAYGNP78/Nzjo+PiaLI1BvHx8fGLzEpi9bBJ5o9qben9/GzQKVfxmLk855XowKKv4cGLs7OzoyHVxKwTaVSJoRE+30Vi8WfqqeSP5rBpSya5KXXeJ5nAi404KrTZkHVael02nhEjo+PGwVIknH4WfuVPIZ6/tfXThKk1U3n3d1dDg4OLr1XhxLMz89z+/Ztbty4wbVr1wxImTxfSSakHp+n8fvrPjTrbHl5mc3NTc7OzvizP/szk9p7/fp1Xn75Ze7du8ePf/xj3nzzTba3t41tSyaT4f79+3zjG98w4IxmHebzecMk08CLbtpqCxfdIMjn82Y7b731Ftvb2/zbf/tvAUytq2vCpJ1LJpOhXC4Dzxv/ExMTRv46MjLCcDjEdV1mZmaYnZ019/2zZ8/Y2dkx1+bBwQEHBwdmG7ZtG2n04uKiaRI4jkOj0eCdd97h448/Rkpp2MwaEP3a177G6uqq8T3V312Pz7qG8vk8L730Et/+9rf5f//f/5fNzU3a7bZ5JmrLGw36a4BQ1+3lcplnz55RKBSYnJw094UODDk8PCSKIgOqJ8F0HV6o14bpdJr9/X3ef/999vf3DdA4NjZm1DgLCwu88sorvPfee+zt7fHgwQPee+89FhYWmJyc5Otf/7pRcb3zzjv82Z/9Ge+9957xZqzX6+TzeW7cuMFLL71kPL2/9rWvmUbG4eGhkRLX63VDwpiZmTEKplqtxs2bN/nwww95+vQpDx8+NB71pVKJmzdvcv/+fTY3N/E8j52dHf7kT/6EUqlEu92m1WpRLBaNLFoTJb7I8WsLDmLFPi1+HM8sFPAh4oJICIGwBLatGGlImyiSqPtG8aTCMMm0UkEbSBVmYds2jqUCOiJl6obv+SqQJF6IWrYq9K3Y91DGklgkWLaif3l+QH84wI987BRk8hZuRhCG4A19LBEq9pkTs/0sgZQh4VCl8cpQkHNccmMFRoo5lhcmObt7je2dY7Z39tnZPWB//4hWq8NwMIwnrohQSnw/QvgBtmUr4gMWaSdtQCJE7PNjP5ecRvj4BNi2Fe97xHCoDI+jSAGHruNgCaGAQimxsBRbUaC2HUrFCpSh8i/MpMmks6TcDI4da+JtgR2HbkCc5SgUU1PLXSMZQSiQAnwffF8QBgpURAqV3iwskBF+ECiwN9IToGJCarYjJkUwVGCgjMNJhIVwwLYtnHQawhRRGBEGAd3eECHVktCxHFzbIWU7CGX0RChDwthEPCIkkCF+CDJQ+6R/tODLQtAfePT6A04v6uzsH5ArZJmcqnHt2hJr15e5tjbHxKSL6yhmpBMfHwVsh8prk9hL0wIhZey1KQmjRMGGAmot2yK22CKK/3wOKMVHXlhE1pcv0VB3w0qlEq+88oqh+wNmotaTxYsKIp32pSUAmp32ou3o46o/K5VKmSSrQqHA0tISh4eHDIdDU0zoBK2xsTEjWdI+SK1WC8Ck4WrK/tUJVi9Qkj57lUrFTPa9Xs/4A+rC/g/+4A/4+OOPefz4MYeHh7iuy8TEBC+99BKzs7P0ej2q1Spf+cpXDLiW7JRXKhVef/11UzT/MudFH+Mkw7FUKnH37l2mp6d59uwZz549M0bhOkFOH4/JyUnzGdVqldHRUfN5165dM80czdLUHXzd3U96Rl6/fp1ut8v6+jo7OztUKhVeffVV5ubm2Nvbo9FokEqljOTs9u3bLC0tmeLnahJych8/zzFJAr9zc3MmIVOn311cXNDtKllqGIbm9wsLCzx9+tQs2qIoYmZmhj/4gz/gL//yL9nZ2aFUKnH//n1efvllA3KnUilu3LhBEAS88847bG5uUqlU+K3f+i1u3LhhQmH0z68DU+SLHT/7HCkRrk2WDIV0kWJBLcS73SbDwYB2s0V30CXIeERiiIqwSsUAWuwtHM9druOqedFRnnyhH+ENffzIVxLh+PWW7ZBy0rh2ynhVjYxUmZmcZ3FkhbJVxib9XB7M816PwFHiZGFhY2NJF6QT25MoJp/i6Q3o0eY0OGarvsnG7gb7R/sEoU+lMsr89DKrk2vM52YpU8GRJYjlv/qYacALJEogoYLelBGz9tbzGfoD2v023V6PwA/JZ2wK2TyldImUUFIpjwHnwzO2j7fYP9qj3mqQzxeZmJxiaW6ZheocFWuMtCjE+6Vk1VmRwUlb9Go99kePOD44pd1sM+j06bU7BIGnqjZp4eJSosxsdo7sfJ5KaZTd0wmarXNarTrdXptef0C70yOUDXYPjtje22O8NsbSzALBXMBMbhohFMtzSJfG8JyT+jGNVhOAYq7I6EiVSr5KWuTUMRN2LAoOY6fBPi3Z4LBxwHH9mMFwQCaTYWxsnKnaNJVMmQwZhIyD1JCqJtHMJN9DSrX4sF2L0ArwGODLIVu9LZ5sr7P+bJN+b8hEbZxbS7e4PXeH6fQcGVHEkZn4SlNsT/Fzsb8vNyig5+UgCGg0Guzs7PDkyRM2NjY4ODgwvnD6df1+33j+JRnhmnGS9L7V50Qb9eukUXgedKKbVZ9++qlhES4tLXH79m2uXbtGNps1zbWk16AOluj3+6am0OBg0vvvRawvzS6cnJxkenqa/f19Op2OqT1arRYnJycUi0WGw6FpCDWbTQNsaTBKL47Hx8d/ymswya7Tf35eFcHPO296/KzP0+dCM0MvLi44Pj424GC32zV+XNlslvHxcW7evMkrr7zCysqKAXl0vah/kiCg/ny9Le1J1+12OTo6YnNzk6dPn5rXatZXEhjUabb6nOlrJXnu9Bx7lamvPyufz1+SFuvwsaQsUh9/DSZOTk6ysLDArVu3uHXrlqknNQBztfGXrId/k4BBParVKvfv3zdhDM1m09wftm1z+/Zt/vAP/5BcLsfbb79tVEelUolXX32V3/3d3+XatWvGOzTp31YsFrl+/bpp7JfLZcbHxxkOh4atqoG/5eVl/tE/+kf0ej2ePHnC2dkZpVKJiYkJut0urVbLsFwBo9yZn59nfn6edDrN4uKiITcUCgUWFhZYWFggk8mwsLBgaj3tQzc2NgaoZ41mLepnS9IbU18Xo6Oj5tmn1TuaCVssFrl586bxrZyenjbH+GfVw5q5qevmlZUV/ov/4r+gXq/z9ttvc3p6iuM4LC8vG989LZ3X17dlWVSrVVZXV7m4uDCBkZpZpy16Wq0WQRCwsrJyCQjPZDKsra1xcnJirv/T01M2NzdptVrGk3thYYGJiQnDMM7n83z1q19lc3OTTz/9lE6nw8OHD7l9+zaVSoWRkRG+/e1vmxCqd955h6OjI05OTgyb886dO3zjG98w15DneYyNjfF3/+7fxXEcfvCDH/DBBx/w6NEjhsMhxWKR+/fv853vfIelpSVla5dO88orr7C3t4eU0tgHFAoFEzb10ksvEYYh1WqVH/3oRzx8+JAoisz8cPPmTb761a8atdIXfa//2oKDtmPjpBwFvVgKnNLJrX6oJKIyCLEAJ+EhoXwJbZXYaoEzjMM2Yj83N+UqeTHg+14se42wYymrY9vYjoOMQRWEFfsdKrAtCH0G/R59z0OKNJlcinQ6Q8rNEvg2nbYknwfXAeFo8EIl9VpSCZZs28J1bVK4yMgiCMALAvJpKOTSTE1kuLZSYzC8Qf2iy8azA5483WZ9fYut7QM63R6+F+AHKh1QWDqFWBX/KkVX+RHqxrGIy1RERBRoKbZiSFqWo6jMjovjpnAsFSQS+EOCOMZb51pgCSwZgw2BjGW+oMIyXBwnrT7HBscG15FISyCwFSNBhkSRxA9CglCCcEhb6uFnW2qJIiKpAkUsLR/IEsZMuuFwqMJhhmEsybURImaHyghhCxVCklLBMmEUEXkqFVIAIg5ukUFE2k1Tq1aZmphgYnyMamWEVMplMPQ4PTtn/+CQo6Nj+oMhjogXhZGMl1RK02tZitVqWwKBJAh8PG+A3wto91rYFw5njQsOjs/46NN1FuanuHFznpWVSebnq5RLKSKpwnEsS6jrLZZW23acYi0Vs5FIsyEtZeweRoSRRAXZ2Lixl6LywAyfpxdbFqngyycr1pOilJJsNkuxWKTZbJouUbLb/qL3avBIy4t+HlCSlIbohYNlWZRKJQqFAtVq1Zjsah8f/T2Sn6uTpTSjLhlgcfUBrrvX2pA2GZiiFz06pUoDntq3SHfStBQpm80a+bCegDSAqr+b/n7pdPrSd3/Rd/tFzk+yw63NjLPZrPHX0QsaXVjl83ljLqy7icVi0XxXz/PIZDKmE6a7rnpxoF+nizS9H1r2BRj/He3z0+/3zfs0qOv7Pul0+oUhHb8MMKilGJqVAhjmhpY6686pvq7L5bIxUU+aLadSKVNIlkolBoOBKfq0h2NyQVKpVExin2YmZuM0dX1e9LX2t2GIeJ0kAReXrMhREDmqpQqlUolG45xB36fRaNLqtOmXhqQtn7RIxS0eFQ6hQbKkF3EUSeVJbAml8CXBKhNqUeZYKVyRUnYXlurq59M5SlaRohjBIo2Fa0TQRh6KBSJm9SH1hBsz/BS7MWTIgC5nwTkbZwpMOjjaw/OHjFZrrC6ssjK1ynRuhiI1HHJqbtagoGYIisucMr20jAixYl+9QPp0hx0uWi06vT6BjMikM5TzJUrpEq5wCfDphV3Oe+ccNU6ot5oEXkh2PMfE2Bjj5TFKVoUseVyZQZWcShadQpAlR85Jk3ZsLCtukEXP5X0q6EXVDylyjAhIp3IUxyvM1ebpD1o02uc02hectxuc1M84Oj/j/OKc3aN9zi7O6HS6pESa/HyOdDYNSDz6NPp1Thsn9Pp9bOFQLijmYDGVJyXSCOkgpKqbZOy/2JdDTjsn7B/vcHp+TOD7VKo1pqYmmaiOkRdZUjKFSr1WRzZCqsadUA1HGQUIRyBcm9AO6NDiuHvMJ1sPWX+2QbvTYWJsjJeu3ebm3E0mMrPkRBkHffwSF7oI45MoEmfzN2dcBfH081PPvzqB/qpMFLgE3ujP0IvPJCiYZK/p1+uhpbzJRpUOHtBziuM4hq2uffK0919SSpdOpw2LL+k1qLeZnHdyuZzx4KrVagb804BWvV6nWCzS6/Vot9scHh7SbrfxdL2ekDBrSXEyTOVqQ/Vqc/RXMZJ1A2CsXJIAq66LdE2jWZXT09NG4qtD3pL1iP7MqxJhfYx13aXDEA4PD39qv5NMRR0eo9UGSVAuKWu+6h2dHFqFUi6XqVTUXJTNZun1eoYZqX9SqRSVSoWpqSlu3bpl/NBmZmbI5XKmDtD7cnX//rpZn39TQ9fer732GkEQGJ/R69evMzo6Cijw8Dvf+Y45do8fPzYN2/v37xsP6KvyWb3O+O//+/+er3zlK+a5srKycqmxrxnKhUKBb3/724yMjPDDH/6Q4XDI7du3Afi//q//i0ajYep1/d1LpRJ/9+/+XRO2p+0DdD34D//hP+Sll166BK7pff7mN7/JxMSECaVJhoboul5KybVr1wyhQktvbdsmCAKjnNEAoQ5JrFQqxm8wKYX+WSMpx37ppZf4n/6n/4k7d+6wtbVFqVRicXGRDz74gIODA3O/aRKSVnP94R/+IX/n7/wd47On12nT09P8g3/wD7h//z5SSq5fvw5gnmvT09P83u/9Hnfv3qVYLJo12vz8PP/j//g/Gt9VHfaSzWbNthcXF/lv/9v/lm9/+9vG0kefY83a/MpXvsLU1JTxUzw8PCSdTjM/P8+dO3dYXV1lamrKHHeA5eVl8vk84+Pj3Llzh9PTUxO0cv/+fV599VWzZhNCMDc3x+/+7u8yMjLCkydPaDabTE1NGX9LDWQuLCzw2muvGUm5bdtMTExw+/Ztbt26ZQI6v+jxucDB/+1/+9/4p//0n176t+vXr/Po0SNABQf8r//r/8q/+Tf/huFwyH/2n/1n/PN//s+ZmJj43F/MdWwc244ZVSgfOBkq78FYQipiGXEYKf+gKLJAKM9BC6FCQbBw3BRuKoUQFsOhR7fXZTAcYtvKixAZ92LjRLkgDGKfGRWCothrSsqqgCALLBshBYEXMuz5DLo+KpDXwgpiI/JIYjlS1feOhbQlkUWcsOsTBj6EFpZwsG2HVEpgxZ5xuYzEsi0makWmx1e4uTrJ3v51nq7vs71zyN7BESdnFwyGPkEY4fmBkqnG/osIgRU/lJQsO/apIw7iCMOYGajWHhKUP5MMiCyV1BLJEBFLeEUMWCEtLPHcBymM/e/CIGQ49BgMhgw9n1TaIQwFgZCEYYCQARaRSdp1bUslFIpY4uErFaxaTKUQlk0YSTxPAS0qaVqx4VKODbYCji2hlg56Yg6jCOkp8FFYMUBkp3BcdR5TKZdCLke+kGN8rMrKyiwry7MszE9RqxWwbUGnE3B83GJ354SnT3bZ3tnn5OSc83qdwWCIjSrygzDAlxG2LchkXNyUg+NaCMeBoUqrjCKfXq+D73nUz885PT3h6PiYp08nWV6eYX5+irGxESqVLNmMNrmW2DZEdrzwjCKVoIxU+2uBEBa2cFE+mRAFMPT1fRAihQIXXVeAYyHCL6bg+1U+AwDT9ZqYmKBQKHDnzh3TQU6n0+ah+CJpTD6fZ3V1FR0Pn8lkjK/fi7ajCzwNomlPm2KxyNTUFJ7nGcBOdwS1f5xt20b6k/Q/SqYDXt2uLmSbzSaPHz9mMBjQ6XSoVqsG1Nva2uLw8JCXX37ZgF+FQoGbN28yPz9vFjwaEBJCUCqVuH37tpHqJmVSulDQXnR/1QRbXZgki4pqtUo+n2d+ft5IZzUjIpfLkUqlTCGuU4o1+JnL5Uy6JHCpeEseNw28AUbisbS0hOd5lMtlCoWC2U+dQCelMoTW4GRyH66OX6a4vlpQ6fOii8Ak6zEMQzKZDMViESEES0tLlxYalmUxOTnJ7/zO75jUtUKhYBZ3QRCopHLXZXp6mr/39/4e3W6XbDZLuVy+tED5IjuKv+r7/5cbIq4PlDTYxSUv8kyOTDI1NsnF6TnNepOjs3P2zw4Yq07g5rLY5EgRe+kSoRJ4A4bSo9Pv0u13CcIhwo5w0q7yMbRsVYcINbvatk3aSsVBXzGTJfARUtl02FhY0gFSMYoZKTBSgztSgrAVpCQVMGnF9hWBCGjToR6es32xzZPtp+wcHjL0AyqVKksLy6xNrzCbm6Ykqtgyh5Sxz62e6GMZ6nOpLKpmiqMzZOyR58shrbDNafOcs/oZvcEQx0lRLJeplKoU3AKucJESfAJ6gx6dXpuBN0BGEZZtk0qnSdkpXOHiSAekYkZGIkSKCF9G9KMBnX6bTq+JH/Wx3Ih0NkUul8FxFZAYiYAQgYXARQWEZCgwao8S5Ab42QHe+ICG32Kvdcj6/iaPnj1he3eHZrvFiXPCee2M/nifMBvgAd2oQ71dp968YDD0cGNWz0ixRMpyIb4OZBxME4oh/ajD2fCEjaNnbO5v02g1sS3lKTk5PkU5O0KKtDreqkrAqAKkAohs28JNqYbm0O/T8ho0vTPWd56xsbVJu9+lMl7h+up1rs/cYjIzQ4EKjswicGLzG+X7/DyATPxKYcFf5TNAP8Mcx6FSqbC0tEQul2N1ddWkAOs5+aqU9LmVUPRTzTad+nt6ekqr1TJSXB0eoSWFGogBjAn90tKSSRLVzTgdKHF+fs7JyQnn5+cGrLvKGrzKQEuCOvCcZaZZf7qGaLWUz+ZgMDA2ItpTsdFoGEZ68v21Wo3x8XHja5ZsVCbHL8uY/6zxWbXOi/5d/1sQBCrs6fzcBLHoYBBdq2hfN50YrAHWZONX13K6Nkn+PfmTTLTVSbYv2p4OLtPAYDINNrm/L/JoS/7dtm1Tt2gwQzOa9LAsy/hELi4usrKywu3btw0DSjcTk2Doi46z3vbV7/lFjL/pGiCdTnPz5k0mJyfJZDKmPnJd1wRUCCGMQkTXm/oc6QaBZn/qeksz77RUU18H+ngnvfZ0Knk+n+e1114zwYHFYpH333//pz4XnlvPTE1NUalUTMKwTldOp9O89NJLrK6umns4+TxbWlpigzhMawABAABJREFUamqKMAwvNb01WKlBYv2cW1hYYG5u7lIdqJ+Tet2i1w9JcDGZ4H11JFVISfJGGIbcuHGDqakpLi4uKJfLCCF48uSJ+U7JZzVgAEz978mwxnw+z+3bt7lz545ZS2kQTrPn7t69y/LyslHcaGLCrVu3LkmPk+FLw+GQQqHA3bt3L63ltDRbA5jZbJbFxUWmp6f51re+RbvdNusG3RTSxzSdTptjNzU1xT/8h/+Q73znO7RaLQMI67Wnfk+/38e2be7du8fa2hrtdhvAsBt1iKDruszNzTE9Pc2rr75Ku902XrJ6baGtg77o5v/nXhnevn2b733ve88/ILG4/F/+l/+F7373u/zRH/0R5XKZ//l//p/5r//r/5o33njjc38xGaOCQsadP92ZiS8sG0vJZ4XEEjIGrCyEsE2yLXYMaClTHYSwcVIpUuksqYyPJVwlgxVxEAfKO1D4nmKnxUCLCFGsNuFiWw7YGSQOWTtFRmRxSWFHDnYksCU4FthOLBqyLSIRITWAJaUCGB0XN+UipK2AxCAkCENEvBgASRSptMJ0ymZuZoSpyQrXVie5aHTY3T/n8dNt1jd2eLa9x9l5T8lxsZBSSaEiBGEQxgxCBWKlXBWuYTsWlklm1jLagDC+AS1i2aqlOQeCSKp/c2zFVFQTbBS/TsYMTaVMCgJJ4Atcy8K1XIRU8enBUKX1ptw0qVQaYdtK1hT7Q4YSIqE67c877pYBFaUVaVVyXHSr7alFjsARtgoZiVl0QRCADHBdm3w+w/jkKNdvLHHr1jJr12aZnioq70OUjDcKI+yMIFMcYWK6xNziFDvbR+zs7PPs2S7HRye0Wm263S5BEKdjC4CIwPfiQJMQyxKkhIOFo3ysAhh6HueDOt1ml92tA55t7DA7P83c/DSLS9NMToxQKmYpFVwcWyAjBRRalsSKPQQlMXMlVPpmKdU5cmwrZrxCECqGi/paatsy+OIKhF/VMwCeg3afBQR+VlGrJ65kwXa1QHzRtq52j/UkrTtayXGVgag737pQT6fTpjDXk8mLtqsZdUEQ8PHHH5PP56nVarTbbT7++GMKhYLpqiXfo8G/5H7pDnvS7Dq5L3ofksDhFzGSRQNgio9yuWyKkqvgmX69ntz167LZrPFJTJ5fXXBdPX9aFqKLuOT3udpR02zBn0XDf1HX//OOZPEE/JS34dX90CzO5DlyHMf4E+m/a3A7yYTVnkTa8zK5HV3Uvuj4/7LjV3n//9IjrgdiyI60yDKeGWehtsBp5YR2u8NF55xnhxtURytk3Qxp18USYJNCOQJ69OjRDjpcNBp0mi18f4CwIjLZFMV8gawTz/84WEjF4HctbEfZaCClSamNYjHo86RggcRWKgXzvYWe3uJXBEgREomAAT0uggbb9T0eb2+wc7TPIFBg+Mr8KtdmrjOdm6ZEmRRppK4kZCxLRllWSCFiCw61ZQslgVXQ4AAfnw5tjrpHHJwecH5RJ/B9SoUi46Pj1Mo1CnaRNBkF9Fnah1g1ssIowh/4DLp9en6Pvt0jRQpXqP0NRciQIW3ZZLezx/bBDscnJ/SGPVKZNJVKlVp1jEIqi0VIQA8fK5Zug8DCIUWKLELkiESAz4BUOoc7mkI4UG+dc3x6SN/3VW0lIyKhjoAkou8NaDabtDtdhr6Pk86oJrLjxEBpHz/2R5ZI2lGbg84hTw+f8mDjUw4O9xl4HtVSgerIKGPFMXIUcU0adNwE1ozN2DfYES4WKWQQ0Wg12IwCOq0m27u7dLo9apUa15evcWv2NjOZefKU1WdKFaZnmJ9SWeQ8Zw3+asev6hmgn5FaAZDP55mcnDSL4SQopCWhusmn/w5c+u9Go8H29jYPHz4kCALD6tb7oeVoOkRK23xoWWi1WjVhVnph3u12OTs74+joyFhI9Pt9giAwzHDtI5j0rbvKeEuyvZN+gdVqldPTUwMOnp2d0el0LjGCNDNd1yyVSoXp6Wmmp6dfGKKhh65hfhaw9UWOzwK1tEf0yckJx8fHRlKs2aLZbJbR0VHj06YD3vScebXx+6JaITn/ahl4cntJFp9mek5NTTE1NcXo6OgLvQZftJ0X7a9udGvWX7IhnbSzqVarLC8vc/fuXZOEOjIycinVGp4zY5M10tWa6a9r/E3WAPpY5fN5A44ApubVYJOy9Bgxio4kgJK85pP3neM4JuU2GVyUBAWTDXH9DNLAp7Y/0Pf+i9Yo2lc0KWfW29cAcnKdon0Ak8dZg1r6NTqUUd8L+vXaC1VfexoE1MGOuiGSrK315/+sodc+V+897eWdTqep1+vmeOv7LRnsqD9Ds6+T/66/VzI4Kbnv+v7UUml9LPQ6CzBKIf16rchJXgvJucO27Uvv100drczSv9Pv09dOEvzVv9N2E/rcJI+zvhY0cKybUPr60pYGlqUCGvV1oe2X9PWeDFB6UZPpr7qO+dzgoOM4xi8qOZrNJv/yX/5L/u//+//md3/3dwH4P//P/5ObN2/y1ltv8bWvfe1zbScKImQYqa6oiP3nYo+8IFTMN1ByYGGLWP4RS0ut+KaPVJpvEISmSxSFCnSUkXLVkTLAj1mBxOxBUIEZli2wbJUuG0URvjcgCiTSj3CEhS0dHBxsqazDVTBEFBtOKzaBsAShtJQsNopp7gikFSJtKw7WIJb8xjensOIiOwYMRYhlR2QyDulMltp4jpm5UW7emqPZ6LJ/2GZ9Y4+t7X12dw44O2/ieQG+HxIJJc/VoRUSEgxDta+OY2HZTmLSixSoGIR4oWIRapmvbVlIS1PnlfT6OYU/JAiUb2MUCpDax0gtioResEkZI+1DLMdNPOTU9wr8OEQlBnsRFpFUrMdIikQ9HH+uDZZjxUssiQwjgtAHlAG469oUiilqY2XmF8ZYWhljYXmEqdkMIxWLMIBBP/YmkRHCEaRti3TOIVMsMTGb4dZLU+ztrbC5vsPG+jN2tvZoNVTn2vM8dU3G59t1HDKWA5EKHokCabgaMoJe16PX92h1+uzsH5P/6AHT0+OsrsyzsjzPyso042MFslmHTNqKAVc7/owIIaN4sfd8ASoDJbVHC7GEOv6RlEQIfO+vDnjo8at6BuhxtXj9WUUYvLhLnXzvzyqafpGu+lVwUm9Pd751sl65XL6UlPtZwFa1WuXGjRv0+33+03/6T/zFX/yFAcd0OIX2GgHMRHwVkLv6HfXE9Fn7dPU4/bJd5mQHMfn+F3XSk8fvRdv8LCD35xXgV7f1WecsKZv6WYuhz3scPuv1P+s61H9eLTBeVEzq8aKExKvA39Vj9Vn7+8uOX/X9f1kA+wsMQTz5xmw8LBxcynaJxco859NnNFoN9o732dhbJ5dJk3VcUuMCbB9bpJEIhnjUwwv2Lw7YO9inedEEGZEtZKhVqoyWa+TdMq5QybQiDhexXFvNR5ZQSodQWUAg9TkRuptlCIOXv7wuIBWfP2TAQPY4987Zvdjl6e46Owfb9Id9iuUic1PTLE0tMJatkSePg0NEBLHfcUgQZxEHBHj40sPHB2VyEgNWNgEhA/r06XI8OGT98Ck7hzu0223StstYdYyZiVnGSxMUrBIpsvgMcXEppLOUsmrBM+gNqdcv2NvbY6RQxhqHMBWQE3mEhGE0pBl0FNi295j1rSecnddxrBS16jiLM8tMVabI2mkkPt1oSN8f4EkP27HIOVmyFEiTwyaDwMEipdKIsSEIEVGAA2RTaUaKZaojVXKZfAyEwtB/riAZeh6pIGQ49On2u3TzbdKWjYNDIEPaXpeD5jHPjp6xsbvO9v4zOnEHP5fNMFIoU0oXSZPGlkqOHAmB1rdbKCsW4sCzwAvptNsc7O+yb6GM4/2AqbFJbizd4vrUTWYyC+QZwY7SIFxzXYhY46EuHUuxCD/n7fFFjF/VMyA5B+iFZJKFcXUx9FlzYfL3Jycnxg8sybjRi8HR0VFWVlYMq2N8fNwAOslFuF5gap+8w8NDDg4OqNfr9Pv9S4vvUqlkPARrtZphoCVrCeASOJj0u6vVahwcHBhpsQYJ9X4lm4CpVMp4n2kTfL341Nu6ut0XgQKf1Tz7IkZyTte1U5J5mQwiAQybLgl26oZbErBJfvbVfUxeBzodWAO6GmzVDCDXdY2n9NTUFOPj45cShj9rTk+C1cnjqM+RZpgmffLguSVLoVBgYmKClZUVrl+/zvLyMhMTE5dkxC+q+a5+h7/u8auvAdTQoBCoawK41ADWzdKr31WPFzWo9fvg+TMgyfL6rPpLN2j19qSUl1hcruteYh5rEDhp9aNBu8/6vvo5o/dRq0X0fydfl9yn5DG5enyS3tjJ912tIT9rXG18A5dUWVoFpKXXmvigwVQNTOp9u1rTXt2nn3V8kscj+bvPsppKPnM/yz4h+Xn6s5Kfl9x+ska/+rx8UU2v/+1F11QSxNTj6rWsX/ei7/VFP6s/Nzj49OlTpqenyWQyfP3rX+ef/bN/xvz8PD/5yU/wfZ/vfOc75rU3btxgfn6eN9988zMfCtqTSg9t5D8cDum7g+edURFLSONJwEm5MdsvLphMu12AFMgYmAnDuGsfKh++IPQIIo9Iqg6bsARRGOKHIVIqWaYQxHJNYbzqtFxXYS4SbAuRAitl4aQshKsAviAK8EOJiNRnCDDgpmU5EEuIBMpDUSAQtoW0lfRHJ/BGMkKKOL03UoWr56vPsB1XAUfZPGPjeaZnx7l2fZZGo8/u7glPn26zsbnF9s4eFxetOEBExp+vAT0FyFkozzxCiPyAwFdehQKB69pk3fRz2W4cFGJJCyHV8Q18ie9JosjGEmlSbo5MKk0mbeG6IIQ67giJ4zq4aVXoRpEklOL5GkmAiKRKdfYDQi9A+iEyCCGIEFGoTnEUxn6QKozDtiyETiiOmZCh1InLKphEyIhQhAhHYrkCy1EbjALwBxB4En+gGJCO4yLsONAmglRayZzKlRTlSpbJySJLS+M8W5/m2bNdDvaOOD45w/MElrC1WxQyBqWDUHklRpGMr2ULOwZEpbDodvtcNBocn5yyvrFBbXSEleU5bt9a5fq1FRYXapRKSkrsxEByhLq+hZAkpgT1/yLRQRCKaYiAVOqLoxz/qp4Bv+j4WeDXzwMUP882rhabV7ff7/c5PT2l0WgAGMPpqxNgcuLVRd/8/Dw6efDBgwf4vk+1WmVtbY3r16+bgiLJLHtRQfjLglq/LDD4os/7RTvpv8h7X7R4edE5/XkLmavXw9XfvejPL2r8LBDy523v84COv+w18HnHr/7+/2X2JymJcbBligwFJgvzXJ/1aHUGdPs+jc4Fn248YugNaaxcsDC1SD5XAmz6fp/D80M2dzbZPtyi3etguWlqlUlmJhYZyY/jigKCLGpOD3AdxYi3bJsQSRCFeKGPF/qEsX+hkpvGdcCl2yDeT/lc2iwI8RlyEV6w3XzGw+2HbGxv0Gw3SWfTjGSzjFUrZDMpxbGTPTy8mLHmxACSgs8sYRFIn5Zs0ujX6Q57CEso6a/rIi1JN+hx0Ttn+2iL9a11Tk5PiWTEaHWM5dkl5ifmGUlVSZNDyDQugrwoMJqrMTE6wVHllL7n0ey2eLq9jhd5nDZOmazNUMqVQYZ0B21OL87YPdln/3CPi4u6Yl/UJlmbu8ad+TtM56ZxpEtXehy1jnl2sk27d0E2nWK8OslkZZqCW8aRaYRQ/MJ20OSotcfWwTPOz06wZUS5XGFpbpmlqUWq6TIZXHw8/NBjGA7woiFB4NPv9Dg9PGEzv0XkhdTLZaIopDfscd664OzijLO68jL0Bh4iUIv5TMoll06TsdLY8TlNzsrPAT1JFAb4gUfP6zE8H9LotrAdi0w6y8LEPPdW7rE2eY2x7BR5SlikQThxYEx0+ZqWGlXWAW+/Wk/hv8ka4EXAyFVg5upcCRhWhgahNFtMN/M0i0N72k1NTTE2NmYkclcX06A8CQeDgQEHj4+PjZxYL4Ydx2FkZMQAWyMjI2Y+T+7T1ee367oUi0XGx8eZmppid3eXs7MzwxRM+ism581cLsf4+Djz8/PMzs5SqVR+asGbHC8CBpPf669jPrkKng2HQ5PCfHZ2RqPRMOEqlmVdOi/a+y+dTptjcLVueFHjU/+pAd1ms2lSqlutlglM0GmqOhV5amrqkiz7s0CFq8Dg1ZrD930TJnN4eMjZ2ZlJlNWvz+fzjI2NGTuUq8nIerzIL1KPv+75H3791gBf5Pg8AGvyOaMBbp14rRmHmkGoQbPP+12+DCN5HLSkVz/7+v2+kez/dTYcPs93/TJ97t/U+Fzg4Ouvv86/+lf/iuvXr3N4eMg//af/lN/6rd/ik08+4ejoyJi3JsfExARHR0ef+Zn/7J/9s5/yL1DDwrYcLNtC2LbqkJpCQDHukBFR5MfgS6iKamnFoIkkDAUyVAbjtu3gWA4q1ATlUxh5QIzeuzaWsAnDgDAKCAljzoHyxrMsG1cIRCQIAwVGRkIyDAf0/B7DYAg2pDMurgtRKPG8IZYtVbKxiOLi0EdGUsmKnRRCOESRh+8HMTAp4vAVlThsC4FloxYLAlTicAgyDlmxLAoFQaGQZur/Z++94+Oozv3/z8xsX22RtOrNRe42xtjGmGpCcbiEAOHeENIgkOQmMYRAQoDfDSWkwA03IV9uei7Y3NdNSEISQijhXoMrxsbGvVfJstX7qq12d+b8/pg5R7OjXWkly5ZkPe/XS7Y09cyZOe1znuc5+U4UF/sxfUY+6uuno/JkLU6ePI3a2nrU1zWio6ML8TgQi6qIx3VfXA0ybIoNiiJDliRIkh6HEEwD02RANsyHFZsehJ3ZoDEJ8ZiGWFRDPK7Hw9PigKZJRqxFCXENiGsSZAbDeclYnVjTrf00TV99F9BFMlVVoMFY1IS79+iqLAAGxVgQhsV0y1EmAQ6bDYpdX0FS7/ipRpw/jZtj6vdRDRcTNQam6cshS6oGiTHYJEC2AZLdDkXWF6+BzHTXKKNjzyBDVmRkBhXk52RizswgGueW4Pix0zh4sBKHDlaguqYBrW1htIc7EVM1wLSYjd3mgMYFViOgfSweg6zpFarT7oQkaQi3daO9JYyGukZUHDuJ3cWHMH36JJSXl6C4OBd5uRmw2WSoqqbLy4piLCgDyDIzxMC+2JyA0XlkGlStZyhFPSXnsg4YimCVTCgZ6cDa1rRwM3KzKX9PTw/4IiahUEisFsyDG1tdUvg23gFctGgRSktLEY1G4ff7hUsyf57BBK5Uf6fzPGeDZPewPoO5w5TsnQ0kOA4k+qWTluEckw7ppmso6R/sOufifZ7bPsDw4BNOSOiI22GXPMiQJZRmTYU6Uw+Tsf/YXrR3tmLf8UOobWlAfs5hBANB2GwORGNRNLc1oaWtFZ0d3ZAUBZnBbJQUTMGkvCkIOXNhhxsM+oSXDDsUKLArdsiyYkxe6mlQjYkqlYcNMYwGmUiwkWhJt/Xjm1Vo6GY9aIzW42jdERw5eRD1DXVQe2MIsAAi3V1oaWqCwmzocHfAKTuhQAaTZD3urAQ4HXZ4HF44ZS9UaGjqqcfx08dwqu6UvliQYofd7gAUCZFoN9q629Da0Yqurm4oTEYwEMTkkkmYVjYdBb5CeKQM6Atu6C64TniQ48rBlILJaGtrRzQeR2NDI5pbW9AT7UF1Q42+6JDLAwkM0WgE3d1d6OqJoDfSC4fdgfysXMyYMhOzJs9Gqa8YGZIPKlPRGe9GU2cbjlYfR33DaSgy4M/wIzuYi1AwF363DzaHHb1qHK0dLWhsrkF9Uy26u7uRm5mPyYXlmDlpDor9pfBKPijQV0p22p1weTxwuV2w22yIRSOoa6hBTI2jpqkWGX4vFEXSQ4VoGuw2BV6vG4xlQlMNj15Fg93hhNPhhl1yQpZsANP7KTyCoxHsBnZFgWJXwBSGuKTqVv4xCV6XH2X5pVg44yLMLpiDoC0HTmRAgQsyFL2/KqnCQVkSoqDeOzVakXNqODjadYB18sja9qdqQ1RVRUdHB+rr63H69Gk0NDSgq6tLrODJVyfli0/wmHZ8UM/bew53E+vs7ERjY2OC2Mgt0PgCWNyKLy8vTywSYE672a2Pp99sycit12pqakSwff5cQKI1CQ+KX1hYiJycHBF/15of54rBJq24qMKt+PjiK3xRN7NFHX8mbjWYauXlZPcz53V3dzeamppQW1sr7setPQGIeNElJSUoKCgQC8Ul6wNaBUl+L2sfh1uY1tXVoa6uTgigXOi12+3CFbyoqEhYRw7k6WC2vjQfMxSBa6iMdvk/2wylL8XrBB6DMB6PIxQK4eKLL0ZnZydmzZol4lunWqjmfMEqyLvdbpSUlGDOnDkIh8MoLi4WIiox9hmSOHjDDTeI3y+44AIsWbIEZWVl+NOf/iRMfIfKo48+igcffFD8HQ6HUVJSAllxQpIdACRAk/Q4OczUEDI9xg0MhxkwRXfbYLooA8P9VDKC2WkxDVpMBYvqK9VKmgTFpguGqqYhHotDY3FoWtxwVtVFPQkSNJlBYrrvhqZp6I1FwVQGyIDLbYfd6YTD7YJit0GTAFXiq9gqeqw4aHq8GYULgqYFNNReABJsit6N5FaDEgBJlmGzKZBt+mrJkqxLVSLwsqbqecIUkQ9ejwy324/CfD8mT8pFQ30xamobcOLEaVRV1aG+rhmNjW3o6uo1VH4VcY2BSTbIsgS70wG7w26IgxpiTEVvNGZ0RiQjTqMLNpsDTskGm43B4XRAsSlgTBfoolEV9qgCmw1gTAW0KGQ5DkUxXJhtCuySPpSCJENWJPT2AkzWEEMUETWCbjWCnngEEbUXMcQNy0sZDBKYLEHVVHTHo+jRYnpey7olpqzIkA3LUTAZdkhwSArcigsehwcepwtOuwOyrLtFM2asUm1nAIvrwmNMD8qu56oRUNyI5xhTFUhQEAy6cPHF03DhgumoOtWKfQeOYfe+gzhy9CRa2zoQicTR2xuHBAWSrMejlCTNEF8NC1FVz2PF+F6cihOSzYlYRMOxI6dx5GAFdu7YhymTyzBzxjTMnj0VhUUhZGV54A84ITEZ0Zi+yAtkDZJk/C8DML47DfrAIorYsMqnlXNZB4yE4DFS1nCp4HEizCsbl5aWwmazoaCgQAwurLOG1mty91+3252wWIjVMiLZ+QNddyjPcqYMR8hNd99wzhkrnO13ci6f/1yW/zOBGZNK5pyRYINDciJgD2Bq7hQoMuB2OXCk6jAaWxvR2NqElnArnDanHsJE0qAhCkkCnE43sgIhlBVPxrTiaSjKKIAfPjig18P69RnsUOCxuRD0+hHM8IEB+qSk0T4zMDDD3VcSloOSmAQzLmRMp0lQwRBFHOFYN5q7W9ER6YJmLLoWj8UQbmuHGtfQ0NgMu11fDEMyJhFVpsKuyPD7MlAQKkRhThmYArRGw2jsaEF1Qx3CbWFIGiBpxuSbpCLOYmAyg8/jR04ghILcIkwrnY7JoSnIkrLglFyQhJWcDQoc8CuZmJI1FZhhQ4YniAp3BZpbmhDp7Ua4pQXh9jbAbtfbOonBbnPA7XQjLzMXhdn5mFI0GWV5k5DtyYFP8kOBDUyKwa644Hf5kJ+Zi95IJ8LhVjS3NqO9swOnGk/Dodj1vocGRONRMKbBbrNjavFUlOSWYUpuOQozSxGwZcEOuyGnafC7AijKnYSW5nYocRu6ujqhyUA42obe9ijcUTeCviACXh/yMnOQHcyCTZbR2taGKs9pKA4bFBkozCtCli8bTtkNBXYwLhToEZP1b1BisCky/Bk+hHKyATsgSwoyvZkoKyjFjNLpmBaagWxbHhzwwgYvJCaBMQ2QzRaDPCyL0efl5V46twPO0eoDpGrzrPusx/B90WgUzc3NOHXqFE6dOoWWlhbhtsqtBrOyspCXl4dQKASfzycm5qzX4iJSV1cXGhsbUV1djbq6OhFrkFvNuFwu5Obmori4GEVFRcjMzEyIFzvQpB7vA3Drwfz8fGRmZqKtrU30N8yxpnhcRO5SnJeXh0AgkNQVNp18tFolDod03hNfxK22thbV1dVobGwUKz3zidNQKISSkhKUlpYiFAolxIBOZiVqnYQ1pycajQoLvrq6OjQ2NgqXYu7eyy09i4qKkJubKxaPMV8nlfdDsuc0i8g1NTUJ97QKoMXFxcjLy4Pf7xeLNAy1v3c2LbTGSx9guAwl33i5i8VicDgccLlcuOSSS1BSUgKHwwG3243c3Fzx3fGY4CPxbsaCFR7HXB54OfH7/Vi0aBEmT56M7u5uuN1uZGZmioVCJhJj6V2lyxm9oWAwiOnTp+PYsWO47rrrEI1G0dbWljBrUF9fnzQ2AcfpdCb1q1ZZHHEtJuKpSDAsBhV9FWNFUSAxRY9xF1fBNECRbLo1mU2GYtfdQjUV6O2R4LTb4HTY4XLa4XHa0W2sGCdJGjR9xQbdokzSFwyReENgCJGKJMFmU8D0EIRQ4yoURYLGVETjEcTiEWhQISm69ZkE3aVZ1bi7MoNiiFiypMci0oS7aV9Hz1hyAtyuQAWDpqpgqi5a8tky/ceIY6DGwJhp1pTJgE1GbsiFnFAxZs4sxkULZqG+rg2nTzfg+PFqVFXVoK6uCQ2NLeiJ9CKuRqHF9WfV3bd58G/das9uM2KXMRlMi0JV49BUPU6iosRhs8UhK3FIcgxAzBBwFSiyvviKLBtWiWCIx2KGMCdDku2w2e36u2KAyvTnlxXA4bLB5XGi21itWAWgSdBXkLbJkCQYwqAplhO3TIQELRZHLBpHbzyOnq4e9HT1IBqJIh6NQ41pYHp8dv06MGI7ShqYzLjhobFqtS4SMyaBqQyqFjesAm1wuIDiUj8CWXMwbWYZTlTUo6LiFCoqTqOqqhbhcDciPTHEYno8Kj3AqgRF0fNY0/TVLFVNtylRJF2SlBUHNA1oa+vC3n2HUVFZjX0HDmPy5FJMnVqK8mnFyC/wIxh0weWREVcZYjHVEBt1kVSSAJkZcTiVkbWi45zNOuBMOJcVMY+FxOMK8UFFMBgUbsXmmf6BZp/5DLIVcyyiczlLPByGmvfjrdFMl3Sey+qClO55Y4WxWP557jERjE0BdMNqKJILLkkPUTI1NA0Zbi+K8opwsu4kahpOo72zDfF4DEzV22unxwe/z4/sjBwU5ZSgNK8M+Rn5CCpBeOGGjdkMay49DnGG7EZuRg6mFkyBnSmIqnEUZhUh4PTDITmEqAbG23nZaPqZyYKwzx6ML76R4fChIKsQWrGGSE83tHgMiqTA7nRAVmxQbA5IsqRP6jH+7HoYFFnSFx2RmQyH5ECWJxPF+UWIx6JocjehtzuCeFT3RrDbbXC4HPB6vMjJzEFhqAj5mQXIzchDlpINt2E1KMGhewQwXfZ0w4c8mwJXXgZC3hyU5ZagrrkGrW1N6OrpQnc8Ck2S4LTZ4bI74fP6kR3MRm4wBzneHIQ8IfjtmbBLLtjgBCBBgQpJsaE0ALjsTuRn56Al3IhwZxg9PRFE471QGYMi22BXHHA6ncjweOHz+pEXyEF+Rh6ynLnwygEocELSlwYDAASVLMzImQ6XakdJMB9tHS3oUSOQbDLcngz4MgLI9eUh25eFkDcLGU4PVKjo8HciFMhBYV4hFFlGQVY+SgJlyJB8sDE7ZGMRHFnqe4t2OBG0Z6K8oBwZbh+6I92wK05kebOQF8hFjjcPQTkbDnihL2aioO9jkPrsAsUksCF8QDMmAUeXsVIHWK3ozG0tYwyRSCTBnTgajYqFs7xeL4LBIEKhEEKhEAKBgBBm+PnWttvsTmwVBgE91he3BCspKRHB5M0rgaZaRMPcnrtcLmRmZiI3Nxc5OTloaGgQoUvMz84XbSkoKEBxcTFyc3Ph9XpHZJL1bKGqaoLVYGNjo1iFGuiLn5ibm4uioiLk5OTA6/UmLGAGoN97MmPOU7OVYkNDA5qamoQbOBfpPB4PQqGQcGHmVoNWV2grqcRXVVXFt1JfX4+6ujo0NzeL1aX5c3KrVauom+q5rPcerT7guS7/Z1toGUhwTbaNLwzByczMFAvxccGZC2Jmy+MzfY4zEexHMv+sVrv8m+dxKfPy8kRZ5YuPjLUxy2Ccb+8qHc5IHOzs7MTx48fxuc99DgsXLoTdbse7776L2267DQBw+PBhVFVVYenSpUO+tt0hweE0ZtsZDN993WIvJklQbIrufgs9hpxk+OdoiENTZcSYHlMu2qtCU+NwOoCcbC+mTimAy6WgtS2MeNxwoZUBm0130WRMd1tVNe6qrItRDlPgy95oFGo8DofDBq/HjZxQECUlOcjw2QHoLiM2Rbf6U0QjpoFpTF9oROXWY32ipyTrgqSkSGJCWNX0dDAAkrCOMwXbNX50NyVdTAT6FqtgsjHDbFNgz3YjO9ON8ql5mDd3KmpqW1Bd3YCqqlo0NrWgs6MDvdEYFEWB06HHGWSqqsfu07hQCGPVaMPFGQyKTUIw6ENRUS7y833w+RW4PdB/3BIcdkBfiMQGSDwfYKySbLj9xnUXcEWR4fE4EMr2oac0Bw6HhEDAg3Zj4Y94XH83YLrlhN1mg92hu29pqr6IiqZqgCYZlhoAUzXYbBICAS9C2QHkF4YQ8Plhk+1QowzRiAqbzCBJcUiypouDEqAx2bBUlcE0Sbh/SYoMu834JrW4vnCKJsGXYYfXG0JuThCzZ5agsakDJ0/W4fTpOtTWNKCtrQOaygwLUBk2m6y7SkMTVqSAnleSMXiFIQxHoxHE1TgUB0Nndxsamx3wBRS43Axurw0eyQGbXTG+Ac2wJDBWN+axJrWzUxGfzTpgvMDLI18h0O/3i846HwhYV00G+s/SW92MzH8nmwlP5cJyPjEUq8jxxmCDjaFeZzTyZ/TKPxf+kqM3h/pkEWRFtAcSABuT9SVKJBtcXieyXCGU5U5GY0cdWsNN6O4JIx6LQVFkuLxeBHxZCLizEHRlItORCZ+cARdzQYYDksYFGwZJUuCCB3nuPNhK7CjOLoWqaXA7PcjOyIFT8hgLl9j0c0Sjwi0GufUg/9GFQbeUgQJnAVzFTpRnlSOuxsEkbpmGvolMSem7lNEWSBLgtDvgdwQRsAUhQUaGw4tAfgYKA3kId4f7VlZkEuw23b0yw5UBvzMAvyMAvy0At5QBG1xQmFu4zupxERV9kQ9NgVuyQ5Ht8GZ4kefJRntuCTp7w4jEo4ioccQZ4FAccNmccNtdyHB64bf74YYXTrhhgweSZgMkBUxiUKBBYQqcNjsCfj/yM3LRkduOSFxfXTaqRqE3mxJssg0OhwtuhxseuwdeJQNueOCQ3LAxl5HneoxqmyQjAzKK3XZkFmWiI7sM3fEwYoiBSRIcdgc8dj98tgAyFC9ccEGWJKhQEXD3IuDMRkl2KRTIyFD88MkBuJABmdl18VfSlz1hzAYwDQ7Jg4ASwpRMJ4r9JVCZCkWyw6V44ZY8cMAJm+SCDCcYU/T3KkuGRaoeLqfPatAQl0X8Si4O8h7aueds1gGp2rZ06jpze8ut+wHA6/WisLAQTqdTuARyV9zy8nIUFxfD7/cnLAJhFaNUVUU0GkVPT4+wcrPb7fB6vcLa0O/3o6ioCJMnT0ZhYSH8fn/CipzJno+n1ewxwK/LV6vMzMxES0sLent7E8KacIu3/Px8EZfPvMJnsnw7lxb5VkGAi2bt7e1obGwUoidfaIV7UmRnZyM/P18s7pZq8TH+u9V6z/zOent70dbWJkQ6Hh+O97+4Gze3GuQrVfPrDOTBwTEP6CVJd2fv6upCS0uLWGylq6tLxDiUZVlYmHE3Zr/fn3QiONU9B9p+tjnXfYBk/eaRZCjiIICEVYLNC9rwa5nL81joz56t/OLPp2kaIpGI8JjiK/jy1YC5+7V58mW0SPf7Od/eVToMSRz81re+hZtuugllZWWoqanBE088AUVRcMcddyAQCOCee+7Bgw8+iKysLPj9ftx3331YunTpsFYoUpmGuLEIBZi++IRTLP9uxFKTAMWmxwQEDAExFtcXa9AUSLICl8sOWZHh9jhQUJiJhdEZiKsaGFRIMjNcMGGMJiTDiI8ZXhu6SwggQdMMyzEG6J1ufTsX7Ww2GTbDbZaxGBgzBS82Biq6fMdvyIzrS5BkwxJSlvT+nzFIUGRd9GRgXAeEZgiMjDFIzLAKkGTDjVkyrNE03bJPY4bwqMAm6yaNdrsMhyMDWdkeTCvPRzQ6WxdBoS/ioRnCpU2W4FBk2Gz6dfV7w4gpaJgPK4BiY7oVn6wAkg2SYoNNkWC3SQBTEYtxOz5uxaB30RVJt6BUGaDGY2Aa4HZIKMx1IzfbjenlIUQiUfRGjRiNsu5+DGaIMeizGtRj7gGyxKCqQLRXQzSqW44qsgyHXY8paVNkY6l4BTabApsi6fEq1RgkFoMkaZBlpr8Pmw02Rf+GVM2IUckYZIlBNpaYVuM8uDwgSQoUm4TMTBuyswOYNCmAC+YVoKsrhkhPDKoah6Iw2GxGAZW46A1dHDVWMtGtIQFF4d8ioC+0YsSjVGTY7QqcTjucThscDj02owQGm6yLiWpcNd5pn+WIoo2M5eC5rAPGE9zFx+/3A+jfGTd39geadTbHG7LuH4+m6cT5xdgp/2mWA9lYDsI8uIICGTJkKFAkB5w2D/xKAAXufERD3YhrPdA0XSyz2ZywKW7YJQ/skksXcqAAsIHBpjeChgswgy5oBeUsZHj8UN16UAcAsEkOOCQnZNgBZjM9AjP93v/5ZNjhQQacshNZ7lyorhhUaNAkbnloGmwYcehk0/nc7kyBAptkA6AhjjgybZnIzShAPCMGVdMn7SRIRn9CgU1ywA4bFMkOG+xQmA0wYiv2WatxQUoBJL39t8MGWXbCJXkQcGdCc8d0bwEGqJAhSQpsUCADsEkS9L/sujUic4AZHTLJEEd16dEBO9xwK15kKSGojhjinri+IjNTuEQKWZJhgwybpF9TF2IdhqWjJHKUMQWKZEMGXPA4gshy5EJFzPDTgFjB2Q6HLvhpNqMLp8EmxeFUoogrcciQ4YADNjggMRegmd6rJEGSdEFShgK3ZINdygDkuPFsNiNGpS4W61O8hphhEogl7kLM3dIlgIuC+iSwKvadK8ZOHZAevL31eDwoLi6Gw+FAeXm5EIX4YN7n8yEzMxNZWVkIBoMJrqtAXxvN4wPyeILFxcUAgPz8fLS3tyMajQKAWFxiypQpKCgogMvlSjg/meDDB9dcAONeCTwGXllZGcLhMCKRCMLhMKLRqOh7hEIhlJaWoqSkBDk5OfB4PGlbnp1NUokq8Xgc3d3daG5uFlaD5vyTZVmItty9l7utmt8Bv8dgz8dFi7a2NjQ2NqKxsRHhcFhYKTLG4HK5kJeXh9LSUhEfkgs8XOCwvjer5ZR5H79nOBwW9+TPaPYG8fv9KC4uFu+Ox1Qci9ZVY6n8D/bOh/Pdm1f+Huya1v/NccGFJx/6vpNkq+ieL5jHLOa6h1vd8vLA6zQrZ6OOSsfilkjOkMTB06dP44477kBzczNycnJw+eWXY8uWLcjJyQEAPPfcc5BlGbfddht6e3uxfPly/OIXvxhWwnShTHdb0YW6vu6dbommCya9vTFEoPXF+FMUyDYZEtNdNmWFwS4xKAqD26UAkh2S4VzCDAs0xSYZ6j8Q1+K6q7KqQjI+LFkyXFdluW/hDmOlY26xp2maLjpqGhRZElaDmsoQj6lQ47r1liTxigLCgk5jMUCKQVIkKHbFsAIDVM1YSINbGUoSJEmBLNv0xUj4aseAkU5Ad2lRIUm6ZZumqdBYHEyToTF95lmSbPC4FWR4HZAkO5ixUIck6YKYTV8BRRet4rqln5HxxuIkuvUbJEBDn1Aoy7q7dDQWQzQaQ2+vCkXWXZJ1d1q9w6MxfRY3Go/rzyVLUGQFNkdfvvr8+iCKMQamAUxlIs+4QKiqGjQjXxRFd9mVZN0ig1vjaZpusSkrhkBoU4Qwp6m6ZSFT9RUGudu6oii6G67xPBo0aFocajwOLa4ZlpSG9arNBptNdy9XtRjUOEPMaNBlSYLfJyPTrw+YdFdi3lnTF61RNdW06pz+nelvURdrJRn6ANWmByfXND0uIqBBkVV9IKgZM4xMX3FZURRIlpgOTlt0WOXQyrmsA8YLyTrgA830DmX2fjjHnU+cz888Us92LvNoXJR/BkD0FozJNRGXTZ9U05tKG2QocMIOh+SGR/JDk6PQA8xyyUmBJNkhw6G3nVAM+3xdcOR30aU1G2R4oDAn7IZFoAYNGpguRjIbgD4rRkA3CmMm6y/Rx4FkPIcuj0maCzYwQFLBJM2Ih9gnJyWeKZkWrgCfYdJ/wGCXNJ5FeqgSmR+rX0OTYEmHLk4Ja3yRWv1fZqyIbMxsQpZskCRd0OsTPyWRb/oKyjDiOMOwtuuLm6zfRBbn6fnugKI5oUAF5Bg0xIxnsBlp0NOqr8slGdtteg7xSzKAx37UbfvsUCQNNrj6rDAByIzH9bPp4pxIiwYbVCjMCU3SIBkCM5gCMDv01ddUYyFhnksyADtk2GGDpqff+Pb06xp5J+nfCzMLxuCzg/q7EcKgyTMgQRQ8R9XAuKgDTPCBudvthsPhQE5OTj8BgNehitLXVwX6vAL4MWbBzm63w+FwICsrC+Xl5YjFYgmrFPN4eR6PB16vV1gNmq3buBhovr51EpGLZCUlJXA6nSgqKsL8+fPR2dkphC0AyMjIEAJhXl4eHA5Hv+cbLaz3Z0xfwK2rqwutra1obm4WQh234ON5y1d5zszM7GdtlKwvlUpQs65U3dzcjK6uLmFRqigKfD4fioqKUFpamiBGmgXAgQRBM+bVsfniJ/X19QiHw9A0TVhS8dWli4uLE4RBoP+qxKP9HoGxW/6T5c/ZyK/BxKZ0rFrPR8zPZo0paN6XamHFc/2uiIGR2BibmgiHwwgEAqjZWoOALyCENI2vOMtNdA0RSZJ4ww1dTDQ6W0xMvsqic8VdNsGAeExF1FhqXFL0oKI2hyxiAupipI4+mGCG9ZyxkIjG+tw/jA4dt/DqcxeSxMyvBFl3FeVpAHcPhrAEhMwg2yQoNkm3aAR0V2TA6IDzxVf4PmM/d/uVAGHtKKngLkuSMRetcaHNyAtubcj7ptz1WdOYcM2VoAjLRBhWiXFDdJRkQLbJQhTk1nUa0xdgkWQJNkmBIiv6O9EYVMb0ZMl8JT5dXNXj5xiisATE4kZHK67H6rPbHLDb7EZMPj0PGPryjv9IgL7qsKRbFMIYHKgaENcYVI3pcQSN2VaFC54AwJghxBqxfGTDupNfh0mAKhkT933u3YyvIK0Ast34lmwKmMYQj8URj8agJYjNsrGapWwI3UakSU2DyvS4jJKRF4oiw6bwxVhgrLxsxKo03iOESKwPJriNKmP8u2QId4ZRsDgH7e3twrptrMLrgPGQVs5g1Sg1UsRoM17KVV86T8Dv9w39Arzt5/WgZPzwiSwhDkKv0yVjwTOJ18SAsHYHg8QUgC9PxYwV4U0CED+HQYLCuJOxGa2vDyIEO2ZqyhPFQXEu40f3CZvifn3dACOd/HnN5/J7WROkJfwpmazWpIQ8MNoYi9jalxK9T8KEV4RJuBKiIEvIIS4H8niKCUqjeC+KEPWYEYpEvxs/LA4grguKzGZ5QE2/pWS8PZFoYzuP+QjoQqtIW9/zyVwMNOUL0PccUkKcP0McBNDn6sv6REnxfMb7Z6Z3xaQ+i1aRb3353veBmGRuoz+nn2I6ziSCpiIc7kAgMGXMl3/gzOsqs6DHBTg+IB1IcEm1CrB5m9WKTPQ9Tdcxi0eDxRvm+5Ktsmy+rmYYC6iqaoTZiYu08FhmfFESl8uV4BJtTv+5xJp/PK80TUNPTw9aWlpw7NgxHDt2DFVVVWhtbUU0GoWiKHC5XCgqKsKMGTMwY8YMlJSUCIukVP0t8z7+O3drbG9vR21tLQ4cOIDdu3fj0KFDaGxsRG9vr4g7WV5ejkWLFmHx4sWYPHkyMjIyACS39jQ/XzJBiFtGnj59GkePHsWHH36IPXv2oLq6Gj09PZAkCT6fD/n5+bjwwgtx6aWXYt68eSI2pfU+ySaeh8p46wO0tLTA7/ePGWH0TDjTZxgveTBe0jkQ5+u7CofDyMrKSqv8j9klY2yKos9iq6ohhOguojJv7FVdyNJDvPCOlN7B4rKWUL0k9HXOmS6k2O2AYlegMWPlYBbTreQM91v9PpK+0rERz67PtVSCZOOLgujWhJKsBxbvW4XYsAgD7xTwGWI+G6kZjWTfUuiSrNsV6K43uq9s36y+7tILPpNpWNExw4qur5vIdPdgY7UN3eVW73gohtuyxmBYwjHEJUnsZxJ0lyUwPS6eIR4yTUOvqkJV+TUlyDbdpVvm7q+MgalMj6snSUa29zXOuiAmwyHrgyyNSborLbhVJsAkDSqLQ2P6wi5Ot7FatfGsmhFsXTKUU6bpbrS6IGhYzEn6/WLxuO4qJeku6ZLhjmvnbmBGvum/qLpgaCjKsgRIigzFxvNLt3TU4kY8Qy44G5kuyfqKlLIebki3Wo3pC7ZocSNmo7FIiCIWuoEhlGr6KtQSAJu+0rLG9A5gPNoXq8Gm6FaRqiFw6mVE0t8pGOKGYCgx3QpTNkRoZpQLjfXveBIjx1hsCAhiwpIgiHH5rE+wYsyYWLEoKn1iXN+kjW49J/eL5ydWozWO18+VxblGTBDolm/86hL6LyKhe0IkpkEy/WWoneIR5L69TDLSwFPOZw7N1zBdmTEAiphU5duTV19cuOJ9EL291C+tt4HM6GMJF2fR1+prZyVDaDU/R5+7LAwrPH0iTh9ra4Ak97lOc91LWNrxR1TEfWAW3cB0cVTiOcKEDiwz3eIPgNGXSMxr0xBf/MZMecNFZX4vvVvJg8wb4VnE9wPjXUvQrRDNQqP1Ylzw4zt43vKp3cQfYalpSSuRiNlSzyz4JbMItG5L9r9ZlOIuctb9ZqGPu76aFx4xC01WwdAqppkFQ74QIXd/tT6PmWRC0lgZsPJn5otwlJeXIzc3FxdeeKEQPQGIlZr5Ag/mZ051XTPmfOHvyuPxID8/H7FYDFlZWejs7EQ0GhULkRQVFWHKlCliRWSOOeZksm8h2e/xeFxYk/KYlIFAQGyTZRlZWVkoKytDeXk5CgsL+62KTOiMhe/2TDnTZxgveTBe0jkQE+VdDcSYFQfBdPdcRbYJaz99cQU97p4mMzBJAxSprz9u6kczLvYYQhqfhNW7arogZVOMwNpM1i3LVA3xeC+iUX2W2S7bYVfssNt5fDqjoybBcKtlusimcas13mXUGz+bbCwSwUUaMedrpEnTO9aypM+gy5IhuBmNg6bGjcVLjIVTjGvw6xt2DX2dV8MKELIExeg067H4TBYJjEFiDApk3agSAJMksVKwmPNnRgxCGHELFT1mny6kqVCZCjWmQhKLNPFnM6wvDYFVYpJ4B0yDscAK75XrDW5M1YyVj/us9cxjI1lSxA+/Dow8hwKx0EtcjfYNCGUe84e7SQEMGmRmvD/DMrRvMMjHQPo7VpmK3pgulEIy4jnaZMPFWROWqbqLuSSsMPV0qCLeo93ugNOpQGN6ZyEaixsdDNkQRY33abhp6x1/BbKiwc4tGSFBhf6tSjYZNkmGLMGwjNS/cUVikDQGpurvUWWq+E4gWW1FiJEg2awxQRCjDO8HSEIqM9o/I24beFXLxSomhCR+uv4XE78JgUwIOmahBjALdLCcL1oaCaL/0LdVNFjJn6MvWZbNfSIZTKKTJNLI88B6Udm0zWyplnh967PwZ2VGrGW9O8LABTEpwWKu71l0b1kZfXnV90ZMNnB9eSUBkDQh6TEwyEwyy6H6MxhdVyZpxuuREgXRxP/EWzJnSJ/LNH8W6/PyMxPzIlFCZLzDhD6XX55G4wmZBhEzEIbrMGOwfi3mO/T93/8JzNvNFp9EapIt6DWQy99AngDJ4gHzc5L9br2/1X041TnW9Fj7G1ZRMJUgmOx65wqrlR//W5L0yXyv1wuPx4O8vDxxjFmEk2VZWGgOVzTj9/J4PEJwnDRpEiKRCGKxmBBu7XY73G43PB4PPB5Pghs4v441jang5/EVq8vKyuBwOFBWViYWsGGMCVdwHmuQr9hrFpOTiciEzpkI3mdLLB/J644VQX8koHc1vhiz4mC8V4PqNBZ/kCTdgo9bmikKbDYZUCTDpRPGLHOfa6+qqmC6aVqf+b+mQVMNl1iJGdfRZ+NsdgU2h02P8xfTY+HZFAV22aGvOKwBisrdE4zOq2R2Eelz75VlGTbFBlmRoYEhrqqIa6oQETWuWfJOrSRBlhUjbp5usQdoYHFNF+lUk1uCYX2mi0l9HURzM8WY3ullzIjzw63cGNPNBg0kSTIW+jBWW5IMK0pDZOKuSeIZjXtJQnM1rmWsiqxbqxmx+/iKYoZ1nG5FaVxbPDcM8c8Ioy5Lfa68kmGRCD2WpO7SJRlp02M76lYMunWBBl2wBADFWOBFlhU9i5hh56FpiImFPXTrOt2dV/9W9DGbJN6JIinCxVwXFPm9NH3hDy2OuKoLfTabHYrsgKzYIct2XYSEcV+Vr1QNKMZKjCJskGq4ohsio75itWw8MzOsPXnHwPh2NF00jhvfoQLZsC6UAWNREr6wjD5GlgBtZGIOEgRBjHWYReyRhJstVw6NySiTC6w5bh4gQZMYNMQhAVCYBOE+Ksmm43VxSBealL5t5vtzl2apTwQDv4Kw6OZio9jV95ckQxLhSnh7LxlSnBGCQmhu5mtICVfV575YwnGG5GdOan9hUOq7L4x4zX3PrguEEo9jCAV8Oqtv4o0/e2JPQrg+G1aIYrukvxPZItYa03aJeW9YFvLJVz1PjX6HEIet754ji+sm1eZYXx717TIJBP1OUQydUF+wpu/b4oIhf29aYq8qicagGTv6ZEDJEBRN95f6hO6kOvAExepWmsxCcCDhLZVYx/enItm+ZNtSuQ8nO8e83XqeNX6h9VmSPdO5JpV1HdCXrmTxHfn4gbsgD5b+VPv5PTRNE6uner1ecb9kLt8DibCD3cd8Pr+fw+FAdnY2pk6dKtzCuaszFyWdTiecTqceN90kqCYTJok+Biqr6Z47UiQrj2fKQNcab2IUvavx866AMSgO8kqxs6sbsqSvNCxJEqBKYgEPGLOvPCi3xmdjhfWgbklm+IrqQo/JtZaLPUxVofVq+qIdhsswAF2sgwKJKcastWLE5tO7p5ohQPatmqy7c0oSX4XXiCcn68fHmWqcAwgLBKOjyAU6RdGtF/X4wnr6NU3Vn4WLRxIDi3KB0SQymqbJdYFUP1+SJF3gtNlgl226AMd0t9toVDdt11QG2VjMQ7HZoBjWjprKEI/GEY/HoSgKnG477A4bwDTE4nHEonGomiacaETHXNJFOcWmGDEhAYlpYFpcF62YEZJcsUGW+xpCxjRIsrFCs6w/mGaIipJmBP6GZLgu69dh+nLNhmeRUdj1qwOQoKncHVgFZAk2ux12hx2QJN2VW1WNAYAkREC9/BrvRzPelQQwSdNjGRrxDME0xNQYYmocqgowSYak2CHbbLArNtgUw81cBVSeZk0F01SwODPckyWI2I+yLIxHGP+uuWULeOxDSV+xWdJjPMaM9yNLMmwOO+w2O2yyLJRn/n0yaIhEwgnlayzD0xgOh0c5JQRx/sDL01ivA/rKf8dwrwCz9MUFvwQhTmIA4gBUYQ0HI8Yud1/VjAVFJKZB1nhYEOPHbDEmQRcUuausBDBJBTPi/kroE8YShDrIfQaIMF2LbxJtEcTiHXyfJum2ejKYiGNnOlxcQD+2757m/6251XefvilB/QDe55LBDMtDiR/LVAAqVxWhQT9G4uKeENikvpWI+WPyvovEz9Fj8jEpLgRCAJBU471x3RbcE0J/h8YUsJ6jTDJ0T0MclABmEoYlk/s2Mzw2+qZWeX/RnDeJAiq3NhT3N4RZnm9MlsC4OMhUSIga99QnOOMSgybpTb2S8F6NfBJCp7hbn4Bo+ngYkCCA94mIqeHlaayXf+DM+gBWcZCTbHCWLC9SnZfutnSPTfUekh0/2PbB3ulYEAdT7RvseZNtG+xY6/6B3kcycXU4+ZXqHH4f7hae6n1FIpGEa6WyIj0Txl8f4PwfA5ypcDTc80frvuOZ8f6uhlL+x5w42NGhd2CmXz9tlFNCEOcfHR0dCAQCo52MAWlubgYAlJSUjHJKCOL8Y6zXAbwPUFIyf5RTQhDnH2O9/APUByCIs8lYrwN4H2DSpEmjmxCCOA9Jp/yPudWKNU3D4cOHMXv2bJw6dWpMr6g0HgiHwygpKaG8HCHGa34yxtDR0YHCwsIxH/C4ra0NmZmZqKqqGtMdmPHCeP1mxyLjOS/HSx1AfYCRZTx/s2OR8Zqf46X8A9QHGGnG6zc7FhnPeTle6gDqA4ws4/mbHYuM1/wcSvkfc5aDsiyjqKgIAOD3+8dVxo9lKC9HlvGYn+Olk80rrUAgMO7yeCwzHr/Zscp4zcvxUAdQH+DsQHk5sozH/BwP5R+gPsDZYjx+s2OV8ZqX46EOoD7A2YHycmQZj/mZbvkfu1MHBEEQBEEQBEEQBEEQBEGcVUgcJAiCIAiCIAiCIAiCIIgJypgUB51OJ5544gk4nc7RTsq4h/JyZKH8PPtQHo8slJ8jB+XluYHyeeSgvBxZKD/PPpTHIwvl58hBeXluoHweOSgvR5aJkJ9jbkESgiAIgiAIgiAIgiAIgiDODWPScpAgCIIgCIIgCIIgCIIgiLMPiYMEQRAEQRAEQRAEQRAEMUEhcZAgCIIgCIIgCIIgCIIgJigkDhIEQRAEQRAEQRAEQRDEBIXEQYIgCIIgCIIgCIIgCIKYoIw5cfDnP/85Jk2aBJfLhSVLlmDr1q2jnaQxyYYNG3DTTTehsLAQkiThb3/7W8J+xhgef/xxFBQUwO1249prr8XRo0cTjmlpacFnPvMZ+P1+BINB3HPPPejs7DyHTzE2ePrpp7F48WL4fD7k5ubilltuweHDhxOOiUQiWLFiBbKzs5GRkYHbbrsN9fX1CcdUVVXhxhtvhMfjQW5uLh566CHE4/Fz+SjnBVQHDA6V/5GDyv/Ygsp/elAdMHJQHTC2oDpgcKj8jxxU/scWVP7Tg+qAkYPqgETGlDj4xz/+EQ8++CCeeOIJ7NixA/Pnz8fy5cvR0NAw2kkbc3R1dWH+/Pn4+c9/nnT/j370Izz//PP41a9+hQ8++ABerxfLly9HJBIRx3zmM5/B/v37sXr1arzxxhvYsGEDvvzlL5+rRxgzrF+/HitWrMCWLVuwevVqxGIxXH/99ejq6hLHPPDAA3j99dfxyiuvYP369aipqcEnPvEJsV9VVdx4442IRqN4//338dJLL2HVqlV4/PHHR+ORxi1UB6QHlf+Rg8r/2IHKf/pQHTByUB0wdqA6ID2o/I8cVP7HDlT+04fqgJGD6gALbAxx8cUXsxUrVoi/VVVlhYWF7Omnnx7FVI19ALBXX31V/K1pGsvPz2fPPvus2NbW1sacTid7+eWXGWOMHThwgAFg27ZtE8f84x//YJIkserq6nOW9rFIQ0MDA8DWr1/PGNPzzm63s1deeUUcc/DgQQaAbd68mTHG2FtvvcVkWWZ1dXXimF/+8pfM7/ez3t7ec/sA4xiqA4YOlf+Rhcr/6EHlf3hQHTCyUB0welAdMHSo/I8sVP5HDyr/w4PqgJFlotcBY8ZyMBqNYvv27bj22mvFNlmWce2112Lz5s2jmLLxR0VFBerq6hLyMhAIYMmSJSIvN2/ejGAwiEWLFoljrr32WsiyjA8++OCcp3ks0d7eDgDIysoCAGzfvh2xWCwhP2fOnInS0tKE/Jw3bx7y8vLEMcuXL0c4HMb+/fvPYerHL1QHjAxU/s8MKv+jA5X/kYPqgDOD6oDRgeqAkYHK/5lB5X90oPI/clAdcGZM9DpgzIiDTU1NUFU1IVMBIC8vD3V1daOUqvEJz6+B8rKurg65ubkJ+202G7KysiZ0fmuahm984xu47LLLMHfuXAB6XjkcDgSDwYRjrfmZLL/5PmJwqA4YGaj8Dx8q/6MHlf+Rg+qA4UN1wOhBdcDIQOV/+FD5Hz2o/I8cVAcMH6oDANtoJ4AgxhIrVqzAvn378N577412UgiCOMdQ+SeIiQ3VAQQxcaHyTxATG6oDxpDlYCgUgqIo/VZ+qa+vR35+/iilanzC82ugvMzPz+8X4DUej6OlpWXC5ve9996LN954A2vXrkVxcbHYnp+fj2g0ira2toTjrfmZLL/5PmJwqA4YGaj8Dw8q/6MLlf+Rg+qA4UF1wOhCdcDIQOV/eFD5H12o/I8cVAcMD6oDdMaMOOhwOLBw4UK8++67YpumaXj33XexdOnSUUzZ+GPy5MnIz89PyMtwOIwPPvhA5OXSpUvR1taG7du3i2PWrFkDTdOwZMmSc57m0YQxhnvvvRevvvoq1qxZg8mTJyfsX7hwIex2e0J+Hj58GFVVVQn5uXfv3oSKdvXq1fD7/Zg9e/a5eZBxDtUBIwOV/6FB5X9sQOV/5KA6YGhQHTA2oDpgZKDyPzSo/I8NqPyPHFQHDA2qAyyM6nIoFv7whz8wp9PJVq1axQ4cOMC+/OUvs2AwmLDyC6HT0dHBdu7cyXbu3MkAsJ/85Cds586d7OTJk4wxxp555hkWDAbZa6+9xvbs2cNuvvlmNnnyZNbT0yOu8dGPfpQtWLCAffDBB+y9995j06ZNY3fcccdoPdKo8dWvfpUFAgG2bt06VltbK366u7vFMV/5yldYaWkpW7NmDfvwww/Z0qVL2dKlS8X+eDzO5s6dy66//nq2a9cu9vbbb7OcnBz26KOPjsYjjVuoDkgPKv8jB5X/sQOV//ShOmDkoDpg7EB1QHpQ+R85qPyPHaj8pw/VASMH1QGJjClxkDHG/vM//5OVlpYyh8PBLr74YrZly5bRTtKYZO3atQxAv58777yTMaYvY/7YY4+xvLw85nQ62TXXXMMOHz6ccI3m5mZ2xx13sIyMDOb3+9kXvvAF1tHRMQpPM7oky0cAbOXKleKYnp4e9rWvfY1lZmYyj8fDbr31VlZbW5twncrKSnbDDTcwt9vNQqEQ++Y3v8lisdg5fprxD9UBg0Plf+Sg8j+2oPKfHlQHjBxUB4wtqA4YHCr/IweV/7EFlf/0oDpg5KA6IBGJMcZGxgaRIAiCIAiCIAiCIAiCIIjxxJiJOUgQBEEQBEEQBEEQBEEQxLmFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQIAiCIAiCIAiCIAiCICYoJA4SBEEQBEEQBEEQBEEQxASFxEGCIAiCIAiCIAiCIAiCmKCQOEgQBEEQBEEQBEEQBEEQExQSBwmCIAiCIAiCIAiCIAhigkLiIEEQBEEQBEEQBEEQBEFMUEgcJAiCIAiCIAiCIAiCIIgJComDBEEQBEEQBEEQBEEQBDFBIXGQOCPuuusuPPnkk6Ny7yeffBIXXnjhqNybIM43zqQs33XXXbjllltGND0EMd5ZtmwZVq1aNdrJOCNWrVqFYDA42skgCCJNnnzySdx1113DOnc45V2SJPztb38b1v3GApMmTcJPf/rT0U4GQZwRZ1LuRxsqg2MLEgfHOBs2bMBNN92EwsLCpA1wLBbDww8/jHnz5sHr9aKwsBCf//znUVNTk3DckSNHcPPNNyMUCsHv9+Pyyy/H2rVrE46RJKnfzx/+8IczfgZJklBZWYlVq1Zh2bJlYnt3dzceffRRTJ06FS6XCzk5Objqqqvw2muvDes+5opx0qRJWLdu3RmnnSBGisHKMgAwxvD444+joKAAbrcb1157LY4ePZpwzA9+8ANceuml8Hg8KTvxVVVVuPHGG+HxeJCbm4uHHnoI8Xj8jJ8hVVlOh7vuukvUKw6HA+Xl5XjqqadEutatW5dQ9+Tl5eG2227DiRMnEq7z/vvv45/+6Z+QmZkJl8uFefPm4Sc/+QlUVR32c5mFUf6MxPjimWeegSRJ+MY3vpF0P2MMN9xwQ8qyt2rVKlxwwQVwuVzIzc3FihUrxL7Kysqk7eOWLVvOKM38usDwOvbWDjVjDN/61rfg9/tHrP27/fbbceTIEfH3e++9h8suuwzZ2dlwu92YOXMmnnvuubSvZy3nyX7SOSYVTz75ZNLjZ86cmXDc/v378clPfhI5OTlwOp2YPn06Hn/8cXR3dw96Lf7z3e9+F0DyvtNAaX366aehKAqeffbZpM/wu9/9DvPnz4fH40FBQQHuvvtuNDc3J6SL+jqjRzptOQAcPHgQH//4xxEIBOD1erF48WJUVVWJ/ZFIBCtWrEB2djYyMjJw2223ob6+PuEaX//617Fw4UI4nc4RnQzn3826deswadIksd1c3pctWzbgdz3UPkAyotEonn32WVx00UXwer0IBAKYP38+vvOd7/Qbx5wttm3bhi9/+cvi71RChdUggcrhxOLpp5/G4sWL4fP5kJubi1tuuQWHDx9OOOb48eO49dZbkZOTA7/fj09+8pP9yjQAvPnmm1iyZAncbjcyMzP7Ta5v27YN11xzDYLBIDIzM7F8+XLs3r37jJ8hVbmvra3Fpz/9aUyfPh2yLCftR/H28KMf/Wi/fc8++2zSOiEcDuOxxx7DnDlz4Ha7kZ2djcWLF+NHP/oRWltbE57XWgZTaRBz5syBJElnPPG6bNmypM9pniC57777MGvWrKTnV1VVQVEU/P3vfwdwZuOjsQaJg2Ocrq4uzJ8/Hz//+c+T7u/u7saOHTvw2GOPYceOHfjrX/+Kw4cP4+Mf/3jCcR/72McQj8exZs0abN++HfPnz8fHPvYx1NXVJRy3cuVK1NbWip+zaQ30la98BX/961/xn//5nzh06BDefvtt/PM//3NCJ5ggzhcGK8sA8KMf/QjPP/88fvWrX+GDDz6A1+vF8uXLEYlExDHRaBT/8i//gq9+9atJr6GqKm688UZEo1G8//77eOmll7Bq1So8/vjjI/5MQ+WjH/0oamtrcfToUXzzm9/Ek08+2W+AfPjwYdTU1OCVV17B/v37cdNNNwnh79VXX8VVV12F4uJirF27FocOHcL999+P73//+/jUpz4FxthoPBYxymzbtg2//vWvccEFF6Q85qc//WlKUeknP/kJ/u3f/g2PPPII9u/fj3feeQfLly/vd9w777yT0D4uXLhwxJ7hTFFVFffccw/++7//G2vXrh2xzqnb7UZubq742+v14t5778WGDRtw8OBBfOc738F3vvMd/OY3v0nrepdeemlCHn7yk58U9QL/sR7DfzZv3oyMjIwE4TYZc+bM6Xfue++9J/Zv2bIFS5YsQTQaxZtvvokjR47gBz/4AVatWoXrrrsO0WgUAPCtb30raTruuusuBINBfPrTnwaAIaf1xRdfxLe//W28+OKL/fZt2rQJn//853HPPfdg//79eOWVV7B161Z86UtfSit/ibNPOm358ePHcfnll2PmzJlYt24d9uzZg8ceewwul0sc88ADD+D111/HK6+8gvXr16Ompgaf+MQn+l3r7rvvxu23335WnsWKubz/9a9/Fd/z1q1bASTWgX/961+HdQ/GGOLxOHp7e3Hdddfhhz/8Ie666y5s2LABe/fuxfPPP4+mpib853/+54g910Dk5OTA4/Gck3sR45f169djxYoV2LJlC1avXo1YLIbrr78eXV1dAPR64frrr4ckSVizZg02bdqEaDSKm266CZqmiev85S9/wec+9zl84QtfwO7du7Fp0ybRlgBAZ2cnPvrRj6K0tBQffPAB3nvvPfh8PixfvhyxWOysPFtvby9ycnLwne98B/Pnz095XEFBAdauXYvTp08nbH/xxRdRWlqasK2lpQWXXHIJVq5ciW9961v44IMPsGPHDvzgBz/Azp078fvf/14cm6wMlpSUYOXKlQnbtmzZgrq6Oni93uE+6pC45557cOjQIbz//vv99q1atQq5ubn4p3/6p3OSlnMKI8YNANirr7466HFbt25lANjJkycZY4w1NjYyAGzDhg3imHA4zACw1atXD/n6Zu688072xBNPDJruiooKtnLlSnbVVVeJ7YFAgK1atSrleWvXrmUA+v3ceeedjDHGnnjiCTZ//nxx/BNPPCH2lZWVsbVr1w7pWQjiXJGsrGmaxvLz89mzzz4rtrW1tTGn08lefvnlftdYuXIlCwQC/ba/9dZbTJZlVldXJ7b98pe/ZH6/n/X29qZM05mU5TvvvJPdfPPN7Mknn2ShUIj5fD72r//6rwn348eYue6669gll1zCGOsr762trWL/7373OwaAHTp0iHV2drLs7Gz2iU98ol+6/v73vzMA7A9/+ANjjLHbbruNrVixQuy///77GQB28OBBxhhjvb29zOPxiPrP/Oz8GYnxQUdHB5s2bRpbvXo1u+qqq9j999/f75idO3eyoqIiVltb26/stbS0MLfbzd55552U96ioqGAA2M6dO4eUtquuuoqtXLly0Osylth+Maa3Yc8991zC8fPnz08oo/yYSCTCbr31VlZSUsIOHTok9kciEXbfffexnJwc5nQ62WWXXca2bt0q9vMy98Ybb7B58+Yxp9PJlixZwvbu3SuOSVXPmLn11lvZZz/72SGlnZOsXkhGV1cXmz9/Plu2bBmLxWIpj7P2C6xomsZmz57NFi1axFRVTdi3a9cuJkkSe+aZZ1Ke/z//8z9MURT29ttvDyut69atY0VFRSwajbLCwkK2adOmhP3PPvssmzJlSsK2559/nhUVFSU8I/V1xgap+s233357Qpmw0tbWxux2O3vllVfEtoMHDzIAbPPmzf2OH+y7th5rrkuSwb+btWvXsrKyMrE9VXkfqA4EwH7729+yW265hbndblZeXs5ee+01sZ/XM2+99Ra76KKLmN1uZ2vXrmVPP/00k2WZ7dixI2kaNU1LuT0UCiXk3fz581l+fr74e+PGjczhcLCuri6maRp74oknWElJCXM4HKygoIDdd999CXlhrq+S1V+M0ZiDSKShoYEBYOvXr2eMMfa///u/TJZl1t7eLo5pa2tjkiSJvmYsFmNFRUXsv/7rv1Jed9u2bQwAq6qqEtv27NnDALCjR4+mPO9Myr2ZVP0o/v1/7GMfY9///vfF9k2bNrFQKMS++tWvJowL/vVf/5V5vV5WXV2d9D7m8p2sDD7yyCPM6XQm5MOXvvQldt9997FAIDBg3yoej7MHHniABQIBlpWVxR566CH2+c9/PqGvkeo5rXXgRRddxO65555+aZ88eTJ7+OGHxbZU46PxCFkOnoe0t7dDkiRhFpudnY0ZM2bgv//7v9HV1YV4PI5f//rXyM3N7Wf5sGLFCoRCIVx88cV48cUXz6olTn5+Pt566y10dHQk3W+1HlizZg1cLheuvPLKs5YmghgtKioqUFdXh2uvvVZsCwQCWLJkCTZv3pz2dTZv3ox58+YhLy9PbFu+fDnC4TD2798/omk28+677+LgwYNYt24dXn75Zfz1r38VbnepcLvdwkon1X5At5b8v//7PzQ3N+Nb3/pWv+NuuukmTJ8+HS+//DIA4Kqrrkpw8Vm/fj1CoZDYtm3bNsRiMVx66aVDfEpirLFixQrceOONCeXGTHd3Nz796U/j5z//OfLz8/vtX716NTRNQ3V1NWbNmoXi4mJ88pOfxKlTp/od+/GPfxy5ubm4/PLLhSvJaNPZ2Ykbb7wRBw4cwKZNmzBjxgyx79vf/jb+8pe/4KWXXsKOHTtQXl6O5cuXo6WlJeEaDz30EH784x9j27ZtyMnJwU033ZS2hcLOnTvx/vvv46qrrhrR57LyhS98Ae3t7XjllVdgs9mGfZ1du3bhwIEDePDBByHLiV3g+fPn49prrxX1iJXt27fjS1/6Ep555pmklqXppPWFF17AHXfcAbvdjjvuuAMvvPBCwv6lS5fi1KlTeOutt8AYQ319Pf785z+fn9YJ5ymapuHNN9/E9OnTsXz5cuTm5mLJkiUJ7sfbt29HLBZLqLdmzpyJ0tLSIbX3Y4Xvfve7+OQnP4k9e/bgn/7pn/CZz3ymXz3zyCOP4JlnnsHBgwdxwQUX4OWXX8Z1112HBQsWJL1mKktvSZJw5ZVXiva8tbUVBw8eRE9PDw4dOgRAb/MXL14Mj8eDv/zlL3juuefw61//GkePHsXf/vY3zJs3b+QenpiQtLe3AwCysrIA6NZ3kiTB6XSKY1wuF2RZFpbrO3bsQHV1NWRZxoIFC1BQUIAbbrgB+/btE+fMmDED2dnZeOGFFxCNRtHT04MXXngBs2bNSnAFHi3uvvvuBJfeF198EZ/5zGfgcDjENk3T8Mc//hGf/exnUVhYmPQ6A4UHAYC8vDwsX74cL730EgC9L/fHP/4Rd99996Bp/PGPf4xVq1bhxRdfxHvvvYeWlha8+uqraTxdf+655x786U9/EhaigB4epaKiIq20jEdIHDzPiEQiePjhh3HHHXfA7/cD0AvgO++8g507d8Ln88HlcuEnP/kJ3n77bWRmZopzn3rqKfzpT3/C6tWrcdttt+FrX/vaiJj1M8YwadIk3HXXXQkD9t/85jd4//33RQyCBx54AJs2bRL7HQ4H8vPzkZ+fD7vdji9+8Yu4++67UxbGJ598UlRYlZWV497nn5hYcBd/s6jH/7a6/w92nWTXMN9juKQqy4BeXl988UXMmTMHN954I5566ik8//zzCe4U5uu88847+N///V985CMfSXqv2tpa/Md//AeKioowY8YMEQcpVfyPmTNnJsRKOnDgABobG9Ha2ooDBw7g/vvvF2let26dGDgAunsAjznIn5EY+/zhD3/Ajh078PTTT6c85oEHHsCll16Km2++Oen+EydOQNM0/PCHP8RPf/pT/PnPf0ZLS0uCe2lGRgZ+/OMf45VXXsGbb76Jyy+/HLfccssZC4STJk0SE3Dm9msofO9738OuXbuwceNGlJSUiO1dXV345S9/iWeffRY33HADZs+ejd/+9rdwu939BKknnngC1113HebNm4eXXnoJ9fX1g3aki4uL4XQ6sWjRIqxYsQJf/OIXh5z2dHn66afx5ptv4m9/+xtCodCgx+/duxcZGRkJP1/5ylcAYNB6ZNasWQkxFjkNDQ249dZbcdtttyWdoEgnreFwGH/+85/x2c9+FgDw2c9+Fn/605/Q2dkpjrnsssvwu9/9DrfffrvoAwUCgQQXVurrjG0aGhrQ2dmJZ555Bh/96Efxf//3f7j11lvxiU98AuvXrwegt8UOh6Nf3OChtvfDhX83y5YtG5EYu3fddRfuuOMOlJeX44c//CE6OzuFKzLnqaeewnXXXYepU6ciKysLR44cSZjMAIBbb71VlNmBJu+WLVsm2vMNGzZgwYIFCdvWrVsnJiyqqqqQn5+Pa6+9FqWlpbj44osHddN/+OGH+9UhP/zhDxOOoXI4cdE0Dd/4xjdw2WWXYe7cuQCASy65BF6vFw8//DC6u7vR1dWFb33rW1BVFbW1tQAgYmg/+eST+M53voM33ngDmZmZWLZsmRDTfT4f1q1bh//5n/+B2+1GRkYG3n77bfzjH/84o4kxYGTK/cc+9jGEw2Fs2LABXV1d+NOf/tRvXN7Y2Ii2trZ+5XvhwoWiPN1xxx2D3osLkYwx/PnPf8bUqVPTir3605/+FI8++ig+8YlPYNasWfjVr36FQCAwpOfkfPrTn0YsFsMrr7witq1cuRKXX345pk+fLrYNND4ab5A4eB4Ri8XwyU9+Eowx/PKXvxTbGWNYsWIFcnNzsXHjRmzduhW33HILbrrpJlFhAcBjjz2Gyy67DAsWLMDDDz+Mb3/72ykDZo8EV155JU6cOIF3330X//zP/4z9+/fjiiuuwPe+971+z3XbbbehrKwM/+///b+zlh6CIIYPD6DPWbp0KTo7OxMssN544w1kZGTA5XLhhhtuwO23395vheTi4mKxuFJXVxf+8pe/JMxIDmTNzI+bO3cusrKysH79emzcuBELFizAxz72MTEwW79+PXXkxzmnTp3C/fffj9/97ncJcbzM/P3vf8eaNWsGXAVP0zTEYjE8//zzWL58OS655BK8/PLLOHr0qFi0KxQK4cEHH8SSJUuwePFiPPPMM/jsZz97VtvHdOExj6wD1+PHjyMWi+Gyyy4T2+x2Oy6++GIcPHgw4dilS5eK37OysjBjxox+x1jZuHEjPvzwQ/zqV7/CT3/605TWdmfKW2+9hcceewwrV64cMBaSmRkzZmDXrl0JP0899VTCMenUI5xYLIZ//ud/Rl5eHn77298OO60vv/wypk6dKvZdeOGFKCsrwx//+EdxDJ/IePzxx7F9+3a8/fbbqKysFOImMfbhE2I333wzHnjgAVx44YV45JFH8LGPfQy/+tWvRjl1ZwdzvFev1wu/34+GhoaEYxYtWjTodX7xi19g165duPvuuxMWB7Jy1VVXiQlA3p5zcTAWi+H9998Xbfy//Mu/oKenB1OmTMGXvvQlvPrqq4Mu0PbQQw/1q0OoDBKcFStWYN++fQkLZuTk5OCVV17B66+/joyMDAQCAbS1teGiiy4SVuq8bvi3f/s33HbbbVi4cCFWrlwJSZKE+NTT04N77rkHl112GbZs2YJNmzZh7ty5uPHGG9HT03PuH9aC3W7HZz/7WaxcuRKvvPIKpk+fPmC8ZzOvvvoqdu3aheXLl6f1LDfeeCM6OzuxYcMGvPjii2lZ6rW3t6O2thZLliwR22w2W1r1TzKCwSA+8YlPiBjB4XAYf/nLX3DPPfcM63rjgTOToIkxAxcGT548iTVr1girQQBYs2YN3njjDbS2tortv/jFL7B69Wq89NJLeOSRR5Jec8mSJfje976H3t7eBDPpkcRut+OKK67AFVdcgYcffhjf//738dRTT+Hhhx8WHfSvfvWrOHXqFLZu3XrGsyYEMVbhLo/19fUoKCgQ2+vr64e0SmF+fn6/GXu+Wloyt8pzydVXX41f/vKXcDgcKCwsTFqeN27cCL/fj9zcXPh8PrF92rRpAPQVIJNZFBw8eFDkk9ntyOl0YtmyZbjgggvQ29uLffv24f333x/Q+ocY+2zfvh0NDQ246KKLxDZVVbFhwwb87Gc/Q29vL9asWYPjx4/3s8657bbbcMUVV2DdunWirM2ePVvsz8nJQSgUSlhZ1MqSJUuwevXqkX0oE7Is9xOwkrn6XnPNNbjvvvtw8803Q9O0czaBNnnyZADAvHnzUF9fjyeffFJYAqSb9sE4cuQIPv3pT+ORRx7Bv/zLv6R9Hl8NPRnmeiSZO+PBgwcTrAEAfcXYo0ePYtu2bSmF6HTS+sILL2D//v0J9Z6maXjxxRfFQOPpp5/GZZddhoceegiALrp4vV5cccUV+P73v5/QNhBjk1AoBJvNllCnALpVKncvzM/PRzQaRVtbW0L9VF9fP+rt9HCw2+0Jf0uS1M9rwLqIwLRp0/qt9sq/b+6qmYp58+aJCcD169fjBz/4AfLz8/Hv//7v/cKGlJSU4PDhw3jnnXewevVqfO1rX8Ozzz6L9evX90s3JxQK9atDBksTMTG499578cYbb2DDhg0oLi5O2Hf99dfj+PHjaGpqgs1mQzAYRH5+PqZMmQIASfsbTqcTU6ZMEf2N3//+96isrMTmzZuFqPj73/8emZmZeO211/CpT33qXDzmgNx9991YsmQJ9u3bl1Swy8nJQTAY7Fe++aIlPp8PbW1tg97HZrPhc5/7HJ544gl88MEHw3YNTobf7xeu4Wba2tr6WRnec889uOaaa3Ds2DGsXbsWiqIMqU8y3iDLwfMALgwePXoU77zzDrKzsxP289k3a3wdWZaTuvxxdu3ahczMzLMmDCZj9uzZiMfjYnXWn/zkJ/jTn/6E1157rd9zEcT5xOTJk5Gfn493331XbAuHw/jggw8SLHsGY+nSpdi7d2/CrP3q1avh9/v7DVZGkt27dyfMBG7ZsgUZGRkJro5erxfl5eUoLS1NKfRPnjwZU6dOTRAGAT1uYlZWFn784x/3O+fvf/87jh49irvuukts43EH161bh2XLlkGWZVx55ZV49tln0dvbm2BRRYw/rrnmGuzduzfBsmPRokX4zGc+g127dkFRFDzyyCPYs2dPwjEA8Nxzz4lV8Ph3YO7EtrS0oKmpCWVlZSnvv2vXrrMq1OTk5CRY9ofDYVRUVCQ99vrrr8frr7+O3/72t/j6178OAJg6dSocDkdCqI5YLIZt27b1qwe2bNkifm9tbcWRI0dSut0mQ9M09Pb2DivtqQiHw7j55ptx5ZVX9vMmOBMWLFiAmTNn4rnnnuvX/9m9ezfeeeedhHrkN7/5DV588UX85S9/6TcQHEpa9+7diw8//BDr1q1L+B7XrVuHzZs3i1hp3d3d/fpqiqIAGNjakRg7OBwOLF68uN/A+MiRI6JOWbhwIex2e0J7f/jwYVRVVQ2pvR/P3HHHHVi9ejV27tw55HMlScIVV1yB1157Dfv378fll18uJgB//etfY9GiRQlipNvtxk033YTnn39elLm9e/eO5OMQ5zmMMdx777149dVXsWbNGjFBloxQKIRgMIg1a9agoaEBH//4xwHo5d7pdCbUDbFYDJWVlaJu4G2AOSYf/3ugMfu5ZM6cOZgzZw727duXsNIyR5ZlfPKTn8T//M//oKam5ozudffdd2P9+vW4+eabE0KhpSIQCKCgoAAffPCB2BaPx7F9+/aE42bMmIEdO3b0O3/Hjh39JgivvvpqTJ48GStXrsTKlSvxqU996pytmDwakBnWGKezsxPHjh0Tf1dUVGDXrl3IyspCaWmpcHfZsWMH3njjDaiqKuKVZGVlweFwYOnSpcjMzMSdd96Jxx9/HG63G7/97W9RUVGBG2+8EQDw+uuvo76+HpdccglcLhdWr16NH/7wh2fVumbZsmW44447sGjRImRnZ+PAgQP4//6//w9XX301/H4/3nnnHXz729/Gz3/+c4RCIfFcbrd72LEDCGK0GKwsS5KEb3zjG/j+97+PadOmYfLkyXjsscdQWFiIW265RZxXVVWFlpYWVFVVQVVVIXiUl5cjIyMD119/PWbPno3Pfe5z+NGPfoS6ujp85zvfwYoVK86q0B+NRnHPPffgO9/5DiorK/HEE0/g3nvv7TfQHS5erxe//vWv8alPfQpf/vKXce+998Lv9+Pdd9/FQw89hC996UsJQfuXLVuGBx54AA6HA5dffrnY9q1vfQuLFy8+rxv2iYDP5xOxfjherxfZ2dliO49Za6W0tFR07KdPn46bb74Z999/P37zm9/A7/fj0UcfxcyZM3H11VcDAF566SU4HA5hafbXv/4VL774Iv7rv/7rrD3fRz7yEaxatQo33XQTgsEgHn/8cSESJePaa6/FG2+8gZtuugmapuFnP/sZvvrVr+Khhx4SdcyPfvQjdHd393OHeeqpp5CdnY28vDz827/9G0KhUEKdY+bnP/85SktLMXPmTAB6vK//+I//EKLkcNJuhTGGz3zmM+ju7saPf/xjYflsJicnJ+U14/F4v7htkiQhLy8PkiThv/7rv3D99dfjtttuw6OPPor8/Hx88MEH+OY3v4nly5fjX//1XwEAmzZtwn333YfHH38cU6ZM6XdNt9sNv9+fVlpfeOEFXHzxxUkXVFu8eDFeeOEFPPvss7jpppvwpS99Cb/85S+xfPly1NbW4hvf+AYuvvjilIHdiXPLYG05oLul3n777bjyyitx9dVX4+2338brr78uYlEFAgHcc889ePDBB5GVlQW/34/77rsPS5cuxSWXXCKufezYMXR2dqKurg49PT2ivZ89e3Y/9/fxxgMPPIA333wT11xzDZ544glcccUVyMzMxJEjR/CPf/xj0Dpj2bJl+OY3v4lFixYhIyMDgB6u6He/+52wvAX0mMKqqmLJkiXweDwilttAkz8EYWXFihX4/e9/j9deew0+n0+0B4FAQCyet3LlSsyaNQs5OTnYvHkz7r//fjzwwAMi9p7f78dXvvIVPPHEEygpKUFZWZkIT8It0a677jo89NBDWLFiBe677z5omoZnnnkGNptN9EnOBrxu6ezsRGNjI3bt2gWHw5HSqGDNmjWIxWL9PDM4P/zhD7Fu3TpcfPHFeOqpp4Rgv2fPHmzevLlf/y0Vs2bNQlNTU0LYosG4//778cwzz2DatGmYOXMmfvKTn/SzVPzqV7+Kn/3sZ/j617+OL37xi3A6nXjzzTfx8ssv4/XXX084VpIk3H333fjJT36C1tZWPPfcc2mnZVxyrpdHJobG2rVrGYB+P3y58oqKiqT7AbC1a9eK62zbto1df/31LCsri/l8PnbJJZewt956S+z/xz/+wS688EKWkZHBvF4vmz9/PvvVr37FVFUdMH133nkne+KJJ4b1bD/84Q/Z0qVLWVZWFnO5XGzKlCns61//OmtqamKM6cumD/TsfFl1ghgPDFaWGWNM0zT22GOPsby8POZ0Otk111zDDh8+nHCdO++8c9DyXllZyW644QbmdrtZKBRi3/zmN1ksFhswfWdSlu+880528803s8cff5xlZ2ezjIwM9qUvfYlFIpF+x6SC509ra+uA99qwYQNbvnw58/v94tn//d//vd9xqqqyzMxMtmTJErFt586dDAB75JFHhvyMxNjnqquuYvfff/+AxwBgr776asK29vZ2dvfdd7NgMMiysrLYrbfeyqqqqsT+VatWsVmzZjGPx8P8fj+7+OKL2SuvvJJWelauXDmMJ9HTdPvttzO/389KSkrYqlWr2Pz58xPKaFlZGXvuuecSzlu7di3zer3sa1/7Guvu7mb33XcfC4VCzOl0sssuu4xt3bo14VgA7PXXX2dz5sxhDoeDXXzxxWz37t3imJUrV7JAICD+fv7559mcOXNEXixYsID94he/SOgrpJN2TrJ6obKyMmW/hv9UVFQkzbdU/Qan05lw3J49e9htt93GsrKyxDH33ntvQj151113DZiGO++8M620Hj58mGVnZ7Mf/ehHSdP87//+7yw3N5dFo1GRx7Nnz2Zut5sVFBSwz3zmM+z06dNJzyXOPem05Ywx9sILL7Dy8nLmcrnY/Pnz2d/+9reE/T09PexrX/say8zMZB6Ph916662strY24ZirrrpqSN8/Y3oZsKYlXazlncPHGjt37uy3L1mdGggERN03UNseiUTYM888w+bPn8/cbjdzOp1s5syZ7IEHHkiog5PB2/OHH35YbHvuuecYAPb222+Lba+++ipbsmQJ8/v9zOv1sksuuYS98847Yr+1Hk1WrzJGY46JTqr63dzGP/zwwywvL4/Z7XY2bdo09uMf/5hpmpZwnWg0yr75zW+y3Nxc5vP52LXXXsv27duXcMz//d//scsuu4wFAgGWmZnJPvKRj7DNmzcPmL4zKfepnq+srCzh+gN9//fffz+76qqrEra1tbWxRx99lM2cOZM5nU7mdrvZBRdcwB577DHW3Nwsjku3DHLM9UsyYrEYu//++5nf72fBYJA9+OCD7POf/3y/vsbWrVvZddddx3JyclggEGBLlizpV5dxTp06xWRZZnPmzEl53/MFiTHyUyCGz1133YVJkyb1W1SAIIjxxXgsy5FIBDfffDNOnTqF9evXIycnZ7STRBCCZcuW4a677kpwUx1LrFu3DldffTVaW1tTzv5PBDRNwz333IP//d//xfr160VcQoIYjzz55JOorKwc1urnv/71r/G9730Pp0+fHvmEEQRx1jiTcj8RuOuuu9DW1oa//e1vo52UMQ/FHCQIgiDGJS6XC6+99ho+//nPY8OGDaOdHIIgxiGyLOOFF17Aww8/jI0bN452cghiVDh16hTeeustzJkzZ7STQhAEQYwSFHOQIAiCGLe4XK6UK64TBEGkgyzLuP/++0c7GQQxalx00UUoKioiyyOCIIgJDImDxBlxyy23TGh3JII4X6CyTBAjy1133YULL7xwtJORkmXLltEKuARxnrFs2bJ+wffTobGxceQTQxDEOWG45X6iQJMe6XPW3Ip//vOfY9KkSXC5XFiyZAm2bt16tm5FjCK33HILli1bNtrJIMYYVP7HH1SWiZGE6oCxLw4SxNmCyv/osWzZspSrjRPEuYLqgHMLlXtipDgr4uAf//hHPPjgg3jiiSewY8cOzJ8/H8uXL0dDQ8PZuB1BEGMIKv8EMbGhOoAgJi5U/gliYkN1AEGMX87KasVLlizB4sWL8bOf/QyAvhJcSUkJ7rvvvkFjQ2mahpqaGvh8PkiSNNJJI4gJCWMMHR0dKCwshCyf3XWIzqT88+OpDiCIkWW81AFU/gli5Bkv5Z8fT3UAQYws46UOoPJPECPPUMr/iMccjEaj2L59Ox599FGxTZZlXHvttdi8eXO/43t7e9Hb2yv+rq6uxuzZs0c6WQRBQF+Nrri4+Kxdf6jlH6A6gCDOJWOtDqDyTxDnjrFW/gGqAwjiXDLW6gAq/wRx7kin/I+4ONjU1ARVVZGXl5ewPS8vD4cOHep3/NNPP43vfve7/bafOnUKfr9/pJNHEBOScDiMkpIS+Hy+s3qfoZZ/IHUdcPLkyYQ6wDqDyI2e+XZJkgYMrm/dl2pGMtk1Rnr2MtWznK10DPTsA+VZsvv1P5f/JOPszk6PJKnyyPydaZoGAGLWre8chuSvxrrxzL65dL/hZITDYZSWlo65OiBV+a+qqjqjPoA5r8z5ZH6PkiQl/G0+l+8b6NrWspDO+zCfO1CdZb1esmOt2wa7Xqr7mp93pJxJhvqtJsvTVPvTSWe67yPVOdbfzQx03XTr2mTvbrDrDXStgZ4FGLvlH6BxAEGcC8bqOIDKP0GcfYZS/kd9teJHH30UDz74oPibJ97v91OlQBAjzFg00U+nDkhXADRjHdgNJP4MJpZZhYJkA+t0GeheyZ5voEFgOoPLZMcny890B8CJ25lJIOzb1ieCSabfB06LdZ91e6qB+lD2DyacJLteqjQnnpNMHGTQxdGB0zXQ/YabTvO+MxEUzwXnog+QSpQxC02p3m26Ii3/Zgd7R9bvPpXoZS4DA13XLGzKsjwkcXAw4WkwEWy4Ilk651jfU7J7phLzzH+nk4506vChir8DPYN1Xzrps+5Ld1InXRFyNKFxAEGcO8ZaHUDlnyDOHemU/xEXB0OhEBRFQX19fcL2+vp65Ofn9zve6XTC6XSOdDIIghgFhlr+gdR1QDLLnXQtAwcSggYaYA3HamY41impzhuK+DMcsWmoVoLpISFRHDzzjudQ036m+9N9duug23IH85Gw5kO63+Rg9x/KN3oWQgoPyrnqAyQTPIZjTTyQleBgwqv1nqmEoHSvOVIiTroCZap7pfOdDafMpEuq95fuxEqq95luGpPdM13xdKjPa73uYPceKue6DhjJPgBBEOMP0gEIYnwz4j5fDocDCxcuxLvvviu2aZqGd999F0uXLh3p2xEEMYYYzfI/2AAq2YDRum241lvppIcP/FJZ6o005vslE0GGaoVptTjSf4aWJmten+sZbGt+DPXcVL8nXk9K+En2zOZ3MJD4myyt5muMNQsA4OzWAUMVrFKJYOnmW7L7DSYyW99tOhat1nKV7j0Hsy5M5/4DMfB3PjCDfZ/pXiuZlSPfPhLXHmj7cMuX1RI1WbuT7PrpfjNnZ5JnZKAxAEFMbKgOIIjxzVlxK37wwQdx5513YtGiRbj44ovx05/+FF1dXfjCF75wNm5HEMQYYjTKPx9AWgeS6QiGZgayuBnK4No8UD9bIuBgVk2DDajTtbRLJSL27QeSWwsO3fpvrGN1YzT/r+cTjN/NrtXJSefbHIp4Yk3faHI26wCzyJ2qjFnzYSALr1RlPlWepipb5mudzXcwqFUbACYBMpMgQQKkwV3xh7rvTBhM2DqTOmIkLPlSTQIk+54Ge9/JymM6VoqDXXMonKvJKDM0BiCIiQ3VAQQxfjkr4uDtt9+OxsZGPP7446irq8OFF16It99+u19wUoIgzj9Go/ynMwCyWtANFJ8r3fsNNoBL161wqKLOcEWIdEUC6wB5YCud5NdLV4gcimB5poyk+GB1Y9StBFOfm45QO1T3zpH4ls4GI1kHWJ9nIGu54T774N94chfmgay8zHWN+bxU1zNPcCS792AikwQJDEx3bmfgvyV4uw/l+gORSvSyPvNg5yQjlcCX6tqapp2xpd9g90+WluGcm+zYodZHZ2IJeq6gMQBBTGyoDiCI8YvExlgPIxwOIxAIoL29nQKREsQIMZ7KFU9ra2trvwVJOMkGtKksMJIJdUMdTCYTIcz7klkTJRvEpWNhko6gmGpAP9BAP113SH7sYG58gw2Qz5U4OBTB70zFQY71fQ30DEP5RtP5Hgf6ngbaFw6HEQwGx3wdwMt/W1ubWFVtsO/cLBxZBVzzysTWc1O9R7MVcjKG8p6sVo7mfamulc47TmW9xoBEo1VmPM8g9xrsmQbLK+txVgvPZHk63AmRVPVlOs9gPm449YH5nGTXs6bpTKxJBxJUrc9tzR/rPcdL+QfGV3+FIMYL46VcjZd0EsR4YijlatRXKyYIgkhFqsF/soFxMoHOeq1UA61kg0TrvVMdl+w6qSzMUg32hmoNku5APtUAPtU56aQpHeHxbFmunel1R2ouzPp+k10/2XeQKg0DP1dqF+WBRKyxYEF4JqQqr8ks9Pjxgx2bbJ+1rKQS3cznpXPPdETv4byfVN9Uyvctpfp6+q6RTrlI9c1b75lq4mWgCZnhWBUOtywP9RqpxNjBjh9MxE33vqkYqB0hCIIgCIIYDiQOEgQxbkhl3WbeLsv911nix5oHoYMJismsP5JZISY7ZyCBcLBtyRiuxVu6g+6B0pGOxWA6xyRu4+9g0KQNel1zGtIRg/ixqbafiXXhQHk9dKslhj6fUAa+flgqUWCkhM/xRrJnH0iIGayMpboWPyadvB6qSJPsHukc36+cShIS/Ij58RhYIBxK2s7k/KHut9bXw00DZ6TFs+FM0gzluumKttZ8mqh1AUEQBEEQZwaJgwRBjEkYY8IlcCDRbSjWWemIWMlIZhFoHfilex3z/6nSkWp/MkvJgc5LJnikKxb2Hcf/H+kB55lbAZlJ5Woo7pbGoDmZIGw+fygMRaw0bR30uqmEr/PNamgo1nYD5XU6QnCq8mU9Z6gWdvycwd7VcAUdq8s0GI80mMTdlU+ODGZKaEq3NW3JniWZhdxAeW7dZj4uHavCZO/qTAXMdNOSznlmhmI1mEqUHiwt1uMGsiYmCIIgCIIYCBIHCYIYk8iy3E98S+Y+N5D7H9+eauB6Jgx0ncHSN5gV4VDc3YbqrpZues90gDxSAsiZkMxaz0oqa9QzvWcq+AIKqfM22fn8+028z/kmCKZiqC6awy2bgwmPQ61H0v2WBqsjhjQBAdMXlMRkMB0rwnSsg83HphJEB3uGgerEwe5hvc5I1S1nWv+Z05Tq+ulcN9mEVKrrDeX+BEEQBEEQqSBxcBDO9mCWOnAEkRxN0xLKn9lKxmxVmGpgn0xYHCpDce8ayiAtmTg4FGEgmUXgYGmyDthTiXdWSyFZlpBu1iW7n3V74vF99x7ouHTudzZcBoeSv+kIUsmFh/SfWT9lYrQZqSzDUpFKOLRaVCW7R6prmLenKwym800MJm7y+k3TNDFJwsMlWK9vrgeS1YV8FWMMUTC1/p2qPFvzZSARMJ1jrNsGmgQxp2kwi83hCJ7DEecGyqNUaUvFUCwwh1uHEgRBEARBcMaFOJjMoiZZhzBVJ22o97BuH6izPBCDdewGs3qw/j+YtVGy+6Y6jyDGOtYBOR8w9/b2oq2tDW1tbYhEIrDZbOJ4RVFgs9ngdDrh8XiQkZEBt9sNRVESBtLpCnaDDfDM29MVMYYiaA1XXLAea63HkqV1pOuJBIEiad7wv4d3n6EId9a/z8RCa7BB+PDeaTI3S67n9M+nkbAWHS8MJPKkKsvWesP8u1XkMn+bsiyn7G8kE9MHYrB22Hp9cx3X3d2Nnp4eqKoKh8MBr9cLp9OZkN5U1nn6fY06Sb+L/q+mAZKkb0uSn6nKy0CiqyzLwhI22bNb34MkSUmPt9431fedrKzySSLzMfw9mtM4WH1t/Zun0yxoppNX1vSkamsGek7TkZaJGiXhfmYrZHMIDvO2ZKLy+UKy8pOq3UlWh6Qr8ltJVSbOhOFOhqRKhzk/JkI7MZoM1rcyM9iExWDnDede6Y5ZxyPpTJqk0/dNVZ6Gku/p9A0HGoNYr2NNy1BIR58YiobBr5ksr5LVhwPpFmONdMZ5ZpLl3UBjyuHUCanarmTpTTct1r7JQIxZcTDVRzjUa1jPG6yjZu5E8pl7c6YmO45v59t4uq1ukebn4dutx5n/NqfX/D/v7A00KCKI8U6yQa+qqmhoaMDevXuxb98+VFVViXLKxUGn04mCggLMnDkTc+bMQUlJCVwuV8JCJekODlI1jvwnHo8jEomgp6cH0WhUDEa5GMnLq/kHQII1ED9WURRxzECioLUxNgsbZqx1jVlMSFYnJbtW3zWAZOKUlcSBGYAEJ0YJjGlGHknG3/y+6Je2dEglYAzWcbPWxdbzEvf1Fx/Mz2i9VbJOUbLGO7FtA6wCYd/uPrEnFWc62B2LpNPpSfXNWN+nqqro7e1FLBZDLBYDoH/jDocDTqcTitInusTjcUSjUUSjUcTjcUiSBJvNBpfLBafTmZAuswg1kBAxUFtt/U6i0ShOnz6NI0eOoKOjA4WFhZg5cyZyc3PFMb29vYhGo9A0TdR5drtdPIdkHMfM90rSl+L/d3V1ifqLbzc/i91uF/WvqqpiPxfe7HY73G43XC5XysGUpmmIRqPo7u6GqqopRTrej+L7+YQP/+HbzaKXpmlQVRWapiEejydcg9ev/HxFUUTaOfw9xmIxqKoqvhPzdazCMU+Hud/H63C73S7yhqfHbOkuyzJUVU24lt1uh8fjEe8QALq7u9DT0wPGmJG/noT6nOdjLBYT34P1mzan9XzCWm6sf1uf2ep5MNBAPpnIZv5e+sX6HEGs7ZNVADb/nizNqcY7wxUZiNSkI/RY+13JwoqYv7Fk3xs/Jtnv5r+TffO8jTjfSFZuU+XLYFj7w+Z8tJb1ga452MSX+X7p9HXN7XEyAc76t7XdHkhcOtO+tvlZrM9lTfN4Ip3ynM72ZOMqvt16D1VV057ES9U+WPtQ5usN5z2MWXGQk2xAy0k2eODnWP+2/pg7dLxTqaoq4vG42B+PxxGPx0WH0XysucNn7kAmq/Ctwh4XBHhHlXcozcIgP4b/bz7O+r9ZWEyWDoIYj6Qq252dnaiursaBAwdw4MABRCKRhA6X3W5HeXk53G43Jk2aNGCjnqojPRh8oNze3o6KigocO3YMtbW1iEQiYiDKB+uyLPcb3FrrAX68y+WC2+2G3+9HZmYmMjIy4PV6xeAcSO1ebd4Wj8fR3d2Nzs5ORCIRMXAFIOoSazrMgqBZpFQUBQ6HI0HYNOcfr//M4qe+nQEwW+wAgLVuEvJFv2cbrB5LtT9V58n6e7pwkZMxQJLM5ydO3CRL30D362vb+q41QCr6XXuga55vDCSuAf0n3szHmNvzaDQq2nOHwyGEImtZMouJAIT4xsUYc3ubTJQwt/2pRLBknXhALwORSATNzc0Ih8PIyMgQwo/NZhPljQtYvJ7hz2K32xPyYaCBQDweF79Ho1HRz+H1m/lZFUUR1oxA3wQH7yc5HI6EPEhV/riQxZ/b2ilOJg7yZ+J9Jn68ue7joh5Pj7lO4ucn609a61VVVfuJw6lEYOvz8bqUD8jN+cPzlu8zfztcSDTXs1z06+3tNfYnCgj8PN5v7e3tFfW8uT08H+uDZFjLPdBf5DbvH6xuNh+bTKgbSawDavP1k4nYPF3Jzuf/m6+VrmhBDB9zG2LOe2s9M5iIm2wcmUqQsb5j899WwXEivv9kZT5ZGw1AjPUB9OsrpztOMH8DvJ0096et7c5Aoq75GN4eqaoKu90Oh8ORMFEGpLY4Y4whHA6juroazc3NYjIvIyMDBQUFyMzM7NemmkOa8G+I9wGSYf7WzN+m2biKP7s53WPhm0xX7AMgJkcBJIyR0hmH8G28bwIgYTxovoe5X2P+Bs39JU6yeiWZFjTUdmvMi4MDYW0Qk/1unVHmHSn+O+988cLX29ubdDufRbZeh1/b/CGYKx7rdqvgZxUIuUhgs9ngcDjEDx+c2O12OJ1OOBwO8bf5GtaBPb83QYw3rJUggITyy48xN7r8b15+eNkwl0vOYAMEjvUYc2eivb0dx44dwwcffICDBw+ivb1dDNB5ungjK6x6pL5JAF53mMu9y+WC3+9HKBRCKBRCUVERCgsLUVhYiFAoJMRC87X4ffhgtK2tDYcOHcL+/ftRXV0t3K/N1jP8f7N4mWwiglsFeb1e+P1+ZGdnIxAIwO12J3RSzLPUfXmW2AmTZQmSJEPTVGiaCkCCLNsgSUgQJngemwfUvF42d7rMP+Z6NdmkibUuNr/fVPv6LB8lSIa4mbivv/VgMrEovW9rZOrpVPccj+1Ass6vdXuy/eZtvJyeOnUKp06dQnNzM1RVRTAYxKRJk1BSUoJgMCi+4c7OThw9ehQnTpxAR0cHnE4nSktLUV5ejvz8fOHem+yeyayTUz2PGV52ZVlGPB5HfX09Dhw4gIaGBqiqiilTpiAnJweRSASnT5/GiRMn0NTUhGg0Co/Hg8LCQkyaNAm5ubn9rJSt9zSnKxKJQFVVHD58GAcPHkR3d3e/NNntdhQVFcHtduPUqVP9LP8YY/D7/bjgggswY8YMuN3ufs/My/CpU6ewY8cOtLW19RNWzenj15ZlGR6PBzk5OSgqKkJubi58Ph/sdrsQGcPhMNrb29Hc3IzW1lbhks3rIpvNBr/fj2AwiKysLGRlZUGWZfh8PmHpyPO9q6sLDQ0NqKmpQWNjI9rb2xMEVHN+8o66eSDndDoRCASQk5MDj8eDeDyOpqYmtLS0iDQl1oeyEPQmT56MCy64ADk5OQCAcDiMnTt34fjxY7DZbJgzZy5mzJgJr9cr8jMWi6GhoQGHDh1CY2MjVFVFKBTCtGnTUFxcDI/HM+B3dz4wmFhmHvSbJ7JSDc6t9Ywsy3C5XGKQzr99p9M5oBfPcJ8hmYBtft+xWAzt7e3o6emB3++H3+9PEJXN35b574kqEJ1trGJfskF4svebbD9jLGFsab6HuS8LIGGMx/+2pot/sw6HI62+7kTB/D56e3tx/PhxHD16VIhnAOBwOJCTk4Pp06ejtLRU9LlToaoqmpubceTIEZw+fVq0kwDg9/sxdepUlJeXIxAIJBXS+P+8fNfW1qK+vl5MEnIjCJvNBrfbjWAwiPz8fJSUlCA7Oxter1ekxfxddHZ2Ytu2bVi7di1OnDiBeDwOl8uF6dOn48orr8SCBQvg8/mgaRoaGxtx4MABnDx5UkxKAUAwGER5eTlmzJgh2hRrPprv2d3djWPHjqGiogJNTU0iT202G0pKSjB37lzk5eX1S+tYJRqNoqqqCkePHkVjYyN6e3vhcDgQCoUwc+bMpN+HOW9isRhOnz6NQ4cOoa6uDqqqQlEU5ObmYvr06SgpKUEsFsOhQ4dw7NgxdHd3i8lC7gVXWFiYEELLXI/w/OV9gbq6OgSDQcyZMwdFRUX9vB7SYdyIgwN1cPnf/MdsBchnkrnwx396enrQ29uLSCSCrq4uRCKRBPdA8/F8BtksNPLfzS42yQYKycQ6a4HiwoBZ+DMLgk6nE16vVwzQeafW7XbD4/EkiIh8cMyvn0xgIYjxgLlMWYPym0V5awXJt/OOlNWyzky6IgM/1jozz2MgdnR0oL29HeFwWIh9kiQlzDSZr83rBP4cvMyaB93cXdDv9yMnJwelpaWYPXs2Zs+ejalTpyIYDCbMwplnibu6unD8+HFs3rwZR48eRU9PT78Zu2SdS7OgZhZVFUURomVWVhays7NFx2Ty5MnIyckRg5RE6wpdEOzLNyAWi0NV42BMhSTJkGUGSVLAkxKLxdDT0yMG/R0dHcIKsqurSwiEZlc9Lga7XC5kZGSIn0AggEAgAJfLJepHsyhrfpdWgZmn3/QFoC+7BhY1zO/aun2onSFru0HopBLtk/UNOjs7UVlZia1bt+LEiROIxWIoKSlBNBqF3++Hz+cTA6lTp05h06ZN2LlzJzo6OlBQUABFUVBSUtJvVjcdkTnVd2DeZ67XFEVBVlYWSkpK4Pf7UVBQAJfLha6uLpw8eRLvv/8+9u3bh9bWVsTjcdhsNuTn52PBggW4+OKLMXXqVNGBT3ZP8/fP+zmVlZXYtGmTEBz5hIbNZoPX68X8+fORlZWFbdu2obm5OUGsYIyhoKAA2dnZKC8vTxAjzDPdvIO8fv16VFRUJExMmI/n2/nvgUAAkydPhiRJ8Hq9cLlciEajaG1tRXV1NSoqKnDq1Ck0NDQI0YSni+et1+tFIBBAbm4uSktL4XK5UFBQgOLiYmRlZQnBt6urC7W1tdi3bx+OHz+OhoYGISxZBWHzxAXPL7/fj5KSEpSXlyMUCiEajeLEiRM4efIkWltbEyZA+EQzH2hcffXVKC8vF/dobm7Gtm1bsXnzZtjtdkQivcjPLxDvVlVV1NTUYOPGjdi2bRsaGhqgaRqCwSAuvPBCLFu2DNOmTesn1p5PWEUX66C7o6MDGzZswKZNm9DT0yO+RatIaLVYB/TJP4/Hg8svvxzXXHMNNE3D3//+d3z44YcoLCzExz/+cUybNm1EnsNsmWp+Lk5HRwcqKiqwbds2HDlyBI2NjdA0DV6vF6Wlpbjkkktw4YUXJkxymMsevwcx8iQTmK0MNkHI93d2duLgwYPYtm0bKisrEY1GYbfbkZOTgzlz5uCiiy5Cfn7+gP1W877q6mrs3r0bV1xxhfg2znesojowsJdha2srtmzZgnfffRfV1dWi/DidThQVFeGKK67ADTfcgIKCgpT31DQNtbW1+OCDD7BmzRqcOHECvb29om9fWlqKK664QvSTk1nL9/T0oKqqCnv37sXRo0dRXV2NpqYmdHZ2oqenJ8EggrfLoVAI5eXlmDt3LhYuXIj8/HwhIPHrc0OB3bt34+TJk1BVFR6PBz6fD729veLYzs5O7N69G6tXr8aBAwfQ2dkprNCzs7Nx6aWXwuFwYPr06QlCmPWb0ie1dmL16tU4ePAgWltbRd2WkZGBxYsXIzs7G1lZWcLbYKyQagKlqakJGzduxHvvvYdTp04hFovB5/OhvLxchLGyCvDmd9za2opt27ZhzZo1OHbsWIJAK0kSAoEAwuEwPvzwQ7z33nuor69HLBaDw+HA7NmzoaqqGMskQ5ZlNDY2YsOGDVi/fj2qq6sxefJkZGRkIC8vb1j5PG7EQSvWgbpZsOOWfr29veju7hbCX0dHBzo7O9HZ2YmOjg709PSIHy4ERiKRfu7EXGg0uxDzNJhngq2dYo7V9NT8AVotXrj1EHcx5ANePkMYDAYRj8fh9XoT/MrNnWzzgD7VLKQ1LwlirGH+Xs3fLB+U8ll83rE3W8zw8sNn962DeHP5G0x0MVu+mNPF/zeHIzAfaw0BYLPZknbQzWb8ZuGBC491dXWoq6vDwYMHsWPHDsyaNQuXX345FixYgJKSEvh8PlEXmS0pe3t7Rceip6enn0uA1SqBb7PmDc9j8+y1zWaDx+MR1ldTpkzB/PnzMW3aNGHdmOw+ffeQDWFQt7yJRiPo7OxEa2srTp8+jZqaGtTU1KCpqQltbW3o6OgQcdHM4qBV0OMiJrdyzMrKQl5enrA8KigoQG5uLtxut7DuNFuRpJro0dOdaCGY+HzpCXfm66ayVrFeOx2Lj1T7z6e63drGAv0t9ZK1xbw9j0QiaG1tFTO/brcbHR0dYgKws7MT4XAYx44dE7PnLpcLwWBQiEi8A5hqos/c2TeXJWt8sGTPxo+32+0oKyuD0+lENBpFIBBAZmYm6uvrsXXrVmzcuBGNjY1C9O7s7MT+/fvR3t4OSZLg8/lQVFQkOvY8feb/+T15/ZSRkYHc3FyoqorTp0+jsbFRCA+5ubkIBoPw+XzIy8uDy+WCpmlCrAyHwwgGgwlu2uY8MT9/T08Pmpqa0NzcjJycHJFel8slBjXmd8rFwZycHCFydXV1oaWlBYcPH8aBAwdQUVGBxsZGYR3t8Xjg9XqhKAri8bi4Z21tLY4fP45jx47B6XSipKQEc+bMwfTp05GbmyvO4fVaTk4ObDYbotFowrvi31N7e7uYEOKDeJ6ffBK3t7cXoVAIvb29wpKQTxbFYjHU1taKd8m9Qfi7aWpqxvHjJ1BZWQmbzYZjx46hubkZeXl5UBQFkUgER44cwaZNm3Ds2DFkZGRAURRUVlaiq6sLwWAQubm5/eIPnm/wvr2maSIMB6B/f1zsP3DgANra2kS/GNDfI+83J7Naj8ViCAaDWLRoEQDdeuTo0aPYvXs3GGNCNB5prIJ6RUUFNm3ahA0bNqC6ujohpqYsyzh48CC2b9+Oj3zkI7juuutQWlqa0Nc4n9qAsYa1juMTm3wcyb8vWZbhdrsTrE2tYh5jTHiibN++HRUVFQCQYKllDY/ASdUmdXR04Pjx47j44ovPZjaMKtZ8TGUAYO4z8N9jsRiqq6uFlVtjYyMACFGvu7sbeXl5WLRoEQoKCvrpDrzf3dzcjO3bt2PDhg3YsWMHmpqaRL+aWyC6XK6kMXm7u7tRXV2NvXv3YseOHThw4ADq6urQ3d0tBEZz/4LXVTabDRUVFTh69CgOHTqE2tpaXHPNNZg0aZL4Tng73dPTAwBCJMrKykJOTk6CQNfe3i4sKCsqKhIWe+zo6EAoFMKsWbMwefLkpKFLAL0uPnz4MNatW4dt27ahpqZGxMyVJAl5eXmifTSHShpNkuki1v54S0sLTpw4gaNHj6K2thaMMeTk5KCsrExYbafqw3OB9sSJEzh+/DhOnjwJAGIikXuL8TqjpaUFNTU16O3thd1uh8/nQ319vbAU52k2p7u3txcHDx7E5s2bsXv3boTDYXg8HnR2diIej4u8Hkp+jytx0PryeOEzuxpGo1ExGO7q6kI4HBaCYHt7u/g9HA4L95NUgqC5s2AeiFrdgc1pSyYOmt3czGk2uzvz+3D3Pj4I4R148/OlGhyb/09lwcLTSBBjHas4yL93Hg+Mi4PmY3kZ4CsWcwGI70vWsJv/TlZ2kg2wzcJgJBJJsLaxionchS03NxehUEhYqZjLf09Pj5i84CIYAFE38HqmoaEB4XAYDQ0NqKurw0c+8hFMmzZNCITmNPM6zGyJk8w60OxezJ/PXK+arR/5vkgkgu7ubjQ1NeH06dPYv38/Dh06hIsuugiLFy/GtGnT4Pf7E+pM84CG36u7uxutra04efKkMKmvqKhAa2srwuEwent7+1ltmztKyeo083NwsdDj8SAUCqGsrAyzZs3C9OnTMWXKFGRmZooOm7n+TPMLtfw/+KRLqgmaVKSacEqXgTo84wU+EDeH9zCXcS5I8e/VHJ+PD/yB/iI8L5+qqqK7uxt1dXWora3F4cOHUVNTA8YYiouLceGFF4oyZh7YmfsLQF9sGHNZ0oXvqIgHxycu+PlcDDQvSsQFrry8PGiaJsS4xsZGnDhxAq2trQiFQli4cCFycnJw4sQJfPjhh6ioqEBhYSHmzp2L7OxsAPrgR5IkURcCELEU+bflcrkwY8YMBINBVFdX49133xX34NZs2dnZcDqdmDRpknBFrqysFJOvBQUFwmrB+t2bB2W8DnC5XML6mU8oWAfOZrHU5/MhGAxClmUhDO7cuRP79+9HS0sLACAzMxOTJ0/G5MmThSgWi8XQ2NiIyspKVFZWorm5WQy629vbExan4VbHpaWl8Pv9mDlzZkIcRv7T09ODtrY2HDt2DEePHhV5nJGRgcLCQkyZMgXl5eXCbWrSpEno6OhIEBlVVUV9fT3ee+89NDU1IRQKobi4GH6/H5IkIRKJoLa2RlgQ8EFsbW0tpk2bBpvNhq6uLlRWVqKqqgoulwuLFy+GzWbDtm3bUF1djSNHjmDx4sXCTfl8Q5IktLW1YfPmzdi+fTui0SjmzZuH5cuXw+fzAdDF6JaWFvGOJEkSE3nmMmyu+819BJfLhaKiIjgcjgT3cKsIeaaY2zHeVvf09GDXrl144403sGfPHrS1tQEA3G43MjIyRL3FJxD//ve/o7a2Frfddhtmz56dEG7Feg9i5FBVFW1tbaKOqaurQ3NzM7q7u8Uktd1ux/Tp0zF37lyUlZUlrSe59VlFRQU6OjoQj8dFe+Lz+ZCfnw+PxzNgv4L/zr/j3t5etLa2JhixnE+Yv28+9udtLaCLqV6vF06nE0Di+FySdHfP+vp6NDY2Cq8UjqZp6O7uRmNjI+rr69Hb2yv67uYy1dnZiV27dmHt2rXYs2cPWltbxeJevO3Nzs5GQUGBqN85bW1t2LNnD95//33s2bNHWJhzcZJPdPGF0LinY1dXl0gf38atxrmFPP8OMjIyUF5ejlgshnA4DEAXB+fNm4eSkhKhNbS0tKCuri4hlAbPD/MEW1dXFzweT7/JlGg0ioqKCrz33nv48MMPUVNTg+7ubsRiMRG3PBAIID8/P8F6cizDJ5gaGhpQX1+Prq4u0W/zeDwoKChAKBSCzWZLOonP25impiY0NDSgs7NT9BftdrsIc+JyueDz+US4Ju5VJsuyMPIw9yHN6dM0DZWVldiyZQv279+PpqamfuJhupPUZsasOJhK5TQLBXzQyF0zYrEYIpEIwuEwOjo6EA6H0draio6ODvF3T0+PcFHjBcu6Sh+/r9kSiTfa3LrPHPPPbBlkjv2XLM08vea4h3w7HxxwV2I+0+R2u+Hz+ZCRkQGfzwev1wuPxyMso8yx1awuzNZnSsa57jRYG6hUg4mBzrPOElkF0GRYG9CBrp/q91R5NNTtya5tPj7d5zjfMc/ImIV6swWGzWZLmE03C1L8eLMIaBbUhyKepBLcrUFqzbN7XJzLycnBwoULsWDBAuTl5cFutyfUB729vWhqasKpU6dw+PBhnDx5UlTyXAjldUw8HsfRo0cRjUZFozRz5ky4XC4hlFjDHpjrNJ5uRVEQDAZRUFAgZjb5uWbLaz7Jwq2trYJsLBZDU1MTurq60NbWhq6uLjDGMH36dFE/8XubBd729nYcPXoUe/fuxZ49e3D06FExQ2ZeeIHXrw6HA5LU56qdahLEDI+/2NTUhOrqahw6dAgffPABysrKcMkll2DJkiWYPn06/H5/gsiTLH7PYAxWv5jTaR6EmjvzAx0/HNJN01iEfyeRSATt7e3CkjQSicDpdCIvL090NHnntqamBm1tbYhGo/B6vcjPz0cwGBTfi1nkAfrEu+bmZhw7dgwnT57EkSNH0NnZiZycHFxwwQWYO3cuQqGQEPV4TKDm5ma0tLSIOKNutxs5OTnCdYiX1dOnT+PUqVPCeszr9YqyJUkSQqGQqBMCgYAQjioqKtDd3Y3c3Fzk5ORAlmXk5eWJTv3SpUsRCoUQCARw4sQJVFRUiDS1tLSgubkZ1dXVUBQFZWVlKC4uhqZpOHHiBOrq6iBJkhDCQqGQiGm6d+9eMaExc+ZMXHDBBaIMl5aWQlVVMfnKGEMwGMTMmTNFGs3vD+gTPHgfB9A7xnl5eQiFQpgzZw4KCwuRkZEhjre2g7xebWlpQUNDA06cOIETJ06gvr4ejDGEQiFMnz4dCxYswKxZs5CTkyNCHDQ3N+PQoUPwer04ePAgqqurRaw+l8uFrKwskcd+v19sM4d44HU1r6ePHj0q6iIAyMjIQFFREWbOnIkZM2agpKQEgUBA1M/WtikSiWDXrl2IxWJwOp2YMmUKpkyZApfLBUB38aqqqkI4HIbT6YSqqmhtbUVdXT2i0ShcLhfi8ThaW1sRi8VQWFiICy64AHa7HSdPnkRDQwOam5uNQaMKQEHiYkrjn97eXuzYsQN/+ctfUFlZKWJ1zpgxAxdccAEAPVbW1VdfjXnz5glLLkmS0NDQgK1bt+LAgQNwOByYO3cuFi1aJCwz+Dvz+XyYNWsWZFlGTU2NsM7lgzh+LNDftflMiMVi2LNnD1atWoUDBw4AAIqKinDppZdi9uzZKCgoQCwWw7Fjx7Bp0ybs3bsX3d3d+PDDD+F2u4WF/Hir888m1n681bo7nfPNgggXhurq6rBr1y68//77OH78eII4xe8lSRIOHz6Mjo4OZGdni+/MPJHJxRW+Sj2/htvtRlZWFvLz8weMe2f+Dvmz8YmMoYgCYxHrGNX8d29vL2pqakT4Bl5GJUlCVlYWZs6ciVmzZiEjI0PkDScSiaChoQEtLS0Jkzf8PUejUbS0tKC6uhrhcFhYu/N7R6NR7Nu3TwiDtbW1wlKOj8W9Xi9yc3ORnZ2dYPnZ2tqKrVu34t1338WOHTvQ0NCA7u5uOJ1O5OTkoKCgAJMnT0ZpaalIe0tLC6qqqlBRUYHq6mp0dHQAgGhnzIuo8TSEQiHMmzcPRUVFQqjz+/3Iz89HIBAQAlRzc7Pox/Pvh+dVNBpFe3u7yKvs7OyEsYSm6fGEN27ciPfff19MHJrbfIfDIURSs2dRuu/eTLLvINlxvH8H9F+IMdU1rYTDYZw+fRpNTU3CDZsLnWZxMBX8G+N5yxfDM/cXufVgIBAQHgw8PbwPbK1X+L6Ghgbs3LlTCLI8HIbX602ITz/QMyZjzIqDVhc7M+YKnQep551V7nLS1taG9vZ2tLS0JMSsMsca5AUpmdscd+/lFgrcJNjj8YhA/E6nM0Ggczqd/axwzIMRs4uyWRw0Cxv8wzULkDzmoMfjEQIhjznI3eN4enneJJuVsn5Yg4l0qfI+GUOdkUomSCaL5ZRKOEy1fzBR2To4NP+fjghovYf1fsnSY90+Eh22ZO8yWYdkPNPe3g4g+bPyGX9ebq2in3mBDwD9LIytbvhmzJaCXJhK1ZnkYoHZqokfI8uysFLgFilz5sxBcXExFEXpJ9xpmoZwOIwTJ05g06ZNWL9+PU6ePIl4PA6n05kQ1iAej6Ourg47duxATk4OiouLxQDeXDeaVznj9RLPC5fLhcLCQixZsgQLFiwQixkAfSu3ccsL7pp16NChhEaSpzsej6OjowMnTpwAAPh8Pvh8PpSUlCRYMMiyLIIV7969G9u3bxdBfiORSELgeGs9L8tyQj1rfg/mRaR42rhQymM38u+ktbVVdPgOHDiASy65BIsXLxadMHNdbH7PyYRIa6fE/C0OxEDlNdm5Q61f+TXHO6qqoqurC1VVVdi2bRsOHz6McDgMn8+HefPmYdGiRUJoP3nypPieuDvQhRdeiJkzZ4pjzO0yt0DmVh579uzB6dOnUVdXB7fbLWI88bLFV+utqanBvn37sH//fpw6dUp00PlM8ty5c0XA7UgkgkOHDmHLli2or68Xk3x8wlKWZRQVFWHatGnIzMzEwoULYbfbcfToUaxevRrNzc2YP38+rrrqKkyaNAl+vx+RSASBQEBYFmZkZIjvm+dZW1sbPvzwQ2zZsgUejwdXXnklMjMzAQD79+/H5s2bIcsyLrvsMlEv8b6NeQU9cxxkAEIQa2trw6lTpxAOhzFp0iTMmjULwWBQWAgn63xbJynME6q8r2OOvcbTwMsGL9utra1oamoS1jVOpxNZWVkoLS1FWVkZCgsLxaBH0/SVGfngprGxES0tLcL6ub29XUwgcwsy3u8zD5B4XdrV1YW6ujocO3ZMiJOSJCE/P1/Egy0tLUUgEEhwM7aW33A4jMrKStTW1iIrKwtz584Vlpd8QkMXPjUUFBQIC+rGRt36wOv1QlXVBIsFbiXNrQ50VyKAMQ3phj0YT0QiEVRVVaG6ulq0c+b+ABe4lyxZAqCvXWeMYf/+/Thy5IgoP7Nnz8by5csRCoUS7mEWtuvr69HZ2SlEB26dyEkmEvK/B6uLze0IYwyHDx/GSy+9hEOHDsHpdGLRokW4+eabMXfuXHg8HvFNzZkzB5deeilef/11/PnPf4YsyyL+lfWa/D4TBes7sO4brigI9H1LbW1tOHjwIPbu3YsTJ06gpaWlX5+fl1M+1kwmHjOmryhbV1eHhoYGIdDYbDZkZWWhoKBALMQ0EPyefJzb0tIixpfjcUxgHauZ69Hu7m7U1NTg0KFD2Lt3Lw4fPozq6mp0dnYC0CegZsyYAYfDgUmTJom+nTkP+MQxd7/k8GP4RCC3+jJbYff29uLIkSPYuHEjduzYgbq6OtF/5Xlts9ng8/kQCoUSrOXa29uxbds2vPPOO6JvwEWdSZMm4aKLLsLChQsxe/ZsFBYWikmjnp4enDhxAjt37sTWrVtx8uRJOBwOlJWVYcGCBViyZElCHdbT04Njx47h9OnTwvKY9xX4QhU8L3nbyD0DzBMdfGxSU1ODhoYGlJaWCutBAKitrcXGjRuxceNGHD16NEFg5HoKD0vCrfrTff/Jvl2rNxcfHzDGEIlEUFdXh+rqatTX14u23W63Izs7G8XFxSLucF1dHaqqqtDW1gabzYZgMIiysjIUFBSIyeC2tjacPn0azc3NQqBzOp1iQpULt6nqG95naGtrSzg/MzMzwYrS4XAgIyMDHo8nwS3cbPxmpaenB4cOHcL27dtRVVWFrq4u2Gw2hEIhTJ48WTzHcBiz4qB5doZjFdr4YJCb1fJYgjwODLd24VaCnZ2dQhTkmW12/bOubMpX6eTB7bkFH7fe4/87nU7xYxUHzWk3uzOZ3fXMMcvMjZB5RWPzoiPcTJ2LH+bVQs0DTL7Nem/rTLZVMBvsvVgZ7LzBhDZz/qQS/6yVg9mq02zZaf7dnD6zhWayn1QLy5gbJn5/8+yD2VrT/GM+xpyeVKLmUDCnMdV75eng3+NwxIXR5vrrr09YXMfn8+HLX/4ygsEgmpubRZBePjPEB658EMddU51OJzo6OtDa2powQcAFM7fbjUAggGAwiGAwCLfbLQZZqTpU5u+Wd764GMj3mxtX83fB4Y2PWSQMBAK44IILIEn6LGFXVxdOnz4tGj8AwtJZdz2rRXV1Ndra2oRIwNPEY62a6wKrdRwPzD958mTk5eUlfOPm5+vu7kZlZSU2b96MDRs2CAEGgBARAL2xOnnyJI4ePSrcBbkrDO9gHDt2DBs2bBCdGx4vit/PXGb4ymzcuic7OxuZmZnw+Xyik8Prz66uLjQ2NqKpqUmsNMpdtHnZ4NeMx+OiE15bW4uqqipcccUVmDdvHnw+nxBDkjX2qToB1vrDLHTwY81tWqq61NwZsg7wrCKiuf0aLI3jrQ4wt/Xd3d1oaGjAyZMn0dbWJsQxXgdwEbG+vh7Hjx8X772srAzRaLRfnCcAwhqrsrJSxJThqxUWFxdj5syZYlABQFhqHTx4EJs2bcL+/fvR1dWVYK17+vTphEWJXC6XcDk7ffq0iKEHQCyEVltbi/b2dmRmZorOczgcRnV1NWpqapCfn494PI7s7GxkZ2eLMsxFOj4jzcUQ3mlvamrCiRMn4PV6MW/ePDE4bWpqEguCzJkzB5mZmaL/Yf6OzH0Qnn+8rHELhkgkguLiYjHQ4GWMXyvZxA7v//CQAk1NTQku4hwuGnLhkHeS+USwtQ7nwiu/jrkfl5GRAb/fD6/Xm9BfMne8ef5Y3TF5uru6ulBTUyNiPNXV1UHTNLF4zLRp01BWViYWOLF+xwBEG9HS0iKsK2bOnIny8nKxYAD/LvV8saO0tBTd3d04ebIKzc3N6OzsRH5+vlix0ufzoaenB9XV1aKt83q9YsXk8SYIDAXe/zVb+U2aNCkhz/k3xf+PxWIitBC37AkGg/B4PAn9DWs/kOc9L2fW+G+pJnvMxwwEvwZ3lT5+/DgURcGCBQvwxS9+USxWY63zCwoK8PGPfxw9PT1ob2/HRz/6UQSDwX7pmYgkEwX59qHmiXVsxRgTood5xWjev+ACvcPhgNfrxcKFC7Fw4ULhEs77OIzpLuR8tXWz5ZnH40lqdTZQnxTQLY8bGxvFolXnA7zObm1tRUVFhYg5axa/uLAFQHgU8DaBX4MTjUbR2NgoXIqT5Ws8HheibVNTE4qLi0VbVFlZKfqxVVVV6O7uFn18/p3ZbDb4/X5kZ2eLurirqwu7d+/Gu+++i61bt6Kurk6kd9q0abjqqqtwxRVXYPr06QkCHB8DzZs3TyymdfLkSXi9XkybNg0zZsxARkZGQt13+vRprFmzBnv37hVW9jk5Obj00kuFmzOgxxTkApY51Ib5W+/u7kZ9fb1wseaxMJubm7FlyxZs3LgRBw8eRFtbW0Je8m/Z7XYLC/10Fsgwt5npfBt8EnnPnj04cOAAKisrhSEDb9f9fj9KS0sxd+5c5OTkoLKyEnv27BFeBJMmTcI111yDYDAo3nN9fT1Onz4txin8nRYVFQlr3oH69DyOOnc3lyTd1Tw3NzdB+JUkSSyOxyd3uOUjN5ww1+nxeBynTp3Ctm3bsHfvXrS1tQkBdO7cuViyZAmKioqGXfePWXHQLJQl255MYDP/cOGQdyS5QMhXHjbH7OPXNSvd5pltbgLq9XpFJ9Pj8YgXyS34eKfUbL5qHcyZn8H8LFbBDuhrwMwddPP1U7kv8wGVOQYTtwQy/26O5WVeec+czuGQTABLda1UxyQTB82CFxdH+cDBbClmFmP4M/FvwvzD3TX57+bvySoSmoU+q8WD2cKTx3bi25LFdEv1/ANh/XbM75c/j/l3Xhlz0+LxJgwAwOuvvw6fzwdN01fla2xsxG9/+1thUcPLs/V7lWUZzc3N2L9/PxYtWoTp06ejoaEB1dXVaGlpQTgcFvFFeMfN5/MJF4R58+Zh5syZKCoqErM6ycoxt9CwWgCaRRzesHLrNXPwWqu1sNl6ma+qeezYMTQ1NSWUVwDChZiv6muOl8IYSyjr5rSZBxY8TXyygdcp5vqHW95kZmYiIyMDNpsNbW1taGtrE0FzuRBi7kTU1dWhpqYGU6dORVZWFgCIoLnr168XAbc7OzuhaVqCmM7T6PP5UFpailmzZmHGjBli4M3rWnMDanb7C4fDOHnyJPbv34+DBw/i2LFjIr6YJEkJMV67u7tRUVGRYHE4b948Mbjqs8BJXNGSl2WrlSEve9yCyizW83dj/T54WwYg4R1Yv49UoqD5usmwDlzHG+Z20pyn5n3mY63nWj0Q+DZedpxOJ8LhsCgzXDDgAz6e/3ziIRwOi040n+1lTHcxi8ViwmuBuw2brX25mGGeGOCLoUiShPb2doRCoX51Df9WuCU0D4/C7xWLxYRng3URJp5HZsHfnC/J2mBr/4SLcPxYPsmiKIqoF8yWydZ2zVo3apomLCd58HY+IQP0TdZy0c/r9SadcDVP0JnvZf6xThommzw0T05Y+20AhIgYiURETGteb/GVkDMyMhJWRLdiroN5uAb+rfE4Q7ys8r4JFwh4ms2W4HzFSn0l44iwfuDvRa8nXZBlBcDwBghjGS7SBQIBRCIRhEIhhEKhftaayd6FOeY3F5DN+Z+sTolEItA0TfT5OPycMxHgzPfjFq2qqorwCXwAaW1L+HfqcDiEYGxeNOlM0zXesT5/OkJDMlK1oU6nE4FAAFlZWQiFQmKyiteHPDYldxXl9Zi5LuYTAnyVdf4d8r4bX6wpVZ3Kr2MmFouJxbasE4fjEZ5P4XAYW7Zswbp163DgwAEh7HEByFx2PR6PsBJLtmI7FwebmppEfQ709e/4PXt6elBfX4/a2lpMnToVPp8PNTU12LBhAzZu3Ci8e7gVt/mbczgcyMzMFAteaZqGqqoqbN68GXv27BGCndfrRVFRES6//HJcd911mDx5ckIdYy7PsiwjNzcXS5Yswfz580W7z/uNvE7o6urCiRMnsG/fPuzZswctLS1CJOXtB08nt47kVnbmtpXnaywWQ0tLC06fPo329nZkZGSgu7sbO3fuxLp163Do0CF0dHQktK/mvkdGRgays7Ph9XqH9T2a63Nz/c4nPPfs2YPNmzdj165dqKmpQTgcTuhDS5IkxiWnTp1CZmam8IoKh8Pw+/0IBAJifMAYS7CW5CGVuNVfYWEhsrOzUy72xfOspqYGdXV1YqzDxcWSkhIRz5Y/F+9L8PEdH8/zEHjm76CtrQ27du3C3r170djYCFVVRYiXpUuXYu7cuQmhL4Y6ITJmxcFkM2/8f7OIZrb8Mv+YC7pZYOMvku83Dxx4x9Y8oLPb7SKWofmevABx1yS++iEXhszxB60Wbsl+rM9oFiCsxyWzaDLniXnhEj6I4NaVPIAxX4jFLJZZ8848QDiT92e+hrXDlkxITJY3ZqHW7FLNLTr5Nm69aV6tjYtmPA94nnB3c/7DLQjMIox5cM7znb9jLhpzdyyzhSnv8JvFQ7Ogay7kA2HON/MCFvyb4+K3eREePjjIzs5GYWGhGNiON3gMKI7H48F9992HCy+8EG+//TYOHjyIlpYWYTlgFs6CwSC8Xi92796NN998E0D/QaC1jpBlGR9++CHy8/MxefJkTJkyRQSV5x01oM965tJLLxWxyMwxEM0DUH4PLjbwwb21PHCLG7PVDb8un20y1138e+D35eeY6wjzN8OxWlDxMsW/TzNWwZOb3efn5yM7OxtNTU0J1zaXbS6g8HTzGFpbt24VAfMjkYg43pwffPZr8eLFuOSSSzBjxgwUFhaKQTIXSfh3zfPOXIeUl5djwYIFOHXqFDZs2IC1a9eiqqoqYRbdPCnT0NCAzZs3i3pk+vTp/z97Zx4fZ1Xv/89MMjOZLJNJJvu+L033tHSjrKVluWzihorAzwviBRVQvBc3Fu8VRBEUEVSUiigiIoqAVZZu0NKW7mvapNn3dbJvM+f3x/R7ep4nz0wmbdom5vvmFZrMPMt5znPWz/me7xeRkZHyHdK7VfNZPxCk/KTvyL8LlU/Vh5k6ydOLFSpG/YP6bij9lM9G7bWRWDNd0D+/3g2HOuihv9V6ob47gt5NZ2cnjh07hpqaGml1QxFKk5OTpd84VbBpbGzEoUOHcPz4cYyOjiI3NxeFhYUwm804fvw4jh49ipqaGrllJCMjQ1NHbTabnLD09vbiyJEj0odQVFQUKioqEB8fP2Y8QwNsi8Ui03HkyBEcP34cZWVl6OvrQ3JyMvLy8pCQkCAFJKP+nH7Xj3XUvljNT7VdAnwWj+TzyOl0Ii8vT5NP/sqaWi5pu5PdbkdLS4v0s0P3py2ytD0mMzMTUVFRmgUP9f3rF071Ywf9+EldoNH/6Ns9j8cjfYtRxMGmpiYIIRATE4OcnBwUFBRorAaNJvJ0/f7+ftTU1KChoQF2ux15eXlISUmRlkHDw8Noa2uD2+2WEaN7e3tRXn5cWsN7PB6Eh4dLn1S7d+/Gzp07AfgsFTIzM1FQUHBie3UIhACEmJ5tgD/Cw8Mxa9YsLFmyBNXV1SgqKsLKlSs1lhhGkDUG7RwigV8v2KgIIaQPR1ooM2qz/ZX/YNvf4eFhVFdXY+/evRgeHkZ+fj6uuOIKJCUlyesYLQxFR0fjoosuwsjIiKYuqn3ydO0DTge1LQPGiminkycmky/YQ05OjrROpoji9E7S0tKku4CCggIkJSWNWcgAfIJwa2srurq6NIYa5K86NjbW0BjE3zP09fWhvr4enZ2dp/x8UwW1TjU1NWHnzp3YvXu3jBpLY1iav9H4MDo6WvrRNfIJp/obpEVuCgJit9tlgBPyqU0uDMLCwrBjxw5s2rQJFRUVGBgYgN1ul2IOCcR0LVq0CA8PR3d3N44ePYrDhw/LrcQhISGIiYlBSUkJFi9ejMzMTOn/2998GTjpuofyiL6n33t6emSAHPJ1Rwv9FNyGxkJtbW1yN5a6YEKGJf39/fB4PHLhvbKyEh6PBxUVFXj33Xexe/duKT5GRkbKIIsktJEf38TEREOhNhj86UEtLS3YsmUL3n33Xezfv18TgIoWjyioG835KysrUV1dLRf8KG9cLpec05GVKu3MIndUNptNzoPIfYm+nNLv5H6F3CYBkO8gPT0d8fHxmnlXeHi49GerWiDTfJ/GJ4ODgzh06BB27NiB48ePo6+vT24vJzdJFJROzbuJaDlTVhz0J0qpk2SadFGoZhKFSJAzEpnUf/XWH/TyaUJIK/qk3FJwELI2oEZEFavIekwNWKKmjSa19BlNHvUCov5ffeeuH8DrhUsyRaWt1r29vejq6pJWRvQZVQ7y16JaVPoTB40aKqPO1+j7QNdQn4veM+WBKgrS9qHIyEiNmKdO2gFI6x2KFqlGrybxgvKBGg1asddPPtX3Q2mh6IaUHqfTieHhYY1jdZpc0bOoE6Dx0IvfZDVAkW3peWi7bE9Pj3zH5GeDtrFNx4GhKnzQj8PhkCbfqhWpWnZp+6rb7YbX60VSUpKcsNHEUt2ODJy0pBscHER5eTkqKirkSldOTg5SU1PHDDDeeOMNdHV14ciRI6itrUV/f/+YTprM2Tds2ID4+HjMnz8/4Oo1Pefg4KAMrjAyMiLbCkK1MiRrZtVPBYnhtKhBdUEtB6p1NLV5at3x/a7WW60PQLImIuFEbY+orFKdcbvd2L9/P/bs2YO6ujqNTxL1XQshkJOTgwsuuAAXXHCBjBJrZLpPYhs9myoCqQEPXC4XMjLS8a9//Qv79u3XbCGhaw4NDaGlpQV79+6Vk7+cnBwMDw+jpqYGzc3N8l2q29TCw8Ol/ymyEFB9tqntHOUVWbyq16GoujT4oOfTTyTUfKK8pbYBgGZRRF8GT2WR51yjin9G6PtEOkffD+nfB21Dp36DFshMJtOYXQV0DkUFra2tRW9vLxISEjBnzhwsW7YMFosFTqdTWijTluCYmBj5DCEhIYiLi8Ps2bMxb948aR1EW+A9Hg8aGhrk9hV/E/yRkRHU1tbKrYednZ2wWCxSjIyOjh4TsY7yRRXG1LKp77/1+aUe197eLoO2zJ8/H1lZWTLit3qcv/fg9XrlxMxisaCjo0NaaBJkaZCSkiJX6lXRR299ox8/6dOh9uEq6vhKL5JSX0JpPX78uEZMjouLQ05ODoqLi5Gbm4v4+HjY7fYxIin9Tn0ORVtub29HVlaWDIhExw4MDKC1tRX9/f2Ij49DUlLSiQiRdnR0dKC1tRUjIyNyWzFZOdNkGfBtUUtISNC8l383zGYzMjMzcc0116Czs1M6u9e3dfp6MDo6it7eXrnrwGKxjNlSTKjjamovaHu6eox6r9Ohv78fhw8fRmNjI8LDw1FaWors7GyNb0mjcXVoaCiSkpIM0zJThUHAeEFN//t45/s7lsZVDocDOTk5iI+Px4IFC2QgBovFIq2RzGaztIw2ut7Q0BBaW1ul5RWNaci3Gflz9YfahgM+4Yu2wfuzZJ4uqOM9svQTQiAxMRGxsbEIDQ2VEYVpDEgLS6prBX396e7uRnNzM9xut1yAj4iIkKINuc6gOdaxY8ek9d+OHTtQXl6OoaEhKbZ5vV7ZNtOYnaJM0+4ZcjFCUX+FELBarYiPj0dhYSFyc3MNhcHh4WE0NzdLlyVGbZzqSgLwWQOSQEwWqRSkLSkpSfan3d3daGxs1AhY5OsyNTUVXq9XBoPr6+tDdXU1duzYgYqKCpSXl2PHjh3o6OhAZGSktJDs6OhAY2OjFLpJeEtMTAza3yBgLICr75G2NK9fvx67d++WPoAjIiKQlpYm++bY2FgMDw+jqqoKBw8exPHjx+WYS90BQEKu1WqV7j+amprQ3d09RvClII76/p7SazKZ0NnZiZoanzsQ0pfIVYBqEU7nREZGSjFTHe+T6Exjkvr6euzYsQOHDh1CR0eHrA/z58/H4sWLpV97o7ISLFNWHASMO1q1EaQBH23ppBU11XGjagWm+gNTLQf122vUCQRZaVFYerIEM9pSShaDqjioD1hCoiB9Rp/TufQvPZe6nVgVDPWdniqOkOUEDUbV7TC0xZr8Mfb390srQiOrDKMBvjr5VDGaYNDfRtacRqKt+qyqsEoVmExwyYqC8k/NT3WCDJy09KK8oB81T0g0pbxQnfjSeyGrBNXKUhVY1G3KJFrSpJ+upQoi6vOreae+T3U7OKWP/OdRp9Xa2irFzra2NnR1dcFut8Pj8SApKUk6Y52OqOWE8khdSdE7aaXVFsAXqTAlJQVZWVlISkqSDvnJhL6mpkY6kaY8p07MbDYjMjIS2dnZ+I//+A9cfvnlmhUvIQR27NiB3/zmN3JLIokLRtvfQkNDcfDgQTzyyCOyrdLXYRI7TSYT6urqcOjQITm4o3pAdYmiXKanp6O0tBRZWVmwWCxSMKOVO1ptUuuEKozRoJXKx9jFCJ9A6CvD4oSPviZ0dnae8AU3ALPZJDt8akeioqKkyT35RisrK0NVVRX6+vrkiiKlh/IoPDwcCxYswFVXXYX8/HwpAtNx6hZu9bmobaGBMOWv1WpFbm4u4uJcGBwcgNvdhbKyY/B4vLBaLdKdANVVsgyjiKMDAwM4cOAANm7ciObmZnkPGijQdpDS0lIsXrxYs61N77eQLL727duHw4cPSwsg6g8oQExJSQmysrLkpF+doKgCS2trq2arPD0vtVVCCMTGxiI3N1djgTtdUAdc/vpoI9Q6qK9j6mSattXb7Xa5ADg8PIz+/n7U19ejpqZGWqwCkFvWKa+dTidSU1ORmpoKm82G1tZWxMbGyoG/2+3WBO6hrZ7kL5EmDlFRUbIs9Pb2ShFCFav0kwUapIaHh8sFTFoAVFf/9RarADSLaUaDWiOBgT4bHh5GY2MjamtrpTVMQkKCRrzQ57kK9Zc2mw0ul0taFNBKOb1ran/j4+PlhIMWCFSBXK0P6hhDP0ZRzzF6Ln0ZoWuSo/by8nIcPnwYx48fR1dXl9zumZeXh7y8PGmJ4U9QHRkZkYuy1dXVKC8vh8lkkgFU1LaCHJh3d3cjMzNd+s6yWq1oa2tHU1OTXIhqbm5GW1sbzGaztJChaNVNTU3Izc2V27imo0CgH3/qsVgsSE9PR3p6uqat0PfB6rhraGhI1k0aU6oCgnq+eg7VS/JP6PV6pfUJbS2lflC/WB3oGdT34na7cfToUYyMjCA7OxtLliwZ4y9NX77UvNKLX0blfDLLgb/Je7D4q4fq9+Ndb7y+gPzRkvUTzS3IoCPQYq3R9Y2emQxFKBjEeO9K/VsInyVQd3e3XGSl+Q4tUEdFRQU9yRfCtwBJczzV3cypiARTBRqfZ2dnS991LpcLra2t+Oijj2TfCUAGqYqPjzf0Nzg4OIjm5mZpVUfiWWRkJLKyspCdnS39GJLhxaFDh+S4t6amBj09PXA6nTIScEtLi7T8NJlM0sIsJSVF+vXt6OiQ23epz7JarYiLi5NujPRlZ2BgAIcOHcK2bdtQXV0tBTyC+gZaVC8oKIAQAq2trRrf7DRejY+Pl9ZxQggpkqoWlDabDampqSguLpZzWYrZUF9fj61bt57oj9rQ1NQEm82G/Px85OXlyfkqpc1s9rm4crlcSEhICMrfIGFU99R8KSsrwwcffCC3TZMwmJubi/PPP1/6bqT5cHV1NRITEyGELygVGQLZbDYZwTk+Ph5ms1ku5FEgEmpP6VlIsPe3AEEBgagvpz6IBFrVopXOI3d15BpGCKFxaULj1L179+Lw4cOor6/H6OgoHA4HCgsLcd5550mBmfLvVOv8lBUH/TXIAMYIZfpBrmpRQpPf3t5e2O126QScGgQSX9TBI1Vao8aUJn0k9KkTUb1YSRM+msDS32QBpxcQ1a2xtGVVFQ9VH3b6lXJVNFS32KgWivQ5Wb6plpIkeqlb1ICT0XLUbXVG23DUvNL/a3Qe5aW69Zreu+rnkfKG/D2Ssk6OuCn0N1lyqpY7ZDVIz0HPQhVN3VKsCoJ6C0oSAtWtl5Tv9H5UYZDKjr78GpUn9W81jSQAkcBDUbg7OzvR3t6O9vZ29PT0SFGQInV3dnZKfxDd3d3yuQKtOk5lVOtedbu8uvWCBlKAr/yEhYUhPT0dixYtwuLFi1FUVASXyyUDAZBPn6NHj+LNN9/Eli1bpM8G1Qqtu7sbNTU12LVrF1JTUzF//ny5AggAK1asQFxcHF5++WVs3LgRbW1tsizTtajzv+CCC5CUlCQd9qqR0E0mk5w8qj496PnVSOTAyci85HOwvb0dZWVl+PjHPw6n0ymFN2oP1IkCCWk0edGLjqpID1B5FSdW3aqxceNGfPTRdjQ2NpzIpxEIofVVGBoaiqysLBQWFsJut8PtdqOmpkZGJVatogja3pWfn4/S0lK5tQIYO7FR70Pfq6KgaqlL7yEqKgrz5s1DTU0N6urq0d7eDpPJ92w2m89qaXh4RPogqa2txaxZs6Sl6vDwsAx0Qc9KZdDpdKKvrw/x8fHSx5AqYlCe1tbW4q233sKmTZtw+PDhMX5uQkNDkZmZiQsvvBCrV69GaWmpHEjRO6Pnd7vd2L59O9atWye3FVB/BEBaLSxfvhyJiYlwOp3yXtMF/WRItQyl/FUt/fV5pPYv+raXrPhoG+7AwAAqKirQ0dFxIvhDNfbv34+UlBQ4HA65zUi1slcXC6m/Issxta3SC5tU58glhVp2SahWn5HqJR0TFhaG3Nxc2Gw2zJo1C4cOHZI+PPfv34/U1FTY7XZZ71WrYaofRpZ2ah+l76/omP7+fhm4JTk5Gfn5+VJ8Ut8JoZ/8U59qt9tRVFQEp9OJkpISuVqvChokppKPZ8o7vQBHZUW1JFQtzukz9Ry9UGgymQGYYRKASQCeEV9Ap67OTikMlpWVobW1FaGhoUhJSUFRURGKioqkgKxa6KhCkxBCWiY3NTXh6NGjMkpxcXExXC6Xpm2nRT7fguAAKioqTywM+sattbW16OjoQFhYmNziHhcXh5UrVyI8PBybN29GXV0ddu7cidzcXGlpP93Ri18ej0eOgQBorLT0AqHab5AQQ9ZCYWFhGj9Y6piDfqeJscnk270QEhKCyspKbN68GV1dXcjJycHixYuRnJxsuDhBVorU59PuBuqb6N5kWRQeHo45c+YgOzs7oE8rejb1GQNNqM8WNKklX6qq4KUG7lDzWnXrYzL5rGjUIBxC+KxqVaf+tBDmj/7+frmYUV9fL32z2u12xMfHIzExUeMvVC0z+nzT57fan6oLCvrxltqPGV2TrNg7OztlkDea58XExCA2Nla2f/7eJV3ft2DbL+cKAwMD03ZhQI/FYkFRURESExNhsVgQHR2N4eFhbNu2DYcOHZJ5HxYWJiMEx8TEaMaJNFbs7e1FVVWVjG5sMpmk9X9ubi4KCgoQEhKC48ePS4u6uro6aZ0ohM+lxKxZs7BgwQLYbDaNXzrA528wISEBqampiIiIkDv5SASmd0m+Y6OiojRlmb7v7e3FgQMHsGXLFhw9elQu+KvjW4fDAY/Hg3nz5skFpvr6epkmej6HwyF31NA8pa2tTfrdUwUsCso2MDAgg8F5vV50dHRIC9fR0VEpDC5evBgZGRk4fvy43I5N700vfhoJ7MFC+dLS0oIdO3bgwIEDaGlpwfDwsPQzuWzZMlx55ZXIz8/X7PjKzs5GT08Pjh8/juPHj6Onp0e6MFEDhJDA3tHRobEyp3EbzScDLc7QvIesSUnEJUtT1V8hnUd1nlxQ0TumgLoUzXznzp04duwYBgcH5S6nZcuWYd68eXKeq2ei7cCUFQf16Ds+GvSqIiAJbbQSSFu9yFrO7Xajt7dXrgSQ9RGJQ2phJgskmgxQwaAKpW6Lo05AP7gAMCZ4hppWEsGMRENq4EgQIwFMfUa6rupTR50Q0IRFnTBTI6WKYupWWnVrpiqQqp2bKrDRearoR2awqgUdNdwUwVHdAqla/ajbh+nZaR++KghGRUXJQV14eLjMR5oIqhMyvQhJnTiJLGr61A5dLxbrKxf9bTQY009G9ceq36t5ruYtdST0L1kIdXV1yd9pazhdSy1LJJQaTaamA5T3avppgk4DTb2jZiEEwsPDkZ+fj0suuQQLFy6UAQMIKl/h4eHSmuPDDz+UnShwsg6r0XfJmouOoShmZLYPQCPEqpbMe/bsQW5uLoqKihAWFibFPVq9o8idra2tCA8PR2dnpywD6vZnIXwm+vHx8cjLy0NRURFCQ0PR2dmJn/70p1KU6OzsRFlZmfQLSPVCFQjCwsJk9NXBwUEpxlF98VmujqCvrxf19fXYv/8A9u/fh8bGRml1YbeHSWHNZDoZRKSkpASZmZmIiIhAW1sbmpubZXRgq9WqsbqlNNntdpSUlKC4uFgjiunbfH0ZoUmXKlBoFyZ8z5+Wlob8/HzExDjR0dEOj2f0RJtggtcrpEjrdrvR2NiIzs5OJCQkoKioCLNmzUJ1dbXGvyO1hUIIaYmanZ0thTg1TUNDQzh69Cg2b96M8vJy6TNMfQZaWS4rK5PR55xOp7wO5VVfXx+OHTuG7du3Y9euXWhra5MLPfQMVqsV559/PrKysqRQpF+YmOqoA0j9llB/i1RqG6v2YYS6gBcVFYXMzEwUFxfD4/HAbrejrq5O+pg5duwYcnJykJKSIlebtYKS8RY/9V76gbC+nKoivl6oUwU8smIDIB1PR0dHS198DQ0NOHz4MGpra9HU1CR9lKkihbqQp6ZZDVqktxxW0+nxeNDY2IiKigqMjIwgPT1d+sqj+hzIukWtx7RdLj4+Hrm5uUhNTR2z/YuOJTGFtuLrRU36Tg0qprZ16nhGH3Ts5HvSbi8eGR1Fd0836urqcaSsDMeOHZNbtePi4lBQUICioiK5jVv1M6h//sHBQemzqqqqCseOHZORtLOysuQWVSGE9DdI1gp1dXXYvHkzRkdH0dbWJrc4t7W1ITw8HLW1tejr60NWVhbmzp0Lu92O6upqVFVVoba2VrYNtAD07wC9p87OTrz33nv44IMPYLVasWzZMqxatUrjD1BflkiEIgt3Gi9QoAi1vqr9uGrtHhkZiaamJuzatQsffPABRkdHsWfPHnR1deHKK69EQkKCpuyZTCYcOXJEbkF0uVxob2/H5s2bkZycjIsuukhOSGkXCAnH/qxs6LnUMZI+j9Tf9W3jZL4Lo88omuuuXbtk9F2v14uYmBgZAT4pKUlatHd3d8sIo7Rlv7S0VEYD9Xq9aGtrw/79+1FXVwcASE9Px+zZs5GQkADg5FiB7t/T0yOt/o8dOyYn6NS2RkREIDExUfoMzc7OlhZV+rbYaOxvNps1oh4tBtHxZBEWFxcn5z5G+UW7gvr6+qSvWJqruVwuTdsSSBikPOjp6YHb7ZbzM6vVOmaxZLqgfwfU79HnNKen3TuAr88LDw/XWHfR51QOe3p6UFtbi5aWFmndT31SamoqMjMzMTAwAKfTCZvNJl30DAwMwGw2w+l0oqCgACtWrEBeXp7cpkpzE/J5SBZiwMnxiNoPUb1V56D6Z6f6HRUVJRcyySp0eHhYuhYiq7OQkBBpDUhuiWhRkfpcald6e3ul9Tm5IKKAGWlpacjNzUV3dzfKysqkcZUa9NJmsyE5ORnnnXceFi9ejNHRUezbtw/9/f2a9jIxMVEjvJ1ueRgaGkJ9fT0qKys14lt4eDjy8vKkUKl3BUV6DJUpGk84nU6kpaUhOTlZzslIGyI3AdQmkAajLrjp+xnaBk4Rk6lskghp5G+Q2pSYmBjpo5J8HVK/f+jQIVRUVMjtxFarFWlpaVi6dCmWLVs2xnL5dJiy4qDRwNvob3Uwq27vpQAADodDimHkX47EQdpCSqtRashoMo2lRl6/SkQ/eqfn6gBZCCEj4epX6tW/ScCh7TYUfSgqKgrh4eHSrx1FniVLBhI41O20wMmtdeTjkJyEkgWMGtCCnlUV9uiZ1O2z9Dv5MlMDYFDe6a+nWmKp6COoUhrVyIQ2mw1RUVEyIjR1CvT84eHhUgRTt1/rJ+3q+6JyRXmt+qjUD+zpvVCjTdYcqpWqWkbV840mrXSMOklTJyxU7kgQom1pHR0dcLvd8ofEXLIoNJlMMr9sNpucYNBqAllkjLd1Yiqido6qOEiCNB1DA3HgpDhKFl+qyKSWB6qHGRkZyM7OxoEDBzQTBvXePT09aGtrQ29vL0ZHR6W4pVqX6jt2NW0A0NHRga6uLuzevdtQJKYyqw4SzGaz7OxJ3LPb7cjIyMDSpUuxcuVKzJ49G2FhYRgcHMTf/vY3VFdXS/Gjrq4ONptNCkeUJirDzc3NePfdd7Fr1y6N5YteUBgY8K2gDQ8Pw2Kxwmw2QQhgZGQUoaEWmEwCo6PD0k/JrFmzUFxcLLfY0lZNGviqnTLdx2TymesnJCTI89Qy4E+EUT+n51Y/o+v4tu9aERXlQHS0E2Fh4RgZGQZggsdzcuGC2mwaFJhMJiQmJqKgoEBuBSaLD8orWk1taGjQTCJJ0BscHMTx48exf/9+GYhFLV/qZIImiNXV1WhqapLtnFp2u7u7pSVTf3+/bP9VnybJycm49NJLcf7558uI30ZOuacLqjgKnBS1aHFHXWAxspA0KkeqT6Dw8HDpzN9sNqOnp0duMc/MzJQ+PWnBBYBm8Yss71ULIf2ijL5fIF+R1JYAY7f103sfHBzUOLZOTExERkaGHOxHRUVBCCF90arWh0Z9kSpcBLKWoc+E8G19q6qqQlVVFWw2G7Kzs6VPRfVe+rTr853Q+41VXQjQOZSXlDe0HZAWSEkIoG10FEWZFgqBk5NvGvPR+OTkuOPkQhrMJox6Pejt60VDYyOOHjuKivJyaZlAAVJmzZqFzMxMzdYitd5TftBCcmNjI44ePYrjx4+joaFBTmISEhLkgrPJZJKWTm63W7YtPT09sryaTCZ0dHSgubkZsbGxcqsk+R+k7Y1ktaVfxJ7O6IUCagd37dqFuLg4FBYWauq+/l3QvzQfoPE9jTONyj3gqyu0WEdlavfu3fjoo4/Q2toKAHKBMTc3FwkJCRqBsb+/H2+++Sbq6uqwYMECZGRkYO/evdi1axeuvfZaWY4HBgbQ1taGoaEhREZGjpncqnVTHVOqfxsdF2geNRkYpYUipW7cuFHuggCAzMxMmM1m6UePtsx3dXVh7969+Oijj9Df34/CwkJkZ2fLgHDkj5X8bAHAokWLkJmZKcVBtd0hy/qNGzfK7aDqQqTX69upQFaFlZWVmDt3LubNm4e0tLQxlnr6f+kajY2N2L17N2pqauQY0WTyLX5QRFlanFYjyhJer1cz5lcFLqfTiYSEhIABHPTtLLU3brdbzmsn4uNtqqHOx/TlDIB0+0DjU5r3kuUgLTipjIyMoLW1Vbr/oHdJvuBSU1ORnp4Ot9stxVlKi9ns23qcl5eH5cuXY/HixTCbzdi3b5/GZx+5zUhPT4fT6ZT3pnkn9XU0X+vu7kZrayuGh4c1fugAIDo6GosWLUJ8fLz0eXzw4EG5yETWxwkJCXJhmvoI2mZtNpvltndyA+L1etHV1YW6ujppqQ5Aulai7dW0SE5uM+gd2O12JCYmYtGiRVixYgVSU1Nx5MgRucBB91XFQX2U92DLgP5Y8qmpboUmwT8uLg6xsbGae5G419/fj+bmZnR2dmp2gERFRSEtLQ2JiYnyvdD4TG8sRWnSjzPVtqGzsxNHjhxBWVkZOjo65HjD6XQiOzsbeXl5Y94zPQO9S4fDgaamJtmXV1RUSAvOqqoquUC7YMECrFy5UsYYmCym7GxBXbEOhH4gTYIPWedERERoAnSogTpotYZCoavHqGKXupVRnZDQj1po9BNrvRCkFip1FYsGyepWY9omSwIhWdORBR1Z0ZFISEIZ5QEAeS1V9NOLmqpFgZpmNR/INyGZt5JlGg1+SGlX/R0CGCMCqPlAFp6qZSQFV6CQ3vQ7PS8NfuneqmWcKnzoRUlVwKGJpj9rQr1VAX1PjboaXEZ/HaNJoXp/QOsDkcqcKlzT1mC32y2DpqhioOonh4Ki0A8JgREREUhOTpYWGWqU1umC+j6pflPZUt+PfiBMAqG6Uqivn6pYQJNEKjOqMEWrQ2pEb31dUcsZXZ/qlboYQJ2NOiFXHeLStaic0cSXVv3S0tIwd+5cLFy4EPPmzUNycrJcuLDZbPjkJz8JwBetcufOnXJVkPwTqoIVTZKGh4fR0tKisVDSC5f03cjIKDo6OmXeqAs0ZBl97NgxdHd3o7i4GMXFxRgYGEB9fb20hFE7V8pLWkSghR312vryYDTZUb83Op7wLYgMw2wOOSFaAqOjHo3FCLUpwMnVXJvNhpSUFOTm5koB0GQyadwwUF63t7cjIyNDDkppAHb48GEZ4Y3OITFSLXNk8VBXV4eamhrp9JjKz+DgIJqamlBdXS1XvVXLkZCQECQmJqK0tBSzZ8+Gy+UyHFRPF9Qyqy7k0IKNug1NrZdGz2z0/NTvkpXG4OCg3NJBESSp7NKx6pZ11bcs9ZVUZ1T3H4TabqiWJqoApm6PVfvMrq4uVFZWyq3tqnNvozqr5hWlk+qbmh61TvrLfxLNaUsRbfdV+1l6ZqN8Vu+hv5/6zvRttbp4Qp/RQph+EE8LljQOUZ+dBCHa9kW+Pk8KkyfHEXROb2+v3J5HwhCNS8hpuDq2Uces1JaSaxAKFkYuQGjxkxYE6Dw6fnBwUE5aSPgV4uS2yr6+PhmpUl3YpX/pOYwmMdMZtYzSohO5TlHLaqAySOWB6gmJ/oEgEZ/KHO0YoPsNDQ2hra1NEx2W0jAyMoLy8nIcPHhQbiEuKyuTAWSovlOZIxc25A+Pnke/EKbeg56Pnknf/p2ptt+ozaD8oAWzjo4OAL6+yel0ynemtkM02W9oaJDBntQxqxACvb29MuCT2WyWghChPistZJSXl6Orq0vThlBe0qIC9fOxsbHIzMyUgiQdq9ZPfX7SNv+ysjLU19dLITQ8PBxZWVnIy8vTzPuM5gY0D1AXuABo2lgj9Gkzup4qNqp5MN1QjQHoX6/XC7fbLcUo1ZiH/A2qAgw9Oy3A6K3lyBdwQkKC9PVIvoHb2toAABEREcjJycHKlStxwQUXIC0tDZWVlWhpaZHWiyaTz3dcfHw80tLSpHUsbeulXW9ms1m2Yc3NzThy5AiKi4ulr20iLCwMeXl5iIuLQ3l5OXp7ezX9LG2HJrc21E9TABEqd+TDl3zd0Zbiuro6dHR0jPFLmJycDJfLhdDQUCQnJyM6Olozn0hMTMTChQtxySWXYO7cuXInVUtLiyawCUWNTkhImJB4pb5rfbmlPl+1BjZaAFP7A9r5cOTIETQ0NMg0kmhKLmT091Pn9OQXurW1FZ2dnTIgjloX29vbsWvXLmzZsgXHjh1Df3+/bPsKCwtRWlqKjIyMMWWZ0k9bv2NiYmCxWDA8PIz29na5KELCf3R0tPQzqJaZyWrrp7w4CPh/WH8DfxqwkuN/I+s3NTCFavFGAzP6UYOSkFBIhZImA6qQSPdSJ77qVhaqqPpVfHVwSZOewcFBOXgh5+MOhwMDAwNyhZwE0OHhYdnohIWFjRG+KE/9/UudEj0DiVY0waA8A076PFODnaj+QvT+Gqni0LPQHn8SNdXtw2TxpW4fJitJu92uiQCtVlq1cqrCAw3U1WPpe/0xtJqitwrTT2zUCZvaoes7XzVd6vdUnkiYJkGQIuy2t7ejs7NTWoHQoJQEGPK/SFaULpdLWsna7XYptNCKuM1m0wzEpiuqOKi3HFQnQ+rnektedZAGQHYuJA6SubzRe6fr0mdU/vV5q4qBQgiNKwC141HLhppe+p1Ei/T0dBQUFKCkpAR5eXlwuVxyVYwmwWpaScwn4Uhv1aiauJOjXsondfu83qLJarVKCyr63mw2Iz09HXPnzsWSJUuQnZ0Nq9WKtWvX4pFHHpHvjMo5DeDUd2oy+bYeDA8Pw+12y+17ZIVF91JFNLPZLP25BhI3VNT2nYQSo0mDWtfofTidTmRmZuLo0aNoamoaM1kcGhpCZ2cnmpubpXhCk/nGxkYcPnxYbpki4Ybuo/YDXq9X+ierra2V71u1UKyurpa+ctSJIIncycnJmDt3LpKSkqalIKiiLpypwWeo/XS73XJCrm7r0dcnYOwgU803Wt0GgLa2NkRGRqKlpUVacRYUFEjL9cjISJhMJumTpr29HRaLBS0tLdLalPzkqmUIOCkA0OJPR0eHdGdAkxTVWojKOwVROHz4sMa6KDExUVqsUP1QXZaYzWa58tzZ2Skn2R6PR+Ovy2hgrRe8+vr6pDgeFxcHk8mEtrY2mWba4WA0AVbbabq2LwJvuIy2rI94rOaBuhAYGRmJ2NhYREdHy0lNT08PWlpa0NDQgMjISPl8Ho8H7e3tqKurQ2Njo9ymQ+2ybzEyWgY8ISv+9vZ2NDY2yiiNg4OD0mKRXLVQtEO9r0FanCarYVrtr6urQ0tLC3p7e2U+0UAf8LXHNAYYHh6Gy+VCaWkpEhIS4PH4nODv2bNHbitLSkqSeUJCJn1H7bjqJ/nfAcpnWnRxu93S6od8kemFcjqP+hESaQcHB2XgLHUybjQZ7ejokHOEnTt3ygjaLpdL1ufGxkZs3rwZK1asQGxsrKx7dXV16O3tldb8lZWV6OzslBNAuld1dTU2b96M0NBQpKWlSYuxQG242j/Tv0biqD/B9ExAW+oaGho022zJz2tycjLi4uKkcOPxeOT4l6Jwk9WXKr5Tm0kBYOLi4gwDbdXX1+Ovf/0rNm/eDLfbLcdR1OfSzhu1Hx4ZGUF9fT0OHTqEiIgIafwAGOc/+YhubW1FS0uLZgHJarVq0kcLAPpxD+Arx1R31eAhVGcpkFtTU5Pf8Q1dm6yMybKI/OdSIL7pjD7vqP5XVVWhqalJ9mlUzsg9Fx2v0t/frxHzqC+gBcKYmBiYzb7tncnJyYiJiZH5n5aWhtLSUqxYsQI5OTkQwrfTo6mpSeNvkMTBhIQE2baEhobKiOpq3zUyMoKmpibs27cP0dHRGBoaQm5urhxnUB9SUVGBXbt2Yc+ePaioqEBvb6+8rsPhQHx8POx2O3p7e+VCBc1PSJgki12z2SwtlVtbW6X/a+oTKcIy5WVycjISExNRX18Pr9cLl8uFOXPm4NJLL0Vpaal0ydLY2Ij29naZD1arFS6XSxPYTX2PgdqkQON5te7S7zS2aWhoQF1dHdLT0xETEyPb87q6Omzbtg27d++WbRONmck/pdqXkwGO6rpNtQrMysqC1WpFamoqrFYr+vv70dDQgN27d+P999/Hvn370NLSAq/XF+GeAkzNnz9/jDWwOn6w2+1yfGO1WuXCpqovRUREIDMzE4sXL8bChQs17eBktfVTVhw0GqzqvzeCChR1kmrBoW2X+q09eqtA1bJLFQRVUUwVDGnSSRGxyHkxRQwl8YyO16+C6EVEdU88AM39aDVNbQhJhFAHBurKolrgCdV6UbUWAk6urFI04/7+frjdbunnwO12ayLn0mo9rQaqgpkqvNHWYbvdLn0FkuUbbRumrQaqP0ESVlRLDFX81D+T0TMaiXqqlSO9e9UqVG8RYRQ5VX1etdyqIqRqcUblgCa2tE2RogyTT0FqDNTJBvmgdDqd0mmp0+mEy+XSCKyUN3or0umIXvBVLfjUVVYqa7TiTtvt1ZUj/UqNahlLK4jUVqjlhfKeJh50TbVO6jsy1YKVtnhnZWVJR8BG/rFUUZeiH6pOs8lahsqgaoVLdZzKLpnD6y2R1G22JpNvSzoJyqoYqF6f8pXqAa2qpqenIy8vD3PmzEF6eroczJhMJjz00EP41re+heHhYbS2tmLLli146623cOjQIWm1Q/lotVrR3d2Nbdu2YceOHfj+97+v2UpNbRuJlwBQUlKChx56CIWFhZr3bzQporpLq7Tku422XKvvgBZiIiMjpVghhG9LUHp6OjIyMlBZWYmmpiZ5PHDS4o+sB0g86ejoQGVlJWpqatDV1QVAG5CCrILa29vlSiYJDyQ0kghJVp6q1aD6nOQAu6CgAMXFxZpJwXjC6VSGylxsbCwcDgfa2towMDCAuro67N69G83NzQgJCZFbsdV8UcuwXqBS+0jaEh8WFoaBgQEcPXoUnZ2daGpqwp49e6TVbkxMDNLS0qRfwgMHDmB0dBQWiwVHjx6VaUlKSkJycrKsE7SY0NraisOHD0vfluXl5ejp6ZH1Pjk5GQ6HA62trVLMoDwgga6yslK6OEhKSkJVVRUaGhrk5IMWi0jMbGtrw7Fjx6QvttraWgwODsryb4Q+v0ZHR9Hc3IzKyko5xjl48CAaGhoA+HyNFhcXo7CwEJGRkfIaRtcEfJZClZWVMrAWLTqoft5IeKOJVnJystwulpWVJR3uNzc3y7wcGRlBc3Mz4uLi5PZaEtqrqqrQ3t4uF4AoOqFvAhgr86OtrQ1Hjx7F/v37UV5eLkXVkJAQuHu6UVNXi+HREblYGQITTCdEaxIi4uLi5ILH8ePHceTIEVRVVUkhe2BgAIcPH5YRFkNDQ+X2yMbGRni9XmRkZMhoi16vF/v370dbWxuOHz+OtrY25Ofny2AjTU1N2L59O0JCQlBTUwOz2YykpCTpkH+6LxLoIcuwpqYmuV0rPT1dE3zAqD8YGhpCbW0t2tvbMTw8jOzsbMydO1fTR+rPGR4eRl1dHfr7+2GxWJCQkIArr7wSS5cuRUhICD766CO88sor2LNnD6qrq7Fnzx5ccMEFcsL44YcfSuvTxsZGpKSk4Oqrr0ZpaSkKCgqkqFRZWYk9e/YgJycHeXl5cjJN/bhR2khgJt/CJFjqjz1T799I8CL/gWVlZbJPo90smZmZyM7OljueAGi2+o2MjMgIrxQ1VAghJ95ut1su1qlWWcTIyAj279+PTZs2ob6+HuHh4bj00kuxZs0aOJ1OuVhA+UU7lWhhg9waqYt2RuVoZGQEbW1t0gJN3b5PPqFzcnKQnJws553qfI+gfqyiogLt7e0AfMIgtQ8VFRUaX/c0FqLrqNdVF6BoYZiEyunuc3RkZAQNDQ2orq6W5YQWy8rLy9HX1yfzYnh4GE1NTfjwww/R0tIi++yMjAxYLBY53+ru7pYWx1arVW7jpl0fFAG2trZWzsGKioqwYsUKFBYWwmKxwO12S2s58k1HYh2N29X3Q9Zjhw4dkn0RjR2PHj0Kt9uNyspK5Ofny0WLjo4OVFRUoKamRo791PlKeHi43C5stVrR09Mj/Q3S2JEC8CQlJWnqXVNTk1wwA06OteLj4+V2aIqEvGjRIphMPl+v6enpOP/887F48WIpaLa0tKC5uVnmq9VqlQuYE7UaDASNdamuqgEVKR/Xr1+PgYEBZGZmQgiBjo4OHDx4EDt27MCxY8ekNTFZ59OCBY3VaBGSfEaGhYXJOVt3dzf279+PoaEhHDt2DJmZmTIAKFmIUzTr0dFRGT15xYoVWL58ufQLSGVChRaWSaQOCwuTiwb0jijoynnnnYclS5YgPj5eM8+dLKasajCeOGiE3hLE3/X0jSv5dNILh6rwoN9STNZ1JPaoW1r0gSRoKwhty6VzVHNzvSUhCSD6rUFkNUjiD62O0FZTEgNokETinF5UUO+r+ljs7++XIieJVxRFlZ6JHKGS+KkGH1FFMtXnIW2Tpu3DERERiImJkUIITWTIMoPOIVFQtRyh61ODoC8D6vvWlwdV6FMDuugtTPRbhdVI0fS5KrqqZYTEGXrHtCpDViOUh5SnPT090lKQ8pNWECg/HA6HXE1wOp1yokyDGjVAjd5Skp5puqGvxyTIqVvkqCyr4hqtGpK4RGVELw6MjIxo8p5Wbale0oCAtgKQ2AhAWjCp/jP1A2WqAw6HA/n5+Vi5ciWKi4sRFhYmxTtVyKfypRfCjQb59Nx64Z9ET+rI9M9MgwWyfKDIbDRwppVUOhY4aZFGwjSVP5fLhaioKDn4VfOaLGxocYQm9zSRp7w2mUwYGhqCzWZDUVERcnNzcdVVV+Hiiy9GbGysZtslPYfdbsfevXvxgx/8AEePHtVMCCkfKf0mkwkLFizAZz7zGenXqL29XVp4qWWM8stiscgIv1SuXC4XBgYGkJWVhWPHjkk3AGrZcrvdqKurQ2dnp2wPGhsbUV5eLle3aWBD2xjS09PR09OD3bt3S1+EtALa3NyMpqYmZGRkICoqSjrRLi8vlwNLeq80yMnNzUVJSQlSU1Ple6H0TbfJAdWNsLAwuFwupKWlIS0tTU6G29vbsW/fPlRXV8Nut0uRn7bQUxtA5Yb6SOrvyVqYrD3IKntgYAD5+floampCU1MTmpubUVFRgfT0dLhcLhQWFmp8VdG2/K6uLoSEhCA1NRWzZ89GXl6e3BpI5YH8pNXV1WFgYEBazdF2H7IUrampkQsdtIIdHR2NjIwM6Xtwy5YtCA8Pl+MOctBP6UxJSUFKSgrcbjdqa2sxMDCAiIgIuN1umQ/6BTZ9PqliXWdnpyzb7e3t+Oijj2Tdc7lciIiIQF5e3pj3SOWO2ityc9LY2Ijm5mY0NjbK9k5d3KV/HQ4HcnNz4fV6kZubK6P8UdkoP+ETcGBgAMeOHUNdXZ1Mu9frlduJe3t7pTCo+n6iRR/fsX1oa2tDQ0ODnPBRW07CQl9/H6qqqk6Oqbwn6xg5fc/KykJCQgK8Xq/GVyTVV/I/S3XUYrGgoKBAOpyPiopCdna2DNZCz5GSkoK6ujr09fUhNDQU+fn5OHr0KGpra7Ft2zaEhobKxYlZs2bJxSh/4+LpBL0Hah+PHz+O+vp6REZGIi0tTeNLSy3TahvY29uLxsZG6RsuKysLubm5Y65PkNjQ2NiIgYEB5OXl4Qtf+AJKS0vlpPS8887D8ePHcfDgQQwPD0srXsAn/hw6dAjDw8Ow2+2YNWsWPv3pT6O0tFRazpHI3d3dLcu06p9Lv4VYHW94PB7s2LEDzz//PLxeL2688UZcccUV0lpNz2SNA/V5RJAVYEVFBWpra+VOAYfDgczMTOTn5yMpKUmz3ZNEio6ODggh4HK5kJGRIYPE0MIERZNXF1/U69BYgizI9btDaOEvMTER4eHhUjRX5wn6RWSjftPr9UWarqysxPHjx2U7QWO3qKgopKSkyAAn/uayXq9XRpWloAokLtH4iYQcdc6qHwMSNAejZyGBhrYnTsc5AHDS3+TmzZuxefNmNDQ0yHkWWe3SeJIsMWmhjgJrkDVvVFQUOjo6NBb7NFZISEiQbQjgG8MWFhYiPDwcS5cuRWhoKJKSkpCWloaIiAh4PB45FiEhSN1hQwtUar5HRkaipKREbp8/cuQIOjo65NhgYGAAra2t2Llzp7ScJRdoqgEO1Quz2eejLj4+Hi6XS9a/1tZWaYFOVpHq86lbsiloCc1zo6OjkZCQIN1W0JjmkksuQX5+PkZGRhAXFyeDcZlMJ60badGaxhG0UEbbkyeCkZgOnPSfSG6zjh49Kt0DDA0NobGxER988AGqqqrktl8STMlCl+YUoaG+6MDk40+t+xEREdK/cE1NjcZlSUdHB/bu3Yvq6mq5mDA0NCT1EhqbO51OOfe74IILkJOTo1l40EPpIldq6jgG8Am1iYmJmDdvHpYvXy79DKptmNr3nQ5TVhzUY7RCpYqBemsf/d+BrksTT9VaRRUd9PdTRTVqpEj4I2u6yMhIGYGUIirR+SQwkc8vEhvV9NDv6rYBdZJB235pMmS0pZLSTt/Rteh31epRTbsaEIMEQfJ9R8eRKGIUREEV80jkI0GQhBaHw4GYmBjNih11hhSVWbXWozxR80PNK6PyoM8LvZCnWl2pP2qjRGo9+WMgYYWEHzWfyeKSJlQ0QPF4PFJAJjGQ8pfyVI1yRdsaIiMjERMTIy0FY2NjNf4FaZuTPigLpf1UBPapjCpk6xtCKudk7UsiIr0ntR4AkKv4+/btQ3l5ucbaCIAU3yMjI5GcnCxXqamDU90TUPk3ymsqLyTuulwuhIWFaQLc6OupkaWv2mnpOwAjEVXdFq9a8apiEgkdK1asQHZ2NiwWi0a0UwVOGjjQ86vb/KguqfWR0kTbGRITE5GdnY3a2lpNW6j+UKTOyspK5Obmyq3yalro93nz5uGZZ56RVhdGg3saRLz//vt4/PHHZdAZWlXXX5MmMS0tLTh8+DA8Ho/Gt1l/fz8qKytl/VW3g1osFo1zbFoIqK2txfHjxzU+XQCfmDJ37lzk5uaisbFRWhZS2aWtL9XV1cjNzYXVakVXVxfq6+tRX18vLRVUkSQ+Ph75+fnIzs7WOFSfzlD5i4mJQX5+vnSwXl1dje7ubrnSSr5pMzIy5AJLQkKCjIgZFhaGmJgY6etlaGhIrhbTO6bJXXJyMubMmYO+vj7U1NTIfmFkZARJSUmYO3cuPB4P9u7dKycZHo9HWvoWFRVhwYIFSE5OluIS9WEk9FF9ogA8ZAVWWFiI6OhoKdzT5Ib6gCVLlgAAKioq5Ip/REQE0tLSUFJSgkWLFiExMRFhYWHIysrCwoUL5cq5zWZDfHy8dLZOfoPIuozKcUpKCoqLi5GdnS0nN9Q3ZWRkSMGTxiM0CdBHGDeaWEdHRyMnJ0cjBqpbmwlVHCQrXloAU4OWxcTEIDU1FdXV1ZoJES120sSPhFbV3QJNzJ1OJ+z2cAAmmEy+sSJZDYSGhmr9Spu14wmTyQQIwHQi/SQwk/9UAIiJiUF6eroMeqMKoJRHJAjYbDYkJSUhMjJSbmWnOh4TE4OioiL09vZKy464uDh0dXVh165dcLvdEMK39a2oqAiLFy+WFhv/TmMBEpYbGxvh8XikeExWuvrJkTrua2trQ1NTk9xSTAsv6nEqJESSBTdFLqcJNnDSh7TH45GTVppHdHV1obW1FaOjo8jMzMS1116LhQsXygUKGuOrfhP1YxU1LWo6qZ8nC7bMzEwkJyeP6Q/PJr29vaiurkZzc7Pcums2mxEdHY1Zs2bJOqXS1dUlBVuy4KaIqkL4XHOUl5fL903+VlUhh/LDZrMhNzcXRUVF2Lt3L/r7+7F161ZUVlbKMQ5FpE1JSUFaWhqio6PHBEOivFN3H6n1tbu7G0ePHkVNTY0cO9LCX2xsrAxqQWXLCLI+rKmpQWNjoxzLREdHo6ioCHPnzkVGRoZm8q+mDdCW2Y6ODhw6dAh79+5FXV0dhBCIiIiQ20OnK16vF62trTh27BgOHz6M5uZmzRyP8oPK/ejoqNyFRbupaC4wPDwsxUGan5EYExsbq8krk8kkDVeM5lPUntBOBgDSki82NlaKgwRdIz4+HitXrpS7ilRXIbSbiYLeAZC7TGjba39/v7R8I4vA9PR0OBwOuaW/tbVVlsuQkBAZeI2scUnYbG9vl8YrNI5U5ymUZqvViuzsbGRmZgI42XfRc9Fitup3kcb+NAabLNGK0pSSkoIFCxZIS/vm5mYpELa0tKCrq0vuzomMjJR9rGqYRWMIIyE3JCQEGRkZWLZsmfQvS4v8pJuoPr/p+SwWixQc8/LysHTpUixatEiz4GM0v1Pb9/DwcMTExGiCGFF5LCgowHnnnYeioqIxiyOT2d5PWXFQL/AYfa9uDVY7aNW6Tw1goFZwVVxSfdoYvTR9Q0z3VreVUuehrkgbBa7QW/CpwqDaCeivSWnVWxLpMSogelGTxCpaiVCDYZAfF9o+TL4N6V+91SNwcv8/CVRk0UgDcjXKMgmCtCWWfCnS3n7KNzUfjIQX/Xuk59Qfox6rXsPoM/Ua6gBLva46QFAFIno3ZHasTn7IklANhKP6PgMgn121VIuOjobL5ZJbrqOjo8dEaVYtKvXP9++CXqw1EtPpPY2MjKC7uxs1NTU4dOgQhBCaSFvDw8PSsf/27duxbds21NTUyIE5AJmftJ0tLy8POTk5MpIp1VvqyFVxXD9wByCtcNTVWyNxTy+s6SfX6uqQmi8qlDayPNZPZNX2jsqay+VCXFwcLBaLZhum0WDZKH1qm6ZPJw04aLtrbW0turq6pFim1kHaNrtjxw6MjPgiBpeUlMio06oVk8lkktun9Omh63k8HvT398PhcKC0tBRDQ0Ny1dlo8SAsLAylpaXIz89HW1sbtmzZommPyNKUBlN6f5Pkr0wIgY8++gjDw8MoLy9HWVmZHECGhYUhOzsbJSUl0kdjZWUlKisrpTUcTUrIAXtXVxccDgeam5tlZDlanaX35HQ6kZGRgfz8fKSkpBg6J55ubQI9H1kEp6amIiwsDImJidJnEE2AoqOjZVRIEuwp+jWtHufm5krLOY/HI7e8kIUo/URFRWHWrFmIjIyU1iwRERFymxBZuWdkZEgfcqqFY0ZGhrRqUS1UQ0NDER8fjzlz5sioeLQVOD09XfqLDA0NRVZWFkwmn19Dci1A/mOdTqdmayRZw2RkZCAlJUVu601JScHKlSuRkpKCtrY2WQ/tdrssp6mpqdJS3+PxIDw8HPPmzZP+ssjyDAAyMjJw2WWXyYA8AKQ4SJMHElr1fTY9f0pKCi6++GIp7PoTr9W2RW2nKA8o76Kjo6Uw2t7eLq2GaNBO4jLlZXNzM2pqauQi58mJpgleL5CSkgiXy4V58+YhIyNDbhVT2z59is06UZN8J0dEREAIgZSUFBQUFMh2Q31m+j0kJASxsbEyGv3o6KgU+ekYasfItxRtW7fb7UhPT0dbWxs8Hg9iYmKQnZ2NnJwcTbTO6Vb/VdR23ev1oqWlRQa6IItb1VrOX99Jvrg8Hg9SU1ORlpbmd/wInLSEo+3fiYmJsn4RHR0dqKurAwDZz9FYkCbfQggsXrwYc+fOlRM6ui9Z9lC57u/vR3V1NebNm+c3uiflx/DwsOyT4uLiZDRg/fFG+Xg6aOqDOBnopaWlBVVVVbJtpq2tqampWLJkiUa8pH6OIsf29/fLNpl8NgI+wfHYsWNoaWnByMgIYmNj5YKJ/lksFgtmz54Nm82G/Px87Nq1Swb3On78uFygoX4kOzsbs2fPlsIlWSsazRUAX3kgv2ZHjhxBfX29FPxpm3JqaipSU1PHRLpV88xk8kXbrqiokJbA1JbGxcVh3rx5WLlyJVJTU8ekQ7+wSRw/fhyVlZVyPKoGjpjOroVo0d/j8SAsLEz6zAOMjYZUKAotCbU9PT0YHByUrgjIMj8zMxOZmZnSv7OKP9FFHQNGRUXJsWB8fDyys7ORlJQ0pv7SAhwtsqWkpGD37t04evSo9IlLhiLULiQmJiI1NRXx8fEYGRlBVVUVampq0Nvbi+joaOTl5SEzMxN2u11arpGQRAYO5NaILP1oriSEkNuISXDLyclBQkKCfG79/Ncov2lBjiI+U55kZWXJrfVGc/jxCLTI4XA4sHjxYtnn7d+/X7YRADTjsZSUFAwPD+Po0aPSBRwAKbrSAqmesLAwlJSUwGKxIDU1VfoOb2trk9aK9E7J/VRCQgIyMjKQl5eH4uJiuchrZPRhlB9er1f27+np6XKx22q1yu3JCxcu1ETB1r+TyWjjp2yLoRYK/WCKGmJVDFTFLnWLL23pNRLhaGJFAgtNBFXhUN9RqKt6qtimRstTBSD6nZxKqr7GSExT/Rqqg21azSKxzWq1Sks89Ycs7VTHmcBJoUC1HCRRg7YP9/X1SavAvr4+dHZ2yr9p0KEKIaq/N3XlU50AUYRl2uJJvgPpM0oniT1qhEfV+k0v4tJzqWIuCa/q5E4tH3rfgXrrQHp/dH+yFCCBWbWIpHtTp0CWgv39/VK0IwsMNb+pXJKlqDppoYEKDfLDw8NlQBZVTKUVMDX/VDFJL3YQ03lCoL4jKivq9nWjwQD5nNqxY4d0Skt+vGjVrbW1FZWVlaiqqkJXV5cMfKHel8y358yZg7lz5yI9PV2uLKmCpGo1qJY/tf2iOqGKg+qzASe3wuoHfYEmz+r36n2pXNL2A7XuqGIWtTP6e6tWO0adjfoM+kmb/lgAcrW+oKBAmvZTu6y/xsjIiPSJ1tPTg6amJsyePRupqaly4E71WG131LTRFo26ujocPXoUH374ofTXRWKT2reYTL4tBKmpqSgpKcGKFSuQnp4u803N676+Pnz00Ud45513sHv3brmCS4JEa2ur3G5gMpnQ0tKCpqYmmQ9msxmNjY145513UF5eDofDga6uLjlJIGtEs9m3TZW2xlitVjQ0NKCxsVFui6D2IyIiAoWFhVi6dCkWLFgAl8sl3wc963RE7WNodZ9WZak/Ak4urKiLBMBJFxKqdaXL5ZIr2zRRJHcBav8SHx8Ph8OhEWFVa7D09HTEx8djcHBQY6FstVqlLzr9oJaeITs7GwsXLpRBKWi7GwC5Wk/+4sh6lfoWilCXlZUl+yCyLLDb7VIII5GKom+SRTv5F6V2Sw1eJoTPxUpubq60sKQ0ApBWhmp/SVubyEo3kBN/s9ks81W/m8NIbCDo/dH4jPpvyhOaQNFim9qnq20TbV+kiI91dXVob28/kR++MRhtw0tISJBWEmqbrO9n1fQalTtqjyg9+jSpf9PYkyYctO2dLBNsNhuysrKQlJQk/6ayER8fLy1FaFFWtYQwytfpgFE5okWezs5O2Gw2pKWlSWs9wqhf9Hg80heXEALp6elSfPGXNyMjI7LNJfcSqg+50dFRtLa2orW1VU7o1K125I/ObrcjLy9P44OM7kuL5/Hx8YiIiEBPTw+OHDmCSy+9VFpD0rH6vpe2VZpMJmnxo2eyBMFA+QT43ktzczOqq6vR1dUl2yGXy4XMzEy5HVN9hp6eHlRWVqK1tVUKFUlJSVL4o/Fcc3OzXIQn/3F6qxlKG03os7KycMkll+Dw4cPYtGmT9BNGlmVutxvV1dU4dOgQ8vPzsXz5cixduhQOh8Ow/FB6jx07Jretkosnqo9paWmYNWuWtEj1J9R6vV40NTVJKz/qy2w2G2JjY5GRkQGXy6UZo+jHjvpy1NXVJV2OEORzcLKsts4FtI182bJlSEtLk+4Z/AmD6ue0iFdUVCQFnLy8PHi9XsyZMwejo6PS3+ucOXPkgg5dR5/X6n1CQkKQkpIix4uULrL8VBdp9WmjLcpOpxMFBQVoaGiQ7ifIZx9Z8aWlpSE1NRXR0dHo6+vD8ePH5TbXyMhIFBYWoqCgQLb7+fn58Hg8KCkpkYJdRkYGiouL5VjHbDYjOTkZ559/PrKzszEwMICQkBBpnZ6amhpwkUHNC3rmuXPnwul0yojd5O6hsLBw3GjwgdC3fySQA74xyUUXXSQXCKuqqtDT0yMt7dPS0pCZmYnw8HAcPHgQ1dXVst+lcRMZ4OjnBfR8drsdJSUlSEtLw5IlS2RAwM7OTjl3DA0NlcGtMjIyZDAUGgsGg5qfTqcTCxYsAADU1dXJcWBWVhZKSkqQnJx8xuf2U1Yc1KMOwEicUiPmqsFAyPKNtgOQKEeigjr51YuDqnUfTST9NUIkDtLKhhrlmFR5va9BtfCpFo4Axvg0o0pMk3gS3WgrLm27I0szVaCie6iDZdU3IkXFUwNgkGVbb2+vFA9JtVbTqQ6C1fyjiRZVMnX7Hh0PQPplpGP95bkqCtLAmaxIVJGUrkO+2uj+qtWluiVVb+lF39M7VAU81cScBoN0bRq8DA4Owu12a55B9TtIZU+9HzVM5PtELUtquVYtT+h9UvrpedUyQxgNKKcjqtBG22/USaAKPSeZ1jc1NWH//v1SaKc6p74PdRIHQA4WkpOTsWjRIqxcuRJFRUVye4Ban9TttGo5o3IHnBSkqY7o34XRBFMvxOm/M7qGml9qsCQ1D+l3Ktt6K129EKi6Z1A/9zdoMroO/U7OyGkCa7VaceTIEWnFobYRNCEj58z79u1DTk4OUlNTpd8YCjijOiMeGhpCT08P2tvbUVlZibKyMumPi7aQqFuhyXKRtqXNnz8fS5cuRV5enhST9fkQGRmJvLw81NTUoKamBt3d3QAgAyVERkYiIyMDSUlJ8Hq90lphdHRU+my0WCxyIkd+YmmbAm2dUtupP//5z9iwYQM6OzulT0PghMXSiffY09ODiooK/PWvf8Wll16KT3/60xpfulR2pytUx6i9B076lNQP3P3VEdpWohdo1EEhiTm0PUjdnk39EQDZ31GQD6pT6oKNWm5U63parabJn17UpHtTxGu1v6F2hCzK1DZQ73uGrmOz2TSiBAlO/kQvsjajaxC0kKXmqXp/o10N+jaB+mwVvcsDo2ureaCirvbTddVnoWeltpqsBMjKiUSM+PhEpKenIzY2Rk7q1bZRTQddm/5Wy5N+kqpPLz2HPn8oD9R2Wn1meheUf6pooIrWlJ8nxz6AELQ1UuufeTqgz28AMhonRZCOjY3VWEj6ex99fX1yWxi5D4iNjQ0oeA0MDKCiogL9/f3SElm1HCSBrqurSzq2p/dOUa8tFou0+DWaJFO9nTNnDq6++mq8/vrr2LVrF9atW4dPfvKTY6J86u9NfvjIF6e/Y8/EOFCdy9B7aWtrk5Nms9kXGCczMxNRUVFjxiqdnZ3S1QiVZcpjmkPQgiJZUyUnJyMlJUVjlaevd2azWbofSEtLw/z58/H4449LH2sU8G9gYABNTU0wm83IyMiQW1H1dZTao/b2duzYsQP79u2D2+3WtLlWqxUpKSkoLCzUCENqXabrjYyMyMVLCnhEvojT09ORlJQk3UUZGQHo55H9/f04fvy49I1J5YAiP0/XgCTU7mVlZSEjI0OzsyWY8qzOoalvmz17NkpKSjRtN/UV6oK4v+vR96GhodL4QF/+1AU3f32iyeTzn01b3BcsWODX3ZVaBrKysjRlgeYwgC9YRUlJCYqKivzmAZXF9PR0pKSkjPHJTvc0ehf+8jw2NhYrV67UGB8Yza+CvR59b/SZep7JZEJMTAxKS0sxZ84cGQyWFkdpwbSzsxMHDx5EX1/fmHGwmj79GER9jtjYWMTExKCwsFCO0UnUJwMQ/e5Qo+uNB43zqGypOxf0xk2A/2CMp8uUFwf1AzNVQFGDgZClG+2jV4UvstxTo/0C2kqjVkKjzob+VX9U0YJ+qPGiiZ0qJhitaqv3VRso1aqHLMtou4oayIN+p2AfqlWeWoBp4kyiKflCVLcPkxhFwoJqLaiKZXrxgN4NdVTqynloaKh8P6p4SBVIX9npc/W96K0nKUgH5QeJouSrT7UiUdOoVnb1naiCn16oU9OmvkN9WmnwoFq3UXnQlzUSJ0jIIQGZBE+ytFS3y9H7joyMlM5KyVKD3gulSV9upyvqZJl+1/v5UxtG8kfldDoRGhoqFwpUn47qlllVECQropSUFOTl5WHJkiVYuHCh9Luln0iTAEd1RRXPKe30t2rxon6npsOovdH/bfQ+9Z+porQqSKv1jBZCyOqYyq5+4qq3BAw2HUYTOrIsKiwslH5Itm3bhl27dsktRWpbQtvz+/r6UFtbK31wUFAequuq0EfCIPUB3d3dMp9DQ0PlcVSeyCdKUVERli1bhgULFqCgoACRkZFSVNDX39DQUCQmJsptGmRpTf2KyWRCVVUV6urqZFml5/J6vUhKSsKVV16J1atXIzY2VuZ9WVkZXnvtNWzatEn6xAoLC0N0dDQ6Oztx7NgxCHpHJhOEAEwmMyIiwpFwIj0JCQkwm804dOgQHnjggTEird6v5lTHyGpfrSfUnuqFFLXN1wu89F4JtU7rJ2KquKQXG/RWtWq7rhcpAglH/gaj+vPV/lG/4EZ5oLaH6j3UBS61HVCfVa336sDWaOBJx6v/qvlnJNKoqBMU9bn1x6jtvv5fdYKlf9f6SbR6Dvl8JGGJrJHIgtISaoEJJ7cKez0emHTp1L8z/SKV/l2q+aem19/7Hu8a+mPVOkATGQDKOGVM8qYt6riW2nCbzaZZeNNPnKjeAyeDjdF4Up0E698Hvavh4WG/opvX65U+R0n4V69B40C9hT5dXy0PFLGcFovIP7W6CKxa6o6OjqKvr09OUPX1QT9mmUz096J2gMbT+sVwo/vTgjxtGaWFGiq/9K5p/Eb3IAMItb1Rd5LR4g6Jh6ovVLWeqAYYahuuPp/+mWncp+Y5PT/NV9So64B2kYCOJ8MLtSyoRiKqAQulXW1b1X8tFovcpUbXo7EOjWvVc6YTav9nZP1o9EzjiXt6P5VGfZi/axqNAyh/1TKjn9f6S596HZrnGqVZvT+l16g/oOcjMdjfO1fzVH9PfZ+pT7N6DUAbuNDf9nWj6020PI6XFlo4Mxqz9Pf3o62tTfokpralr68Pra2taG9vR2ZmpmbnH11XP56iPAtmkXOi6N+zuuhH3+uvry+vk1XPJyQOPvjgg3jooYc0nxUWFuLIkSMAfE7+v/a1r+GPf/wjhoaGsGbNGvz85z9HYmLiaSVS7exUIY4mX7S1k6wH6Uf9m0RE6qxVgU4Vo4w6BP2Peo7a+VGa9Fse1UmmKvrpOyV1mywNNMhSUI1Mq0b2VZ1fqwMI6hxofz1tH6Ytw263Wwon1FHp/aipKxg0KVEtpdQBmRBCWirRc9KP2gnqV0KMrJNUi0Q6XrUUJEvJqKgojTCjCo5UyVWRjq6tipNGP3Se6rcNgMbfHT0/DczpO1UkUq3GaMCgPjsN8Pr7+zE8PCyPo20oERERsmyTuEWimDrhU7eSnWnOVRsAnHSsm5aWhu7ubrmtj+ok+Z/Kzc2VUcmqq6tRW1srB9pq9Ft6H2RanpaWhtmzZ6OgoABZWVlSZFTbH9UqULVCBKDZNqzWE5qI6F0WGA0a9e2Pv7/1Qn4W3EkAAQAASURBVAl9rlrI6t0o6OuaWi6NOjWjiWqgwQb9q4rr6ioabWOkLTfx8fFISEjArl27UFlZCbfbrXHwS+0qtVGtra1jFg3Ua6vPTAM9tZ2ltJnNvgioFIls/vz5KCoqQmJiomYrELV3+n4hMjISWVlZyMvLk47UaTswCcb656etK4WFhcjMzJSDmJCQEBnJklZy29ra5KS0tbUVYWFhyMnJgfB4MTw0jKFhn+AYHh6O3NxcLFuxHJdffjny8vIQGhqK6upq/PGPf0RzczMiIiJkuifD79DZrP/+BoGqyGUkSvkbNPsrz1Qf1UUf/SDWSLjRL8TorRDpWmoZUMuvOtA3GuDpF6fUSa36t95qUX12o3SPJ0LphU/6ThXzjCap/tBfUy+2+pswGLVv6vck3BotiKnHURvu9XoRHh6OpKQkjIyMwOVyob+/HwBgt0cgMioKdqsFoSHUTpsBs8n3o0u3Ub6o6dcLJ/7yRR0X6cu70UTA6F3qJyX6ySSdMlmThrM9BtCXkZaWFjQ0NGB4eBhxcXFISEjwu21Nzfuuri60tLRgcHBQ9j1qwAAj+vr6cOTIEXR1dSE/Px8xMTGaNFHwgIGBASQmJiI5OVl+TwG2RkdH5fgd0L43ta1xOp1YtmwZ9uzZg7KyMqxbtw49PT1y619UVBRCQkLkTqnjx49jw4YN2LdvH1wul8Y/Hd3H6PfTwaiMAZD+eDs7O2XkVqob9F1LS4vcsiuEQHNzM7Zt24aKigopwJpMJrnIZzabUVlZiYMHD8qIrmSZRz6Sad5VU1ODI0eOoK6uDv39/cjIyMC8efMQExOD3t5e7Nq1Cx0dHTKYAOU/WSLOnj1b41eaoPfs8XjQ1dWF6upqVFVVoaGhAf39/bJtp2jM2dnZ0se1UbtG7frx48dRUVGhiWxts9mkP2K9P0W9sKxeq7+/H7t378bu3bvllko61mazIS4uzq+4fSqczfqv9vfjiS/jiYL6Y4zG3kZjh0DX039m1Ifqr6Wf69Jn44mJ6ljG6L76cwL18/pzJzIm0D9PIGtl9TkDvR8jjNKrfu7vM/2iMuATB9vb26XlID3z8PCwNI7SGxIFk96J9PPBCKLjvdtA5/sbq54qE54tlJSU4J133jl5AWXCcc899+DNN9/EK6+8gujoaNx111342Mc+hg8++OC0ExoIfebRhFyNTAOc3EKkj7BL11AbH30joQqK6n1UkdBoAK0fRJLqrIpnekGQREGyilMdXJPVHG2tJdGBIP+HtP2SrKdo60N3dzf6+/ulBSGJq7R6pwoKqhUjCWAkhOhX+PTblOi51WvSO1B9hekt9NQKpuaPmvckFKrRolXRWLX2UMU41ZJP9TGpFxrUZ1J9Ban3ICFVP3FT70nPo/6uFwfVz+la6jYo9fn0K5/qfdWfyRoI+uNstwH0zkgMiYyMRElJiSZqttlslluMkpOTERUVhaGhIRnJr7OzE93d3XJLckhIiLTOpGhVLpcLMTExY3x3GuWn2eyLKpeVlYXBwUHp8JbeEwm5DocDOTk5MiiCvoOl6/ubFBPBvFO1jlJbR6uC1DmThYMaNEgVLtT8Nkqbv/To22B9XaLPqV46nU7Mnj1b+iI8ePAgysrKUF9fj46ODim6qqI/cDJKNNU91XIAONlmUF7QM9Nz0NawWbNmYcWKFZg1axaSk5OlLzZKL9Uj/dZCIYR0JJ2ZmYljx46hqalJtnH69NLzkuPouXPnIisrS24Vo/dBzuRTU1NRWVkpLSlNJpNso4XXC4qG4PV6ERUVhfz8fF+AixPbmEdHR5Geno5vfOMbY95Rd3c3fvSjH41bjsbjbNX/QAMdNY+NJnNG7bJ6XXXSoe971HetHq+iDgiN6i6dQ4sPtJU1KipKsx1OPVbfNqgWDf4G9vI8E3DifzAp36t5os+fYCZT+nSqeerv2PHaL/2z+Jv0qMcbTX4A4wG50fXpc2rbyYKQoqH7xhkWhIaYIdT06iYdgfBXDscb4Pv7Xs0T1bJbLzb4y++T59P3kzcuOBfzABqTtbS0SB911N/Twpy//hUAGhoaZAAal8uF+Ph4zcRWn49er1cuqAOQfqRUBgYG0NXVBY/HA6fTKX3+mc1mDA4OorW1VW5nV7cH+yvvubm5uP766/HKK6/gyJEjWL9+Pfbt24eUlBSZXvJt29jYKLfBXnLJJdJHlVHbN5ljQiNxgXx/RkdHIyoqCl1dXXLBrqKiAt3d3dizZw9iYmJk39zZ2Ymqqiq56GcymdDY2Ig33ngDe/fuhdns889bW1uL/v5+JCQkYPny5Zg1a5b0+wj4Fu2rqqrwj3/8A2VlZRgdHYXL5cLWrVsRExOjuQ/1x+TaIyMjA6WlpVi4cKH0K61C9W1wcBA1NTWorKxER0eH9DPr9XploKmioiLpC1Htu/Rt79DQkHRLQhaRgG98W1BQgKKiIo2vSfVc9XfKR7fbjfLyclRVVUkjAqvVKg0o9AF0JoOzXf/V/jmYshyoXRyvf1L7lvEEIv31AglE9K9RGgKNMca7tj79+jIXDEb9c6Bjg7n+eOkNtk0ab6wSzDE0NgZOLhbSrky73S53IRldM9j+eqLC4njPE+wx+n5uspiwOEiONPW43W78+te/xh/+8AdccsklAIDnn38excXF+PDDD7F06dJTTqSa2aplmMVi0Ygo1OiHhoYiMjIS/f39iI6OlpHpyAk+CWg04FIFKn0jbHQMpUm1CjDqkPUWaapvQ9XfnhpohPbJk8UgFV7aQko/qsAIaLe8qtuuSSRUfS5SPqnOyKmzVUUoNf/V/FCfX51g0fvRD2jpePUc6ljVrVCqVZaah7R1hCwHaUsxbScmkZTEDtW/Gz2rzWaTzlnpnlQGKH12u10Ga6HyQoEdVIFBP6mk56X7qNt9qRGid0ydqOrnQRUnVd+NdrtdBiMhcZieWfWvqOZpoAn1ZHG22gB9J0SR1+Lj4zXvhI5V34fZ7PM5Exsbi+zsbI3Iq5YtqodG+aVakgJaYTssLAyZmZmIjo7GnDlz5CKEuio1MjKCkJAQREdHy2ijRhOYib6rQBNNGvTm5+fLyQ11iqo1mypa6v1V6dPkr6MzGiAY1Qt10YXaEJPJJB0lk0VdfX09qqurUV5ejqamJrS1tWkCOqntmyr0AxgzyaM0GG0rjYqKQmJiopxwORyOgG2Z+nyUf+RfKiUlBVVVVbJvUe9rNpsxNDQEi8WC7OxszJs3DwUFBdIqgPKCymF8fLz0M9Ld3Y3u7m456fV6vfB6Tm67MpvNSE1NxezZs5GflwdndLTmXfw71H8g8Iq/nkCDfqPJmvq5/hj6+1QGYOo1yI9UdnY2HA4HUlNT4XA4pCivn/AZPatReuS9AGnZRh8YiaH66xo9s75fM0qDPs/0BGrfgmlTjK6nv64/odBoEK9+r1ppqq4F1D5DCHFCZx2bH/4mCkbPHsyz6t+Bv7wyuo+/5zQ+n743TMYpcS7aAJPJZ6lXXV2Nzs5OWCwWuFwuTURtyke9JbEQAlVVVTKISUJCgt+InMTQ0BAaGxvl1vPc3FzpCoKgHTlmsxmxsbGIjY2V35HPQbPZF4hHHRMatUVC+KzBzz//fERGRuK1117D/v370d7ejpaWFs2zAD4/vqWlpVIYjIuLG5NvZ7IfUCGBrLS0FCMjI9i+fTuqqqrkboD6+nrU1NQA0C7shISEIDExUfrN7e3tRXl5OcrLyzUT+JKSElx44YUy4rE6T7BYLMjPz8fcuXPR1taGpqYmNDc3o6WlRdbzkJAQ6eOVdomQEJeSkoKoqCjZJhPquK+npwcNDQ1oamqSu3wICnpRWlqK/Pz8MZFZ1XdNvk7r6uqkNSQtIKWmpiI9PV2mczyE8PmcbGxsRFNTk7RkJP9o9JxGW+dPl3OlA0zke3/HB2pLJ/p9sPeZyHencv5E0hDsufrvgrlWIE6n7J1ufsXExCA/Px+NjY1oaGjAwMAALBaL3GkWKKK3v3FjoPtPJI/HO2ai5X6ymLA4eOzYMaSkpCAsLAzLli3DI488goyMDOzcuRMjIyNYtWqVPJZWUrZu3eq3UaBtWAQ5ePcHTbxMJpOMBEOiGvmCoIka/U73oO/JukbvK5DEMeq8VfFKnTRSOlRh0GgwTd+rfvNIGCShSP2bHH6TOES/q5GIVYs+dfJNpvIknJLYR2mm61GwFNV3m7rtlq6nF/XUz/WDL/3KiWrxoP+hfFEHSfoJNV1T/UzNBxJPSTwjwYycr6tWUCaTSROhia5F4hpZD7jdbrkFW28JSmWBBEPVlweJlPRjt9s1746EStVKUN0urT6r+r0qNNKzRUREaJ5dfY7xLN0mk3PRBlD+UJmwWCwaYVcVitRyT2Kr+p267RvQ+tZTyzTVfSqDalm1WCxwOp1yVVYtM0b1Ry9eGVmAqPib8OrbIL21MwXMSEhIwJIlSzQWwar1c2hoKBwOB1wul9xKq5+0GAkF/tKibwP09V09Rm0jQkJCpOidlJSEWbNmobOzE+3t7WhsbERjYyPa2trQ0dEhI6pTm64KhHQ9cjJO7Zzev+vQ0JBcYafASHPnzkV8fLwm/WoZUPNE9RUZHx+P7Oxs1NTUoK+vD93d3TCbzdIvEbU9CQkJKCgoQH5+vtwORe9P/T06OhrJyclISEhAc3OzRhA1mUwQ8JXdyMhIpKenY/78+cjPz0dsrG8yQSKwWrb8vaPT4VyPAcYT1McbZBkJTeOJf0bnGN1Pf77VakVqaqp02B8TE4P4+PgxvmSCqWOGA1Iooo/p5L/j5ZE//A16jZ7ZX/vgT2wBjK2O6POJXGci+BuoBxJPAgnNge4xXpr9fW8kJgRKS6A0GF1jsjmbbYAQAj09PTh8+DDef/997NixAwMDA4iOjkZmZibi4uIMx6tqX+7xeBAVFYWFCxfCYrFg7ty5iIuLMyzH6u8OhwNLly5Fb28v5syZIwNlEGazGZmZmTCZTJg7dy6ilUUau92OOXPmID8/H+eddx6cTqdfYVslPDwc5513HjIzM7F9+3aUl5ejs7MTAwMDMJt9/jHj4uKwYMECzJ49G9HR0eP6GJss1LGVvizTIlh8fDzmzZuH8vJy1NTUaLbzUT9Mi6ZZWVkoLCwEAJSXl+P48eMySJnNZoPL5UJ+fj5KSkqQmpqqEVgpDSaTCSkpKfjYxz6GgoIC7Nq1Cy0tLTK/yMdxUVGRvKbL5ZI+2o0snIzeU0REBNLT02Gz2WRkWrPZF/iguLgYOTk5cjyod0FAaaaxJwW8I3+VERERyMrKQm5urt967K+PInFUDchEi5/6qKb/LmMAhgkWIQQSEhJwySWXIDk5Wfo4DwkJQVxcHPLy8pCamjpmjqbW25nIhMTBJUuWYO3atSgsLERjYyMeeughrFy5EgcOHEBTUxOsViucTqfmnMTERDQ1Nfm95iOPPDLGfwERSJ0l0U0VUWiyqG4zVbdlqhNl1cJHLw6q1oL6yb6/9OkFQfV3Sqt+C7EqGqoBPFQRUBXT1N8JdfusyaQNNqD6EKTAIupWO3ULpNrp6wc/audkNAgb73P9d3rxQf1eLw6qgwk1v0gsVK0FjfynqeIiCbBkjUfWpb29vYiKipIBW0j0s9vt0i8jWYHRtjCy6CTT/YiICBk5WhXyVD+S6rMb5Ye+DFE5oWdTf4zKiZGQNNmDxbPdBqj+FYGxZZNQfTDqy7K6JV21TqXv9dtW6Z5GxxH0nlRxh87XLxqooqHeX6S/yX+g92ZUn9Q0ktim3kPvT00V7vzVd31+BxIqjdJolGfq+9G3O1SXya9kcXGxbLfI4Tb536SFDXoOWhAZGhrC0aNHsW/fPlRUVKC5uVkOBCg9tK1nYGAAra2taG1tRWlpKVJSUhAREaHxF2k2mzXppMmE1+uVVqlkodDe3g7gpIWpED5r1/T0dJSUlGj8WNJxlC9erxeRkZFISkpCSkoK6urq0N3drbVYt9ng8XgQFh6G3LxclJSUICUtFbYwm3x3VH7pHtO9/hOTOUjzJ1BN9Fz1M391l8Rhu92OkZERud2LFqwmei+/x8hrCZhgQjA7SPWC1njiV7D5ZCRM+7tOMGLaeJyqCDre86hjkPGOmUje+DtW33cF+1xnQxRSORdjgKamJrz99tv48MMPpch+4YUXYtWqVRpBzl8+hISE4PLLL8dFF12kWain81ToGjabDQsXLsT8+fMxOjoqd9qo90pLS8MnP/lJjIyMjAlIkpaWhjvuuANer1caMujvoYfKQGhoKFJTU3HttddiZGRELhTR+EV1gzHedvfJJlDaAZ+gShFhyQWI6g+YhEzVF7PJZMK8efM0wT70vpqN7qWO62JjY3H++edjyZIl8jr0nk0mk8aiTz9H0T+TXihOTExETEwMzjvvPAAnA9vQeInGLur5RiIq7ThJSEjQuFuiOYrqqilQ20PzvpiYGDgcDhQWFsrxEOXdmRKMz9UYgGFOlZAQX8Tr9PR02R6pRkeBxkBns2+dSkxIHLziiivk73PnzsWSJUuQmZmJP/3pT+M69vXH/fffj3vvvVf+3d3djfT09DHH+Wu8adJnNNnUf6732ebvM/Vcf6KZ0QQ6kNijF/n0n+u/M+oY/Ik/dD5NNmlSqgoSeitIQOtbLNAz6T8LNLjVp1uff/5ERaNrjZenquiq5p96P+pESSBW00ZCMkVp7uvrk9sY+/r6pPUPiX3qwIyEQJfLhdjYWDgcDhlNmMRDsmJUI9Xq89RfYxSonBiVlbPF2WwDSKBRCXayqB88Gp2vF68AaERBf4I3/WtU1o2c8/oTJuna+msG83xGv6tCn/46qiDp7xqBnk2tW4F8EtIx/rbn0N9Gbal+mzDVOzpH7/pBTQstrIyMjGDu3LnIycnBxo0bsW/fPjQ2NmraP7KybmxsRE9PD9ra2tDa2oolS5aguLgYERERsl+hfNXnjxA+S4KCggLExcXh/PPPl/5+SJD2er2w2WxwOp2Ij4/XbCdW3xn9a7FYkJ6ejksvvRSFhYUyarHPHYQHIyOj8AovnE4nCvILkJ9fAEd0NGDSuilQ36HKZLQT52oMoK/H+uebqKCion8n+mvp2wF//aCR8BUaGiojy9MWcnUxIph0BfdMQv4/2BzwJ2z5e36j9OnT6u9Y9TkCTcSNvg9034kSTN87ntAXqI75w9+zBer/1fOM0h7ovfkru5PB2WwDqEyp7hlcLhcWLVqEZcuWITY2Vh6jr1Pqs5MfNr3FLn1Px+uvQ0Ev1MiUat5TP6WH6nhkZKSs96r7nGDEZDqGXAnRZ0bvkdI+mYEnjAimfqjjB32eB0o/7SJQg2ipFnj++jT9+IGMANRj9PfyN8bR1ze1DaZ3EKgeqdc16p8ItZ4YzYcCjWGBsQvj5BrqbHAudQCGOR1o/q4vp/pFAn0bfTbn2FOF0wpf6HQ6UVBQgPLyclx22WUYHh5GV1eXZtWgubnZ0DcBoXZ8esYbfKmDTerUVWsM/bX05xltF/Y34PJ3b/1x/jov/cRC/U59BqMBdKDOWL2mfhJrdP54YolRPvnrzP1dZyLXG+/ZxsPfMeoknVYRKUBLX1+fjKzW3d0Nt9uNjo4OGayFLAWFEFLcIx+QkZGRcDqdiImJQVRUFJxOp4weTZNAdRs4oA08cirP6e/7qdBgnck2QD9YCha1TgQazBrVSSOCndgGanMCXXui6QkmncGm8VTuN167oH9nRm1cMPfUD7BVwU69nlrXASAuLg6LFy+WEZG3bt2K2tpa9Pb2aiaAZrMZAwMDqKiowNDQENrb29HR0YHi4mKkpqbCYrHI4DXqFnRKg9VqRWxsLGJiYsZsP6YJKaCNWKsKmuo1yfcQtSvZ2dky6IovzV54vEJapkZE+qxDQ0NDYRIn88Mo384kZ7r+Txb+BD7CX34F6ksDXUctC/rFIbUOjCfiTqRvEMLnL0+Q9eB4x/qpn3qCGSQHM25S7zlePgbD6QjCRteha40nvAWb1kD9jtH1jJ7H37sJNg1G159szmQbQO/D5XJhxYoVsFqtyMzMhMvlQmho6Ji2dLwyoc97wmgMHaifU+ca/sbddK7q4sZoDhCoLdLf25+weDbbfD36PtVfu6b/THWJYnRNYOxOByP0cz59O6P/e6JtGJ1jtEhI6MuK0ThH3+b7awv9pWc8/D2nP8FysjjTOgDDnA5G445g6oa+75wK8+2zyWmJg729vaioqMBNN92E0tJSWCwWvPvuu7jhhhsAAGVlZaipqcGyZcsmJbFG6AdP+m1s/s6hYyc6gQ/m2vpz9Gk08nEW6Jn8dZ70uZGVjr80BPsc4xGs6HcqE4tTSQd1upS/ZDpMfsXIMrCzsxNut1sKgqpYSP4EAd/WB7vdLrdokqVgZGQkYmJiEBsbi6ioKLmNmLZAGPkA1A8G1HSf6QbnTF//XLUB+rz01wFMpFHXHzvexGqik9qJvItg624wxwX6fiLn+5u8jpcHRgPWQPfyVzf0bZvRpIq2IMXFxaG0tBRpaWnIyMjA+++/j4MHD6KlpUUGZqLzh4eHcfToUTQ3N6OpqQl1dXVYvHgxsrKypI8pVfzTby0DTm6VonSoEwGjPPP3N1mXkuWDKiiazGaY6VifCjRm4qLPJ/XeZ6ItOFv1P5iy7W9SGqi/nYgg4+94/fdGg0z1d73FvtE1At1Df215/ASj0U7WgDdQ/R+v7I33vT4vjIS1YJ8jkAijHhOMVedE+29/ZcKofAUjIPkTdwN9f6Y4022A2WyG0+lEfn6+tMZTF179CS6BhCo6BjDOP/3YwUhwIlTrNv31jd6D0VjFCP17D3Ts2Zy8GpVPf5PvQOMDf1uF/f1t9JlaX8ZreycqwgUS8dTvAxmlBEr/RNouf+kyeiZ9mZnu9Z9hTge1ngSyCDSa7010jvfvxITEwa9//eu4+uqrkZmZiYaGBjzwwAMICQnBjTfeiOjoaHzhC1/AvffeK7dZfvnLX8ayZctOOUJZMJ2F0XnBXt9fw+lvkBXsdcfjVC3IAh0bTEca7LVU/FWMYDtBf5XLaJAfaIJgNLCnH5q4U6AV8lFGVoCdnZ3o7e2F2+1Ge3s7urq6pMUg+XKhLcc2m00GF4mOjpaWPDExMXA6ndJCkLYP0xaGQP7/gnk3p/IOzgXnug0gjMqLv1WhieSfv4FXsGnQp9/f3xPtfAJNbs4G4w28xzt3Ioz3rGq9p7+NRLLw8HAZUTo3Nxf79+9HWVkZ6urq0NnZKS2EVd8/lZWVGBoaQl9fHxYvXoySkhJNwBZKi94Xq7/+yl8ZVUUISrf6HZ1L99EHufH9cvK6+sA0RuVrMsrL2az/lGb98+jRT4r8TVwDTSKD/czfhEx/nr/0mUxjXSX46x+NrqtPUzDCx3jpNTonGIzaW/3fRun1dw9/3wW63niT/2Dzy+g59N8FEhH8pcVf/fd3v2DaPn/H6dMbzGenwtluA0wmkxyT6Z/FqDycSl9l9H6N8nq8eUMwAnSw4wL132DK7bnCXx00Os5fHTPqtyYy3xuvnQtWLDfqa4yurfbf411T/72/exgxXps8XpkLNh8nwtmu/wxzOpxu+T/X7eu5YkLiYF1dHW688Ua0t7cjPj4e559/Pj788EMZ6fGJJ56A2WzGDTfcgKGhIaxZswY///nPTylhp9KonYnjT7VgTFZHfqaPP9vX0xPMKpe+LNAkQQ04Q74DafswWQd2dXWhubkZnZ2d6OrqQmdnJ/r6+qQoYDL5BMGoqChpIRgbGwun0ym3DFK04MjISBk92GazaQRBAGMGCxOdZPhjKjVOZ7sNUDEaoPk71uicQJ8Fk4bTFVcmIrT7G0z6u04wk/7xjhsvrf4mtv7EGPr+dMuvPi1qtGn9vVSRjO4dE+MbpBYUFKC7uxvt7e3Sgri/v19GBAYg3QlERUXBYrFogtkYPS8983hCCRHstjB/kyejzyhNal5PRr4bcTbrf7AEahfUz/1NpMZbmKLj1HMmSqA6Hqiuneq9AgnC/vrc8cS5yUyjEcEKKUbtTbALLOOJR/5EYn1aghUDArWNgc4LVmgySnOgcdRkMJXmAcH0ncGcE+jzYK450eOCOT/YtJ3qvU6HiaRzMt7B6c7VJvJdsO1QMNc/3XngqaTlTDMVxwAME4hTab9nOiZxNs1PgqC7uxvR0dFwu91wOBznOjnMJDDRIhZoQkP+uehnaGgIQ0NDGBwcRHd3N3p7e9Hd3Y2Ojg643W50d3ejq6sLfX19GBgYkA7+TSafs2QKLkJRv1R/grRtmByYhoWFyWil/gKMqH/rLYHou2AH/ZPJdKpXlNauri5NWscTuYKdJPq7znjvabz3NpHJ8mQJdsFcI5jnDeYcf5Py8VbaJwO1LlG69X4AfWkyAxAQoDT5vvd6hMZ3oBBCuhCga1AQEfreZDJJn6N6h/JGeaJaEwQScMcrJ4FEZPX5A13PyJ9Td3c3nE7nlG8DjOp/MHXLX3k2Em6DOU79zOjedJ3xhGH170DPYXh/urdBWgKJQEZblwMJp/r7B1OHT7Ufm0i7E8w78dcO6Qn2mSaST0Z/B3qeQPcNdFywYn+g6/T09Ey7McB0SCvDTBemS72aLulkmOnEROrVafkcZJhg8CeijHe8KgiQGEgWgiQI9vb2ore3Fz09PTKoSE9PD9xuN/r6+jA4OIihoSEpBNhsNkRERCAsLEz6EYyJiYHL5UJ0dLRGEAwLC0NYWJgUCEgk0E/Mxxu4jzeoP1NWPv9unGoejTepM7r+eNZ5gd77qb7PiUy2xxM6gr1HIGshVYQKVuwLxsJBb9UUrFWAkSg49r6KWIcTAadgbHVnsVhkOoQQ8m/1euqihD4/9HkTSBgMRngZT2hV76MXRPzd598FfwK1nvHqg9GCzUSvEWxa1fsFe55xu3JC6jZpvQqeivVJIEFroun212ZMpF4bnRfMPU4FvZDvTxQdLw3Bfncq7/5U7hMIKS6b1JaRYRiGYRjGGBYHmTOOfuCvTnyNjqV/1WjSFFxELwi2t7dLP4JtbW3o6enB4OCg9CVI1j/kS9DhcCAqKgrR0dHSJwb9TRaCFHHYSBDUp/10REEmOCZiYRXs5DHQMZMl1gYS+yYyCQ0kiExEWAsGI9FRb/kUKA3+7qMXuAKl3d8x/u5rko7nvRDQC4Y+QUWcOFV1Hk/Powp/Y65tYL2kFyWNFgr8pXUiAkCgvJ6o1ZY/8WWqE2xZCHbByV8ZVr/zd67R54H6MH/lKRhkOkwmjfXgRDjbfROVMaO6FKwFXTCLbqcjENK1x+N070HXCPZ+6vETJbC4eUJYFiZpTc0wDMMwDOMPFgeZs8J4QmCgY7xerwwyokYcJv9hbW1tMtiI2+3GwMAARkZGAABhYWGIioqCzWaDw+FAXFycDC7icrkQFRUlg4yQKEhbh/WCoD5dpzLh9/cZM5ZAVlZG352KYKIXw4wssQJNUIOd9E6UU52cBpOe07WKMsE30VSfP9jI7wYXBE7RwsZkMvnOl7+bIYRnzPG+X3z/M5vHPrtR2vXlQh9EQj3G6F0ZCSLBvhujchWoHAb6+98FI3FNXxbGE64D5aP+2ECfqfiz3Az2/PHup68ZqlDor9wZXmeSFjxOhfEsacdbqCHGS7/Ruz8dgc9ocUR/n8kQ3P3lxWS+LxYGGYZhGIYJhiknDtLgqLu7+xynhJksTlXkUMVDIQRsNhssFgsiIyORnJwMj8eDkZERGW2Y/iXLHgoWYrFYYDKZpK9A+gkNDZW/k0BAwU30BLLYmag4OBHrlMmC6tN0sB7StwFGVk+nm196yxT1d6PJ33hWbqdr9aESSBSdyPX8TWKDtdzx/XLic2iFCfLq589STn9PeaL+A9MJ274AIq+aLpPJBC/lue+Dk+fBCwjV3+CJ7wTtqTPBpydqn3Ei4nOwQrEqOI5nDWVUhozO1R8TLEIAJpMXPT3Tow2Y6BjAn6hP3xl9bnTeZLXBkyn2nCi2EDhR3pX6qN7L3/X1ZTNYS8czSaC2PNj3pj/fX5nWW9UFskgMNo3BnjPR84IpL+OVdaP88/ocK6B7mtR/gOcBDHMmmC7zAK7/DDP5TKT+TzlxsKenBwCQnp5+jlPCMP9+kFPyqUx7ezsAbgMY5kww1dsAGgNkZGSc45QwzL8fU73+AzwGYJgzyVRvA1gHYJgzRzD1f8pFK/Z6vSgrK8OsWbNQW1vLkYpOk+7ubqSnp3NeThLTNT+FEOjp6UFKSooMnDBV6erqQkxMDGpqaqb0AGa6MF3L7FRkOufldGkDeAwwuUznMjsVma75OV3qP8BjgMlmupbZqch0zsvp0gbwGGBymc5ldioyXfNzIvV/ylkOms1mpKamAoCMJsucPpyXk8t0zM/pMsimRis6Onra5fFUZjqW2anKdM3L6dAG8BjgzMB5OblMx/ycDvUf4DHAmWI6ltmpynTNy+nQBvAY4MzAeTm5TMf8DLb+T92lA4ZhGIZhGIZhGIZhGIZhzigsDjIMwzAMwzAMwzAMwzDMDGVKioM2mw0PPPAAbDbbuU7KtIfzcnLh/DzzcB5PLpyfkwfn5dmB83ny4LycXDg/zzycx5ML5+fkwXl5duB8njw4LyeXmZCfUy4gCcMwDMMwDMMwDMMwDMMwZ4cpaTnIMAzDMAzDMAzDMAzDMMyZh8VBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZoYy5cTBp59+GllZWQgLC8OSJUuwffv2c52kKcmmTZtw9dVXIyUlBSaTCX/961813wsh8N3vfhfJycmw2+1YtWoVjh07pjmmo6MDn/3sZ+FwOOB0OvGFL3wBvb29Z/EppgaPPPIIFi9ejKioKCQkJOC6665DWVmZ5pjBwUHceeedcLlciIyMxA033IDm5mbNMTU1NbjqqqsQHh6OhIQE3HfffRgdHT2bj/JvAbcB48P1f/Lg+j+14PofHNwGTB7cBkwtuA0YH67/kwfX/6kF1//g4DZg8uA2QMuUEgdffvll3HvvvXjggQewa9cuzJs3D2vWrEFLS8u5TtqUo6+vD/PmzcPTTz9t+P1jjz2Gn/70p3j22Wexbds2REREYM2aNRgcHJTHfPazn8XBgwfx9ttv44033sCmTZtw++23n61HmDJs3LgRd955Jz788EO8/fbbGBkZwerVq9HX1yePueeee/D3v/8dr7zyCjZu3IiGhgZ87GMfk997PB5cddVVGB4expYtW/Db3/4Wa9euxXe/+91z8UjTFm4DgoPr/+TB9X/qwPU/eLgNmDy4DZg6cBsQHFz/Jw+u/1MHrv/Bw23A5MFtgA4xhTjvvPPEnXfeKf/2eDwiJSVFPPLII+cwVVMfAOK1116Tf3u9XpGUlCR++MMfys+6urqEzWYTL730khBCiEOHDgkAYseOHfKYf/zjH8JkMon6+vqzlvapSEtLiwAgNm7cKITw5Z3FYhGvvPKKPObw4cMCgNi6dasQQoi33npLmM1m0dTUJI955plnhMPhEENDQ2f3AaYx3AZMHK7/kwvX/3MH1/9Tg9uAyYXbgHMHtwETh+v/5ML1/9zB9f/U4DZgcpnpbcCUsRwcHh7Gzp07sWrVKvmZ2WzGqlWrsHXr1nOYsulHZWUlmpqaNHkZHR2NJUuWyLzcunUrnE4nFi1aJI9ZtWoVzGYztm3bdtbTPJVwu90AgNjYWADAzp07MTIyosnPoqIiZGRkaPJzzpw5SExMlMesWbMG3d3dOHjw4FlM/fSF24DJgev/6cH1/9zA9X/y4Dbg9OA24NzAbcDkwPX/9OD6f27g+j95cBtwesz0NmDKiINtbW3weDyaTAWAxMRENDU1naNUTU8ovwLlZVNTExISEjTfh4aGIjY2dkbnt9frxd13340VK1Zg9uzZAHx5ZbVa4XQ6Ncfq89Mov+k7Zny4DZgcuP6fOlz/zx1c/ycPbgNOHW4Dzh3cBkwOXP9PHa7/5w6u/5MHtwGnDrcBQOi5TgDDTCXuvPNOHDhwAO+///65TgrDMGcZrv8MM7PhNoBhZi5c/xlmZsNtwBSyHIyLi0NISMiYyC/Nzc1ISko6R6manlB+BcrLpKSkMQ5eR0dH0dHRMWPz+6677sIbb7yB9evXIy0tTX6elJSE4eFhdHV1aY7X56dRftN3zPhwGzA5cP0/Nbj+n1u4/k8e3AacGtwGnFu4DZgcuP6fGlz/zy1c/ycPbgNODW4DfEwZcdBqtaK0tBTvvvuu/Mzr9eLdd9/FsmXLzmHKph/Z2dlISkrS5GV3dze2bdsm83LZsmXo6urCzp075THvvfcevF4vlixZctbTfC4RQuCuu+7Ca6+9hvfeew/Z2dma70tLS2GxWDT5WVZWhpqaGk1+7t+/X9PQvv3223A4HJg1a9bZeZBpDrcBkwPX/4nB9X9qwPV/8uA2YGJwGzA14DZgcuD6PzG4/k8NuP5PHtwGTAxuA3Sc03AoOv74xz8Km80m1q5dKw4dOiRuv/124XQ6NZFfGB89PT1i9+7dYvfu3QKA+PGPfyx2794tqqurhRBCPProo8LpdIq//e1vYt++feLaa68V2dnZYmBgQF7j8ssvFwsWLBDbtm0T77//vsjPzxc33njjuXqkc8aXvvQlER0dLTZs2CAaGxvlT39/vzzmjjvuEBkZGeK9994TH330kVi2bJlYtmyZ/H50dFTMnj1brF69WuzZs0esW7dOxMfHi/vvv/9cPNK0hduA4OD6P3lw/Z86cP0PHm4DJg9uA6YO3AYEB9f/yYPr/9SB63/wcBsweXAboGVKiYNCCPHUU0+JjIwMYbVaxXnnnSc+/PDDc52kKcn69esFgDE/N998sxDCF8b8O9/5jkhMTBQ2m01ceumloqysTHON9vZ2ceONN4rIyEjhcDjErbfeKnp6es7B05xbjPIRgHj++eflMQMDA+K//uu/RExMjAgPDxfXX3+9aGxs1FynqqpKXHHFFcJut4u4uDjxta99TYyMjJzlp5n+cBswPlz/Jw+u/1MLrv/BwW3A5MFtwNSC24Dx4fo/eXD9n1pw/Q8ObgMmD24DtJiEEGJybBAZhmEYhmEYhmEYhmEYhplOTBmfgwzDMAzDMAzDMAzDMAzDnF1YHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDDMAzDMAzDMAzDMAzDzFBYHGQYhmEYhmEYhmEYhmGYGQqLgwzDMAzDMAzDMAzDMAwzQ2FxkGEYhmEYhmEYhmEYhmFmKCwOMgzDMAzDMAzDMAzDMMwMhcVBhmEYhmEYhmEYhmEYhpmhsDjIMAzDMAzDMAzDMAzDMDMUFgcZhmEYhmEYhmEYhmEYZobC4iDjl7Vr1+Kiiy4618nwy4MPPoj58+ef62QwzGmRlZWFDRs2nPK5Tz755KSmZyqxYcMGmEwmdHV1neukBMRkMuGvf/3ruU4Gw4zL6bQ3/vjrX/+KvLw8hISE4O67757UazMMc+a45ZZb8OCDD57rZDAM44fpUkeFELj99tsRGxsLk8mEPXv2nNb1eFx97mBx8ByyadMmXH311UhJSfFbCXp7e3HXXXchLS0Ndrsds2bNwrPPPqs5pqKiAtdffz3i4+PhcDjwyU9+Es3NzZpjdu3ahcsuuwxOpxMulwu33347ent7T/sZLrroIqxduxZVVVUwmUzy8w0bNuDaa69FcnIyIiIiMH/+fPz+97/XnHu64t7Xv/51vPvuuwGvt3nzZjidTtx9990QQuDBBx/ELbfcAuDMTJKYqccjjzyCxYsXIyoqCgkJCbjuuutQVlYmv+/o6MCXv/xlFBYWwm63IyMjA1/5ylfgdrvlMXv37sWNN96I9PR02O12FBcX4yc/+cmYe23YsAELFy6EzWZDXl4e1q5de9rp37BhA7KysgCcmUGCEALf/e53kZycDLvdjlWrVuHYsWOTeo+LLrrIUDRYu3YtnE7naV//n//8J5YuXYqoqCjEx8fjhhtuQFVVVdDnb9y4EZdccgliY2MRHh6O/Px83HzzzRgeHj7ttAG+5zeZTPjjH/+o+fzJJ5+U7xbQLshQ28pML8Zrb6ivNPp55ZVXAPjKgb9jWlpaAJwUzvU/TU1Np5X+QO2Nv8WIL37xi/j4xz+O2tpafO973xuTNrvdjpKSEvzyl7/UnHfLLbfguuuu03z25z//GWFhYXj88cdPKf3+2pRbbrllTF5dfvnl8nt6L/oJDY8ZmNMhmHH+gw8+iKKiIkRERCAmJgarVq3Ctm3bxhz35ptvYsmSJbDb7YiJiRlTd2pqanDVVVchPDwcCQkJuO+++zA6Onraz2AymVBVVTXGYOBXv/oVVq5ciZiYGJnu7du3a84NZg4DALt378YnPvEJJCYmIiwsDPn5+bjttttw9OhRAEB7ezsuv/xypKSkwGazIT09HXfddRe6u7vlNd5//32sWLECLpcLdrsdRUVFeOKJJ/w+16OPPgqTyTRmbEL1XG0LmX9fgqmjf/nLX7B69Wq4XC6/wheN89SfO+64Q34fTBk+VYzqaFZWlt9xhMlkkv0aAKxfvx7/8R//gfj4eISFhSE3Nxef+tSnsGnTJhw9ehTh4eH4wx/+oLmn1+vF8uXL8fGPfxwAsG7dOqxduxZvvPEGGhsbMXv2bMM+Hpichf+lS5dq8hcAnn32WZhMpjFj51tuuQUrV66U9x5PnzhTTJcxPouD55C+vj7MmzcPTz/9tN9j7r33Xqxbtw4vvvgiDh8+jLvvvht33XUXXn/9dXmN1atXw2Qy4b333sMHH3yA4eFhXH311fB6vQCAhoYGrFq1Cnl5edi2bRvWrVuHgwcPahqGyWbLli2YO3cuXn31Vezbtw+33norPv/5z+ONN96YtHtERkbC5XL5/f7NN9/EmjVrcO+99+LJJ5/UiJfMzGHjxo2488478eGHH+Ltt9/GyMgIVq9ejb6+PgC++tHQ0IAf/ehHOHDgANauXYt169bhC1/4grzGzp07kZCQgBdffBEHDx7Et771Ldx///342c9+Jo+prKzEVVddhYsvvhh79uzB3Xffjf/8z//EP//5z7P+zBPhsccew09/+lM8++yz2LZtGyIiIrBmzRoMDg6e66QFRWVlJa699lpccskl2LNnD/75z3+ira0NH/vYx4I6/9ChQ7j88suxaNEibNq0Cfv378dTTz0Fq9UKj8czaekMCwvDt7/9bYyMjEzaNZmpx3jtTXp6OhobGzU/Dz30ECIjI3HFFVcAAD71qU+NOWbNmjW48MILkZCQoLlfWVmZ5jj992ea3t5etLS0YM2aNUhJSUFUVNSYtB06dAhf/OIX8aUvfUmzoKfnueeew2c/+1k888wz+NrXvjbpab388ss1efXSSy9N+j0YRiWYcX5BQQF+9rOfYf/+/Xj//feRlZWF1atXo7W1VR7z6quv4qabbsKtt96KvXv34oMPPsBnPvMZ+b3H48FVV12F4eFhbNmyBb/97W+xdu1afPe73z1jz7ZhwwbceOONWL9+PbZu3Yr09HSsXr0a9fX18pjx5jAA8MYbb2Dp0qUYGhrC73//exw+fBgvvvgioqOj8Z3vfAcAYDabce211+L111/H0aNHsXbtWrzzzjsacSAiIgJ33XUXNm3ahMOHD+Pb3/42vv3tb49ZlACAHTt24Be/+AXmzp17xvKHmR4EU0f7+vpw/vnn4wc/+EHAa912222aPuaxxx6T3wVThieTHTt2yHS8+uqrALTjBTJw+PnPf45LL70ULpcLL7/8MsrKyvDaa69h+fLluOeee1BQUIBHH30UX/7yl9HY2Civ//jjj+P48eNS7K+oqEBycjKWL1+OpKQkhIaGnpHnIi6++OIxi3Xr169Henr6mM83bNiASy65BMDZ0SemPYKZEgAQr7322pjPS0pKxMMPP6z5bOHCheJb3/qWEEKIf/7zn8JsNgu32y2/7+rqEiaTSbz99ttCCCF+8YtfiISEBOHxeOQx+/btEwDEsWPH/Kbp+eefFxdeeGHAdF944YXi+eefF5WVlWK84nTllVeKW2+9Vf79wAMPiHnz5vk9ft++feLiiy8WYWFhIjY2Vtx2222ip6fH7/nq37///e+F1WoVTz31lOaaDzzwgLj55puFEEJkZmaK9evXB0wz8+9HS0uLACA2btzo95g//elPwmq1ipGREb/H/Nd//Ze4+OKL5d/f+MY3RElJieaYT33qU2LNmjUB0zNeOVy/fr3IzMwUQghx8803iwceeEBz7hNPPCH//tWvfiWio6PFO++8I4Tw1c8777xT3HnnncLhcAiXyyW+/e1vC6/XK4QQwuv1iqSkJPHDH/5QXqOrq0vYbDbx0ksvyc8C1cX169cLi8UiNm3aJI//wQ9+IOLj40VTU5NMx1e/+tUxz/b888+L6OjogM8OQLzxxhtizpw5wmaziSVLloj9+/fLY1555RURGhqqad9ef/11YTKZxPDwsMwnAGN+hBDiiSeeEFlZWX7TQOk3Or+yslIIMbb9/u53vyuSkpLE3r175fm33nqrcLlc4umnn5bHPfHEE/LdUn5Qm0ttKzO9Caa9mT9/vvh//+//BbyGxWIRL7zwgvyM6kZnZ+eE0nOq7Y1RHaA06D/zl7bc3Fzx2GOPyb9vvvlmce211wohfG1GWFiY+Mtf/mL4PfHVr37V77jEKD2UfqNrqejPo3vwmIGZLPyN8/W43W4BQPbjIyMjIjU1VTz33HN+z3nrrbeE2WyWfa4QQjzzzDPC4XCIoaEhv+fpxxT+0l1ZWTnunGB0dFRERUWJ3/72t/Kz8eYwfX19Ii4uTlx33XWG1wzUvv3kJz8RaWlpAdN+/fXXi8997nOaz3p6ekR+fr54++23DccmVM/VtpCZGYxXR2muu3v37jHf+RvnBiKYMjwZddRfn1xdXS0sFou45557DK+rzhUuvvhicdVVVwkhhDh8+LAICwsTf/vb32Qa1f5THUMY9bvBjF8AiJ///Ofi8ssvF2FhYSI7O1u88sor8vt//vOfAoBobGyUnyUmJoqnn35aU2+PHz8uxyb+0OsT27dvF6tWrRIul0s4HA5xwQUXiJ07d45J37PPPiuuuuoqYbfbRVFRkdiyZYs4duyYuPDCC0V4eLhYtmyZKC8vl+dMlzE+Ww5OcZYvX47XX38d9fX1EEJg/fr1OHr0KFavXg0AGBoagslkgs1mk+eEhYXBbDbj/fffl8dYrVaYzSdft91uBwB5zNnA7XYjNjY2qGP7+vqwZs0axMTEYMeOHXjllVfwzjvv4K677hr33Keffhq33norfvOb3wR1PDOzoO3Cgcqi2+2Gw+EIuPKlL89bt27FqlWrNMesWbMGW7duPc0UB8djjz2G//mf/8G//vUvXHrppfLz3/72twgNDcX27dvxk5/8BD/+8Y/x3HPPAfBZ3TU1NWnSHR0djSVLlsh0j1cXacvwTTfdBLfbjd27d+M73/kOnnvuOSQmJk7Ks9133314/PHHsWPHDsTHx+Pqq6+WFnilpaUwm814/vnn4fF44Ha78bvf/Q6rVq2CxWIBoF1Braurw9KlS+UWg6SkJDQ2NmLTpk1+7/+Xv/xFsxr8sY99DIWFhWOeTwiBL3/5y3jhhRewefNmjVWCw+HAt771LTz88MPSioz592e89mbnzp3Ys2ePxlJZzwsvvIDw8HC5fUdl/vz5SE5OxmWXXYYPPvhgchJtwF/+8hekpaXh4YcflvVg+fLlcsv0q6++Kj/TI4TAunXrUFNTgyVLloz5/r//+7/xve99D2+88Qauv/76U07j8uXL8eSTT8LhcMg0fv3rX5ffb9iwAQkJCSgsLMSXvvQltLe3y+9oO+Q777yDxsZG/OUvfznldDDMqTI8PIxf/vKXiI6Oxrx58wD43ALV19fDbDZjwYIFSE5OxhVXXIEDBw7I87Zu3Yo5c+Zo+qQ1a9agu7sbBw8ePCtp7+/vx8jIiKatG28OQ5b+3/jGNwyv6c/tSENDA/7yl7/gwgsv9Jue3bt3Y8uWLWOOufPOO3HVVVeNGa8xzOny+9//HnFxcZg9ezbuv/9+9Pf3+z02mDJ8pnn11VcxMjLit/7RjjuTyYTnn38emzdvxq9+9Svccsst+PSnP41rrrkGAPCTn/wEDz/8MNLS0tDY2IgdO3ZMSvq+853v4IYbbsDevXvx2c9+Fp/+9Kdx+PBhAMCKFStgsViwfv16AL5dQAMDA/jCF76A9vZ2VFZWAvBZE4aFhWHZsmV+76Ofz/X09ODmm2/G+++/jw8//BD5+fm48sor0dPToznve9/7Hj7/+c9jz549KCoqwmc+8xl88YtfxP3334+PPvoIQojpqUOcU2mSkcDPasXg4KD4/Oc/LwCI0NBQYbVaNatyLS0twuFwiK9+9auir69P9Pb2irvuuksAELfffrsQQogDBw6I0NBQ8dhjj4mhoSHR0dEhbrjhBgFAfP/73/ebpmAsB4Pl5ZdfFlarVRw4cEB+Fshy8Je//KWIiYkRvb298rM333xTszJqZDlotVoFAPHrX/96UtLN/Hvh8XjEVVddJVasWOH3mNbWVpGRkSG++c1v+j3mgw8+EKGhoeKf//yn/Cw/P39MfXrzzTcFANHf3+/3WqdjjUKWg9/4xjdEcnKypn4J4VuZKi4ulqt/Qgjx3//936K4uFg+BwDR0NCgOe8Tn/iE+OQnPymECK4uDg0Nifnz54tPfvKTYtasWeK2224bk47TsRz84x//KD9rb28XdrtdvPzyy/KzDRs2iISEBBESEiIAiGXLlvldkfzKV74iMjMzRUtLixDCZ+1wyy23CAAiKSlJXHfddeKpp57SWGOr/PjHPxZOp1OUlZXJzwCIV155RXzmM58RxcXFoq6uzvD5BwcHRWZmprSk0FsOMv9eBNPefOlLX5L10R/FxcXiS1/6kuazI0eOiGeffVZ89NFH4oMPPhC33nqrCA0NHbO6rWcy2huVzs7OMavyVG8jIiJERESECA0NFWazWfzv//6v5tybb75Z9tnvvvvumPtN1HJQCP9tyksvvST+9re/iX379onXXntNFBcXi8WLF4vR0VEhRGCLEIaZDPyN84UQ4u9//7uIiIgQJpNJpKSkiO3bt8vvXnrpJQFAZGRkiD//+c/io48+EjfeeKNwuVyivb1dCCHEbbfdJlavXq25Zl9fnwAg3nrrLb9pCsYqKVi+9KUviZycHDEwMCA/G28O84Mf/EAAEB0dHUHd49Of/rSw2+0CgLj66qs19yJSU1OF1WoVZrN5jNXiSy+9JGbPni3POxVrL+bfl0B1VIjA/cQvfvELsW7dOrFv3z7x4osvitTUVHH99dePOS6YMqwyGXXUn6XeHXfcIRwOh+azP//5z7LvjoiIEPv27ZPf/eY3vxFms1lkZGSMGSMbjWdvvvlmERISorleRESECAsLC8py8I477tB8tmTJEs1YaMWKFVLrePrpp8WVV14phBBi9erV4je/+Y0QQoibbrpJs8tLj5E+ocfj8YioqCjx97//XZO+b3/72/LvrVu3jtEfXnrpJREWFub3ulMVthyc4jz11FP48MMP8frrr2Pnzp14/PHHceedd+Kdd94BAMTHx+OVV17B3//+d0RGRiI6OhpdXV1YuHChtBQsKSnBb3/7Wzz++OMIDw9HUlISsrOzkZiYqLEmPFOsX78et956K371q1+hpKQkqHMOHz6MefPmISIiQn62YsUKeL1ejXN3PWlpaVi4cCF++MMfanwjMAzgWzE+cODAmMAQRHd3N6666irMmjXLb+CPAwcO4Nprr8UDDzwgV7/PJY8//jh+9atf4f333zesX0uXLtX421y2bBmOHTsWtD+9YOqi1WrF73//e7z66qsYHBwM6AT8VFBX/GJjY1FYWChXD5uamnDbbbfh5ptvxo4dO7Bx40ZYrVZ8/OMfhxBCc51f/vKX+PWvf43XX38d8fHxAICQkBA8//zzqKurw2OPPYbU1FR8//vfR0lJyZg25B//+Af+53/+By+//DIKCgo0391zzz3Ytm0bNm3ahNTUVMPnsNlsePjhh/GjH/0IbW1tp50vzNRmvPZmYGAAf/jDHwJaDW7duhWHDx8ec0xhYSG++MUvorS0FMuXL8dvfvMbLF++fNLr3umwefNm7NmzB3v27MFzzz2H73//+3jmmWc0x8ydOxdZWVl44IEHJiVImj/IymHOnDm47rrr8MYbb2DHjh0cYISZEpCv4i1btuDyyy/HJz/5SRl8iPyHf+tb38INN9yA0tJSPP/885ogRueaRx99FH/84x/x2muvISwsTH4+3hxG30ePxxNPPIFdu3bhb3/7GyoqKnDvvfeOOWbz5s346KOP8Oyzz+LJJ5+UvkVra2vx1a9+Fb///e81aWSYyeD222/HmjVrMGfOHHz2s5/FCy+8gNdeew0VFRWa44Ipw2cTvT/+NWvWYM+ePXjzzTfR19enmSvceuutSE5Oxpe//GU4HI6grk9tm/pDu5fGQ2/tt2zZMjn2B3w7l6gP37Bhgwz2ceGFF2o+v/jiiw2v70+faG5uxm233Yb8/HxER0fD4XCgt7cXNTU1mvPV3UFktT1nzhzNZ4ODg5MSdOZswuLgFGZgYADf/OY38eMf/xhXX3015s6di7vuuguf+tSn8KMf/Uget3r1alRUVKClpQVtbW343e9+h/r6euTk5MhjPvOZz6CpqQn19fVob2/Hgw8+iNbWVs0xZ4KNGzfi6quvxhNPPIHPf/7zZ/ReABAVFYV33nkHERERuPjii1kgZCR33XUX3njjDaxfvx5paWljvu/p6cHll1+OqKgovPbaa3JLqsqhQ4dw6aWX4vbbb8e3v/1tzXdJSUljooQ3NzfD4XDIbfxngpUrV8Lj8eBPf/rThM9NSkoCAMN003fBsmXLFgC+6M8dHR2a7xwOhyb6M9HV1YXo6OgJ3UfP008/jejoaDz22GNYsGABLrjgArz44ot49913NREf169fL7f8GjkhT01NxU033YSf/exnOHjwIAYHBzVRFQ8dOoRPf/rTePTRRw1F4csuuwz19fXjBqD53Oc+h8zMTPzv//7vaTw1M9UZr70BfJF5+/v7A/aNzz33HObPn4/S0tJx73neeeehvLz8lNM82WRnZyMvLw8lJSW49dZbcdNNN+H//u//NMekpqZiw4YNqK+vx+WXX67ZtmM2m8eIB5MV0CcnJwdxcXFTKr+YmUtERATy8vKwdOlS/PrXv0ZoaCh+/etfAwCSk5MBALNmzZLH22w25OTkyMmqv/EHfXcm+dGPfoRHH30U//rXvzR9azBzGFpkO3LkSFD3SkpKQlFREa655hr84he/wDPPPDNmnJ+dnY05c+bgtttuwz333CMXenfu3ImWlhYsXLgQoaGhCA0NxcaNG/HTn/4UoaGhkxqAjGHIhYa+jwmmDJ8t8vPz4Xa70dTUJD+LjIxEXl4eMjMzDc+huhMs1LapP/4W0CfKxRdfjKNHj6K+vh4bNmyQW7RJHKyoqEBtba0MRqISSJ+4+eabsWfPHvzkJz/Bli1bsGfPHrhcLgwPD2uOU+eJJLIafUYLPNMFFgenMCMjIxgZGRlj3RcSEmJY0OLi4uB0OvHee++hpaVF+gJQSUxMRGRkJF5++WWEhYXhsssuO2Pp37BhA6666ir84Ac/wO233z6hc4uLi7F3716Nb64PPvgAZrMZhYWFAc+NiYnBO++8A4fDgYsuuggNDQ2nlH7m3wNxwufDa6+9hvfeew/Z2dljjunu7sbq1athtVrx+uuvG64qHzx4EBdffDFuvvnmMRNcwLeipY/E+fbbbwf0czEZnHfeefjHP/6B73//+5pFA0IVyABI/xkhISHIzs5GUlKSJt3d3d3Ytm2bTHcwdbGiogL33HMPfvWrX2HJkiW4+eabNW1UYWEhdu3aNSZtu3btGmOBZ8SHH34of+/s7MTRo0dRXFwMwOfnyKiNBE52yOXl5fj4xz+Ob37zm0FFMY6JiUFycrJ85ra2Nlx99dW44YYbcM899xiec8011+APf/gD/vM//9OvpRjgEzweeeQRPPPMM6iqqho3Lcz0Ipj2hvj1r3+Na665Rlqx6unt7cWf/vSngJaFKnv27JFCwpngdCN4h4SEYGBgYMznmZmZ2LhxI5qamjQCYXx8/JhJ0549eyYljXV1dWhvb5f5ZbVaAYAFAmZK4PV6MTQ0BMDnV9dms2l2zYyMjKCqqkpO4JctW4b9+/dLa0PAN/5wOBwaUXGyeeyxx/C9730P69atw6JFizTfBTOHWb16NeLi4jRRXVW6urr83puuQfnk7xj6/tJLL8X+/fs1FkyLFi3CZz/7WezZs0eOGxhmMqC+KlCfHEwZPpN8/OMfh8ViGTcK87lCHfvT3zT2B3w+Ta1WK37+859jcHBQLqIuXrwYra2t+M1vfoOIiAicd955muuMp0988MEH+MpXvoIrr7wSJSUlsNlsM2q3z5mNM80EpLe3V7OiUFlZiT179iA2NhYZGRlwOBy48MILcd9998Fut8sB9AsvvIAf//jH8rznn38excXFiI+Px9atW/HVr34V99xzj0ZE+9nPfobly5cjMjISb7/9Nu677z48+uijfp39ni7r16/Hf/zHf+CrX/0qbrjhBrkqYbVaNU4/BwYGxgz2o6Ki8NnPfhYPPPAAbr75Zmnl+OUvfxk33XRTUEEOnE4n3n77baxZs0aaHaekpEzqMzLTgzvvvBN/+MMf8Le//Q1RUVGyLEZHR8Nut0thsL+/Hy+++CK6u7ulCXh8fDxCQkJw4MABXHLJJVizZg3uvfdeeY2QkBA5sb/jjjvws5/9DN/4xjfw//7f/8N7772HP/3pT3jzzTfP+DMuX74cb731Fq644gqEhobi7rvvlt/V1NTg3nvvxRe/+EXs2rULTz31FB5//HEAvlWtu+++G//7v/+L/Px8ZGdn4zvf+Q5SUlJw3XXXAcC4ddHj8eBzn/sc1qxZg1tvvRWXX3455syZg8cffxz33XcfAOBLX/oSfvazn+ErX/kK/vM//xM2mw1vvvkmXnrpJfz9738f9/kefvhhuFwuJCYm4lvf+hbi4uJk+q666io88cQTePjhh3HjjTeip6cH3/zmN5GZmYkFCxZgYGAAV199NRYsWIDbb79ds0KalJSEX/ziF9izZw+uv/565ObmYnBwEC+88AIOHjyIp556CgBwww03IDw8HA8++KDmfCofxPXXX4/f/e53uOmmmxAaGmoYQILSvGTJEvziF7+YtKAtzNRgvPaGKC8vx6ZNm/DWW2/5vdbLL7+M0dFRfO5znxvz3ZNPPons7GyUlJRgcHAQzz33HN577z3861//mvyHOkFWVhY2bdqET3/607DZbIiLiwt4fEtLCwYHBzE0NITt27fjd7/7nd86kZ6eLrf/rFmzBuvWrcMll1yCH/7wh3jhhRewbNkyvPjiizhw4AAWLFgQMI29vb149913MW/ePISHh8Pr9eKhhx7CDTfcgKSkJFRUVOAb3/gG8vLysGbNGgBAQkIC7HY71q1bh7S0NISFhZ22VTPDjDfO7+vrw//93//hmmuuQXJyMtra2vD000+jvr4en/jEJwD4LO/vuOMOPPDAA0hPT0dmZiZ++MMfAoA8ZvXq1Zg1axZuuukmPPbYY2hqasK3v/1t3HnnnZqAhZPJD37wA3z3u9/FH/7wB2RlZcm2LjIyEpGRkUHNYSIiIvDcc8/hE5/4BK655hp85StfQV5eHtra2vCnP/0JNTU1+OMf/4i33noLzc3NWLx4MSIjI3Hw4EHcd999WLFiBbKysgD4dhFkZGSgqKgIALBp0yb86Ec/wle+8hUAvrnF7NmzNc8QEREBl8s15nNm5jBeHQV8O2JqamqksQkJ9UlJSbJP+cMf/oArr7wSLpcL+/btwz333IMLLrhAWtMGU4bPNhkZGXj88cfx1a9+FR0dHbjllluQnZ2Njo4OvPjiiwBwTkXzV155BYsWLcL555+P3//+99i+fbu0qAZ8wVWXLl2Kp556CitWrJBptVqtms9Va75g9In8/Hz87ne/w6JFi9Dd3S3bsBnDOfV4OMMhB6H6n5tvvlke09jYKG655RaRkpIiwsLCRGFhoXj88cfHBBhITEwUFotF5Ofnj/leCJ9DztjYWGG1WsXcuXPFCy+8MG76TicgiT6sOf2o13vggQcMj7n00kuFEELs27dPXHzxxSIsLEzExsaK2267TfT09GjO1wck0Qc4cbvdYtmyZSIvL29MkABmZmBUxgDIEPL+6iEAUVlZKYTwX1b1znfXr18v5s+fL6xWq8jJyQkqTP1kBgjYuHGjiIiIED/96U+FED5n2//1X/8lnQ7HxMSIb37zm5r2wev1iu985zsiMTFR2Gw2cemll2qCbQgRuC4+9NBDIjk5WbS1tcnjX331VWG1WsWePXvkZ9u3bxeXXXaZiI+PF9HR0WLJkiUBHT8LcfLd/P3vfxclJSXCarWK8847T+zdu1dz3EsvvSQWLFggIiIiRHx8vLjmmmvE4cOHhRAnHUgb/QghxK5du8TnPvc5kZ2dLWw2m3C5XOKCCy4Qr7/+urz+eOUDOifWL7/8sggLCxOvvvqqfA96p+dbtmwxLEPM9Ga89oa4//77RXp6uvB4PH6vtWzZMvGZz3zG8Lsf/OAHIjc3V9bJiy66SLz33nvjpu902putW7eKuXPnCpvNJutPoIAk9BMaGiqys7PF17/+dU1gI6OAI3V1dSI/P18sXbpUuN1u8d3vflckJiaK6Ohocc8994i77rpr3HHJHXfcIVwulwAgHnjgAdHf3y9Wr14t4uPjhcViEZmZmeK2226TAZWIX/3qVyI9PV2YzeZJC8bGzGzGG+cPDAyI66+/XqSkpAir1SqSk5PFNddcowlIIoQQw8PD4mtf+5pISEgQUVFRYtWqVWMc6FdVVYkrrrhC2O12ERcXJ772ta+JkZGRgOk7nWAHmZmZhs+mXi+YOYwQQuzYsUN87GMfE/Hx8cJms4m8vDxx++23i2PHjgkhhHjvvffEsmXLRHR0tAgLCxP5+fniv//7vzUBDX7605+KkpISER4eLhwOh1iwYIH4+c9/HrCN5YAkTDBz8eeffz5gWa+pqREXXHCBiI2NleX3vvvu0wTtCKYMG3EmA5IQb7/9trjiiitEbGysCA0NFYmJieK6664T69atG3OsUWAyIfwHJNH38cGkRwjfWOrpp58Wl112mbDZbCIrK0sTiJCg+dmjjz6q+fzBBx8UAMQjjzwyJk3j6RO7du0SixYtku/plVdeGfPc+nG/UbCaYJ5zKmISYoLeYJkZw9q1a7F27dop67D7/vvvx+bNm/H++++f66QwzCmTlZWFtWvXSke6k8lFF12E+fPn48knn5z0azMMM/04k+0NwzDTi1tuuQVZWVl+A7AxDHNu4TrKnG3Y5yAz7RBCoKKiAu+++27Q0Y8ZhmEYhmEYhmEYhmGYsbA4yEw73G43Zs2aBavVim9+85vnOjkMwzAMwzAMwzAMwzDTljMmDj799NPIyspCWFgYlixZgu3bt5+pWzFniPnz5+OWW24518kYg9PpxNDQEN5//32/odaZcwvX/+C5++67z5gz4g0bNvCWYuacwG3A1ORMtjcMQ3D9nx5cd9117GKAOSNwGzA5cB1lzjZnxOfgyy+/jM9//vN49tlnsWTJEjz55JN45ZVXUFZWhoSEhMm+HcMwUwiu/wwzs+E2gGFmLlz/GWZmw20Aw0xfzog4uGTJEixevBg/+9nPAABerxfp6en48pe/jP/5n/+Z7NsxDDOF4PrPMDMbbgMYZubC9Z9hZjbcBjDM9CV0si84PDyMnTt34v7775efmc1mrFq1Clu3bh1z/NDQEIaGhuTfXq8XHR0dcLlcMJlMk508hpmRCCHQ09ODlJQUmM1nztXoROs/wG0Aw5wNpmobwPWfYc48U7X+A9wGMMzZYKq2AVz/GebMM5H6P+niYFtbGzweDxITEzWfJyYm4siRI2OOf+SRR/DQQw9NdjIYhjGgtrYWaWlpZ+z6E63/ALcBDHM2mWptANd/hjl7TLX6D3AbwDBnk6nWBnD9Z5izRzD1f9LFwYly//33495775V/u91uZGRk4HhlJaKiogAAIWYTTDDB4/XCK7yA2YSQEJ/q6fV6AUHHmGEyARACXq8XtGPabDYDAvAKQHgBCC9MJhPM5hCYzSGAEBAC8AovvLRIYQIEAI/wQggvILwwm8wIDQmB2WSG8Hrh9XhhAmA6ocAKCMBkAkwmmMyAFyaZBgicuI7wnQMTzCYTTCYzTDABXgHhFfAC8EJACAH6z2w2QZhOJMrsuwUg4PX40m02m2E2m33P4PU9O2EymWEOMcFsOpE3Xvju4/HCK3zX9p3ve3BfesWJ3088DuixTh7jEd4T1/d9ri7uiBPPCOE7FwA8Xi9GR0cBAKGhoQgNDQWECV6P73Ov14uQkBCEWiwwmUzyGcwms+8iwpce4fXlibyXyQtAwGQyISTEBK8XGB31QAiBkJAQhISEwOv1wuPxnEjviTw3mU7klxdCACEhZnlfIbwwm00ICQnRrFoJIWT+eIUXXiqP9L3XC+EVMJvNCA0Nle/kZB757imEV7mW6cQ9Trwfk0nmGZUdOtfj8WBkZAQmkwmWkFDAZILX4/G9R5MvrV7hhVd4YDIDISG+l+eFQE93D3Iy82Sdmkr4awNqamrgcDgm7T5CiAmvQgZzjr9jJnK/U0nbueZMppnf1eRCK4YZGRlTrg3g+q89VgiBvr4+mM1mWCwW9Pf3Y3BwEH//+9/xzDPPoKenB5GRkbDb7Zg7dy4uueQSXHbZZYiMjMTIyAi6u7shhEB4eDjCwsJgOdGnTjbnuv57vV75rHa7HUIIDA0Nyf53dHQUNpsNXq8XVqsVXq8XtbW12Lx5M3p7e2VfWlpaipSUFERERMDhcGB0dFT2uVarFUNDQxgdHYXFYkF4ePi0q/vA1K7/QIA24M+b4IiInLT7+EZck3+Ov2Mmcr9TSdu55kymmd/V5CIA9PT1IuPjF0y5NsBf/f9n1T5EOE6kdaq9oKmWnklAmEYgTB6YRAhMwgKIUPjEEN8k3AQvhMk3/4UJMAkvTJ5RWKxm9I30o6qxCuvefgtHDu5BdVUlhrv7kZ6Sgzlz52PJyvNhslnQ2tUOd28v5s6ai9S0DESE2hFqDoXJa4bVFHpizmw+cR8BE+kRULPRN0/2nhAZSBGg7yBORNsV/5+9Pw/S5LjP+8FPZlbVe/Z9zH1jBjO474skCBIUKJAEQZGyRdIMy1pLKyusDVv6QxF2hGRHOOzY0Pq3ctghhxVrrSVxJYoSId73jXNwn4M5MffZ0+fb/V5VlZn7R2ZWv92YAQYgSM2Q80UMuvs9qrIys7Iyn3y+zyMRFqywaKFB2MUPWom0CuGvDeHX8pdIW71RBIxpeTQb8/zSxmsv6P5/x8HB0dFRlFKcOXNmyetnzpxh5cqVr/t8qVSiVCq97vXB/n76+/oWASaHnLhGNgZjtOucSiKF9LbLwoFcHngJE0whJcYYcm38ZxwY5jqFKDqUsQbtAb4wOcQDdcZoBA6IU0I6UEab4rMOMLI9AKG7lYCe8rjOp4RCSQcyBmDSGtf1hS+b+8tirPbH9SHwHTyUvbesgAXtgT9rLdKDkIv9pPfWwoGD/j1jLFprtHYgXhw7EM/igK9FgMt60LQHpPOgmQNdZQFGCisw1pLn2SKwFSdEkVoE+6xrZCkkQrrjG99WvSCwsf6KxeJ1GKux1iAESLUI+tme0SLUVCiv9XUeulUAC0MFFv2mp/17w3pgUGvtwVtFpJTvJ8YPbottUgCBHshVHsz1zbUIUho34AZQ0miDNg5Qtri2SaIIKRVxnCClxPj6E4ie/mKQShJFvj4wi738p7yweav3P5x/DOjv739HwYHLcTl+kSPc+xfbGHD5/n991Ot195zVmkqlgpSSBx54gP7+fr7yla/w/PPPMzs7y8TEBEePHiXPcz71qU/R39+PlJJGo4FSisHBwddtcv28hPFzkiRJChCvWq1SqVQAaDabRFGEUopHH32Ur371q4yNjTE8PMzIyAg333wzK1asIIoiyuUy5XJ5SZ0bY1hYWKBcLlOtVimVSpd0PV6s9z+8wRhQq9Nfu7iAjMtxOS7VKLgvF9kYcL77v9bXR/1tzwH8Onnpj58s3omDXLTgkwXRAZGDVWATsAkWiUXi4LawFu6AbZCRYxDMdRo88+zTfPdb3+DpRx5hYXaGoU2r+eS/+pe87/b7WTm+joHRIXKpmZyb5uX9L/PUnudYM3eSu26/g6RSJSH2YJ1ESuVJUwXKgbA9abBhbb0EFlxasQ4HdMcxGIzMPZnIf8pKlIkWvysWiT69VXJxthW8UeHOBw4W71/A/f+Og4NJknDzzTfz/e9/n4997GOAm8R9//vf53d/93cv+DjSgAzIjoVeUEsqhVWC3LP3DAbpmVpgC+BGe8BFSomKIuIowiLQRpPlxrP3PFAoHavQeLRGSlEg1gJQAcjThhzPIowitDFooxFCODYcoI1ncymJtZYsTdFaE0cRpVLZ14kDOd35ASUwxpJlGbnWfvdbEUa1wCIU0gF6QkgcJCp6WGiutFIp/467QRZBK0sUuevV2qC1wRqwUhT1q5QiilTBdgvf1b5M0i80pJBoo9GepRfAMCmlQ/098BdwPAdoCc/wU77cru6M0a7cUqHwN6twdecA3UUWnbt24etPe4Zf5NrPGldHwtErjTEYrZFCoKQq+mJgJQYWYW+fCfWklCjYf4GpqfXi96QMjEYDwmKtxuLbRYbjBgaEP5f7MgUL1rMZlVIoKbEeMAw3rowUGEGeZuR5jhSCJCmhlMJ6YDuAp8W5rEBiXH2wCITac4x7P414p+7/y3E5LselGZfHgJ88lFKcPn2aLMtYs2YN7XabsbExPvOZz3DLLbewZ88eHn/8cb773e+iteZ//s//yXe/+13+/b//99x4441UKhW01sWc5OcxhBBUq1VOnTpFqVRidHTUb5iZAhD9/Oc/z49+9COuu+467r33XpIkYceOHYyPj2OtJU3TYu6mlCKO4wIgzLKMJEkolUo/1/X4Tsfl+/9yXI5f7HjHxoDzYhgXgtqIc/34yWKRQ3IBBzzPhy5asAkWWYLgUAftiUoCE1h3gEAjRIdIWo6cPc3f/O3n+PE3v83ssQmkUrz7A/fysU/+U2688TYGK2tJO5B2NVGlRKWac+MNt7Bh03qef+FJPvu3/4d333k71115E4moYYQGMhSKSMaOxBXIPH7da7FYsfj30kr1HEOPHVmW/hPYggkJBmHV4p/L2+Zib6ufYvxUZjy///u/z6//+q9zyy23cNttt/Hf/tt/o9ls8hu/8RsXfAxjjccERUFjXWTHOcBFCgeEAWitHYAiHVtKqggpQESeWecBMBEYXDhGoRXSg0gGpSSJcn9n3YzMOFaakhKllE9DdiBUrtMCaAqAl7XCs8gcaJhlmZuoRopyueyYgjgWHiEtFYrvCw++RSIwAgPzy2P2woKwCFd6j5ov3gQB4CrAKwDjP+Jfc2nHi+nWSjq2pWMN5gUAJotrDinLdhHgCgxJfzOFdOsAwAEFgzIw5mARbAzpxaE9XZk0UoZzi6Vgp3S7FkIsTZuOIgcKhvNZwPQwHx3Q6dKLsrRb1LOKo+L8wlee1QYh7CLbrqc+XX0ZD3IuAo3WODDRgc8KkA5cRmB9yq/Oc9fflHTf86nHS9vIYD3Dtfjb0x+lECRxQlIqOZagcdcplfAsy16WpPBp2IFHG/inDuz8WcU7cf9fjstxOS7duDwG/OQxNjbGmTNn2LdvH+vXr6dUKnHq1CnWrl3Ltddey7333suGDRv4kz/5E2ZmZujr6+O//tf/ygMPPMB9991HvV7n1KlTjI2N/VyCW1pr9uzZw8DAAMPDw0xMTCCEoF6vc+zYMb7+9a+TJAkf/ehH2bJlC5s3b6ZerzM/P1+kIw8PDwOL8512u0273aZWqy1hEgYm5qWaVvyzjsv3/+W4HL/Y8bMfA36GNK+f5mn+Mdlq1q1jHa1H4nC5ACLg/7ZkdJhunOGFp57gy5//B1547AWMhBWb1vPRT3+KD933IVYNjRLnCplBrVwnFTmpSYlVQiIV8cg4997zAV55+RmefOpJjh47ye233sVI/zixjMmsxgpLRIxCLYEATZE9GHCdHkCzqLulGZeBY+YTFVnEOq1PPX479cXFCSC+A+X6qcwYf+3Xfo2zZ8/yR3/0R5w+fZobbriBb33rW68TJ32jsEKge3T3wIOBnlHmACBbsLSiKAYsuWcMRlIhlULnuUtntRB54NDly0tQ1unxKelYiljHHtTu1nD6ghHCdyyjc5/GGnTlYldW39uMtVjPgrNQTMjDZFIb/13POrRYD2ZZp5OH9kiPB0Q98FRo+vk60Sbv0atzrwvPjouiqGDMGRP0DYOeHU7b0P9KzyTXaQ6qQtsu7L4DPtV4keUmfJki5dJpEaKHoRgAswAsLgJtxugCbAt6SkXqsjUF8JfnQUNQemacQBtXR8an2TogzTFD7RINSXetAVw0xhB71miea/I8AwRR5MFMubgr4drDgdIBBHQAKkW6rsPbhEsNjmTv8OOvAXK9yFiMo9gBx9hCjxCBv86cXOdOu1JKYs9eCEKF0tetMRabG4QUqFiitaGbpgBEUYyQgjz3bSScfqL02pSuGix5vjQ1+qcZ78T9fzkux+W4dOPyGPCTRUhpFUIwOjpKq9UiiiJGRkZI05ROp8P4+Dif+cxnqFQqfOELX+DUqVPMzc1x5MgRvvjFL/KhD32I+++/v9iECvMJWMwmAIrn/DsVvZIusDSFZblER6/0Rvi7V/4jZCSETdjezwshWLt2LVEUMTMzQ7fb5ZFHHuH73/8+g4ODvO997+Ouu+5iZGSEPM9JU7ehG1LYwkZlHMd0u91CpzFoFob6CmnHYS52Od48Lt//l+Ny/GLHT28MOB/ycbGNzW+zPP9olyGAxBFOfLacI/nknqnnMvOyPOPo8QN87duf4ztf+waTRyaoDvRx1Q038Sv/5J9yx53vopLUSEQCWCIlybIWQgkiaYGYrs4oqwpxJLnj+nezZmwtjz/5BD9+9GF2bN/BtvVXUkmq/ryOYGStBhFh8RmCTjTNLZetWFJvVgTkKJDMjAM5PVZgrEEJFVJFufTaCt6w3O9AuYRdPlv7R45Go8HAwABTZyep1aoYCypyQJ+1LhU2pH5KzwTrtWS24f8W3/B+smqsZxx6TTwlEUq5jxmn0edCeGacAyMj5dKJg/lEYPJpowuwR0WRY3EF/TyXYPo6zblCs49FTDtMhsNk3RgPTuG1FGVgD3rdw8BcE3hTEbN4Td68w2hDrvMCxOydpEuPdPayHnu1BMPnev+FawjGIRAMPBbbbZEFaIprXW6V3TvpB4qyBfAxfGdRv1AhVeQ+48HFoq78TyUF0RINP6/vGK6159xL2oHXX582PWnFwrWrDJ9ZcpsEUDYcN2g8uheNdUKpQggHUof0bG9I04MnLqn7om4DW/Nc5XY5yv7zoV9SGMssNooXcrWL99XoyAhzc3MXvY5XGANmZ2eXlPVSNYK41Mr8TsSleN2XYpnfSjQaDQYHBy/6MeDy/U+R8mqtpVQqkaZpwYTXelHKI5hwvPDCC/zv//2/efLJJ+l0OlQqFfr7+7nhhhv47d/+bbZv314cO47dpmaz2STLMoaHh9/Res3zvADdArDnpDrUkudceE1KWRiJhLLleY7WmlKphNa6AO+stZTLZZRSdLtdXn75Zaanp9m7dy8nTpxgzZo1XHXVVaxYsYKNGzdSq9UAlmx0Lv87zEF6pWFe98z9OYhL5f6HnjHgm88t0Ry8WIkabxSXYpnfibgUr/tSLPNbiUZznsH7b7rox4Bw/z86fegNNQcvxva6GMt0IeGWiiW0EVhylLJYUgwZ1mYYMmbnptj51BN88+tf5YWdT5AZzYpNm7j7vvv52H0Psm3NFsrEWBSpFGRAyRgiQAvH+DNCoL2xidPDz0FYJhuTvLD3RQ7s288VG7exdeM2VoytoKzKSKtAO78GhMVIUDIGLZ2UlnU4jVDel8JmHsx08mVIt0ZvdVvkaUatWqMSVTGZQYnIZ6iaS7PhzhGeT/m61xcaDe4a3nhB9/9Fm2uSd7tQKTugxILUHk7z7rtLNe56AJ7cpcYW7+EBmMhp4RWsLWOxWVZgNS4VeTGF1nqA0HevHgDPsQSFlJ6h5ZiLtue/ACQJKAxGXHhAR2tyD8xFUewck/FAXsinD47CXs8QT/QVIYvYeqaa9mwAf6NZs+jgjAXrTVPcP9DenCKk0bjU2cU03966XEw/dtcYAEH3TxQpN7BoohE0f4Al4GMBfC4DDh3r04G8ugAsQcrIp4I7UM2ZuVhflwLpga/g+AwF4c4zG3F1GCb5ONBNKOnTwhfB3VDG4G4cwOTcG6g44LV3kWC9OYr/ywpP+Az90reTeP3tKXw7GH8OVy5f5354NsVxwwKFoo9po91N7wHjYAwjhAIZvhPKFoBti9YX1R7A24pLcZF2KZb5nYhL8bovxTL/IsWl2D5vt8xCiCUC7b2/B2AruOhWKhXuvPNOxsfH+drXvsY//MM/sGvXLo4fP87p06eZmJjg3/ybf8Ptt99esOeSJFkCjL1TpiWLWRVR8fxKveZykiREUUSWZQXo2bshmWUZ4MDL8FzudDpFebPMmZodPXqU5557jjiOefTRRxkdHeWmm27iPe95D6tWrWLlypW02+1CaiZJktfV3fK/l29k/jyBgj9PcWEt8kbL87ezdP/JjvfG716qUMKbx+W2uhw/7bgYW+NiLNMFhYXMWiwKKRSGHCEMRnexdDnw2h6++OUv8PAPfsjkxCS1+hDvvus9fPiBB7nh6pvo6x8CIrpWgZFgBYmFiDYCg7KOlCOtQqGwxfM1wWIZ6RvjzhvuYtXwKvbt389jTzzK1s1buXLrdvqq/URJRJ45IFHICI1GCov0piOBTJOblFzkLnsOizEZxmjyXLPzqcfY9couPnL/R7li01Ynh4Y39rxkG+6nExctOBiXYpIkpmDyWZeqqqTE4FxcjV3UbwtsMKVcR8lzTZanBegjEAjpU3Zxem2BRae9DlxAVYyFXGuvrydQ4fjWOb8a43m3Cmf57TtVmOj2ml/YPC9AxIDYSSmIZYQBB+4Y692LnVmK1hoCCOjZYdKzBhAUk2ilFFESLWGeFWDdsslubzpR+BmApzhenMg7EM8Wx18E9vLCrKT3+7A4kV7C4Ox5PwCCYSIuvJNxYAwG8M0ZwzizkuCw7EBaZ/rhgN4AsLm2s8a61GLkInvOndVTjwNjUnqwEfCAJLaH8Wh7zEaERKMRpofR11P+RQKgLQBB5VmoFucQ7XxCFsHBRaaoB7Ot2znxLzqWqJDFMWzoAHgg0S4apkgpifwCKpJL07AQ+H7tdRiEQAgPHl6Oy3E5Lsfl+LkIJ8sRF8/8zZs388//+T9n+/btfO973+OZZ57h+PHj/PjHP2ZqaopPf/rT/Oqv/irlcplGo4EQgv7+/necNRiOl6YpUsolwGae5wULMEkSWq1W4TYcmIbheZp7SZjAFNy3bx/PPPMMR48e5dVXX2X79u389m//Nn19fQwNDVEqlQq5jgAIBmDy51Fz8XKcL96oP7+dvv5OH++d/P6lHpfb6nJcjtdFgUP/DAFpAUoINJZu1kLKnFJsWGjO8N3vfYOvfvUhDuzdS9rtsHbzVj76K5/hl9/7ITauXINE0skhVxLj1/Ilo4j92tlKAwiHlyAAibVB29BFhKEcwbaNV7J+bAOv7n+VPXv2cHbiLLfccgtjw2N0dIdIxihACuVwFQO5zt0aXxiEtAgp0CbD6A4lGXH45BE+/4W/59Ef/ACpYt51x7sQm7Z6fINCpuxtxT9GW71RvEPFuGhnTJnVZN4V2Bl5eA1CnYGUCD/ZM9Y4k20hEdaSZbnfCY960loWU0mNsZhcI4RFRl5TDscm08ZiUo2MBJU4whhLnuZY4fQDVRRj8xx6TEoW04R7XYI9oOl/Lk8lLZxujSHTORowIkIJgbEacOk2kdefC2CdYzC6VFVjjdcrXNRADGkxvRo9vRhhSNd1vwM4lplP8sHL6bkQwrkBCYGKIhQulbqbpU6Xzx/KsdgcM034XFvpTU56nXTdId3BQ2p48VoBtC3qBeZaeyagKExRnCW5d4PWBoxrh0gGgNRg9SJQFjQKVaQQkfCgnl1SHhEAOZ9a7rQGvVFL1AOoeSDStyDgdSKt9qCpAFybWGEL85lwHiklQkqMZy2eK227F6B09bTYtiGlzB+xuPeDz0hIpzZmkWWJH6QjJYjiS585eKnHpZgW+Ysal9vqcrzT8U72qV4ZkiiKSNOUhYUFqtUq9913H+9973t56qmn+NKXvsRXvvIVXn75Zf7wD/+Q48eP81u/9VusXr0aYwztdpt6vf6OlStkXkgpSZKEZrO5BAAM/4wxpF43N7AYX3nlFV599VW2bdvGrbfeWsxl/uqv/gprLe12m507d7Jjxw7++I//mJGREYQQtNvtovzdbpdOp0OpVKJcLlMqld7WtV2+/y/HTyMukuXj5biAuNxWl+MfLcTrfvkZhCW3bYwwRElOZA279j7PFx/6O773na+z0Gigkpi73vs+/m+//q+4bsdtSJUwm3aJoxLlqITUeFKK0wrsKkeWEcL7LyA9BCF8JuTiXRbb2BmDyphyX5Vbr7+dLZuu4NHHHuGzf/P/4573v5cdO3ZgpSWzXaRRWAwl681lrXbya8KgyTAyQ3fb/PixH/N3X/g7Xn72GYgTfu3Tv84123fQ7XaISv0FueptV/U/Slu9QbxDxbhowUEhFnXXummK1oYojkkC4Ge9+YV2VttI5Zl0McpGGG3RxqCkQkUSnWu6aQbGEqmISCnXUT1gZPA6fFhELgmomkulDY7HECcRMcE11xlVOAaYT3P1rDcppGPvSQf46dyA9JNnnPGJO74qQDj3d4STFAygkXeuxd0AwrprLxiRPYzARXAosNQW04+zzKUOx7E3yDCGLM8c063HlXhpWrFBW12w7qSQ7hqEu8EXDUCEB8qsZ0n2shTtEmZlwOas1z0Mj2ClJDKkx+LSot0EPcCtngXnATxrPHvQH8yaYE5iC9A2sCelVIt6jJ5dqb1hSBTH4MHUvAeMi5QzMXGp094dudApsh5wphhYsiwrUq6lh4jxZNGg1xjaLPZu1jrPC0ZiAK9du3lNxGixLWBRz7E3RXs52BlYqgEcFQKUElibvY278HK8k3F5sXnpxOW2uhzvdLyTfco9c522XxRFhTZfnjuGf6VS4b3vfS8bN25k5cqVfP7zn6fRaPCnf/qnHD16lA9+8IOsWLGCm2++uTjGO1G+QpZjGUCYZRmVSqUwU4njmJMnT/LCCy9w8uRJ5ufnefjhh9m5cyd33nknv/d7v8dVV13Fo48+yuHDh2k0Gnz84x/nd3/3dwtgMY5jFhYWime6tbaoi5/0Wi7f/5fjpxGXe9WlE5fb6mKJnxSmfSdh3p9vyFjIFGs6zDVmePSx7/N3n/tr9u96mUjGrN+4hX/6qU/zwEd+hVrSR2wTrIoolVy2XzfPKAufpmtBixwtLIbYZa/B4j/rNfGFxZFtwGpLLEooKWl1m5RKZUYGR7n//g+x+8CrPPz4w7x2/AC33nwbKwdXObKMseQ2JxEJSio6WQsbW3Se8dqxfXzn6//AN7/+ZRqTM6zevIGPfvxX+egvf5xqpUqmHXFLa02kIgz6H6/iL8K4aMFBshyba2Qx2fNMLI94CSASyhmG4G5Zox1bylocy9B4KqtwwGFZBdTag1M2pG8KUC6lVdpFoquAAnzDA3qWALh50xIpvVtsRrfbRQBJFBOpyGFDBcVOLNPHMwghiQJLzDvwhGvB6+wVunkGdK5xJh2yAOiMB64I6bfWEDTqYBGQC6yzQutPisIxObAfgwaRE/1cBNIiFRF55B/hU521LZh9DohThUGGtcFcxFF2w8TdNZ8DTaVS5DYj19qlE+MGGGPc7kIUzGI8cOtOHdiYLg3ZBsanZ48iHcBYAKRSEMXeVMQfQUm1BFSz1nrjGeXJnO67OtdYE/QWQ+qxLbQEQ4p3GFy0ZzoGcLRI9bZO01F7pmQvOKtzXaRHyx6W5XKjmMBCdBqDXjhdqQJ4DO0f2kEqB0ArZYr2FfJyWvHluByX43L8vETQ8AugYLVaBdzzNqT0bty4kd/4jd+gWq3yt3/7twgh+NrXvsa3vvUtduzYwa/8yq/wqU99irGxMeCdYcy1Wi263S6Dg4OFwUiapkxNTfHMM8+wc+dO4jjGWstXvvIVdu/ezejoKGvWrGHDhg28+OKL/Mf/+B+55557WL9+Pf/23/5bhoaGmJqaYm5urtho6+vrI8syarVakVKslCpSrTOvGXw5pfgXNc6VLXEBfbv3a2LZC+cSpjrHS3bZXxdyR50/t0Mglr15ofpY4WtuQd7zxznOt+ztt1C+13/njYr3VnNYeo/1dvJfxOu++caVd65zvM2edO7vnLOiF1d/YsmnL+wsb6VtLqkIvBvh1vIuerTcX3fhy7XjfDabFYur62X9P7wTGG2Lrwbwyq9dvWaeDd8Q4fWeU53vGnrO6/5a2sq+5MV5CmZJeK/nJL19qPdal3WnZdd6rrto+ShlaHVmeXHXU3zj61/h0R/+gNbcPEPjY9x+x7t54CO/wo3X30YUVzBWYkSENIooz7HWEMURBkOO9onDgsgKcpGgcT4BAosUBonFEMhBgXyTYHKBzS3kAuJFf4Krt13NwHA/Tz73FD985Ids2byVq7ZcxXh9BQLITYY2KUJaZqanePyFx/nyl/6e3c8/STUu8YGPfJCPf+Kfsm3rDqKoTNu0qUYDgMIY7VPwREipPEcsjsF2yU28vJ6XfudC4s0/ZZf99ubfWNp7Fr9tz/Hq+eKinTXJJAEpnYuwtQix2KFlYFkJP3YY61MpQQjlnYN9lxOmYAEGtl6Qnsu1d98VDgSUogfU0TlGawe2Sccac865/jNhAu3BnVjGqLICY1wn0hrtgUHntuwdjT2gl2fuPakUUgmkcKYk4RqNNc5MxC7q5tmea9YsPvQcYOndfP31KEVhhmIJoJdLyQ2Al1Q95ivWFEAiwnoQTxX6iU7Xz7s+m9Aelp68ZAdKIkCYIj1YYJDCDQQFqGpc2m2sYiIZOxAy97qPgf0WwDJvUCKUH5gdXbPQF7RWegDV3xDCYmyOFcYPUAZjnJ5AaN9iMLbO4MMBaRBJidaOKWhtcEaWCA8o5t7cJVIKIZSrz9ySZc5FO4oUkXeS1j7t23pQMIpcv3Tt6DQR4iR2/dSzE4Wgh8HptTC1KVyrwQGFwYjG1fliKjbW9XEjwAqBta6fuv6yNMX7UonexepPO9WrV0Nz+d/Lf1/+s/d7P83ynesc5yvnhRzvQj/7Zsd4O+d/szKd61jnev/tnO985Xyj8l/otZ2rnc7Vf871nXP19zfr98u/01vGn1Xf/HmN8/Wx3tfP9f7bOeZb+V74rlKq0O0N/aCQsfCM+MHBQX77t3+bK664gi9/+cu8+OKLNBoN9u3bx5/8yZ+wa9cufv/3f59t27adt9/0yoCE4waW/vLodDpMTU0BcOLECf7qr/6KkydPsnr1avbu3csTTzxBpVJh06ZNJEnC+Pg41Wq10Ap84IEHuPPOOxkZGeGuu+4q9AP7+vpoNptFunC47lCudruNMYZ6vY4xpmArLjcb+VnEG92zP6uU5Z9kfLy0w193cO8rXvYZHe5NQBRz0rDrL3qW0UKANU46xh0uZLG4zCLrs1GWgjqLCzDnxmkR1s2dnY627CmiLabQFuvWFH6NagAjLMJKlLbIzJELrBBY5d4PgIHwpSoSaQhzQNC+DmRmUZktyAxhEWSsm6tqvwby038CCCH9WGKBVGcuy0mKArZyG/sWq7UDA4QEY7HaZVb5LyCFQkiDJXdV4Ncl1thi49yC3wz3mTOuEl37GLdusEpCFGMsRQYN4DXZnQaZzTOM1n7t4Rb8WmcOnIgSEMq3t5ci8lJOIRMILLlfCxkrsFKCjNw6QLjrVeRu8WwdKcURU0CpGCGF08W3GjAOEPE4U/hnrQIROXkoMiBHxbhsIcduwWiJVAkmd2ss4Q0hwboyW+sEjnx7GusaRarYSU5lObFUPW3K25ZV+8eKxLhNpEykWCGRSBSRA/usA5aElQih0DpDKNcOvkXBCGJiSibBYMhE6t43uV/3e6AvED+sQcoIbImMHCO7GFIiC7FJiCiT5ZBFoCM3XkSe4+HktXJUJAs8AlvcnThXXoGxgtxYpIzdmtZaLBopXSaitAmKGJNnqAistKRorMS59maGkogxwpILp7cv/EAU7lltM6QH6awFKxKMlGTWOQ9LrNfFNxjr6uLUmVN89/tf5Xvf+zqv7dmLyQ3X3nwLv3zfh3n/e+9jbGw1RksiW0ZbjcaAjYllH9pYNJpUdshNl0QoYhshcDqAi0BqGGPdjWA9SGiEJTMShMvqTEoVV0YkygpSnbJpdDMr7lnJy6/tYteR3Rw/e4Kbtt/EFWs3EQtDnrY5cvA1Pv+Fv+eJx59gbnqGbddu44GPPMDdd97LisH1yCgmFTm5MLToUrYJsaqQp9r1B0VBrnGLaekMVGyEMI4RaaIcLXLXw4TDIkwPvcsK1/cEqnjmuFHF9vxcDgn7mxdRgNAFcCoCgGoxXgaNniPg/17EKAWmB9ReDOtfv7C4aMFBqxRWOgCmt+OHmznMe0K6Kdbd8MY74QWdNiWDk40fSBD4u9Cdx7KYxhmYfcId2VoBngln/U0kcQ8J6W/3gNxrozG5XgSuhPBgtEsHDoOCm4h4BpsBtDuPVK4zGGPRfvLoHqiWRSce6RE4N6kJ4KaMlGesgTWLTsTWs9osTpuvN93X2KW6f8HwwtUPREoWwNOSkD0Lh+J/buJjrVgEKL3uoAMUHTQllLtRjNFo4wZhIVx6t7Tu2DI8AH37REK4QcQalyqujW9f5QxhhPT14R15vZakW8B4/UkUSkS+Dl39i56JmMUNsODaSuEmNtZY8jzD5hlCCaddKCS5densaDcDk0qhYucMnOWZf+g4wDbXOcYalHTajVEkvT6CTwN3sKl76EkFQjjWog36h86oJhRWSoEOE0tcyrQQTvA1PJCWLCLdvGqRYXqJxTu9qHmzhVnve8VGQQ+TMxyj91jLQYOflsbV+d4/F3j5Ruc51/cutAxvdO63Ap71fn/58c51rDBWAUsAgfDZt1r284F/F/L6WzlXbx9Z3m8upIy91/ZGIOCFXNvleGPgtjd66z4w34OGcYjexWmhP3wB9dzLXO8dP5b3sTCP6S1T73kDOBiMScIxeyVCQqqttZbbbruNq666im9+85s89NBDWGuZnZ3lBz/4AQcPHuTf/bt/x913341SqjDyKJfL5HlOp9OhXC4XQF2r1aLdbjMyMoKUEq018/PzGGN4+OGH+dznPlc4DD/zzDO0221WrVpFlmUMDQ1RLpepVCr81m/9Fg899BC7d+/m137t17jjjjtYt24da9euLa63lwHY399fsBGllIyOjhbXHcoWPit75jzvRCxupC4d98/1HHizZ8z5+klv3+iVeXmzMi0/f3ivt5/8YoVfHInlr3nUzPNYtDVuPghurk7PIk6E2Zl289NgRAju+8pnr0CYoRc/C9RPuPVh7/EJ6xEdPiOLdY0R7vzGf08KiTWQtrtEIkIkEqQCJbDKFpcl7OKaKCxQtYTcN3tsJE6xx6JzBwYiBUIpVFwGAWmW+r4nwBqkEYBB4ufzpQSUl0ny81ppHSMIqxEWjJAIDwpK3GJfoPAnJ9ddV5d+HWOEKIBMi5fuEY7cgbF+S9uDmUqijSXt5qg4JorLKCA3hizPabe6CCzVStnJQ1njjSANVufkRqNw141wwIzDal3lCeEzryQoIR24icSKCESEFpLcgDUZibSeNBK5ObiTIXea4pmGCKySvgtolMGdu1jvK6xIEMo68oTtok0KuZdIykGaBCliyEBnBhW5eb5Q7twYjclzd544IseCUCSRIy+I3JXfraVCn3xn59M/7dB5jpKKTHbJsSgSYqOxJnIGo8Kgc0usSoABaclERu7uWpQsERmBziyRkOSRQOvc3VtK0tUdhHRtEClXV7nJESZCS4MWKTktpIgReYLMJZGIyKWhKzqYPKNuE5fpZnOs1YuwTRjirQfI8M8PIgdMI9CAtjmRsuR5Shw5STQlBaW4hLYdMpuiZU5qLZGISZQiQtHNUmzJ9V0b8AgrnW+Bcc8ZJQwaS2Y03TxFKkeESU0bYTRCGE6eOs5Lr7zI4489ylM/+jHzc7MMj49xz72/xAMf/jhXbb2GUqkGNkLJCIwzhrUix2qJtjFGSFJadGyKlV1AIm3VgWrkSAzKgrQ9wL8HsQyWTBisyhECjDDESvjmVJQpU1JOkqRmI27afhP9q/p49dAevvf0d9l/dA03bL2Cl595kq98/kvsemk3pXqNj/6Tj3PfA7/M5tWbGausI0rrDndP2nTkPF3TBiIikRDL2BGShCYnRxs/51ASkVvIDdJEKKnIcbhAFEmEsGR5x2EWSrpxzI9lBc4QWKuid4zumSsACJ+WinRgr9dtDPetcHe3H9uVAy576jHEEoaosEveA+sZuBcWFy04aPKUtNvGWkjihChOMNoZjrhGC47AHhm3DqkVSjiDEp+6CgXO5AAgDyRaBFJEuC0dcKCVnxpYz0SU0mkOyhi/jYTOnBGG9BqHCNyDqGCCuR0bbT1jMFLgJxBOI8jtdsexA8WM8fqD1haof3iYCi/qaQLSLAKA6SYQbmLidiuMdkBSFMU4kw0/wVQRsKj7FxiXSiiktMWNqsnxG6QOUBUuVTqk6gRmgks9dgOrYyDiXaPDpEsgZLS4ixnmGoT5gHADjHW6jdZqlw4sJVrnpFmKVIo4dmm7eZ47YMtP8rVxAKqSFKxIbV0b2MBYRBH5VHKk3wEMu5i+TAU13LqJhzE+VdlIjMbVqTFIJd1iREBucsA9rJJIObDTOsBSF5PwCKUWwYA4KnlGJIttYB2oqZTECK8fiJsUBMamAYx2dRQMXqQ/ppQSWQrTJusnaxprjZ+siCLVDOtSnaPCTOXSi+DQDBcOQJ0vLhQYPNdryxfsy8Gb3rhQAOh8C7sLjTdaZL4Z2wzefj32Hv9coGlvvBGoubws5wLiYNHoYHmdv926O9+i+lygzPnKfb7jvtlry0GF5cfsrcdekCd8Piz4e4+xHOR9s2u4lOMnYV6d63tZlpFl2RJAKfQ3WJTkWA7+hOfiufrPhV7DcvA3vHe+sgKvA72Wf6/3mFmW0Ww2qdfrDA0NMTIywqc+9Sl++Zd/mX379vGXf/mX/OhHP2L37t385//8n9m9ezf3338/K1asQGtNs9nkzJkzrFy5kiiKCk3DkMJ87NgxSqUSx48f58///M954YUXAGg0GjQaDaIootPpIKWkv7+fLMt4//vfzw033MCf/Mmf8PnPf55//a//Nddccw0jIyNMTU0VBiPh+gPot/wZsLxdAmjY2z4XEhfanwJI2jsmRVFEkiRL2vJC2j9ItvReT+945uZfefF6b7/sveblv4fjLS/Hz9vmwPJlz+vDz0fDpqjXrg4LLBMWXZF43VccqKoxGP81hTGgtHRz8wB2SS9Fo8NCzS7BIx0sJcg8OhgWxlIoR9xT4XOeFYcz2jPWOkAxki6rSAlEOXZjTSwhcYtQ4+fjaEPkDQ2FdcQBP8l1gB0CKUAmEqxAeeDMGAMmx3QzsFARAklYlPZcBDjQLM3AunmmkdatR6T/fOQW89YYp0+uHDMOIkwuyLTGkhFJCTjJHiHctF5FcnHj3uSu/HpRUkkUc1eBUgmVOHFb5Tp30kFKYFWESVz2lRSglWNdoiQIiRIWmzvmIwqsAoHBT/aRVoPRCO3WfsJYpBUoESFkBDLGWkWuDQZNlFgQGmMznKVl5FZp1qJtjjDSAbhO78hVo18HWOF+1yZ3zMzYZ45ZsNrJaaGdcjmdHKk9ecLfwzpNcUtXi8gzhFUQxyClM3tMM0RAK31/fPP75eKMjmyTi4wWLXI0JSqkUhLLCOVWv2SRQYkEoRyRp2NSkBEaQSQykAYbKSwxSAPCkJNh0OQqAww5XQTCZ9xBgiYXmg4twgo8UhJhQUWC1DZZMFMkKkarPsABg3EcuYw/IYv1sAPB3D9pYmJbJlLQFV06okkqmyhjSYio2wGyWJDSJjU52nbRQmME5K7EIGPHJk4EwifsYhUQYTFoDbGK3XXZjMzmdGWHSEkSDFanSAntNON7j3+Xz/3VX3L60EG6acbwwDD3fPCD3HHbHdx167sZqI/S6nYoedmvApCyHmgSbvPEityDgl0MXXKLA79FvHSeyyIzrsC/RBgrMzLRIiFGiIRIKqwRKByRKo5KKGFBalYO9NF/7fWcWbeBP/l//b/5P6fP0Do2QWNqhq1XbeUT/+I3uOWu99FfHaBfDaEYRIjYJz3Pk9sWUjjPhZQMayuQRUQlhSYnVxlWGLqATJw3gTQdrHHkHqkkVjjfhpBNinUczpCx5+69AO75eQZ4bEb03JcGB75I/1nfCcNOgmcNutoPu0Ce6GaLWiU8gywO1nJlkL5uF3GuC42LFhyMoohqpeIq2hrSLHWppxYP+jhwKpjfuM6nsNY9ccN8yWXB2iXUbyEg15puJ/NGJ958Ape2KsCZfygwJtD1BQqBihWqdzImFgE3h+oKZBRhtCZNM8hSpIqQSrnmVRIrBJkBaw02Nw40zPJiQedYCNLtYIUFiAeBTEBDvRtwmCAbvzuUa40U1hudCKxnPYjwILeuk2rjdAKUVMXuVxQFmr1dAshkWeYdoJ1jrgNMPUhpHFsuzXKMcboBjmHh4UvpADNrLZnWGOt2B4rUAZ8m6xyMNYFq7PBA6dh6RriHsrEIqYq2SjP3cLBYOp0urVYbrXOSOKKUJKjIlTdWUWEsYy0+lUE6V2GpUNLNbbCQZ5osN4BCygirLZ08dYuNKLBRpWeOBgBWEQdnY+vcmDOdIRBEkWMVOoDSmabo0F99anQkJdrXT55rrHGdWkiBlJ4R6YFbIdxkUUoB1pDrDMcMdeVzPdP/HSeLffcSZA4sX9D8tAGPN1uU9y5Yw/3RywpbDhxeSLwVBtubHedCF4DnAqTOV5bzledcYNabvfZm51n+Xi8AFgCx5QvptwsULW+33vOdry4vtK3OBf71fr73Z+/nel8717l6+9ZyYPVc517++s8LQPB2gcHzhXumqSVjZJZlS9x0oyhaYgIVAJvlffRC2GrnAm8CA/FcrLFw7AtllPUCTKVSqWAVCiE4ffo0pVKJTZs2MTY2RpZl5HnOo48+yqFDh/hf/+t/0Wg0+MxnPkOaptTrdTZs2ECe55w+fZoTJ05grWXVqlU8/vjj/N7v/R5aazZs2ECaplQqFSYnJ7HWcv/993Pw4EHGx8f5oz/6I/r6+vjsZz/L17/+dUZHR/n+979PpVIhjmPm5uY4ffo0IyMjrF69uphvvNXx4+3EhR5vOUNzefuEuJBnVGB8hu+fi424fKw7XywfP87HIvx5ijcHBv1v1i1qA5vDShYNBP1ng4aUFaDRGKvJrEabDCXcprtQLhMosm4u7lLlpF8IUgA3boJtikWaRSBVjPYyNMK9jRW2B4NzUkQRjrFmCzab8Ow9oOTme1YYZ4SIccRD7XRkhLLFOlIAyjoZLfeSwSpIpfEZTQJpHbiE1pA7gNEd2ECWuSwoa9wC02c+YVwqq4gUshQjIunYa1ZjlUTGkSdkeHKCsBgJWiq048Og4hiMKCR3pHHXJbyMkrXWpR4u6cO+XNpAniKyxLM4bVE+GTJyhFu7SaN9/WuXjus387V1KwZtU18HBilyhHWsQbcm83WSaWxuPGkkBqmQSKSyUHFp0sIARgIOhBSRouTTEo117FS34PF9DevK7mWSsryN1F2ixLHe8maTuYlJmrMtIlOm2zJEUZla/wD9YyNEJcWxk68xefYUJStJRETf0CAjmzZQGhxECOHSa61ncIpFcKLon5dQtOw8u1/dzemFMxAJhJZERiENaNPFihwtI2fkaSyRlKR5DklCpiG2Jbat28r2VVvROGNKjcYKQ9u0mG3PMNWY4MzUKeYX5hDCEkeKvqiP0fGV1Ib6qSQDSFmjIy0ZXbBtjk7tZ9eJ5ymVyuxYdy0j9RFiEZEIRZ5rEhVhcGt9KyAHMiuoijIii5GRJRWznEkP89LhZ8nmu9xz5fsYr43QMPNkSYaQBgUs5C0mZs9y7ORxSqrMNZuuRUYD1EQJSY7re2CtABkR+U0LrS3GOoNTmzV4ef9LKGPYtnULh44f5pvf/ibf/OqXmJ2boWQUN9xxM5/5zL/k2qtvolatYa1AC0GlUiewrYsdB/CDsAGRYUWOocWps4c4cORVNqzezPbVVyMkDqS3bnPEfd3hJcIGSMutp6fmT/PSgecY6h/mqs3XEZOQyApaC2dWksQYm5OnKROnjrLn4D6On55k5sQZJo8cI8kMa67YzB/9lz9mdN1aupEiywXGJrSznLJQkGgyOrTzOXbvewGRK27YchMj1dUokZDRpWM65KJLRpcclz4shWdZq4hYV4lFjEIiIlAi8uOR9NqWsqgbcd48/t770PhnkgMIF2FDX7890H5kYdGFofcZsvy+Vgij3GaRAIUBK1Fv4fa/aMFBa3LyPCUgrErIgoUnpUQop7GQ50FvTiw+w7w7b6ed0ep0aHfadNodcj8RzrWmm6Z0u2nB5FPSASvBcEIq57RXLpepVWuUSgmVSplyJSZJAgXVIchCWqx2xhNYiIRECYmK3I6yUNJT2QXaWJrtDgsLTeabTbqdLu1ulzTLAZcOUy2XqZWq1Ko1+moVymUHbhkj3IMtPMiFT4PGpzD3hANSly1kChDTImRMSEMNqbrun3O3dWw1VQAeYeHjJuz+GABCEkcKKRKMDd/zWwF+NmQ84CgFCKkKUM2GXTohiCLp04z9gt0sTXuOoqgAE42xLLTazMzOM9No0GguMDs3y8JCk0hKBvv6GezrJ44jypUyQ8OD9PXXSUoutRhlcVKKfnfOQqY1aSej3e4wP99kYX6BdqdFN01BCJI4plypMDDQz8BAP7VqmUgKhJ8IuvBDnYCSCjt3GvIcgluTTzXIjHY6BwikjMhyQ6eb0mx1aLcd0NnppOQemJVSUopjatUK/f199NWrlCulxRQyHOiZo8F6ZqhwfdTp2Vy6LKLA4knT9B1xonwrERZ+uhdk9/dT72feyTK9lWP1gpVvBm4t/16e50tYUm/G8HujY4V7Nc/dJkdg+7yVa4Cl4FlgzoTPLK/3dzJCquZy0LeXube8rOcr+3J2X+g7vWU/13UsP9ZyTbVQzuXf7W27wEYKshLLy3Y5Xh+9wF4v4LycmXYuMCjcO3nuJCxKpdKbnu9c4O7ytloOAPaOQb3H6GWVLQfWQxmNMTSbTay1VCqVQq+vXC5z//33c/fdd/Nf/st/4cc//jHz8/P82Z/9Gf/jf/wPtm3bxh/90R8BMDMzw+joKF//+tf5u7/7OwBGRkbo6+sr6mH16tWMjIxwxRVXcPvtt/M7v/M7tNttXnnlFZ5++mmeffZZ3vWud/Hd7363SF1+5ZVXWL9+PWNjYwwPD2Otpd1uk6Yp/f39F9WmljGmMEM5F/gW+kAvg/F80dtmAaANTESgOE6v+3OI3vEojBPh9+XHDq//LJ+ZF0sII1yeLgKUB+uMy8YhAIIEXW/3mpLWZdQosESFTKEnymGsQWjhWG0YhBUoIRfF6oucFN8WCBCORVc4dOKICkJrx4qzuSuDACHDEtwtGI3RDvBSTsfOWAPay98I4YgHkfIpyv60RhQgoWMrGnRsMYkzPiQ3qNyBgLqTotOMrNWhPT2NbjVpzTWYn5uj2Vqgm3a9DppFaVcPSaVC/8gg9aEBknqN6lA/5fExBCXoGIgTbJSgcRktRkaouIRSEXnagTzD6tyBk/g5dK6xeV6so/JulzztkKddZ1wg3HoEIxBGoqIYVS4RJSVUEjkmj3T/ROx154VwmuAahFJO59BClueA8UaLLkutu9CiMzdHZ65BZ65BuzFP3k7pNtvknczp/jn2BzoRqKE6pf4qQ/2DDA4OU671kSQVVBxjIwEmQtkIG0msB0zp4RFJJZCxQrYMgtxt9M/McHj3bl586lmOHjhKbCu0WjmrVq1n+9XXsHn7FYgEnn70YZ57/imi1NCf1Fi/ZTN3vP8eNlx7LTJOHOgiBVaK14MHl9gwcGbhDF/53ld46cCL5GgUEcpKhNEYusjYkFkQcRmbZsRIdC4gishR1Ep1PnLvh1k5OkwliilRpqM7zLRmeWnPizy36xmOHD/EzMIU8+2GJ69YBpMqK8dXs3rDFq7ecSvXX3EH49USKpJImdG1czz8xLfY/eoeHvzwP+H+ez7MaHWcbi5QIiG0NziISAtJ10iUFpiupqQEHRr86Llv8sXvfp4r127nxtXXIcrb6JgFmnaB1kKTs1MT7Nr7Ci/te5nDhw+yef0VrP0Xq6n3VWnnhpKSGM8NEziQHSlIjXVMRamIlSCdnOD73/sK+44e4qrrrmXfCy/x8uPPoNOM9avW8EufuJ8PPfggq8c3E1HBWOv0Ko1wzMQl8LIfXGwgyGQgumjb5JU9T/PQlz/Pgx/+BJtXbSOyBmulZzeGY4TNGz9/sW4jZHL6NF/+5ueoJDX+H//3P2DFwFo6OiMSECcJ3ayDIceQ88iPf8TXvvolTh88TVnVuP76G3jXfb9EebCPv/j6l7n55pu5evvVrB3sR5MSxTGp7pCZNjrKOH7iKH/x2f8vI31jbP2d7dQqKRJBLjK6dJhrzXB24Qzz6RydvIUVhkqlwnBtjBXl9ZSpEROTiAirM5SNkUQEDMBdnWHRHeINbjwR2IGwyDzvXV8W4goUEhhLvt87tw8Poh6mp6Xn9wtfP1204CAs7pYrqXwKq9+pQ6B7mVS4DbBmu0uz1WauMUejMc/8/DwL8/O0Ox3StFvQOt3EqVcYuPe03pzDuJTbSCqSpESplFCqlIjLCZW+GgMD/fT191GplogixxxTKkYhkJ7pZcGBglKAFRhjaacZs7PznJ2aZOLsJLONBvPNJmmeu4mFkNQrNUYHh1g1OsaKkVEG+vupVhNEJIijmITIL1AWF7XWWs8yDJNpD9L5cOnLQZfOg3hKeddf586rtWcvCsfMDJPNwF50x1mKhAeMO7SDYwG6VFYlexZAfkLmUmBdfn2kYqRQfuHjjEZUKJOQBehmjDMZMdY5KWe5od3ssjC/wMzMLNNzDaZmZ2nOt7BaMx036KvVqFbLDA0NoI1jI9YHasSxs1q31u2iSiFIs4xmo8X05CyNuXnm5uaYmZuj2WqSa0MSJySJ+zc4OMDo6AhjoyMM9Ncol2I36dA5JvfpxVKi4hipRAFyam08go/XrJSY3NJsd1lYmGVurkGz2WJ+YYFWu0O73abT7WCNIY5j6rU6g/19KCWomSoGl9odRz49XLg0GLf7CTk+Pd24hUVXX3rgQO/iptPpMDMzw9DQEJVK5ad6vhDGmMJ5sxcYDKBNpVKhXC4vSUH8WS7EwjmzLKPT6VCtVgt9sTf6PEC322VqaopyuczQ0NBPVIYAUOR5ztmzZzHGsGLFijddJJ8PcOt2u7Tb7SWL3QCOBK2y5eDXT1L+TqdDp9Mp2rcXBKhUKtRqtddd74VcV4hOp0Oj0WBgYIBKpXJOdt/y47ZaLc6ePcvAwACDg4PF68u/2wtEGmOYm5tDa83IyMjr2JW/iADBhUQvk285CB36QrfbLQDDKIpe1w7LU5Hf7HzLAcflmw295YHFZ3Dva73P/uXtG0Cj0Df6+vqKc8zPz9PpdAqH3yRJ+MM//EOuuOIK/uzP/sw/5wY5duwYv/M7v+M2LKtVTp06RZIkjI6O0m63qdVqfOQjH2F2dpaVK1fykY98hK1btyKlZM+ePfzZn/0Z/f39xVjzW7/1W1x55ZXMzc2RJAnVapWbb76Zubk5ut0ulUoFa522Y5IkF11afHCBDqnEQWsx69nAC6nXb9YPOp1O0ZfSNC02vvr6+or09t4NkuVSFr39JwCKb8TW/oXcHBCSkLvrpF2cypewjqUhcCmwwhqfzho0BkFJl06iQ0qXcDpfTv/ZcTesowxitV6cB/uFc8EjtJa83UHgNvglLvXUen10k+dO+8tqZ45nDBaDEE5XTmAdQ68UoaQgChsYIdVWWxAG48XvQyZj0CoMmkoiz5FCI6XFdjOas3PMn57g7NETTB8/wezZs0yePE2306LZnGd+YZ52t01mMow1RAJqIkEZg0wiKvU+Kv11yvUag2OjjK9by6pNGxlbu47a6CjJ0LAzYcw13Vy7/B4jkCZHYJz0k7WITJO3WnRmHTA3Pz1Fc67B7Ow0U1NnaSzM0Um7aOG0UxUKZRWVcoVKrUa9v4+BoUGGV44zsHo11aEBVCpRtSpRqeLWNgXD0M2HIykReU7WnGNyZoap06eZPHmSiRMnmDtzlvmpKRZm5rBZjkkz0A4E9lQCciVIKzGqEjNY62d0aJiV4ytZvXotqzduYGDtapSoYE3q0n2TGGQMKCwSK13qMWmGkBolJabdZOrQYfY9+wJ7nnqWUydOE9sqViasHV/DcF+dWiVhodNg4thhjh/YRykXNFSFCGhcczWkKSKKvU4+eA7p8pvinb/Pfooho5jR8XHWdddjhAPG0QaBppnNcvLkQbIsZ822HfQlVaJcgI7QIsJKRSkuUx+oOs0+pUl1mxNnTvDdH3+Phx/+AVPNWfoH61T6KqxcuQLlU8g6s7McOLyPF3fv5plnXua+uye5+/Z7WTe+hkhoxsdGuf6a69i16wV+8MQ3WbduLXfueBeRUFSSGjYHcHqaTnFLOvNNbTCJoSla7Dr8HN97+BvorM2N19/I2NhKMmswccrBk3t55JHHefGFl5iYPkUznUd3mwwN9NPOFsjR1OI61miE7dW6c+OINtpnWCpS06GVNTl9+igvP/kku59/ju5Uk4HBYW6+5zY+/quf4KYbb0LKCEUZbWOklRjt+pEQymMYS9vGsbL9M1pohMhopw1Onj7CfGvOafe5ViQkvArAiKDx6oByd28Zan1VVMnwwq5nOXjsNUYH1iCkxaBJbZskgbn5OQ7se56XnniWs8fPIFXEBz75MR584Ne4cssOZhpzjFRGmerO8OMnHubaK7Zz1brtiMogSsVYmbOQzfLy7lc4eug4W+6+lnJ1iI7NgYyF7gJ7D+/luVeeYc+BXcw2p+hkTZA5Q6MjrF+7iRuuuJObt97GaN84C2lKX1RH2AiMXAK+OTOWNwEGCc+RxSdIzzag/2eweMkExFIssGcjyt3ywpGy8B2iACoD+e3nAByMVEwSJQ4Y8uCKEGKJ8Ldz2tK02ykLzTaTU9NMTk4xPT1Du932qUFdtM4RQpIkMaVSQlJKKJfKxHFU6Os5MNLp93U7XbqdDmknpZ2mLCzM+x0w4WjjtQr1eo2BwUFGR0cYGh5kcKCfSpK4SUWwpMI3t8Wn32ra7S7zzRaNRpO5xgJzjSazC/N00hTtxUzbtS4SQa1cYaCvj7rJETImGHxkWYa1hiiKiWOF1oEl4HYaC/BPOOq6cwPWxQS2eM+6nU5rHUUf6yYVwVX3fOwGoz3DRrjJsBTKs9MgsOjB6wkWlHbXiWWg7lvAa+xJgouwBB0WPW7HVPpFkQw7D0KgjSnchaVw/lWxLFEpS6y2REIRqTLlpEa92ketUqNUKjl2qHCpyEJYvyPiQkhXTwvNJpNTM8zOzdFJUzpp5oCgcoW+ep0kLjOfNCknJZLIpaNHSiJUREh/sLhdS4MAGYGwLkXZWoSU5LllfqHN9NQM0zNzNOabzExPM7+w4EGRwPjQJElMuVphsL/O6Ngwg4MD9Pf3UyolKCVwadi+TllcHGiLT0N34s7pJWhI0suYCABLrVb7qYGDvaG1ZmFhgfn5eZIkoa+vr7gnsiyj0WjQbrfp6+srFt4/a4ZGGAfb7TbT09OvAy7O9fkQaZoyMTFBvV5ncHDwHSl/MCXQWjM2NvaWr8NaS6vVYnZ2FiklfX19xHFcLMIXFhYKIGFgYGBJit/bCWstC/6eK5VKS4DebrdLo9FAa11sDFzodfSGMWZJ3w3nXc7yWv69ZrPJsWPHmJ6eZuvWrdTr9eJ7y1lEIfI8Z2ZmhizLGBwcLECDy/HGEQD1ZrPJ7OwsjUaDVqtFp9Oh2+3SarUwxtDX18fKlStZuXIlAwMDBastAHC9jNPzRehbvd8J3+v9fgD2AijYq/kb9GTDd4wxdLtdgILdH9JW8zwvxrBqtUqaOtOBarVaMAi73S4PPfQQzz77LKVSiampKebm5jDGMDIyUox13W6XT37yk9x9993s37+fgYEBPv3pT5MkCc1mkyRJ+MY3vsF3vvMdVq5cycjICMYYbr31VjZu3Fj0/1qtRpqmdLtdyuUyAwMDpGlKq9UqxrDzpRT/Y0cvu29qaorDhw9z9OhRpqenC6Cul+F5rgh9oFwuo5QqWJ2rV69m27ZtrFq1iiRJ3JzF10PvXKw3zbzXEKe3zoq5Wk/2xS9WiMWUTvDTT+MWsVYjbI4wuWOxpSl5u0233aabdkizzIF/UmCVQESSJC5RKVUpl6qouIyMElDKOxYLvxYTRRqhLwJgiTEIYxCZwaQp3eYCzfkGC7MzdJpNmvNzdBYWyLodut0OxuQo5bJVojii3FdjZPUqytUq9b4+qvU6qlRCRJEzy1AKEZXQEidWLxxYoIJDqAGlDabbZG5mmtNHjnLiwGucPnyEs8dPMD85RdZuI43B2pxc52Q2R3sGpVJOUok8c+93OyzkHeZmztI1OVYpKvV+RlavZM3mzWy75jquuPY66itWomRCgsAa7crltf3INbrVoTMzx+TR4xzds4/TRw4zPXGGtNWi2+3Q7rZoZ11SmzlwUQiklSgriYNUk4SkkjA4MsLoqpWs3LCOq2+8icEV45SHhxFJmYJrIyRCG8RCi+70JMePHGb3rl0c2n+As6dP02rMY9IU8hydZQjrDFGiwNK2ePMESzYfYaRgxgqOC0GtVGZkZIzNW7ewfutWNlx3LUOrV/rTSlCRcwr17s3aZM7YJAKylMbx4+x66hleefJpZk6foiYSSqUK1b5hrr3majZcdSVRNWb26ATt2WmSPKNPlZFZl2y+Qacxh+m0UaUSIL1WpgcKeucLlxg42Fcd4EP3foRWfo9bD1rp7iVyDp7ew+e+8JcspF3uu/eDXLX+Sko2QZkYQ4z2wMxw/yBRJADN/tN7+cqXv8QzTz9FtdrHPe+9h6uuuYaR4WHq1aoze8HSaS1w4tRJ9uw9wJNPPsdXvvg5pibO8KsP/iorR0eRMuK9t97LicnTfOsHX+cHD3+LTas2sXFkC7lNEaJEMCsKSIACiFPSuM2Rqd18/qt/xelTx3nfL93HTVffQRzX6GjN8anjfOWb/8CzT7yAkiU2XbGFvpEqr7z4DFneccQSA5mBSJQKU3YjDMZrACJzlIxIbYupuTN8Z+f32PPqbvKFDqbbZdt113D/xz/GnXffw6rxlZTjCjIzYBIsJaedJ5xRi9NQXOw5FjzwFOHEUd3KM9cZnayNjQU5htRoysLBghJc/xdO7xTPqHbYg1uH9/cPsGXbNp5/9iWeef5Zrt52E7W4H40mEjAxe4Zvf+trfO/rX2b/q6+ilaG0apBb7n0P66+4AmViVtbGWfuu+zjaPMGeo3t5dfdznDq0l1tuuYOVo+vo2pS51jQvv/giuYm48cZ3kZRHyOgw3znDE88+zle+9hVOnTqBkdA/WKNer9NNWxzed5j9L+9j19heTr73FB+++wFW1FaS6RyFQS3aJzk8pLjy8Or5I+gQhn+2+B18UnDPu4vfAofbmAJvsp7p7sd+rEvjxuEr8i0YEl20qwdrel3bnF6fNQKdG0/thTTNaTSanJmYYuLsJJOTkzSbTbrdtHCNRQiSSonBgX6Gh4YZGhygUq1QqZRJoniJyLX0k/L5+XlmZhybq93u0GjMMTc/73aNTYIUkrlORnuhTafdJU01AoUciJAlhc3cBCSJIyJPcTfWuehGSRkVlUAqcgNprsnSnDx1O5cCsCUPhMYKYomWltRoZO5uViGdRokxumeRIcAL+FpjyPOgf+RYl3ESEfvmFnjtPWswfhECLAqyK4mxljTNMEY73b54cXc6iCq7vwF8Cp31KcrG7XpKFXa8nRZinqVYY4miGKUiXIaDRirlaP/g0yMW05w17oEglXKp3DhHs3qtihAKlVSo9bUZ7TqunLACkVtKUUStVmFgsEatv0ypopCx1yi02rk1Y4jkYp0g3E2ZG0O7m7LQapHmmiROkCJDiQ6dagpWoZRLo+5mThRZKoGKBdI4F+ks62IRKBUjRATCaWG05heYa8wzPT3L1PQ0U9MzNObnmZ9fIMsysMIxBfvqDPbVGRocYHBggMG+PgaHBqjVq1TKiSN6mzDQekHrYqywCGWJJE7bRAnS+OJiYbzV6GXJwFKApRc0OdfP3givLU/PDH+He2F+fp6pqSn6+/sZGhpasikRxzFRFNFoNJiZmSGOY6rV6nnP28voOF+5Q7zZ373pqeF1Z3SUF+llbxZhUdntdgvQ680WsxeyuOxlPJ2PFbc8LbL3tTRNmZmZAWBwcJByuVx8NoAGs7OzzMzMoJRi0GvsvJXoPX+j0WB+fp56vf46gDcszoFzpja+WRv3fiawHntZ18vru7cuellCCwsLnDlzptC9W576Gj7Xm9btNo+Wvv8LyRy6wAhA+YEDB9i1axdHjx5lfn6+uKe63S5aa4aGhrjuuuu49dZb2b59O7VardiwBAqg/s0AmeVuwwEA7AUDw3uhL4RyBJfgVqtVGKkE5lov03VwcJCBgQGiKKJcLtNqtQr9QaUUTz75JH/1V39V9Itvf/vb9Pf3k6Yp8/PzBfDYarXQWlOtVqnX69x444088MADtNttACqVCs1mk//+3/87zz//PHfeeSef+MQnWL16NVu3bi1cj2u1WnFvDw8Po5RCa83MzAz9/f3FvV0ul4njuLgvLyb2YG97hY2F/fv389RTT3H48GGMMZTL5fOODb1/LywsFMzqwKS88cYbqVQqjI+PF+0Ern/29sUAWmdZVjDYK5UKSZIUP0NcKJv1oo+wdrrQ8J/1Xn8oKTBpRp61SCoJJu0yd/wo7ZkZZs9McProcabOTNBsNl19GwtKIpSkVK2QlEqUS1XGxlawat06xlespG98HDUw4BfmkFkNcUxSrZBZTZ5nlISE1jyim9JuNDh+5CiHDh7g9MmTTJ89y9zMNO3mAlZnjjNirGcfurmdBWRSoj40jJAR69as4frrr2fjpi3UxsaQtTqUEqzUIAWdXBOXykQyptNsoRDEUpDNNjhzeD97Xn6Z/bt2MXnyFK3GPHnHgYIuadmRE4wCoyRGWUwkEHGEEZJ2K3WZVMrJJeVpl8zkoDVC50yeOMmRQ4fY+8qrXP/aYa6//U7G126gPDiElYLU5sSJq9PW1DRHXt3Lay/t4tCuV5k5cQo6XZSxYDS5zUjJ6aLJnBIkGoiJUMJtelgcOTTP2rSb8xw/dgj10rPs272ba2+5mWtvuZXBNeuQSQm0Ic0zlDF0Tk9w4Mmd7Hz0UV47cpC06+WmTIYSyuk+Cg8OC2ckIUTQkLT+bwlZXmSY5dow0TrK3OQE+/bu4dqpCW5+z3sY3rQJEZccQisVaaeLkIpSxV+D7pIuNDi8+1Wee3wn08dPk6CwVlLvH+Q9997L1uuuIamWMWR0mvNEOqcCJOGZ32mTLixgul2UNT4F3RZr2kBQuRRjMB5idGCcnBwrLBEOYNZ06KtV+Af+ji6S6664gc0jG6lRpUQZYyNSqx1jVOQoazjbPMFDX/08T+x8lLVrNvOJX/kkN+64mb7qICVVIpIB3rGkNmPHhjbvvrHF1nU/4qGH/o4f//BLrFzRz8c++AmkjRmubOAj93ycY2eP8OJLL/LoU4+w4gMriaMYJYTXl3fEEWEssbA07Qzz8ixf+PFnefblR7n2ulv4yB0fY1VlI92uwKgOO597gicfe4x1q7byoQ/9CldcuYmF7iwzk6fJW86ApKyq2CxBqBIaTTdtUSo7Z2BsFykNOR12vfoiX/i7v2XnEz9kbnoGErjjvvv4jd/4ba7edBX1uIpAYrUkVRZDhLSRI88IcO7dYfC14JOYLZFjy1mFS5OMHBgqJEjpDYgkRlqkcQZG1ho0zkFcohDW0E1zkqhMpCJKVLjuqlv4wdBj7Nz5JL987wNsXl0l1xl79+3mc3/7lzz9wx/T6rbYfNN2ogQOHDjAyf37Sa6/h660pEKRCFhVH2fllTW2DQ/x3MvP8a3vfYPN27Zy3Q3Xc/TkEQ4c3M+GjRu58uqr6JqcLm0ee/lH/PXf/gUzsy22bN7GnXfcxdbNW+mv1tA649ChAzz13E5e2vcKX/z6QwzVhnjwno/7HoNzsc5zummXpJQgFWivsyhlr755mJe7TV+T5ygRYcjJjfNjCCa3mTZuw9E4AxIlFDrNsIHJ6b0n8jxFRRJNwGg0sXRGWsLgXLBzu6hhewFx0YKDJoAdxeRbkmXGGVNoR5JMU027013cbYsF5UpCnETkOkfFEf39/YyODDM0OEi1WqFerVGulEmSqHB/1Tp3xiTSMQnHxkbpdDvMNuaYmppmYmKC8myF2dkGrfkWc7MNEFAql8m08SYSBqMNI4ODlCJFJBOwkKXWiyALrAIVRURJglQx1kryVNNtdel02kjpBMQjz3DLdEpuUozIQTnmmxKOXOpSnxcXoEIIhFQoFjX7oGeBYq13NzNO78QDik7HzzMYlNfq8JNJt0MedAAXjVmkEqAWU66sxQnCCunShCVOOFQb5/glBYjIU7YhUi43Pze5oz/jdVaMxejcpX57N2RHMNRk3QxrndOxlBFKxdSqMXG5ztAopKkmzTRoiKWikijKZYhLXhDWWnSmEWisdSKjsYxQwqHyWgu6qaab5mhtUSqmVKpi6WK0IctzZ2wD5FajrUHFEUk5cRMU48qtpHd7VrLQUO50unTaKY3GAo3GPDMzM0xOTzMzN8vc3BydTgelFLVanf6BAeo1x0rtq9cZGupndGSIwYEqAkE3dakocSlCCYk2GpNbr30TISMnWpMbxy5x7EuJJfsZ3bnvXFwICyd8LkSvcUUvKBIW3r1pfMtBuAAQdrtdZmdnKZVKxcJ1OagV2ISBtdcrVn+utNHwd28a6HKQZ3nK/vK6CD/DQ2Z5OvOFxnIAa3kdnu/c54vldbMcHFx+fefTa+x2u6RpysjISJFi2HvuKIqo1WpMT08zOTlZsJ+WH6e3TMuvtzdarVYBqISFeG+bJElyQcDociD0XOftBU2XH285mGStk1cIGmxpmjI7O1ukCod+2lvPbwaiXIrMoV4jrPB7aO/e6wlMrV6mZGDZBdZdYNyFezTLMpIk4eTJkzz33HO89tprvPbaaxw9erRgsAXmljGmcP1dtWoVURRx5swZXnjhBQ4ePLiknN1utxhnwjmBAgwLZVi3bl3BrKtUKmzcuJFVq1YV0gAhTT+ksQYzsNnZWR599FGefvppFhYW6OvrK84rpWR0dJSPfOQjrFmzhjRNi7KcPXuWr33tazz11FMcO3aMqakpzp49W4CL/f39BYC9fv16Vq9ezcaNG1m9ejVf+MIX2LNnD7VajT/+4z9mYWGBX//1X2f37t38wR/8AUIIfud3focHH3yQwcFBVq9evQTg7HQ65Hm+BOAOUalUCnbu8PBwMYa8k9qyAUQLbRk0GJ966imsdbICxhhKpVLhWr1hwwa2bNlCuVwu3JMDs7jXeKbZbDI1NcX8/DxSysLEJqQKh3EkbG70ug4HuYrAip6YmKDVahUbE81ms0j7PnXqFD/84Q85evQo/f39xUZZmqY0m022b9/ORz/60SXPoCxzz/wL0UC86GNZV3hzrNCCUqBiTLvjTORihWm0OXXkACcO7OPAyy9zaPde0vkFbJo6Vpl10kXGOuaHwbpNeiHIc02UJNT7BxhdsZLNV17JtmuvZuWWTcjBAedUKiwWZ7qHgLzTIp88zaEXXuD5Z5/l0KGDzM81SNMUYzUY45SHpHDmHsalKCvhpHki5RaPU80W5XKV/afPcujFXaxevYZrb76Z7TffRN/6dQiliKplZJaS6i6REpSqMbaTM33iOIeee5aDLzzPkX37mJw467J2sCjrdMlK1QqDI8NUB+oMjI3QNzpE0leFJMIqdzGJAZvmNGcbzEyeZXpyivnZWRZmGzT9mJkIxfFjh5iYmOTwvsPcfMedXP+ud1Nfs45ybkFr2jMz7H72WZ57fCcTB4/Smp5xbWStS7wVElUqUy8n1EsRJhZkwpAbQ0nEJFbSnm/Sbs+Tmg46dUBhKYoRaA7sfpl2e548zbnxTsHg2g2QlDCdLs2zUzzzzW+z77FHmD4zQWw0SRTTEYaujCiVqgyPjTI4PExSK1Op1ylXS6AkmU7J0pRON6XdaNOaW2D+7FmajUmyPKUsSuhuh8mTx3n1uZjB4WEqQ8NUSxXAICNJHCuMtuisi0+T4uiefbz0zHM0p+YQuSbHUusfZNu117DthuuprF7hFkjdLibLkFoTm9zJIyGR0hk/imDQKQDPNQrZRL3Mr0spyrpG2VYwwul0SSMwZGhZoi4HkFmCzAw12U/d9lM37vO5kWgl6JICGd1Ogycff4KdTz7K+i2b+NUHP8Vt19xFXzxEhToRishE3lDCkkqoxxlZ3OKD7/klOguz/P0XP88jj32fG6+5mes23Y4ydUb61/CBuz/ImYNn+drXvsqGFZu4+6Z7MHRRsSOrdNI2pSjCZl1yOccjr36H7+78MlE94t67Psi20WupimHaZc2hqUM88+JT1EoV7rv3ft59y92oMpycylHSmWgqBJFI0EbRzHLKlYRKpYa2LazJkDJnbmGSRx5/mP/9//kzTr12yMkllCSrt2zjk//yN7h2+y2UiIjyCKwgt2F9EbsEVEcP9PiAotDEC2EBK53hRVjBCw8QGoNKErdhQk4kwaLJyUA4hp0xBiVi4nIZrb0sRxSxYdUVXHvVTTz26E4OvXaA/lKFb33ra3zloc8zefg4g6v6+eSnP829D36M4ycP8X/9X/9PXnzlee699ySjQ5tQIiaykpKFRFZJxjYz9r717Dt+gG8/+h32HtvP7Owk87Nnec+776ZUFlhSzs6f5OkXH2fq9FHuuf/jfOQDH2PTqi3Uoj4SERFZwfVrbuC6bTfytae/ytf/4R94ZOfD3HHDXawdXI/RmkarQakUU6kldHXbKT54aTWJJLcapMvOzHPtUoQ1gHNk7nQ6RHFEomJym7mNCQld3QUkSirIDdVSibn2PLGf76YmRcYCI3RhQKU8iCuRaA3SOLZ1b7bkm8VFCw66XaFFww1rFxefxhiMdemlUaSo1SoYq4kTVUzS4zimUqlQrZaLXe9KuYJSHlDROVIpIv9gVsKxEZW0xEiSpArSkmYdFpqVgpGRphndzAFi2hjarTZSKarlKn3VPobqNZJyRBILME4LEeVon5mGbqdLp9Um7aSY3IniVmtVKpWyo+daR73VxonmKuFQ31gpP9R7arr1ttc9I76xbiFivLagNRSdwWmuCKI4QibOPchaLywqHPihjacQ+4EhLHOldG1hPTPRMRZz/9M5C1vv0iOFM9xwu93am4I4YNMat+eglEZ5jcYkloX+gLsUtWQh7cxTJFEcEzQnsW7yJGIwmSVPDVpn5FkXnVu0jJAyIbIxsRRESriMfaswVmCNdKm4SHJjSVNDmhryXAAxUlWQKkUIgzXCoe8IoliRJE5LUXgXMOs2e8mCqZCvAwF0tabV6jAz3WBmZpapyWnm5+ad2Um77ZiZqSURCbVKleHBIUZGhunrqzEyMszY2DAD/XWSRPkJvyWpRp5ZmbmNAymJSov3iNY5OvOu3iFlTUpi8XOwQFgWvQDZcsbVcjBmuWbm8jTa3oVop9NBa83w8PAS8ClEGIfKZTe2TExMUK1WGRoael1Zen8P0ZsieK7yLwebeoHO8LlzLZzfymL6XNf9dmI5ANbL7gxxvutbDqKGVMle5ks4Zvhs0PsKjKbe758LpFxejvB6YFuGRXsoozFmiRHFuernXEDjuQDX5eddfqzwnd566W2XcrlcANAzMzOFFtwvCiOwt5+Hezg8/1utFuCAj8CsqlQqGGNI05RarVbovwEFU1ZKSZZlhYbg4cOHeeyxxzh48GCRclsulzHGFNIkoZ/VarUChGw2m+zZs4cXXnihGC9KpdKS9N7e1OBeZ9q5uTlGRkYYGhoqtP+uuOIKNm3axIYNG9i8eTODg4PF5lsA1kJfieMYIQSzs7OcOXOmAILK5TILCwucPn2aFStWFBqgf/7nf87Ro0c5c+YMx44do9PpMDIywooVK4iiqGAhDg4OYq0zLbn66qt54IEHuPLKK7nxxhv50z/9Ux555BEOHz7MZz/7Wb785S8zNjbGf/gP/4FarcaVV15ZyD00m02mp6dRSjEyMlKkzwZwNABwQQIh3Hu97Oy3Ymj0ZrFcIzJNU86cOcMjjzzCwsJCwcYL/aSvr4+77rqL8fHxYvxfzloPP8OGRm/U6/WiH/be9+H3YMaitcvKCJIBveB2YCGG72RZxqFDh3j++eepVqtFPwsA9sDAQAEWB/3GoH34RlITl2pc0NVYp02mhMHqnPbMJAdefJ5dzz7Fod27mDp1EplmfrEt3eYqTrRdeGAQDCKzYDXS5ug8Z6bVYvbsBBMnjnLm5FFuvON21l2zg8rqlQgEupOiSjHdNGPq+HEOP/Yo+55+ktcO7KOddoiiBGFytMkdy0i5dleJQkg/H7YOxM60IdOOUaJMlyzXCGs40mjSmJxh4uwUN997D+PbNiP7KiA0VqdYDSY3TJ8+w4tPPMbz3/sBswcPIfLcsZoE2EgwMDzClm1XsHHbFpeKO9BH/+gQtaEBomoZlCTHzfulcC7HabtLc3aW1swc89OznDjwGq8+/wInjhwlzzIGk0HS3LD7lZeYmZlDdzU3v/s91EaHybIF9r3wHI9973vsefkVdLdDRSTUojKlUonBwQEGR4YYXbWCkdUrKQ/2QSmGyGUXSQ2m1aU5M8fczCRTZ09z+uQJJs6cpNNtkqeWNM/Yu2sXJofRkTHqA2NEgyVaZ2fZ88xzvPrss8yePOFJAhJFwvjoClZt2MDGHdtZvWkz9aFBknqFSl+dUrUEKmQEZXTbXRqTDbKFFhOHD7H3uec5ceAA7cYcOkvJ0Rw76lKW1115JdXRMScvlOco6zUnU40wGdMTp3n20cfZ9fyLlFONRRBXKmy56iquf9ddDF2xCfrr2LSDaWuytIvQmhLguEYu7TsqSUQiQJpC0sjd8g7g8dmHl1zEOiLJY6yIXcaWFWhSdKyITBmRR6g8IdYlKrZGOa9QMTUyLaCksHYeowxHTp7kW9/8FrWkygfe98vccc276I+HiUyFsqgT6QhlnJur9SttEVmUEfRX1vOhe3+ZoycP8sTOJ9n5zE62rryBPjnEQDLKLVvu5My7J/n7z32Ov/+HzzM2Nsa29TvI0ESi4kxLMaRmlv0nX+LL3/p72q02H/zAg9x19d306xFSKzBxzuHpg+w/sJsr123mtmvvYKg8RpM5nBGFM13FWgxusytKFGneRikNMqObtdiz/wW+9A+f5wff+RbtZouhFSNsvHErp0+eJtYRG/pXUyGmaxTdOEZYQaIFtRy0kOTSLkojnLfXLJptuLRVhRAJQiVYBJnJ6NgWCVUyndFO57E2dxiFMFTiCqWojCYnURWHNWrLSGWUa7dewyPff5gvfenzfPmLn2PfK6+gF9rc/N7bePDDD3DnnXdTro5QqtVYtf0K9p45wK4je/jA4Ab6taRsEjSGXGoiMUZZwhUbB1D9/Tz5/I/51re/QkrKtqs2UI41c/o4+w6/wCsvPs3aK6/gg/d+kB3rr6Ji68SijNQSm+cMJnWuWlOhW2/z5LNPcOzgPs5MnGLd4HqQEFUkuejSzhtYZdDCkua6kHcLqb2RkBApcuMA7zhK0MZQqpZI85SWSX1qujMUTYXPTEWg4hItNKoqyckweD8GNJlOHY4ihCNlaaioGklSdvNg771woXHRgoNSOXqqFT4FVliQzrVYCAdWRXGFcqVEX1+dNHdglRCCSEnH0FOR330LjePcxqx/2Ok8x/rJlwN03LkCUFVSMX3VPuarTRbmm6Rp5hYi2g3iERYVR05/Lo4QaHSek2W6EA6WClAeJBDe2da4yQomRxiDyTSttA3CUionDsCT0rH8jPEShr4eCoCwp5EtSxpdCG+4IgnbSN59zYN7uWbR4CWAfe6zUkpULMBaumlGu5PS7TpQNMszcp2TZs7gJc2cPkuWaQfKeTkRhESpmNgzHqSSJLEzbSmVE0rlhEq5TKWU+F115dy7gtMxFCnhWK8vaawHMx0jL88MnW5Gs9mi1WrRaMwX2lBJUqavv4/+tM6ArlGtJsRKEXlBaIKTMO74QiqiJCEqlbEqItOGTpq59PS06ytYIb1ejdYdsqyLNs7ZSilFLBOshdxYurmm202ZmppiYmKCyckpWs02nVaHdqtDlmbODSpO6O/vo16vMzY6wsjwICMjQ/T1V6lWEpSSgEHnxvV55RizFuFBTs94E/7hb51wttOh1EXaeSQjxCU5NTh/9G4UBJZNnudLWBK9oFIACcLiM03TgrXTyxbTWtNutwun8uXnW86Kq1QqSClpNBpLtPvCv7AYDuDGUvMg+bpzd7vdIm25FzzqZUBmWVZo8YV4qyDRm7Ey324EgC0AAb31FYCWcH0XcqzAsgll7gUgexl34e9zpXQGI4EAuAUwMLiEhpRMIcTrWKKhHL3nORcIGl53G0hpYZyynCm4HJQVQhQL/eVMRSEE9XqdarVKlmXMzMxQKpWWHPdcZfx5ieUOveE+aLVaHDx4kJMnT1Kv1wvmVdDQi6KIa665hrGxsSX10ZsS2m63OX36NK+++ir79+9ndnaWWq1GuVwmy7IiPbhardLf31+YD61YsYJqtcrc3BztdpuFhYWCedZrDBOARqAwNOnVDwyahoGlODs7y8svv8zo6CjXXXcdd9xxB+vWrSvSbMN1h3FuZmaGubm5AkAKfefw4cP89V//NX/xF3/B8ePHkVJy6tQpSqUSpVKJtWvXFmBlABlD/xofH0cpxejoKLfeeiurV69mYWGB22+/vQCoHn744cJhuNvt8p/+03/iD/7gD4q2CqDrihUrChA+gIGlUqm4T8JGQG+79jKq38l+HNoknCuYgBw+fJhTp04VAG4URWRZxtDQUGHs09sX8zxfYgwT2IHhc0I4B/hWq1VoudZqtSVyFb1lAIp20VozMDDAihUrCqZsYDuGsbSXwZqmKXEcF6zLcG4hRPFsCNcTNsx/3mM5m9BkKTZ37NnW1CSvPr2Tpx99mIN7dtFtzBAJg7Y5KkqQpRJRUiaOy1Sr/VSqLmNAaE2WdZifn2V+fo48yzF5Rlc3mZxq0XmpxUKrwc15h+3JbZSHBpHKYjLF7JlJXnzqGZ7/zndonTqONhkqcjI/lVqVof4++oeGGR0fo29wiFK57NipQpJnOa1mi1azSXNhgenJGfJmi7kzZxGpRiGZmDjNwtNPIusVbh/uY7BWJlKCKFKQtTlz6Dh7nn6eF378CJNHD5MYDcISJQnDK8dZvWED67ddwcbt2xhbtxbRV0MohVXKOf/6hWYsfaqgySGOKA1KkuEVDGcpMrds3n41m7ft4MWnn2Hvq6/SabZJW003LrebnJ2cZGF2lkolYfLwAXY9sZOje/dg0rafj8PAylE2bt7E9muuYWz1avpHR6kND6LKCUY6x18ROSM/283RrRZZp0lrfpbThw7y6kvP8/KLz3Jm4iSxSujojLmps0weP0G2ZZpIJcycOMErTz/DzOQEUjkmaFypsm7zFWy/7gY2X3sto5u3EA0MOHhIKawSLiXSr93KQlC2koExi9Cwcdt21q/fyIuPPMJLT+5kavYscVSiYyzTU5PMTE2z0miEUugsw2hQcYLSksbEFHsef5oDL71Kd6HljDejhPWbr+T6d7+bFdu2QL2GUQ7IzTGkeY4ykDgVSMckSyKiSoJIFNavNQ3OdbtY//kb5JJbBViXFeV0+112lLHarQsBhDevtE5PTRiJNBFKe7KLMHR0k+f3PsPBQ/u54973cMc176Ea9SNMTE32IXSCMMqvsV0NKQtkhmrcRyubYnRgDffc80u8euAABw7uY2J2gsGxVSSmzFCygvfe9gGOHT7ODx7+Pt955NsMfmyI/vIwsYBEVNEiZaZzlu88/C2OvXaEa264mQff/08Yrq7A5k6DsmsXmJg7RjttsHb9Wgb7BskxRCRIKYhiyLo5WuTOtVxoLB1EnCNFzrGTB/nxw9/ja195iEO796JiyfW33MoHPvxBNt+whb/93Oc4vPcEmTC0TQ4icnqk1vUPLcB6xqlYkotuWf40duSYjEVFQUHQ2LORIBcpkoxTU4c5cuQg+w/uZa4xRZp3qFQqrFu7ji0bt7Fp7RX0xQNIq4gkyFwyXOsjb87x4s5HEFjWrl3Pez72MT764Y+zae1mpKjQyQWj9VVce911HPrqbvYdfIX3XPtuUlMl0hGxSjC5RpsIohiTZKwYXsOWTVspxwmNruaVF55jzegGBletZGpigm6zyy3vvYVt67aS2ASbO++CkkrITIrJNbkyDA8Msv3KbTx5/Bkac7PuGUKGlKBFl65t0mjOcXr6LLPzc2AtSsZUy1XGRscY6BvAWMOhIwdptVps27yDgfIwZ6em2bXvJTZsXMvKVSuYbc5w/NQJWp0uSEGlVGXDyAZG+ofRwklPpFnKmakJJucm6KYdUIJKuczK4RWsGBhHi4yugUSWMcbJX1xoXLTgoMaircHaRdQ1aD44GE8gBURKIMsJJdwEycvSFemzwSAC4Xl31gFrUuB3VIQHnmzBtLLC2d0vLLSYm12g0WjS7mTkxjlfaesnsdISR4JSOaJaLVGrlSmXE+IoLNq9TkUB7DkWXhRBHAkUBpN10XnXSZdKic41nXaXrJw591vPjMtLpgD0CIw6ehaDYnFi1LtgDKChXzqic+1YZSiUwtHNrSzMiLSxpO2cVqtDY26emdk55uebNFstOt02uc48MOZMUYSUSBUh/c5OmmlyrRFCebagAx+VEiRJ7ExgvNhyKXHA7uDQIENDA9RqFZJYoaIw2NgiHdrVnSCSghzLQrvFmYlppqdnaTadcUSr0ybLM4SKqPfVGRoeZNXKMVaMjTDYVwOrMFq7HWXhtCyFFCjlBkWDcRp9kQThWHhGO4c3naW0F+ZpJBIpjQeDFWnHUKmVEUqR5TnNZptmq0WrtcD09DQzs24R1213fQqXYyv199UYHBiiv7+fWr3G6OgIw8ODDPRVvVGOx0atM2cx1mC1AKl83UauTxkHnLoml4u7hcIS1gNCuB30n6foZYGFRXpI3wK3mGs0GsXCOSy24jguTCLC4rzX3CIcr1fzCc7NtAupaJVKhXa7XTABw3vBFTRoQQUAIbDegrlKOE+WZUxPTyOlZGxsbAnbCBzINTk5SZ7njI+PL2HXXEygUEiDDYvpAEJ0u10WFhaQUhbOvbAIuoWFcKfTKUCP0M5hcR3At1KptEQvsfdfeC38bLVanDlzBqUUq1evLtL7lFJMT09TrVYZHR29YCbecnCwF7g9e/Yss7OzBetoOYt1OVOw2+0WmmO919MLnCRJwsjICGfPnmVycrK4huVMyQsp96UUIeU13B8B2JudneXVV1/lkUceKe7phYWFgnk2PDxcsC4D8BJSVcNmghCCgwcP8vzzzzMzM0O9XieKIucS79l8mzZt4sorr+TKK6+kr6+PNE0ZHh5mfHychYUFrLXFuNELPud5XqSDBlOQXrfjUKbgyF2tVonjmMnJSY4dO8bExARZlnHXXXexdu1aymXHqqlWq6xcuZL169c7wKPVKlJZA6B55swZJiacdtrc3BwbN27k7rvvLpiIgdW3sLBQgEZhDGq1WmzatIlbbrmFHTt20NfXx5e+9CVarRaTk5NFmvHRo0c5ePAge/fupV6v8zd/8zecOHGC973vfYyOjhbt1Wq1Cpbb3NwcfX191Gq1HjkSu2SM632ttz8vB9jPF2/0uXDsAMYFg6k0TYt7LJTFaSzHBeiWJMmSVP6QnhyeH72bPwGs27JlC1dffTUbNmx4HZgfyhhYyoH9aq1l1apVS54VoS+FTZVSqVSUo1KpFCnbIbU8lCWkzQM/N+Dgm6USL33PafYJbchaCxzZ9QrPPPoIh3bvYmFuEmFTZBQxODbIitXrWLdxM2Or1lIbHKbWP0JS6UMJIMvQaZuF2WlOnzzOqWPHOHr4IKdOHUMaTZq12b9/N9WBOqOrVrKmrw8ZJWStLicPHOLFJ5+h2WiiVERmNAbF8NgKrrz2GrZecy0DK8apDQ1SrvWhVEIUxSAlxljy1AHrWafNwsxZJo8c5flHd/LaK7tIc4O2hvlGg4P79nHFDddQHx4k7q8jZERzaprXnn2WXY88xvRrBxBp14EBSczo2tVcf/ttbL/5JoY3bkDVqk56J44QMgJc9o/VFmFxhoNKYkQCwumy5dpCbkiUpLJiFVvq/YysWs2qTZt4eucTdM+cZvXwOFdcuYNrrruBwVXj6LTL8X37ObX/AHphnoqM0Aj6h4fYccsN3HDbbazetImkXsfGCUTKGeshQDrCh5EKGxtISiSmTnnFGAOrxqkO1ml2msw1Zsk7XcoigjRnYWqafHYOTcSZAwc5dvgQC805pGmjhWXLujXccPddbL/5Nqrjq7AqxgiFSspuAi4DqUJ7DUhvGBUJtE5J+odYuf0qOvMLHD96jInGlGP9yBJ5rmm1ml5TDBwDw2UWdeebHHx5Ny88/iSNiSkqqkyeZwyOjbL9phvZcPUOKmOjpEmMVdIt7pUi9TqHEuekbaVClBSq7MFB6fTdrTeW9JmMfn148cwRLzS0SjEyo3C8Fc7N2wiDljkm1hit0dLpUhqM+4yEjAwtUybmTvLkq49RqsXcdf3drBncQJkaiaihU0ksI+8o7JIyLc7U0qQGpSMiU0UJ2LD2KlatWc/xk8c5O3uaK1fuQHQstWSA9aOb+MD7P8jh04f40aPfZmztOPfecR/9SYSwJfKsyw+f/R6P7nyEsaE1fPx9n2bTwA4i7Ry1RaJJbYPJycNIndM30A+RwFjIMRhhMUI71qRwZp1WpRgzT7uzwLPP7eTbX/8yz+x8nLnZGcbHV/Oue97HRz78K2zZupmz7aN0uy0oCdKyoClzahjKRqCMY0mnyhGRgiv3IpRse34X/nfnTuxMTaMCZ3CJnoZUNzl8ei/f/cYP2fXSS0zOTdHO21iRI6Wgv1Jlw7or+KX33s97bn0f/eVB2gvzPP/sk3z1iw/RnZkDZdi4ZTP/8l/9K+669R7KyTDoKtqWQEBJGK7fvI0fRBFHD+7h7NxZSoOjWGsZisrEHU0iy7SVAGto2zYHT7zG7MIc9/zSvey48lp++NhjrFi7nheefwmZSzas2EBd1BC5IqGCySBXxhtUWYwAhSSWCuuN5YzN0cK1Vds0efW1l3js2R/zyv7dNOYbWK1RKqJSq7N12zbuvO0ONqzfwPd3foMTx47zzz/1m1TWlnjqlcd56Iuf474P3suamZU8+9IzvPzKSzTbbYSASqWPq7fcwH333Mf6DetpNud5+sWnefTJxzl58ii5zhAKklKJHVdcxS/d+Utct/UWYmtQIiGKPKhwgXHRgoOOKuUQK7cQc7naSnnKf5BSkNIJXmqNNobc09+VUiSRW0wYm+MMYIVLsXRoEMZn0CrpOzUCnVnanS7zzQUmp2eYmpnlzOQ0c40Gc40m7VYXqzXlUkJ/ucxwfx+jg/0MD/XT11d3KbRqEaRxuxvuloqkII4VSgpPac8dUChBZzkOzFdECJK4RKlcdRMNY+lmDnhQcpFUJ3rSrhYXxh44XJbKUvwtFd7DAqMX+4q2lrSbMz/fpNGYZ3Jymtm5OcfIa3eKRbkxGikhSSKqtQrVinNwkzICrz1QgFZao41zP0u7HTrtDo1Zx5wTOEfqaq1KX18fQ0ODjI4OMTI8RP9AnTiJiSKfhiNcSrT1bLksdY7SnU6LZnOe+cY8jcY87W6H1GiIBLk0UJLU2hWG8n63A+XmGC7FuqgnBVJjlcGInNx0yU0XhCaOBFoJjDdTSVNotZw7sRQRaccyN9tBqNhp/OmcbrfN7NwM0zNTzM83sGbRlTKOE0qlMtVKmcGBAcZGRxgbG2VwcIC+vqpnu8oeYNAhys7RWXijGY0UFhUFRzJnRmKK3R0HykoRF0C4MCDMxSPs/k5FAGlmZ2cL0fwAvKSpY26G9OCw+A+LpOAqOT09jda6WNSG9MOQrrX8fLAUKAzg18LCQsFctNYyPz9fsJGCLlgIIQRTU1NMT08zNDREvV4HKNg8MzMzVCqVIoU03NvBJGV4ePh1OlJvBdh6J4HE5XUSAIhms0lfX1/BrAzpbdZapqenlyyMQwRh/eB82vvdkA66sLCAEIKhoaEl3w1tsbyewwK70+kU7sfhvXq9ztmzZzly5AjdbpfR0dElgGXv9fUec3lad/g9LM6VUoU+2fLorafgiHwuBmv4GZhm9Xq9SC+enp5mdHS0YCRdaHteTADyhURgmIY2Ddebpilnz55l3759AFSrVZrNZgHkBIAZKBhXgVmXpmkBxJ46dYpTp04V7MR2u13oy23cuJHbb7+dO++8k/Xr1xcpyr1gEbBkQyLUb0gVXb16NePj40vYoVEUMTMzw5kzZzh+/Djz8/OUy2WGhoYYGBgowOwDBw4UundJktBoNHjmmWfYt28fu3fv5vDhw8zMzHD69GmSJCn6yfDwMLfddhtr1qxhbm6OLVu28IlPfIJms8krr7zC7t27SdO0GK8CQ7rZbDI0NMT999+PUoq/+Zu/KQDL0dFRHnzwwYLVdvjwYX74wx/y0ksv8eSTT/Kd73yHxx9/nKNHj/LJT36SzZs3F27E9Xq9MBZJkqRg2oXfQx2GOUpgePcyoy8UKHyj/p3neWHkopSi3W4jpSzYjL0p4EKIIj076PaF8agXzOx0OjSbzWLjKYxRrVaLvr4+rrzySq6++urXsdnD2Nd7LYEVGMYNKSUnTpzg9OnTGGM4ceIEMzMzS4DAcF2lUon5+XmeeeYZjh07VrAQr7rqqiJV/Och3tLoZV0KLDqjceoEe198gcN799CdnyOxBhlFjIyP8q577mbTju2Mbt5KeXQclVQQUQVjJXmni8i6RMJttm7qtpk7dYLdTz/DYz/8AcePHCJPm5BJDh98jSuOHGHV5i0IEdOdnmPq2CnOHj+FabXBdJAqYt36zdz0rru49vY7GNq4ARnHGCEwMiK3gtTR9ZwKVV2RKIkiZ9SuYc1V2xgcGUUJweHd+4g6gkxbThw/xuljx1izeR1Jf518tsGZffs49MILzLz2GuVOlw45olZi646rufGuO9h41Q6q46OIvgq2XMIqRaotUiVEMkY5dMWZbmQWkwGJBB0ho4ikWsFGXUSeYrMuViUMrlnNtfUqg6vGabfbDA6PMDK+kvrIGJGQnN23nyP799OdnaNkXdllOWHz9m3c9O47WXPVDmQUO1ODOAEVg0/xlsIZOxgh0MpiowjbXkAaTVzvY2TtGsZWrySpVMg6XZQQmDxHGI2QgoXJSQ6+uofG9LRL6bOSUq3G+LbNrNqxleqqMUSpDCJBC0lXW6RSKBRCQOTBZpPnaKVQtSo67mLzHJuU0HGCjSO0EKQ6JVEJkdcOFVJCmiGEJEpKtOeb7H/xJZ5/dCcnXzuM7mbEkaLSX2XHDdex/YbrqY+PIep1utoghCSJJbk1dLpuM8BRJwxWRo45WIohdu7NWhtPolmEctzPS28cyFSHTMUIG6GEddrxMicTXTKVoSP3L1MZqcioKEOuc3QEqWjTkW2OzhzhtdO7WbV5Dbdfexc1OUBEiZKokWqNlWCkwYgMLVKs1VRRSKnIUoNKnGlHpTbGldfdTMYLpKJJ185SE4OINEFWBNdfeQMf+siH+fPP/k++88OvsmbVWm6+4jaUgF0Hd/PQdx/CKsEvv/dXuHXD3dTNMNIq2maB/Ud2sevUs+zb+yLa5Bw89Bo/evRHKDlA/1iFoVURWuZoqbHS0KWL7naZOP0q3/zW1/j+D77DyQOHEVJw3S038c8+/Rtcf91tDA+swqgMmwmieoxVhnZn3slyAbnInSO7tUgceL0Yr+8vgWQkhAZSkBZsGbyJklQWyNl/cDenj5/gucdfoF4f5KqbdjC6cpiopJibm+bU8ZPs2/cSJ0+eRMmI1SNr2fmDH/Hjb3yLkyeP0z9ewijNVddv47prryOOaghqKDVM1oFqDFp0uGrzdlauGuPI0YPsP7yHdTdcibGWzAqMlKA7iMgiRIfZhVPs3vsyUZzwnrvu5fqrbmHN6hm++9jj7HvlKFVZZc3gaipUyYwkTmKkTbAYMquxMiMTKRMzpzh65BD1vn7GRkaJhHJkIjKee/lp/vqh/8Peg6+QJ5ZyvYKSgrxr6M50OXjkJfYfe4X3v+/9vHZyN1NnzzCfTqNFl+n507z22kv88EmN2dnh4JHXSKoR1b4+cm04eeIoh/fv48SZw/yzf/Yp9h7Yyxe//AXOTE9QqZcpV0pkJqc5Mc+x1/Zy6sgJ/sWnE2684lZykyFN9JbGgIsWHPRWGQ5Yk445CItsuCLN1uvmRUohI+8aSEhJ8myhKMYYz/bQFiOc2UWk3GGtddqAea5ptzpMz85ydmqas9MzNBaaTM3M0mg0yNMuSRIz2DfIQF8fw8MDjI2PMjI6wuDwkJs8Rl5PzBq3c4PAWOcerP3CBizlUkK5XGFhoeUAr26OFJJKpUZftY9IJXS7Od0sPABiYum09oo68r8b61NuQ/rVsnQz663DXVIqTju0J3tXa0Gr2WF6epbJySnmGvNMzczQmGv4nXHtXQ8r1Os1+uo1arUKQ4MD9Pf3UavVHThoA8PHkpQSkJJWu8301BRnJyaYm52lkWdoXJpyR3dptdrMzswxPTXD9NQMY+MjrFgxxuBgP319NUqJS8Mw2i30EG5CrPOMPE3petbY/MIC3SxHKEkSl1EqwhrotDOaC22aSQkqJSTGOT4LEEicdqPLh7bGAW9xJEhihYkjwJKlXbLUoE1GbnKarTbTswskyVmUKiNkVLg7t7stFhbmabWaTtMsjkniGCkFtWqZwcFBRkdHGR8bYXRkiOHhIWq1KqXE9V2tDVmaLYKKSnqjFzc5wmsdmuDo7NBDpFRY61Il0jRHCel1KqVjz+aXFjAAi4D3uRZ9gR0xOTmJEILR0dFioRdAoeAyujzFM7BTBgcH6XQ6zM7OUq/XqdVqrzM3OBcgGF7vBQMC6w0omDKlUqlwOg4AVwCCRkZGOHXqFGfPni0E6IUQ9Pf3F0ydUG4hBO12m9nZWQYGBgqWW29dvJVUvOWp0W8nlqe/hp/h2LVajXq9vuTawelxhfqp1+tLwLpgSjA5OcnExASlUolarVYs5sNCfHR0lMHBwSXXvzz1N0SWZTQaDSqVSqGxFlhAg4ODrF27llOnTnH06FGOHz/OyMgIK1euLJhF57vuc6Xzzs/PLynfudhC4bWQCmutZWhoqNC5Ww6E9DrJr1ixokgvLpfL1Ov1JUDipQb+vVkE9hYsHQsCyywASAGsDcyqAHiF1Pxeg49Qx0EfMHy20WgA7tlSrVaLFM+hoaEiPbPXPTj8DGmb4bhZlhUMv5tvvplrr72WarVagF5Br/D48eM89dRTPPXUU8zOzjI7O1voaVpr2b9/P1rrQlNwYmKCH/zgB+zbt49ms8nw8HBhXhLGrTiOGR8f58EHH+T973//kjTqkydPFoy/qampJczGcrnM+Pg4ADt37qTRaDA7O8sHP/hBfvd3f3dJH5uYmGBsbIzf/M3f5ODBg3z1q1/lr//6r5mYmOCzn/0se/bs4Td/8zf//+T9d7BlyX3fCX4y85jr7/OuvHdtqj3aoQE0CEuCEEgNKY2WWmmlCK125g+FYubPCWr+nogNaXc4saOQNNTOUhTJIUGA8CAa3YX2rqq7y3R5/+r5d9+1x2XuH3ny1K2H6kaDRHDQVCIeut67955zbp485+Tvm1/D008/zeTkJGmasri4SKvVYm5ujrW1Nebn56lWqwVDc/v27YyMjBSAmWPl3u3e/1cd4/1+n0uXLrGwsFDcfxYXFwtWnlKqAFm11ly+fJkf/OAHRR9u2bKFgwcPsnPnzqJPoyii3+8X59aNU9/3aTQajI+P3xGsMiypdotTjvk6fF9wiwKvvfYaP/nJTwjDkF6vx6VLl4jjmGazeQeTESj8JN3xb926lZGREUZHRz/294WfxRi8473F/RiMSEjjDVqrt1hevEGv3cJkKUoKJidmeeCRR3jw8U/S2L4N6nViI+glCVJ4lEpVVBigs4Ao7pMMegRln8m9OxFK0Fpbod/eoLO+QUrG6voCa4u30L0e0kj6q6sk7S6+UQyMRBuPkbEZDhx9kPse/QSjO3cjggCERAQh0vMsG0XkC+w6B4zzYDmhM8JSia0H9nL4wQe4eeUaS/0NjBbUMthY2cD0Mkwq6SyscO30OeavXCHtdyh7HjKoM7JtO/vuf4A9DzxAeWYalCSTkkRnJMYgVGj7OtPoFGQG0kikZ8MKjbRz3F4vQmBQQoNOrV9jtQ4mper5HBifsEmtWYYXllC1BrrXY22jxdUrV4h7fRSSWEClVmP3/v1M7N6LCCyLCuVhUORpekgjQGviuE8qJDIMkEqRaoMZxPihhwzKKC9Ea4HyAsg0mUkolQO8eo2Naze4ee0iSTogEzEphqmpWXYdOsjY9u1QtnYSWoIXlgk9ZZfbc6WRHVu2djAmYdBZIygFyAD63RYLC9dZai2jgVKpgfYCZLlKdXQK6VfRgwST1wGtWzd45+UXufDu22TdDTApiTbMbd3JwQePMr5/N6JRJZZ2kcuToKUiiQbEgx5ZmuTBAwotFEb5CD8A6QMq53mJXGNnz+FtE7mP170gy/9nb2G5FZbQZCKzISWeQKuUTCakQpNKQWYyNIZMajKhWe2s043b7N61n2ZtBB8fn4A0SvD9ILcay8hkmqciJ2g8fE8ihEdkAK0IgyrPPvMFHn7gYbY158jIkEqiMo84Fvheiace/iQXr5/nu3/x57zy6jF2Te+kpzt8/Xt/zI3lBT715Kf51COfpemP4qcBwoNW3OVHL36fb/7wD2in62Qm4eVXfsIbr55B6BIPPPMYf/8f/BrkijHQ9OJVLrx/mv/4v/0/ee+dE/TbfSqjFb7w1S/zta/9Nttm9iBliVikGDQ9HRMnfbSJqJYDlBbEWYLOgW9fgGdsOOfdAKQh07JCbixEijAKgUZicxySxNpwnX3/DNlKzKH9D/C1r/19duzejQwMRmakWcTS0i1+8twLPPe9F/jD//0/4mU+V949jczgiU8/xTOfe5xvfO/rzK/dYqm9RL2+g0CUMCkEQhAC64OYUtCk2mxw8fpVzl87zZOHP4egRGys4q/kCfoiwpDQ6qxy4cJpts9tYc/MIRr+HId37EGoES6ffo/Tx3/Cibfe48DOh5iozpFkA6RIrS0cETED1qJlXj/+OpfPX+Ho7k+wZXIrCEhMxMlL7/Cfv/kHnHznTbYd3McTzzzN3gP7KZdDet02Vy5f5MWXX+Lce++yvrFKZ2ODRqVKSkyGAZURJ23OnX0PL/A5dOAIn37200xOTZBkhjNnzvPDb/+AN956kY3BIitrq6ytbPDIw5/gk08/xeTMGJ1Bl3NnL3DsuZd55/ib/HDLt9m9dQ9j4RYQashL8me3X15wUEOW3E76k1KQ6YwszRAIm9wrc189IXK/QJODgPmkUngWmIstlVUpCZ5lnxksLqQzQxRndNp91lrrrKytsr62TqfbZ73Vod3pEycJgRdSr9Uoh4qRZoWxsSYTE+NMTk3QbI5QDqw/mSEnJufXkBQCJQTSEyQp9DPNYBDT6cb0+jFxknv1aYEGoiRjECeU08yuNCkbRuLnS0BZpsky63XneXZ1g8wGhEiVJw4j0GjSOCaJYow2+F6A8vx8vUkglDU/xhjiXsL62joL8/PcnL/FWqtFq90myle7wiCgXq8y0mgyMjLC5MQ4Y6NNRpr1nDlxe7Uh99BESEdGDpmZadLZMc36eovFxWVWlldZWl5lY2ODQRQRJynZQKPbhsyDVMFAx6RomvUa5ZIP+eqtEBJPSgLfp1wKKVdKlKMy/TgmMZosNaR9TeqB8SQy9hCZD8bHGI/MWPq5wFiQUGZkiU1VDpSkpDwCISH3T0p1hvB90iyjM0jpJ4Yw1JQrhpJO8LxeDujZxGud2sRlLz8PaEGapNaPILM+gqVSiVqjTq3RoFQpIz2ZZ0FZMFwqMMpgh7ddsUSD0WkhIRZ5OpmNjxe5B0f+YXJmk7SmxEZJS0/9GDcH+LnJf5IktFotpJQ0Gg1KpdId4AHcTrcdfm24eZ7H6Ogo3W6Xfr9PpVIpvAg/CJC8Wxv2DjTG0O12GQwGBbvrbsCNCzNZWFig3W4X7Blryj3C/Pw8KysrzM3NkWUZ6+vraK1/ijE3LG39qIDfLwJI2gxiuebOR7PZvCvz0rHgVldXWVtbK8A/d34ce3JjY4ONjQ263S5SSgYDy16u1+tFEX839t5wS9OU5eVloihiZmaGSqVyx3cXQjAzM0Oj0WB+fp5bt25x69YtWq0WjUaDsbGxArT4MGamAwaXlpYIw/CO1NXNfeTYUevr6wVAuZl5NvzvzaDizMwM169fZ2lpqQB27gZU3u33j1tzwKiT4DogcDgJ1r3uADqgkNQ68NUYw8jICGmasrq6Wkhbl5aWCn9Rd76c3cDq6moh0XX7z7KM0dHRO4A5F1ri2KJra2sFQDQ1NcWuXbsKObMb/0II9u7dW3gXvvHGG0XiuQs38X2fY8eO8Ud/9EcMBgOq1SrNZpPx8XHGxsZIkgRjDOPj40xOTjIYDGi32yilioUOd2xra2tcvXqVy5cvs7y8DFAAitavd4M0TdmyZQtKKf7u3/27PPHEEwWDzoFWb775JseOHSuYfy68Y3JykiAIGAwG/PjHP2Z1dZUf//jHbNu2ja9+9at0Oh3+1//1f6XX67F161biOC5YmnNzczz++OM8+OCDjIyM3CHh/UW29fV1Tp8+zRtvvMHi4iJKKebn55meni6SgbvdLmEYEscxV69eZX5+nsFgQKVS4ejRo8zOzhZjzIF8zrfU3SOEEIVPpetjN6YcAOnYg24hatjqwtlZGGOYn5/n9OnTxfOr3W4X8nLnPTkYDBBC0Ov1WFxcLI7NLSh92ALbx6X9lY7caFAZWRizsHGdSzcuECUDaqJMEJTYveN+HnjgWRpzR5DlGkZazyvh2wAHFVsJY99ovNE6flIiWVvHF5LG6CQToxN4GkyaUJYhY+UxyspH9AeIcp1qEBJqg9EJiTKIsMxa3Cf2FN7kFEZ6xIMEr14HPNI4y+fNBpzvNtrm0QqNIl98Vz6DNKYbD9AIKqUGHiX8rIQY+JiOYPX6GqdPnmW906Gr+nQwbNu2i4OPPcm+x56iPLPVzs+FDRkk0QSeIre4thY0IkN4MpcNagwpWmqkMgS+wwckksAGbAAChVABZBkqBx2QHiYVdFs91tfa9FONLNUYDDaIFOyY28b0lh0EIkBkwhYOXmBJC1GMkCnC98Bk+CZDoUj6GTpNKQkPUWrQX17gwvH3OH/qLP1uDzILjc3MbGHHrh34WY+FxaukwgJtHmVqwSjTI9sZb84SyBAyjfIkXqCAGBPHkIcJ4HtWuaRTMgmYFK/TQnc03bU1Tr/2Gq+/9Dy35i/TzRKk8pia3sauex5lZGY3mBBhBDITdC5d5uLLP2Hx/eNk7Xk8IFIwuWcbj33ps+x+7AFENaCvB5BpmiWByjTeoIeK2sgsIktj+qRkBESpwMgKpdIoZD5SePgitAE20sM6Mw0Jis3Hqw7wCfEIc3DKEiBAoIyHl3kQAWmKJxWGElqUSY3Al5rA+PhZhe56RtbXbNu1DeFBzAChDYEXIJMEz/PpJym+9OjqBOmFFjcQGikSpIASGQ18SuU5dHmGkDJeVsJIj1TacNOQKqPBNH/3s/+Ayycv8+KPXmCk0SBNY374+jfYvXsHX3z215kYGceXAmUsCSTwBNPTM1THJsi0x8aNRcJajfrEOJnwqc3UiLREDBr0l3qcevsdvvHun/Lyj48xf/EylKC5Y5xf+fUv8Klf+Sy9csT73TOWbYmHFJKVlTV6cUyq+iSij5GSCnU8DZIYjCERARZW/tkWVAZAC5RWKGM9QQNhCDyBTAWd1TY7pg/yf/+v/iX37HsYIXyEn6FFQkKXXdt2sv3zc9w8fpW3nn8dE8GWnXv4jd/5R3z2c1/AryScXbzM8y/9JeduXWbLlsfwjaYqevheQiQgCGv0NgwbKxG9qM3b77/MJ5/8VfaPP4jWMSEROhNkCiINV65fY2V1gSc+9Qjj1Wma2SyDNOHAzCz/5Hd+hwtPPc61Gzf4k+/8KU899jS7ZncRqBAPQWr6rHWX+OGr3+HPv/lnNCvTfOWZ32KuvBttIhYG1/mTH/1/eevCq9zz8MP8o9/+f3Bk91F7byFFE6H3Rjx9+DP8/n/+D7z43A9Jy4LGjhGUqRMySqIzCCGOEx554LP8va/9I47s2m9l7wge25HQkDP8b//p33Dq9DsEqswzj3+Ff/L3/jlbxqfwMUQm5vGdhq21+/l//+vf5e2TL3H91pcY37XD9gXxzzizt9svLzhobOKK1ppMp5i8MFCe86PJDehTS6EW+esy91rIdFZMipSyf9MiZyAKQ5JooijOZbQdWq0W660W7XabdrtDFMWkqcH3FdVKhSD0aTSqjI01mJgaZWSkTqVSplQKUdIjzRlzdoIoi5uxo+Ea7HGEQZkgLON5AVLYm3kQlFEqLECfNM0YDCIG/Yg4iWwCrQmQGJQkL7qNXZ1zIKLn5dxxbRNstPXV8wPfypClBViF8grfjFQb2u0ua8urrK6u0Y/7pCahH/WJkgjpe5TLZcKwRLVeY3x6ktmZaaYnx6jXQnxPkiU5u2UIsBJAllqZtxACTylq1XIOZko8T5EauyoaZza8Q/cjoiih1+uTJrFdKfU8lAApavi+Klh0Qgh0ZiVi/V6fdrdDu9shSmLQebx6nKDjxIavGIOXM0WNycfRUPGeJpo0Toh7A+IoIklS4iQliiPiNAaEDZ7xq/ihDVAJAo+g5BOWfEphgBSSLNZE/Yion5AmKf2BTTJMMgsc9qMBK+urGKUZJD1a7RZTk5OMNkeo18p4ykqCETml9baTA7jAFpP/VeShOjpDG5HL4q3Ho9Ea41ngUAMYUyRZf5yaK7Y2M8F6vR5RFOF53h1+gcPNFWLOT+tuwItjCIZhWHhSucLsZwFtw9sYZrqkaUqr1SqOYZjd4RghrlUqFUqlUhF+4MCPRqNRAEgLCwuA9e8aHR0tGJDDx7G5APwwUGjze4a39VGKyA9jcsJts/0P82t0x7yxsUEURQVoF8cxq6urJEnC5ORkERLgwAkXLOK8JKvV6k8dy/D3abVarK2tMTIyQqPRuMPrb/hclMtlduzYweTkJO12u2ApXrp0iZGREbZt21bIjYc/7/YVRRErKytIKX/Ka9D1CVCAIg4EcADT5v7Z3G/D/w6CgNHRUebn51leXmZ6evqu3ot/G9qwTHtpaYn333+fJElYWVlhaWmpkBP3ej3iOC5Yoe12m2PHjnHx4kUARkZGeOKJJxgZGeHYsWO0Wi201ly7dq1Iq3Us11qtRhzHzM/P88ILL3Dt2jWq1SqdTodarcZnP/vZIiTGSUCHFy4GgwFSysJj0F3/Dtx0DFGXtuzA3VarVRy/AwgHgwHGmAJk/OQnP8n27du5dOkSr732Gv1+n0ajgVKKNE1pt9sFGzpNU+r1Ojdv3uSll17ihRde4MyZM2itC9aeWxDZuXMnR48e5ctf/jL79u3DGBus48ap7/vMz8/z1ltvFefAsbKFEExOTjIzM1OAaq+++iqvvvoqO3bsoNPpsHXrVpaWlnjttdeYmZlhYmLCMmLyIJYtW7YUHofuHviLBrSUUrTbba5du8bGxga1Wq0A3YCCWTp8X3Ay/lqtdkcIlLu2l5aWipAgKSX9fh+wjNckSbh+/ToXL17kwoULtNttqtVq4X/r7uXj4+Ns3bqVRqNR3AeBwguxVCqRZZY95hZSut1uEbxTrVaJ47hYaOn1ehhjGBsbK7wuHfj9t7Ftfp65ZhCYLKG7sc762hr9bs/Otf0y5aDB6Pgc9cmtCK+CEdZnLhPWH1toCz4ZDEFJoqOMuN8nyP3P1xaXuHL+Eu2Njg0PERqvHBLUaohKCVEtI+MUVS7ZEIl4gG8ksc5YujXP2o0bVOpNwmqVbBCBsCxonSZ50AB2yicFSgkrZ42sSubyO+9w9sxp661mDHEaMz06yvZt2wmbY2T9lNX5JVZWVi2rNUvxyyHjW2bZfuAg1elZKNcwaZRPK3PliZK58ihXGQkBaOttVnQ2ILRNJxX2hUJmCNb/TgoQuV9RlmGynOOmfLxKmciTpIHEyArVcoXmzAy1sXFkpQKej0kyhLYWOrofYXSKUAKy1G7P99EI0k6XzkaL1tIC1y9e5Nypk1y/dIkkiRFIxscm2L53H6NbtqKaY4xu2c7WA4eQtVE8EVApV9m6cx/V5hjSC8Dz7WJ7EjHodOh3OphBBNr6qhuj6cUD+kmEjvoMVhZZvXmd6xcvcOXyRZYXV9Cxpl6pU25OceDwEfYcOES53gDlI1TGYHWJC++8zYk3X2F54Qa+p4hNyuTcFu577DF2HjlC0GyQhiUL2uZ+7Z42CG07O9WagYEUD4OHED61So1ypZazCvITZoNk7bkyt0/fx405aBNW8hDSPCPAgtJWCSe1QBoLBlvwUNrwUkyuDFNksbUlK5VCEB7CyNt9ojSZiUEl9JKIzDfEJiMVmkQKrMkXllFIDCQIo1BC4IuAQTwgDINcxu3hUWKiOcNvfOW3+Y//6d/x7e98kyhqU62HfP5XvsquiT0ElFFGIZUHQiONxxOfeJq5/Vv4xo/+D16+8UOe+fSzfPrZz+H7Jap+lbQbky10uPbuRf79pf8P7fYGUauDKElEWeKXypx8/yxnr18hzcNzhLYhLVJ7JFHK1UuXaUxUyaRN6RbGR+kMCWTSWaB9VGdKgREeGpn3c2bJKEjQEJYrfOFXfo0j++6n6jVRwmOQdkhlijZw4+Y8P/7RX3Lh1HlMZijVK3zhK7/Kr33lNyiXRhjodXbtOcALb/2Is5fP8ol7+1RLdqHE6AiUxyBNuHTpMitLa5jYcPPWDebXb7Bj/DBVmefNa2lJYCbjvVPvEiDYs3MfI9VxZKTw0oR6tcSh3Qc4vO8eekmfn7z6An957Pvs272Hw/sPM94c5cKNs/zgpe/y/Es/JNOav/u13+KzT3yONLKA3NlLZzh19gSN8QZf++pvcWj7fZTFaJ4xnGEISUyPnbP7+OoXf5PV9RbvvvuGtcoTHkqEZKmGTDC1c44nHvs0e+YOU5NNm0khAzxf8cRjz3Dsje/y3luvsv3gTj7/mS8y29xBWft4MsETIT4+R/Y9yK7DR7h68U2u3LjA4Z3P2JTkn6P90oKDUkg8z7cPCZP/3MHo0fkKrA3YENqBfyCEtGETuW7YaEOWalKtSRO72rvR7rK21mJ1dY1OHrjR6XTpRxEY8uItxPcDms0mo6MjTE6MMjJap96oUArthMtgLJtP24eqEiCV9T1ECKf0pVD9GglaYTJhf7QFA6OoDxj8wKMmy9RqFcbGR6xPVuCj8jAOjPXysxR367NlnP+EKw4BjGWYKU/lk1kHZGRWyoC0nxOQGk2332N1fZXV9TUGyQAtwRhr8er5inK1QrVepVwt4fkWQMm0RiiTB3rk35Pb4SFKOoq7nXQIwPN9ypUq9XqTKMpIY02WtIkjG8xikpReENArVxjUGySlMmk5Z5BKhSew/nlaQGa9SAJPEfiKVAs0GYYEQ4SUKZ6nkZ5GyAwhPKz8WuRsO3vcqTZoI9FIkjglSdJCdtrtevT7EUJKwlLAyIj1hmo265TKYcFeDHwfoQ1Rf0C3bdOt19ZbtLtduv0ecZqQkdGL+mQrGbFOrJwjD76ZGBuj2ahTKfm4p7sgn/wKC37bhOJ8lVa6sa5QuIJG2EQibdOYM5OnYwvQRfLUx6cNT/hdQb2wsMDa2hr1er1I1xwGw4bvESK/Poa3t7lIcmCWYx45CeJHAVjuBki6otqx2+62b/dv57E3nIrpttNoNOh2u1y+fBmlVMFwu5vP3N1A1J913JsBso/aPogxOLzNzWDs5uakei591bHpVldXabfbTExM0Gw2fwokMMb6sS0tLRXMuTAMi9eG+6Hb7bK+vl6EjQwHeNzt2D3Po9FoUK/XC0bV4uIii4uLGGPuYIANe6G54+73+0xMTFCv1+/YrgM2e70eN2/epFKpFGN38zENt7uBfG57jUajAAQ2NjYYGxsrQJXh8zQ8Jj6OgKGTAXuex82bN/nud7/L6upqAfS4UBmtdTEWPM+j0+nw1ltv8e677yKEYNeuXezevRulFKdPn+b06dNorSmVSoVHoQN33DbctddqtQpm6LZt23jkkUfuSB4GCnC2UqkU7LLNicUAKysrtFoter0e77zzDq+88goXL15kbW2tAKTdc6fdblOv1/nCF77AU089xczMDIcOHUIpxV/8xV9w8uTJOwBEpVQhI3UBTUmScO7cOc6cOcOtW7cKwMkBouVymUOHDvGpT32KL3zhC1QqFftcz0G/er1eAIWO3ebSvR0AWS6XGR0d5ciRI+zfv5+XXnqJ733ve6ytrXHp0iV+7/d+j6NHj1Iul9m5c+cddg8urMTJeh3w5sCwnxfU+jBA0XkfOkDe+Tj2er2CjefAWWNs2Ie7Pt3ik7tPuwWhTqdDHMdFvzlg7tatW7z22mtcunSJ9fV1bty4UcjVnZ3A5OQkExMTTE9Ps3v3bg4ePFiAhK4PpqamuOeeewrrC7tw3S78NZ0k2fXl4cOHi2vmgQceYGJi4o6QrP+SmgBbxKc+uqdJI4MxisQIyn5AeWwUb3IMAmWlbhgyIZCehR6kEgidYfoDfK2o4DNYW+by+Quceettzp45Q5yl+EEJ7SsaW2Zobp9DNGoQ+qhmg9FtW5nbugPTXUdmfeI04vJ77/ICkiOXrzCzey/VRpOwXMELSijPx1PSLvymCXEc0Y8jBv0ureUllm5e5/UXj/H+6XfRfXstj0+Ncfj+w8zt3oaqleneWuDq1Susra6SJSllETBeG2Xrlq3MbJmjVK0Atp6SlmmAkhKhbJhOPl3Mm2EYKjCG29ZEpsAwi/7GPbOEACkxhY+nR1AtM7V9G5/43GfR8YBBmiKDkK279tCcm0UEHmQaYzRJt8PqwgLzl67Qb2/Y4MY0AZOSZhGdzjqd9gad9XU6q2usLa/SWl8ligaU/IBGc4L7HnyYB554kubWvVBrMHt4hE+NbqPTbuMrRagU1ZE6jalxTBDYAA8BJs64cPIMr7zwAmmnh4kivLyWG8QD+vGAJOkTd9rEnTZRZwPIrE+8FzA3u5X9Rx/m8KNPMrtnB2ElAKVJswE3bl7irXff4NzlcyRxn1AGlBtjHLj3QY4+9hRjs9sQIkToAGWMVYWRIk2GkYIUj25iaCUxPTQlIPQkI9UKlXKJXIuOFApfKJTI52RDsKD4GPoO/qwmjLW+y028yGFtez61Jk4TjNCUSmUUIQrfglgotBJESRcdaGIiLi9e4vridYIAlBF4mYfUlkWc+RlplqAImW3u4MDsEUuMMYG9ZwiJxKOkQu47dD9PPvEUf/Jn/zuDXo8vfOpXeOahZxmvTCMTHyMDMq0QCnyvSjMY50AtZO+OA7xW+glz07McnN1NRZZZn1/kuR8dY/n0VfTKgOX1eSqTo0xu3UroBSQmRaiA1eUN4lsxxrM4gdQi95tXIAVRL0aYKjordGrDvZj/92eNj3w+iSAT1gZBIElzcXGaWaBxfGyaBx5+GHzJQHdQWqJlQpL2efm1F/nut/6c46+/ghGG8R2TaK2Z2zlDqeRhAF+V2b5lH83aGBcvnGW5dYOx0gRQRqPIjEGbiNNnj7PeWqIxOkKv2+f8+TM8vOtJEqFIjMUfUpGytHadd95+g6mJWXZtOwBGkukIoSweUPWaZMaAL3j6yae5tGOWd08e59Lz56k3avzkpec4e/UM41sm+PIzn+fxh58gETEqCImSiHdOnWBtfomnP/d5Hj70KDVTR2bCPkeExBgfRQmM4PDe+3jowUd5/8w7eW5ABtiQXKUk27Zt58j+e6hV6rbez6yfo9ba2t1MTXOmErJ7z162b9mF7wWQCTKdL/QIny3Tcxw+dJjzx1+xigJDnrXw0dsvLTioc3BLegppZB7GYMMthBR4vkIVr5kchLPsKiFs2leWe+UpZVfyV9dbrK6t02l3WFtdZ6Pdodvtk0QxWe7xoZRHtV6l2bSyskajzviYZXaVSwHKs1JNKRz7PwcglL0Fa21IkwRjKPbtVnOExuaFZ4CxwJanPALPI83jzDOXBpwmGJ3ZG95t5M1KHpSH0RlkCTpJ0Fgpgswn2NoxChEITyGFXdHT+aRWo+2gxTpUCK2tNDlNwWg8KcG3/Rj4AYEfEPo+ge/heXbihAAh8hUbka/SuMPMCyK7+GXPjTACT/mUgjJJKaNS6hF6AUooTGbl3RK7P88LLHiZYZmAWmIygc40mZBkCeiUnGJub8oIQ5ZZ/yclbJK0VAbpGaTUCKGR0oJqRmuSNLVrS0IhhCQslSiXK3h+kDPAEtI0yYsDhef7hGFAuRLSaNaZnJpibHyMRi57lkIijCZNEqJBn16vz+rqGqtrLVbX1uj0OnR7XXr9HnE8YHkpottus7S4RKPWYHJygrGRUcbHmtRqFcrlEN9Tbn3Mjh2s16AbC+AWcB0k66BYbceHzseFtNfPx7k5IKbb7RZJm+Pj4wX4NwwIfhCb4IMYb8PFkxq6hoZ9nT6o8HRsQQdQOEDgg9iKw82FmTjT++H3uDCGtbU1giBg27ZtdwQzbJbyDssqP0pBPSy9/rBj/LA2DD7dDaz8sM9tBhmdlDMIgiLAYBjYcu8vl8s0Gg0WFxeLwn6YySeEKFKfjTGF5NG9djdgdbg/hBAFUBgEQcEeGk6PBorttNvtwj9x2Adx83E7CaALvJiYmPiZ/Xs3QM+NrbGxMftMW10lDENqtdpd3/9BrMSPQyuVSgUo1e12uXXrFgsLC5TL5SKx2hhDEAQFyzRJkoJZ5UCdVqtVnKMkSQqJfqlUQinF+Pg4YOXIzhPUAUOOxdfv94miqJAz12q1IuDGyXc9z2NxcbEA8fv9PlevXmUwGHDjxg2+9a1v8fbbbzM+Ps7a2hrnzp0rWF4utMid23vuuYf77ruPz3/+89x7773FWNrY2Cik0J7nsbGxgZSScrlMqWR9s65du8Y777xDFEW88sornDhxomDbOjDR7eOzn/0sDz30EPDTqbabgeWRkRFqtRqdTodyuVwwCJeWlhBCcO+99/Lwww9z+PBhfv/3f58oiiiVSrz//vssLy/TbDaLpGV3f3X3Tye5dvvTf4Xn1QeNcZcMf+jQoeJe7dijTt4P3OFRu3XrVg4fPlwsPszNzTE7O1v0z/AzwUm8h/0Cb9y4UZx7IWyKtRs/nU6nWOS4ePEi7733HhcvXuTJJ5/kyJEjhSXD0aNH2b17N2macunSJV5++WV6vV7BYHTj0vM8tm3bxlNPPVV4R87MzDA6Ovpzhxb9rWpGoYxPoKrUaqMMGKAIENUKshbawrCsMEpgRGYZR4LcxiWDOMaLItiIWbpxg1NvvsG506dYvHmTjXabVChkGLJl7y72PniU2YMHkPUqSZbilUvsvecwurfBq4M1li6fo59lDFYXOfnqy1w7f47xqVkmpmcZm5ikUq0RBCFBkX4+oNPt0O202WhvMH/rBiuL82ysLaNMSuALRsdGOfrgEe558AjViSZ40Bt0WVpeIhpE+ChKMmCsNsroyBheKQQMOktIjbZSzJzgII2TBg/3351cM2nFLEXbvN5sr1uTMxKVTV3OC16lQia3buFTX/lVkDYAMdMGLyxTrTXAUxijESKjt7bOyTff4vVjP6G1sIAvQOoMoyOEich0lzgZoJMUkWHBDiEoqZBac4x7H3yIRz/5KeYO3YOqNNFG4TVCZhqz1mueDKFjjGe5GklqU1c9IzGZYW1xmbPHT5FubKD7XTyw0j6TkWpLmJDSBiVWZBlPGtI0JtOG6dExjh49yszunajQw+iEtNNl/tpF3nn3dc6+/y6dfotS4GFkwI69B7n/sSeY2L7HgjixwJMeUhtMan9EXttqbVOiMyMBaz8QCEFZSXxjxytgpd0YTJb7zLs5DgYtUv62NVvHSob1esb5FIqs0F9pDZIAiZ0PaiEQGDKlSUREO1nnOy98k5ee/wGUhVUvpipnYWagbPBpIGt8+rEvsPM3tlEKmjloLixzUGgMHiOVUR449BA/+M6fU62HfOrJTzFRmcbLSgjtAwEaCUaj/BK+sV78oi8QiSAUITKB8++f4Qd/8W1+9O0f0Gqv41d9Hv7kExx6+BHmJmYJM1vjD0RKIjK0J9EmJ+IYgczDR+dXb/GD575OknXv0oOudvxovW1ynqTBB+ED0qb1okhSQ4ZkanYrE5NTaKVBxsRpzPUb1/jmX3yDH3/vu8wvzLNt93Z+5e98nl68wV98++ssdm8S6x4lWUdQYevkXg7uu49X3nqZS9dPsWdqP1Gm8KVPSkSrv8Lxd1+hUgl58plP8tbb7/LeeyfofWqNZlBmoC0mkpHyxomXaS3c5JEv/BrTE9vRKXgBSOnRNQqRCUpCoUkZSMPs9mlWozm+/Z2/4PSJE7Q2Vth6ZCe/9mtf4ROHn6QZNpFAT3dpxy0uXbmACX0+/dSzlFUNLynh4YHRCKPQeVhrqjWhanDP4ftpjI/lBKzUkpqMDUGanJiiVq8VZ8T3A4RUCGNQ0qdSreOFATPTM1QrtZx0llvriTysVwimpmcsOB7FKCF/7mWBX1pwUMqhok1g/fHy3wUCIW5L9jJjV5wsO84a3kkl0GlGrx/T7nRYWlpmYWGJ5eUV6wnWj0gzjcAWFWGpRBiWqFUrjI6PMTY2yuTkCM1GmUrow5B0CKMxaWoxPmMfqUoppFJok1lpapqgpML3Q5TyEblUVEoIS9bDr7VRot3dQJMRBMrS5bOERMfEaWQlo9pSDnUKkU4RWQJohDGW8o5AeR4y377JjF3B8ELLEBT5epG7gUlbmEthHzaekIR+QLlUolIu0+l0GQwS0iixgKKfYLIsl6sa60mSyxCENGidYrSxkleR52MJk7PxNEhpA1K0yOUaGckgJh3EkIEvfUpeiNQWuCuXqgRByaYqG4rjDnxlJRYARhCEHn5gfRSdUWvoh2il8b0A37eJlGFgwU3fswCeQYNSeYAHlo1HZmW3whCWAiqVMr1+73YymLAel36e0Nxs1hkfH2F8vE6tbNPItDZ5oIxHo15C6xGazQaNkVVqjQrtdpsNJ13vdugPBvS6fXrdiPX1NmsbbUZHVplYH2Ok2WBifJTR0RGq5TJK2gvbsV5B4PseypOFPY0NvsEmdWUZSoniOyNsYM/HrW0GcRzryhVYS0tLzM3N3VWGNgz2fFhh5Iq8YQ87J9Nz4OCHfd6lYMKd3oN3O4677XczQ8wVck5C64AGl/Lpir3NElkXjPBh+xxubj+OnfNRPnO39kGA6Ycx1YYL6WGmX6/Xo9FoFMDMBzE9K5UKYRjeIascPhbnNzc+Pv5T0uPNMu/N32F4PJRKJcbGxgoZuwPm3HYcoOl5HuPj43dIhN17h1miztOy1WqxtLT0U+zBzeN9eOwNA6Bu2+Pj40Wi6bZt24qxsXn8fVyBgWGvx1KpxPj4eMGWWl9ftwby+Th2YLxLoK1UKoyMjJBlWQEQC2E9G7du3VowvZwvmwP1XdAzJsrwAACg0UlEQVSLu5aGfSoPHDhQ+P05T8xhQGlsbKxI2L558yb/5t/8G65fv14kyzoQ89KlS4Wc1wUZhWHIzp07C5nxl7/8ZT7zmc/geR6tVoskSQp5/Pj4OL7vF+Nq+J6xsLDAa6+9xvXr12m1Wpw8ebJIDq9Wq3ieR6VSYe/evTzyyCPcc889TE5OFgDXBzUhRAGOZ1lWgPTOF3R5eZler8fMzAy/+Zu/ybPPPsvCwgL//t//e77xjW8UDFDn9+fOifPsc8CZA3k3+5X+dZoDUw8fPszOnTsJw7BghZ48ebKwdXDHUiqV2LJlC8888wyzs7PF/cDJhx0A7diTYJ8ZLs1YCGuR4ADjYTmxG2fuHtjpdFhZWSnCWUqlEgcOHCAIAubm5tixYwdgPSJPnTp1x307iqLiORUEAbOzs+zbt684V87X8K/CEP/YNwOgKJWa7Nl/BEyI0YY01fjlEjsO7sOr+BiTkmlAGQJhlT8i0+hBn2yjzfr161w+eYpTb5/gytUrdPtdelGPWGeEtRrbDu7n4aeeZO/R+6lt34bRhrg9oOx7NLZs4d6HH2JksMZrP+xz6coV+klKOuizfvMGS7du4AUVKqUannKSdWv8Z7KMNEtJ0wStU2ITs9Ffo6J8KqWQftxndKzO3kN7mNm3A1UJwDdkIqMf2XuaNKB1SiAUlaCMH4RYbx2NEArtwhsye22KTbwyy7688/fNrw//Zm2FsJN2KTBKohPIjLYAYeCTihA/9Ak9n8zYGqSfJZCk+ELhhyHCk/RaGyzN32R9+RY14eNjECZGighNH2ESCwgJhRESbSDJIuLBAE95hGEZqULwQqT0SPGJM4mSlrCAsHZHMvCQngVpdJYRJwlZnCKNRmlbZ3kGlE5RaDxAC48sg0ykRCS5dU+GATqtdRavXKQ5PkF1bhv4is7yLd4/8TZnTrzN6uJ1RNanUhtnZmYH9xy9n9nde+z32OghghKkEunIFtpYEkjUJW5tkMUxStpXpdEEAHFMstGi3KijSyVkUMIgrRRbuoRS8dMn9G9FEwgjkSaPH8iBQcsdtDVlGAYIJXMPYiwiLHL2GylCKVKT2ZATMtJQkpKAMSij7FUhMzKTEkV9WreucmTvPcSmT0U1ILP9KwvLKh9hMkZqI4Tap1IpMze1hUCX8LISUoZIGdhTS4I2Vr5cpUo5CyGCxcs3+MbSn/P9/+Pb3Dx3lYHqI0LB3O5Z/uvf+b+wa/dhyqqCSTLwLAMyyXVzAolC4AEqv2qvLl3hxOmXuXbjElLmYYt3XM0/77iQGGMBQYTIc44lJVFBJoKJkXGssamh01vnJy89x9f/5E8589o7+I0Gz37uV/nC177MgYN7ePvSq3zrR1/n1uoN4rhHqSwg9Qi9Jnt3HuHYS89x6vSbPH3vpympCmiPRKWcuXiC90+f4OCDh/jsp36V5YUeZ86c5crNs8zsmiIRAZ4StHWLl994nqAacmj//dSDcWSqMCayKkc80lSTmAQZSjwUV+Yv86Njf8mp99+jnww4cPQ+vFpAGJQZK43haUUsE6Qn2Oiss7q6wMjIKLvn9uKZkMCUUJhc2WqvZyMsYzkWXWYm52g2R4n1Op4QKARaW0/V0ZFRypVqztIWQFZgLD6WYCVR1Cp1Qr+ENF6ewRGSoUELMmGo1esYA1mWYgTWsuznaL+04CA5e0tnumA/SU8R+l7+AIUkseEcWueeg8oCSGmasbHRYWlpjeXVVdZbLTY2OsRRTBTF9gGgQUhFuWyTCcdGx/OV8TrVapkg9KmUfXzPmqDqLAUMUlm5LDgjdHsMYJlpyhNUawFG+1baLKyZrQ0dscnBWiekWUKaxWQ6Jkn6DKIeQhqCUki5EuIHijge0GqtY3TK2EiTeq1MWCqj06wAChwbJskyTJY/9Dwfz7NFR5IXtb4foHzPfhdz+0EvpMLzPeulF+Q/foSvjUWrlU+SGbr9AWutDcvWlIJ6o0Kl5COlZW/oTJNkdqJsRC7bFQophJUua80gTuj2B7Q7PVrrbVZXVllba9HvWj+mcqVUJLSWSiVKYUg5CAl9H6Uta15IyDRkmbHJvFHEoD+g349IEjsRRgkw1pcwS3UR+JIZKwGXAsuyFDm5XFpWYpIk6HwyDeQXpCQIrMS8UgqohD7l0Cf0Fb6ykw0lbIiK1pokzYqJx9hYnbHRGlvnZlhcWmH+1iL1ep1We4PV9XXa3S69/oBk0GeQxKxvbLC8tkqz0WBqbYKxsVHGR0cZazapVsr4ykMIL6fPG8smlFbyIAApNJ6XFwLGHo9xNPv04+c56Jo7H2EYFqnE8/Pz3Lx5kyzLCiP9YVDKfcaBJR8EkLii0IFIQlgvu2G/s+Htueb20+/37wDxlFKFh+EwY2MzWOnkda5wdc0xQtbW1kiShJ07dyKlpN1us7q6yuTk5B1sRieLdkyljyIjc1JBZ5z/12mb+9uxfj6I9ea+O1jgxbG7XH8NMy439/nmvnSG/sPbdv1UrVYZGRm5A2TYHHTwQUy7YRai81xzxzUsFV5dXSVNUyYnJ3/Kk3Bz832fiYkJKpUKN2/eLFJonTR++DsMt80MquHXq9UqU1NTXL9+neXlZRqNRgHyfBxlxJubC+JwQOgnPvEJADqdDidPnuTGjRsFMJ+maXEtjI2NsWfPHg4cOFCwKvfs2UOz2eTpp59m586deJ7HiRMnOH78eAHyuNRwJyvdvXs3999/P9u2bStAwC1bthRWAC6cZHl5mdXVVVZXVzlz5gy1Wo2ZmZnCx84BP57nFUm2wyCfS7yVUrJt2zb27dvH1q1b0VrTaDSKa8QBmuvr64W0tFwuF/L8JEnodDp0Op0iiKfdbjM2Nka1Wi3GhJMu3w08/7CWpikbGxtFkvrExATVahXf96nX68WzO01TRkZGmJ6e5p//83/OysoKr732GuPj43Q6Ha5evVoA3GEY5r7GYXFvGL7WfhHNgWRORu77PmNjY0WgTBzH1Gq1IhV4OP3asVQd49f3fTqdDqurq3Q6nWLx0DFYfd9ndXWVZrPJgQMH2L59O81ms/CxPH/+PEtLS3dYWGRZxtLSEidOnKBSqVCr1di9e3cBUDvA2C1EOaal6ysHMA8DgcP9918cMOia9PCaI+y87362HzyE9AOyxCbVhqNNhDQkSR8jQWmJh0FHA1pLK9y4eImlK9e4+O67XDl9hl63jZEWUEu1YGx2lvsefYR7HnmIrfv2Uh4dRQhJkqW2+E41ut8hXW9RK5cIgzzwRBiMSZEywDcSkoxevJGfa1FIPyUCG8BnAY7AF9REiEljep0BWqast1a5eu0yE9u2MjYlkYGPNilRFiGExgi76O3jE/glpKdAyVxiptHGkGYZQkqEpzCp9SkH7mQIbvrTh2gC8vpGWx84aWXLCAs6GqUoe5Xcl1CgfB+kDVoxGkt46A8waYoXeoTlkg2NEBKhM5TwCXwF0rO1YZqR5nONDENmBN1ul7feehNRqnBfZtiy7xD+6CSeJ/HRCKXwZUCWpBZAU54lM8QD0BkqCPArZYTvEdQqBKWAAIkQlnGZYdBSERtJ0u2hM1u8K2Pn2teuXWH9O99mbaPDw089Q21slBunT3L69VdZuXyJUhwjdUaIZnysiclSbpx8D4SPQYHw0TloGkc9JJDGfbrtdVaXF1i8fB4GbRQxnhaQxFy/cpmXXzhGeWqSkS1z7Dp4hNrYeF4nZ7fPmgAhPt4Kors1e80MC+A1QuahoAgq5QpKKlZXVkkdyOuYVBqEp1Dap+E1+dKnvsTjjzxGjEYYKy0WaDIRM9BtTp4+yTf/85+Dr+lnfcppTAnLLpdCoLSPkRqNsvLlcplUJ5AJQgIkHkhlSSq5ik2CVe+JFDVIUa0+3//DP2PQzYgSQzhZY++RQ6y2FhjfOsOOqZ1Meg2ECaEcEJkMI6GEDa4wIkNhUEZgKUMZ5aCKUp6FnHPCjRMI59pj+Fljo6AW56xKFMJYdrAgX1jPNCr12Dq1lYosceHqOb75Z3/Mj7//XTaurjC3Yw//1d/7HT79K5+jOTFKT27YHImaT1/3MVlqRd9eFdQEh/fcz8zMNO+dfosbyxdozs2SaEM73eCVt14gNTGPPfgJdk0c5OC+B3n3xLu88tbzHNlxLxWvSkbGhRtnuXT1DLPbt7J/12E8UUbgkWURSZahZYnQL4OEdd3m5OVT/OE3/hNvv/06Y2PjfOHZX+XXv/RVrty8xuuvvcrzi8d45pFfIaxrUpmx3l+j3+8xOjKGUj5K+5BIpMgQnsEYgUHZEFgUMQNCr0wpKBFFGoxViHpCgYBAhSjh5+Qle1q0SdFYAprvWXmyEj5KeBZELBLJcw/DnPRmQ55EISX/edovLzgoLPtJKsvwcrcAY4QF2bRlEwZBQKYNUZSxvt5mY6PN8qoN2Gitt2h3ukRxbNMu08SGmClJuVylVqvTbDap1apUqhXCSomwGlKuhZRCnzCw4I8AlPAKEExn9iEqhESp3BvRFcW514FQlpFmMJhMoTNIUojSmDhNLUqcr0aH5RKpSUh1Qpql9PsDNtpdPL+N8koI6ROWIqQnSbWHTq0fne8LPGmTgihkvYJMC3RqgQO/VHbXM1pDpi2dPxW5D6FQ+KUylXqDepzSixLSDNKsQ5Kk9HsDkjizwS/aoNMMnWVEUZ1Go0YQ+MiiAHdGr9ZL0SY2W8pyrzOgtd5haWGZ1eVVVlbX6fb66MxOIpSnLAhXCqhVylQrZaq1MtVGgF+GNDEksUbi4tYBbvum+cqzBr6ZJh7EDLwBuj6CkiFS+BgtQDuaPXfe6PI5glKW9egm3WHJpmQZA2mqyTJNnCT0+z0G/S5prQShbydxbuXKeQEand+oJV4YMDk9RaVeo93tsrq2RnXRsljX1jeIopgkSTEZdNp9Br2IbrvL6so66xMbtMcnGBsdodmsUy75+L71edBa20mOsTJxG9gicn9C2z8aK4PX6uNZIAwzphzo5JgdWuuCuTUzM3PXdNzNfn7D2wMKhodjxUgpqdfrRXCEY/sMf941rTX9fh+lFKOjo0XxWK/XabVapGlayNI2718IUeyjVqvdwQrb2NhgZWWFer3OzMxMIcFrtVoFexK4oyh14Qz9fp9arXbXfnSfyfIk7mq1Wrz3r8ou+6DP3Y3x5n53BXWtVrsjpdnzvKLwHf5+m7fpvM9cIIR7LY7jIo11cnKyAHqGw142H8/m/WwGO9M0LUCMYeBwfX2dtbU1ms0mjUbjju0On8vhfTh54ZYtWxBCsLa2Zn2jctbhcPug4xkGEI0xNBoNJicnWV5eJo5joii6Q/78cW7uezrQrNlsEgQBy8vLhdej83lzY8JJwvfu3ctjjz3G2NhYkSTs+z733HMPO3bsoFwu0+/3OX36dCHNdCzO9fV1ZmZmOHjwIM8++yy1Wq3o1yiKChmo8wx0gJ1Siunp6SJ1WAhxR6CNW8CoVCpsbGwU3qmODe0Av4MHD7Jjx45C9uyuGWd5EIZhkQ7sFhgcSORYz47dNzs7y/j4eBFYEkURrVaL69evc+HCBebm5qhWqx96HtwYrNVqjI+P0+v1CvakC35yY274vhpFEfv37+df/at/xb/+1/+aP/mTPyk8QF2AjwvRcGCZu2cPs3T/uq1arRYgnNt+r9crEoSdHYDrRwfqOra2u6870M1ZH0xOTjI9PV28t91u4/s+hw4d4v777+fBBx8sUqkdOPjmm2/yxhtvFIzOMAzxfZ80TVlcXOT9999n586dbNu2rWAhuvuXS6F2Ce7OesI9F4eTk919Yvi+97exfdD3MkJgpEFLgayWULWyVcIkHh4ZWqakA9v/EtDRgM7SMrcuX+XcqZOcPv4O1y9fgsTa+8QmQQpJY2yMwwf3c9+jj7L3niNUx0fw6jUibUh7fWQmCaWH6Q5YPX+F82+/zum3nuPK+dMYLRCBTxKnZDpFSj8n11hgS0qFJyX5UhFgFVGpzsgGKZ7yyHQCUlIuVVlZXuIHP/ouV5cWefozX2TPoXvJ0og0i+3MTwg8YRU1Sgl0liEzy6rSmQUHjdZ4vo8XBCTpYHPnFkdyh8B4uM+FgzMNaFsbpEPPW+mehQh85VuGXZyQpAnSS/HCsq1J8vASXyjKzSY79u2l29lgfXHRhibolMBTeEqSZjFJHNNutWitrdLtbNDtdS3QIyULizd467VXAEEpDJgOFBpJFqeosIQOSmQ6I0sN5H1l0HhCocolDh29j0a1jJdmBBgCT1nLIJOCFCRacGNhjfn5W6zeusbKzWtsLM2TRn3iQY/+rZuceON1Sn7IzNw2zr59nGtnTpP2NqhJiUDRWV3ljVdf5NR7J0lTEEJRLTVJ0ow4Sq0iDIEfKMgS0qSHMJZMQtqjjMGXPomOuHDpHGfnb5BVyuw4dJhPK49DR+4hLNfADz8EzP2Yt7y2vA3iDcGD+T8lilq5hqdKrK6u0886SE8iCZHGBrgExnpJCy3YM3EAPZlZDz1jUEKQEZHQIaLHequL9DzCagXh+xZwT40NfoGccKLwRUAaZ2Csj71lE1p7q8zEZAaEJxBeRqb7CBOxsbbM+VOnaS92URI8quy79x4+85tf5tBj+/n9/9+/JWp3aCUttnk7ELrMINWEfsU67WttJek5KKiMscQQUmsplumCNCIcnHqnjwB3g/7vuMcaNy8TSJ0vQpFa8N5oyviEhPRW2vzkhef49p9+h3ffeo1mpcqv/Nqv8g9+6x9x75EHMapERExHdwmCSq6+s6BtmiQooxHCZ2ZiG/t2H+CFl/6SC1fPcmDLoxjl0eqscO7iKSamx7jn0ANUglHu3f8g369/nVOnT7D02VvMjkyQmoT3L58hivvs3LKd2fEtKF3CVwrlxaRGYPBIRcYg63Bl8Qrf/sG3eevt4xzYe4jf/PXf4rHDj6Okz+zuHexu7uP4a2/wR//pj3j8k8+wfec2tMwQBsphBS+zqlXPOs2hhbYMVSNy6a/EM/aeHPgKMzCkOsZgCMIA4YnbiynaPRMsZmNEziU0wtrAaez5yolQRmRkFh8EckBQUMyj9M85B/ilBQfzzF3y5Y47XxR2UMeJLXJbGz3W1zdysKXF+nqLTqdLr2e93wZDkrwg8CmXQwyGVKdESUSQ+gziAaILcdKn17VsNc+zpFxPSSvjFIIsn3gLYcM+fM/6hvmBZ98vc28HbR/sAmMBROWhfIHG4PvWdDNOYnq9Hr1e37IgtSGKYrK0g9YKKUJMKulsdFleWiYIlAXOqiVKpRAhFTozpMltz7MgCAsAAEzua+bZdN3Az4tpN1m0r5crVZr2voGUHs36CGtrLZaXV6y/WxQTCcW6XiPq92lvtKnXq4yNjdJsNihXy/lqoJPtCZI4Ix5EJHFCFMe0NzpsbGzYc9PtMehZtoYf+JTLJaqVMo1GlfGxEWZnp5iYHKXerOEFFgzEE9bHBIFJNXjgBcrKi30FaOsRqCEMS4SlEkIKksSeL3uR2Bu3wQbZYCwLVIjcQ1IaRP6jdUaaZKSJBd6MFugMTGafSVbWn/tMgl2B1ZaV6BKbbdGaobFpx9VGjaBcolyrMjI2xsz6BktLyywvr7K2umZZrVFkWZD9mKgXE/UiNtY3aI40mJgYZ3xslHqtipePPetbab+DSzfLdJazPnPKt4Dsrwj+/DK0uwFEvu+zdetWFhcXi8J8YmKiYJ241E+tNePj4wU4M9wcwOA8u1wR5Qq2VqtVSBSH/QedfNOBe81mk3K5XBRj9XqdwWBAr9ejUqnccdzu+zj/RCc7G/a92tjYIAiCAjQyxjA6Okocx6ysrBTH55rv+4yPj7O4uEi73b7j9c3F07Df1ujo6Iey1n6eczMM3A0GA+I4Lvpk+Ny5wtwxqNz3rtVqNBqNwtttOEnU9TlYtuDGxgZJktwBDjr2Ta/XY3Z2llKpVOzzbtJwV0g7ZuDwMbr9OuClXq/fkSTa6/UKdqIDn+72+Q/qrzAMmZmZYWlpqQBJnGR283nYLB+/mwR8bGyskHaur68zOjp6x2c+rm3Yl84BI05q7K4Z1xfuvQ54drLisbGxYky68+2CgBzjKkmSfG5gvYichNwxyU6fPs2bb75JrVbj1q1bPP/88wX7MwiCImm22WwW6bIuVKharRZgvJOqO0DfpfM6abPv+ywuLvLDH/6Qe+65h/3796O1ZmRkpDhGxzZz15KT9dZqteIe5pqTlrbb7eIaqtVqpGnK9evXUUpRqVQK8HWYwTzc3Bhqt9skSVIkOrtgEie1dX6IpVKJkZERhBCFbHZ6epqDBw8WPnzVapX19XWuXLnCrl27CiDXpTkPM2bvdv//edvw4pJjeDsA3zELhwFYB/g5ya4bG86r0vd9nnjiCXbu3FmcCwculkoltm/fztTUVMEorlar7Nixo/AJnZ+fZ35+niRJivFojGF1dZWFhQUGgwFjY2MAd4zparVasAfdc86xroFCku2Yhu5vf1va3cvX202I29JY43loX5JiDd2VEMgwgDTGJDG+LzDRgM7aOtfPnuXMm29z/tQZFm/Okw4GSATaF2SBT6Uxys5d+7jvoQc5dP9RxrdvRwQ+qc4wwiMMPOuBl2TILGXt2nXeeeEYJ177CfMLZ23irlQkWpOFAX65SrMxTqlSIyxV7CKkVPjKQ0nLGrQBE/Z+tLa0QpbFdLsrtLurxGlKJgy99RbH33qT9Xaf3yhXEUZSCUtIYz2wQ1min9g5xXSa5AwlW7gKp0ExBp3agEPAKk83AYM5VJkXrVaNYue/dvHZ+r4bK3mVEp0kCKVQUtHvdOh1e2RJgmi38H2bAFsbHQWvhEgTfOUhQ8uWCVSVA0ePsu/QAUhihMmQws6/0kyQaoXQhrWFWyzcuMbKwk3OnjnJxXNnGHTalGTAys3rnHjlBUZqAXqwwVprnUGcQFDCr4wyvW03E3Nb0MJ+L+mHaJ2SZCmNqQkaI00LUJiciiANKIORAiN8tqeKjbUN1m9d58K7b/POyz/hxsXz6CSFzHD9ymUUHlOTl7lx7SqmF1MXIQFWgSYktHVCp7MGxjKwok4XmbvnyZwME/VsIEqoQOs+UseUhbaAjxYIShgNnW6X3qBPfW2VXq8PQmLkbRe+2zX0x3c+AORWVViyi7FWVyK3yirmR9JBXxJhYGZyjvGRaS6dv8il62c5sP0wNrikRCADRAahrlCSNtQlyzK0CqzKTGoiuvSEIM4ylpfWyETAxMwcQgakRuM7EowDCI3ECEHoh4W6S5OB0AiZn38hyHSKESmd3hrvvfc63/vzP+e557+PUYKxqRme+tTn+eyvfo3d9+7n4tpZtNJoBTr0iZH4eHhKoY0FjULpCDA2wblIcZYGpazFVJFLwJB3fTEkPhgcLPo2V9PpVONhMDpBigQhImSW4iUa0034wde/xU/851m9tsh9993LF77wq/zKp77A1OgsnikTpxKhPDxZptuPyVKJJ0I85SO0phz6DDJNVY6wZ8dBnnvu+7x35m0+/ehX8ZTk8rWzLCzf4sCOfWyd2Y1PmT1b97Ftyw7OXnybi9fPMTGyh7XeKifPvkOaZBw98iB1v0mgfaSBJEnBEpeJTcxiZ5FvfP/rHHvxxxw6eJjf+upv8+CBh6gzmsuEfZrjE0w8Ncn7585y4t0TvH/9fQbYYLNyp4cyikykJDJF5udaCpMH1gLGEOm+ZbCnKUIbPGy2gNEGkUnLpETiSd96qgpTsGMNmkynMCQ6toHzdk4ohY1+Ffm1opUmjuzcUSIK8tJHab+8swYDUWInZ8rz8L0AgWUNZtoQxxlr6xusrKyxvLTCRrvD6uo66+st2u0OUZyQZrd9ZJSSqNAGc2SZptfvE8UDev0OvX6VTreKH9jCQ+R8TpswbFBSWbqolEiMfXAL8DxFpVymVq/RbNap1atU8zRfpTwbfmGsr12a2iQwJ0NOswQEhKUS1UoVGUmiOIY0RWeCQT9mzbTodvp4yqbx+r6ilINhMve5MxalyjXnFiwy+UqckCL3UwwplULq9Tq1apV6rUq1YqXT1pvOoxQ0GKlXaTd7rK+2CJRP6HlsbFSIBjFZpkkGCe0oZtAb0O10aa3blXLpKUwuFSh8INOUJIpJ08T+O7bsuDTN0NoCpNVymUq5TLVcptGoMzpSZ2SkTrNZJyz7SGX72mAv4NwqAiMNSJ1HVFk6tJLgeVae4CmQwiZXkXuqZKkhSWykOVaEkPsv2n1YoPE2S8wmXvsolSewyoDALxEGJXwvQEk/vyDtWCUDKRVK5aln+aqswYDIJYpS5tsJqFdrjDRGGG2OMDG6yuLiEhutjdvjdxDR7XTsCmmnnQOr6yw1GkxMjDE2MsLoSJNKpYRSEp3lDClhZeKZ1qRJZlcbpER9DFXFP0tmGQQBMzMzCCEKgNABXo5JMRgMiuRPBwK5JFGXNjk2NlYUxq5IHxsbY21tjfX19YKtCNwhFWy1WpRKpSJZFyjYYQ4gdOb9wwBSmqZFKMLU1FQBILq/x3HM1NTUHQCXAzvm5+dZXFxkZmamKPoceOKCG9rtduFzNcxic/K4brdbsAaHJbx/HTBpWDLc7/dptVp3eHAJIQqvriiKCsDNNSe7dYmu7vyKoXvKsGzSJQu78bC2tsby8nKRSro5SGYzG9H5BZZKJRqNxh1AowOINjY2KJVKjI6OFiCtYwD1ej22bNlSSP4+SKI83KfDfVsul5mamkIIwerqKkKIInX4g7azeR/DMtGpqSna7TadTqeQkH4Yk/Hj0Nx1fLcQmWFg0LHCHKATx/Ed0kvnx+nGoZSSpaWlwscvzpUFjrnngkt+9KMfcezYMZaXl5mfny98TldXV9m5cydzc3MANBqNO4IipJQ0Gg22bdvG3NwcSimiKCoAQcda63a7hT3CYDCgXq+zurrKysoKV69e5dKlSzz11FMcPXq0AKfcdbCyssL8/HzBsHNAkJSSrVu3snPnTsBeF61Wq/A9dO916dnvvfdesRDhJMGuj+A2MO/uj+6e5gJfhn+CICiANndOHJPTBSZt2bIFgKWlJcBeB88//zye5/HP/tk/47777iNNUzqdTrHQ4tKj3SKOk9B+EJh5t+YY5A44q9frxfG6hVU3VpylhAMTh8FKN4aUUmzfvp3t27f/lI/pZj/VYQasC4Jx8mIXeOO8Ix2zc319vfBfhdugnzsux7LudDrFfTeKokL14ADuYRbh34b20b6FZappAdoTZFi2mcgyQk8RlnxMFtFbXePmxStcOvEu7736BgvXbpAlMVJIQuEhwgB/osnEzq3c88CDHLz/KKNT0wRBCEphhI8KQ4xwjCGDyBLi5TWuvvcuF999h7WlBVIg1iBDj7HJGbZs38Hctp1MzW2lWh+h3hihkj+zRL5YLXI4DgNxL6K9vEIW9bl14xIXzp3i8qWz3Fq6aeuhQczFM+/zynM/5vHHnmRibJRrgc+g38XThrWNdZaXl9jR6RE0MoTv4SHB81Dahhdmxi5eCNfHoujKQqVjHHtFucTifBE8s77owphC3mmSDJ0a/DDExBnnTrzHqTffIF5eolLyqI6McP/Dj7D73vvwSiHGWNsf4fkIz9YlquTlkjsL0Bkh8CgjTQiZZmZ0mum9B4k7Lbbv3c/z3/s2b775Il6cooymu7bAqdde5Ob5UyytrtDudRmkgtrkTh5+6lke/dSnqU1P2LokGqCFrUtk4KM959VngTwjIZMaLQQpEp0qGpUao9tmGJ0axaR9uq11luZvItAoLbh14yZLC0tEkYVywNauSoKWhiSLSFWWMzzzWkI6xziB0RlSQ+ApAg/iyFiJKjpntBm0MXh+SLUUoDwP4fl0ej16g5igqgolFwVL7G/HfWC4CSPyzM/b0YxgpdlS+IzVJ9m7+x5+9IOv8+JbP2Lr1hmkN4IyWGAmsSw4KT0LGmaaFI/AC9A6wShNKiPWB5pLZ69QDetMTW5FycDW4Dai5s5jwmYfIG0SeGpSEgaAtvcLKcnSiAuXz/Kd736TYy/+JVffO4cOM8KJEo//6qf4B7/xf2NuehdaaEIjUJnBCE0ioAuUEfjOzw7yIllY/0UXJiS0lZwWV/bwj+G2B6Wrqz54HguWEGVMnqxrNKmJQcZIYtAxa0tL9NfbDNp91KziK3/vN/ncr3yJg7sOUi+NkCYGY7288utZsnxrmbg9YLQ5SeCVkDqz0m+jCFSVvTsOMT49wbun3uHm6lVmxndx+uJxBt0+9x1+mJo3RmDKjJTgwXsf4N13X+LEe8c5cvBRri5d4Py50zRr4xzd/wglXcKk9jqWyieVGalJiBnw4vEXeP7Yd5mYHOerX/473LvnAWqMUs4aBCZAGA+tUhrVUR568FFGZqd45/wJTpx4g3ari0lhcXWJsZmt9EUHA/hCoE0EXkCS6Zy4k7G8vmBJGiJXwTKcKm6B7YKvbYQFlouRnZ+p4UVTTP734b/99dovLTiY6oxqbpJrH5jK4aFEg4hWu83Kyjqt1ga9fpckiSH3BLRMMggR6HIAgmLyKqU1fhQCgsAn9D1MltJpt9A6ReeTSPug9MAo+2TAhqQEvqX+W5DJFBKTOE6QUlEqlwmENYgU+QQlM5aVBuB5EAQe5VJAvV7D9z3CMKDX79PtWZPrJGcCxpFlPvmeIk0FcqDp96yU2YKcGcaQg5cewggrbxWWYYC06HEQ+lQqVchXwqSxCcU6s/IklYONSimazRqNepmpyRHabesN2O50c9ChyyCyQSkC6A/sMSME0nPeipaJkeXSaZtAJizTLfSp162UsBSU8D2PWqXK+NgYY2Mj1GoBfqBsGjJgjPNztB6BSkq7OKOEPSWSPKU5375WdmVDGPIIZPLIYxAGqSjW5Ez+sFQCtLRS81IpZKTZJEkypAxot/v0BxECQbkU0mhUqdcswBr6ATox9HspysudHbQh0xZ0VMqu0ghsYaFzGrDWVvLiK0lYLdGsBExPjjA3O8XK8gorK2t0ul02Wh3a7S5xHNnQEZ0R9/t0BASexBOCwFP2FlIu2VVfIYsVQitLkBY8ts63H+vmed4dMjugKNKcb9va2hqe5xUpjWEYFoW/K1gdy8KZxU9NTVGv14sHoCv0HEvJgbKbiyzHQmo0Gj8lHXYFsed5dDqdglHi9u324zy/3D5dWEW9Xi/SZ4eLOid3brfbBaMNbgNzbp+DwYD19fWij+C29yLY1FG332GJ6l+3CXE7eENrzcbGxh1grgMeqtVqkc46fC5duIhjG22W1TmWzOjo6B1BJC4x1cn6lpaWCoaV274LYnDyYOcr2e/3WV5eLoCdYbaiCxoZPr/Ly8vcuHED3/cLBuNmH8MwDAtQw20nDMOf8lIrlUpMTU0VnnXuc3D7ebW5f4f34/7m0lhnZ2dZW1u7g7H5izy/f9PNPq9lAYa47+JSvtM0JU1TKpUKnucV8lbHnB1mE7jXHPDlwPGlpSUWFhaYnp4uxoOUkuXlZd544w1arVYBSrnzt3//fj796U8TRRFXrlwpfB4dey8MQ+bm5jh69CgPPPAAExMTRSK57/sFgL+4uMjZs2c5fvw4V69eveM9URRx4sQJer0eo6Oj7N27l5s3b/Jnf/Zn/MEf/AHGGKampu5IDnbj+6GHHuITn/gEQRBw69Ytzpw5w5UrVwowyoX6SClZWFjgvffeY25ujsOHDxcepC4cxPWZs17wff8OcM6BgA6AHX6PG/tuUaJSqRTef41Gg8uXL9Ptdtm7dy/Hjh3jpZde4r//7/97fvu3f5tqtUqapoV0PwgCer1esbDhztHIyMjPZMa5dGT3vBgeW8P3QPd6EASUSqXimnXvcYEibq7k7hkOPHRja3Og0jA42Gw2C9/KYQDRgacOXHUgoPucO45hmbN7pjmvR7dPd7wOUPw4Xvt/vebKpFy5ITQ6S0Bb6eqgO2Dp0iUuvfMubz53jLUb8+huhJ/7WsekTG7ZycGj97H3oaOM795GfWyMcrWJEZIszTBaWP9toTBaA3ZebUxGe3WFaxfOsbhwDa1jIpMha3V27N3H0YceZf/hw4xNzxLUR5Bh2dbnmbbhcQXby8mKLSNpYs8hDIZtrUX2Xj7Mqbdf45WXjnH1xlVMYgG0y2fPc//h+5gYG6VSLUEaoJMB861FRq9cYffCEuWxKRt+kpmcyWTrCQrGpdnUj7fBFumrPBhSWAZibjXkQEEAUrtNIT1MmpG2OrQXlrl69jzvvvY6ZmMViKmNjTIxPs7OfXuhHObKI2nrBiFAks+fVQGUaiNA+KB9Mm3rGqE8Agxb9u7n0Px1bly9xPKNa3jCoKMey9evsrG8YP1BdUo/kwR+E/p9iCOIBwid4AcK4XsgINMWPDAu0FGAlppEKhJhwHj4YYl0EONJj8boGLNzWxmfmKK1vIpJMjzlo1RArTHKrqlZatUywqQoEpAZkcyIfIGWEil8KzHPgxWlsFyi0FOQxpQ8AemAheuXuXHtAr32BjrVIDya41NsP3CIyV07MbUqqt5gbscuglodEZYgTm2tY9wZ/dsHDrqxqxF27DAky1Q+4/UpHr3/CY79+Du88fZPePjB+zm88yieVEQp1IKmZdxlxmJkwiZG5wi4TfXGcOnaJc6dO8+2LTuYmdxKKKoWmJPalpg5QGgxXmnHkc4QgQBp0CIjkzFKKDY6K7z88ot8/S/+lLdff5Wo12NkbpzJbZNca88ztXc7E7OzmMigBNRNyV6zGFIgAjwEQX5uZU5cFHcARvldRIic1Xj7vnj7Mjebfn56fEhhE5CHLZo8ITBZgpExGX06cYsfP/8Djv3oeQYbfQgkn/u1L/D3/uv/K6O1CSqyjs4sm1V6glSkpCKmH7c5efw4fgzbZnfje1VkapAmxjMKpUNmp3axZ9cBXnrhGO9ffA8vCDh34STV+ghHjzxBTU6QJhD6kvsO3UsprPLuO8dZ/Px1zl97l5XleZ5+9Fm2j+xBGYEnLfkLz0MLQ0rKwvoNnn/tL0lUyt/50pd44NDD1FSDkAoBZaRWFm8wwmYeCM3c7FbqY3WmtoyxvHiDU2+8zje++aeM/NYk4/U5UgMVFeZ2BxZC7iddlNRcu3mZlYV5mrMN9E+dDokw1ipOOPVs8SJ5rb/53LHpv8PncjNs+NHaLy046Ekfoa3uXxiNGErD9XxFuVSmXrd+IMboHGTzaI7U0NoVeNjJQb6aGgSB9R3JMozJChqmELcLQnBAlEJrYWWl0iMMAqSSJElEplN836OUe/+EQchoc4RqpU7ghUUqTKZNcSyWbg+ypBgZbeB5ipGRJlEc0+l2CnlQksQYIyw7zcsT7pIY5QkqpdAGjRgbhGLyVSEp7SRFgO2zTKON9RIJKyFhGKCUpFoOadbrNOt1KuUSXuBZL5J8gqqNHaVKeNTCOvWxGlNbJhgMEvq9iChn/0VRVPw4I/Q4SvJVMYVQkkRbXxXlKUpBSCksEfo+5TAk9EJqlTL1eolSOUAIZT0K3eqkxHroCZtClWWOSitRyqb0mpzmrTF4nk/oB4icMSmFyJmENmxEcJsJiiXmok2KMRmpXa4jCKxJexCUqFYbTIz37XeO4pxNpqiUAhrNKo1GnXq9QuD7eEoU12CcZsSp9Q70tJ10KSlAG9IhiZLvhdYMOskQEsIgYHJylJGxBtO9aVrrbdZXN+h2eyRRRJYkSGEIAp9SKSTwfEyaMegNqJYqFogW9vxlOrPSFW0fWDIHjqX8+KUVDzfHcnMyreGCKwgCJiYmCIKg8GBygEC5XKbZbBJFUeFtBZax4nwC71ZAObagCwxot9tFYej7fiElHv7scHE2DFQ4gNDdhxyzcDhowBWKY2NjdwBfw8flGGIuBADuDNlwoFepVKLbtYD+sLSsXC5Tq9XuSIG9m1z1r9JcwTozM1OktiZJUhj+OzmeY+lt/m7uGOr1OmEYFgzDOI4Bin5zQQLDn3NghwNsnY+ke92BFO6cOFBgYmKiYJC6seHGwzADcRhgC8OQsbGx4m+DwW2fpmHZ+TB454DmYam0Oy7f95menqZcLt8BQDvAy53nYZB3GMxwv7uxc+TIkWKMDu/rbtLqj3tzIM4wA8wBKy5AxPkB+r7P5OQkWms6nU7BCq3X65w9e7ZgXTkAyoF9+/fvRynFwYMH+cf/+B8zMTGBEILJyUmee+45vvWtb3H9+vVizG1sbFCpVJicnKRSqTA1NVXs18lWJyYmACtPn5qaAiwYt7i4WNyf5ufnmZmZYW5ujtdee43/8X/8HxkMBjz77LP803/6T3nrrbe4dOlSMUZdCq7zGbz33nuZnJyk3W4zNzfH66+/zjvvvFOkBTvGq0v2DsOQMAy57777CMOw6D83/lw6rxuzDrx27GyX/Hy3UAz3nRzY7e5XW7dupV6vc+LECbTW1Go1/rv/7r/jtdde43/6n/4njLGemm4/DpBzPrDuOv4obTNI7q4btyjj/uYCUoZlxO74ncff8LbceQUKILTdbheLRo7F6vpsmEXu0o+FEMVcqlQqFf6Xw5YJbnHHmNvhTcPH5O61wwzSzRL5/5KaAJQ2oDUSnftvGdJWm1uXL/L2sZ9w5rU36C+uEbe7SAMjzTH27ryX6d072X3oMFsP76cyOQG+XWTNjESi8PzAyjYx6MSA0RhjZYNZlrK2vszi2i36SQfpS6LYsG1mC488/jQPPPY4takZhLDWQsIv2W1lpliwJlcmYXImlJGkqUIJQzg+zUw5pOR7rK2ssbKySr/Xpxx4JO0ecafL9PgE9VqVqNsizSBLY65cvcyJN9+mXB9jcvdOEGAGNmCDwEMF3h31ZDE/yAtNI8B6W2UFmGkynR9q/j/PJ00isvUWXhgiK1VUFuElmmyjx6CzQU1q4iQmSwYgUgg9RGAX/YW0AIsNchROL2ePQVuPROkFCC/EdPtkaDyZ5Z7hFiSvlCsEno9nMtBW5iy0ZVtnOkPJkIrnUVGgTGbHh9GWS4Amzf3YlKMLYllp2igrYzVWnRPIkCSOYBBjOhEm0rnXm7VB0kIyMbuFR5/8JEcefJBSvWJVTqECoTEmAV8V7DKED0IihMKV5UJiAUw06foK77/+Et04otu/SJJEID3Gpmd5+Ikn2fXoI8hmw0IJ0keVKiBtQqoxOUxkBNp8vOuAu7VCWeZGqxDYMEwPRUBIjfv3PsAD9z/E66+9wA+f/w4To5NsGynRi3tQJpfj2nHkeR4ZKf14QEaMh+HCjff5zve/Qa+1ztHP/zozzRk8E1iQDOsDivFymb69DygpEEqghWGQJaQiI9UpN69f47t/8U2+/a0/Z2HhFkoK7n3iYf7+P/6HnLtyjj/4+v+GCD2E9PCDConpkmIsy0yS88qkxS5yxi6IO4BBhwdbMmEO8G/GktzfxGaA8M6mLbWN0A/R5Ax1YRBKE9Fjfv0G/+4//i/88HvfpbfSQQQSWVZUx+uIqiQVEKNB2f5IiRhkfVKZcv76+5w68y5jM1Ps3noAnzJCxmD6CGwqb7M8zUMPPM5rb7zE68dfppf1uX79CocPPsCOuXvwTA2jO4Bhx5YdHD70ACffeZO3jr/K6QsnSAw8+YlnCUUNkxg8z6AlaBOQoklFn7NXTnL1/EkO3XMPjz3ymE0B1gqJZzEkqclUSioTpFCkGDJSvCBg7/a9PPnIU1w8/g4//vFf0k0TPve5L3PfrqMoJJnQSBKMTPFCza31G7z6xsv0oy6j3jhSeI77aW95RuZAs017vo3X5hC4xN4Xc+LTkJFG8XPXmf7PWd/90oKDOkf9lVsJyPtIKaiowAI19Qr9iTGSNC2AwCSxq9oYLKCoLFVf64wsyb0ClYcxmjiOEEAlX+3XOssnUxohJFrblGGkLPwEszRB6wwp7cSsVCpRDsoolScSG00UpZaVlrPapLRacTepq5YkzdoYxoyTZBm9fkSv2yXTdlXdz4udKMrlUdominkqZ8PgzKbtjT5NM7I0Q+ZJNVLKIp9EC5Mz2RRB4FHyPZSAJI0ZDLoIT+IHYQ4w5hMCfRt4FEJSLoeUy6ViKSLLrFTXTrQNGIO2YWuW5SkFmdHW10AKfGW9EXyRh+tiMJmx/ZVZ+a8Dw4WLU9L2OwiRr9AakT/ksKuV2BW3JDF02j3WWxukcYoQEAbW6DkMfWo169EYhsreFDRoI638uiie7RjxqwHVSomx0RHiWBPHWe4BmeL7kmoloFTy7UorBpPZxGxjjD1WKSiHwRB7L/cK8BRKlbAXrdVGKyNypmVKHA0wEjzlMVKr0qzW2DI9Q5pYZkyWJvmkxILMnuehpJcXEQqRs1KVuF0sGXP7XuB8YT5ubbgIU0oVyaWbQSzHLBofH7+DbSeEKIo9l147zERz/97M0BsGeIaBIveae/1ux+n+PgxCOlBos4R3eD+usHdF+936ASiASdeGfeqGWXIuKGNzUTz8nYf3/Vdtw9t3gIr7vVwuU6/XfyYAuVn2O+zxNdynm6WyrnAPgoDt27ffkeDu2vBnNhvzu32NjY0VY+duxzPcfxMTE4yOjhbb3cwadOdkeB+bfQ03v9cBe8P9qJQqgPBhAHDzMQ33qwOeNr8+vN2/Dc19j+Ewh+EwFgcGO1ZVvV5nY2ODK1eucPnyZX7/93+f48ePo5Si1WqxsLBwh0+e8zN96qmneOKJJ9i6dSu1Wo2tW7cW+8uyjMXFRW7cuMFgMGB8fJyxsTEuX75cjMPh5G133M6bzt2T3HgKgqDYbqlUYseOHZw7d47/4X/4H3j66af5+3//7/PYY4+RZRnf/e53AQrwz4FHTjrs9u9Y1Pfffz9xHBeegG6hAygktCdPnmRqaoqRkRG2b99+B4DvwCWX2j3MjHNzGjdGHZtzGBx08mIH4K+vr5MkCfV6nW63yxe/+EWklLz++ussLS3xve99j1dffZXdu3fzL/7Fv+CBBx4ofBxdErxLgP6ogPfm68CBnM7z0Z0r5w3pwFDH4HPSY4CNjQ1u3LjBlStXuHHjBp1OpwCmAebm5nj44YfZs2fPT4GJ7Xaba9euFbJpt5jhgnWcxYUDP13/uTHtnn+uPxxz2LFe3aKIW0AZBhL/S2mWVGFQgMwsqw8E/W6XG5cvcOKVV3nnpVdZvHqJJiWUsMDgPfc/yOFPPMb2+47gTY1jPI80n+IqqVDkKqIMMDb4rbC9wSDIMDqhl/ZoJx06povQdp46N7eDvQeOUJ/dijCSLEnR0qZKCulZIMfYpWu7LWPtcxBoEZD4FngOM43vV6g2JxgdGacWVsm6CUmvRxr2kZlh645t7Nq9m6Xledppj2q5xvp6i5Nvn2BqfJZapUJpegrhB4g4QqcZeN7tOWL+X3ObcHYnZKCNJWoEuWFXkqKTlKzbY/H6Ta5dukSjUmXX7r0EjSaVcp1mqQIiJor6ZMSkJqHb3yDptwlqFfAEWWrsMbkk2TyB05h8odsYsmhA2uuSxBGBABV4iJJksNzh1q0bLC8vkWYZmU6plkrMzu2iVCrROfc+re4GEsXK2io3rl9l99oSpelRZOCRZSnJIEGFAWFgpYcic7WnKFRZQuQS1DSjlClMmtJb2WDp2k3Wbi2RJRG+LJMCldERdhw8SH3fPoQvMWQYpdEmlwZLH8jDJIWyadhWnG4JMcYg0hihrL9e4pVp9Q2tQe43ajSZr6iMjOBVqkjlo6Uk0jDoDfCUT+iFOC88W6t9PIMJP6w5SKTwxLTcPYSQKOORmJSJ+jSfe/YLnL/wHi/++DkCVeKLz/46u6f2E9FDBoqca4zA0NMDCEBozcnL7/Of//wPePX159l78AgP3/cg49VxZE+gAolWObvLaEAW3Z0ZmzvgeR6+8lnprHHq+Hv8xZ/9Ka9+/0donTG9fYYv/sav88WvfYXa2DiXVuYR0kNl9rNKBfRNn77QZNJK3EMkDTyCTCE/QA7srl0jbL/kfEYKw0bX7nh8am4Hm95u7lkeJ5YcUS3VyJIea51lXnz7ef6X//D/4uqV81QrFUa2jRL1YyI0z734PHP79/DkkU+jfBu8AQlCGjIZM792nW9+/89YXbzGl37z77B96y6M9glkgsj6SOPhmRBPlDly4H62bN/Ga2+9yNVbV9gYrPPgg4/TCKch8ah4AQk9qkGZTzz8JG+9/Qbf/8tv042WmZyaYs+OQ0CJAI3QCQKPDEFmJL2oy3unjzMwKQ89/BAT9Qk8FCVZRhqJ9gypjOiJLrGJKVMlSTOMEvgiRHoZD93/EMf2H+Di9fO8efJVkkrGRrvDPdvvZXp8GhiQEhHHfb7zl3/O88d+SCYsdmOGwnQM+RwFx/K9fYLcbxZDcc+1YUBX38ERLAiGDM39f44S4OcCB3/3d3+Xf/Wv/tUdfztw4ABnzpwBLIviX/7Lf8kf/uEfEkURn//85/m93/s9pqenf57dADktN81Xi/IV4gL9xgIfUipq1XL+iZy9IwAHhhhLEXfyWylySWleNHlevl1tN5h/FNf1xtxW4ktpGYYCQ2YMWZr7GCERUoOQKE+gjMBoCx4JOXQijcGTWG8+wOg8bUZnVAJFrTyKzEM9NJo0SymFAVJaRom0SSe3V+nEcFFq70vOO1dgj9UI667nvosUt39C3yPwLNCYCcukdH0gcCv/NlrbAmoahEBKUELk38N5OFmgyzhpgjGAZTJqk/e35V1bj5T0thzaz2/KYHLUXKPTzN5YAZRC5P6NmTYM4oxWq8vy8hprK+t01jsMejFZYhH3wLfsukq5Qrlcwc99y7LMkCT5hSRt8IoQdrXU5MeZWc0vAEEgCQJJve5bWW/uYWhMhjaJPQdK4iuR+0hqTCbR2hkjgiFD6wyEKZIkjTEYR88W4HuKQEoMznw/RQqPIFCI0ANM7i1pU7Bvg095X2pNmtlzJ3PWk1TKLkEU7zEk0S+mQPibvAcMM/KGwZHhv7kiybE47gacwJ0Mu80F1vD7hwupDwKzNvvZ3e19dwMPPyowtxms3Pz3zQDX5teGX9/83mGgaTN49FdpdwNWXRv26XKv3a3P7gYCuraZGTR8joeBWCeju9sx3Q0g+yiMo81svWEQbnO/bj7+DzqHdztfbh/DgMrwez5oLAxvb/g4hl//Rbe/yev/g5rrEwcKOiBsWIq9sLDAqVOn0Frz0ksv8cMf/rCQj7skYccqdgxhB/r2ej1mZmbYtWsXhw8fZufOnYVPqQvbMcYUYSTGmMJn0y1GOAnosFzUjdHNzFK4ncDtGGDHjx8njmO+9rWv8cUvfpGDBw8WAT7bt2/nzTffLKToDjRz32Nzym+lUmHHjh2F9P79999nY2OjAKdKpRK9Xo/33nuvkBvv3r0bpVQR6jQ6OsrIyAjlcrmQ0w+z6tz918mL3ZzNeT+6se0Sgp2sttlscuTIEfbs2cPk5CR/9Ed/xMLCAkIIfvSjH7G2tsY/+Sf/hM985jOMjIwwGAwKZt3a2hojIyMfOZ1786KMkw73er0C9Oz3+3ewnd3f3QKUA2EvX77Miy++yPnz54miyBZPOXt0x44dhUWAC0dy3/369eucO3eOtbW1ou8c07VcLjMyMlKAxcPH6/s+lUrlp9jqDuB0oLNLkHbXgkts/0W2X4Z7wM9uArIMEaeARicRq9ducOq1Nzn+8iusXL9BVZTwlceebbt56BOPs//hh6jMzaIbNQa+IlWKAI8AhciwXlWpth5RQth5Vi4XU56y4KCv8CohshyQSG1BMxEgpY8UHqS2FlAqQAYlCwppQUYesGA28T6kIFMC4+cWE0mKyQSd3oC19Q5prPFlgJECTyp8P2RsbiufePopbi5cp/v+BloIokGPpZs3eO0nx4gGXe559GHGtm61c0ryAsIxFw05Y+82yOBqCq3zQkMqu9CdJAzWWqwvLXP98lXePX6CK5cvU/J99u7cw6F9B9i+dRtTI2NMVSfoiVvEOmUQ97h85QKXzr/PdqA+PYcKA5wUvGDNmByuyI9JZxE+GZWqZ4HNfo9ep8Wl0+9x5eJ54jgqiAmTtREOHrmfaq3B/PIGK90YX5XpdLqcP3eGkTfHOSJSJnZsR1XLKEAkGcgMmQKZBi3zGs/K+RQGTIboR3SXl1i/dY1Lp97h3Lun6bXaeCLAIBmdmGL3/oPUZ2chDDGhRPuCTtRF41MNQmSkwUi0UGipSIXE8lwtK8jEMT4eZc9He2Vi4xFpCaJEoBRa+FRqI4TNMYQX2Ho0CPGlh8xsPZTialAHNvz12/851//wsTupuyley+H0O1hyJrOEDSUUSSa498BRfu2rX+G73/kuP/zhd1lYWOHJx59h98691Co1u4gvNYaMXtym1VnjypUr/OT553j73beY27aFL3/pS2yf3kqJEJV5KGNrbHeERthjEMJYUg+CXrvL++fe58LbP+BH3/weS1evUa9VeeCRB/nq1/4ODzz2GEnoERnoxxmyF1GJM0IDWlh1WyQ0mQKVCCrAiJaI2BD7Oi9Z89pWOMzCnnTLohxml+WsNOGWNHJWcAEaCnvdFQsD+fPS2AAVITy6/Q1OnjnBt779x/zghW/RjTbYd/8BnvnMp2ktrfO9b3+PTBguXTrHH3/rT+ltZNyz735GRsYwwtCLO9xcvsaLr/yYl159ni17d/HwI48SBhV06uqUBIGxBCijmGjOsXvXPs6cPEO702Lr9jn27jyEMH6Bt2BSlJAc3HuIqZktXL18BsKEzz3zSZrlcQSKwJNkWQTCgvJaQKuzzrUbl2iMNJmdms7VQB5ohcp6GAyJF9GRHVJiKrpJQJU4ikhlSrXkMTs5xzOf/DTX//NFaiMlOkmL77/wfY6X3+Gzn/o0tUZIIOG1N1/m+899mzjugm8xk9RkRUBMEaUjQJjbYPXt5moRSTHQxW1I3P7o4nfnQ2ny82h+jlvAz80cPHLkCD/84Q9vb2BI4vUv/sW/4Fvf+hZ//Md/TLPZ5L/5b/4bvva1r/Hiiy/+vLuxXSVyhpaxEl1wD6n8H+ZO4MQVDUKQmzjaItB3K9iuMBci37TJ/UJsP1uPgNtMOyEdVde45Uh0fhvy87RYrY015NUGL/eeM9Iy1Iwx6Cz3uhP2dJncl87o2wbZYIMytJOBCokQHpnIB4t26LBlULojcf8SQuZgVd432gKYNrpaYIPSRE7bt59x6WIIS1HGGAsAkhcsOUhp8hVSiQ29SNIMie0jIXLZdpaflOLEUJwrJUURU56lzlPJrqZnOeOxGOzk8wFjV880YLTIWSEJ7U6PdqfL+voGa2sbtNZbrK6u0em0iePIBreoEn5YoVJrUGuMUms0CcplhKcw+Xhyh2mwfVQAQkUxLov+tinG9lcXB290HllcgLTCGlJLhQ0yKTaHdtL4/K7txm9RWEmJJ+0KaZZqy6QUBinvNNCXKg+30Vk+Biyt3IK0XtHrBmNXI7Qbg/loMb8408G/qXuAa5sZU8MgyGYQbvg9w8yuzeyz4dc2Az13A+A2s8qG9/VhjLPNbfh478aI+6B9DG/zbgy4u/37w/a/uWD8qAycu7Xh477buRkuyD8IHNvcF5uP8cP6fPN+Pwz43Pz9NwOqm8/9MOi3uZ8+DLS7G6Nw+Lg2A8wf9t3v9t02b2/zNbK5fRDI+Fdpf9PX/+bmvr+TFDvGHVip7vz8PCdPnuTrX/86URSxvr7O+vo6URQxPT3NfffdV4R/tNvtArgLw5AkSQp7AhegE8fxT0m83cKCk4s7YMwtOjigz/1tGCivVCoYY+h2u6yurtJqtYjjuADvXTCKk506D1IHTK2urgJWpttut+8IqnDNPV/c3yYnJzl8+DDdbpf19XWuXr1aeIA60OvGjRu8/fbbBXN3ZmamGP9S2qRjF9xze4HV9lOr1eLatWvMzMwUadlZlhUBMW6cuD52zD/P81hdXeXRRx/lv/1v/1vuvfde/uf/+X/mwoULlMtl3nnnHX73d3+X06dP8w//4T9k+/btBUt0OG39w9rwgswwSOsSsDudTnFuHBuv3+9z69YtqtVqweiuVCoFEDsMADs5sgPtFhcXOXnyJEEQsHPnTprNZuFR+u6773L27Nk7xp1jJU5OTrJz5062bNlS2Gi4RQMHZDcaDZaXl4vrwIHWi4uLnD59mjRNqVarNBoNdu3axezs7M/FsPyo7f/se8BHakJijERkmmijz8V33+f0qydYvjZPmqaUG5McPHiE+x96kP0PPUh5ehqtJIm0ny15ATKVmMRV3M5bm3wx3M7ldWZN/4UWeKrMxMgMzdoUvmqC1PSjHleuX+bihfdpzkxSGRlHZynpoIP0Q5QfWCds4eb3AoNlFgghkFlCGrXxpUHGEa2lm5w5e5qL167SjlO8ILT+dhNThLU6qjbCtv338vgTS2SJ4vKVC4g0wss2WDz3Lm+0btGav8zBo0fZuncP5ZER0DEiDCDwMdJ6/2XaMgrs3FmTmR4mixFJColB9xP6Sy1uXbrMjQuXuXz+ElcuXaXT67KcJmzcuEnW7VIOfWqjdbbv3s7p49dRWUoWR1w79T6vCp+16/Psv+c+xue2okLbHwSh9TfMaxQjbdCiN9jARNbsv7+2ztK1a1y8cIGT77zL1cuXMZkmCCtkWjO1dSfbDh2hVqkzff4SV5ZX0BqEyFiev87rz/+I5flr7L/vHuZ27aRaq6OkIvYCPD9ASsuM1FlGqjOSLLOAQC8mWt3g6tlzXDx7mvkb11hbXqSXWq/yoFJj+/6DbN23F78cQpaQpQqjPHwVoIW2gKPKATth6x2rkstrOUAGAZ7OEBh0FDHodYj6PVId4RkfWaqCqpDGApMITOBBZtCZPXdCKjylClKJvSZ+MXXA3xgOIAGkreeNrWETk5Dllbg2CkkJmXlIMkw2QInAAvjGgI7xpCYwPmPhDL/y+Feo+RN88xvf4NVXX+T85fNs27mNxkiD5kjDKg/IWF6/xdLCAjcu3CDqDLjn0EN89jOf48l7P0XTn0BpRRh6ZBikqaHJiHWKUAZDjE5idBQjBrB66RZ/+Hv/kYtnrqJSw97D9/L5Zz/Plz//RaZmpkmkyWvGFJmCEDbgUwJkMUqmBMagtAU7tdDEJiJQXu6NSR7Kcvv5X5CkDCAMhgxpPJQuIbWPISURfVBYRjQKYTwENufBpuLGCGVIsr6dPwaG+aXrHDt2jB98+1ucPH2C2niVz3/hM3zuS59j585t/OiF56Cs2LV7B5kPFy6e4X+/tcjOXfuY3TKHFyjWNta4ee0ql89fZLQxyle/9Nvcu/0hfAK7GGICBCrHN1N8KamJBvfue5gfl16gu9Fix/R+pupTaCKMp4gzAaKGLxSzY1s4vO8g166doVoe5f79jxIoH2MyEiNAKrQwZCIhMwNarXVWVlZo99r8+MW/5ET9BD4hXhYgtH2vlgmJl4A0qCTAZBKpAqrlOo8efYjts3M88dQzXF2+zl8+/x26Gx1GRmY5e+sk5y4fp14NkWRcvHyeVmedw48c4er8dUQFEi9iQI9KpU4WGbK+ZaGnoouQ4OEwqoyMhMwYiBWKkrVBJEFLa4OgHbhIQuB5GDyy1EPnHo/Jz0Ed/LnBQc/zmJmZ+am/t1ot/t2/+3f8wR/8AZ/5zGcA+A//4T9w6NAhXnnlFT7xiU/8XPuxK3OSHMMrQMCCQWWXvArLxjRLi5htGwYCFli0ElnHLpCu+HL/XxRjQ/uWFNkOxkBm7GRfG51Ld3PqcP4ZCww5qN0CSO47OLAyp5LZhwLD4J49NokowEQHUnky94kxt/ukgIdzRp7BrvwJ6cBIG76BsJd4lhXcRwvw3VEIW1CqAEtyQNAWFUN4n+sqyP0U8xUagdV55x1YvC6wCcE6wyDxpOuf2yxB+71zPw9t0CZFCYX0VA5wQhKl9PsDVtfXWVtvsd7aoNPp0esPcgZHgvIEjWYdKW0YQ71Wo16vMz45wejEOLXGCGHZK4BRt/CpjRsfOQiYH09xzrj9ukutxuQ3UukGBziA8LZJ6NA4wv69GBrcfotSHq437DmS1otQDvsc5f2GvfnbcyQL7xOTvy7ySaUDe4Ub1sKBrRqpfnFygr/Je8Dd/vuzXjPGFMWf81q6G5PrZ213+DMfBgp9FHDuw4qzzfv6We//KK//rPaLKhbvtp279c9H6fsPO66f1ecf1H8fZXs/7/n8qGPpZ23vg0C9D9vGX7W/fpHtb+r6h7v3dRiGVCqVQsK+tLRUpNlKKYmiiHa7XbDMnn32WR5//HEWFhaYmJjg85//PNPT0/z4xz/m29/+NgsLC3fIQh1o5IC6KIoKPznH6PI8r/A3dGzSIAiKEB4HvDl5qAMKnfyz2+2ytLTE2bNnOXfuHBsbG4UvqJPKO2ai8xEd9igdDqtwINJwGwbMB4MB1WqVHTt2sL6+XqQjO8C03+8XIN/169cLr9YgCJiensYYw/r6eiEXdkCbY2m61OVTp04VfqlCCNbW1mi325w8eZLr16/T7XaL8TPszTc9PV0w67/yla8wNTXFd7/7XeI45vjx45w+fZp/+2//Lbdu3eJ3fud3uPfeewHr0zicFv5BY96d12FQ3QGVw+zB4RTgq1evcuzYMU6ePEmlUmFmZobdu3ezfft2yuUyO3bsYPfu3dy8eZOFhYWCEemO67333uPy5cuMjo4yOjpKuVwmiiJu3rzJrVu3rEQ0B+3cd5+YmGD79u3Mzs4WSe7DLEeX8O7OlXvOaa1ZWVnh1KlTXL16FbBg8NNPP02lUmFiYuIjgag/T/ubvAf8lZoAoST4Htmgx+L1G5x68zi3Ll8lzCSTIzPs3rePhz/1DNsP7qO0ZQ5KISZL8fL5nBkkiEwhjD+0UcvUMMLOuZXIr0FjbKABAc36FLPj2zgbjrHRXiPwQi5dep9v/UXM+sY69zzwIDOzs6hqw6aKJqmVEpJ70CFByzzFMoO0i+wtM9hYYf76Dc6fOcPJd09x+fo1eklCEEhKQcj2Q4cY3bEDpIeUJY4++gx+OM7zz/2AW2ffI4i6hFlMZ7HHm8vXuHD6bXbsO8Dc3j1MzM3SnJyi1ByhVKuB8uxiuqfQsSBN+0TRGnG/RXd1je7CKu35ZdavL7B8+SYrNxfo9fuoDOoo6uUSc1vn2H1gN+Pbp8kwHO7ez8LV94na6yRxiukM/v/tvXuQHcd93/vp7pk5j33vYrEPYPF+EwRIgiQIUbQtCRJFkbJk8Sq+lEpxqXSjG4dK4thOJa5UrDh/RKmkKq6KSrFuqq5F56biSIpKVixLliWSokzzZZOU+AIhPkAAJN6Pfe85Z2a67x/dPWd2CZIguQR2xf7qQe45c2Z6erp7ur/9/f2+vPDYzzjx/CEOPfEU6zdtZnB0lFpPD5WuTkSSWOVTJDEqstFW42donDzG9JmznDp+kmOvHOP4iZOcm5igkaUIEUGlzuia1Wy/7jr6Nm2mFle4cu8NnJqc5cXnnyVrzUEr49ThaabOnOSlZ59mYHCQFUMr6e3ro7u7h1pHB9poWmlKs9Uiy52qe3aWmfNTjL9yivHTZ5icmqaZZzSyjIYR9PWvYNP27ezedwOrNq4n6e6COEbkGaKZUUtisjxDt5qI2M7JhdEIFMJIJFY1KYxBpBkmT4EM3ZwB3aISQ01JYqWQlSoyqmKMBBERRa6+BMjILd5cvjjAEa2LQw5eqv6vvSLKm4IqKyrRRpPlGvKIiqxhUuHqrkEkrGFNJBRgBSkVWUGaLgarY9x8w8cY6B7lnr/5K555/ml+9sxjaG0drqWwUXFZ1qBa62Cod5Qrb7iWm3/pNjavuYLOpJtYJygijMzIckEzNajYGlA29TRSpZw9c5L77vkRZ144Rnp8hiMnn2fLdbvZvn0n7//lD3L9lTdQr9VscKhJSbAqwygTiEoHTaloZC06paZqDEkOomXXr3N5ypzUaJVjRATYjQqQLFyDgh2ylBFIHaPSCtmcQWIwsklOBDpybS9CYE09hZKgIBMpWma0sjkOPvs0/+ubX+ex+x9gttFi59XXccuv3sZ1111LR1+dpmmArCDiCtt27mTHrh3cfe+POPDM0zzy+I9RPwNZUWQGKqrK+g0b+eB7P8L+Gz5Mb2UAoW06sMwklig3EkxqA4BFlSs37WHDqq282Pg5W8Z201ntwERNtInQqUTpGnme01vt5cotO3jgr+9hzeA2tozstJSJ1DS1cDyIxiqhW4yPn2dqfIaJ82f48d0/QkWJJVV1yWjJcR5Iq+YzJibSFXrq/azo72X1yGpW9o9x2y2fQMqYRx99iGNHjpBlLSYPHC7EYEIY9t+6nw/c/CG+9o3/xvjkOLlImU4nyDKBUj3U4x7QKVrMoKVtGVJbU5ycFsZIdCMimxOQgVC5Y5O8iQk282luMA1Fmgo0KUak6DexLHjT5OBzzz3H6Ogo1WqVffv28aUvfakIc0nTlP379xfHbtu2jTVr1vDggw++5qDgjS08Jicn7b9oaw7u53tGOuUU7US5EpdTEAMiQms3QRSlFI1GFnJKbXyCX0dOOSKlIB2dys4YQ55mLo+cy10QRdbl1xN8wqrFbEyqLyQgQJVy8pgip5n9TghBpJRleikTiM5ZFrtIyTMNQqOULBSJuTYFuWewpA/Y/B/CtBUwSrh8Ry6Jr5UOux0GIYvEpYU6xbTLJq1wHlwotJXv2YSCUkrnRGZ/luUprZZN5C5VRBTHWH2kDbmNpF20pFlmhd+uvoxTKHqaNM/s7jsRlhyUllBTzuxDa6uGy7IcBFQqbedJnIqxVqvS1dlBX18vXV1ddHV1UqtVXN1Z9UBe7KCZeWRme1Hh24fGx/vnuXHh485URilbbklx/TzLaWXWNEcp6YxzbHvLstSG/WLDqKM4mj9RL5G1YO9ZqbbZRFlxYklLRzY6glBnbdrRqhaF3V3S/sG6Zy4Wjxy8ZGPAa+D1FoK+Ln3evYU56N4MafJ2CJbXK+OFjnsnyZyLuf479bu3en4Iz+q1rn+pfvdauFT93zvilu/jzJkzfOtb3+KRRx7h6NGjBTFYDtGUUrJx40auuOIKRkZGuPbaa3nf+95XHONdz3t7ewsSxpuFeFVgOW+f/9wTfdVqlUajURj8+Gu2Wq2CVJuenubJJ5/k/PnzdHR0FCGnWuvCwGNiYoLx8fEixNc79Pqw51WrVrFjxw4GBwcLUrLVahXk5enTp4vQYO8yfCEjI38P3d3dbNmyhbNnzxYGaL7M/prT09McOHAAY2z+0K6urqJcXV1dDAwMcPz48ULpWK1WqVarTExM8Nhjj3H06FEGBgaKXHqNRoPTp09z6tQpfCi2f6beGdr/0xNd1113HVdddRWNRoMHH3yQf/pP/ynHjh3j/vvv59ixY3zqU5/itttuK4hBr+L05KsPrZ6amioMmC5Epo6MjNDX18dLL71UGJ54laOvB18/69atI8syhoeH6e3tZd26dUxOTnL27FnSNOX06dNF3sAoipiYmGBiYoLTp08XJiNZljE7O0uapvT29pLnOVNTUwCsX7+ea665hp07d7Jy5cpXOSxnWUZnZydDQ0OcOXOmCEuuVCqF87rWmomJCRqNBtPT04yNjbF9+/bC9GYxcdnnAFxwHVw6wFhihJS56XGef/ZJXnzuGfLWDB3VCquH+tm9exsbrtxMZXAFIjaQzaEMEMWQa0SjCbkEEifF8Xl7DELYTXirTtKQ5zZkGEGSKK64YiunXznMo3/3MEkUoxpznHnpRR6ea3DiuYOsWb+BNes2UqvXiZMqlXon1qREWjfMTJO2MrKsRWvmPKdeeZHTx17m6JGXOXniJBOTU7Sy1KbmqdbYsG0rO6/dQ8/YaheiLKmsGeXKwRWo7ioP/0hw+Mm/5dzsecgVkoTxl6c5dOwl6o/1MDgyQv/ASrr6+ujp76da70RFCQZBM0tpNGaYnj3H3PQEk2fPMXX6HHPnJkln5qCVuzWQABHR0dPJ+u3bufqm97Jx9y4qgwMYDDvrkpnJMxx49BFePPwCeZqTpIKp06c5c36cl148TFKxOderHR3IJLKnlRItJFpn5NMTNMfPWRVdMyXPNZmLkhEqJq51MLpuHXvf+1527d1LfXAAkGzbez1NpUh/kHPsuQOorIECWrMNjs+8zCsvH0UoRaQiapU69U47ZjdbTbTr00JImq0GzWYDUo00NvVSLsBUYkZWDLH7uuu57j03MrJ2DVFnJ9SqhbACQBjjTDBL4UUuGk3g2pNxIcyVKiITkOa00pTpRpOZRpNp3UDpjFqeEScV4o5ORCWxa02BFWwYXficLlY4cRmXrv+XIiiMINfW1VsjqVU62Xvte4hVha56DzYrqE2VZQku7QW/VkhBRF12EyUJN+x6D+vWrOOl44c4+MIzjE+dZ2p8gjzLiZOYjq4OVq4cYe3YZtav3sJQ12oqooZJrbJTY8jzlMwYKnFMRotWNouKch559EH+vz+5i2ef+BnTp87R29/H/g/fwu2f/Q0G+oboqvUQESNFjM40ShgsLazZun4LN713P2OrNxGpGtLESK3pqvVxze4baOZNOqsDSCoYT9+I4v8uALser1c6uOrKPaxfvYW+rv4igq1dvfaehElBaDLdIhMZqIyJqTN8/wff5Tvf+jqvHHqJzt4ePvqJ2/nEx+5g7dg6TGRIdUYsq2wY2cIHfukW9lx5Lbu2XcnY0DqeO/gsR18+zNnzZzHSUKvVWdE/xK5tV7Fz9VV0JT1EOkFJl2fc9Qavt5FGkGkY6h3lgx/4CIc37WDP7r0kSbUQ8WA0UirSuZSoKti19Spu+/CvMTS0lpEVo0QitoQfgkglZNrm/cRAf18/77nhlzk/uwVjrKjJarlerbIzGLTMSWQV3VJ0V/tYs2I9ylTRecbW4SsYun2EG656D0/+/EnOT54nm5ulEscoYZiankRRpadriP2/civPvfQ83fU+6lEHq4fXcNNNH2TV0GoUkkhERMZuGijnlqxMwua1W3n/+z7MutUbrbrZ9fKCynQc0Mq+IX7p/R9m1/ZdpTHg4nmAN0UO7t27l7vuuoutW7dy/Phx/uAP/oCbbrqJp556ihMnTpAkCb29vfN+MzQ0xIkTJ17znF/60pdelb8AwGTWbQopyJwBhk/ybYQNM85zGwZsYz8V3n18YTfRjpDKPMmjXAfP2+Em7UWfD2U25MaGCmXa5rCQUpBECZFUaGNJL51pFy5qc5AUojLjQ561Dem1H5K7CZ8n2oAiFMkYil1krduqvzw3jjW2bxnhlZHGhlxrYZx6URYKMW2MIypdPjajyXNLUEkh5hFPElGQiOV8g56Etco4WbQro9vHViqJI2QtgZnlOVo71YQzyJCl32ltST4ByCQmUjFSaXSeW6JXCLI0J22lpGmOEoKB/l56e7pptlLm5ho0Wk2n1rDEaRwpkkpCpVqhXqtSTWJLChobKm6TfvrjZUHEFmSszsjSNonnlXiCdi4rAcWiUUSqIACNwU4qnOlNWTFi1a+KWKmChNQ6L/IZ4dpiOWk5eOWgrSut54dj+sZdDkss1I9lJZLLDeln0VG8OBOESzkGvBbeSIXnUQ51uNS4WDLmYpVp7xTeKsH3du5vqSE8q4vHpez/Xl32yCOP8P3vf5/z588zNzfHfffdV4SlglUS9vb2Fi7X3mCiXq8zNDTEsWPHuOeee9i3bx/1er0g/ur1eqEO9CSXN4fwzrw+xFhKWVzPk2h+rPe56Xzdp2nKiRMnOHnyJI888gjg5wP23T8wMIBSiunpadI0nfe+8GGk3d3dRYhpV1dXQYR5Ei1N00Lt5ucMs7OzRFFEo9EoFlplhZ+UkuHhYXbu3Mm5c+cYHx8vXNS9GtOTdS+//DLPPvssIyMjbNq0ib6+PrZs2cLp06d55ZVXOH/+POfPny9Cn/01/Pft95stW1dXV6Go9DnxvGqxXI9e/enfeTfffDNf+cpX+KM/+iN+8pOf8OKLL3L+/HkOHDjA9PQ0d955J2vWrCmeS7VapdlscubMmSIM2Ndb2cRDKcXatWvZuHEjr7zyCqdOnWJ2dpZWq1Xk9ms2m0xMTDAzM0O9XufkyZOcO3eOrq4uarUaGzdupNFo0NPTw7PPPsvhw4eZnZ0tQo79HMuTpJ6wTZKEubk5AHp6eli7di033HADe/bsYWxsjFqtVpiQ+PJWKhXWrFnD9ddfT7Va5ZlnnuGVV14pnLW9kYonhxuNBhMTE/PayGJhScwBXvdbF51iWpDOMHnuOIdffJbJiVPUlUCZBjOTZzh55AW4r4WpJMzmhkaeYzDEyipH0kbLzb3dPMptyKItiSPcXK3VbCIEKBnR0VFnzepVjIyMcvXeq5maOc/zB54gylOqMmLuzBl+duIEj//N/fR09dLV3U2t3kmlWkd5w0EjSNOcVtoiTVs0Z2eZnhgH1yaauUZnKVEU0TuwkrHNm/ilD3yANZs3IWKBSCrITklmDLlK2LjvGjr7I54e7eZnf/sQR06+QmRSqkkVneWcO3+Sc+dPI4S0eQtljKQUZaUh0zla5MUGtTDWkA8DkVQQx3T19bJq7TrWb9vKtquuYmTjOqhUmc0byEqF7o1r+ZVfvZXelQOI+x/gyEuHyRotSFOyHM6PT4AeRwpJ7ObE2gkscq3JdAZCE0dWFWqMoqFzGialUq0zNLSaDdu2sve9v8y6LZuI+nrJWjZ3WTy0kp033URHTw+P/vhujr1wkHOnTjMzO4lAUo1qxLEVdczOzDE1OVOIOpSKMJGNQEvTll3DSYVIEqJalf6+ftasX8+W7Vew7cpd9K1eA3Fs20yWF7FSwilErApOOvIaMKK9ZHdrEozA5KmtZyFJjSE1QCUmijuoxFVEYt1WbRSbiybyayido41Nf7XYs5NL2v9FSfyAwGQ4QyzNis5Bfv3jnyJSiv5aP9JI7wlCFLsIKxyl70wbSWMSJVAyYt3AJtb1b2Dvjn2kpmnXZXlu00NFEVFcIxZVYqoIYqSR1llWRgidIyJBXQomW+cw5Mw0JvneX/5vvnbX/8vEiWNEKuGqG67jk7d/kl95/wcw1TpCJMQkyFySpQapbF75zFiRzzVX7mVk/RiD3cNEoo5uKYSq0dcxzEc+8AmQ0B8PYtIEpSrkpvXGD8xAvdbJRz/0MQSS7mqv5SXcf+zwZokyLVKE0GR5EykNP3vqUb75zT/lxz/6S4zOueKaa/jkr93OB375I1TjflKtEUaQKENLt9i9+Rq2rN1GUk0w0rBtxU62DexgLpujkTUQ0hDHEbGoUhF1lI4gjVCiikSQixzr+GT5BK0NkYrRIqMSVXnfjR9Ev0fTVRlAmhgr1cmRwhJitSShpVNWj67ljk9+BiXq1JMulI35BIQjkBWpzpBasmntFoZHVmJks82JOJFZmZx2zRAjDUYLlKkQmSpVVadKHRGBMRmDXQn9u/u5etf1NPIWOk2pRAolodGc456//jE//sFD9Az28Yn3f4qh/lGEUOzeeTW7t1+FMopEVIhMjNIKYRTSKNAQUWHPFXu5essN9FS7USbBFO7G7fLmec6OtTv4rS/8Lj31PmJiqw69+KjiN0cO3nLLLcW/79q1i71797J27Vq+8Y1vFM6Kbxa/93u/x2//9m8Xf09OTjI2NoZ34rUJcGn/O9YcQxvjFGYuibvwIZQu1NabZDiCru1w2yZRDF6t1w4b9RML7chBrf35rGpAuN9IIZGRld5iXBhtbvMGqihCSmN3uvKcNLMEoU+krbWmWcrDc6H8VOBUAK6NaqMxuS2XzSPgd+rahKgV+nnVWxE4TflftI8XxuXFKu6b4v6NT8BPSZGOH6e9rNZ9YHwCWLtPpZwCUWtDpr1ro1e0SZSMsKmb/C6ZewFHkc3H6IjDJIntbnuuSXBhuEoinJow1y6foxAoiWP8U7tLJ+xuruXFDEp6ZahtBwhbVoFVJQpsYu+oFLbl6N4ityKAVBHG2DzFnuQtxhBhyUellDOUyYs6tmHu/iTCXS9ySk3palSXdiv8pET6TUBMri2ZbGWDbTWiD5XX1izFaGGd71x7QLSbymLgUo4BbwXlXHblBedywlIj1JZaeZYSllrdvNPluZT9/9/8m39DFEU8/vjjPPfcc4UibNWqVYyPjxc58SYnJ6nX6wwODlKpVJienqbZbPL0008Xv7v22mvZsGEDY2Nj1Ov1op68IUc5j16SJIXaC15dp5409OHCZXdeXweeDPTvc68oAwqiyDsFl918e3ut8n379u1cffXVrF+/vsg/VzY38fBGFGCVeN5wJcsygEJ15o1bkiRh1apVXHvttbRaLaanpzl06FChpvT3dPLkSR5++OFCjbdt2zZWr17NFVdcwcmTJ0nTlGPHjjE1NVWYaXR0dBTqRl9Hg4ODDA4OEscx586d4+jRo8zMzBQh0p5E83XhycYsyzhz5gz9/f3s37+fdevW8dWvfpUf//jHnDx5kv/6X/9rcc+f+tSn2Lp1a6HinJ6eplKpFHkgy87nniirVCoMDg6ya9cukiThwIEDHDp0iLm5uaJc5fbhIxV8Hso4junt7WXPnj2sW7eOnTt3cuDAAY4ePcrExATT09NMTU0VDtHlc3mjkNHRUTZv3syOHTvYunUr/f398/Jalg2KhBAMDg5SrVaLUOUDBw5w+vRpxsfHmZqawhjrEF+v1+nu7i76Q3lOuRhY6nOAYrJjNFljltMnjnL82ItgGigRo1sZ5042+OnsBFP3N8mEIJeK1GDnlH7RrLWNWHJRS0IbhNEoY1VMCgHexdaJFjp6utlzww2sHFvFpj27SToqjA738/OfPc7JsyfQaZNY23leY+I82dQU5wG8SME/cycOyE2OEIo4qlmBorGRMl2d3awYHmXrrt1su3o367dvQ3XUySOFrETkUtJIW7S0odbfxYZrdzEy1s/W667iZ489zlNPPMGpEydo5SlSGSooumt1dCslT1OUTl32MWctKFz9uHVTjsEoRVKv0zPQT9fgAGs2bWbHVVcxvGE99ZUrbP6w3M6TjbTKqGT1avZ85FZWbb+Cn/3tozzzxJOcevkYrdkZTJo5IxBD1kwLb1UpQBmoyIiG1ExlLYQWVOIKPd19rFsxyJqNG9h29dWs3b6NniH7XtB5jlEViGxUWdLVxbYb9rJ2/VpOvfA8B598imefeYZz587bHIutjGZjltRIlIiKyDCtDa0WbsOpj6SjStxVo3dokLE1Y6xZt4FVa9fRPzyC6ujApDnkqQ3Nxpq3SCURMioik4qIM+GWUW5579dibWMWq0ptphktwFRqUK9j4god/QN0DvQjlYAsR0QgowgTR8RGovN8Xo9YrFHgUvd/ryXDYFN6mdi2JVFhpHvUrcl9v3XrNqeEM+U0AEZQVTU0OZlukZORk1M1kk7Vg6yqQtjTJMIIhXKO2Uq4dFfKkOkUnadEwoDStLJxnn7mKf7X//o6f33v3WTkDK1axU2/8j5u+/Bt7Nq2Cy0UuYgxJkIRIVGWUxARqTFWeSwkHUknq/rXE1PBtCIwFSSGmDq9yaDd2KKCpAo6ApHyRk9WIKiIGrVqHZuTXhNHNjTaO1RY8aGNVkzzOZSSvPTyi/w/X/kyP334AVauGeGX3vd+/s+/dwdrhsbQWkGuqKs6CEOap9RlhXoMddlVrDmzPEXkUI96ELEhR5OTYoyETBDphHrUjcgUad6E2NgyuQarc02EJFIVKsLQU7GiHUEVcmE5GJ2jBGjdohLFSFEnJaK7WkGYGJ1jyXzH3fh+kagEkxhyUpLaCqQjDn2buxCsTCx1tZoQmypCR5BLJxrLyPMGRlZRqoNarBGxjYJVGHpiw6/u/z949Imf8uIrL/HEY89x9c4OOgY6SZLYbhAhkUahHCkotXIeGhGJrNNdrZBUK5jcoIxCiQgr8XLsgdBExEQiYqirG2EkJpckKqZpLn6T8G1Ja3p7e9myZQvPP/88H/zgB2m1WoyPj8/bNTh58uQFcxN4VCqVYke+jEazQaVZQSpJFMUkcezUdHaCbLByU+VyrnlXVnDhwliSSBuD0C7Nq7K7D17RV+TlceG3aFNIkO370CYcV7TDjv06waoWXT5DN4ErtLqmnWheKUWsoraizy0YPPFniS7tVIzYPItCFaSlVZ/JQppud+x0UQ5Be/FidE6uNcqpC4w2NhdjIYsXBYkpXYisAGeY4V3BrCQ7p52Dz0ZotMkwS9xaFWQr9eePkVIVqreyMlJb6abbBXeLJu0JOEfoOgLXYAoFpPLuzcYUiky/DacQxWfC7Q9J96b17sKFZF9QTLJ92dr5BT0/aicC3s3HE8jesETg1HrC5b9sa/adkU27TpW0xLFXq2q3eJRSudDjdgf1LkUedpAu5Y4wxotZMca1E9dehRCIEvllDVy0ndQKG0pu26xAs3iGJGW8k2PAW8Vr5Qr8Rccbqdgupcot4PXxi/Ks3sn+//Wvfx0hBBs2bOCmm25icnKSOI75zGc+w4oVKzh58iQHDhwocvZ50qxWqxXqOk+aNBqNQv3nx8s8t0oYH+7pCSuvAvTGGT6fnCdsPJnlQ4W9Ss8r14DCJKVIYSLbCnEfEuqJHG82MTQ0xNjYGKOjo6xdu5bR0dFisZVlWXF/ngg9f/48ExMTGGPdbL0RRUdHxzzjHf/vPnS2o6ODTZs2FepDr5j0x3pCMU1TXnzxRUZGRli5ciUjIyOMjY2xb98+RkZGOHToEC+88AJHjhxhamqKs2fPkiQ25Ud/fz+rV69m69atjI2NoZTiyJEjdHV1MTMzQ5IkpGlKd3c3o6OjdHV1Fc67fr7S09PD9PQ0eZ6zZcsW/tW/+lds2rSJr33ta4yPj9PR0cEPf/hDHn/8cT73uc/xyU9+slAdevWdf3b+neufuZSSnp4eNm/eTH9/PyMjI7z44osF2eZJvZ6eHvr6+li1ahVr1qxh5cqVxbl92121ahUDAwOsW7eOEydOcPz48SKs2Ksz/bH1ep16vc7o6ChDQ0MMDg4yMDBAZ2fnPHVj+fllWVYQ0F1dXWzZsoWBgQGuvPJKzp8/XxjrZFlWENuVSoWRkZFCpfpOYinOAfyEOdMZ4xPjTE1OIRCkeUYsbM6t8+PnyRXkWLMIhLQ5AHUONoMNmdRk0s4jpbYklXDZuSTSqjEccTCdNWA2JkegpSTu62PTtXtYu3E9W7du59mnnuLoy0c4c/o0M1PTmDwv3O5MnpHqFJNbIkS6eX+iIhAxWkhMFNPd2c3Q6CrWbtjI2s2bGN6wnq6Vg8gkgmqCrFRp6oxGmhJXK9TjGJ2ltHRMdWQ1W4dGGd26nW3XXMcrLx3m1LFjnDp2nInTp0ln5uyms9Z2Hisk0ti5r1IxlbgGKoY4JqnX6R0cYHjtGtZs3czgurV09vdT7+pEdtTIjR1vokqVWq1G2kxpzExRVQrV1cPI9ivoHhxm+9XXMnH6DGePHefciRNMnj1Pc2aG5swMedpCGJsk3Ecwqa4OZHcXKkkYWjHIuvUbGFmzlt4VA9ZYpVbFCEmWphBViGpVpIxoNZrkeU6sYqorR1jb3cOqzTu45lfOcu7MGc6fPsP4mXPMTE1Z9fnMLGgrtFBKEscJ9XqdgRUr6F3ZT31lNx39PfSuGKDe1YOKYh90jqjEePdXm4ZJYYSwopbcrRWwUV/CODWhMBgj8AmxLBEl7Zq0WqF/dJRr9u1jbN0YedpEqohqtZfhVRvpHloJSQRuvWuy1ObjwwoWFk0Z8Bp4Z/u/W8MZm0Ys1yCEJJEJqbZ90ZtvVESMjC35k6YZUWzdr43wQhGJziDTGhUlRFGFNG+RCEu0FLnaUQiTYKRdo9uoNhAmRwiNIKeSKGYb0zx/5Ofcd/+P+Ivv/jlHfv4CSWeNK3ft4baPfYy9e25g5YohMi0wWpLngmqcQC7IM0OcRKRZhlSKRFUQSHKTEYsKysQkqkpEQku3iHRCpCrkOqMiq8QiIc8ziC9QZQsgkMSmgjY5kVDEynMmXkhk69kadOYIJchNzoOPPMihn7/Ae97/AW756G3ceP0+KnEFYySJqiGJyXJtVYgycmaaEJkEMERKWUWdsGZCmtz+R+RurhGhRITODMqAiqRdDwvASISBWCqElMw15lBJRC2qk2lDnkdEQiG1QOgMpeydtLIWRhhUVEGYClo7sZFIENpY9aBTO+c6s+IcIa1ZC3bMAyfGMvONBe3nOamWJFEFYyJ0KlDCOtHrVCOIqEVddr1tUiAnEsIqfLRGKUFdRvzKNftZv+ZlHnvqpzz60E85O3qSq3deRb1aJ5JWwezzbXpiGwTKVBEGdx+GWEbzRG3WfEaTyIrjWXCiOGtWpN4p5eBCTE9P88ILL/CZz3yGPXv2EMcxd999N7fffjsABw8e5MiRI+zbt+9NnzuqRMjIhrM6Q1hrJ9/ey8I7xeL+P4JCJqVzbV1d3HfCqbfKO8he6u0nlLmw8eaekBPS+UYJ0ybrwKnT7PWd/wZ5bkjzDIztFMo1Krv7iyV5HOHkGanc5OjM5vNTStmQX68yM159YNV0jr6yHcKyX647+wFNgHSuXga0k7OXQ6b9fWlHYvrfI7Cd1xGclqC095ub9r1jnHCtcOs1hRTfGKz7sM5duaW7H9XO+2c0BRfmiSu86YYPp7X3qotJvDfdcAUwbU6/IAaFU3K6QtuNGC8o9ySnLJ67D+/y5zDGE7rt9mDP4+pcyeJZtNsT7kXvQqylVaQqV6aCyM4zS+ppgVIaoUttoERati1QLAnoLyTmSZudKg4wuZcFuufn7tvm7bUW6cJdw40r7wjeyTHgzaKsGrzQ38uBbHk7eKP7+0W//+WEX5Rn9U72/71796KU4mMf+xg33nhjQfSsX7+eWq3G8ePHWbFiBT09PTz//PMFsePVwlEUFW7GXj3XaDSK8V9KWTjEekMToHDq7erqQghBs9kscuX5MaVSqdDf38+aNWvo7e0tiB1PDpZVg97V2KsNfV68vr6+woHWk1BDQ0P09/cX7rcLzU1qtRqrV6/m6quvZmRkpFAhehIxiqLCIdcTnL7svh6EsI7JmzdvJo5jduzYAVCQnJ2dnSRJwszMDGmaMjo6SkdHR/HdFVdcwYYNGzh79iyHDx/m0KFDnDx5klarRUdHB/39/QwPD7N69eqC+APYunUru3fvxhhTEJJSSvr7+xkYGJiXQ9DX28TEBJ2dnUW933bbbfT19fGNb3yDJEl45JFHOHToEF/+8pc5fPgwn//85xkcHKTZbBbhywtDi/35hRB0d3dTrVZZuXJlkedwbm6Oubm5gjAtk66dnZ0FiewJYO9YvWrVKlauXMm2bdvmuVWXVZw+/2O9Xi9UguV5STldCFDMTf31vOrRk4veFMeTx2XFoVeKLrZycCGW0hzAwk/QJRmSppaQ1Ilq3eTNBmBIqlWyxhwkEXmuSbUN8avECREKkdlNXxXlmMi1R2MT+0coEqGITYxEEEUVZBzTmp2h2tNL1+AweVKllWvizm4iFbNx342M7NzNxJnTHH/5KGdOnmR6cpKpiQlajTmE0WRpk8wbzShBUolJKlUq9W46+oaodvYwODzM8OpV9AwOUqt3ImsVSBK3GWzNBKRQxFJAZtA6deRajDY2SqVzxRg7e4fZuvt65qYmmTp3numzZ5k+f47pc+PMTkyi09RuPGtNHCkqlRpJtZu4Wqfe00O9r5dqfy/13m5q3R2YSgWURESRy3kH5JqsmSJygZKKalJHYIk7aRRdK4boXjGEaTRpTs/QmJ2h1WiSzUwzOzVBljZdfj5LlookJqp3Etc6UUlCtbOTelc3KooxLi2TjUiURLVOjJJkeU7eaoIQRFFi99mFgGqNuNrByhUrWLlxE7qVkTaaZM0maSulmWVWjSckKomQQhEZTSVJiDsq0J1gRIYRAhnFgMBkGUZrpFB2faVNQTAaUxKvSOU44axYR3kFwPzZviHLWiCg1tXF5it2smXnDptTPMvReYRMOhFCkecpQkm84aWK20aRiyYZfA28k/1fmJJOApsWy64jFZFIEAJSY+vdin2NyzKmbISbaNemxpCREyWxFcC0cqRQKCUd+ewXUwKZx2itEJHBSIHOm0CLODLkNJmemeHev7mHb//ZNzj4zJNMTUwyvGaMWz76q7zv/fvZsH4LkYzJjSSStn1E2pKCyiiSOMZojZLKGp6mhiixOQhjZckqGwCnkQJiEZGbGESMMjasWjhF8+ut7XzbIxdUVM1yAzpDiQhjMitsKpgAJ4DCqqB3bL+ST/9fn+em997EyNAQ9aRqw3iNRGuJJkNGiSVdtbYbKwYSmSCFtOkAMk2kYicwShFSEElVSuEqENKqZA26iE4ES4oZbV2aq1EdpCbPfSBxZDcvdGZTPBjj7guUSEgzpwyUTiUoKqRZ6nwQbOh4lrvoTG0sMWh8/j5ThN/6PIUeEmW5hMwQKTvWGS2tOtHIwmHdmJw4SjB5asVhGDQZ5FAREXmmWdM/Ru/eXo6fPMajjz3IsVde4bprrmdsaIzOaicGjTYZaAXSoIVAkSC044EEkNv+LaSZ71adQ0XWEAqazZQ4iWnLsS62772JmcPv/u7v8tGPfpS1a9dy7NgxvvjFL/LTn/6UZ555hsHBQX7zN3+T733ve9x11110d3fzj//xPwbggQceuOgCTU5O0tPTw+nTp4vJeTkHDeBChV1Dllb5l6eZZYl9mLEjSHxYJ1jnIygp7dzuTUEqlY6RnoTBtWGXa8Qqs0w7NNmxMkIIl1eOgsn119FGY4R2BJYP+Wzn7QNRDEzGkWStVmo7VmQHEuF2MHyexHK94M7nSSLw15fuhVEycSkx434Bc6EJqT+nDbd294kvs0+qW3CxGCRae/JVO2WdnRREypqc+ByKSlnFJ5Rcdt0EGeMnuFZlZ9r7cQUJqjWkWUrudtOjJHY7ITkY9xykS0xrSjL+MrzyzucO9PknF+zaFwRdmRz0N10iB/0YLUTJFMe4vIHGuB1Er2ilIGuL2YCw3+VuMahNOxm5ku18VG3lrH++wr7g3O61NlbRmZcWG0pJpqamGezrZ2Jiokhe/1ZwKceA8fHxN1XWhWqr5UoOLjXV2FIrz1LCUqub1yvP5OQkvb29b2sMuJT9/+mnny6IM0+2eJLKOxHPzs7y8ssvc/jwYY4cOcKpU6eYmZkp1PE+vHTTpk18+MMfZsWKFSRJglKqUHnNzc3NC9kth/j29fXR3d1NHMfF+OtdZs+cOcOJEycK5Z4nZ3z9+/ezV4J5ksqbf9RqtULl5Y9ZmGbEE3qeWAIKZYb/3BhT3Kc3Sunp6SmITR827fPfeTdkb+LhFYWeYPLqyrKDsw9P9e8ksCq8Vqs1j0jzJKhXEJZzMfrfLGyf5c3L8jzEG32UXX19PXs36q9+9at8//vfL4xBPvjBD/Iv/sW/YNeuXUVd+XQuZRLOX9fPK2dmZmg0GkXYbzlfrScsm81mQRb6spaJRt+G/LNcaIYFzLu/C/3Gn7dMPPqy+98tNCnzbW3hu8+HVQshiOOYqampt93/4RLPAb7/GN0dXRQTrIuCW+rmKVPj5zj03M958ZkDzJw7T6xzqpEijiNyo8mlje7UQiJlRCJiIhRKu13/CtaPxC0YpRFII4mMRGlJJBRRXLF54YQk7qzTt2qUvpGV1Af6SOp1ZKtlwwaNwaQt8maLrNUgbzZJGw1ajTmytGmVSX6DXgpU5JRnSZ1K7wAyToiiGBXHloQTwioPpXIckA2BRnjzRorNf4FVqVn1jJunWqYAdIbROSZrkbdS8izFmMwqKI1dlUipEMQIFSGjCBlHECubwkZBLqxZpJDWcVki3IfexNGW1QhliQ33nIQxCDfvxxksGp1hTGYVMxiQztBRKjASkwmQkb1WcSZLsAlplUAoiUbME4EonAFlWxbhymZcRKVxZJoj69zap5CUaUdASgMJFM6/wkUgabcAE9ISkAWx1c5PjiuLZX4yS44gcA6HvlZA+DVaDsJgLTj8E7UqJIgRolKsc7w4BBcKL8AqD0tdZ3J6ir5brlk2c4D7zj9Pd1ePJcuc06x9LMaJHmxKJoNxkW/aCVsM2h1jgFwYMMqexxNmxoYpZ1lGNY7RJifXhlgmaB27tXaLJJHkpoGWTbRoceToIf70m/+de3/4V5w5dZIoSrhm33v49V//NNftvgFZtSo/24YUCIUwhshI1x9cznq37vNppYTU9plLbFhpHiG1xEjQMiWTqR0bdITKE4TQaJG+8bhoBOQSJaSrKevKrIXrb8IzHbbOtNCWytJ2Q7VWrREhi7FPaIUR9tgi+ZgxCKfKE8auq4XBKddc/kCh0TJHSz1vzSyxdaFtTgGEEY4cVbZfYgViGlwEnMCYGIRB0EKSIrC5Co1QGBGR6wghFAiNQNvQWu3Chp1QSwvtVKU2UaW8qJBbjZG5K4VzdzYCo10vFjZ9mT3O9uHC+NabvApBTo6RghxNRovzk6d45rlneOLxJ9i0cTM3Xv8e6rUOYpVAit1wQBCpOlmGCz2GLGsRR1Y1bGSKERotcqSOiY01YdHGRRcKw9TkBDcMrLmo/v+mlIMvv/wyd9xxB2fPnmVwcJD3vve9PPTQQwwODgLwh3/4h0gpuf3222k2m9x88838l//yX97MJdoFU5HbWXWqtDwny/MivFVJq0zDKbEi59aUZRm51vYF5cI7haCkwIMoKqnvjHMx9gO3vWKhovOS5aL/OCJPRY6Y09gymZKLpctph5u8Wamqbk+2hShUiTaUVrdZZ+zuSLWibDx8rkmz3KrSVIQU1iXJv/CksiG+uqSS9DkZMRqROzdj6QdWU7xM5ikKFygroR2OhBEu70aTLEtRSlKpJCglLeFnQEjrTux+Sany2g7L7h1rjJWHG50XKjmBnRBJ4SfxOSa3EmPpchZ6JUSea1QUUa3V0NqQtrKC6PSLCCnbC5Isz9HGOj/HUYw1o8mL8vgCGO3yEZQWMzovG7fYcno1pQ/Z9bK9QqHntrukkHZXE9t+daadGlaQ69zmY5Eu+TJObaKt8Y1AtRdUzgZdCutMqbEEoJ/gaHRhztNWq0QkSWTrOjek6eJsH17KMeC18FoEyIUWnRf6/FLg7ZBGS4lsgrdXnqVGnl0I4VldPC5l/1+5ciUdHR1MTEwQxzEDAwNFqGi9XidJErq6uujr62P9+vWMj48zMzNDlmXFe6xarZKmKfV63eUylgUZNjw8zPDw8DyH34XvRaAgbLzbsD9mxYoVDAwMtN8V/j2xIBTlQgSRh9/AKR+z0Fm3TBqBJeqGhoaK8uZ5XqjZvDGFz23sXZS927En/fw9eJLQk3ierPLflcmqsvGKv69KpTIvz9TCjZiFSr1yyLInQue/t9t159WZr7zyCoODg9Trdc6ePYtSiqGhIaIo4l/+y3/J0NAQP/jBD5idneWBBx7gH/yDf8Dv/M7vsGHDBtauXVsoO8sEra9jvznqQ5rLys/ys/TEZDlU3LezhSHnvg7nG93xqvotE8LlY/x3ZQV8OTy8XHZft2UVooe/r8VWDl6WOcCCYe31uULXb5Mq3cOr2d7Vx8YtO5FpRiKlzdGGI8WS2JFsNlcZOrKkls/CkgCRXexhHIHkOZpc4BK9uUUflqiLI0ysEEmElpJUCUtwATKqQlUT5TlRnlPRNkxReimCcGF1nlmSgIzQMiaXlvAybt5p0yfZg4zbeLc/t2W0KjlfVzEQ4SUIeJJMGJAao3KIasiaJaKMW+DaxbWb0haOxALt5vo+xMgIr0kReAGLcAIOu4Bz7s6RcmRBSXohbXZBr/QyMnKLXGOJW6kLIiLKBJFSSO3GidIE3rj7tXN5Pwf3hJtb17n60LKYptsyS0dq+DWBD/E1XqBg6923PiHdvTllmvFlKc85Rfsx4sUNritabkoihCnOa6OgBD53mHBrH/8E7brKkieo2BKlxW9E0SeMMZa3bBdvUXFp+79/fnZNr40uPXPscxLOoBONELIkKKEYKISrq0zYzRJrziDQxoYM5yJ3HFdOyzRIJKRZgySWnDt/nK7uKrONaR545D7u+m9/zIFnngBgaHCUj9z+97jt1o8zMryKXEtiVQNvOuPJTEcO2fYoCtKe4lkLMPZ9oUxuw+lFhlaWO4DchoQaECYH0bIRgBcJKRTW+MYTpjZU1Yas+qp0a3Zh89dFMkJVK3adaywxj1Z42Z+WTVvn7jkVfrlC2HW9wIl0fN80aGlKhJy999zfv39mflzwGwplfkZIvJMxpevZylS2zo1wYbeiOCPGOE2tbz/2vm16Q9d6hL+X14NVoNq24khO4bwncOIyY9NWWMKUYpNBFAOORon2u16IiM7OLvZes5cNazbwg7/6K77zvf/NjTfcSH9fH31d/bR0A0lEszFNLe4gbTaQKOq1GlpbMVEb9l1mjY+cIMxxOmJBGrPXw5tSDl4KFDuG584X4SjFjooP1RGlz/zfBRlnf2Lsl4Wzb5qmtFotMNYMIlKRH7vxr9hi99qRbZ5Io6zA03kxUfPSWZO7F2hpkl+eJArpCa75IcFZlpFmqZXORjapZJZmGG2I44Q4id3ub4bBWELUhTtLKWz+QUc6Ftylu++yutBPhu1nluIqJrBC2Lpwx/g6sC5sVmUQRwmVpIKQ9hlonZM7qzLhSVjl3Irdjrd9Fu1Jsw8NthNaS2b5OldKlBZIPpG7JbuEcA3d55b0ZjQlQhPs3EMbWw8+D6WriiLHofGJ3F2Tn7dYyPJ2LsZSPkJw4dC+mb0OkSD8Tq4nWEuTe21sDkBVUnva+rZNN3dOxwCRU1xYAjGfp/C09SRpU6rtcgp8Pkis43OaYbQlXScnp1g1Ovi2VQOXAm9VOfhuw9sl3pYDcfeLgqXwrBZDOXgp4Pv/0aNHWbFiRUFuVKtVpqenmZiYKBSAC0mocn45D/8u9qozH9YLbXWfP85/BhTqK/+u8SSZJ3O8Cs+HqzabTTo7Oy/oku4Va55M8ufy47onivzn/jNP/nj4duDVZJ6w9GXyYcP+77IyrUyKFalUXL15w40ygVWuS1+uMglWfi/53/r6WqiA9McunJf4cy8kv/xnc3Nz1Ov14m9P0Pln6F2Pv/GNb/CHf/iHTE9PMzAwwBNPPMGmTZv47Gc/yyc/+UlGR0dL73d731556evGX7uYw0A7V3MpVB0oCE5/r+VzvBF8HS+M/Cg7PC88dv77X8z7HphX/nIdl49bLOXgpcCrlINvEnZ5KcicRYHSIF30D2i3wM4xkTN58/YXuYRcIDLHIiUGotLs2q7yPRvkBG82d6CQEUIJtDPsSE1Opo0NtxV2U9gtX61qD6uak8KajFjlnLMALugsqwbLsArHco4YWZzLklrSeOKyPPe05RQkWKbTQQJCF1fRQhdKGruvb0kE7VQR0hikNihHRpXXGpY8wM75jSPdvEOk9hFB9nvpQiyLFuyZR+w1c7u2J5OGXNj/aaXJHTmYpJJaqlDtzDvt5y0oCBNRLPrb5J0nD4tjTPv380m0NvVcpizmFbmgPMq/8d+LeR8X6ir3d+EuvOCc7d86AsfYypx/fX9dOa8tzCvn64xDUzNT9L5N5eClQFs5+AJdXd1I48cyUeRfMwtuU7RZe3wdUtDuEi00mcjAW5cYUZhQZLqFUtLm/dSaSAgiITAip9Wc46Wjz/EX3/0Of/Hn3+H8ubNUq1V23XAtf//v/9/suGIPHZVOdG5FHYmskWmNcVyCFZ8aVEFQlWBKjRFP4OTuq1KbMr6NunO69FGU29ZrwQhrmuFbl/D1ZOb9uz1UWcWtI7E8lFGWUNX2n0akpNEsRmjX/9vtUJj2e8d+bs9pnOGJEe0w5jIRKO3AY8ezgtySxTMv9zB3Y7auRMb8XhqBURRB+kIv6N/lUUMUpjVFZOmCs83/29eb1aqaBe1QenrKaKcXFsW7wp9FuN0T/3HLpDRpWvGwFjQbTe79m3s4duwYK4dW8ss3/jJxLSZWCR30EpuqHbPT3LYLaf0XtMidojNH6YRIx+7+/dswZ3pqgr0DGxZfOXgpkbvcG0JYldfCfCp+XPR8Ne5dlOm8IJfAqvBkpKzSTEnnfuUmoXnujDEsay50qUk49jvXBmTuLMxlwQwbbTDSJ4z0MmX/8AFsck9tcrdL4RIPYxlnr0y0OWFA57aFJUkFIW0nsYIxSRInpdHBPmir+HeDiSiCk92ugM3tZ4x1DBb43H3KE8jtib9uT0rLUFLSUa/butFYJV/m7k8K4ihxZJ925ddu00EQy9jPC2w9a40xjtCUWDWnpJj0GrerY9xza++el5JNujtX0voJZXlWqCTsxNyFdDsXY088ugIUilNrHuMdAP1Zcfks/XXm5wD0e3mm/XAdHy2Kv/FkcJbZiWDkchPo3M2LSmHEvonJ9n0DbuHRJmdxC4LI3Z+9jG03ka8TQ0Ece+Wn1raeomo7H2SSLNmuvih4NxJdb/d+L1d9hWd16X+/HNHV1fWqJOWdnZ10dna+6tgLkYIeZRLGm1W81nFleAVX+W9PKoJ9d5fxek6N5TKUy7wQXrHncSGi8bWOvdA5F/7+QmVYeI8XuubCe194njfC6x1fVtctPLbYIF5Q5rqbm8zOzpIkCZ/61KfYtm0bf/zHf8x9991XOFr/23/7b3nyySf5/Oc/z44dO6hWqzSbTebm5qjVakgpX2VWs7BOLwQf7vtWcKE6XtjWXu/Yhd+X8Vr1/G4YP9qUjoUQEiUjR1RpO9/PrLunjBQijshN1hYBoO3izghwLqVSu/A4v6CTpcWgsG68zWZqc12p3KWAMShhbUtiY0i1IwiEWytgyyOMPZ/n8xwrV+L2nEBBGkQcuVloe9PbYMgdKRgJS4KIEnk5n7oySCcna2e2aye894ILI/waoi2QNMIuLZV0aYWMKDg94a4poFAM+msLsApDadVT0oXozm+Jnpi1J7QkgAvzdZHdQtu5ujDGLb6FW/v5NVDxOGi3flP6Z3thbkPD/XVf3YL8Cku+1iHFqUWb2FlIHy7kf8rHeI5QLCC3jCnux5OPuPYiyj8srUv8R6L0rN+oly8kOpc6POnkiTJhDLpEjHmiEEr1XGaCPNHkqVzRptOk8VSsxuicTNqwVykhM01m0hlmJqe4+56/4sf3/IjHHn6EKI7YuHU779+/n49/4pP09Q2DqGKMQokYYSRZmiNVVHAQGhfaKkS7n9ubWXi3tncaWZB2xsnbLAHntG8CZ2TpQnkvAl4h2FYSt+uifH2MU9saXTq2TI+1yywRGPPq943xkZP2Doroy2LMMaUxoKgDjfWSaPcp4+OSseNS+5lrR7D53u+cet3mhD9vOzGcL06JBHW/m39fps3lle9nwR8SMMZ6NxR5/kpV1G6R5TbXDqNu370AbYhFjDTS+mSInCRJ+MgHb+XpZ5/m+UPP8a3vfotrrrmatWPriKoxadZAqZgkqZC3MpRQC8pseRPtn6/wm056Xl7CN8KSZQwMFJbTQrQVXr7mBcLmZ3NuvD5XnBQSqWxKBts5dTGI25wEhly3w44EFL/1eQgQdjIlkSi3w2Mlt8a/laEgs0ybYDTGutFKacOOo4pzlrXKNa0z9+J0N+EHPu3Vck7N5nYZ/e6Xcec2TmlmzVLa4bpeOq+NsRK64u3sdo+9Is8TYYgi1BhpHJFX0qK5vI24wSzHhuVK5RQOwtajvYRzXXZkW6EgMMbVvyd0veSWoqy5zi3xKy15Klxd2Gfu5OKy3YGFKHUsN27owk3N1oM2mtwr8NyOvtEajN0xEjKydaFztLZ1LD2B7OrZPUyMcfyflGhtXCiyKVSM0G4PfqKmXZSEf9HnzqEM4Z4tqgjF8CSzDQlvqxW1c4AqVJeiTQ4Kaea1OfssHbHtuoeS7Taz/KYDF8YbEUoXs/gpn+NiCarFILIudI5fFILsrdxbeFaXB0ssSOBNYbGfbWhTi4N36t4u5ln59qy1Jo5jrrvuOlavXs1f/MVf8K1vfYuDBw/S39/P//gf/4NTp07xT/7JP2HPnj1Uq9VXkXuvR17+Ij2r5YyF5N9CLPzOGE2epXY+LgQiUngVhZY255SMlA1zK9aGXrXSXiVa8tBOrny2LP+1iSCJE2wET47WLURuCTvpQh4rKkbjjQbdUtvoYjO82DgwgPBhiAZjXFSIEAhtSb1y4Nu8Bf48TqS9TirWykJjRIqZ9+N2zTp9DrJEkBn83NZp1UpuutJdz6sEhW9bpWvaOgbtyEEDNorYlJ6k8UtoAdqph9xcVxpr8Kc1xUI31hpp8nnFN8XtFtSp/W+hULLltipLMMWzdUv44k9RlN8Tbjb00i3u5/N7eNpk/qduTSDKH5fJqnZ9auHvv31cUY9Fuf1d+Xz27fDhQvfp7790mTKds5whfR3YB+cUre3KbZNm4lV1XZhJGNu6FZAba2ghjXMadxsDEkmWZ0gFWd5kOh3nyWcf56/vvpuf3H0P506epqu/j5tueh8f+9jfY9uWK6hXu9DGRswZ44ieyLrotvIUq5LLEEWOgsiVvaScE+37sGUWTjEnrGrWkel2k8KSZ0JYokeLtlLt9eFDed1VSmrUNonVlsMIkyOFXb+3CWzfWBUYm9xAalXQc/PD6xc0RH+ffqxoH1lwIP4m7OaAKJ3HEXYFCSxt7k2RufHUpyTA9Q0BLv9gu6eUvAtE6c5N+/uiz75Bp7GbC160ZJyAV9N+nMKOk76fi/bd+h5dYoAAa3JFJsnTFlGUEKmYPMvYumkr6zas48GHH+DJp57k2IljXLXtKsYGx8hMA4VwafP0PNLZX9G4d51VVuau78yPRHk9LFlykEiinYutUpasyrUmL/LvWbLQJtnUCG13Bn1+NqUUcREKbEmq4tkXpKAl4ewLQdvEpp54EZ4kk2W2x5XFF9IUpE+7k1vo3BKXNjxHFseY4me+6Rqn6rMNzk8IbJgBtFo2HFoASayII+kS+OKS0hpQ1u5bgiOonCOvlDYVqJLtjiCEJQXd/aR5RppmIEqhQEaTu3tF2PwiWguyPIc8I3JqNkmboBQImwjXTx6krT8/ZmscCWZEofZT0lqmmyJpsCSOfBiTVVca98K0z8qbuQBC2hyM0hqcSIwj1GxeP1ccBJookigV23DmLHVhyY4U9NxpCV61Z0x710PrnDwrhfc4R2ophCUPMUDe/o1TQwijrIjdtZs8z2m5cCTpnovRbrBwbdqTs0WYu3vWniy2TsjW6cyHq4AlXYRUVp5cTGKtjFvK7O32yMuKxViclc+xMDTrdUPFF/G6i3nepYB36t7Cs1p8LOf7CG1qaeJy93/vcOyNWwYGBrjjjju48cYbefjhh7n33ns5ePAgTz/9NH/wB3/AzTffzO233862bduYmppienqanp6e11V9/iI/q+WEN1t6ISFWXuXmdm6FVQnZPE05UkZu7maXawLd3ox1C67yWlcJrzG0C3eUXaAZDCLX1vBDG2c8YBed3gQEnxvNkX8285ZVCgmfQ88RW8KRPnbnXtqJvTP6EMJYwwlRClh1c2vRjj8sSCMDaJmXFoaeiGj/5egnR5IWy0t3gD1CG08h4khB40w8fNiw/59AS2zCfU8Q4u/Jhih7xZc02GT+pXW7NK4s/rqiTRYo0VbYzYdffrf/3SobrdmAlzUKpBfRFPXQLre/1/Zt++V2m9R4PZSYPkc2XIhrsFXs12OlD+fXuqsQsaDfWkdie5XcGTS8+b6xbFBSZ3rVky4RPNKto5Up5bEspJRW/esJNy2xTuRaFDkH7SM3CKHJdYqUgvOT5/jJ43fz3//bH3PmyDGarVnW79rK7R//dfZdfxPDg2uQok4su2iaJkZbTiJWMTrNmGvOkVRjDCmGDO1CmY2J2qQgbfJ63qYBsiAz/VaE5QoUgqjgy9pSn4urQuNy7RnPfOPHjXbTt585QskTz0WdtsuDdPWnIwozE9MmquffY/H4ClW2T0Ngv9IgchvNJ6QjAcGnPHBVs4BO0yhy+5lwZKIpgnhtfToC1ebllEV9e2LUsy9iXrj6/O4oSv/0n0kjUMZtHkk73lsFoXGpHWRxn7lsq7T95lJRIeVrZdCpamRoMpHSSBsIJanGNeIoYu/eGzh37gyPPfYo99z3V6xdvY733PAejIjIEWCsMUqZcPXPwRKp/oI5hmVMDvrdzamZWeu8ZGxCRVko0myMu3cg9vJ7n2jRd5i07DzlB/0FkyPvhutz7EA7CbgnafzrxRtA2BwFC86zoOwLG5nBJ+e057Tkjs8vI12eON/IbZGlK7JxbJjRmqypLVEmKOrCADJS1rrd5wESOHfcdi6g3LnmIkVhfKK1Js0yssxaqidJhch9l+mcVtokzzVxFBPHCdqAznKUgMjtxrYroZ24PNe5JSuVLJx2DSWjFNHewShevuDyMRiy3LokgSBSMUp5N2JNluekLhxcYogiSRwLIjU/v45+Va6+qMj3WEx2tN/tbc9svCJPKmnzQPq6ducqiFdHUHuS2u/0+nHSNzevBvRtQTtzlHJeICVkMRCVcw9ZgtO1RzfhKMLXPXnpiNmC5NbOvUtot6liw7knp6fntdGlDF/GycnJXxjVxmthud7fL7Ia6rWwXO/Pl3tycrL4eykj9P+lj6XQ/30ePe8wPDs7Wzhaj4yMcOutt7Jt2za++tWvcuLECZ577jkOHDjACy+8wL/7d/+uMLWZmZmZl4fy9a63nJ/Vcun/UBoDZqbnLdAu+vcAPod+bueDQhsiYYrNcS01OvPunE4zmEfIXCEz0U655dbqfs1uBGhpk+vn0kYhIQwKUEaj8hyRWbLQBs9EeG2eFO2USNovZcVCAshf1N25lujcat+EEKCE5bv83NLgDD98PZWW58I7kOYYmeJDd91XjuiT7UW1Jwd9GynaisSICC2UDevz5KCXBJbIMKMsOZj7f4p21JBVVFrnVk8yytyWwXqgiHZYdylfnF8vEGWIKLdrqjKK6rNkpc/p+OrvBSZ19sruc1tPosSSCPdfMe93vm6Z98/Sv5fYVl/3F6IwtbtGm+Kyddm2bijflwC8K7NfByi34k0tOShcPS4gesrX9H1ocmZ5rAN8+WYmp53iyVLp2jcawFe00sqlhPLqMJcj3ji1nZEIR2TlKgNsugCvhJVKkJomzbyJigVHXjrMEz/9KcNjo6zfuI5Wo8Xn/v7/xdjgWusWOwfNuVlmVEqcRBhSlBbMptMoLagmMbPj02iVYUSGlplb23cUnLSn3vzCTzpyCiOJ8xiDIYtaZDJHaYXSEXEeIw2kMieNWmhhiJxK7bUGSP/sjR8nKDVxM5+rsIfYaEtPKHpCrQjPLurTp0qjCPm2OUvdVR05NS+lIiCdOri94eKNjwxaWE/utqjFE4O0S2gEEo2i5f5OMCamrX02CDIQqWVujBt7nWrOE46+TNZoZX7gdOlqr/pMGkGUWwYol4bc51B05KAwAmVsSTIhyeT8eyinZPB0pkgFItLMzMwS1xSpaZGJFBNbAx1tUrqqXVx3zbUcOvRzHnnoAa7afiVNGkgdE6kEWYwRft/D+zHkpTrJmZ26+P6/5AxJXn75ZcbGxi53MQICfiFx9OhRVq9efbmL8bp48cUX2bhx4+UuRkDALySW+hgQ5gABAe8clnr/hzAHCAh4J7HUx4AwBwgIeOdwMf1/yZGDWmsOHjzIjh07OHr06JJ2VFoOmJycZGxsLNTlImG51qdXWYyOjr7pZPKXGuPj4/T19XHkyBF6enoud3GWPZZrm12KWM51uVzGgDAHWFws5za7FLFc63O59H8Ic4DFxnJts0sRy7kul8sYEOYAi4vl3GaXIpZrfb6Z/r/kwoqllKxatQqA7u7uZVXxSxmhLhcXy7E+l8sk2w9aPT09y66OlzKWY5tdqliudbkcxoAwB3hnEOpycbEc63M59H8Ic4B3CsuxzS5VLNe6XA5jQJgDvDMIdbm4WI71ebH9f+luHQQEBAQEBAQEBAQEBAQEBAQEBAS8owjkYEBAQEBAQEBAQEBAQEBAQEBAwLsUS5IcrFQqfPGLX6RSqVzuoix7hLpcXIT6fOcR6nhxEepz8RDq8tIg1PPiIdTl4iLU5zuPUMeLi1Cfi4dQl5cGoZ4XD6EuFxfvhvpccoYkAQEBAQEBAQEBAQEBAQEBAQEBAZcGS1I5GBAQEBAQEBAQEBAQEBAQEBAQEPDOI5CDAQEBAQEBAQEBAQEBAQEBAQEB71IEcjAgICAgICAgICAgICAgICAgIOBdikAOBgQEBAQEBAQEBAQEBAQEBAQEvEsRyMGAgICAgICAgICAgICAgICAgIB3KZYcOfiVr3yFdevWUa1W2bt3L4888sjlLtKSxE9+8hM++tGPMjo6ihCCP/uzP5v3vTGG3//932dkZIRarcb+/ft57rnn5h1z7tw5Pv3pT9Pd3U1vby+f+9znmJ6evoR3sTTwpS99ieuuu46uri5WrlzJxz/+cQ4ePDjvmEajwZ133snAwACdnZ3cfvvtnDx5ct4xR44c4dZbb6Ver7Ny5Ur++T//52RZdilv5RcCYQx4Y4T+v3gI/X9pIfT/i0MYAxYPYQxYWghjwBsj9P/FQ+j/Swuh/18cwhiweAhjwHwsKXLw61//Or/927/NF7/4RR577DF2797NzTffzKlTpy530ZYcZmZm2L17N1/5ylcu+P1/+A//gf/8n/8zX/3qV3n44Yfp6Ojg5ptvptFoFMd8+tOf5umnn+aHP/wh3/3ud/nJT37C5z//+Ut1C0sG9913H3feeScPPfQQP/zhD0nTlA996EPMzMwUx/yzf/bP+PM//3O++c1vct9993Hs2DE+8YlPFN/nec6tt95Kq9XigQce4E/+5E+46667+P3f//3LcUvLFmEMuDiE/r94CP1/6SD0/4tHGAMWD2EMWDoIY8DFIfT/xUPo/0sHof9fPMIYsHgIY8ACmCWE66+/3tx5553F33mem9HRUfOlL33pMpZq6QMw3/72t4u/tdZmeHjY/Mf/+B+Lz8bHx02lUjF/+qd/aowx5plnnjGA+du//dvimO9///tGCGFeeeWVS1b2pYhTp04ZwNx3333GGFt3cRybb37zm8UxBw4cMIB58MEHjTHGfO973zNSSnPixInimD/6oz8y3d3dptlsXtobWMYIY8CbR+j/i4vQ/y8fQv9/awhjwOIijAGXD2EMePMI/X9xEfr/5UPo/28NYQxYXLzbx4AloxxstVo8+uij7N+/v/hMSsn+/ft58MEHL2PJlh8OHTrEiRMn5tVlT08Pe/fuLerywQcfpLe3l2uvvbY4Zv/+/Ugpefjhhy95mZcSJiYmAOjv7wfg0UcfJU3TefW5bds21qxZM68+r7zySoaGhopjbr75ZiYnJ3n66acvYemXL8IYsDgI/f/tIfT/y4PQ/xcPYQx4ewhjwOVBGAMWB6H/vz2E/n95EPr/4iGMAW8P7/YxYMmQg2fOnCHP83mVCjA0NMSJEycuU6mWJ3x9vV5dnjhxgpUrV877Pooi+vv739X1rbXmt37rt7jxxhvZuXMnYOsqSRJ6e3vnHbuwPi9U3/67gDdGGAMWB6H/v3WE/n/5EPr/4iGMAW8dYQy4fAhjwOIg9P+3jtD/Lx9C/188hDHgrSOMARBd7gIEBCwl3HnnnTz11FPcf//9l7soAQEBlxih/wcEvLsRxoCAgHcvQv8PCHh3I4wBS0g5uGLFCpRSr3J+OXnyJMPDw5epVMsTvr5ery6Hh4dfleA1yzLOnTv3rq3vL3zhC3z3u9/l3nvvZfXq1cXnw8PDtFotxsfH5x2/sD4vVN/+u4A3RhgDFgeh/781hP5/eRH6/+IhjAFvDWEMuLwIY8DiIPT/t4bQ/y8vQv9fPIQx4K0hjAEWS4YcTJKEPXv2cPfddxefaa25++672bdv32Us2fLD+vXrGR4enleXk5OTPPzww0Vd7tu3j/HxcR599NHimHvuuQetNXv37r3kZb6cMMbwhS98gW9/+9vcc889rF+/ft73e/bsIY7jefV58OBBjhw5Mq8+n3zyyXkD7Q9/+EO6u7vZsWPHpbmRZY4wBiwOQv9/cwj9f2kg9P/FQxgD3hzCGLA0EMaAxUHo/28Oof8vDYT+v3gIY8CbQxgDFuCy2qEswP/8n//TVCoVc9ddd5lnnnnGfP7znze9vb3znF8CLKampszjjz9uHn/8cQOY//Sf/pN5/PHHzeHDh40xxvz7f//vTW9vr/nOd75jnnjiCfOxj33MrF+/3szNzRXn+PCHP2yuvvpq8/DDD5v777/fbN682dxxxx2X65YuG37zN3/T9PT0mB//+Mfm+PHjxf9mZ2eLY/7hP/yHZs2aNeaee+4xf/d3f2f27dtn9u3bV3yfZZnZuXOn+dCHPmR++tOfmr/8y780g4OD5vd+7/cuxy0tW4Qx4OIQ+v/iIfT/pYPQ/y8eYQxYPIQxYOkgjAEXh9D/Fw+h/y8dhP5/8QhjwOIhjAHzsaTIQWOM+fKXv2zWrFljkiQx119/vXnooYcud5GWJO69914DvOp/v/Ebv2GMsTbm//pf/2szNDRkKpWK+cAHPmAOHjw47xxnz541d9xxh+ns7DTd3d3ms5/9rJmamroMd3N5caF6BMzXvva14pi5uTnzj/7RPzJ9fX2mXq+bX/u1XzPHjx+fd56XXnrJ3HLLLaZWq5kVK1aY3/md3zFpml7iu1n+CGPAGyP0/8VD6P9LC6H/XxzCGLB4CGPA0kIYA94Yof8vHkL/X1oI/f/iEMaAxUMYA+ZDGGPM4mgQAwICAgICAgICAgICAgICAgICApYTlkzOwYCAgICAgICAgICAgICAgICAgIBLi0AOBgQEBAQEBAQEBAQEBAQEBAQEvEsRyMGAgICAgICAgICAgICAgICAgIB3KQI5GBAQEBAQEBAQEBAQEBAQEBAQ8C5FIAcDAgICAgICAgICAgICAgICAgLepQjkYEBAQEBAQEBAQEBAQEBAQEBAwLsUgRwMCAgICAgICAgICAgICAgICAh4lyKQgwEBAQEBAQEBAQEBAQEBAQEBAe9SBHIwICAgICAgICAgICAgICAgICDgXYpADgYEBAQEBAQEBAQEBAQEBAQEBLxLEcjBgICAgICAgICAgICAgICAgICAdyn+fw8Cr3tfIWEYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(3, 5, figsize=(16, 5.5))\n", + "for i in range(15):\n", + " ax = axs[i // 5][i % 5]\n", + " random_index = np.random.randint(0, len(test_captchas_dataset))\n", + " ax.imshow(test_captchas_dataset.__getitem__(random_index)['image'].permute(1, 2, 0))\n", + " ax.grid(False)\n", + " text = \"\".join(tokenizer.decode(test_captchas_dataset[random_index][\"labels\"]))\n", + " ax.set_title(f'{random_index} | \"{text}\"', fontsize=10)\n", + "fig.suptitle('Test captcha examples')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modeling" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:00.527911Z", + "start_time": "2023-04-05T02:50:56.018823Z" + } + }, + "outputs": [], + "source": [ + "from transformers import ViTConfig\n", + "from modeling.encoders.cnn_bilstm import OCR_CRNN\n", + "from modeling.encoders.resnet_bilstm import OCR_ResNetRNN\n", + "from modeling.encoders.cnn_transformer import OCR_CNNBERT\n", + "from modeling.encoders.vit_bilstm import OCR_ViTRNN" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-04T05:44:09.387707Z", + "start_time": "2023-04-04T05:44:09.384343Z" + }, + "scrolled": true + }, + "outputs": [], + "source": [ + "# model = OCR_CNNBERT(vocab_size=len(tokenizer), hidden_dim=128,\n", + "# nhead=4, dim_feedforward=512, tr_layers=3, dropout=0.1).to(device).eval()\n", + "# model" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:08.682153Z", + "start_time": "2023-04-05T02:51:08.614160Z" + }, + "scrolled": true + }, + "outputs": [], + "source": [ + "# model = OCR_CRNN(vocab_size=len(tokenizer), hidden_dim=128, num_heads=2,\n", + "# lstm_layers=2, dropout=0.1).to(device).eval()\n", + "# model" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "OCR_ResNetRNN(\n", + " (encoder): ResNetImageEncoder(\n", + " (pre_bath_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (model): Sequential(\n", + " (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", + " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (2): ReLU(inplace=True)\n", + " (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", + " (4): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (5): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " (head): Sequential(\n", + " (0): ConvBlock(\n", + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n", + " (activation): Hardswish()\n", + " )\n", + " (1): ConvBlock(\n", + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n", + " (activation): Hardswish()\n", + " )\n", + " (2): ConvBlock(\n", + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n", + " (activation): Hardswish()\n", + " )\n", + " )\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " (out_net): Sequential(\n", + " (0): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n", + " (1): Linear(in_features=512, out_features=256, bias=True)\n", + " )\n", + " )\n", + " (decoder): BiLSTMImageDecoder(\n", + " (norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n", + " (rnn): LSTM(256, 256, num_layers=2, dropout=0.1, bidirectional=True)\n", + " (out_proj): Linear(in_features=512, out_features=65, bias=True)\n", + " )\n", + " (softmax): LogSoftmax(dim=-1)\n", + ")" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = OCR_ResNetRNN(resnet_model='resnet50', vocab_size=len(tokenizer), hidden_dim=256,\n", + " lstm_layers=2, dropout=0.1).to(device).eval()\n", + "model" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-04T06:05:19.543881Z", + "start_time": "2023-04-04T06:05:19.540430Z" + } + }, + "outputs": [], + "source": [ + "# config = ViTConfig(hidden_size=128, num_hidden_layers=6,\n", + "# intermediate_size=512, patch_size=32, image_size=256, qkv_bias=False,\n", + "# attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.1, num_attention_heads=2)\n", + "# model = OCR_ViTRNN(vit_config=config, vocab_size=len(tokenizer), lstm_layers=2, dropout=0.1).to(device).eval()\n", + "# model" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:10.577729Z", + "start_time": "2023-04-05T02:51:10.389268Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "===========================================================================\n", + "Layer (type:depth-idx) Param #\n", + "===========================================================================\n", + "OCR_ResNetRNN --\n", + "├─ResNetImageEncoder: 1-1 --\n", + "│ └─BatchNorm2d: 2-1 6\n", + "│ └─Sequential: 2-2 --\n", + "│ │ └─Conv2d: 3-1 9,408\n", + "│ │ └─BatchNorm2d: 3-2 128\n", + "│ │ └─ReLU: 3-3 --\n", + "│ │ └─MaxPool2d: 3-4 --\n", + "│ │ └─Sequential: 3-5 215,808\n", + "│ │ └─Sequential: 3-6 1,219,584\n", + "│ └─Sequential: 2-3 --\n", + "│ │ └─ConvBlock: 3-7 2,360,320\n", + "│ │ └─ConvBlock: 3-8 2,360,320\n", + "│ │ └─ConvBlock: 3-9 2,360,320\n", + "│ └─Dropout: 2-4 --\n", + "│ └─Sequential: 2-5 --\n", + "│ │ └─LayerNorm: 3-10 1,024\n", + "│ │ └─Linear: 3-11 131,328\n", + "├─BiLSTMImageDecoder: 1-2 --\n", + "│ └─LayerNorm: 2-6 512\n", + "│ └─LSTM: 2-7 2,629,632\n", + "│ └─Linear: 2-8 33,345\n", + "├─LogSoftmax: 1-3 --\n", + "===========================================================================\n", + "Total params: 11,321,735\n", + "Trainable params: 11,321,735\n", + "Non-trainable params: 0\n", + "===========================================================================" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "torchinfo.summary(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:16.447161Z", + "start_time": "2023-04-05T02:51:14.965007Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 32, 256])" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.encoder(torch.rand([2, 3, 64, 256]).to(device)).shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:24.294332Z", + "start_time": "2023-04-05T02:51:24.093387Z" + } + }, + "outputs": [], + "source": [ + "train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", + "val_loader = DataLoader(val_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", + "test_loader = DataLoader(test_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", + "test_captchas_loader = DataLoader(test_captchas_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:47.985340Z", + "start_time": "2023-04-05T02:51:47.219234Z" + } + }, + "outputs": [], + "source": [ + "num_epochs = 100\n", + "criterion = nn.CTCLoss(zero_infinity=True, blank=tokenizer.pad_token_id)\n", + "# criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)\n", + "optimizer = opt.AdamW(model.parameters(), lr=5e-4)\n", + "wer_metric, cer_metric = load_metric('wer'), load_metric('cer')" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:51.420288Z", + "start_time": "2023-04-05T02:51:51.198805Z" + } + }, + "outputs": [], + "source": [ + "def evaluate(model, data_loader, eval_er_scores = True):\n", + " model.eval()\n", + " losses, wer_scores, cer_scores = [], [], []\n", + " for batch in data_loader:\n", + " with torch.inference_mode():\n", + " inputs, target_labels, target_lengths = batch['inputs'].to(device), batch['labels'].to(device), batch['lengths'].to(device)\n", + " bs = inputs.shape[0]\n", + "\n", + " predictions = model(inputs)\n", + " pridicted_labels = predictions.permute(1, 0, 2).argmax(-1)\n", + "\n", + " # CTCLoss\n", + " input_lengths = torch.full(size=(bs,), fill_value=predictions.shape[0], dtype=torch.long)\n", + " loss = criterion(predictions, target_labels, input_lengths, target_lengths)\n", + "\n", + " # CrossEntropy (needs same seq len in targets and predictions)\n", + " # loss = criterion(predictions.permute(1, 0, 2).contiguous().view(-1, predictions.shape[-1]), target_labels.view(-1))\n", + "\n", + " # WER & CER\n", + " if eval_er_scores:\n", + " predicted_texts = tokenizer.decode_batch(pridicted_labels, drop_special=True, to_text=True)\n", + " target_texts = tokenizer.decode_batch(target_labels, drop_special=True, to_text=True)\n", + " wer_score = wer_metric.compute(predictions=predicted_texts, references=target_texts)\n", + " cer_score = cer_metric.compute(predictions=predicted_texts, references=target_texts)\n", + "\n", + " losses.append(loss.detach().item())\n", + " if eval_er_scores:\n", + " wer_scores.append(wer_score)\n", + " cer_scores.append(cer_score)\n", + "\n", + " if eval_er_scores:\n", + " return np.mean(losses).round(5), np.mean(wer_scores).round(5), np.mean(cer_scores).round(5)\n", + " else:\n", + " return np.mean(losses).round(5), None, None" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:51:58.145523Z", + "start_time": "2023-04-05T02:51:52.441679Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 247 ms, sys: 327 ms, total: 573 ms\n", + "Wall time: 1.25 s\n" + ] + }, + { + "data": { + "text/plain": [ + "(17.16579, None, None)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "evaluate(model, val_loader, eval_er_scores=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:52:15.074059Z", + "start_time": "2023-04-05T02:51:58.150535Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 708 ms, sys: 489 ms, total: 1.2 s\n", + "Wall time: 1.94 s\n" + ] + }, + { + "data": { + "text/plain": [ + "(17.03325, None, None)" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "evaluate(model, test_loader, eval_er_scores=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:52:19.902478Z", + "start_time": "2023-04-05T02:52:19.646282Z" + } + }, + "outputs": [], + "source": [ + "def train(model, checkpoints_dir):\n", + " Path(checkpoints_dir).mkdir(parents=True, exist_ok=True)\n", + " losses_history = {\n", + " 'train': [],\n", + " 'eval': []\n", + " }\n", + " min_eval_loss = 999999999.9\n", + "\n", + " for epoch in tqdm(range(num_epochs)):\n", + " model.train()\n", + " print(f'---------- | Epoch: {epoch} | ----------')\n", + " train_losses = []\n", + "\n", + " for batch in train_loader:\n", + " inputs, target_labels, target_lengths = batch['inputs'].to(device), batch['labels'].to(device), batch['lengths'].to(device)\n", + "\n", + " predictions = model(inputs)\n", + " input_lengths = torch.full(size=(inputs.shape[0],), fill_value=predictions.shape[0], dtype=torch.long)\n", + " loss = criterion(predictions, target_labels, input_lengths, target_lengths)\n", + "\n", + " loss.backward()\n", + "\n", + " train_losses.append(loss.item())\n", + "\n", + " optimizer.step()\n", + " optimizer.zero_grad()\n", + "\n", + " # progress_bar.update(1)\n", + " train_loss = np.array(train_losses).mean()\n", + " eval_scores = evaluate(model, val_loader, eval_er_scores=(epoch % 3 == 0 and epoch > 14))\n", + "\n", + " losses_history['train'].append(train_loss)\n", + " losses_history['eval'].append(eval_scores[0])\n", + "\n", + " print(f'[TRAIN] Mean epoch loss: {train_loss}')\n", + " print(f'[EVAL] Mean epoch loss: {eval_scores[0]}, WER: {eval_scores[1]}, CER: {eval_scores[2]}')\n", + "\n", + " if eval_scores[0] < min_eval_loss:\n", + " print(f'Current best on eval, saving model to {checkpoints_dir}...')\n", + " torch.save(model, checkpoints_dir + 'best_model.pth')\n", + " tokenizer.save_to(checkpoints_dir + 'tokenizer.pickle')\n", + " min_eval_loss = eval_scores[0]\n", + "\n", + " save_experiment_info(model, losses_history, checkpoints_dir + 'experiment_info.json')\n", + "\n", + " return losses_history" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-05T02:54:05.154864Z", + "start_time": "2023-04-05T02:54:04.914694Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "20eab60105084700b85e54b7391837bc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/100 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.gcf()\n", + "fig.set_size_inches(12.5, 6.5)\n", + "plt.plot(history['train'], label = 'train')\n", + "plt.plot(history['eval'], label = 'eval')\n", + "plt.yticks(np.linspace(min(history['train']), max(history['train']), 12))\n", + "plt.xticks(range(0, len(history['train']), 5))\n", + "plt.grid()\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Manual testing" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total 32K\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 15:57 cnn_v2_128_64seq_alstm_1h_2l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 19:12 cnn_v2_128_64seq_bert_4h_3l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 14:57 cnn_v2_128_64seq_lstm_2l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 16:44 cnn_v2_128_64seq_lstma_2h_2l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 17:49 cnn_v2_128_64seq_lstma_2h_2l_150e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 6 00:13 resnet18_128_lstm_2l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 6 00:58 resnet34_128_lstm_2l_100e\r\n", + "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 6 01:45 resnet50_256_lstm_2l_100e\r\n" + ] + } + ], + "source": [ + "!ls -lh ./experiments" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-04T05:23:02.749168Z", + "start_time": "2023-04-04T05:23:02.737901Z" + } + }, + "outputs": [], + "source": [ + "best_model = torch.load('./experiments/resnet50_256_lstm_2l_100e/best_model.pth').eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-04T05:23:05.316093Z", + "start_time": "2023-04-04T05:23:03.552716Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.09287, 0.24386, 0.05388)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evaluate(best_model, test_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "ExecuteTime": { + "end_time": "2023-04-04T05:23:09.312765Z", + "start_time": "2023-04-04T05:23:05.315982Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.13561, 0.29682, 0.07257)" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evaluate(best_model, test_captchas_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAHmCAYAAADOajgCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd6AVxfn+n5nZ3XPObdQLKCAgCCgWIhpLVDQWrLEXogbUxMTYYmISzS+xpKiJ5qvGJJZEQZMYFUsSe1DRKGIHCyIKYkexUW47Z3fm/f3xzu495xaKgoD3/SRX7t2zZ3e2zc4++7zvq4iIIAiCIAiCIAiCIAiCIAhCl0Ov7QYIgiAIgiAIgiAIgiAIgrB2EHFQEARBEARBEARBEARBELooIg4KgiAIgiAIgiAIgiAIQhdFxEFBEARBEARBEARBEARB6KKIOCgIgiAIgiAIgiAIgiAIXRQRBwVBEARBEARBEARBEAShiyLioCAIgiAIgiAIgiAIgiB0UUQcFARBEARBEARBEARBEIQuioiDgiAIgiAIgiAIgiAIgtBFEXFQEARBEARhPUEphVNOOWVtN+MLYfDgwZg4cWL298MPPwylFB5++OHVtg6lFM4777zVtjxBEARBEIT1EREHBUEQBEFYIyilVupndYg9TU1NOO+881arcLQmuOeee0SM+oKRfS4IgiAIgrB8grXdAEEQBEEQvpz87W9/q/j7hhtuwNSpU9tN33TTTT/3upqamnD++ecDAHbdddfPvbw1xT333IM//elPIlZ9BnbZZRc0NzcjiqJV+t7y9nlzczOCQIbDgiAIgiB0bWQ0JAiCIAjCGuGYY46p+PuJJ57A1KlT200Xvlw0Njaiurp6tS9Xa418Pr9al7m6lycIgiAIgrA+ImHFgiAIgiCsNZxzuOyyyzBq1Cjk83n07dsX3/3ud/Hpp59WzPfMM89g3Lhx6N27NwqFAoYMGYLjjz8eAPDGG2+gvr4eAHD++edn4corcuctXrwYZ5xxBgYPHoxcLocBAwbgW9/6Fj766CMAQKlUwjnnnIMxY8agW7duqK6uxs4774xp06ZVLOeNN96AUgqXXHIJLr30UgwaNAiFQgFjx47FSy+9lM03ceJE/OlPfwJQGXJdvi8uv/xybLHFFsjn86ivr8fee++NZ555pl3b//Wvf2HzzTdHLpfDqFGjcN9991V8/uabb+L73/8+RowYgUKhgF69euHwww/HG2+8sdx9sirbk25TTU0N5s+fj3333Re1tbU4+uijs+1ZmWNLRPj1r3+NAQMGoKqqCrvtthtmz57drl2d5Rx88sknse+++6JHjx6orq7Glltuicsvv3yl9nlH58nMmTOxzz77oK6uDjU1Ndh9993xxBNPVMwzefJkKKUwffp0/PCHP0R9fT2qq6tx8MEH48MPP6yYd3nnriAIgiAIwrqAOAcFQRAEQVhrfPe738XkyZNx3HHH4bTTTsOCBQvwxz/+ETNnzsT06dMRhiEWLVqEvfbaC/X19TjrrLPQvXt3vPHGG7j99tsBAPX19bjyyitx0kkn4eCDD8YhhxwCANhyyy07XW9DQwN23nlnzJkzB8cffzy23nprfPTRR/jPf/6Dd955B71798bSpUvx17/+FePHj8d3vvMdLFu2DNdeey3GjRuHp556CqNHj65Y5g033IBly5bh5JNPRktLCy6//HJ8/etfx4svvpgJY++9916HodUAcMIJJ2Dy5MnYZ5998O1vfxtJkuDRRx/FE088gW222Sab77HHHsPtt9+O73//+6itrcUf/vAHHHrooXjrrbfQq1cvAMDTTz+Nxx9/HEcddRQGDBiAN954A1deeSV23XVXvPzyy6iqqlrhsVnR9qQkSYJx48Zhp512wiWXXJIte2WOLQCcc845+PWvf419990X++67L5577jnstddeKJVKK2zj1KlTsf/++2ODDTbA6aefjn79+mHOnDm46667cPrpp69wn7dl9uzZ2HnnnVFXV4ef/OQnCMMQV199NXbddVc88sgj2G677SrmP/XUU9GjRw+ce+65eOONN3DZZZfhlFNOwc033wwAKzx3BUEQBEEQ1glIEARBEAThC+Dkk0+m8qHHo48+SgDoH//4R8V89913X8X0O+64gwDQ008/3emyP/zwQwJA55577kq15ZxzziEAdPvtt7f7zDlHRERJklCxWKz47NNPP6W+ffvS8ccfn01bsGABAaBCoUDvvPNONv3JJ58kAHTGGWdk09rug5SHHnqIANBpp53WaXuIiABQFEU0b968bNrzzz9PAOiKK67IpjU1NbVbzowZMwgA3XDDDe0+K2dVtmfChAkEgM4666yKZazssV20aBFFUUT77bdfxXb+7Gc/IwA0YcKEbNq0adMIAE2bNo2I+PgMGTKEBg0aRJ9++mnFesqX1dk+J6J258xBBx1EURTR/Pnzs2nvvfce1dbW0i677JJNmzRpEgGgPfbYo2JdZ5xxBhljaPHixUS0cueuIAiCIAjC2kbCigVBEARBWCtMmTIF3bp1w5577omPPvoo+xkzZgxqamqy8N3u3bsDAO666y7Ecbxa1n3bbbdhq622wsEHH9zuszTs1BiTFb9wzuGTTz5BkiTYZptt8Nxzz7X73kEHHYT+/ftnf3/1q1/Fdttth3vuuWel2qOUwrnnnttpe1L22GMPDB06NPt7yy23RF1dHV5//fVsWqFQyH6P4xgff/wxhg0bhu7du3fY9o5Yle056aSTKv5e2WP7wAMPoFQq4dRTT63Yzh/84AcrbN/MmTOxYMEC/OAHP8jOkZS2+2xlsNbiv//9Lw466CBsvPHG2fQNNtgA3/zmN/HYY49h6dKlFd858cQTK9a18847w1qLN998E8CaOXcFQRAEQRBWNyIOCoIgCIKwVnjttdewZMkS9OnTB/X19RU/DQ0NWLRoEQBg7NixOPTQQ3H++eejd+/eOPDAAzFp0iQUi8XPvO758+dj8803X+F8119/Pbbcckvk83n06tUL9fX1uPvuu7FkyZJ2826yySbtpg0fPnyl8vzNnz8fG264IXr27LnCeTfaaKN203r06FGRy6+5uRnnnHMOBg4ciFwuh969e6O+vh6LFy/usO0dsbLbEwQBBgwYUDFtZY9tKqK1XVd9fT169Oix3PbNnz8fAFbqOK4MH374IZqamjBixIh2n2266aZwzuHtt9+umN72WKRtTo/Fmjh3BUEQBEEQVjeSc1AQBEEQhLWCcw59+vTBP/7xjw4/T4uMKKVw66234oknnsCdd96J+++/H8cffzx+//vf44knnkBNTc0aad/f//53TJw4EQcddBB+/OMfo0+fPjDG4MILL8yEqbWBMabD6USU/X7qqadi0qRJ+MEPfoAddtgB3bp1g1IKRx11FJxzq7U9uVwOWle+b17ZY7u+s6JjsbbOXUEQBEEQhFVBxEFBEARBENYKQ4cOxQMPPICvfe1rFWGwnbH99ttj++23x29+8xvceOONOProo3HTTTfh29/+9iqHkQ4dOrRd5d223Hrrrdh4441x++23Vyy/o9BfgN1ybXn11VcxePDg7O/O2jl06FDcf//9+OSTT1bKPbgibr31VkyYMAG///3vs2ktLS1YvHjxSi9jZbanM1b22A4aNChbV3ko74cfftiuqnFH6wCAl156CXvssUen863suVFfX4+qqirMnTu33WevvPIKtNYYOHDgSi2rLcs7dwVBEARBENY2ElYsCIIgCMJa4YgjjoC1Fr/61a/afZYkSSZkffrppxWuOABZpeA0PDOtkLuy4tehhx6K559/HnfccUe7z9J1pa6w8nU/+eSTmDFjRofL/Ne//oV33303+/upp57Ck08+iX322SebVl1d3WE7Dz30UBARzj///E7bsyoYY9p974orroC1dqWXsTLb0xkre2z32GMPhGGIK664oqK9l1122QrXsfXWW2PIkCG47LLL2u3P8mV1ts/bYozBXnvthX//+98VodMffPABbrzxRuy0006oq6tbYbvKWZlzVxAEQRAEYW0jzkFBEARBENYKY8eOxXe/+11ceOGFmDVrFvbaay+EYYjXXnsNU6ZMweWXX47DDjsM119/Pf785z/j4IMPxtChQ7Fs2TL85S9/QV1dHfbdd18AXIBjs802w80334zhw4ejZ8+e2HzzzTvNR/fjH/8Yt956Kw4//HAcf/zxGDNmDD755BP85z//wVVXXYWtttoK+++/P26//XYcfPDB2G+//bBgwQJcddVV2GyzzdDQ0NBumcOGDcNOO+2Ek046CcViEZdddhl69eqFn/zkJ9k8Y8aMAQCcdtppGDduHIwxOOqoo7Dbbrvh2GOPxR/+8Ae89tpr2HvvveGcw6OPPorddtsNp5xyyirt2/333x9/+9vf0K1bN2y22WaYMWMGHnjgAfTq1Wull7Ey29MZK3ts6+vrceaZZ+LCCy/E/vvvj3333RczZ87Evffei969ey93HVprXHnllTjggAMwevRoHHfccdhggw3wyiuvYPbs2bj//vsBdL7PO+LXv/41pk6dip122gnf//73EQQBrr76ahSLRfzud79b6X2XsjLnriAIgiAIwlpnLVVJFgRBEAShi3HyySdTR0OPa665hsaMGUOFQoFqa2tpiy22oJ/85Cf03nvvERHRc889R+PHj6eNNtqIcrkc9enTh/bff3965plnKpbz+OOP05gxYyiKIgJA55577nLb8/HHH9Mpp5xC/fv3pyiKaMCAATRhwgT66KOPiIjIOUcXXHABDRo0iHK5HH3lK1+hu+66iyZMmECDBg3KlrNgwQICQBdffDH9/ve/p4EDB1Iul6Odd96Znn/++Yp1JklCp556KtXX15NSqmJ/JElCF198MY0cOZKiKKL6+nraZ5996Nlnn83mAUAnn3xyu20ZNGgQTZgwIfv7008/peOOO4569+5NNTU1NG7cOHrllVfazdcRq7I9EyZMoOrq6k6XtaJjS0RkraXzzz+fNthgAyoUCrTrrrvSSy+91K6t06ZNIwA0bdq0inU89thjtOeee1JtbS1VV1fTlltuSVdccUXFfu1sn3d0njz33HM0btw4qqmpoaqqKtptt93o8ccfr5hn0qRJBICefvrpiult27iy564gCIIgCMLaRBF9hlgVQRAEQRAEAQDwxhtvYMiQIbj44otx5plnru3mfG6+bNsjCIIgCIIgLB/JOSgIgiAIgiAIgiAIgiAIXRQRBwVBEARBEARBEARBEAShiyLioCAIgiAIgiAIgiAIgiB0USTnoCAIgiAIgiAIgiAIgiB0UcQ5KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVAQBEEQBEEQBEEQBEEQuigiDgqCIAiCIAiCIAiCIAhCF0XEQUEQBEEQBEEQBEEQBEHooog4KAiCIAiCIAiCIAiCIAhdFBEHBUEQBEEQBEEQBEEQBKGLIuKgIAiCIAiCIAiCIAiCIHRRRBwUBEEQBEEQBEEQBEEQhC6KiIOCIAiCIAiCIAiCIAiC0EURcVCoYOLEiTjvvPPWdjMEYb1lTV9DSin861//WmPLFwTh87Prrrti8uTJa7sZXYI33ngDSinMmjXrcy/rX//6F4YNGwZjDH7wgx987uUJwqowePBgPPzww2u7GYIgCJ0yefJk7Lrrrqt1ed27d19tyxM+HyIOroMMHjwYSql2PyeffDKA1oFwRz9TpkwBwBdaZ/MsWrToc7VPKYU33nijonNYXpuUUhgyZEg23wknnIAhQ4agUChg6NChOPfcc1EqlSrW8cILL2DnnXdGPp/HwIED8bvf/a7i86amJpx99tkYOnQo8vk86uvrMXbsWPz73//O5kkfztK2CV8+LrroIiil2j3EzZ8/HwcffDDq6+tRV1eHI444Ah988EHFPK+++ioOPPBA9O7dG3V1ddhpp50wbdq07PMv+hpaXdx+++3Ya6+90KtXr3YPzKVSCb1798ZFF13U4Xd/9atfoW/fvojjGOeddx5Gjx69WtsG8HXZ0T7db7/9KuabPXs2jjjiCNTX1yOXy2H48OE455xz0NTUVDHf888/j2984xvo06cP8vk8Bg8ejCOPPLLiGN1xxx3Yfvvt0a1bN9TW1mLUqFHZOfP73/8ePXr0QEtLS7u2NjU1oa6uDn/4wx8qphMR9tlnn7Uq1Jb3a+eddx4mTpy4Vtqxtrjyyiux5ZZboq6uDnV1ddhhhx1w7733Zp9/8sknOPXUUzFixAgUCgVstNFGOO2007BkyZJ2y5o8eTK23HJL5PN59OnTJ7vXAsDcuXOx2267oW/fvsjn89h4443x85//HHEcf672L+/4TZw4MbsuoijCsGHD8Mtf/hJJkmTz3HLLLRg9ejSqqqowaNAgXHzxxdlnr7zyCpRSeOKJJyrWuf322yOfz1ec6y0tLcjn87j22muXew9XSmG33XZDGIZ47LHHKpbb2NiIjTfeGGeeeSYAdPr98jauiJEjRyKXy+H9999f6e90xLhx42CMwdNPP71S83/3u9/FYYcdhrfffhu/+tWvAADWWlx66aXYYostkM/n0aNHD+yzzz6YPn16xXc76zNX1E9Mnz4dQRCsUn9bfs6IoLTyXHjhhdh2221RW1uLPn364KCDDsLcuXMr5vnud7+LoUOHolAooL6+HgceeCBeeeWVDpf38ccfY8CAAVBKYfHixdn08mu4/GfUqFGfq/0PP/wwBg8enK2jsxeR3/ve96CUwmWXXVYxve25GMcxxo8fj/79++ORRx5BGIa46aabOlzmCSecgK233vpztX9FEBHOOeccbLDBBigUCthjjz3w2muvrdIyVufLghUtb8qUKRg5ciTy+Ty22GIL3HPPPRWfl4938vk8hg8fjgsvvBBE1G75QNe8lwufDWstfvGLX1Q8T//qV7+qOLcAYM6cOfjGN76Bbt26obq6Gttuuy3eeuut7POOxuTf+973Pnf71vQzuNwD1xwiDq6DPP3001i4cGH2M3XqVADA4YcfDgAYOHBgxecLFy7E+eefj5qaGuyzzz4AgCOPPLLdPOPGjcPYsWPRp0+f1d7mjtq0cOFC3HnnnTDGZA9br7zyCpxzuPrqqzF79mxceumluOqqq/Czn/0sW9bSpUux1157YdCgQXj22Wdx8cUX47zzzsM111yTzfO9730Pt99+O6644gq88soruO+++3DYYYfh448/Xu3bJqybPP3007j66qux5ZZbVkxvbGzEXnvtBaUUHnroIUyfPh2lUgkHHHAAnHPZfPvvvz+SJMFDDz2EZ599FltttRX233//7GH0i76GVheNjY3Yaaed8Nvf/rbdZ1EU4ZhjjsGkSZPafUZEmDx5Mr71rW8hDMM11r7bb7+9Yp++9NJLMMZk/RsAPPHEE9huu+1QKpVw991349VXX8VvfvMbTJ48GXvuuWf2MuHDDz/E7rvvjp49e+L+++/HnDlzMGnSJGy44YZobGwEADz44IM48sgjceihh+Kpp57Cs88+i9/85jeZuHPssceisbERt99+e7u23nrrrSiVSjjmmGMqpl922WXywmEtM2DAAFx00UV49tln8cwzz+DrX/86DjzwQMyePRsA8N577+G9997DJZdcgpdeegmTJ0/GfffdhxNOOKFiOf/3f/+H//f//h/OOusszJ49Gw888ADGjRuXfR6GIb71rW/hv//9L+bOnYvLLrsMf/nLX3Duueeu0e3be++9sXDhQrz22mv40Y9+hPPOOy8T1+69914cffTR+N73voeXXnoJf/7zn3HppZfij3/8IwAW1vr161cxWF62bBmee+451NfXV4iGM2bMQLFYxNe//vWK6/Kyyy5DXV1du/v5qaeeiokTJ2bXFwD85Cc/QaFQwK9//WsAaNdvXnfddVBK4dBDD+10e8vF1sceewzNzc047LDDcP3113/mffjWW2/h8ccfxymnnILrrrtuhfM3NDRg0aJFGDduHDbccEPU1taCiHDUUUfhl7/8JU4//XTMmTMHDz/8MAYOHIhdd931c78cWLx4Mb71rW9h9913/1zLEVaORx55BCeffDKeeOIJTJ06FXEcY6+99qo4n8eMGYNJkyZhzpw5uP/++0FE2GuvvWCtbbe8E044od0YBAAuv/zyimvg7bffRs+ePSvuc2uKO+64A0888QQ23HDD5c7X1NSEb3zjG3j66afx2GOPYezYsdhvv/06vFYaGxtxyy23tOs/Vze/+93v8Ic//AFXXXUVnnzySVRXV2PcuHEdvrxb2zz++OMYP348TjjhBMycORMHHXQQDjroILz00ksV833nO9/BwoULMXfuXJx99tk455xzcNVVV62lVgtfFn7729/iyiuvxB//+EfMmTMHv/3tb/G73/0OV1xxRTbP/PnzsdNOO2HkyJF4+OGH8cILL+AXv/gF8vl8xbLSczT9aWvIEboYJKzznH766TR06FByznU6z+jRo+n444/v9PNFixZRGIZ0ww03LHddEyZMoHPPPXe58wCgBQsW0KRJk2js2LGdzvf+++/TgAED6Jhjjlnu8n73u9/RkCFDsr///Oc/U48ePahYLGbTfvrTn9KIESOyv7t160aTJ09e7nLHjh1LkyZNogULFpCc6l8uli1bRptssglNnTqVxo4dS6effnr22f33309aa1qyZEk2bfHixaSUoqlTpxIR0YcffkgA6H//+182z9KlSwlANk9bvohr6KmnnqI99tiDevXqRXV1dbTLLrvQs88+2+67d9xxR/b3OeecQ/369aPnn3++Yr70vJ85c2bF9BdeeIEA0KOPPloxfdq0aQSA5syZQ5MmTSIAFT+TJk0iIqJPP/2UTjzxROrTpw/lcjkaNWoU3Xnnncvd3uVx6aWXUm1tLTU0NBARkXOONttsM9pmm23IWlsx76xZs0gpRRdddBEREd1xxx0UBAHFcdzp8k8//XTaddddl9uGQw45hHbfffd208eOHUtHHnlkxbSZM2dS//79aeHChe2ORboP77vvPho9ejTl83nabbfd6IMPPqB77rmHRo4cSbW1tTR+/HhqbGysWM8pp5xCp59+OnXv3p369OlD11xzDTU0NNDEiROppqaGhg4dSvfcc0/2nfJ+7dxzz6UJEyYsdxu7Aj169KC//vWvnX5+yy23UBRF2fnyySefUKFQoAceeGCV1nPGGWfQTjvttNx50vtPZyzv+E2YMIEOPPDAivn33HNP2n777YmIaPz48XTYYYdVfP6HP/yBBgwYkI0Txo8fT+PGjcs+v+eee2jUqFF00kknVfRP55xzDg0aNKhd+yZNmkTdunVrN725uZk23XRTOvnkk4mI6KGHHqIoiuiZZ57pdFsPPPBA+vrXv95u22+66SbaZZddKJfLVeyriRMn0llnnUX33nsvDR8+vN3ynnzySRo9ejTlcjkaM2YM3X777R32deeddx4dddRRNGfOHOrWrRs1NTV12sb02i3/mTZtGt10000EgP7zn/+0+84hhxxCvXr1ooaGhk77zEGDBlVMa7uvjzzySPr5z39O5557Lm211VYVn02ZMoU233xzyufz1LNnT9p9992zfrL8nBk0aBBNmzat020TOmfRokUEgB555JFO53n++ecJAM2bN69i+p///GcaO3YsPfjggwSAPv30006Xcccdd5BSit54443ltmdFx3LatGnZOdTRWOOdd96h/v3700svvUSDBg2iSy+9tOLz9J716aef0o477khbbrklLVy4MPv8P//5D2mt6c0336z43qRJkyifzy93G1fEvHnz6Bvf+Ab16dOHqquraZtttqkYbznnqF+/fnTxxRdn0xYvXky5XI7++c9/ZtNWdP13NPZ58cUXae+996bq6mrq06cPHXPMMfThhx9mn1tr6be//S0NHTqUoiiigQMH0q9//etsn5X/pGO2I444gvbbb7+Kbdxuu+3ou9/9bvZ32/EpEdHWW29NBx98cPa33MuFz8J+++3X7rn/kEMOoaOPPjr7+8gjj1zhM3hH5+iKWNHzf7rczp7BJ02aRAMHDqRCoUAHHXQQXXLJJRXjjfR+eNVVV9GAAQOoUCjQ4YcfTosXL66YR+6BawZxDq7jlEol/P3vf8fxxx/fqVPl2WefxaxZs5b7Ru+GG25AVVUVDjvssDXV1AriOMahhx6Kfv364S9/+cty512yZAl69uyZ/T1jxgzssssuiKIomzZu3DjMnTsXn376KQCgX79+uOeee7Bs2bI1swHCOs3JJ5+M/fbbD3vssUe7z4rFIpRSyOVy2bR8Pg+tdRYO16tXL4wYMQI33HADGhsbkSQJrr76avTp0wdjxozpcJ1fxDW0bNkyTJgwAY899hieeOIJbLLJJth33307PM+JCKeeeipuuOEGPProox26Fzpiiy22wLbbbtvOHTBp0iTsuOOOGDlyJI488kj86Ec/wqhRo7I3iUceeSScc1k43d///ne8/PLLuOiii2CM+czbfO211+Koo45CdXU1AGDWrFl4+eWX8cMf/hBaV96ittpqK+yxxx745z//CYD7gSRJcMcdd7QLpUjp168fZs+e3e5tfjknnHACHnroIbz55pvZtNdffx3/+9//KvrVpqYmfPOb38Sf/vQn9OvXr9PlnXfeefjjH/+Ixx9/HG+//TaOOOIIXHbZZbjxxhtx991347///W/F210AuP7669G7d2889dRTOPXUU3HSSSfh8MMPx4477ojnnnsOe+21F4499th2YdUCh9fcdNNNaGxsxA477NDpfEuWLEFdXR2CIAAATJ06Fc45vPvuu9h0000xYMAAHHHEEXj77bc7Xca8efNw3333YezYsat9O5ZHoVDIHLPFYrHdm/9CoYB33nknO4d32203PPbYY1ko8rRp07Drrrti7NixFekTpk2bht12222l25HP53HDDTfgmmuuwb///W8cf/zx+NnPftZpv/nBBx/g7rvv7nB8ctZZZ2VuvNStuWzZMkyZMgXHHHMM9txzTyxZsgSPPvpo9p2Ghgbsv//+2GyzzfDss8/ivPPOy8KZyyEiTJo0CccccwxGjhyJYcOG4dZbb+10u3bccccsvPS2227DwoULseOOO+LGG2/E8OHDccABB7T7zo9+9CN8/PHHmDp1aqd9ZhrOPGnSJCxcuLAivHnSpEl4/fXXO3ShLly4EOPHj8fxxx+fuRUPOeSQTvs54bORphkoH4OW09jYiEmTJmHIkCEYOHBgNv3ll1/GL3/5S9xwww3t7lMdce2112KPPfbAoEGDVk/DO8A5h2OPPRY//vGPlxu+/P7772f91yOPPFJxL9t3333Rt2/fdvlSJ02ahEMOOeRz5QVraGjAvvvuiwcffBAzZ87E3nvvjQMOOCALcVywYAHef//9inFdt27dsN1222HGjBnZMlbm+i9n8eLF+PrXv46vfOUreOaZZ3Dffffhgw8+wBFHHJHNc/bZZ+Oiiy7CL37xC7z88su48cYb0bdvXwDAU089BQB44IEHsHDhwizKYMaMGe3GoOPGjcva2hYiwqOPPopXXnml4vlGED4LO+64Ix588EG8+uqrADjFzmOPPZZFEDrncPfdd2P48OEYN24c+vTpg+22265Dt/s//vEP9O7dG5tvvjnOPvvsNTrOfPLJJ3HCCSfglFNOwaxZs7DbbrtlUQflzJs3D7fccgvuvPNO3HfffZg5cya+//3vr7F2CWWsVWlSWCE333wzGWPo3Xff7XSek046iTbddNPlLmfTTTelk046aYXrWxnX08pw4oknUr9+/ejtt99e7nyvvfYa1dXV0TXXXJNN23PPPenEE0+smG/27NkEgF5++WUiInrkkUdowIABFIYhbbPNNvSDH/yAHnvssc/dbmHd55///Cdtvvnm1NzcTETt33otWrSI6urq6PTTT6fGxkZqaGigU045hQBUnFdvv/02jRkzhpRSZIyhDTbYgJ577rlO1/tFX0NE/Da7tra2wpkHgKZMmULf/OY3adNNN6V33nmnw+925hwkIrrqqquopqaGli1bRkTsmqyqqqpwXXXkZEldmXPnzv38G0fsAABATz75ZDYtdep01G4iotNOO40KhUL2989+9jMKgoB69uxJe++9N/3ud7+j999/P/u8oaGB9t1338y1c+SRR9K1115LLS0t2TxJklD//v0rjtsvfvEL2mijjSrciyeeeCKdcMIJ2d/oxDlY7kS78MILCQDNnz8/m/bd7363wtU1duzYCidakiRUXV1Nxx57bDYtdSrOmDGjw/3SFXnhhReourqajDHUrVs3uvvuuzud98MPP6SNNtqIfvazn2XTLrzwQgrDkEaMGEH33XcfzZgxg3bffXcaMWJEhXOdiGiHHXagXC6X9SNtXa1tWZFzcHmUOwedczR16lTK5XJ05plnEhHR1VdfTVVVVfTAAw+QtZbmzp1LI0eOJAD0+OOPExHfW8v/3nbbbemWW26h9957j3K5HDU3N1NTUxPlcjm6/vrr27WhM+dgyjnnnENaaxozZsxynbu//e1vqUePHll/TdTaN1122WXt5r/mmmto9OjR2d+nn356hZPm6quvpl69elUs78orr2zXZ/z3v/+l+vr6rG2XXnrpCp0On376aeYYTBk5cmQ7F2fKJ598QgDot7/9LRF13GcSte8niIheffVV6tOnT9aXtv3us88+SwBW6DQTPjvWWtpvv/3oa1/7WrvP/vSnP1F1dTUBoBEjRlS4BltaWmjLLbekv/3tb0TU2u935qp79913yRhDN9988wrb9HkcMBdccAHtueeemXu4M+dgFEU0cuTICvd6OWeddRYNGTIkW868efNIKbXKDuuVYdSoUXTFFVcQEdH06dMJAL333nsV8xx++OF0xBFHENHKXf9txz6/+tWvaK+99qpY5ttvv00AaO7cubR06VLK5XL0l7/8pcM2djaWCsOQbrzxxoppf/rTn6hPnz7Z32PHjqUwDKm6uprCMCQAlM/nafr06Su3gwShE6y19NOf/pSUUhQEASml6IILLsg+T8eMVVVV9H//9380c+ZMuvDCC0kpRQ8//HA239VXX0333XcfvfDCC/T3v/+d+vfvX+Fs7YiVcQ52xvjx42nfffetmHbkkUe2cw4aYyqeb+69917SWlc4nYU1gzgH13GuvfZa7LPPPp3mDmlubsaNN964XNfgjBkzMGfOnDWeKyTlqquuwuTJk3HbbbdhwIABnc737rvvYu+998bhhx+O73znO6u0jl122QWvv/46HnzwQRx22GGYPXs2dt555yyBuPDl5O2338bpp5+Of/zjH+2cMyn19fWYMmUK7rzzTtTU1KBbt25YvHgxtt566+wNPxHh5JNPRp8+ffDoo4/iqaeewkEHHYQDDjgACxcubLfML+oa+uCDD/Cd73wHm2yyCbp164a6ujo0NDRUJA8GgDPOOANPPvkk/ve//6F///6rvJ7x48fDWotbbrkFAHDzzTdDa40jjzxyud+bNWsWBgwYgOHDh6/yOjvi2muvxRZbbIGvfvWr7T6jlXTI/OY3v8H777+Pq666CqNGjcJVV12FkSNH4sUXXwQAVFdX4+6778a8efPw85//HDU1NfjRj36Er371q9nbUWMMJkyYgMmTJ4OI4JzD9ddfj+OOOy47Z/7zn//goYceapfgvSPKXZx9+/ZFVVUVNt5444ppbYvalH/HGINevXphiy22qPgOgM9dDOfLxIgRIzBr1iw8+eSTOOmkkzBhwgS8/PLL7eZbunQp9ttvP2y22WYVCfydc4jjGH/4wx8wbtw4bL/99vjnP/+J1157rcJdB/A18txzz2Xuz0suuWSNbttdd92Fmpoa5PN57LPPPjjyyCOztn/nO9/BKaecgv333x9RFGH77bfHUUcdBQDZ+Tps2DAMGDAADz/8MJYuXYqZM2di7Nix2GCDDbDRRhthxowZWb7BVXEOpvziF7+Acw5nnXVW5sTsiOuuuw5HH310h/31Ntts0+H85Tk+jznmGEyZMiVzT8+ZMycrHpPSkVv0uuuuw5FHHpm1bfz48Zg+fTrmz5+/8hvpWVFftKouIGstvvnNb+L888/vtC/daqutsPvuu2OLLbbA4Ycfjr/85S9Z5ISwejj55JPx0ksvdViA4+ijj8bMmTPxyCOPYPjw4TjiiCOyvHdnn302Nt1003a5aDvj+uuvR/fu3XHQQQetzuZX8Oyzz+Lyyy/PCqktj/333x+vvvoqrr766g4/P/7447FgwYKsD5w0aRIGDx6Mr3/965+rjQ0NDTjzzDOx6aabonv37qipqcGcOXPajW+Wx8pe/+U8//zzmDZtGmpqarKfkSNHAuCcbHPmzEGxWFxjeT+PPvpozJo1C9OnT8c+++yD//f//h923HHHNbIuoetwyy234B//+AduvPFGPPfcc7j++utxySWXZHl60xzrBx54IM444wyMHj0aZ511Fvbff/+KnJcnnngixo0bhy222AJHH300brjhBtxxxx2f6V65MsyZMwfbbbddxbSOruGNNtqo4vlmhx12gHOuXQEpYfUj4uA6zJtvvokHHngA3/72tzud59Zbb0VTUxO+9a1vdTrPX//6V4wePbrTsJ/VyWOPPYbTTjsNf/rTn5Z783vvvfew2267Yccdd6woNAJwGGDbyrLp3+XhD2EYYuedd8ZPf/pT/Pe//8Uvf/lL/OpXv2pX+Vj48vDss89i0aJF2HrrrREEAYIgwCOPPII//OEPCIIgSxi+1157Yf78+Vi0aBE++ugj/O1vf8O7776bCTQPPfQQ7rrrLtx000342te+hq233hp//vOfUSgUOkyA/0VdQxMmTMCsWbNw+eWX4/HHH8esWbPQq1evduf0nnvuiXfffRf333//Z1pPXV0dDjvssKwwyaRJk3DEEUegpqZmud8rFAqfaX0d0djYiJtuuqmd4Jo+LM+ZM6fD782ZM6fdA3WvXr1w+OGH45JLLsGcOXOw4YYbthNvhg4dim9/+9v461//iueeew4vv/wybr755uzz448/Hm+99RYeeughPPjgg3j77bdx3HHHZZ8/9NBDmD9/Prp3756dewBw6KGHtqs4XV7QRSnVrsCLUqqiOE7b73T0vfSBr+33ujJpJd8xY8bgwgsvxFZbbYXLL7+8Yp5ly5Zh7733Rm1tLe64446KfbrBBhsAADbbbLNsWn19PXr37t3ugXXgwIHYbLPNMH78eFx00UU477zzOixQsLrYbbfdMGvWLLz22mtobm7G9ddfn4XeK6Xw29/+Fg0NDXjzzTfx/vvvZwJ7uQi96667Ytq0aXj00UexySabZIWU0tDiadOmYdiwYRXhkitLev4vTxh89NFHMXfu3E7HMOn2pLz88st44okn8JOf/CS7xrbffns0NTV1WkG1Iz755BPccccd+POf/5wtp3///kiSZKUKk5SzySabLLcvArDKL0uWLVuGZ555BqecckrWvl/+8pd4/vnnEQQBHnroIRhjMHXqVNx7773YbLPNcMUVV2DEiBFYsGDBKq1L6JhTTjkFd911F6ZNm9bhS+xu3bphk002wS677IJbb70Vr7zyCu644w4AfC+YMmVKduxSUal3797tQsSJCNdddx2OPfbYNRpK+uijj2LRokXYaKONsna9+eab+NGPfpRVN0459thjcd111+HMM8/E//3f/7Vb1iabbIKdd94ZkyZNgnMON9xwA4477rjPXYTrzDPPxB133IELLrgAjz76KGbNmoUtttgiG9+k4/uOxv/LS+OxIhoaGnDAAQdg1qxZFT+vvfYadtlll888runsWaVtW7t164Zhw4Zh2223xS233II//vGPeOCBBz7z9ggCAPz4xz/GWWedhaOOOgpbbLEFjj32WJxxxhm48MILAXB/FARBxfgGADbddNPlCvKpcDdv3rw113hhnUbEwXWYSZMmoU+fPthvv/06nefaa6/FN77xDdTX13f4eUNDwxdSYQxgV9ehhx6KE088cbmC5rvvvotdd901qwjXNl/LDjvsgP/9738V1QunTp2KESNGoEePHp0ud7PNNkOSJOtkVTNh9bD77rvjxRdfrBjgbbPNNtmb2ba573r37o3u3bvjoYcewqJFi/CNb3wDADLHWNtzT2vdTnz5Iq+h6dOn47TTTsO+++6LUaNGIZfL4aOPPmo33ze+8Q3ceOON+Pa3v71KD83lnHDCCXjsscdw11134fHHH2+3fVEUtRM/ttxyS7zzzjtZjpPPw5QpU1AsFtu5L0aPHo2RI0fi0ksvbXcsnn/+eTzwwAMYP358p8uNoghDhw6tqD7ZlsGDB6OqqqpinqFDh2Ls2LG47rrrMGnSpHb5oc466yy88MILFeceAFx66aUdVn8WvniccygWi9nfS5dy5fsoivCf//ynnXvta1/7GgBUvIn+5JNP8NFHHy03N1jqOFyTQm11dTWGDRuWPex3hDEG/fv3RxRF+Oc//4kddtihYiyw22674fHHH8fUqVMrBOxddtkFDz/8MB5++OHP5BpcWa699lqMGTMGW2211UrPv8suu+D555+vuM5++MMf4tprrwXADzYvvPBCxX2+vPoywPmTBgwY0G45v//97zF58uRVEnXHjx+P1157DXfeeWe7z37/+99jww03xJ577gmg4z4TYOG/fHpdXV27+9j3vve9zAmbPpwppfC1r30N559/PmbOnIkoijKBSvhsEBFOOeUU3HHHHXjooYcwZMiQlfoOEWV9y2233VZxbv31r38FwALdySefXPHdRx55BPPmzVvj44djjz223f1pww03xI9//OMOXyKmTvmf/OQnHbqgTzjhBNx222247bbb8O6772LixImfu43Tp0/HxIkTcfDBB2OLLbZAv3798MYbb2SfDxkyBP369cODDz6YTVu6dCmefPLJzFm0Mtd/W7beemvMnj0bgwcPxrBhwyp+qqursckmm6BQKFSst5xU1G17be+www7tvjN16tTlOhlrampw+umn48wzz5T8ocLnoqmpqd0zjDEmG5dEUYRtt922ndPu1VdfXe74Jh3bpi9PVzebbropnnzyyYppHV3Db731Ft57772KebTWGDFixBppl1DGWgtoFpaLtZY22mgj+ulPf9rpPK+99hoppejee+/tdJ6//vWvq1Rh7LPmS2tubqYxY8bQV77yFXr77bdp4cKF7X6IuJLasGHDaPfdd6d33nmn3edEXJ2sb9++dOyxx9JLL71EN910E1VVVdHVV1+dzTN27Fi66qqr6JlnnqEFCxbQ3XffTSNGjKioiCh0DTqqtHXdddfRjBkzaN68efS3v/2NevbsST/84Q+zzz/88EPq1asXHXLIITRr1iyaO3cunXnmmRSGIc2aNatiWV/UNURE9JWvfIX23HNPevnll+mJJ56gnXfemQqFQkXeIJTlr5oyZQrl83maMmVK9vnHH39MM2fOpLvvvjurCDpz5sx2eTqcczRs2DDq0aMHjRw5sl1b/vGPf1B1dTXNnDmTPvzwwyxH36677kqbb745/fe//6XXX3+d7rnnnuX2QZ2x0047tasEnDJ9+nSqqqqigw46iJ588kl688036ZZbbqGBAwfSjjvumLXlzjvvpKOPPpruvPNOmjt3Lr3yyit08cUXkzEmqyp97rnn0o9//GOaNm0avf766/Tcc8/RxIkTqVAo0CuvvFKx3r/97W+Uz+cpn8/TTTfdtMJtADrOOVh+rnSUu61tfrGOzuHlVZoUOC/WI488QgsWLKAXXniBzjrrLFJK0X//+18iIlqyZAltt912tMUWW9C8efMq7jVJkmTLOfDAA2nUqFE0ffp0evHFF2n//fenzTbbjEqlEhER/f3vf6ebb76ZXn75ZZo/fz7dfPPNtOGGG1ZUBOyI1ZVzsCM+/PBDuvLKK2nOnDk0c+ZMOu200yifz1fk7iQiev311wkA1dbWVpzPb775JkVRRFEUtcuZlbKinINEyz8flyxZQlVVVXTllVe2+6yjHF6lUonq6+s7nP/ll18mAPTSSy/RsmXLqHfv3nTMMcfQ7Nmz6e6776Zhw4ZVLG+rrbbqcOy0ePFiiqKI7rrrrg7b3FHOQeccHXTQQVkl7AULFtDzzz9PJ554IkVRRA899FA2b2d95iabbEInnXQSLVy4kD755JMO1922T3jiiSfoN7/5DT399NNZ/xdFUUXFcmHVOemkk6hbt2708MMPV/QJaSXr+fPn0wUXXEDPPPMMvfnmmzR9+nQ64IADqGfPnvTBBx90uMzl5Rw85phjaLvttlvp9q3Oqpsrcw/5+9//TsYY+t3vflcxX2NjI9XV1VGPHj1o7733Xi3tOfjgg2n06NE0c+ZMmjVrFh1wwAFUW1tbce+76KKLqHv37vTvf/+bXnjhBTrwwANpyJAhWY7Blbn+2/Yv7777LtXX19Nhhx1GTz31FM2bN4/uu+8+mjhxYnYvOO+886hHjx50/fXX07x582jGjBlZDuY4jqlQKNCvf/1rev/997OKqdOnT6cgCOiSSy6hOXPm0LnnnkthGNKLL76YbU9H9/aPP/6YCoVCxbhNEFaVCRMmUP/+/emuu+6iBQsW0O233069e/emn/zkJ9k8t99+O4VhSNdccw299tprdMUVV5Axhh599FEi4nyiv/zlL7Nn6X//+9+08cYb0y677LLcdX+enIMzZswgrTVdfPHF9Oqrr9IVV1xB3bt3b5dzsLq6mvbYYw+aNWsW/e9//6Phw4fTUUcd9ZnWKawaIg6uo9x///1ZstzOOPvss2ngwIHLTYy+ww470De/+c2VXu9nFTYefvhhArDcHyLuUJb3ecrzzz9PO+20E+VyOerfvz9ddNFFFZ9fcMEFtMMOO1DPnj0pn8/TxhtvTKeddhp99NFHq9x2Yf2mo8HXT3/6U+rbty+FYUibbLIJ/f73v8+Sa6c8/fTTtNdee1HPnj2ptraWtt9++w4fvL6oa4iI6LnnnqNtttmG8vk8bbLJJjRlypR2A/y2g/ubb76Z8vk83XbbbUTU+TXWUZsuuOACAtDuwYCIk64feuih1L17dwKQCR0ff/wxHXfccdSrVy/K5/O0+eabd/qw3RmvvPIKAciEnI544YUX6NBDD6WePXtSGIY0dOhQ+vnPf16RRH3+/Pn0ne98h4YPH06FQoG6d+9O2267bYUo89BDD9Ghhx5KAwcOpCiKqG/fvrT33ntng6NympqaqFu3btSzZ8+KgiWdIeLg2uP444+nQYMGURRFVF9fT7vvvnvF+ZQei45+FixYkM23ZMkSOv7446l79+7Us2dPOvjgg+mtt97KPr/pppto6623ppqaGqqurqbNNtuMLrjggoqE+B2xpsXB7bffnqqrq6mqqop23313euKJJzqcd9CgQQSg3cuBwYMHd5j8P+XzioNXX301FQqF7EG6nI7EwVtvvZW01hXFhMrZdNNN6YwzziAifrjYaqutKIoiGj16NN12223Z8p555hkCQE899VSHy9lnn306TbbekThIxOLAxRdfTKNGjaIoiggA9ezZk2bPnl0xX2d95n/+8x8aNmwYBUFAgwYN6nDdbfuEl19+mcaNG0f19fWUy+Vo+PDhWeEG4bPTWZ+QHqt3332X9tlnH+rTpw+FYUgDBgygb37zm+1eJJXTmTi4ePFiKhQKFQX3VsQXLQ4SEd14441kjGk3zj7xxBMJAN1yyy2rpT0LFiyg3XbbjQqFAg0cOJD++Mc/trv3OefoF7/4BfXt25dyuRztvvvu7Z6Dlnf9p+tp27+8+uqrdPDBB1P37t2pUCjQyJEj6Qc/+EE2LrTW0q9//WsaNGgQhWFIG220UUVxh7/85S80cOBA0lpXiCK33HILDR8+nKIoolGjRrUritXRvZ2Ii5KNGjVqhYWtBKEzli5dSqeffjpttNFG2XPw//t//69dMbVrr72Whg0bRvl8nrbaaiv617/+lX321ltv0S677EI9e/akXC5Hw4YNox//+Me0ZMmS5a7784iDaZsGDBhAhUKBDjjgALrkkkvaiYNbbbUV/fnPf6YNN9yQ8vk8HXbYYZ2+XBNWL4pIfM1CKxMnTsTgwYMrkrYLgrDyyDUkCMKuu+6KiRMnrpZwPGHd4rnnnsMee+yBE044ARdffPHabo7wJWLw4MGYPHlyuzy2Que88cYbGDJkCGbOnInRo0ev7eYIwpeeyZMnY/LkyXj44YfXyPLPO+88/Otf/8pCnIUvFsk5KAiCIAiCIAgrwdZbb40HH3wQ1dXVa6yioyAIgiAIwhdN52XmBEEQBEEQBEGo4Ctf+Qq+8pWvrO1mCIIgCIIgrDbWmHPwT3/6EwYPHox8Po/tttsOTz311JpalbAaOeiggyScQfjcdOXrX64hQejafQDA6QUkxE3oqnT16/+z8oMf/ACDBw9e281Yrxg8eDCISPrbdQzpA768jB49eo2mTDnvvPMkpHgtskZyDt5888341re+hauuugrbbbcdLrvsMkyZMgVz585Fnz59VvfqBEFYh5DrXxC6NtIHCELXRa5/QejaSB8gCOsva0Qc3G677bDtttvij3/8IwDAOYeBAwfi1FNPxVlnnbW6VycIwjqEXP+C0LWRPkAQui5y/QtC10b6AEFYf1ntOQdLpRKeffZZnH322dk0rTX22GMPzJgxo938xWIRxWIx+9s5h08++QS9evWCUmp1N08QuiREhGXLlmHDDTeE1muuDtGqXv+A9AGC8EWwrvYBcv0LwppnXb3+AekDBOGLYF3tA+T6F4Q1z6pc/6tdHPzoo49grUXfvn0rpvft2xevvPJKu/kvvPBCnH/++au7GYIgdMDbb7+NAQMGrLHlr+r1D0gfIAhfJOtaHyDXvyB8caxr1z8gfYAgfJGsa32AXP+C8MWxMtf/Wq9WfPbZZ+OHP/xh9veSJUuw0UYb4e23r0FdXWEttkwQvjwsXdqMgQNPRG1t7dpuSjs66wMWvDkf3WprYZMEYRjCOYBAKMYlGGNgjEYptjAmglEKBoQkSWACA4KFdQRjDGxcQpQrwLoE1joYE8A6XhfZBFEYwFoHIiCJHYIoQmItoihEqZRAa4Mw1HAOgCI4axEZA5dYWBBMGCBJLFxskctFSKyDDhSUIijloADYxMJZDaU0iBzCIIBz3AhLDtpolEpFhPkcnHUICIAB4lIMYwIoreCchtYKgIVCAKIY0BrWERQArRWc3w7nHEITggAoRYBSIKUBBdgk4XU7QhD4W4BWcM5BGwNAAY7f9FqXwLkEWit+g+sInIlCg4igtYYJAjhn4ayDMQYK/IbKOYJSCgSCNhpxUoLRGlop8KIcjDZIrEViHUwQwZIDWYcoCBDHPD+BEAUhEmsRBiEcAUmS8LKtgzYKjrjt1lmEJoRLHLcBBIAQRiEcKZC1AAEmCEDkQCA4IigoaGWQlGJAAyZQvM8Tbr/SvI+NDkCUgJxFkjiEYQRHBOcstA6g4KA14BzvI+ssVBBAawVyCZwFwiCCJQujFYgAkEaSWBjNx4ocwSYOFhZhEPB+VwpEBKUMkiQBoGC0AeCgNIEPdADrEhit4BygtUGcFPnYaY2GhgYMGbTxOtcHdHr9L5iPmupaRFEE6xxKSQznHPK5PB9fEExgoAhw1kIpBWU0nLMwhq8v5xy0VrDE560xBs65zI2glQb3KoCNCUQOQRDAOT6/lFKwiYUJDEAAKf5uEicIdAiXJHAOCHIhlFaAAko2QaA0yPH1EMcWQWBg0zYqtL61VQqJTRAaPs5JkmSfESwcEbQ2UKRgrQMfdwVy8NelhtYaSitYWwJgfB8DWOegDaAU/26UgdIKcZJAERCGIV8DRFnbtNZ8Hfn9Rc4h0Mbvn5jbpgBtDBw53nfOQSnN+8e3V2vtr3/eRuesv+55v1vr/HYqFIsxoiiE9n2FtRZB6I8TAY4IBgbWHzdSADmCNoAGL885h8RaWOtQqCoAcHBEgP88jh2M0XDOITAaSik4SyBnoQIFB/D6iaAduN9QGiYwiOMEUaD4EiMgAaCdQpqRR/nVxM4iMAZKAcpvG1nLxwOUXe8NTU2oqarmvlo7KD9dg6CURikmgAhhYAAFKBBskkAHvE+g+D6QxAmCQAPE54t1BKX53FKKYC23T2sNcsDixYsxdOiQde76B5bTB7z9Nurq6lZ5ea1Hfs3xRazji1zP2lqvHKsvbr1Lly7FkIED17k+oLPr/9p7/4mq6qq12DJB+PLQ1NiEE/YZv1LX/2oXB3v37g1jDD744IOK6R988AH69evXbv5cLodcLtduel1dAXV10ikIwupkTVv0V/X6BzrvA7p164ludTUAEZxT/C9Z5G2MMIgAECwBpFggCI0GyIHgAFgQ+KEM5KDAT8nWOZAXTow2IEqFL41iSwwF7R/2WdBx5B9ENQFagxw/DIMsAhPAWYLSBgCgWRUDKQUixwKYswBZFnZ0ABOEKBaLiMIIzloAgNIKJtAoFotQyos+DtChRrGlBdoYEBy0CqEUYIxGXExggip+KE1YfAAIiljsIgKiIAdH1ksfCpZYmCAiaMVCYiaSGN4G6xycI4QmgAPBJjG0Ua1CFgAFlQl/SutM4HAJ75N0lMoP+YEXODRKxWYWJJzLHqIBIE4SxLFDmMvDOQfjH/6JLMIwREtLEWEYAEp5AcELAtax4KBZHFSaxRVjAsC2CjA22we8XBB/ZoxBbFkEMsYAjveJ1gqkEhaWrYI2GtbFABG0CqBgoRShWIyRz1UhTmJ/DrE4qJQDEICcQmPzMkSFgheFLJQKEZcsosjAUcyCotMoFkvI50M4m0CRAkBInIXx4qBSHHoTmAiJTWCCAKn4oDVB6wAgDUcWxrBg7CzBBDVIbMLigz9P17U+oLPrv6amBrW1tYjCHJqLzagKqgEAihSfg+QQRAEL1o74uvAvEsjx8XbOgWBBrFKBiPi6JRbmFV8QvI+h0NJSRC6X8wIseaEwFbIIUP5McgQbE8IggLUEUgRlWEyvNgZkLYw2MMagFFsEhsUy8oIaUC6wAUbprD3OOVhrYQLuvxS076tY8Am8YO5cKkprQDmQy0HrANoEcI5YgAsUAAdrHQLN15AjfjGQblMcl1hAIj6PjDGwxOKaBl9zzjko8LWWxDFMGEBpFttYVOPNstYhCAyLeL7DSAVIY0wmgALIhNqamvScVK0PuZqPaXqmanD/ZgnZNitFIN+HKaVgicVTfuHhxULnEIUhkoRFUqNZZLVJ4l80OJiQ+4EgCPxxTaCN5j0fGN5Xio+JVgESsgi0gbV8zrmEhVWnFEAsPiIVfxOgWGqBDg2/rHGEQlUB5DRMoKE1363iOEYuDKGURpwQ4K/j9HwgfqcBE6TiqPP3NQLIAFr7lwi8A7VisZCIoKGzF0bZOb8GWZ1jgLq6us8kDgqC0DnrWh/Q2fVfVV2FqprqNdZOQeiKrMz1v9qTDkRRhDFjxuDBBx/Mpjnn8OCDD2KHHXZY3asTBGEdYnVe/94Pxy6ZkgOcgSKDKIgAMjBgQSQwAQsfXvgi0iCloaAAUlCK3R/WAVpF0AgQ6ADKKRAMrGPhjJ0iITtoFABFMJpgDCGxMRwlUIYAbVGMm6G0zVxkxih+YHMJyJZANgGRQhw7xEWHwIQAFKyz/MAJIHGW3UZESOKEXWLOQcOLbt7do7UXG/2/cZyKPQEAA6ODTFQkYodKGAa+d+d96JzzgiULpEiFvlQYI3arxaWE95sCAAujNQJt4KzjdibWu+LAx0ZpWCI4aLBNiYWpmAgJAYkDoAwcKf9AzwKAI4CIHW4gjVyU4/X6ZWvF5xIR+IE5ZjdYbC0cJXCUIHExnBcx+FArhGGYiT2pYhEEAbu1lPIiqgORhXNJ5ppy1nkBkfgYeddkAsv/cwnv+6Tk9w27IVsFVuXdUAGUCvhh3DoUClXZNltit2QxjpE4AnkBsFhKEOVCWFti8RoEHRg+T7SCUyyKR2EArXnfqPTHKChowLILFo5YWIZBXCqB/PnPwuCayzFUzurqA4wJvLhWgtEGChphEMIYdssF/rzla4P3ZypKORAcOcRxzO5Ax0KKInb+kiNoBZCzsDbJro0ksbDWZq7YVHhKRXVyABy/TNAGIEUwkYEJNIxW0ErDKA3t+5+4VEJgTCY6G83Xm0ssrBfJUlGH3bYs4GitvNvMsBBqHZI48U48ZMKgQutAT2kNpTWsdYiThF8qEIFIsdDmXwiwaKkzoTJ1D7Mbu1VADrwDkC+L1rp12phMeE8S7xqEdx1qdh7zdauyZaXiYwr5azSOYxjDIqV1LMim/ZZ1LIZqrUGK4LwrVxsNlRovjeb+xB97Exo4OHbsAuxMTiyctd5RS9m2Ope6CQlaadgkgdL8MkAbg8AYNDY1lzk1fdsdO42Nd0emLxqMUXwfgAU5FkQTa6E0YLR/UeT7NT6Huc8g5+CshXPKC5AKWhOIYqSSqTYK2igkSQxFjp3yRrOA60VXrVXm3mTx2GXHE9QqtK5p1tYzwGqvrCisMeRYfbkRHUAQ1m/WSFjxD3/4Q0yYMAHbbLMNvvrVr+Kyyy5DY2MjjjvuuDWxOkEQ1iFW1/XvXAznLOJSEbkgD+ssOyegkMQsrEVhwCFwll091loEQQ5xkiAXhdBgp0ugA4CUF/ICKCgkzoKUg1YaLnEwJmSBx4cmpu669EGRXTwsRoRhwGKgDx1mp0rJf04wUYjEFhHmAsCFUMZAOevbFWUPbo44ZMwYBcAgiCI4p7w4ZdmtZhRCxaG7SmnEpRj5fME/tANGhyCXABre+UiwcYxczoCjh9lJyA+pGjE5uLKwOMA/+3vBKQiMD8/WgGY3kLUOuVwO1pa8MKlhLYdWgoBQayhtYJMEiXfSGK19uCeLHUEQcpiyF9ScZWEidXFacgDx47A2qdNFecGBNyAMQ9jM7ec45FMpOLLQigVTZXzIoH9QNmXhpECrCGItu3zScMUwMHDKIHEsElCSQEN7h6JGaAwSyw/92hgWmxSgSPtQVd6X1oe8BmEAB8BZDnW3zsHaBKEPQ89FfE5RKj4Qi78ODrBs/7EEWJtAEyEKQ1gfykwKvJ9BPiw5QZTPwZYsXAJAWeTzEWIfEmudRRInn/fSXmlWTx+gvPDkEAQcIp85Vr2LrRi3wEBBe4elMQaJcyzug3wYPmOTBFEYtYbhe6HceEdw7DiVQBZeq1vFLV5WKmhz+KcjH5YKdqMaE0ApDj/WqXrlta40JQE76FhMIu23QynEpbhCjNTawME7Xil1vBLIWjjWwkGOzzF2CGoWSJ2Ds7xtzruojTLslnScXsBagoLzjj4gCIIsrDhNGZCKkHDkz22dpQtgN5vfB85xuofM8pcKtM4fP8p0RUpDlTNHYfp7q7CrNL80MSYAKcVNAJDEJYRRKvwTvzxx3mkJ13qMU2FXpeG17MhO+3wFcL9G8PcM3sY0/DlrlyOQd2k7LwYG2mQCqwpZyHNEPo0Fu/0csaNPaw0FzaKeCpC+q1AaSOLYu7gNH8NAe7evA/z9KDWqkp+mlAY5FqmtTbxDFAiD0L+IsCCYTJBN+6Ms9Dnb+i+GtfEMsDbCOYXPhhyrLz/rig6wOkO911TY+NoKR/+srA/7YX1o4xfBZ23vGhEHjzzySHz44Yc455xz8P7772P06NG477772iUnFQThy8fquv4JMRyVYEIAxiJuLoF8qF6U05z/KSlCmRBJYr2LiH8CzQ/D5ABKFAs7SQnGi0sIAjiyCMMAthQjCAziOIbyeZ1CZWCURkIxkthm4WcgcE47pRHHMcIoBCmCpRLIh3cqze6RIOBwZDIER4BRBiYymWNIG8PigobPl+e8KOg4D6FmJ5OGzxsFDvNjMcMhTvz8ScJhz6o1vFFBodhiEUYB4lIMAAgMi6OBd/ikAmWS2MzpE4Wc+0srzudlnfXzBZkgYIxGwpZAFueMyR6wOU8YIZ8LvbCTTlOIHeda1IHmUFfvEFIKiBPOrRiYwDs1S+zOUtoLiKn7kRAEEQgWyoQIjMqcTQYKcRIDpKDh8/gZdiy5JAF5sccEAZI45gdnpf2+ZQFHKxZQQQRjQoA0oDSUYoePAjsKoeDzYJLPY6nZXRoTlFMIAhZ3rWMRwFl2I+pAg0ijVOKchUYDYaCRJGChNbA+fxo7AGGcD4MO4CyQlGKYPDsTjTGc187nYUQmtrDLiJSC0g7Ouxw5OdoXw+roA1JHKItX7IRzjp1v5NhJ66zl7bcshOksl6QGSCGMIlgbZ+IwIXVdehE6dbMSh6jmclEmKqfOuiwCQ6XyimM3nnfDstiGLL8fp0Hg8Pa07UjDQ71DMQgCkGInaXnOPxOYLCRaawOiNHReQwcGNvYuR60zQcs5C0UacN7xazg3Ziqup2JnHKcCoIPyeTGNd6Ol+4dFJcPivM9xCO+i5H2ehkezozoMtRfmVea8hRceAfgXKryv0/Bs3ve8nDQEWPlzlEVIftnCDjq0LsuL+JwvlfuSJLGZK1Ep5R17DtqH8KYvVIIg4P5dAXAGWilAE1IBmmBhlPbfcV7QVIgC7vc0fBoD4v7BpklrQbBkYROLIFC+HzNQ6bmT9k/piyW/j+MEMKHxeWItQhNkOWEpc2PyV61l8a9USpCvCnl6Jhiz6E1KQRGxEx1exNUmyzUJRV/oE408AwhC12Zd6QNWZ7e3prrQ9UlsAtaP/bA+tPGL4LO2V1G5fWQdYOnSpejWrRuWLPmb5BwUhNXE0qVN6NbtWCxZsmSdz+GT9gHvfDgPvXv1ggI7q9Lw2MAEIMv/ctEHXwCCOOQ1CCMYBTiX5mtyXATCWXYF+odN7Z0voNQTyKF52hcNUd7JRcQhikHID/QA+ZxTMWwScyibA2xCCKMAShOci6F06g4xSBIgCgMAHEIMzbm8oIAkKSHwyoKGQmIJSZa7y+dM88KPVhGHF8ILfJYfOLVRMEpBBUAa1lcsJsgXcrCWxYAg1JlIFcdczCAIAhSLRYRhBGstkIYUZ8KIKgt1ZGG2NX8VO6qI1RTvpGotUpLmbGQ3p0HsYgRGg6xDnMQsrtk0RI+33yVcaCBOWrw4Ah+my+4iKHbqOLK8/NifD8SCqnMOuYCLupAvYKO1goPlfa65iEkaNmopzfNG0DAIvUPUOuvznhkvUFh/Ligv6BLCIA+bxLBezFGa4KyC0QG0fxiPYyDKBUhcDCIgDALEnCjTC44lX8gk4vxpJvGCgC+2wbsYzrEAkYZaW+++5JBGzU5a4vx0IMCCw9ctsf8sNAYNS5agV6/e63wfkF7/H3/6CWpramE0u7+iiB2TCnwMoQixjZELI5RKHCIe5dgtqX2BDA7J5/yR7K6CF5hb34vy+cspCFAmrrBb0As2cD6c1J/rNhVfWcxT/npmp5z1bmAWqKy/5gBkIncQhhweTHyupeKWyUKByYuRFpoz/wHeBa01O0WDgMP4E5s6j+ELF3EovtGaC/wQQfkwfiIFgkMUaiRJDG3g22dATnFuVygYwwVPnAUCH0ZsrQUpjSAw3N9qQMEhSTi3KOfBY0EvjvmFi3WJF9kV4pgF0/JiJcYo7wSmLASevMsuFWmVBgKlUSqVEEUhyAFNzU2orq5udTwiTSWQXtvGF5miLLTW+qJJHPrPoiOfBxrk2KXZ6ozkwh/OF2TRiguAaCjAu/yMYTEwSViwrarOoaVUggkiBMRpBxNyCIMcYPm84CJMIVoSQhgZKGs5V2sU+ZcXDpSkCQAIMOwULzWXUCwlyFXnUF1dxde4jWFtCaHJZSHlaX9MsJzqAT69hnNYunQpevfuuc5f/0BZH7AetFUQ1heWLl2KXt26rfN9QHr9//N//15uzsF10cW1Sm1aFzdgDbEubmpXO1ZNDY0Yv8uBK3X9r/VqxYIgCB0xc87TGDliJDQCgDiMslCoQXWhGoVchEBpOFifiy/JxB/ohF1HOuDE7Jorv6pAw5IFJ3LnJ9A4ThCEoS9YQLA2zlwnNrHeRcYPkTZz0PGDpFYBrCtBEWAUh7MarQHE0CZAYrmCbbHIrjhL3sUVBbBxDCgFoziPGoehAS5OoEm15gIEcc4+L8YlsYU2QWp6QRgaACx8QBG0MiAoTrgfhYi9iOC8OwnUGuaXihZpYYLUUZU+kKdVT7ktQVYoQSntQwpta4ihz3cFzUn802IG5MOwHaVuRV5/GIa8bZQKGs6HAJZQKETQih/oWSxpDeHTPkcjHIcWpm4f67i4i1GtD8hGc8EHEwSwMRdMgUlDUllgM2GQtckRP1Inlp2BQVokIjsjfayl0tAqFaQpKxyglIPTOgtXVApwFEMpX62YvMjtuPpxoA2UjtglCBY2o8j4XJR8zDXxOR3oECrQvgJrmtvNh4wnJRZDYgBgt6SGD532VZ1ToWx9InXulYehpk45rRQSazPhJwxDKKQFhwhOkQ9rb3UaptW40++klYFT5xnrgSrbT9YXDNKm1ZnGQi0LTqUkzgrisHDtnb5pxVjwy4a0krbKtsvnPQRllXfhQ0AzIdHnHwxMmquPxW4FACqtAM4CGF9LACkHZ513KfMLDY6a9e49YjHOUauLD2ChNEm42Ebq7LM25v2mbLYMYwyaiyWEoQ+jdel5zkKq8i9OeKLLwp+dtf4a5pyBqeuuvO/Ijo/m60shrWgOwDk4ZREGBmTT5XI/oAC/n7iiMrxgnjomM2HQ+mJJGj683/rtdjBeIDU+FyylHkjH+9bGCQLvAuXcjzFMYFAsFhHHJTS3tIB79oQLxoQaOuR9aYhfGilS0CaAcQmnaXAAYosAXNRGaY2S40JH5LhAlbUJlLUgZxEnRXZFN1tUVeX99axBxBWoE2uhfV+UnWPkuKiNDyfPiqR8yViXntnWpbasi6xL+2ddaovw2VgXj98qtWld3IA1xLq4qXKsOkfEQUEQ1knuuvffeHHOCzCKKxNrHaCqUIOhw4Zj4IYbIGcigAihDhDmQtTU1iIXFKABkEqdIF70QwJt2WUT+CqhQRABPmxWB4YfsIwCND/QKq2gQ92auN66LLxR+TxlQa4AwLEbMdCcxxBAYALODxh7B4pSUI4FD601HHxxAC+0cc45B6X5YU8nrcVDtGI3GgAOUXY+JDmrzExwSLyAGcMEod8OLjJivJjorMvyalVURfVupdY8VTYr+mCt9dNdq3tRoywBPrsdFaks7JKdng4lL1ppsKsx9vnAWExjd1EUsGMxDdhMqxLz8W5NtJ8knHOPqzZrWEpYLCEvFmnlcyt6949vU5I4KM1OrTgp8bZn7jAWkhLLTswgYFHCxYQwDNDU0IjqmhrY2CKIFJKYw32VKhNUdFqEAGAHEp9LLIqwuyixJXY2ERfACYMAhARpeKrRCnEpQVyyLHhGgc+ppkCJZbHRcJXXKMeFW5LEIvBVZQED+EINUEBiWfQqlRIok4bOatgv5KpdfZAXnMi7RJOkhCAIfWEJPlcDE/hwUz6nbMkLOpaFsTSHX5wkCKPIL5g4v5uHRUID5/w+9deE9gUf0nOTw/p9rruAHXTK+PBnR60FK3zeTF/VCOQNuc6lDuQQsU2QqvQE7m/SiuGAz+lZLEEHoXetsniZFp8Iw9CLYfACvl+Qd/M6Yid1+pkj5as0s0Zkfc5WbZC5aF3mtGMxPYhy3pVLiEsl5HI5n/POuygV4MDiO5EX5hWHKYdB6Psu7feFD/P3aRtYbIUXBFM5zrfV8gsQm3D+V5ACVwFXsHECS0A+nwdZ8seHt52c4+Phz4dUGCTr80pa553aMaIoglJpcaL0GHJJ4DiJ/TEhtFa15+XHlh26LS3NaC62wCYJikkJibX8UsEp5CIHqq5CBIN8EKHot4N7F40kLgHKAMpk4qb2/SrIp3LwLzBcUkJcakFzqQEtxSK6Rd3gkhKUDgDtCzDxWcmiuA9DB7WmR1DK941Yp4KEVhvrwjNbKjStC21Zl1kX9o8cK0EQhOUj4uB6g7znWn+QY7U6ePrZp/HSnJdhdIRiXITSBoV8NYYMGYqN+m8AOBYGA6VQqKrCiFEj0a/vBijkqpHYEnJhHvBuoo36DAaMQ6hZWDI6RNG1IJ/LszikHEwAkGGpTafuNMMuujhpYaef4dBgUoRiHHMlXG0Aza6PmAA4w0UhSKEUFxHluB3OccVMDeWLIXj3GdIQQsVVVr1QwKGUOhPPWJQySBINSzG7xZIYQaARaA0Chw8nSZFD+XyYYzFugdFciTmJuZ3O5+9KhcFSqeSFOBYLUldVKpSkIaxAq7BIABQRtOKqoxocpqws5ya0cQkIWNyzPow5LR7gHGBMyGHclEprHLLnnIUJWnPFlUolH2LNYZyOuHiMsw4qtScprgybiziMmhMasnMmtgmMUj55f5KJIVEUwZLzD9EsmnD+L64QGwYBbMLiqE049Fn5Qg9Z7jty7FYjgjE5GMNuyrhkvXOScwY6cghNiGJzDGWAMEzdjgZhGIHNXyoLxSayMLyzkVZ8MIZDLp21CLxYDUU+rN0BmgsoEFrzMxovDJaSGHGZILY+4JzLnHJhYJBY+HyXic9Hx8eNQ1iRicnkXZKp4JUkiU8fkFaMVZlzLBXFjTEIowjOEUrFGPlC6j7zoa1gl7ID+RcDLhOh0xyAcamEKMh552Hrd9PrBmlINAiB4aI/Sikv8nI6A6/tIU5in9/PO/yc41yiisNwrXMwSN1jLIg7Lwpy2C4LnXESt4bYagBwvvCF/66zPmQa0JrzhFrrkMvnM2E1zfUHpZDP57Nw3cRahJHJ8vORdyey49JwURFKRT+NIAizfoe8azuXi+BcAqW4AIxLLEpxjHzB+NB5DmuGUohbioAjBEEIBRbBg4Ad2oHWcAmHMheLJZ/vMczCislvsyXnK5anqRHI5yXVaGlp8e2Kfb8QIAxCBFEuy3GpFAurjU2NaGppBoH3A+cJdVCWzx9SCsZUo5iK0r4ysVEKpVIJJl/FYeyK+LPEQUd87kZR5J2MHE5fimMQHHK5EGEUsdsxcIAKYDRL14HhKs3kHFTAQrB15F9gGM65atev6//z8kWOwlb3eta1EeSabo8cq9XHutYeQRDWP0QcXG+Q7n79QY7V6qB//4H84OsUCq4AC4tSsYR5r72M1159EUlLETZxyIUholwBQ+bMQs/6euSiKpAtIR/l4Byhe69e2O6r2yMfFmDAD4rWWnTv1h29u/eBMREssahTjIvIBRFUml9PWc4JpjjfHZSvzundII4clFNQWVVLB61YNLDWIQoCKLDbsOQSBDqHYqnIjh6fWIsT4rM4VkosF5kwnKw+8ZV5WQTgKsPOck6p1FWnlIPSAZK4xEKlMlDaII6LCALj3YWOhRH44gm+oIEj9pNZmyCXy3lhAeAQa5uFM6eFPbR/QOZ0ibxkKCCIvNACL0op78QLlBcfY0T5fJZzDeCw3yQpZcUTHFgMSJIE0AGsJRAlXDnZpPn3vBuUgLhkEaS59jWHllpKH4BZaOWRsgLgxVMVIPX5xd6JpnwxhpZiC0LNBWaUUsgVIjQ1lhAEvmqur+mh/GIztyWxcEPpdJuwEIW0aAkLiYDy1bZTwYSr0rJIpGG0yhxKzufHTN2AWisfMg4kjlCy7G4KA4MkTpDEMXI5dthy1VwLpVn0cbBQzq13N/u0CA+V5Ve0XuyLwjATvRRxtXHnC9y0Vmjlqr3KGAS+mJCCz21JCZwDgiBEWg07zS+aL0R8vkZcBEaHQEtLC8IwhFYEBy40QwBAGmQ5DDQMAUd8LBVYRE58sRryzjetuFCNgoIyXKQojjn/pvIvDLRWCIOIiyyBQ2859J37gnR+zjsYwDl2Pirv0AXBuwQ5F6HRGsqHm8ZJwkVEQFwoBRz6HIYBV8t2LJZxpXabOY2jXI6vPR/aHAYGSDiNQakUwwQBuxgdV9MGADid+hhZQPX9TVppOjAByPczcZwgMixO5nMFL97zYogILuacmxxTbGDAgpjSChT7QirezZ2LQvjkq5nrU/n8rppYhORNU1koeFpUqVQqYumyZbBEqCpUIwojhEHg96lGkpTQ1NgAKGQvLrQxKBSq4CwhVi0AWcRxEcWWANXdu3M1dPCubGpuhtKc9kErBRX63LPg/l0rzW5vL0CbqABlgaS0DFprNDeXEOVqfb8C/+KI22Kdg/Zh+PxywB97xdW8A/PlCSteGQHkixyFddSezyPSrM0RZEftViv4fFWX1xY5Vp+N1X2sBEEQABEHBUFYRzlov0N8+GYCAiEq5LFk2RLMe3UuFn2wEE0NDezC0wGaizHefOMNzJ3/Gkoli8iQF10MevWux1vvvoEozHElSHD1yY0GDsLgQUPRvWdvZHm8FKG2phY9auuRiwoc0gsNp3iYpchC65Af4gMN7djlo5WBtQRtWDyDAgLDUpzSBEucp8p6p0kYhByKmLD7Ji1MkObxA7xjSLGYl1beddbn9lIcdgYfzmuT2M/PbqpSKfGFLtjpZG0CchaAT1zvLCylD60sDsALBmkYaqsgk3DBDp3mGnS+oAALL/C5BikVEwhZqLZKBVSTOqnAif2NykKUrUtDhJHlCgR5sa+smEM61FVE/HAPLrrAniniKsQ2AUj5Sqi8X4nz8iMVWshxsQ/rLLQzvvKrysJQU6cfEfn8aixmwhdNIPCyreWqsEQJ4KsYc/gwMteXAouwShuuaBpG3jlls/BsrrQNkOXCDgqA0rxvyIuEUOSrk7bmGgy8IKPBxyUVdLXmCrmhF3SN1lyw5ou5bFcbxp/L7BjVfl8l3vHH+0trrgBOzsFBVZwrrTnouCp4mmtTKRbfnA8rT9166XXErq/UOchiSxTm/EyANsqbOVV2HbQ65Ph4hkEAzp3XWjAjdRqy0M/5TBUhq6QLpbldls+NIDA+V2WrWxdKIQi98JW67Xy6AqX8uexDbbl4ksoq9nIhFu3D8NNK4pSFzabFmQAFa8nnaNSwic1E7rQIkiNkYbvOEVwp9qkUuD3OsghJlp1xUEASxwgiv5w03DtOfDgzvxQwSkMHAMi/DAC7CZM4QamF0wKEAIgChLkcF0Dy+Ry54jI77pLY+v3PTluA+xaU7c+0sjcL8iwkNzY0+vODXcFJkrAAR0BzsYimxiaUSkUUkwRRPofa2lokRIiCCMYYNDZZFFta0NzcCLKE6kI1lLYIQ65irzS7Vg0MX5d+PzQ3tyCINBczMgbFIheLSdNUGBMgjksIQl9IyREXbwqU75fYwZ0K3CkKKitC9WUSCToSdzqaXv4ZgPYF21dxp1QsawWLWZ37u7P1rgnaikttp63q+tfF867tdi2vjat0ynQWub+infAZD3B66+rsa+vivhcEYd1nPRIHOxoOUJu/2863vB63s2HE8m4FK9vVdrQM6mAOajPXyrRxVeloH3W0jrbvmFZ0q6E2/7Zd58rcdpfXlrbr6awdnbWr/PfOhpKdLb/8O233SXosV3yM27L6BnjL257O1rr8tq2LjP3qHqitq4EjTmgfRiEa4wYs2OQ1fPLxJyg2NyIXhmgultDQ3IRX58/FO++9g2KpBKMd4mLMD14tjXj22acRJ5zny/jCJc+/NAsb9huAqupuXF03MDBGoXv3bthkk+Ho3aM3AsUPuDrQCIIcevWqR011NxgTohg75IIAUAkUImgvCDgCtOLQY2eJQ3xhoHzd0SAIfDtaQwJBnPtOG+MLpvpwR9bsgFRUcBz+Gju05gAEV+/lsFfDieyhOPSWEh8CWZa4nwjWkS+04ABy3jnkAJcWrmhN6J8KT2mYoS9KCiILuDSXGQsXbMZhMSsVGxQBURT6XIHeFWnKBRUWRrUXJI0xsL44Q+CPCRdx4FxizhK00oiCEOSrEKcCDIcyKjjvijJBgMRxGGZoNDsliaAU5xKzNkGg2aIURRELeEEARwRHCcIoB+tikPKislZwFrDUWhDFORY/rC80EeiAa8sqAOD9rVINiizS6L4w0CDFxSrIKXZaKg1SCRTx3cA6CxgACbuKCArknZQmCKCInUNkfMETcnAc0855ICmBhoZTnOdy/UJzYRoFn6OOBTtjONyb87ix61Zp43PGkT+3WOQlL5TFXlRUvlIuL8ekHk4fvZ3A+GOfQkR8/XvRj3Say45zT5IX0JIk8QK7glOtVW+10r6qBvkq6NbnPeVQYUcsXmqdbh+fHPwygPPuKaN9NWQWzbXWSOLEC9S21VHrHK9L+xx6/qRLnPWFcDRMYJDYmKNZtfHnjM/N5xy4uAhX49VaZzkOCdx/pIVJ+AVEyYfAA1BeWPdiG8DzEDj3XRrGnV3fPnefI1+IqLkFGkBNTTWHPduEUxAortBstEbJJig2F5HPR6iprUWxyGHE6fWqfR9gE3Z3m8BkYd1JHGfHOxN0gSw8vVRsQRzHIBDCKEIun+NQ8yDMQrlbWprRUmyBixMUqvIwQYDa2jqUrEUuihCXiihUFWACjcalTbBJCY3NTaipDqHgq7lr8uIscdGoMETiUzQEWdEnThEQJ0U4m6C5qZFfSIRcZVn7845zcvqXNXwIvNDKx45zNiILFU9csgav1TVEB0M18t1Y2xFXNtor0/t9N5ChAC7m5f/wXUEno0zyYqKqWBZfIW1Gl9TB6HUlutsOnV1ljSHVft7Med5mNa1TP5sC2nY/dT7Kbb+3VAe/rUt09lSQ7f82m9S631uf1Doe4auK76dPCNkkKvu9s/OMWs/JdG3p+ldm1J61jbg1yzsC7cRxYa1DbcYbSpVdTerzXU/ly27L8tZTUQSuzXI+b5tW1BZh3WAdFgfLbk2Z9aO82/VWE5T/tO2+Xdl0BZB/aADKBrNt1tWhmKLa/KCDedp+t60wRRVzpdXk+CHD59tKB9dI/23NEdPa5VdeRJU3tjYXmCpvj0Pr/uhsm4j3UdniKLvdtN32dFmE9Bu+xl/ZlmooaP9v+To6GnKULV91dEw7GZKQLmtfZ9tavo50meXnD8qmt7Y9+5t0690d8Mep7THuqO2tS04flNL5qOwoty6zzbIql+B/Lf+8rB2q7faWfzfdJ+sXPWp6o7amFumjDykgNDmM3qwbbJLAkELiiogdIXEljHx7M7z/wfs+fJarbZaSGO+8/y7mvfY6Pl36KcIggNFAFAb44INFeHnubJSKlkM2tQJpoHuP7njhpVno0a0bAsXujiCMoLXBoI2HYvDgYajKVcPGCapyIXJhiG7de6J7994wJgIIcDZG6PP+8dloYJMSQh/C6BygjPEVRtlVqELtHR6ExLIzTMH66qKUCVLFYglBjs9J4tKkCILICxQhV79MHxqJcyaGQQjnXXHssuPHm7SCMAuaGjD+THE+XBMAwLkNwxBeDPHVRYmyRPhpLj6uHO2yiq5EBIKD0SFKpRig1NHHQoQi5UNqfQES705E4oVAR5lDCgDIgZ2XoUaxFCMIFAst/omwWCwhjCIOMQRneDOKq3nC+PuIZhcepWGlUF5MYaGSwO4wuNYqtdoYxLEFiKsxs2DlvKhp4KD5gd/nYyPwqpTiwjPsIGShU3HyNyQ2BpSD1nxupf0nO4B8EQEvTFDiEIURXBxzmKpmV5tSChTHcM4hNBHIO6KMCRFbC6P5XHRQsMsZKK6LlA9IkzhBlItYMPOFdbQyKLYUs9xy0Mrn0ysTu3y/kRYRSh1jWiskjsN0ja/8DJ8OAK718dsY40XBtHpwwAWBvPuPC2J4ZUApkON7S1qROBXUkQq3ZHl6YLxrLkEQ5sB5EpFV79VgQQ2OwIXAWRyObYxQh5mTkJ1iXshT/B2tFKAITU1NyBfyiOMSnCXYhAv+OBdzKLAOEIa8T43R/nrl4i8xObDXVHlBFSxm5XKZQ42LccTQXkRzzvkwZ19lGvyiIa1EHEZciCUdd6X5FONijCSOM+cwNDhM37Hwnbj0BYBGY1MTrEtQ160bil4gJaRFSAxAXHgjCDifqSsLSU+dgmnfqI0XzeIYWmkUW4pIC6UYY1AoFBAZXzBJ+/5NcRGQ2ro6KKURhRF0yGHW1iUIdYggMIhb2LldiosgCjmEWxmfokKhqaEJ3btz7kTnLHJ57ygGF7Dy2WeRxDEcJdB+v+bzEQALELuBHbms+IyNLcglXKEYLJIqzekdUoF9fUN18HtHolX5aFGj9Y90vnT00/Ypovy7ZU8KHa6/rcDUdr7lPRl0xso+Enc2Si0f1a70QlZlxSuxuHaC2HpCR/synd52vo6mt6X8KabtsgFkL1GW15bPuh/Lv79ccXAVlyusmJUV4FaGzkS6z7vcjpaZjm3TZXW07o7W39H3WiM2Kr+b5r5eUdvXxHYKn491WBxMBZ7Obn0dnTSVt28+4fww378R56+log+V/Utli0y7WMtPowA/cHR4onZ2Kyn/3S8/fWIEV63TmVOAxZvsovUCIZUJUgrwuWmo4qbsh7uoHPaAl5ttf/qNNLCsVWxL9xGH1bURDKn8PVRa7S7dV5Qt36dCL7tBld8iXZt1l+2Pin2l0bpedPB52Ub7tvEfxstsACh1PnQkCrY9duVt7ExUKxf9VMd3fKBsP5d9LV22av1Sx91c2zaULadCBGz707at6b/r0/Bs+ZC/ZrTSSMhCQ6MqLPDmRwqBMijZmItYUIwgqsLgQcNQKFQBLobShBabYFljA155+RU4Dc7blSQoFPJYsGAe5s17FYs/WYJiMQYRoaQMYmfx+vw3EcdNMCAEyoCiAEYBz81+Hn37b4SasBq2WIQioLpQixEjh2P4JsPY+ecr7moo5HJ59K7vix51PWC180IPUFXo4cNOfU4yzVe9S0owOoSDhrPIwtCgQiQEIEkfJC2LciZg5xocjOE8ZXGpBGM0olyIpFRk51MYAs4/7Pv/8csJ/j3Nu+V8P+jiBIWoCrCEJCHERXbHKMX5F5XmB+iWhhhVuRCkExitULIlRCbkvGasMrLDkPjtOHnRwWgFKAtFEV/LhuAUwdkSIh3BpH0gWAS1PtxaaYUg4lxjUd7AJQRrCdYlMAbIRSYTwrQDO7K0hmWrJZzlazIwCgq5TIw1mgtbAEApiRGEIWxsEZrAC7MOzmnYWCEkjTAHJK7EIb++n0uc4zBrS4iTEihwQFJCTgUoNpRAgUKhOg9NGs4liEslhFURO0wpgSLHecuSkq88zYsOggAI2DLqQIiiHPe6LoaNY5BlxyQSDuW2AJzi4jRcEdpAOQej1696xZyLjotNaOiy+6EXigmZ0GN85ebWQWbrAFZpzu0HAKU48eGvgALnqIttwiItEYKQ89Jx5WsW5IzhvIBac5g8vBjuo1WzkPRUtOS/2Q0beKFewXHBCxBXmPXCmIL2Ybre3Wv5fsoO37QYB0DQIMXCllYaTrMPlFMJKCQxhyLHpRgm1GgpNqGppQmJjWGdRRI7WKtgikCSlJDEnBsxn69GLlfw+9ZXh0aat5Lzpqb7Mg3fTcdNSRKjqakBBEJNTR0AIJfjEOkwCOAyIZAF2JbmFuhQ+RcRXqRVHKZsLcHGMaBaiySlOSajKEJSTFAqxXDWwlqLxDnkchFfeURZ6H324k7pzC2d7qc4jtltqvl45oM8AH5RlJRKsM4iX1UFExjk8nkQwHkOFfc/JmDHc3WhgCj0YeNaIfRO0jAMEYBzPxYLFsViC0rFFjhXBwScLiA0BsuKSxG3OJSKeV9V3hd0CnyBEcXFbZxzKMWJrxIdIC4lCIyvTqw1V2YGp1lYtmwZV2cvFWFtjFwuhyhfAAhwiYUGEOh1eLjfCdTul8o/lf+jfKRUPnLTBHhjd/Y9Kpuv3A0IP3/2xKHav1LN1kOtfy9vFPmZUJ0vq916y+bt8Cmpzb4B/DYRKlyJ6T5U5UvKdlrl63c/CdmepLbTV48ItRwtbbnfSSk/Vh2NmAmVH1R8NzNJKLTaNcqOc7adVHk+VaxFpf/P2qOI2rlZSVXs9U63pdz1l/1edv6mNo3lnYfrn0Vg3eazvHBZFbFsZeZdlfaUi3ptv+PaFKzrSPRr27bOBMSO2tuZCLkqYqHwxbEOjxbKxUGg4+69o8+oze+tQhi7q5ANbrMuX7XmYyFyAGzrd8uFHlh0LtKkt5K27Sh/IPPOAjLg3F/Ki2wJfNwPN0dxCCJUKpj5tpDL2s6Lo7J7sxfMqFzkaw1TqmgutQpx2W0pq5rqHxCyO5jLvsvztoqZAHldTEOryLfXASgPXynfdynpPi53u+mKn/QI8S/suvHvhLP9q4iTtGf7W1eKbOUyasXwhviYtxsdZWJeedv9fk4zsWfnRHpM2u7ctAnpslJnSXlnT8jEUFU+7ChneedZek63HgdFHYyAyrdhtQzXvlics1yNN4wQGHZ4wTnOY6U0inEMZbhasCaF2upaOFTDQEOTg4VFEAG1VT3RZ4d+SLzLRtkEhVyEzUZsjjffeh1NjU1IigkcATYIsPDDDzF/zkt4690FiIstoMQiqsmjkM/hw08X48XZLyGIDVzcgtCEUDCYPeclbDx0IEgTyHBVXYJC97pu2HyzTbFhnw1RVcVuQ+00dFCFQRsNRXU+j7hURBTkoZRB7FoQogCj8yiWmhGF/PAIOMSJRS6IQNrBxkVoHYCgYYxCEhM4WpkT8isFlIrNiHIhC0jO56iDQikpQWlwpWClUWwuIsq15sKzsFAhoaXUhCQm5AtViBDyMfH5B7mIB4cLk7OwzrHDJUwLp/A1nFguigCtoAKFUHFor3MOcVJEPoxQakqAyEGF/AAfRIYLQXiRIE4ShBEX7kjdmOyiNAgCfoAPgxBQLCAaKG5X4gDLgltaWTgIDRKboBiXkAsLcAmx28ZohCYE+erJibUIghx81jgQcTir8e6klqYiTOh8l0toiUsITI7zOpJGLpdDY9wITQQig3wuD4q8mzNJAEvI5fLspjSEQCmQTaBUgMgX0lFQXsxg4SmxFjoKfMh1CYBFmIsA0uxGdITEOcTWQQUmc6TC53ssthTX4tW86iil+X7nlD8X0u62VfgJwjKnmmstmEOUhgq7sj6axWEL68MzueBQnFh/m/dh7YFCGvud3m5T56otE7wICkZpkEuLxfArMg3uuzgMmMNi05d/1lq+B5CDCULYRCGJHUxg0NxcAhcysohyOYRBgCgyKCYxgiAEyFfc9vcKHrizg885hyXLliIMA9hSgoaGRjhK8GlTI0wYADBIYr5GrWVBWesASnFOVygO/wXgi4qEiGObvTRUUAjCEM5yDjzyDr2WYjOstcjl8qgq5EGO3arsagNSN2bmzNUKisApEHyKgfQFCAGIE4vQV5o2yoD8SwiXOLS0FJE4i5zWKJZKyFcVYNPcp1p5xziy8GHlzxEufMShyfChx464ki9vM7t7gyAAaa6qnFY45qrBhsVDa6GMQpQL+bwjFrCNZmeyMQYKAWzCfabSQMOSBixb1oCevXohSUooNhfR2NAIKmk0NjbAKocox/0MO13JF4kitBSLIK2QzxcQl7jKcmJ5zKV9oSkFztXoLKGluQlxsQWlYjOqq6v5nHRAVb7AR3A9fOByis+zto+oKv0vtY50gbLRn8peGWfzpyHCHYtvVDEvoODAruPKEVSrUNSONstdfoDnKkCt26fK/ttWCCr/u+2aVUefUeXn6bZ1RCqaAoDNhDH+JbU7pNccrabN/iyL4e1sf3TLj0X65KjK/iZFlfNS+3OuXCjMvpf+vpzGtr3s2o/o0zDi1qPQ0dNu+tTQ7gNV9pSoOvy49e/17zFgvWR1Od5WRkgDsEKRrny+lfmso/WsyGFYLi6WC4vlgmS5oLgyocrri3Ow7XW2TrKKt/91WBwsE4MU0PE7j7ZdPECZqJhAqRhEMQgxnON8MuwYUD6FPYd7aaRiHIs4RJbnhUaaxp1vHq1Om1Yhq7wNHYmUZbdkpQAdsDhI/KCeFhTgj3U2jd02Lntg8U8vfrDSuuw0/CQbJZVdTNzmVIRrFRY5J1ga8qu4PUqBqHX9PvkY3w4pFcfKBg+kABikFf9Y80qtFIYdfFR+G85GFODQn/KsLel+4n2sfDnQzNCpuPJe+t3WJijvFOTvU9l/s3WTP1bZzVeVTU8PzYpCctP975dL5YJr2XmQioLZvi8fLZbJk4r3X6s7tLxraW2Xys6x7EvcVirbOZVfKaPtEGSd77raoVSIUEcsPimNOEmQMwFcnMCRBnSAMIhAjmApACkgto0oRDXQFKFkS4hVMxJyyAfdANL8UOoclLbo27MW3Ws3hLMlqMRCByGsAj5evAjvbTwE7yx6C0sbliGJLXp1r0MUhXj9jTfw6ry30NKYgGwJ1haRlGI0NzfjpVdeRFOpGXCAUwrahDBksXDBq6iuqQM0Cwm25NC9e3dssfU26LfBhvxgbBNYA/TuXY8BvQaiW9QNiYm99quQOIVARYA/ZxJbQlWY5kdzvgvhkF1yHI4YRnkvVhl2GJLLipNwpVC++RrD4WxxXAIpAqkYxjioKEQQEJxeBpUzaExa4EoJoiiCJsAEEXQEJKUYgYm40rJlN4ujmJergAQcGmtUiJLlfi0IDaJcAXAKYRRwOHPaTSlCotkJ5SiByYcoJgkC45AkMVdB1VyUQhkCKQfybi+lCMWWEqJcHipQgPWiURBAqQRxnHB+OlLsGCPOAUZKwcbsEtJR4Ht5DZuwOzCJCUqzAAsoxNY7+nz/HQWhf6hgIcQSkA/zKCUtCPI5/zrEIVAGHDUdQymDKMxnoYE6yEM5H0asgCAMUIpLUDqADlic5X7QO6UAzh0JXwzGEWzCYgbgYIIIAO+zwISIwsIXfxF/DrTSLNgkrREELgGs0jCGQ3CRcLEH6ziPn/IhwonlIjgsyBF/pjiy3CUJBwKAi18EoXfwxbEPl0/vVbyv41LiKxc7X9yCUPShnsrwOcb5NFlktAnnfAxNiCR2iOMYiY05DNnFcGDxWWsOP3UOiMI8mlqa+aWCr0Zdlc8DxsIYdikGhsOJk4Svdy4epDhfXxCgWCwiCEOUYgtr2SVprYUDEEWBj1QIWl2l1qLaKCSUIFChHzqwIOuI4BxXhVaKhSXnd0liHawjJC4d4GsEmislEzmYkJ10OuCEqQqAjVlAJGX9ncn4fcD30iAMAXi3JQK+9hxfL85aWJfAKQcyCs4AMSwL8jrIcrdmL33JD4MUZZWiybcnFTWjMACIC6PEpQREhMQ6FFua0SMMQNbCKAUVBlC+4EqpVPQpBfh+rw23kYV8HldxvkMOoVYqh+KyZrQ0NqKlqgrkLBYvXswOyKJGc0sLEpegUFWDfJSDTYdEmtMuJHDQYYBcPgdnSyglMRLrfPEqzq0Zl0ooFouAAhqbmqCc9VW8LeKY0wmgUO3dYuvfGKBs+IQOfs1G4uVOKn/LrBBSFLUPKW474tPpAskLNmh1YqWhyu2EHdV+OauVNuJnJgKh/eFU2ecqG1F2lLtOtVlm+edtcxy2HcHz362JhCqegKhipnWKtseo42PW+iyhs/aXpaICOnT5td1P7ehEsEt/yp8+qM3vFU8FquwpeBX2b7nFRli9LE+sW5nvdOa+KxfiyoW18u90RtvPnE/rYa3N/rXWIkmS7Cf9DOCXa2EYIpfLIZfLsSM+CLICZB2Jeq35yVvbujLOwvS7bXMttt1P6zrrRUtXsZHrrjhIAf8oYMVm6FZhiV1rMYia4dCIOFmKZU0fYmnDx2huachCkSoNeCq7CLXS0EaXnZjp7bA1dx5Blbn7+ILh0CEOKWGRzz9beCce/21gTIjA5JCLqhBGeYSmAIUIQOgFQ+9ocwCLUjw0IS8CgMqce8oLgyoByPrffaJqOBDXRgWQZAKi8g1r3R4DqAhABELo82wpvz1eREwFMCq/paXDC//esCK/Ybpjy46PH3C1jmp02Zxp6FJ6DNN9l3ZE5MVSi9TVmT3IqLLhScUIiMVLaOMfGsqFT7SOkCrOnTbtz7axo2np7wqpC5GybUm4vakTtOJ75UOytqHfZUOB7LzXmQDR2j4WsctlxFYHYmesF91XBRz16is6OosgCOGsgzaBd/1wTikkAGlCjJgPMTlQrBCXYiRBCSrQ/BDpAs4UQCywmSBAFOSglIMJuOqlI4uot0KvbtUYMLgfFjc1ILEKG3bvjVxQwKjhH+O9Ld5HKSEQFbFs2acoFVvw7rvv4N1F72FpQwNCE3KlXhVg2eJPsXTJErw+/02QtlAwiGOHfC7A3AWvorquJ4Io4sqU5NC3b19sNnQk6mt7IcwHcOCCEnAG/XsNQN9+G0CFGqFSoFICBc6tFwR5di3pAATHD9JIoJWBCo3PjWa52nKgWKgk+EIYAUg5QMVwKMG6EqxySAAERoOsA1SARLEj0pCCQgRFQOzFs1LS4h/GDZRy3s0SQ3nBFY4QO65oykGWfDlTwuHRoQk5j6QygAYSlQCwCJSCoxKUcVwx2nL/pJ1FGOQQJwmLnqThbIJiHCMMIxCxS84qQuwsIlWAgvX5uLgYQ5Ik0Mr5CsEGCNJQRxb4EmsRF1tQVVOLwGdFcJSAAOTzEawtQakAiriiauCdmCyuOAQAolwOVhEsvMvIX8cmNCh5xyM7MdkdzXns4NukfBGN9Np1mQOKK0dz6LEldg5rH95qdFodl8OyndNwCiC9fvUBSgFKc569IDC+yjYXdfDKMVxiWcQ2XMGVQ+19ZV/vSgsUu1nJOa7+DL4XacV9jDLEwqolrjBOlot6OGQDXufArreYBbCWpIhcoKEcEBCPF2I/PxFff4llp2KpZNFSLCKJW0DKgjSy4khJkUXiYksCFWiUmpuhfNiwLgExldCttprdpibIhEvtHbicz8/ClrhgRZzE7HINIrhSEdU1tVzBV2kUqvOIkwTW5WCTGMXGRs7j6HPS2cQ7+RTgYL1bkvzYwr/IMnwfsy5B0SYoWYt8kOcBvk2gTOTfkRESnwsRPrcjka+4jdYQags+LkEYwdkiolzIRTrS65pLdiNOYigDFGoKQKhRcjGaSy2c88/k/HJ9sZbEIgh4HZxX0CIIQ77LE983wzDgl8DEFcJLzUW0FEtIbIxSqcTFTKARBAawCWyp5F3shl8iEY8KjdEgRVyYyBeuMZGBBqGlpYRAE8IohyQpwTlCHDsUm2OQ1WhsJISxgTE5DhfW/MJYKXDuzMDweFQbRFGIpmIJ3vLNzmfNuTZtQli2rAk2schFAQKjEBo+pmEY+JeoCtRBiNi6TtseqzxAgsqHREDmWmtbsKStVpWN+FTr76nAWB5MWv5+t2wE2U5gLNMl1wid5UlsB7Vv3/Ia1pHA1fbzTBjt4PO260qH0+uKBt2R4Ll8Umk1e1LKvt+pp5LS/UNl6/IjfqqYLdtZqs1xylaN1JXa+sTQtoBI+XI6k1xUm9/XkcMhfEaWVxykI1KhLnXulfwLpMbGRjQ0NGDp0qVYsmQJlixZgsWLF2Pp0qVobGxE4ou21dbWonfv3ujXrx823HBD1NfXo3v37oiiiF+ieUGxtaCgqvi3bRs7am9nocTrkyD4ZWfdFQcrurXy2xN18LkXkGDBPhUH64poaF6EDz99A2++PQ/vvrcQH320GKWSr+Ko+CEqjVVKw5CUzzGUhhH5gpt+TMbrLBs+eBEt7dJ1OpX/1hwRqDWLOUFgkM+HqKmtwgYbbID+/QeivvtAhLoOQA5AHkAAqIATcvvblKMSgJi3TfH2kWJHpKUWtBQb0NzciKamJpRKMeJS65sAzjnEzklOAA4Yo/ybgBBBECEXslBZKNSgkK9h4VLlfSivAUizcKjyUMiBhcx06OVDsMvvWukhye5uqfhGZYcv3W+pKMjbQyh5UbNcMASgbHZ8gYS9AK1xZmVuSG5z678BoEIQAgBhq9BZcf6k29L2/CvfkPINa/t76iRMxekECjHvmwpXYlmos0o71vL1tT3fNe//ijbrTAiksuIkrf/t7Max/BvKOgnBX3gcjkpkQUpz6Kfh0D3lODzf6RjWJ2q3SQDt+LxNYodcFIIVREBZXqTzwngIdnKBCPAOFWVY4KmtrkaLi6FNHt1qeiOna9C90A8D+gxFAguFZixrWoJlTU3YcvRXsGzJp4hLaWfhEAUFLG1owPMvPY9F770D5xrRUiqBoLGsYQkWf7IE77z1HijMIazKI24p4p233sP8OfNQk8vD6iKHhGqNwGoM7DsEm44cgbruNSACcrkIWit0q+uODfoOQnWhO5LYwlGCIFKAcyjk6mCCHEAKoWI3kA7YgaigkRA7BnMRIaEWJGiCUg6xtUCg0VAswfhzMAEBCSEKegIIoBTBJQ5k+EUEtEOiCXFcAtI8pAlAhtDc3IKqfC2cM9AIYRBBO4Mw5JxYlLALITQaFhYxlXxBAn7QtkiQgBCYCEEUgGx67fj8aCAof/3pgFAqFhGEGol2sIGCJc4JaFSOwxidQ8nydkNpkFXseGJlg3O/ESFfVc1VYImdgwQLSw6hLiBhsx6MAqIgYsEjSWDCADZpgTOaCzs4vieE2vBpqAgJJfClRMGVnS2UMvz6wHBuyFJc9BVpnX95xeKHIwtFyruWFMgSQsNPsSZkB7zyL3UcEYyOfAXj9ataqVI+n1zAodUJcbEO46sDB5bzAsauBK0I1lflDhAg8q413q8axZaSPz8IsISgwI400gSluZhFlMtzyK0iX5REQYGLdWjNzlLneD3FOIFJEi/Gs/AV+BdRkTFIoL3Ly6GpqZHvxQkL3MW4BUHETj8bsziYNwaBiWB8OE4YhljW0ICq2gIaGhtQna8GHBAXSwhyLOBpo1kYhEKxpQhHQHU+D6UC5PJ5hJFBoZBHHLfAJY5zCzY1oyqXw9KGJaguVHEeRZ9OAIqLtBjDw0LtQ3UVAG0CEDlAB/w6IklgdACtDcIwQikuIglDmCCEU2Bx0AJBoOASB61NJkBqBZB1iKIQScKpWrjP4DBm8tEDQfo72HkYBDmoQMFph2JLC0JlkA9zAPmq0T68WPvqyAA/JLUWSWHiOOZ8hWUvHh3xHaG5uRmB0Yhdgqowj1KLRejFZmsd8kEEZbR/QcW5CPk4OMQWCL1rkpIEBrw/A5WDMZxH0Ph8h84pBDmD6jCHIAiRr8pBGe3Pr4RTYDhClPeV4DUvWxndKvYRV7wPQuOLmuRQW1MFrQhh4CNvFF872gDlBe7WF9IRTqvIV1HarnWesmFaWwGtbUhpW2EQ/vsVTkPw37aD5Za3p3JUtfofbNsJfah0mmVQ+6zj2X5oO4Qt/6y9QpWNUsv3Y7qItjkOy88ofytb67SOgjvOwdc66i8fL7dOTQVoUqr9fm63rMrCgg6t4dVtnZl8HDo7R9qcSVT5dJLSWYxTa3vK5qf2x0xYvXyWQhorI5atiuOu7XLbhvOWC4WpczCOOdqpoaEBixcvRkNDA0oln+vaWhQKBZRKJb7H+Htoeh8tdyBmeZ07CCNeXr7EzkKU2+6DL6VY2EF/vFrnX02su+Jgee+YiSDptLa35vQ21ZrLLrEt+GTxIrzx5ut4fcHr+OjjBixbmsD65yPnTXgK/qaWLqmD67Hcmu+fHVHez5d3xmlT0sWwOMjLDSOgts6gd301amoUkrgOoHoQ8pxYGq3Jy3kl7JZTSLzIFMNiGRqaPsUniz/AkiWL8OmSj7Bk6adoamxGQ0MLWloIpSJxyBUIzocAUVmydq0VtFG+QqFGGBpEkUF1VR5V1QV069YDvXvUo3v33ujRrR5VhTqEurs/BOmyvABa5oys2FkZacgzIQ1NzoZ5mVMwBqEFDs0AinCUoBg3oaGhAQ1Ll6CpuQmlUjOai42I4xYktsgPKllOP8XCoDKIogLyuSpUVdWhKl+DQqEGtTU9UYjqYHQVAAXnRTeNAHwJeBGu0zDxtsPN8vMv3T4LVSZetv5YL3ZaJD7fk3WW8yOVhXnr1A1kDLQy0GARJRU5W9tnQDC+3W0/K+9F2h6H9W94oI2GI0BZriwZ2wREDlHEBUiU1iiWisgHecRgV45WBnHRIVQEZcDCiM/xWYxLME4jCkLv8AI0sZDiHAHaAcqipdjoK5OGiEyIIMjBIISzGqGKkA9CxGiB0UBL0oKqIERNVQ3y/YdDkUGgcnDg4iOxsxg6eAQaGhejJV6CxuZGNDQ1wcYlvPPmO5j3+gI0JgmCKAcDoBQX8cEH72PBhwvBTj6HlpgrlL79zvt4YfZzqMpHMBGHqgYBMGCDDTB40FDU1/eHs0Cp2IJ8IQejNfr33wgbbbQxFBQoKXHYn8mhqtAdgeZcV4HSaEmakFACHRrEJYsgyCOBD8tLWKwvlpqRtCSoydUgQgGOHHJRFUg7JGhCMSkhLrUgti2wpQQmCKGVgnYEIEFjy6cIgwKq890RwMBQAKU4xJur8EYgrZFQC4rJMlCSoJg4BNrnFFMKDjEQ5KBVgJbYIozqWCBz/ABN2uH/U/dfT5Jl+Z0f+DniKncPnZEZqbNkd1U3WmGgBhozAGYwHEFybPeBu2Y0I1/2aV/2z1nbhzHaLoe7xiGHIzASwEC1BBqtqrqqslKr0BGurjhiH37nenhGZ1YXMKSh81p5eWSE+/Wr/J7f+f6+YtrOCMHhgyZYRdCKWddgsUSTzBSURhtHUH3asEgZY+zv2XoBNBBCkl53YAIhOFxspQAKUWaaqdEUYkhhOIGOjmAsRnTmEhwT5b7rW4c1Bh8lSAWjktwdSEw17z15loGOuMTq0joIW1EpfJfS4IInWksXvAC2AXJbSIhCkrKHKHeUV2nxTkAbkymc65h2HrqIKXLaumZgMpxv6eqWLLcCnDqP69I5zAwoAaa7Rs5J2zZk2pKpHO8C1bAQgrcSv7umqSkr8d/MTCYgV+co8gwNdDHQeM/J+ARjNXmpwRh8Yq6pKCO51sICndVTdLIr6bzI6VeGK9hc07kO7yWQY7gykDT2aiDf1UwxUwKI1k3LqByJtLfrIJegDq2lXRYzy/x0QpnnZDZbgMtKD7BWY02ZfDctlJWMLMaSWVFmqNiDziIf9iFA8GRWPD8lzbyvvVJDLwZ86xgNV1G+wzto2pYsqwgqorUEfXgPxmSJDZcYfAlsd67jzE84yPkOIfn3KfHrBOq6Y3w0plpdQ+cK72raAKH1ZCtGtl/p1NxVaK1oO0+e5XJOlFqAg1qLR2vsWYlAM69lcjSf0zUdXeXxdQ0eTDCYYUXQGp3lck8zNqUjS+EoKe+amBjTNknNM5uhM8vpdEJRDSiKjK4qKcoKZQ3rq6sMigFZYcFEfEiswRgZz2YMiwG5Fo9VbTT4QNPVjEYjrJXz5lxHiB4XOi5sblGWOVaT/BclRT1GKUi1evXAQZ3KvPMsv77yUsgPRobzRQUmCp+zsAilzmr7hUNNqv+1Xn59SjdPH9YDiYsZyNJG9EDNX2bu9mlfu+xtdwbaLT3U2boWkF6Q2r4/DjKWyT1CsnrOJiwLsG9pe/p1vUhDs/xvRfIYA2koJF9IG9WCGf/XOaVPrkTPgbr9tKM/BAsJeWrs9Me1j00MiSxClAZgr2Tq17d4Vs8fx+c0RWmyGFNREUnr4syYqn9dn4TeS7b7z+iZzkqd/d6nRkavFFBA9DH10dXiGl2c7rQP/dz1VV9eJMvtf37R6z5NiMeL3vtJ4R0v254XrfuTlvOf03v3nZcC94soRtRivtj/+3xy8LLE9/z29et+0bE7v8/Lv+8/q5cd9zLj/u8vCipZ/ozlfT2/zX/Z4/ppl08L3v7vmTj94z4nEhdKh+XXvfRz+vvOp7jOX8be/KssP7ngICzd4ZcAm8XoLBP5HhSMCzCmo/cdVFqTZSWjlSEQGA5rkR0lo/CIMERCMgnvBwMfILh+UEgC3RBxAUnV8xHvwPvkk0V/g5aCYxk4JIIxkOcwGGVcvLTB9etXuHL1JsPRJkpnQIamQIamQGROjB2KFhT42DKZHrC7/4SHj+9xsL/L/sEB4/GE+bylaUXC5By4jgXT0ZhU+KTCKFmRnQ0caURbDJhpcClKzWCgWV8vuXbtMtev3eLalTdYHV4kM6toNUSpXvbdg1RpqFtcmzL8hagIviWEFqMD2gAqEKMTgCdGXJwzqfc4OHjK7t5jjk+OODk+ZjadU88b6rqTFNZkvB586Amfi4+K6VoxRmOtpigy8sJSDUo2NjfY3Nzk8s4VLm1fZX1wCaMGRCy9pFolAImYpMqxv9TCuUswMQOT7FE8LVtinNPFmrqbMJkeMzk95uTkmHk9FyP1zuNdxHVePJucSwCnSK+MTTd5IwyBLM8YVBVVWTEYjBgOVwToHGxQ2tHZOcAQe1k6OYp0XhbnoL8Os7/st++vfQkxSf+ix3tFwKCNJoaWztX4LKLyjLqZEys5lqGJWDMk4PB0dNFT6RExKgGyQsBFkdkZBW3XonWG0QqvPbUb08UGHTVG55R5hQqG0gzk2ohRjPqNwVKh1BRMR0Rj7AqGjCwaolN0sSO3gdHOkDrWOOVpYsN4esqFwSZHJ/s82n/IvGsoTMH6aMTjpw/58OPbPHjwhFxLsT/rWtrOc3g05sndu4yPDhk3DrKMzHge3bvL9773HVZGqyhlcK3DOfmSf/nLX+HNN99EG0VmNfOmYXVlgyuXr3Hx0lUslsKW1K4mhpZSF5TVOhqLTt5ZramJygEWrztsnsnkCZK8TuNCZNbMmdYnDEcVWV6S51UqtgPezeh8zSw4tDaY5KFnABc8Ns/AC1NJ20BwE4zSKWVZ5HpVOaBpW4ImJYcamuDJTEHAE7WiDo7TyQlWa/FRQ1HPW0bFiKZpyaoc7xxZUYDpaFxNsAqjLYEMHxyZtgvGWQwKqzUqOpFahxYfHfPWMbCrGG0IBLpOAgm0NQRfk+WKhg6vPSpAoQuappWQE62obAkRWifyZ5O8II0xeKfQylLlBX26cwziode1DWVZEHziRWcQbWLSquRdqA2tq9EoOq+x2mBQ0L1aXVilZQIkrDtHVzc0s5YwV+TGcDKdUlQlVkmqrnPC0nJeBjsVNDbT1PWcejYXICV4jDZUcUBmhwIWFgaPp2kauT84T5ECekIUgLypW7RWGGuYjk9pmoauaTCDkQBEyQNSRyWsQ+8IwYsM3BqUVwyGA2F6WY0ynkFZ0drAsKwY5SO0UVib4V0kmJgk1S2uaXE+oHWgHEnQhQ8doJhNZzRtJ8V68prUOqOupUEg3sGgMmk4EcAaS+VKfAiYTMDEtmmxebEEpkgAjFIadKRJSb8mma+5ztG2DbYQJm4vE26amsFotBibrVG0jQMTybMMHwO+66jnU7x3DKoVTAIpUcIilv0whNihTWLzZZaua1hfWcNb8G0n4Uw+4GMP5ovcWWuz8EoEFh5LvVw5zxO4FyNBKTrnaZuW8WRC6zrmsylFWVJ7uLB+Aa0NOs8ptSEvSzmfEbrOpZAT8ZnMsiypSwJZXqCcwmYFeVJZVOWACKwkVvOgqhiWK5g8ktsMorCC21aSsYlglLAgDWKvkeWpMRAjOoqFTFM3GGMwuSUvcmIQawUJnhPPRe9fURZGqsfRAtKZBPg5oEtoR2WU1Oxafr8At2IPAkXcUr0YQxQ/SSU/RwfGSoCOjxL4YhLk41Q/xgngZlMfKM0wlgAz2dbnjvALDvenPQPLr1sGo9L0cFH/9jYY0QdpOoV4BmSpJZAJiEkv0f/Sp8Z6D1Qt9CpLiOF5MPNsGxSeSBcDdXB00TPQGQNl03r+d4tj+UstMSJJw2oJ2EAoBDrRGhcAnk8goBaiQq/7IUaMkvlSROZFIFMB14Nw+vkM4x7K7YFajSgKdIKcfYyieuHsmKb8JLSR38jMNaLFSGYxj1yAv/SAuEoeov3+go2gQgITzfL7zr4HUf31nJP/nKUHpOAMOFsGnJbBsWWw6kWvfRngdx7YWl7HpwnN+CRwcXn7z7/2/Dae/yxrrYwpLwGyloNA+vX0n9kz/c4z+5afzz+Wf78MPi7/fjnZuActzzP8+n9/EuDVv/dlx+n8fp4/Ny9azjMTXwSWvSw85ZO2d/G5/XYs/ZxW8COff/4zX7atnwRgv+y6WAZ+gcW5Xz4nLzquy+zOT7P8BIODy/2T878XIGDx86KHp4hRZB02G7Cz/Qab65f4qXe/QohJWpskJD2TLiZDaZLvYAiRtnV0bScDrxGj8dY3nI5P2T88YHf3gL3dU6bjjmYuN22t6BWQhCAgnFZgM1hdNVzYXuPq1SvcuvkaVy9fZ2v9EoYSyNPDpFaTE8ApdjTdPruHj3n4+B4PHz1if/+Iw4NjmtrRtpG2BZeucWOERTQYavLCUOSWLM/IM4s2qUh2gabpaJuOunG0jRiXJ491XJTBpWk8k7Hn5Ljj4GDC3bsPuHHjLm+98Q7Xr7zNqLyAUhlKVaBKIlqk2othVxicMYr3odaJ6qwCEQEhnG84rXd5tveQhw/v8+zpY46Ojjk5ntC2ga6LMjiHJWm3AptsBPuurhRI6croWY0ggJ0CrU/Ii2dUlebC9hpXLu9w88YbXL10i/WVyxRmIxVRSqrP3otRScEQCRAdkQ5iB6oDZPu7rmZcH3B0ssuz3YccHO5yfHLEZDylbTzzWUfXBbyTYk6xvD/pd0qKDa3VGcip+puAxlpFURjKKmM4KFlfW2d1ZY3t7StcuniV9dFl8nwDo8Wk/iyQx54BnigkIfsVW5Sw76IPmArxGNOBpq0xJtKpjug9VTGgU54YOgpbYb2C6FEm4JsOS4b24pcXjRbpHuIfpzQE74gRvHLEKEDDcLAKOlDYHN8KQ0MFg9E5VmfiN6ctg3yVtjnGRo0HtF+qygJom6Gw6Cjs36ZzVMWIwo7YWjcUoxJjFaWusFhu7rzGW7feZT5rIUayzNAFx+l0yuPHD7l35wMO9/dou4C2BSp6dncf8/TpEx49fISwUC1N7fA+cHhwyNe/9idkpSUrMtrWkRcD3nrzs9y4fhMVDINqSAieapBx47XrXLp0mdBFVLTkhaVzNSF6TC+9DIEm1kTtkVlbZN6MmTcziqxkmK9itfj4qSgFcVVkFKpi/3Sf8fSUweoqCoWLiqgMRCOTLQNzN0NrRZEVDMwI52Jie+SSABsMGIvB0nSeQktKbVSKppmD0hTFiKzIZYpi5+QqJ+YCdhR5hQsehaLzNUpbjBmi1BlrUCcmUNt5YVwhSa+zbk4gYMkFOIpRwP3CilzQdWSZYu4nHEz2GQzWGBYiGc90RgiB2jkKmxGjJyus9CKi8Jk758h0IYO80hAlUEJSagNVOZTEWefQShK8ozYJFLRpMmPxocXaDNdJQ0Wne/urtIgth4KoqNuOyckJ0UETPW1uicHTxJbcWfJMCmGsxticrCioZ1MmJxOaTqhFvhNPnRgVdV3TKShCBjpHKRhPJmR5hi0srXOUmdw7rTUi43YtdetomhoVIjpC10r4jVfpHCbgwUeP61qaumF9bQO7KPIDzrWU1ZA8rzg5PaUsS/kOKo9CwLg8E9l/qD1oTdc5irIkakXTNWRJPm6UFpTER4phjrUGoxWZtQvGiTSRxE85yzLm8xmdc2ityTNJzK7KAS64xczVdx1enYUy2MyAtsKGbltcJx6bRkOWDXCzdsG+Fgl7jg+deCOGiDbQhY66bplP57huBhHq2lEOBszmE/HXUwodbTL+t/jWp/MayfM++CQny3JcSo42yRA0Aj5NxwFhcWotzYc0UcqseJtaKzPoznX44MgHJfpYL0D7zGQLsL/uOnwEawQUbDuHjr1vYcS10ujrfIPOc7mPRWlC53mBbzsIgYAnKwtWRisY48hsIbVZ8OCDBMjEjnbeoNHkeUFucxyOZl6jiIRWLBtMTAUnwtJcXR3J5EDJ3mfWpBAbQ4wCCoTwqkEDQDwD40DAm5ioAPOUOm6jRWtoY6BRARchx5Cn9+goYMoMh4+eTGWLOqnUhgK9qJpUqg1SJc6MDh8llVzHQIX4QHr4EaTvvIz0P3fp+/dh+RdIjbjwxlVJZ2TA4WUyCKmprXAEWu+EWonEL+oUqJcruyielVKiqlJit6QSYy2o53czAlFJuFYAxt2cf/9nf8T9R4/42z/9S3zxxttAD+L+9YBRLoJJYJ/vtzsFJEYkvEwnlqXWUof3TEFDJCjoUgNZK4WLgeDFFkpbAefE/bwH7BLbWkmDjqgolEHjBUxGkq97N/i+EldputGm8CGnIm263wrgK/64dunKilEaUfJ7GWuigjbN4ZRKFX9ItUy6iBRnf3uVlrZtpRm9xFo7z7TrgZFlH7x+Oc+q+iQ24I8Doc7//pPAqmXgbHk7z7/vZeDcMgj3ov05/+/lsJDzx+Z88EjPRnwRaNqzDvvn/uf+0b9ea/0jwObyfr0IiHzZMY4xJhuQH92v84Bfn1vQM/CIqcGTSGMLv84XAZ5KLdQC/ecugLV0TM6Daz/umkkvTs/L23l2/37ZPbA/z58EEJ7/vOVtfNl+9q8/z0IF+T592uUnGBwkgWXLX4547tEvffIuCNAW0Awo7TqlPfOBO3v0klSQ4UD8/WICDVVckigrTxcnzN2Yp/tPmHcz2JcCWOmIztLqSKCPbA6ZheHAsrpacu3qNm++8Sa3brzNxtplrBqiqDiTtAqooxIDsu6OOD59yoOHH3H/4V0ePXrKwcGYpok0jYz7/bVpLWS5pqpytrZGbG9vsr19gZWVEdVgwGg4JLc5Wmla33I6Pub45JDd/V32dg84PBxzctLhWvAdizDcEKHr4OQkMp3Oce4xqAofcy7vOEbVOqVJoSyoBNaaBM4iv0tMTpQj0hJCR9tNODx9wuOn97l7/2N29/Y4OjphOm5wnWxD/26ALIPRSsZwmDMc5BS5leRFa4hA13nmdcts2jKbtcx6QC6kmhtoG5iMA6cnRzx5NObJo0PefOOAN157k0sXrlLkIzK9Bmr4XEcg0gE1qAaNI1BTt1Mm00Me79/n4eOHPHnylPHphMl4xrxucS7iu3SOli5dpaQDaU2SdC+8nlj4WPUsiJjagjEGYaZG2Q5txmT5PjZXrK29z+bWOleuXOHm9de5tH2DtcEOxpRoKlBF+i5YhPH2Kb5vP2GLSu1XrSw+erpYoyN439L5Bp8rvAso5XEx4LqGYV5JQIRStK5B60imDFkCTnqPMoVHY/BeoaIkhBIzSj3CVhlGFaAcwXvyvEAjg2UMED1oa4XhgcY6RTANmY24rsHaghiF1UUE51SSnNUURsm0JYCJilLnUg62CqIm1yOubqyh1hReRYwVP7DgOz5343WevP06+5NDhrYiOI1zkZPJmB98/3uMT49l0q8M1lhuf3ybR48ecXI6Rs/k+58XBTBhb/+Yr3/tG8SoGA4HhLalWi357Ofe5uaNW+S6op5OKYc5QQUynbG9eZkrV65RDodkxohs1ZKY14osNwyyChKIio8oXdD6QJEXzNsT1lbWmc1rutiSGU2gRFI+PRqFx9G6Fq1zdCxQMSNXls6D1pKebLXBotEhMjCWLArQ25kGoiOzGYNiBa0yQnCsF5V4TeZSjUdEKuljSmkODo0DLayqvtD3OLSRiWRUAecdUQUyI9+ptusY9P6AIQhYYCIhzqndnMbNMDNQxYYEsfgkA8oyus5jc40LLjEFDJpApvprLKCsxYco3rhKwD3nfGq2CFDhg4wdPkZsVog/IRqrC2Lox8QoUs/ir+d7/FddfPSEKNdF0zQ09RwdDDqzeB/IS5FcTmZTDJGqGmBNIf6LqTSrZ3OittjMUJZlAt80TT3Hx4aszDDaij9gkMAX7zMyK9eB1oam6eSco5K/nBShbdvg/SAVZGfd5UhMYHqSJit5n3ifRpzrz3igLEqKLMfHQF5YaR5F8T4pi4KmmdO1nk61+NIRtUIZjYse13Z45xNQqRZpxmK9kNE0tbAUlUamsDI77Lyj7TpGoyFGa4yW7TJI+AvAycmJpJJrjc2EwUBINiI9OKGhKks612FsRucaRmaQWHoCRUSUNBh8R13PGZ/MaOoa72qIgSIfMj9siFHYvDFJ6wNJChcCShvyoqAqS3JrUTEyi9KwaeqaQlWL2W/ogUGlRSUSgrCMF94wMUmoZXxVKPFMtJI+PShLijInzzJMZoWBpDUKuUYA8aBM/ejgk7+nVsTOId6nSuTw2tJ1jhCkCW2soW1E2tE1HZmokTHKoqPBGGjnnQRaaYvVEqKiAmTWMvczrBVJfZFLIJQxhiLLab1AFd4HrJGmoDSqBfwgPl+PvCpLEnGgEDafV5IEvz8fc2f3MYM844uXX8cTmTc1H+8/IljN2zu3IPHiApHD+Zjbu48pBiWrKyscHh5QVQPe2LiaABwW7D+UuFrvz094fHxA3TlMhMvrF7i8trlgbz1XUv0fVF+9KExDkZLBE+Dl00Y7pRDnZU/TNRyOj5nMZ/iYgE+tqPKCrdEao7LCpeo9V2YxbzE9MpqOx/LH99hyfy6kqvc8Oznk491HHM8nifl2Nk3/qx6Wvyqo2NfZTvgehCSrDv0kLQa0EosOi0peo1qIAClUUCbs4u3ZJbAwZIomOtGjxMC8rjmdTpl1Nc77sxmphiIrWCsHrA0rKp1hlemjKuWzAhKCiQCMrYZ58Dw6fMbxdCL36biUBK3kTPT3Nq0VmTEMiwEbwxGDvMJalRzWjVjF9ASKeAZWJFT5r3hk/3qWngHXL+dZX8BLAZwXLedBrOX1vYgl+CKwZfk9yyy7Huzp5cAvSgM+zxo8v00vk/r2QF1/PJaBu/P7ZIxZhIf0oOF5BuZ5RuWieZZlCxDQOUfTNNR1zXw+f+6Y9ezE88e1f7zos84fw/OvPX8uzwNeIDVwXDoHMV3TMbGEXpTMvPz8SUzNF0m2+0d/7I0xEgjY+ziqHpwUkllcfEdFyaCVgh8DjvZ/exF7cvmYfNLy474X/TldPmc/bvnJBQeXwhbOJ/SeDTlq6VkeC+S4X02qimJK89XJy/DMODeFV6gUaKIaUDWoGSF2dK7m8GSXh08fcvf+fR492eXwYMz4NCyYbbCwnMJYGI0yNtaHXLt2iWvXrnJt5yZb65cYFOtovUqkQGSeUrRLgEWLD3OadszT/Tt8fPeHfPTRh+zvj5lMOuZ1fA5w0okpuLKaceXKRW7cuMGN67e4sL7NaLiOtTmgsTqTxFIUITrchTldmHEy2+Ph47vcuXOXe3efcXJcMx17vE+SBS/S6r5gODlpefpknzIfUeYV1aVK6OupX3/Wk+q99AJiAN+CcvhwzO7RQx48usvd+3d4tvuMvb0T6jqIsX+vB4lSEJaVZjQq2L6wys7ONpcubrO5sUmZD6mKASYrIEpa6mRyyu7+Lk92n/Hg4VMOD04Zjxva8LwfYtPAfO5w3T6dczTNhOb1Uy7v3GB9kKFVtujGy8bUwATPFO8bTib7PHx8j4/v3uHh46ecnEyZTFq6dtH8X1yaWkOZQ1VlrK4MGI0GjIYDhsMBRZEnCVIyIPeO+XzOdDZlMp1ycjJhOplTz+OC1SkeZOBmkTiPjCcTHj2ecO/eMx7cf8qtW095/ebbXLxwldXBZTQZqE4KBHSShb5aS4zS8VU2olXAdTU2KupuRtPMyKoCqzXT7hhvEwMrRKzNmHcOT5TUydgP5A58iw8NQXdURgz5jbJ0Icql6y2ZsRhlmLdznO8YVSuEJmAzjYpSssm6LcG34omnRA5itLBRrMrpmhqTFSLxVwGNTO6NzmlDh1Ee18yZd3OGww1MtGmdCt+BtTmqdYvJUVaucPXKLbbCDpUuMLGk85FZW3Pl0k1AZKdSS3oeP3nID977AU0jicJ1W5MVGdPZnPv3H/Do/n2IiuA7jFaMd8ccHB/wjW98i1G1QjOfkOUWl7wFb119jZ0rVxmurWFySz0bs7pSsbN9iTyr2NhYIwzXwE2oygGrwxE980NhRCbrakieooXRKF0IiGgVPnjaUOOjR8UMpUqUKvBBk2fC1CuUSI+FXavBi4G/zuX+HaJH20qCT6IUyng5NwqDCyEN+AYdW6KywmyyAtiIP09EaUPwcs2EFPwQoqdzLZFImVdYMsQ/xAlolEChNjY41ZLnIn9VBJEbxojVmroVmwRjcwjSKIgxJv2SMDGV1gJUBUnQiVHYQM47vI8iEU2gVFCgkpYo+IgOIs30TnRRQcl4cZZ6/GosWilhB3aBNvTHRzGshqhMYTPxEc2ynOhb2f/oyazFtWLd0HnH2uoaaEWWDcWrzxqi98xbjw/idae0oSxK2q5eTMgW6bPGEBUSNOM9JrdUdkDTtSKT9Q5lrBSNEUJikLZNmzwT8wWFQylJpvadF2ZxNCmkw4PK8LHFGCUhO0GTm4xgcnzd0sxrikyjrHixegVN1y3Yc70iQj7nrDgUfz1hlwpztUNZGdhDEDliSFYXru1wXgK/xpMZisDGxjoLHZtOvppKoY3FGEtmNU1o6ZyEdmRWxlDftWR5iQuBtm2pG5lkxBgoioKuaRgMKg4Pj/G+obBGEsm1eMF6ghzjzhGCQimxzYiuIdOGpmlwWUOe5dg8I8RA6BxkYqEQlUjSrbXCAHLCO1MI+B5CBCv33Go4YGtrS+TKRUGRZWRlBVpjlWIynggwqaTGVAlJ6gNTrDG4mCg6SYkikwKxXAgotDIUWc9406IsUQijHSU1pPPClikyjLHUdUOZSSPKh0Bb1+R5kapdkXeXVYmbzQGVgAqV6j6d/CMjOk3oXrVFQJc0iY3CvJp2DX/6vW/xT3/3f+XWpcv81H///8AaeLz7mH/yz/7flOsj/u//1/8bQ10BkVlX84d/8VX+6b/73/gbX/5pfvZLP83/+rv/gsHKiP/2d/7PvLm6LXVnBJTCK5i4lj9+71v86//07zkeT9jZuMB//bf+HjtrmzKhlS3q/1sAOQuQ6Mfcaj8Ns+RFNAi19AjpzQFoo6cJgcenu/zgzgd8cP82D54+5mR8Sozi45kZy2gw4Mr2Djd2rvLZm2/x+pWbrGYVORKYJexJaVw+R81Y9FsEcFfI9dS0DT+8d5tvfPfP+NUv/IyA42mPPmnf/o9dRGngVaTGMQ8t42Ym3/kYyK1llA8okt1GoWQuoSGFIGkBVJXEQAYUM9/y8PQJ9x4/4sHThzzaf8LuwT7zeU3rOvFRVeIZPigrLq5vcHnzAlcvXOSNqze5vn2FlWJIhniU2ijrdUQaPI/nB/zPf/hv+N57f5HmkgJkGG3ELiEGYSpGqWmtMawPV7l8YZsrW5d489ZrvHX1dTaydbI0re+Pv12YML56y8tkmZ/mfS9bzrMJl++LLwIBe39ZYwxFUUhtEAJ1XTObzZhMp4zHY05PTzg5PmF8cko9m9HOG9q6oW0a2roV1l7weOWFeSpGoCmR/uzRA9QxhMU51In5ZgGrBSDMy5yiLMmLgqKqhAy0ssLa2hpr6+usrKwwGAxSs4jnAK4XMeGWj3UPiGVZtpA3G2MWTMRlL8Tz4N55sNQ5R13Xi6TkPh25aZrF+FwUBWVZUlUVg8Fg8SiKAmMMIQSapmE2nzOZjDk9kcTlyemY+XRKPZ/T1DXNvKarO0KbjnUM0mRGFBjamMUDpRbAofcO77w08QCDEVA/NZazIicvc7I8Jy8LikHFyuoqq2trrK2tMlpdZWU0YjgYUpTFogHp07HqAdX+mjvPgH3RtftpruFPWl70/r/Md+knFxxc+L8tD4/Crjkbyfulf43iOTQIJV1uJQCgQqVWZDKhTQl9Ssl0Xykhi0ND6084OHnI4ycSGvDo8QF7+1Pq2slHJHJhz+KzOVSlYmNzxK2bV7h163VuXH2N1eEmRbaK1hWQEylRC2AwQuq/hXjCyfgxT3cfcPvOR9y9d5/Hj8bM67gAh/qBWysYDhWbGxVXr1zmrbff5taNN9lYuYrRFSS5skqhFTFK5yziMbohNy3ZcEi4oGnmMD5xzCb7eD+TfVmS7YYAnYe2ibS1sBWC6xYHoKf3qn7iA6DOWJo+Tmi6U/aPH/LB7ff44Ycf8eTJEU3t6boztmVINPi8hNHIcuXyJrduXee1G7fY3rxEla+S2TUUpUwSkok5eC5sTNnePuDizi6D0Ud89NFd6naXzneSKJjwyv5c1Y3n4OCIIg+srlVsbm7AoBNgGBbbruiIsWZW7/J09wF37t3j4aMnPHt2zNHRnLZNkuz+0kzg8GCgWVsruXJlk8uXLrJzaYeN1S2G1SpFNkKrDKVtepOkuno/p3FjxrMjnj57yKNHj3n0eI/TkznzeWA+l83qWQB48cI5Pe744fgRTx6fcnJY89NfKVmpLktXmS7JMQ3iz/lqLRLQo/CqEQBGBxpXY3ONzVYxmQUcHQ3zZo5R4DW00dHFKL6A1hKiIypLDC1adyJrj56mqyntKClwxI+rtAOcT36SIQirLUYqYwlOkmdjFHApKpkDanppR0duKrk9BciyAmM1Qct3T+MxeiAeRhqms1Oe7T2i8S1lO6XSK2yMLoinpClIIedoa2iBaTuncQ1ZkVPPPUWWvLVMxsr1LULUxOCxJhJ0y86lS3zmrXeou27RAMFAXc+4fftD7tz5mK7p0EpRlCXHpyfc/vhjdvd3mc126eZjqmrItG7wQfHk0VOyvEx0ZY0KHStlxc3rN1hbW2N9Y41hWdHMai5d3OHdz3yWjbUNXNdRjUbUdUfLHNc5rM5xFBR4tLE4GjrfEm3AIACpNjlOGZS1xCSHStkORBUkJEArvHeSyq4d2hhpjCiDVhajFRqffIgysZZwMozYLCc4TcBBHonR4L2kj5K8/kxKYm59i0eKxMwUZKoQiapzqemkxHswttSuJuBQIVAMcuqmJjeWzOaLYiHLC7lfRIVvAirTYHVKSYYQHNogia7BCZMhffljlHAHk3wGVSrGvJcwBB0F/NAqsR5UTMDgKwYOkoI9Eusty3PWhmsUeZXs1KR4zkdDTk+PmM1rMpPjuo7gA03bYPIMKzQ2qqqU+7UGtbLK9OAgsc8MRVVR5Dmuq3Fdh7cZRmfiT6YFlG3amqZtgEie58x8S+c62ralTOnHWhmUMRiV4cYTgpdBR2mDpP8GkasZ0BjmTUvTtOSlMIhjCCl9G7mujKYsK8bHx7i2JXM5xub44HHe4YIXf1Rzxi7oC0Bj5NgppTBa49xZwawBbYwAgyGI3NYHuraVFGUVadpW7qmtR1eaZaFgVOKB6TpPVZokJw40s0aYkMZjkrS56zrxXjQC4JV5zmhQEsoSYxRFkVHXnXTgCQL2KyUeyEbYPeLvl0lztJc/aU3dNIxWVpOcUpPF3nYkSlBImvgtGAoJ2OkBHK10YldoqqpinGRseV6QlwWdE98VhUi1g/OQZajev0wLWOiCX3gnagWt82DE4sFYaTo2TYPWijyzuCClt0rb1jpH8A1d1xGjggSoxuDRXgBDCSdQzKdTCZPTikxb8da2VuwFfCB6aEIDJHZJlAlo9K9eg9CnoIaeBqUUPN59yj/93f+Zb7z/XYJrF2yotqn5+NEdsukqdfS0BHI079+/w//v3/xz9k4PuLqzw0Y5IviWP/3mV/nSa5/lnZ/9zcQs09RAEyM/3H/Iv/vmH/Cn3/8WnfPc+I2/w5Ub15M0VCgF54E7WeKC7fdJolp17vlH1/KjPyvED7C/ZmIIYBRBwWk3509/8C3+w1f/kNsP73I8Pobg2Vjd4OLWJijFyfExj+/f5Xvf+y7VcMTm5ia/9ou/wq9/5Ze4Ptqmo2VAJs7n6mz/ltmLPVDREwCiipjMYrMsSV2Fmy97L8/LQOj5/X/Z8p+DZQXkuumAo3bCN97/Nr/7B/+B09kYlGJne5vf+pXf4IuvvUuOQuks7XXiJ6h+ZiZS36fTA/70O9/gT/7i63xw5yOm8xk+CEN3NBixubLGoBjQNS17R4c8mE/4gEBmDAbYXN/g53/65/jVn/slXtu6zoqS8WsJkqLuau4/uc97tz/EGsPKYMjl7W3Wh6vijxkBreicYzKfcXx8zP2P7/Et5yjLktFgyN/8ys/x93/57/L2xZtpfiTeiYlUlXprr1YNcB5A+auAIi/794sYh/3PYj8ictemaTg+Pubo6IjDw0MODg44PDwUcGoyWYBcSottRVWWjIYjVldW2Nq+wMrKCsPBcMHKizrNG4xJPr4/ChQtg5Tee6lJvCc4AbHatmXe1NTzOfO65uT0lL2DA7G2CT3D3TwHCC6zDkGYgT0IGGOUMSaENF67H1mP1Jgyj/wkCe6y52F/rL33jMdjnjx5wtOnT9nb22M8HhNjpKoq1tbWWF1dpaoq+Zy0j3Vd0zQ1Xd+09EmcnwC2zFjyPKcoClZWVinKgiovybNcttkY8XLOLCaTZmbP6usXHwIhgYPOiVqMEEWBlo7HrJ4xnkwYj8ecjMdMnz1lXteLHARtNHmeMxwOWV9fZ2Njg82tTbY2t9jc3GRtbY2qqhag4HnG5PI5fxmA9zJJ+cv+/aJr/9N8f/rlJxgcXGYI9ieyl6wmpOe51yz31OT9MYFXAlidDV2LdfTMNhrEU04RwikHpw958PBj7ty9zeMnT3n67HTBcCMVnz2Dz2YiId66MODGtSu8dvMWN67fYnN9mzK7gKJAkUMsiNEiwREmbaZPPxsBDKNFqZyqHLG1uY3RhUibEkDhgxRIRik21te4du0qN6/fYvvCZcpiFasGECthJmJTjzwlF/ayIsTIPCLgaAjiuROW0oz7RQoBGVQyqyiLjKIsyLIC8THqHxmLS0l5AV1xQMtkts/9Rx/ywe33uP/wMfuHE8Zjvwhv8claSxsoK9i+OODy5W3euPU6t669zvb6Dawepq2pgAGKLHXmO6BB6Y5BtcbFzDKt5xyfnHB4dETTdosQFt23dx14B/N5YDydM53PcK5LQHHvUqKIOIiyL5PpCffu3+X99z9gd3fGfB5puzTOKtkHrcEWsL6ec/PmDm+8fpPXb95ic3WL0qyh9VC2W8oRIjpdA31/1jGKns3VloubN7l6+Skf37vNnTv3uP9gj+mslW5mEH9JpeXMxggnJ57x+JTN9QNms44Ys3T+u0/Xxv4JXXRCjaPyTN0kDQqRTFlyW6FNTh0asiIQu4mwwTIrMlftZHIapfMaFXStQ1lPFzxZXtHOGjLtIGiskYRhpSKFzWnjHJQisyUxqEXgAIisM2qL88JmsSYnBNGShxAwQWO0oOzOexyOTnk6FyVRVA3w3YzpZMpkOqFzDc57fKHITE62UqJ1JkBfHulCx3g24bg+Is8tea6Z1GOiUhR2k1L1r9dgxJEpAOuDLbZXduiCJ6JRWmzWfey4vnOTn/3KBNe24l+XGWbzGXfv3+Wj2x8S6ZhNp1ibcXRyysnpmMePH3F0dERsgMKQRcXe0YRH9x5SjXKUUWSZIbjAjcs3+ODDD1kfrYhNg9XUXUteZqytb3J55yrXrl2hytaIHlQWKasBeWZpfUOZDVDKCSio5V7lvYAGEUlADUq80IxRNL4WbzGdU9mSXBUEJ3JLbSzRJVN+jIRS2AwXLTbLiQR5r2D1IvU1VoI8VEQ4qIG2a5MPWImO4itnbWInKk8bW9pQY6wGnxNtBSQg2XsBNIOnKDP5EuPFD8tHfPTCOgsxSbv6NFTxU1RKWNIKYZWh+4FeJcZcb48uRaoA1vK99xEBfvwrpitUhqCSrNVa5lFhsoxyUAign5iQWW6YmYx2PqVpOtSaFusBFygHw3Tv1xhj5T6vNeVgwHA2w3m534uHjiJ6kW4H7ynySophJcfPGCM+exFUiBQ2YzafUeQFEUlUNqWY4sZaUKKiytFGpOGBBOK6DqM0QYlzl/MOazM0kUybFI4j1hh5kVO3gbwoAXBtg8k0sQtEF9HKJKA7WxTjsrsaYqRtPTbLASmmG9edMSd6pkKU5OCmkUK8qRs6xMPS9n5+MaKMInolxfJswmAwoigyWt9hUxCH8w7XObLMoJR0z23q/M/nTQoWKqjKCms00+mEwaCSghxDDJrowUWHzTNEzSH3fZ3KN2UsOs8oR0PqrsWl7mnP3pXAOYE25DicmXYrZKJis0zC0Ejp0gS0EvluWQ0oshylNcZEtBNmON6jYyR4CSJxvkMnL0kd5Xr0ovPHGC3gUEjSXnpfKGGO1rM51Xop1hFa49ycpmuYtjVEg/caZSydb3Cto/UNk/kcq8S3NBIpi5xBKeOT2CEIbCXAEQQv+2asJNOFV7AOUFpY01LDw8TN+MZH3+bRwTOCBmU1nkiGFoZq8IhySkCzp/MTfv/9b3B3/wl/51f/Nr/1pV/HGM9nbr7OH33razx+9rDnJRJQjP2cU+X4iwc/4Nvvfw+vI2ub67z79jtcGV5MQRPCE5T7bc9rXAK0FlOSuPTj0sQfYUN6WEphDpyfE57NfoRV2lfyPUCojabFc+pnfOujv+D/9T/9E3ZPj4gq8pk33uS3fvnX+Jk3vsTIligidWj5ePc+//IP/j1/8u1vcvTklPHvzTC54Td/5ldZjRllZnEJhHaoFNCRwD0lJACbviuShB0JQcIFI9L17NNxeznvcnCLIc0p5PAIM3FxaPrXxQVRua+OzyI/5PWJY38OZD1jOzqlaAnM6NidHvO9j99n6uY45zluTvny/CtMcbSAjVIv9dGQAfBawlbuHj7kn//+v+Zf/v6/Y+47mq5hdWWFX/jyz/LrP/tLvH7pJiNdiTQ7Ria+4e7JY771/T/nq9/6Ko+ePGayP2f393+XZyeH/MO//fd4a/s1NlRJviCzyFZrI/OCgOb119/kv/p7/4AvXnqbUiqMxTXTBc/UN3z09C7/4vf+Ld95/z0eHx7xe1/7KmU2YOVXf4er6xcXOKBO85/+2LzKy3npZL8s+/S96G8v+/k88DWfzzk5OfkRIPDw8JDT01NmsxnOiddtVVVsbGxw4cIFLl26xMWLF9na2mI0GokNB2fgzIuShc+HRfSvPw8MvsijcHnd/c/99k8mE6bT6YKp1wObR0dHTCYTZrOZeC533QJMNMY8x9wbDoeUZbkADs/LqK21z8mkz297X1ecf0+e5+R5jrUW5xwnJyfM6xrv/aJuybKMIs+pqophAlnX19dZX19ndXWVldEKo5URo9GIqqpEGaDPmpf98XkukCY1As+fh5dJls+fh5BA0R5UdM4xHo85ODxgb3ePp7vP2N/f5/j4mP39fWKMWGsZDAasrq6yubnJ5uYmW1sCFm5sbLC2tsZgMFj4N/Z+kOeP6cuu5x/3uvPX+192+YkFB8VJw6cheOG+wFkPKt3q+oMSOUNr0iAFHkWfaNw/y4QL5VE0wByY48Ixk/kxj5484sMPP+L27fvs7k7o2kg/p+pvsDGI1DbPFesbBdvbG9y8eYs3br3FzoWbVPmmbLPKUBRnwGAUNmQkFZtKgbKoWIBaY301YzC4xNWdt2m7GZ1rxH8oksA7UFGjlKXIK4aDFapihFIlMuxaIon2t7DiTfuMR9MRmRPinMafcDTdZW//CUdHB7RNuxinvBAqMfoM/FxfK7l4aZOdS5fZWNumMCOgAApUD7pGh7AGGzp/ynR+zL2Ht3n/h+/zwYe3OTpuSUQKgWgT3qIN5AWsrVpuXt/h7c98llvX3mJUXMCyBqpKxy5HknhTdZCShSV4IyVQB0Xw6izMJJ7rfqbnGMC7KI/nvldhcT0FGubdKXsHh+ztHXN01DCfRUmxTq+J6dkYGFSKzc0R169d4Y3X3+bq+i0BBFUGDFCxAgpiTJLACOI64gToVA6FZ5APqC5uY80ars2Zjh1de4Rzkkpt+rfHMzmzSddEpiu55shToZWOy4vMa37Cl+gdKniMFSAmqkCpc3JyTMxQMSfXGY5AUTqRn0XQFrQSDy0VRF7pbcCnZgFG7MptKQwcFTzGBIyNRC8XjrKqrzKxMZPLO/S+bR6PTmxDC04mMDFJ6r3r0FkUySDJKJ2A1iUm5uQho3GKwWDExvoFfNeyvrqJskOKvBLGiwp41RBiRxtb6vaUPDcMqiIxh0uMkkFLeY3Nk0mBl0xCG3PICrzzlCZPKYwiYe3QrFY5m4MLGAyeDh9alFbcunaLr/zUFwnB4aMkhR6eHDBt5jx88IjZdCxFrIb56ZxH9x5x7/5dJvUxyih8AtoePH7Cg4d7uGZObhTzribaSJEXbG1eYmPrApcvbTEYrBKcZ7BS8cZn3mJ9bYMQIsNBRZGJ/UKVV2ytb5DrSuS2UYpkpQwxdBgtkybnA5kVTkfnG4wSUJDcEjULeUhWWCm0XZSgDxXwrkNlCENPSSEuTDBJiRXTQkSu18uTlRK/QuUhtLSxRmuRLed6gG8dMVqyLEc5I/dUYwgaGj+X0AglYQ1NU6ODRWmTQGlL41opepVIp6OKZCYjJua7MRobFUFF2q5DKbl+jVLkWYHrOrS1GKWJsTfEfXWWftwVdq6WoJYEwugokE6R5WijKLMKn3eoNHEPBDrn0daQF7nw3ENEJQqFd45BVTGZzkQyrBW2KDgNAdd2qEFqEfkgRZJRWJvjJ1O0jygdqMqSpm2JWs6HNjpVGQIwRkT67NqassiTl6UhtB5bZCKjd0487BDWLwkgdr7DeUNZZLS2w1QF8/kEnSuR9YVI6DwhQJGKepHfyLgvfnoxhemQkrAtru0WUmmtRcJujaVtG5q2ZjafEnxAZwWj1ZEEbxTVgnHSdY7ZbEbXtSigKHNCHSiriqZpaLsOFxxZzBIDzgnDKcBsOmc4LCiLgrwoyExGcA6be6bTqbDbUPTWHiFNeFzXkReFfE+Rc4XVqGghOmH0psCPqJbHZ/kOK6NlGyAFgCAlohKPxTwlrObWMCPiggzoMVVTKjEtXddiRkMpW1JZqpaA/K7rpF7t6xIlYLNWiSFihcnZuo62lTCsqDVRiw+xbzyztiV0ARXmNF1LxJPHwKyZczweo6KmLEq0VsRQYbUmLysym5HEybRNh+8iIXgBoocDBJR8BUPJSIn2UcC+3fEJf/C1P8ZkmrIw6BAStCuNBKWM+EGiaIPnW+9/h3/+e/+KN998g3/8W/+AUVaQA69dusFgkPN4/wmNEpaIBZ7tP+Xb+z/kB3e+z2Q2JsfwO7/4G/zOV36JEfo5QKpfzgDCNOlf+pvYGqV3iBpfZiMKagLjruO0nTBzM+aupvePjREym6OVYsMO2cgGsu3KYJVsR0ukU4rHp7v8wZ//AU+OHxKV5vWbr/P3fuO3+dvv/CIX7AANdEScilxeucrK2hrHzQnf/+g9Do6e8hfvfZvCaG4MLvHrn/8FYQ2Hjr1mzLP5CSF4RlnBoBoxaWZ08xnXVi4yqlaIkJj5Hh8jDeJ0rYjMo+NZfcJBPaHzwqTbLle4WI6odCYKCpWICkgTq4uBeTdn1jVMfcukm0tzFWkOFtZQmZKBKRmZgmFWkluRACoMDYHTWLM7O+RoesL9x/f54O4HoCK+aQgxMplO+f5HH2Bzkf+tr28ysjk75RoXy3VKVRJR7E1P+MZ7f86ff/gdjt0YbTPWVjf4+a/8DP+nv/2PeGf9jeRXGbHImOSAnbVtrm9fYbAy4vf+6Pd48uAhpycnfO/9H7C1scXqz6+ytnFNvCIjoAxRabmXqICKmizPGVRD1gcj1lW+APaEnyI+1FfWLrC2uUn9P/0PfPDB+4zHJ3z44GP2ZidcXr+QjFQksCakKZN/xYqA8wy15ece/Fn2k+v/fl7euvwz8JxkuGfJzedzjo+Pefz4MXfu3OH+/fs8ffqU6XRKURTs7Ozw+c9/njfffJObN29y8eJFqqpasO6apnkO3HkZK7FnjfX1KPBc2MeLWIT98zJgtSxR7fdtbW1tcRx61ttkMuHg4ICnT5/y9OlTnjx5wv7+PicnJ4v19NLeqqooy5KiKBYg3qJWWFpe5tvX78vy8e5ZhFmWLcDB/mdr7dk4rcTzcGVlhYsXL7Kzs8Ply5e5fPkyW1tbDIfDhTdifwzPrFOe354Yk/XO0vFbPq6La+gcELjYHyVAoELm1ufPhc0zykHFzuUdsi/LPikl86Xd3V3u3bvH7du3uXv3Lh9//DHvv/8+g8GAS5cucePGDW7dusXly5dZX1+nKIoFmLrsffgib8jlY/1pmII/7t+ftPwEg4PJrBMESIvwfN9DnQ26y627hdxYoeJ5sKxLjxYSUNb5E2bzQx4/u8fdux9z5+5jdvfGzKaBpll8kjwSiy4vNRsbJRe317lx/RrXr93k0vYthtUFtBpCChtRWGLyKFvuEMlKz8wrpfwpMDqjylep8kvPHYmzh3r+14unZDoez3vKRJRqBXzCQXS07pDj6S6Pnt7l4zu3uXv3CXu7Na6VtZu+4FUCslRDxepKwdUbl3jt1i1uXL3Fymg7seBkfxS9+WILtMQ45XTymAeP7vLBR7e59+ARRycts7kcP5UeOlHri0yzvlZyeWeL65df48qFm6yVO2hGBHIUOUotsRMXPTSfGJGBrq05OT3hYP+Q46NTptOO1p2x7BKRQBh+FrJMkecZeVZgk9n8mXeiMB+bdsbx8SFHR0dMpzNcG1NACOLJ2F9pyZdRKYjByyQP8TnQid7/vAhFnbk7o9O+9b3QVkDlqNlc3+GdtxUXNrc4HR/QdHOcT4BBDwx6RdsENCU7F2+wubGCUh1gJfWRXr78E/tVf+nSM6Z8jDgXsUajTYbVBZChvAEcmbZkOvlqOkXMQUeNdxqrJOghxIZgAkFLiE4HlCaXYj/JU4PMGFNKZ0DpiIlgUqCLBNxEsDLxMlqKtBg8XdeA1RTVmjQ2dCtXkzF436B0oDQlykV8bLGmYLXYIEu3p+Fgk9pp8kVwhUHnlnk3Y9bMGK6MKIsVopdtywqdun4RExWhWyr7lEZkuEYmz15kjXgJXDBW470wk7RVxGAwuiI4T2VXGW2uE/F0saPzDWvr6xhjefPWOyilKazFNw3HJ8fce3iP3f1n1G2NtgZtNaFzPHnwhNsf3+bk5ABrFCZkoBXBRQ6Pjnn49DHf/m7LIBtglCavLFfeu8b29iViFxlWZZJPBtbXN3j3rc+yvbGFNTkeRacM5WiVlbJgdTjEq44mTDEhQNYz5gxBKUrKxCgpFveA1nus0XRKU7dTLBKsoqMw75QWBoTvHDET+VSeZ+howSussgv5UlSBjoYYRYZpogVtiarAqFxAWSuBOEELoOh9i7UQ8Djf4qmJ0WJMRuMhU4V4DQVPUCKb1trgohGmZYxJDuFx0Us6bgJKtbbM2znBR3JTpnsAmFdrXrCQ6sQu0DYdhZWUWmFoRQgBm1J/yrykmc/QxohEUyH+a/MGNiTtWVJzk9dMDCgjdYZIOUNaf0bdzlFK41zA6H78lqQ3lzz+qkElyadFhnMd5MKQ62W7MmlxqJQY29cQXecwSoE2wigNYcHsE7/fSHRO2KvaSCBNnhFdSxedMJGDJJG7toOAAERZCkzRhtgDckjSso+Bpmmx1tO1DYRIXmRkWhOihOCEEOiCp+k6rDUMByPWRiOCDyKX1UhqZ+qul0WJNQKyGm0lgCUz+KYmxIBzntzk+NBPmEBrs2AkaGVBaQlIci3aGEL0BN9AzLFZRuc6dDQC+lfyfYteEp1jjNRtQ52k5MORJEpbbaWJ2uMxMUh4ke7VGpEsy5NvqYwZRkkiqQ9yD/XeS1BBP5lLgLuAxY4qz4hRrr0YIS6MzlU6FpHGOfLMEJwTeaEx+CjXrFaGosgWNYn3iTUUAyqIZYBvWtq2FQmyEom8ax1KyzW2mBhqk2oqTWYMIUS66Og6h9KK+WwuTIxCo8+Xh6/IEpXUAQfdmN/95u9zMDvh53/+5/nDP/lDOVfIuKy0+HLFKCY6Hx885F/90b9lOBzyd37pN3lj5TIWSYu9dfk6b7/+FvvHh9yb7HJ1tE2B4f7Du/ybP/ldno6PiBHefu0Nfv7dr7BtV7ERCFFCgfovdL/0P8f+H88Dhn35HhQ4JcDZDx7f5o+/+zW+/9H77B4e0NQtXXAoaxZsl2E+YHttnc/eep2ffvdLfO7G22zlqzLma0VH4Ggy4eGTJ7gYsVnG5StXubZzlZEtyCNSTxglFgEKNgZr3Lp1iztP7nG4d8id+3cotIUr7+A+L0EY7z26zf/47/85f/7h+6gImysrvPNT7/Dk2VOO7u/y3/2j/wu/+JVfQAWpkXSMqcIVz8YQI1+/933+l//0u/zw9oe0jTRB3n3zLf7xr/5dvnLrc3J/SOeuDR370xM+fnyPb3//z7n76AH7JydM2jmtawnRS1CR81T5gM2VDXa2LvDGzdf4wtvvcv3SVdbyVaLSPBnv8//9l/+Mj+58xPHpMdP5FOcaTGLYjydjfv8Pfp+v/slX0cagMstqNeS3f+FX+S9+8bdQeQYopvM5958+5vDkUL7/SnNlZ4efeuddrqxsM1A9e1SY+iqxGytlWC9XuHX1Bpcv7vD00SNa7zg8Oea92x/y5Xe/zM2Nq6gIVmlUVAtuoFJBLBqSZFt6EMvhN+J3rZXBElgphlRVUq4QiDrionir9iFM/aX5qrMGXwSSLQMqywDWi5h6y+Cc9566rpNstWE2mzGdThdMu6ZpGAwGXLlyhRgjw+GQra0tdnZ22NjYeE4i2gN0PYPtZaEX/TacT/L9tPv+IgAMWACSy2BZD+j1AFwP/q2vr3Px4kUOD2Vee3x8zHg8pq5rQrKymM1mjMdjVldXaZpmITM2S82lF/k1Lv9teZudc3Rdt2A19szGtm0xxrCxsUGe54xGI9bW1tjY2Fgw7DY3N1lfX2c0GlEUkqi3HDCyDPK+CKw8f/7PM0zPv+Y8ALv8fP496R+Lbep/X5YlGxsbXLt2jSzL2NraYjabEWOkKAqapuHJkyfM53NWVlYYjUYMh0MGgwFlWS4Ymz2AfP6cLzM5X7Scv95f9rsft/wEIwYiixVcsAehlgGy50bjc7/uX3fGJIwxgOpQqibGCT7OmM2PebJ3j/v373D33gP29044Pu6o6zPGmU6NbKNgMDCsrVVcurTFrZs3uXL5OttbVxhUqxi9ilIjiCUxCoosZI3U61HhDGHsAcxUSMSohAUTbTp5PdCXtj/tUyQIKvUcWKjSOkiDU18qpaRgOmJsabtx2t+H3H90j/v3H/D02SHjcUszT43wfl9lbks5UFy8uMrVq5d5/dZbXN0RANSwIqBr7GXafVBMS2SOjxNOp7s83b3Hk6cPOT6Z0rkzcFUt7ZpWUJWGixc2uXX9Fld3bjAq1lGUQCmsSnJ60ZxSEFUgBmEoKuUgdtT1mMODZ+zvPePkdEzTegE/zPOXhVKQZ4qVUcnm+garozUKWy4YJ/2xjanYtLklzzOy3GIsC5AozS3OJiEBmjpycjzj4cPHWJPR3GhYG20wLDfIbIdRrbBVlXhB9hdtENqZXBoqE1AZR2422NkecunCNbxv8aFLSZZy7mNQxGgSAG2wpiTPBvI9CQ7I0lHTwkZ7xRaRqYALMgnOsoJM50SMyIWRjFeMwbiIyZLE1yVA2EdCdORFgVcheXbKsdfaooKwzGIMYhqfin+MgDYo8cfSXsn9IOrU1Q9oJNVcxQ5rFJPakZeaqCMqt0lmrHCxpXMzNHGRXhVcS1SG6CODvBKz/ViJXNGr1AVXNH5G5z3ORVaGQ2ysBCxR4EOkMBFcIM9zghOpmU7puVorXBcIQUzqy1JkdNEH8cAKie8gGhqEgasFdPJezPp1wIdImQ3ITM6g3IAoScEUHcNqhZXVVaL+onTXtKT9WmN4tvuU27ff4/B4H5NpfPQYldM1jrv37/LDj97j+PSYlUzYSabQPHn4mNsffUw3bxmWg7RpnrzIee8H3+XS5gYKi8fQWUu1ssbbr1/jtVvXaLqOdj6BEFlfv8hguEmuc8osZ8iIEAzWO6zSZFG81rxL4JMKoCN1O2dgMrm+EONvHzQoD9GhU6qoVsLyUkq6qo6W1ndkidGmoyIELZL0TibuYuMALsbkN+dp3QRrFD7WtH5O7BQqsxiVJ/mpXIc+dsIk6zxlPqQ0OZmxxOBxrqV1LdFCUI6gPJ0LROchKrqmIQZLaSr0K2Y7qrQSjzcURpl0Dxcf0IhPIK4wevMsE9DftQKeRfkuGG0k2dhqtEms0Cg+gja3sr5UbDnXMShL2q4RawITFv40ne9oXYfNLQ4oq4rxdIzzjiLPZVwLQRoaCzWDwuiM0WgVogAXLjgJRAkBokIFJczm4ATszDO88+S2QJmMruuwVpPlGUWRM28abGNxnaTbl0UhibxA5xzGJGB7CZRQ6d7fdeIpFJ1Pk1JpvPTJim0KIkEryiLHao1X4v3nY6TtpIYxmRj5Z5lNadIZrWtQWgsYGQSwiS4xm1XEdZLCWxRnUiUx8ZfGqTWWEFu0ktolRPGADS7ifKSuW4zNRb4cxDuvaySteTadUlUlWVak5HQBSSLi1xr78RypySTLR0CkLHla+uCp24asyMjSJCgi7FytZaIVOodrGnwuA79asJFFPp1l+UKooa2m7ZJ/ERJEpJUhJC+yLpOGFF5qxBg9SkGmM7zyxCxSmAIdRfpsbMZwMCISKcqCoswpywJjxdMwJEsLojA1YohobZjGqdz/9csleT/JSyRK8A6Rh5ND/vUf/h5f+uKX+fxPfYGvfv1rYhWQZggxeIwO1O2Mb374LW7fvs13f/g+v/Grv86vf+7nMEpjQ8CguLZ9hc++8Q7/6t/8a77x53/OlV/+O9QEHu495dvf/R52WDAajvjSu1/knRufSQ03kYv7+Hz1fVY3yo/SP34emCG9wgGz2PLV9/6Mf/Iv/z9858PvM1wd8ebrb3H1ynWKfCCBRaHh+PiIe/cf8L277/OtH36bb33wPf7+r/8Ov/mFX2EzrxYzonnTMjmdoVWGD4qiGlIWIlnvQUalzhwQc5OxOlrB6gylDHXbcnw6Zrw+wwMPD5/wP/67/4V/9Uf/kdc++1neev1NtA/8xQ++x8cff8SNzcu0KdXcKo1OJmpZAl4D8N2HH/H//Gf/A+89+oif+uw7XL90hYe7T/iDb/8J49MThv/1f8dnrr9F7Voa1fHe3Q/4vW/9Md/6wbd5tv8Ekxu2ti6yc2OHrfV1CpuDgXndsLt3wLPdfd5/dIf/8K0/5e03Xudv/cKv8etf/CXWh2sM8iFfeudLXN7e4XB6yO17t/nhh++Ll6uJDKoB7372XW5cuQFBkWc5ZVbwxo03sCZHJw5u6xzTyYxmVkMXyI1iZAtGWUGRQkUUgIrPGVxlaHKlqZI00uQ5qmmYNXOeHe4xqWe00WGiwmqNSnZR0qryKCI+NLRdzZyGPCboMSbaQoz46Li/95D/9L0/5cGDO9TNlIubF3j79Te4uLJFvuBNnW2XhkXD41VZXsSQWgbCzgNl/XI+ZGT59z046L1nNpstQLLj42Mmkwl1XeOcoyiKBWizkqStGxsbjEaj5zwJXwQknQd1zkuJXxSC8kkS0uVj8aLX+sS8e9F7+mCRqqroOvFI7iXFPeOxbdtFsnIPBi6DjsvehC86F8vH+UVsyP7vPQC5LGnu5cZVVTEaiVx4MBhQVdXCp3H5XC/Lrc9/5o+TbC9vx/IxOr+t/To+KQH4PMDbr79nP4Ygc7PV1dXnQlh6cPTw8JCVlZUFGLq1tSVBpeossKQ/t/36l8HQ89v0on1Yfl9/7D7t8hMLDiokrS8SWBDvloAyQcOSRrUPLVmAaP3NFlTPAsITmRGYMZ4/4+n+fe4/uMfdew949vSY46MG5/qLJ4FliWU2HBqGw4xLlzZ57dZNbt14ne2NmxTFKlavADkx5hBzel/DkDRRqu8yLjPHIpy1HhPrrwelFi+T8mNBOFw6MovnxW6KV1pUvYxamIKRGfP2hNPJPk93H/D4ySMePHjE/sEp49OW2cwvgqC16Q1roSg1mxcGXL68yeu3rnPt6k0urL1Gnm2i1QjigDMAUwz7lULSkP2U0+kBe/vP2N/f4+R0Stt4CVZI7DqVjrExkJeKzc0B167ucOvWa+xcuIq1A9SCSWcg6rSfCU0kLH0BAj42TOZH7O0/YnfvCdPpRPx31POHTqW3F4Vlc3OdyzuXubC1TZElH8Mkx03OKOQ2sj5yXLhwyNHRAcdHY7yfUM+SP0xaf4zgO/EyPDnuaOqnPH1yxEcffczW1gbb29tsrG+wNlpnNFglzyqyrMLoDK1yAaxihlIJCI0WokHFfHGZ2J7c2O9QTCCyMos/9BOuszmXT9+NlML9qi1KJJURT24VhRVGZQwKY2RSrTONi4EYnZi/mwwdNR010XqCUjR4jLLCPMQIqENOCC7dFxwuQK4rMbLuOlSe7itKY2yJ8wnUUSnghggadDDkpsDkGRiNx5GrnIjFBYfTnlk9YzQckSkrTNI0YW2VSIiUkoEgCzLhJjic63AIIJHlFSoWOBewafJvYpHYQTIb1VafIdUxEhAPLh+9DOpeAITMZoQEGioj4KnNMjovjJbgO1xoAEdUDhc6rCrJqbAqS5MfjbcRHTUXNi4SvKEqyrPCIcLg6oirF6/i0zH2wYO2+OB58OQeV757ndB5VoqRBBjQcvv2D3nvwx/Sdp10+UNk7iTF+zvf/w5+1lDkBUEbgsnJ8orb1y+wfXGTEJTIeL1idW2Di5evsLW5xXA0ZDAYsbKyRp7lrI9W2V5bp2s9Ns/xrmPedOhhBNMRU6iAUop5MxfUX3lhL6UJfu+BFqOScj46kQ4qI9LX4AQ8DFDYnNCJKanSCoOm8zOibvC+xeiczrU0bUeelcznLdaKHFQrQ1AN83qCdwHXSWEV8py14SqaUu6jWYZTQRhryR/RhQ6f2ENlvoIyyfvxFVoUQb6jOsNWBbHrpLEUYuqMI0C9MTSNpLVqhQRIRIW1miIryWyOax1ZWYiflpaGjNFnzaDgHaYsBPwyOvnmCdMvy6RJGVIICAjoZa2hbsNZ2nSEPsnWhQ6FJAueWfSDteL92XUO54IwTiK0TZdSfsUjUxEgCGPNWou3hnEQT7+26WgaYQ2XKIpMWJFKKUlT1lIwqVRbCJNdLVhuVmmsscJ4SQyLPM+JSkZzk2eyjnQLNNbQOI8LnhglPT36IEm5eYHVYmnig8g6J7M5RVmJNYPXNK34G41GI0lMjnHB4ulTto01YvVgxUhcwPCO6fSUeTOnTYnSSoOJHmM08/mMtpUmTNu2FEVOJJJlmYyF6ZiHECToRafj0U/GSL69iD+QzTORhjlH9KnuzDQ2t1hnmc6mhCJP9hJ2AQJppRKLUNZrrCFHMa3r1ECUppBKzRjX+VRhCGPIR/n8Ki9oi0iWG6JSIncOEW8VwQfaWcO8axmtDJP0K0dZkxi2cs/yDmGRBmjalizP6TpH57z4Ib5ii1LConIoTvycaVvzxvVbrNoBykHvliBXuyg0TmenfP2DP+PBnYcMRkNeu3iNVZMv5hIxQmVKtqo15icznu3t0qU2/tjNmc6nDHPN+soqlze3Wc8H2AQFungGCi7zEXptyPNw4NlcAqRkcyoyDx1/+p2vc/veHaw1XNy8wM9+4Sv8jS/9Dcp8RKYNhJp7j+7xb/1/Yv9wn/Hcce/ZY75/50N+7p2fYT2rFvL2GOOCrayjaJYEsAoSxKYlGbX3nDRYrMrQyWM1uihKAqSaeHK4x4eP7xBU5LOvv8E/+u2/h6sb/rd/2/DBR+/jo6fzbdorLTZLC/abrON7d97j4wcfszYa8otf/hl+7gs/zR9882t8+OHH3Hv4gMf7e7xx/S3Gfs5UN3zz/nf4xve/ydO9Z3ShY2O0wevXb/LTX/gK77z+JqujEV3oODg65Pvv/5Bv/tm3OTk4xIWOuw/u8J3tC3zurXcZDiu2yxV+5Us/Q6s8j8e7/N7X/5AP79+mm9V0naPISz737uf5hZ/+eTKv2KjWyJVhSE6JxaDoEM9ebYVrGpP3u0rKk8X5jzGF/8XUJJBzrhHLBgFP0uuDxyD1eIcjjyZ5Lopk3isIKkAMtK5l1s2ZRgeqlXuNEn/NSGQeZry3e4c/+eaf8mz3GUortra2uHnlGhvlkCwqTIiL0LwXXZuvwvIygO3838+DZsuS3f69y6BLjHHhMzibzRZecZPJhK7rMMZQVdVzHnw9WNWPs733YL8d50Gs88/LYNXLWJDnt3cZCF1ex/L+n38+L0k+Dyq9iB33Iobj+cfLzssnAYbLrM7+2H+SRHl5G88z9s5v34uOx4uWH3es4QxcPc8yfBEzcvm9y0BjDxaHEBbeiT0g65xbClgRNmbP1syyTGqj9L7lYLllIPv8Prxoe8+zIF923D7N8hMLDorj+PMXekhAH2mYU8h8OC7+tUBOBDikQ1wwalxsOJnusbv/hPsP7/Dg0QN2dw84OmpxbcQ5FqCKMVAUUBZQVRmXL1/k+rWr3Lhxi4tbl1mpNtFqA1RFiKUAO9GcAVFKZCLpH5yldp0VZ3GBAr7gZKn+90uA4nM/9/soxRMLlmBLpMMzpXVzTk4PePTkPg8fPuDhw0ccHY85Pelo2jNfHmOEKWgzGAwtKytDLl3a5tbNm1y/eo0L65fI7QCtVlCsAAMBQqXsTtsqn+/DlNPpHk+ePeTp02ecnExpm0Dwz2+2eDxBWWrWVgsuXtrg4qULbK5vkWernIWdnC/BADwqOmH7RE+INfP2lMPjPfb2n3J4dMi8lg80Ssx4EzlBTJ0NDAYlF7e3uXbtOtsXdsiLYfq8HEl6tgiDz5BbuLR9A4WlKIY8ePCAJ4/3ODpuaDtwXq6blGMi7KDOM5/NONyfoc0eZXmb0dCyvjZgbW1FugWbm6ytrrO6sk5ZjMizAXk2xOgSoyu0yhGvwsQQVDYBmPYMGESxSO9OrFKVUomV6ieICRzk1UsqdCHg8HjlQAWRdyXg2LUdOsvpQkPj5hDDmXxcGVzwzNox3kdG5QaVybDRYqI4sXQupC5iB8oLQ8V15HmBUZpO1eJrpgwR8QuNWibzOliiIUlJLK2bE2Jk3naUNiQQxoAW9pHNcozKIIiExDuPLYS50zmffOyEfaKVwusA2qOVxiJWAzrmoMRv0vlAcFG8aawRMAqRuTkvBYtrHUVREjtP8AjrTYHvBBRzIeC9I88VygQypfE+mddHg1eOxjfYzFKqAdQKozR1O8eUwkrARrSyDMyIrmnFD0Rrkd6ZEYWR0AFFIMRAEwLWRsqqpBwNKUzJWrmKTM8dP/XZz/POnQ9wCkLXoYjM2zn3Htznzkd3OHy2T4weW5SYrCIzGbtPn/LBez+AaGlqhzGZUPkvXWCwMmC0tkJZDlDGMihLbl65ymdee5ML6xvM2prGO2Zty4WLl7i6c52J91R2QIgGpzsIHqshdj6FgICLrTD3oicqAYuUUoSY4VNzSKkWg8MoK6C1zolKPMCCCngagmqZ1i3zumV1uEahS2KoaX0NCdif15MFyOVyxXh8StM1BJ/TdQgoreXuFYJ4NWhbgC3pfItzLRJuIX6lr9KiiWSZpQuKLkacbymsePwYpVOyr8a5jkBKJ9eRwhqcA2u0JJWHkBppMmbFENGZpWvnBN/RBYViQAyRed3IPTwV/meJexIcERLzyFqLdy2Z0kwnU3Q05FmOtsIIc66jazv0yCZZf8RqASwjQlDWUZEZQ5YZsiwny1XywFGoKDLVTGlwnkwbYTEbxOLCecpqROeFQemjI8sKnBNmsxSdJhXYIpFtnHTrV4YrZMnrJ4aAMknyHnoT7ZI8N1ibCZMQhXcBrSOdC3gX8J3cX4iatqvpuoa26Wg7T9s1NE1NVQzQJoNk+K+tAGkC8hkB0LXFt8Kqdp2ndQGBLQNtO+Pk9JA2BHITmE4MwUBsZ+RZxmQ6ZT6vacqOalRRjQZy4Sj5HO88ne+wJkNnWSqwU2GtxbctuCRHtVrAwZSs3CcnByPrEzBR0SVD5pg+B8C7QGYsoR+So8d1YuMSlMcWufgwpj3LshzdekIXiKVcBwZhT6yt5oQoicm4KAzg3OJ9YOLHwlotxRcqLwoBml2HVZoYFb4TlqFRkrCttVxTIYA2P7nl/suWmPwej6ZHfO1bX2dQDnj35lvMxzNUsmZRCCsupEbJ+HDCH/7JH1PPGj5z7XXeeeNtSSwnhWNoYbgNTYnvHKfTCS2euZsxbqciEVSGna1trm/tMNCW3ldwMR2RicfCX3D5epBtOjMNUulvfQUfgCKreO366wQNX/jc5/n5z/4cV6odlLLiY6dbVq4W+F82PN7bXaSiPjvc49RN8WwsDJPQCNtUeTQaGyNZVOJjyvMzh34LdQCrLBqdEtbF46cjcjA9Ye/4gNdu3eS3fvqXeHtwFVvB7me+xDe/+63UcJT63IfUyNKS1h6J1NFxf/8RJyfH/MxXvszfeOOLXM62+e0v/i2++xff55tf/zq7k0NmsePD+7d5Uu/z3Q/e49n+LsGJBcG7b73L7/zKb/PZS2+wmldoFYkGdja2uPKFHVbNkGYy5cGzx7Su4/GTh3z/w+9ydWWLjWKDCkNLZJyPKAcDotYoo1Ee8jxjZThi1QwoMssmA0oMNiqRjislNQgKFwR4DUrho1grtNHj05HU6TqQKntpPqcUxki6uve+pzlIoFGav0qIgrxWaUMbAz4lix8cHPLNb/8Ze0/3yW0BqT5sXce8aXj89DEffvxDnjx5QF4WXLt0lV/8m7/I5269w8AWELyAms+d9VcRHjxblkHA5eVFINr5ZZn9tgwS9r588/l8IS323lMUBWVZLlhtyx58/ef1gE3/708Cs/rtf9m2nQf1/rKA3CeBRD8O5OuZeF0nbOCe1dcDXee357yE+/xy3t+xf14kLyeGYv9Yls++CJR8Edh5nj33ScfvZaDy8vpeJNf9JCbe+XOwDOT1+7Kc2tzLvGOMC6DQe0+WZQsm5YsCXl4WSvNJYTaftPy4vy8vP7HVglItSvXWtmcMrZhcoNPhoJccn3XuA0p5omqAGYFTxrNn7B/tce/Bfe7ee8iDh7ucjlu8B+fOunvGQJ5DlsPqquXSpTWuXrnCrRtvcOnCDVaqHYwaEjBERqg4RMIfVAIyeybPeVCv///zVsU/Omwvg2HIfhEX+yoS6x6JciynLbs4x8UxbTdh7/AJDx/e5/69Rzx7dsRk0jGdOrwTUFBrCRkxFopCsbpWsr4+5Oq1y1y/fpOrO7dYyS+g1QDNAAHNCiQQJPW8lQfVAjWoOdDiwgmT2R57B4/ZOzxgPGtou4jzC6wXbRTGRoyF4ciwtT3i4qVN1tdWRZbTg3QxR5J9DVEZVM+AS/sLHh9nTOb77O4/5vGzJ+wfHjGdeVzHoquqVDq3GoocysJyYXONKzuXubx9g/XBJWLyfDxLXRZZp5i6D1gtrzK6vs321lWuXrnH3fu3efjoMUdHY05Oa7rO430URlkCC0USCEp5utozPm55+miGtftkuSIvFVluqIY5ZVWyurrC9tYFtja22NzYoipXGFbrlPkIqwfpOjNE8qXtVCycTlRfm4p8Kn1Z0t8UP8Ff9ZcuITrqDpwS432bVRCMTLqj7LtzDmsLQmMobbFgyXS+4/jkSBJmL4iXGMFgsNLpNhqtIipm+ABFrvFtoHMNJsvo2paQKdq6JiuQEAPfAZJqapKUjOjQGkbVKuO6IXhw3mGsQhvoZi2DfCCpolF80LIsx8WACwYfLYWuUMFgrKELMqGMNjKeTBgOJc1K+cQIIfmgmcTZNUhapdKEtpMCyBqRMLadvFaBzjQqBPBRsn1MFMAzXbDRSziGT55KLghTJ3opqk1mIQTKciB/j5LgrIJ8scuykPtLJ+tVxqbbm8aHiDUFmY4oHIWtuLh1mdwUrBRrBB8xRnFh/QpXrr8tHlMxkKFpfcvj3ce899532X/2mLKqKIZDVJYxn9V8/NGH3L17l+ADrhWvtqg9p5MDHjy+TR0CyuSoAFWWszZa4ca166yuligr4G9dO25cf53Pf/6LXNy6gI6atq4xmQAtgyrj4vY2g3JA4xuU9qjgiFqS3r2vyW2OQuM7T2aFzaqNFsC2URgV0TqmlMdI07lkr2CpiorMDMhiwfqw4KDumHRjdFAYMyC3FVYXDPKctvPEeMrcz6jKEd4sxPVkOpPxT0e86sCJQNqanCKztObVaxAoJYy9vMjQMRO2oHdErcR7Lb2u7+iH4NO1X4tc3WY45xgMR4QgrLWmrcFY5tNJmpilFGHvyPMMVKSu5+RFRVUN8D4ISNkJG6ssCoLvFt1h50UODCQAXRiuaiDpt/PZjNW1Vfo0cx8lXVgAPQEenPMJb9DCGjPCcnOug5SWPhhUxDoyOZ2ilCX4QF6V2MwsoAhjLCH50gpIpiWwQ+tkOQB5UdC2rTCQMwE/ow9k1kqIjTbkZU50ns45bJGT5yJZnCcZ1ubaKk3bwqSm7aYio3We6XyOsZpm3uFXxK+wN+tumpbV1TX6JGWlxOfVhSCJyzYTn03nBFwJ0lQIUTz3jmdzBsMBuQrMpjMiER8jXZCGR7/PbdfKBEUJo88nABVkWDQSBy4NwyQZV0oSGzvfsTpcTdLpBL9ojUky5RDBBU9GRt00lHkprFIX6WKHzU1Ku3ZYo2hdw+r6ClVZCoCixbupCR4dArkCk1vaeo7NM4xVhCiTWK8jZOKtqJWhHAwIRlNVA8qqSDVRpMizNIkIiXEgjej5fE4XOtY21ntn6FduiYnxuru3z+//xz/g9ddvcXV1i4cnM5kgxoXhDNZkGJ3jndh12GgZn5xy59Fd3rn0Ois2x6bjoIALFy4y2trk8eke09ixu/eMJ88eY5TCeHj71pt8/o3PUGiLtLhYNNXPYxDL1AQ4q/QXFbw6mwFUquS/+rv/Jb9j/iEOT2kKRroSoA6k0Rk1hRly6dIVtrcvcv/BfU4nU44mJ+xNDnhr9TKZskTE8zYaBMgOURprIWDlbiIT5bT9Mo9SRC+hRkJQlu9YpwINnoPJCePJKT/3Uz/Nz9z8IivKkAM3Ny9xYW2d04PTM7aMlpjDLniClmP78dEjPnxyD4zhnevvcnXtGiF6LlVrXNu8xNcU3D9+ymk343vvv8f37n2fBw/uMm87iqLi0voGv/Szv8yXbnyBdVXSG+0E5XEWqtWCn//Cz1GHwHc+fI9ZPWF1MEC7iPYhaX8sGsdQWSqTSZ0Szs5Qpi2FslTRMFSGIqY5pZI2eiBKYrHydASClgRjpyHYnvcr5IOeo2yVgNQt/URdmlIqnl00cZFgLZ3GhZlRmtblNsdEePp0l/948PsJBNAoIyxDH7wc6yDNcms0O5ev8qu/8iv8zZ/6eTarTTQJOPA8B0qn6cErtbwIEHsRw+78z8vv7597oAVYgDhKSQhGWZYMBoMFeNX7B3rvadt28egDNfrtWgacXgRMnt/WT7PNL9rv8wzKlwFUL9qOnnn2IqnzcnhID2L1/onLQSfLAFQPzL1Icnt+288zCPv1948+KfmTPqsHEfvf9ZLn89La5eP5skTilx3jFwGQzrmXnr/l9S8HtixfE+evnX4feoC5ZxYWRfEc6LzMnuzXv+xp+KLtXd7uTwIA++v/0yw/wYhBAspU790ntze9AAaBJDgQWauEU6A6onL4MGHeHnJ88pS79z/k7r17PHj4jJOTlnmNeOAhg7wxkGVgjGJ1teDC9hpXL0sAx7XLN1mvroAqEZCswsRcQJoIwtjrzed6sCYuYX6LpIqe1gSLYiEs7auWVUSRFsdkeqgURBVQKghLRbUQHZE6pQ5PmM1PODk95tnu40Ui0cnpmNnUMZ/JvibMRBiRlWZtLWNja8SFzQ2uXr3Jxe0rbKxfpsiHaCoMQ5QqUTEnxH77MkQC3QOULZEa4owYG5p2zMnJMft7RxwdTJhOO1y6FqVul46+0ZE8h9XVkqtXLnHj+k0ubO5Q2D4BOZNHFGlxP2iLPLYPlHH4MOVkvMfTZw/ZfbbHeNIswN5+RIxBGINawaDK2Npa4/KVS2xtXaAsVlFqmPrOz4ODpKCTmKR4WpWsDQesvXaJ126+w9HJPnv7z3j67DH7h3vs7x8ync1pakfTeLo2EHz/pT0DDbsWui4ymycWrOpQeoo1BxhzlzyDlZWKjY11Ll/e4dLFS2xfuMTqyjp5MSS3qxhdoaiESRjNYj9RBrWQGaebhgIVz5eur8iSGLhd21CaITEldWudjJyVMItq39DWgaG1qBjRJmK1JTOWrpkznhwxHIwgSqprbjNQHo2idR5jhZVnMwEbozYYY+m8pyyqRWdr0UUIEdc5SdM1GoMVdk+uUNqjsYDHMQcbyOwAGyzBiWG+MsJsdCHSdZ5OB7KUXu4D6Fw6ypnVWGXJKGRiH0kBAQU603TREQgp7RTmXUNVlmlQAWMtzvtFh1oZg47SCZcQUyPhCFETXEBl8joXI2iD6xqszQWs0wI4ogwu+YhBoPUtuQ7M2w6rMkKEPC8QEZMIvToncsg8KyGCUYbC5pS2xEQrQRHKEslYqSpc6MhUJNeGiGZUbnBle4fd/QeYrGR1bTMNDZo7H99jf2+frmuwRnEyOUHbwPs//AEPHz2kjuJZFlqP6jqauuHe47ucfngsZv+NI9MFH773AT/8wfdZW9tEqUhwjYwlOvLGazf53Ls/xcpwi7qN5Jmlcw3Xr11nOFzBuw7nGgobCF6jjcX5Bh9kSh6UGIVHHCazKKc4nUyoyoxBOUKrHKtKrMpwYY5CMW1aSltQhoLKrhKDRivLaDBkNhvLuY0Qo8ZoJX6VETSWGJ0E1WCxOqPMShlPXrGw0v6OZQ0o73F1hx/6BcslRiS1NgSmxxOIUtS3riMvLNOpx2hP17SEPKCsMHfzvKBxjtlsQj2rWV0phBUYoRpU1EdzbJadcdWDBxeYjqdkRU45GqIzKZ1CSKxM1zEsK5R3ZCimcykIRyoyqMoFqybEQJ7lzOuGLLcwh7ppWButEL0jLxOYpUAln49oNU6BthZCxGpDcJFhUTIcDAV+UNC2HVluFx1qYUxqGXe8eAn1QR+D4VAMxkNMwTeOXFt0VZIbQwhSD2UqQ6EELM1zXCeTp8lsSpY5Tk5nxNCirCXGQNe1TGYtK9Uq0+mcKk+JztGjrEj1Oh+wmnTMAyiLsZa2m9E5TZYZtLKEqLEmJwaHrgqIgVxbbAyUoxF101Dkpchm65YwDNjcSLCLD8TkgdhPInqpjlICBEs6tMYaadx07UyeU4J9aawAjAayIsdklsZ1tK1Hl5AllrmyCuUjXeOJUSe5QmRezyT8yXVAiXMt2lrc3EnavdYoI2CmLctF+BDp3NtcxoRRltG2js4EiqIgRuFzeu/Qxgpj0Le0jceQoZWwYVAkSWFAKUcIr561iFKWqXf88MEdooL/8h/8I0blSJjrOhKMJMRGIi5GZk3L1uY2/80//m949vAR//Jf/Av++Jtf45c/+zdYWb2QgmYkkOzG9Rt88ctf4MnhPs8m+zzd32V3f48sy7hx7QZf+swXWM1XkFFI9VjLOd829SPAIJCICtBrN4ikgAlFrgwb1TpjX3M4H/No+oTJ5IRmNoMQz2RoeHbHR3x8/y7zei7+2ZqFN2iMaVsSyIePIuU3UjfrJTLC8habBGRp3T9AJfuWJrSM6ykqGNYHa4xUdmbwo40oHHpgkFRjxki0Gm/kGO0fHnF4NMaYjA8ff8i/+Pa/AS9y//t794jGM24mnHYTjibH7O3v03QtmbWsrox489YbvH7lJuuqYoBK6h/xZteAxXJ1eIG//4u/zW/+wq8S8Fg0ZcxYM5UwABV0UQaJEGMKeZEa7oyCIXPLXnGiSNSOxcGKGCt2ICEFlZH2WTLSE40gWRUE5M2KmK4RtfCs9VFkaSE1MCKBEDxx4ZkZMEonQE+ztrrK5Z3LbK1vCEs+TQYjUsNOJhP2Dw44Oj7i2bM9vvrVr1OSU777cwyG2wx1BpJBR1SLsvWVmwUss9R64ORFDLEXhXu8CFRcfr+w5Aesr68DUJYl4/GY2WyWQsoiTdNwenq6AGy01otgjB5Ag7NQkE8CMz8NIPiin5f3tT8W5/d3+fXLIFz/mmWmZM8S7BlrfVrzi7ZtWda6zGz7JNCtf995lt/y+5e3fxkA7FmLy8Bcvz9nKo6z43F+35fX+WlYci+T474MBD3/+mVwtf97CGHhLbjsZdk0DcYYVlZWyLLsR7wsh8PhwmPx/DZ+Egi9DBa/7LwsXwefdvnJBQfjcjptSOgHi26pgIXiZ6WUQ6Wk3Naf0LZjDk+f8fDRXR48eMiDB085Op4Je84nQBB5tpn43q2vV2xsrHL16lVuXn+NK5dusja8iNEFUKJIrLYUwqEgtY3ETFpGFLVgNiYyF1KhLZcQ6YbRt/HU0mPx+kWfR27sOhJVTYhTvDul81Om82NOxgfsH+zy5OkT9nePODgYM5111LVP8iLZx7yAotAUZcbmxogLF1a5fPkiO5d22Fy/yNroMpleB0aI512qQpa6W2fbJUEN8iyUQB9qZs0p+wf7PHu2z8H+KSfHNfM64LoE0GmV2AKRolCsrGZc2r7I1cvX2dm+wUp5gRgrYfHFbOl4JyA1eW+INXUNsaP1Y04nBxwc7nJ0fMx83gk46NOmBtkFnUGRKzbWK65du8StGzfY2tgms2W6xiziGbl0jpResPUEFPZpnysKvcrOxg6XNj7L269L0MvR6S6T6RGnk2NOTo8Zj6ecnk6o6475rKWet7S1wyWZp09gYd/MDOnwThWcns7Z3Ztz/+EzyipjdW3I9vYmO5cucvXKLbbWLjGqtrF6CCpHqQJNJuct6lTKgtap4nnVKoKlRUzfPUWRE1rwJkqgBtC2E3QRmDeSBKW0SGmUjhA8RVEK48UFGjdHqwxrSpRRhOBoQ0jebiLHtZrEDhEwvqtrTGbJbcAqi9dScBujIQPvRLqhbUlmHG2saYNCxVVwHmdniXGoqSiIStIlfejQGpxvKApLZhS+82iVyf56MaY2SmGjJXaCcCuAVsnXzwa0Ft+vEBXeGmyZo4xeDPY2L2WCoNSC+eBT4aqVXty3fEAmuFoK2841NG4mLN/Uhw9RGIUqmdhELx6nUWmC6uUeYDOLUiJRlPubIssLXBtwrUdbj9JBUn2VAL+ZHUiRnkJaFBpjUucdQ25KNlYvoLJI10VWB5sUVtyBhm9v4G61RDx5ZmnaOT463nnzcxyeHBGITOo5p8dHZBGOTk648/guh+MDYVXNPe20ZTYZ8/Ht9wkxw0VH8HOsBh89H9/9mD//9vcoqyEoy7Ac4H3H62+/ybXLN8iMJi80RTagsEO2ti9QFBa0IjeWLnS0nSbPxDIAI7JYExWlytFW7MNDEH8tpTJ0rKjyAbkvsYEFS85G2U+HwkaNCikAI4FBQRmC8ngdMXmOdrncD4NcU6/W0k+sA66pBfCJkS56ch3Fcj0qgve0jaPzIl9dKVbwqfvfNQ0KxXw+pxxV+BDwvmM2n9F1HtdJ4I22GqMtLnSUZUk9b+TzQ6Qscub1HKUUNpPsSGuEMZjnOd10xmwyJTe5JBZ3jhiihG8ktq/choXdFCNk1tB17YIZRYgpJERS2XuLe22NSNgUoCX12gePa1PqcUQapkq8QAWQl2TaIAlLi7G3bcUnzBbi66e0+BGKBNlitQCJVhtJJ8xlYhx9ILeGpm1EQm0ss7om7wLeiXejCgJQFkVO3cmxE48u6HxH5wOjLCP4IC1UfVbUZ3lG285So1bkzF3bMa8bjM7IByVmWGKLnNh0GA9VSvULMVLPW4iR2XTGqhlJA8ImpraLElqRWJs9QHj2czozUSqevBBvOm20sFCR495LzE/HJ1RlSeZLCb/yEaOkaZPZLPl+RpzvmM0kPTuEgNEK13o672nbhqbtULomyzMCAatyBMsVQFfKSC0sRZ1J2rlu0STGRQwSsKAE2J3PatrWkRm5puu6pQsdykjtZY00wV+1JQDPDnb5w29/jUZ7OhO4ffiA+0eP6Wip/ZwPDx5yZXNbPPOCZ2NzjV/73N/kYGePux/c5u6zh3z1znf5h1/4NfF+Teu+vLrNGzdu8Z0P3+fOw3ucHh8y71q2t7f53Fvv8IU3P0eBkfFWLfr/wg6hr+lfsPQgzFLdpdJX2OOpo+PewSP+7Pb3+O4H7/Hg4X3aZo5J60ZrfFC03tPRMZ6O8bHDB/EIJoRUk8t9JYuGPBhMkLrd0VerSuIt4kJfgkQWCuMyIMAZyLVvFXjXMJ9NsMpSZJVss1J0aX0COqr0kJlQVOJwHhPw1k5qVBfxreOPvv4nfPUvvkFAit3gHCujimGWi9eqc0zbubB3g2doLZc3N1ixGTmRPIp02at+WiXS3xUsldKgS/pCP6S2bBaU1P0qhbcpSHbyZ+ABkY5IlsDlfj4oUVegYsCEAN5jtMag0D6ivNwretC3ZwJGrRfzLWJPLZCgIwEkzyTeJNXLYh3pWOZG7v9KwZXLV/nN3/hbfOH6Z1jNK6GcxEgIkc51jGcTPrp/lz/45p/wg48/5Lvf+R6zkwm2VWx85ddYGa5hlCLlOsn97eVYzk/s0oMdy5LTF4Fo50HD5b8tv6ZfZ4xioTEajcjznPX1dabTKScnJxwcHLC3t8fBwcHCg7Asy0Vace8T18uOl0G/njn2MknwefnxsuT1POi5vO3L6z//+xcdi+X39MBb0zTUdc1sNls86rpeSFoBXsYa/CQm4/nPX379eSDtPEsQWICV/bbleZ48dYsFU7NXhiwf62Wg65NA2fPb+bLr5EXLeQn1i5iNy+C1c47ZbMbh4SGPHj3iyZMnHBwcUNc11lpWVlbY3Nxke3ubra0t1tbWGA7FQzjP8wVb9WUs2R+3/f0xX97Wlx2zH7f8xIKDaeiiN/hOriKoKEOf9KjELyzGFh/HNN0Jzw4f8vjJQx48eMjjx7scH04YTxw98QdSF8xCUSpW1wo2N1a5du0y165d5/LOTVaqixR2Ba0HAlbRJ1gup8ymUSB1A2Wbz/5/9mNCAXu0Kr1VLZiDPRCYvONUAONQsSMi6X0+tDTdKZPZMYeHTzg83ufZ7jP29/Y5PDplPK7pOvFNTA0qbPJNHIwyVlcrLl7c4uKli+xcusLG6gVGgw3KfAWtSlQvHY4ZMWZpH02/oWlX+qFNtLNK9T6HDZ2fcDreZ3fvGfv7R4zHDU2TZLbx7LgonZKChwUXNjbY3rrMxmiH0m6iWCNGC5SgehafluOh0rlOjxBmdH7G8fiAw6MDjo6PGU9ntK1bxpEBCfIoCxiNLBcurHP92hVuXLlOVV2QiXrMEhB9FkTSt9yVSmExyhDjkvs1Kl2fHZku2BhtsLFylUCbUsbmNM2ceTOlbWsm0zHHJ0ccHhxweHDE6emU0/GMumlp2oBPbMcY0lUQoK2hbQInRw37ew0P7x8yGt3j6tU7XL96nRvXbrG9eZnRyhaZWpfjRiAurlF9ti+J8fWqLVobfBTGT+cbKrNCjMJGQ3lspmjCTGRtJrFfTC7Jn9GxMlhBm4zT0zFHx4fYVWFSkZgVWQo18M4ToyIqWXfwkhCbWenqai0hKFppopd7UUhFgHcOTYbSBhsjMTR0sZHCt22JOifTSvBtH6TjrwMqekLoyG2JRdO0HVWRQ0xSOecWvmqqb/0qkRdKEItMWnRIvlRGmH0BYQIZrc9kl6lobb2XhgayTqUghmSiTUQj4RrCyA6U2RCrC0l11gKamhjB9/cChcksLkr6a/CKbFHs9Bxq+XClheEQgpNzpwJaBdAWo8TbByTVtKgyYuwIBHSMWGXpovgJOtdJUriyoDQr+QrBSoNGa8VqsYqPgdVqky6K9YILLeP6hNh1tC6yd7zP6ewYrSwmWOaTGQ/vf8wPP/wuTaPpgkMZj2sadg8P2Ns74dmjI7SVSYBGY7Xiw3sfsTLaJNOKshQJ8aBa49qNG2xvb1OUBaNySAyOLM9YXVnn4oXLBCJHxweolSEjswpW5EbaiC+h8xKyUNqK3FiIEm7hfY1SQZjcqkCrEqMUmQbX1ZAmJF30Ih0PikIXwgpVaaLyCi0BoT1459E6Yq2Ra89oOhcggFaG6WTObC7eigOrhPWnFFme4TtP3XT4OPv/s/enwZIk53ku+PgWkcvZal+6urq6Gw00QWwECEDNRaJICCDEgUSRmrmDS6OJGtqlSQJkxkX6wR8iwV/QSGai7OpysZkrIzRmI1LEHSN1RYmcS3EBhhQAAiAoYmNj671rrzp1lsyMxd3nx+cRJ0/Wqeqq7upaWP7ADur0yczICI8ID/fX3+/7UE7jQ6CqpmxvbjPZqhFHvPSNUmnYoo3F2igVbKsZYzdEa0XUyXUTFCoaEWqUoalqypHk+3OFoW0DrfeMS3FsWuf653LbNhhjMdZQNxUxeKwREdIMHb6tsWWJQtP6BmMKFBLmH5XGDQaSF8RqtBVHSfApLEhL4YrgxfHuigLfyu+z2YymbhiMRpJiIZIq6cr7S1cw1dLWMU20QkrC3014vA9MZxU2iVPOOUKsGQxGaAN1XWGNo3COqp4AY4KXyA5jDaEJNLOawaCAINe8MkrERQVg0jNXMWtqmralGJSMRksMlkci5pWtBNGHwGAgDuXoAzF4fFOnitA+OQ8lP6vWFq0VPgRCiPjo+0G/D7KI6tuWJgmuIXhUTH2nlhQjRmtG44E825sZbGpGgxEEcEb6Yq8jWkWapqaqakkroB3GDUAZjHEE3yShRhxis6qSQkW6kcrOMeUk7CbEKdcYSiUnqOS+lIIpVgSJqJhOK5q6ZRql0qbRlqqasLy6hLOG6NnlJLtXaIEXNy/x5ee/zrnZJf7X/+3fMQ6KzY0rTOsJzeWG/8f/51f4W9/zN1lWg3TeRLw7uf8YT7z1nfwvv/r/5GOf+WP+6hveyaoeY5NUs4zm0HCF7fV1vvbM1yR9wWjIIw88wmMnH+XQywRYAwABAABJREFUaL9U4lVd3BLstdoar/qLkDIPo5AFOLTkrHvq4nP8+v/xm3zi859hc2uTB48d4698y9t47KFHsdrhigHKaCrfcmm2zh/8//6Qr33ly0xmU0yUPijGgNGFLF1bESqMlTGQbz1NDLRRREKtOhFQ7rM2eirvqb2nVRFTWIaDIaUtJStmFHe/My5leI/d7ARQyZPYiYQxtbf89LOkEBkUBd/yprfw2KmHUT4JOIBRltc88jpWBstEDxaDRVHFgI+eqq1TPFiUisvzoqxK7pzYtb04Hruw6QDUKVgrKFDIM8M3Ph2/pstRaejCrnef1TQKpDCGkSukInOKWGsbyRcWI/33SSh4EieUFBdpidS+pfWyUAQRra0sWBtHiaVUckd2Lu8dj0hgNCh54NARHtl3gmXlUp+h+sUMfyDwmqMPsbZ/H1v/+//G1595irNnz/DFr3yZtz32Jg6PVzHIYvA1Rex7gEURal6IWXzPS4Xwdi647nelFIPBgPF4DEiuva2tLcbjce9S60S1jY2N3g126dIlXnzxRfbt28fy8nIv7pRl2QtaHXs52K4n3iy69q7nzttrG11YdF3XvYNtc3OTCxcucPbsWU6fPs25c+e4cOECm5ub/YJhWZYsLS0xHA5ZXpa8+MPhcNdi2mIxk8XzNP/7vOOua/POqbmyssJ0OqWqKqbTKRsbG8xmM2KMFM6xtLzMwYMHOXLkCMeOHePYsWMcPHiQlZUVyrLsxcX5cN75qtGL7bJXyPD8Ps+LmHuxl3jY5aqsqqoXXafTKZubm1y+fJmLFy9y8eLF/rrpjv3AgQMcO3aM48ePc+jQod5F2F2b3TW3uD+LrsbrhTvP/23xOG7ETdlx14qD0EJoicw3QpwTiipgCnjaMOHcped55rmv87Wnvsb585e4sj5hOpWJZOy0OcBqGA4Uo5Fj3/5VTj30IA+feogHjj7IcLiEs2OpyEsXRixG9h2xpSNy1bAgzglpsUtgnHIGpiR4kZYYUhL7NCiWk9aJbl0uvxofr3B58yIXL5/j7PkzXLx4iXPnLrC5MWFru2I29TRtEgVJuQQdLI8NyyviNnvgxFGOHTvKgbWDDAZLFG4Zo8YoRiiGSG2zuYqK3epEUvViJ0zQiZkS2hup03nweN+wtbnBxYvnuXz5MluTKXUzJw6mp54UelGsro45dvQIR44cZzBaBeWIWJQaAiNU3+5d+PJOOHGgovJbbGxf4vzFs1xcv8jm9oTZzFM3MneMWoqRqAjOwHhUcGD/MocPHeLQvoOMR6sYPUbyKFoRzqKS4Uicr1okxyxhPJ3imHKApEwo4rRsRVRVA6yOuDIwLkVIjbHFxxlNO2Vab1PXE6azCRcunefc+XOcPn2GS5cvs7E5ZTaJhC4EfA7fwqSG6bRhNj3LpUvrbG5d4HWvfZxHxhZnRsjEyqVJVpfJZPFavccI4rByhU1r1QrlxfVnTEs0DXVT0caK0pUYHbt3EUPAq4jRBYVbYnP7CrN6CzcoIThCTCtiSP5LvMb7iDMDWio531oxsGW6fzUmWpl4WiWuHWSwMqsrZiqgncFFERpaDdFbDI7SWJT3MoDWUtW49i3OFWlV31A6g0n5UtFp5U0BWoS3NjZJ9QcfIyaIAGGMxRiFMjY5kSBEETYK4/BNIwMdZYhKo7QsSHRiRdMGlDF4fMqFt020kpDZKZnEi7hE6qNEkLHaUXmoG8mzhTI4a9npASUsIKSJkTYW6yJtkMWOqDw+NDhT4kPT5x0cFl0ITaoaHAK04riUKssNRkcIUfImhpDcohIqWLeBEDXD4Rou1ATjQbW4UuNDjTXLHDvyMI2fUShLRFHXDWdOPcxjr3tUKjIbhy40ly9f4mvfeI7TL5yhmU6o2wl1bCVv3WzCpcsXefIrX5b8cwaUthhTsPylL7CyuoK1Do1l4BxlaVhaHvPah1/HeHmJSxfO8OCRoywNvsF4eZlTDz/KcLDEtNng8vYm2pZs1yXDMuCDIipDCDUYTagsPlhiau8YwdhCQpmV9IFSICslYUcGeLq4ix/3e6HEjWG1VK9tmkDpS4giVGlgc2tC1dYkiz3aOurWUxrJQdf6QO09QUFRz/BehLK2rmmawHA4RGtxmRFTFWRlaFsJMR2MR3IdRwkfViEwGEl+TWsszhQ4K4n9Y4C6kdBxa0zKdSc9kqw3yQRdG02IHqMlfYVSIjAFL/k726ZKxSNkwhi8x2jQxqD0ADcocUXZ211CyqEavZdm6Ba1QJ5dydHjnCRUN9qkghviIjZJALRdNcHkdiPlI1SdeKkNNhXiGQ3HDIYlg9GA0g0htpL7DkBHfKiZTrYZ7ltDG6mGXFc1hXaoQSHFZJyh9VLASSPHMZ1WFMUAlBQAsNZSDIYMnJzP6MS1bJ3khgyhoSgc21vbDAcDCCmvZ5Bpeydudisk4qaUcMpIJCpF8K30Y1qqkpaukFBGrcVu42XkJhUsB2xubom7u24ZliOs0jRti3ZGXHvTisl0SmEdRTmkLEfSB2pNqR1TJRNR1QS5d7WiqSqWl5aJQc5VaFrJ9ao0HkXj2z4npIxP0i0CeC/baRpJFzGZTqTPp2U0Gkhl6iQi3mu0eFoVGCwNGdkRz5x5nqGXnKI+1hAiz557gUub6yytHkYpOf8GWHYlrzv5Gh584EG++NUn+cQX/pTvfct3ylg55bQ9unqQ1eGYr371SVRh2HfgAN/2jm/n0aUHKJKcqvr8wskhPze22mMWIPd69yRMfgC5jBSTpuYzn/8z/uTzn+Pc+gWOHznC973re/lrb3yCA4M1nCp7+9mUhhfri/zFl77E0+orKC9VgcW5pnvRriwcS6vLtC9KEbPNzStsbW0R16SQRstOKHSrArOm4vyVi2zXM1RhWVlb48jhw6ytrlHYguWhuG9nTYVnxw6BUmht5gS2FEIbIyZ0Yy8Yj4cUVuGc5e2Pv433vu2v45DnkicSlaawBdFYxuWIpdEyG5MrhBjZqqY8f+5FrlRbNAqqCEZJdfNuYtvgmaiGDT9hu55BbNEYRsUyYztirGw/flIRrLGUzjGbVQSfHE2hGyUHAp7Y2UL7U6gYaMfaeIXlpSUub16hbT2TyTbrV9aZhUbyPcfQlSDDSFdBpSQ8e2uyJa7P4FFKMxqNOHrwMKvDJYzSKW+2fFYFiK1Pxew0WoFThgJNERUmibHdNRfQGLfMYyce5cjhIzz34nMSanzlIpenV2ijx6ouY70SGfcenAIsMu8ihN0Cz2Jo5fXCRfdyWznnWF5eZjAYcPToUd7whjf0bsLz589z9uxZzp8/z5NPPsnGxoak6ZgLTd6/fz8HDhzYJRqOx2NGoxGj0ah3hu11DIvhq/NFPfq0RnPv7SrfzrsAt7a2+p/pdNqHDVdV1ee86459ZWWFpaUl6rruX6/rms3NTcqyZDweU1VVvzDYFdaYD83eS2hb/H3+GNu27fd5e3ub6XRKjJHhcMjS0lL/HUop6rrmhRde4MyZM3zhC1/YJb6WZdl/pmvf4VCKdA0Gg76q9Lx4uCgQzouI89fM/PUAOyJg18bb29tsb2+zsbHRi4CXLl1ifX2dyWRC27YURcHy8jIHDhzg4Ycf5siRIxw8eJDV1dX+OujckNZePSaf//69wsfnr4XFe+NG3bM3wt07W1BRBKFuFqsQESbUKD0BKkK4woUrp3n+xef5xlPP8uzzZzh95gp1JavBXfENBWgDRQovPbR/lRMPPMBDJx/hxPGHWV09zKBcoyvyEENXLdcgWeN1Eo+6hpdKksQd15/q3XY7k4HOCSgT5e5YojgVlCKtLwGdE88TY8OkusjFy2d4/vRTnDn3IufPX+DSpS0mk8BsEqTARyryoXVyxw11KiyyxLFjxzj54EMcO/ogK2NxyClVijMvFKCGKF2iYspNtNPoO/+v5o4hdkfe7TeI+d4SMTQhsDndZv3KFTa2t2jalqgQp02Q8FkQN+NwWLBvbZ/k0jtwiKXREqavTiyh5DHqnf1RnQNJhEIVPXU94fyFF3nm2ad44YXTXLq0zWQSRVTbMTVhLAyHhiNHDnDyoQd58MGHWF7Z3ztFOhFDzmeFFLPpgi+7Oo2q/3+Ikvw5tY/qQqCVQSoJF3JiCCiCOCMUWJawLjBwnjj2BFoeODKjfXzKla3znDn3Is8++xwvvnCGixfXuXJ51jsvFekSTMc1nQSIU86OLrJ//wUO7N/ArR5EqzGaQsTO7jpVYa5Bmpu5++4KtDIYrZlNG2w5IOpGhuuhBtWy6bdYr9Zp2xmjUYlOE2trUl6OqCn0EArL8niZQEMbZxizROEGtG1F4ZQUOFGS4zIt/qYfcae1bUBLGTspOII4hJqmlhBjpSiKIW3YYlZNKcuB5ANUMLJDTLByLrTkTAyhpvGNXEtRJqxGG1pfSRhi9Ght8aGmiUmYUwqvlAiBROq2wrkiuQoVxCgVdLW4YIySwWSQhEL4GFJuLSnEQqoOao0jKIU1kTbM8LoSV4IpiUFhosbHlJfMh1QNE+rY0IQWVxSymq/BNw0EjXVyz3jfSqEGpYkxULczPBWzZib7gkJZA0FTFJoQWrRRqbrrTuchhVG8hEKGiA8NmBRilQbYRhs5X0OXwvdBWwdK0cYmTRYUKjoKNcBEQ1mU1L7FDoecPPkwR48fYNmu4JWmpWV98zLHDj9CPZOCBZEGryLT2Tbnzp3m81/47zzz/Av44JlMthiPV2h95Oy5s5y7eD4VrnGUzhLaiqWlIV//ytcwxjLZ3mR1PKYwA1ZWx7zjiSc4eugEm9N1rmxtYOyQw4eO8Y5vepyiGOGVJeKZbk/Znkw5uH8No1sCiratpc21IrQNMYjLEiU53QpraBqfHAz3Dn3QldI0Tct0VsNWTAtWBt/U+KZhMq2IRAYDGXBpJaKTNgVKz6Bt0jmS9APT2ZSmbRiOBoxGQwZlgUpCZFASyhvpHGhyb9WzWu5za7BG0YSAT5VtB8OCZlpRliNqH4heBCulZIDfth5jJdxeXHshTdYlp1UIkbqtGZUD2pDCgYMUERH3Xqo5H2QspI2R8H1tJWS2F7x0yjGX+q80wQhezr0xhrIspd8iCV9KHHUg46XhcETTeJxL4mJIA1WtqKqZrNxrzfJohCuMCM5enC/OOXzwbGxewbdN6pYkD2C1tUWhSgbDAUm3xPtA7eUZ1bYtbdOm/KhynRqtcFacxTr9hBS+Z6zBty2gcNZQFAXee7a2t1lK4eMAWjuCF5e5IoKSMGzoJjaqb9MYI37WEIInxIhRJi20SGh2CJ6mkWIv0+lUnkVxSlPXUqhmPKSeTZjMJhLS62FpeZDC/SVHbgweozSFdWxuTSRvYlkQQsFyEqJjSAHiWvK7ogyoSFE6QpAQsbJ0/WQ/Is8PYzQ+NJRlidaa5ZUVhoOhODNvyx1761EoHjx6nB/+u/8DV6oNlFPoEHn6maf4nf/jd1gZr/L+H/y7fMtr38zlp08TQoOPbRrXBR4/+Rjv+Wt/g3/7//4In/zvf8Jff8sTjDB9mo0DB/Zz6uRDPPn0NwjAX/227+SJR97Okta4KAJSSyekz4+FZe/mf91xF8r7xcmhCG1EpzDXNnjOXb7ErK4JQfHA0RN804nXcWx0mDJaTEwpQFSkDQ1b65tsXNlMY31x+XsFjawT4oksL69w7MEH+MLTf8Fsa8ILLzzP8y88y5uPvJaicGgMjQq0iBPz/PZFnnruaWZNjStKjhw+zmsf+yaOjg+itZMq5MD2ZJMJFSMcBiVVyJsKlKRC6JbMlYroSF+c4+DRg+w/tp8vPvcVZlXFUjlmGGQ80qZpRUSsHYcPH+URU3Gp2eD89hW2pzO+8fSzfOmrf8HJleM8UB7oC32gFDPVUBF5evMMv/+Zj/GnX/xzprMZ+5fXeP0jr+f7nng3o/EhnFL9iNe3XhZ3oozHvfdUzYwmtqioaHSLJVJEqe5bI1Ek46UlTp54kPGXl2iDxxA4feYMX/rSl3jLw2/g0LEVRikHe0zbb5Sijp6t6RbPPPM0Z86ekYJQRnNg/yEef83rOLJyiALd5xRSWvo2pyWdRPTzz2kR9vow9tTGKv29UI7SirtcW0MTPXWKuggkUTHlauyndPco1wqrvJYgcq1ccfOhwJ3ANZ8z0FqLc46lpSX279/P8ePHee1rX9u/rxOL1tfXe4fYhfTv1772NTY3NqirSp5PvdFGJhbKGIy1uKKgSCLXIAlbRco3570XV91sxnQyEZfdbIavKmLngFGgjMKm7RTDIaOlJVb27dslUq6urjJKDsC2bXt3W/czLyZ21XNHKbqgE/Q6IXLeCbhYQXf+PMznCOwjEFIe5PnK0N02OzFydXV118/y8jKj0QhrreQ53tri8vo6Fy9c4LnnnuPSpUtsXLmyExqdCpVE7/v+QlmLda5v6+FoxDAJjZ0rsq5rZlXFbDplNptRzWY0tYwtQzqH3ZwfpdDWUg4GLK+ssP/AAQ4cOMBjjz3GgQMHdomAXf7ALpy3C+mdF+zatt1VEGbRGbuXmN218a24d67H3SsOxgaUrA7LI60B1aJUS92us719hhfOPMVTz3ydp599kbPntplOoa76+5A0ppUQ4kKxf9+Iw4cP8tDJkzx04iEOHzzGqFwjRkOMM6Q6skuiSpe5A7oB5I57LjnK0mudMCii01xoancoeBGdVHLBdYVTaCDW+BBomgmXN0/z4tkXeO6FZ7lw4QKXLl5ie1LR1JG6FpGtS6BbDKBwmqWxZW1tif0H9nPixAkeOH6CwwePUhpx4Ck1BoaIE1JCZLu1wJgGyxKLi7hxuqNK4bRJP08/ih33oO/PS93MmM0mTKsJVV3TtKEXBNnpF3FOMxyWLC2PWF5ZYmk8otSOTnyLKKSiY02MAW08ioaoGogzfNxk1l7m/PqLvHD2eV48c5qLFzaYTII4RJFDDA1YoxiNDIcPr3Lq5AkeOfUIx48+SFl0lX/T8VMTaKnaCVWzyWR2helsi6qaEbw4vTSGqGQldDgsGA9KBm6IsUOMGiEuzBFSU61AHt+evrQdEg4gKwIRqwLomkLNcKsDVpb2c/DAEdb2fZ1vfO0bEE+zvVVTVTGFsZqUbybgPTQNtE2gbTzeyzBA9xJvtwLaideRe3ZEEEB7R/CGy5N19MhRtA2F1TRhi+12m1bBYDjEKEmub8UGiG89RTkCNFYVLC2vUc02mFY1StUUyjEoxzTtrB80VFXDYOCIUQoMTJsZbjBkYCSPqIqSVBsFdR0kVEuSUknunVhS+23a2WVUIQnsY4g0lUycuzxYsyqgBw5LRQgySSkKTdNIgI5WJda2tC3UoSE0DQM7RqlIExoCLeWglPw0KLa3JgzKkqYJjIZDyrQi4luPTgsR3rcUWkmOQiNhdtLvpYaOgaBqfJR8YWGmGZXL4lRIAklRlDSxRTuNxWK9xceWqtmkNCN0cvsRdRIMvYQsR5lUF2Xsk6mHqNCqQEWLD7KvzlmaekbhRuC7MGgloXq0UIgAqKwi4NExAlYm8FEKPlgV0Ra8bwhBKhxWocKHiHIFRjm015RqgKodVhs8Nc5YAgZtCnyQ+2d5PGb51BrlYJmoxLVIiPjY8NyLTzEaDHjd49spiXKNNpaqaXj+hed46pmnCT6yurSftq5YXRrSVg3PPPMU65vraKPZ3tpCBc1gXfPihedZHu4jaqmUS7AcOXyCF77yJY4efYAqgDKarSuXsEXBo695jEdPvgYfDcpqXLD4tmFYSBiUjSkkXTc0XmNtgdX3mjgo5yHGiLMlk1AzmUzleWIK2npGaQ1VPcUVjtFYKr8ZZfBBKmv7pYiaTqjqGZub2xRlQeulUvR4PGZpPKYsC5EhlUy+tDEMhgOqqpaBcKtpfQs+YpKzVZtUOEyTkjkFfGhxtqCqRYx2RSk59tLkVmkRyTufkdaKQEsTWmxsaLyR8Hu1s3rc+iCifwiSNzJKnlTZXprwaJ3yccn2Q5Cw2Wo2wxmHb1uqukJpzaAsxUEQxZXtU6GUiKQykPBDqVQuqTVErKpTCGwEVldXGA8HIlZoCc+LIWKt9I2tb5lOpoQgkxxtJbTRGEWbCrYoo4geZrOasjBMJlOaumVpaYnoA20taR0K57CpcAq6GxTLefKxxaRBdVEUVFUl/bNOCyDoNJlmTrlJbUZMxSkk9yJOCsHMZjOKspSiTcGn8ZakRbBpomGMY6vdpvUtdd2mdeKAxxO7SopRwt59jDiVXFZK0XiPsY6yhGnVpNVrRVkWNG0juZWkpLk4SZHJmLU2pRwpZfHHGEIarxljGY6GaGOYzSYU46U0yStlYqIknNKYey+sWMXIii454faxn5JoA1ErNgfrmOgo1YCDxRpDr9lOodtaicBmEdH3yHCNoSm4sLHOmc0LnFo6JIUhomLohiyNRvi2JWgYmoJlXVLGlE8vRlkwUJ0wE/oQU5FydqoAd8Lg3BJ7SvORckoTJWy3DcQmYI2lmbVsbs+Y+IaoJXVJiIHZrOLC5AqnL55nY7ZNG6TSpdIKZRUNISUDMoxUwYHBCkM9wBvPtG44u36RF66c5+jqAYpCnvO1b9mcTDlz+QLb0wlWaZwyHBguc2R8kCUnMuCSG2O14vLkChc2N9i3PMJ6xZVqmyq2c3MhOcJ+nJmOemgGDPUA2sClrXXOb69zeLhCVJrpbEaoasbDEa4ccHC8wuXpMsujJcZuiAqR0DZc3lznzOYlLAVrxZBCQUWND3BhtsELmxc4vXmR9dk2s2rGYDDCOCuCfjobMQYUkaETD6izlqpt8aFlc7rNpekGI+MYqIKAkzy9kl0QG6HEsFSMWB0tY1IaCWJka7LFmcvnOTc6xnhYUDgolMxjqrbl8myL5y69yPrGZZnHaEVBwepgmQPDVQotGRJLrQkKAp6WQE1Ihd/EjELsErwEJMGAPBtUlOgQldQ+pbrICalkLNK475bWkB6adHXeW1zLHfVSbkDYEVCu5bxaZK98ct3fO6GrC93cv1/m2/M5+brCGl2xjy7ctHPLzWazPgy1e72qqr76bvddnbjmnKMsy94RN5+DryxLEbkGA5xzvVNuPl/gfNt0P11hkS4PYfczX/3XGNN/T+dw64S9rm32CtWdb9c2PaM6sbP77vnvnN+v7riLomA0GrG0tNSLhJ1DsCiKXmzsipbMFzKZd1NOk9A3/1PX9VVVm+edkFrrq9p8OBwyGo16h2J3Dro273IhzrfD/HW76Gjd6995rldNeH6fF0Pt552m8+9fdHjeDDclDn7oQx/i537u53b97XWvex1/8Rd/AcBsNuOnfuqn+LVf+zWqquI973kPv/iLv8iRI0dueseElq4yLVTU7RW2Jpd54ewzPPfc0zz9zLOcv3CFycQzq5JDTfUL4p3eJUUaNSirMIUimoapX+fypmdr+yJdBgoJxUlCXxL75G/dyQfJMTgXo56chVo5yWFlHMYUWOOQME8JiRRShd84o/FbVNWEjckFLlySXACnT5/l0uUNrlyZUs0CbRPFJdgJbKYrLgKrqwX79y9z9MhhHnzwBEcPH2Xf8kGsHiTxqwuFbtLwZZZyqs25HFWXVjgtKemkxQI7GTl0//KOSNjlG5RQ36gqPDPaWKXqg9LuIYVUGAWFBWsiSnmsjpSFxmmNUh4JEZ+JGIyWqmw0RCpQE4gtrZ9wZetFTp97lm88+xTPv3ias2evsLUR8a2E3oK4KMshrK4aDh1a5oHjhzn+wDH27ztM6fahVUkfHh6nycm0zdkLz/Ps89/g+Reek+Ims5pq6glexF6jNcOhZTTSHDywzKmHT/HQyddwYPkUWiXhNRbJfRYldDymiaG2aGWIWqdroEEe2wGrRuLeWmpZGo8wVhGix8coBUsCaHzKryVh0kUBZekYDkoGZYFlUcTtrtkUEBJVcjS+cm5nHyBhd4bSjanbFh9mYBUz39CECREo7YixMRg0ThcYDHVTo5QRJ6mWh51uDKPBKpvbmzs5CtNgXDuNrz1FqdC2gVDTelHjYwwoLY7ebiIXvCw4VK1M3HWMaYJoiMpRNxWFDlgrE8lyVDDdrnE2pusAqrZGWS0hfFFRNVPKwlHVNRgjSfzbmuGgpFSO6HfKDWAVTZgSm4hRsnIYgUE5SLmooK4ajDMSwpiui7ap+7CgGJMTIYi72VPRIMU8tHKMyiHBg44S0tuGRqp+my4HFoSoaJopbagYLpUYTFpBT+GgrqAJLTF6cVqGLWbNFLTCuSHGlNRNQGOkGrOSSrJN1UBQ2ELcg21oQMvgxKgCowdoxBFEBGsMWitq3/aVDY0zBNUSaNBaMalmlGYsoZmS9lDyvQ1kAN54CbuoUnpyyY2osKqgVAM8DUpbIjCrtzl68AGcLql9wFhN09Y0bUMxKHn6uad47ekXMcqxurzGsHQsj0Zsrm/x+c//d85dPIsyCh2MVOMOmzz//DO88OILBB0l52UTuHjpCpcvnUYpjTdawrKaGqU1j556iDc8/s0MllaxrsC3Lb5pOHLoII+efITRYAWjDVWzjXYFpR7SNLNXdvNze+//mPLBocBajbbyJKvqGm2k//QhMhzJIHlQDtBaEnBbW6C0YjAYiqs11hKKZaSoSIwSRiRhxeKuU2kBgLTSrZU493yUPKCBmHIXp/DjwqCcpW5mqTiEhOiCpvU1QyMTfWcc2iS3TSoSghLBqfWN5Ba0mqqqKAeFHHBvF1d9DhrJfZoKabQ+rf/IAkHbepzqREIRg5pWHopN0+CblsFQKpkXrhBnoumETkmNYKxlOpmwOhyKMKVNciFKmI8CQivCaiSkwhgxOQE1XfhyWZbMZjXVdIJWinI8YFA4mqpma+MKZbGK0SkYL4CvPW3lRcBXiFsuqXpGyySpC7EG6DLAmTT5M9Yi4yo5L23TiJMwKAk/N5o25aKToktpsINPBVKAELDaUNhCwqdT6DUgz+focdaxsrSM9wEVNdvb2yglfV4nyhptGI5GTGYTjJFQxmHZLRjK4pLCoKpWEto7WYwaDUcpXYbkOIxE2Z61EnatJPy5KByhW6xKlTKUgrIcYK1jMJBKmkUh200yNIQkONwCbmcfUKDZN1jh0KNvIiV+wSvFcjvmP6nfZsUu8+2PfiuFNVyKZ1LgRneOIwMU73j49Xzvd343//vHf5d/++v/Lz7wg3+P4ysHURpOHTjOt731HXzic3/C0v4VXnviYfYrKdhjvRTC8J3TNLVmiJKJnG4ilv6ZX57thBkJy5NXPRFnDW987eN8/YWn+fzX/4Inv/Ikv6p/na+++a2sLa9glGFWV5w+d47T588STGRze0P6La2op1POnz5HPAYYhSFyfPkwf+fb/yZFLPjTv/gSz555jt/8nf/MJz/zab71jW/h5AMniBrW19f5whe/xJe+8mVUoXj4yAne/Lo38d3f+h284YHXAoESy+sffIR3vvWtfOLPPs3/vfqXfNs7/gp1XfPpz3+O5154ngfXjvWXUhdZ080tQHFsdJD/0zvfzaXLl/ndP/ivnDl7hm95/ZsZDgZ8+atfprm8zd/96+/jja97E9/51rfzhH4r33TyFJ/688/wjeee4uyFs/x/f+e3+fRn/4xveu0389gDJ1kqSkL0TKopX/76V3jyG19lfWO9z+P11sfeyLve8p0cHK5gkUgJrWBfMebRIyd446nH+PpT32ArwPbmNn/4sY/zta99g0E54KHjJ1gqh7z2wYd57bFHWdEjbFSsFWPe+fi34ErLwdUDnLt4kRfPneGZbzzDL/6vv8zJYyd5/Wtfx9Ejh6UwVWy5ePkyT33jKZ569ik2t6/gBiWPnnyE15x8hG9749t5yyPfxKFijUEUR1+rpGeLWhONoQ3g0CJGJhepUrL075M7UzRBcZNrZVgeLVHYMuW/rThz+kXqY4+zMhj3wciqPzuvnNt5/18rX9xe7sEbcRTuJchcKzcdsEtI6v57UcCZ/2xXzbjL4fdSLIbjLn7XPHtVxl0U/7pqv/PvXaz4PP9zvXyHi/syn5tvXoha3Oa1vm/eUdgJj52rrntvJ1zuVSF50eXZhYJbaynLcldbXms/u+3tVXn5emG589udZ14wXXz/XjkDr7Xta4mIN7pfi9t4OWLgIjftHPzmb/5m/ut//a87G5iLmf6Jn/gJ/vN//s989KMfZXV1lQ9+8IP8wA/8AH/8x3/8MnZNujJZm2to4jZnLz/LN575Cl/9+tc5ffoyVy5X1PWOZV9LnmpxjKRoZG3kb3UVuXhxwtbkBV44fY7BoKBwFmslkb+K0tmqqDHKSBXTlIy6WyOcDxXYUWpJLoGCpdESa2sHOHTwCPv3HWRc7qN37KFSYZFNtieXOHfxWc6cfZ4XTr/IpcsbbG3O2NqqqatI20CIMoHpE2co+qpp2iqM0xKCFxq2t65wXiu2NyZJGJTwXIVO+8qOWtq7HG0SCcUdoLSscFnrcHaAcyXWlmhVonBJuLNpFV4To0nCosFYR1EOGAyGuGKKrlq0SVpKFLdj20CtI7NJw/r6BmfPnZNS3qM1SreUjPMNqDK1eUuMFdPZFba3L3Fh/RzPv/AsL54+zekzF9jYrJnOIk0SBUMSMF0JK8sFx4/t49RDJzj54MMcPXiKYbEfrZeRS76rJVZT+4rt2SaXr1zg3IUXOX3uRdbXG6oKmoo+fDsiotyghMlkg7I0jEcjBnbEaJjcgFQywVSGqJNzQdJHy7F1odEpfyI0BCZMqiucvfgi58+eZ2tjm6YOvRg4bwJUShxmKysl+/fvY3V1P6PhMgpJYM+uDkEt/HvruF19gFSCLHCxZLbdMq03iWOPx1NV2xg7pixGDIwl+khoNcpq6qZFmxJrClkHVprClTTBS/ivn2HLQcpBVyY7boOPDcG3hDijbiYSwpPWYZu2QhupaG1tCUbhCoWPjUzWQ0thHBtNpJ5FCm2wxYCoZWJqDJgi5RidiWOlbiW3WNQtWEVNBU7Ol1GK2IooqVQtGU8joJOQ52t0KsU3GJQ0jU+ysFQXNdaBFqeeQvKzaS0T6rbxaC2r4MYYZm2FMgHvxQVT6oJCpSIKRqecZzoVbgFrDVFZCkqaepuq2SawIuF/tiCGKGGdHtrQEGKL04omTqUTC1oKoSiF1lb63ihuG6M02im899S+xlknt4CvaCaVuPi05CgNQaGVCAkxqhRimUQKLSvyWskk2xqFjlpyxSmLMYFAi9YRnZK4+xBpjZd8pXgUmrIcoaJCR0OMHqsLrA2U5ZCxW6MJkrPSx4oQW6KOjEclDxw+yr61QxTGMSgshS2YTFoePvkwF6+cx1jL0C2B8mxMz/OlL3+es2cusj2bErxHo2nayHNPP8Ok3qYKDVWVXAQhsn7lMl/96lewdojShslsxnBYcOL4ER45+RrWlvejtSFQoW3JuByxXI5eyW3fc7vuf9+G9IxqpUiLjoQ2UhQFUYlgYgvHymgZYx3WmlS8RApzECXUaqBLUGMCQ5ngT6dUTduvss8PwqP3fX6umBxxTdPSBJ/CUwaEIHm/ZGyiscZRxRnGGOqqoppV4gBOTq2oZEzSDVbrppb7MDQYp/FRCgnYoiTE1J4xTbxVxLcBrWPKX0iqaCn7QIxShCDl8IuhE/ADo/GIarqzYj4oB4TWo5ySPI5BrjOJJtAUxYDCp9CEZIcKXkKftRaxsSxcHw4XoxTHCKGGYMBASBXQy6Jktr1BXdeUg4LQNDSzmuHYUs+mmOCoZlDakiuX11Fe9WIgQVIk1EiePRFEZSzjfRK8tITVyaq/xllHrevenWCdS7n4FErZ5BLUqdCHnGut0oICCiUVfFgej2lacWcmO6m4NmNI/aBFq8hgIN9b11IsqJpNxVkYFaYUobiZNDTTKc1wgC4cMYg4pLAMh5E2xJQDUiUHZKoirUBryX0ZonwmxkjdNhSu6AvK+CACeSdMl2WB95IXyjkDxDQWlj4j7p5rviJuVx9glKacO2dGlko5ceAI/+O7/w5LwzGFlkWzg/sP8gN/429RLg0ZapcWTTUnDh7j//qu72f/6j7GrmQ6nRJWROozSvHNJ17L/+19/yMr+1d4+2NvknB8drTUPslN7xKS/97xAF892upM2lF1ESoSOjp0A77jze/k4L5DfOEbT/LCxdNcunyJL/z5FygHA1CRA/sOcPLQCb7tDW/n6LEjPPP8Mzz37NNsbW1QliMOD9dwvT9RUWA4MT7CD7377/Ldb7/A155/mqfPPc/5y+c5d+48zz37PDF6SldyZN8hHn/3Yxw5cJBHHnqYh46cYMWNKNGYKKHqj594hP/pfT/M6x58DU8++w3+7LN/xvGjx3n05KOcPncOJuI2VkSWiyF/9a3fzoljD/HoiYfpktr8tTe8g/379vHfvvgZnj3zAp/5zGewznD44EHe+uZv5djhIxgC+4ohkcC73vgdfMtjb+S5sy/yzPPPcXH7MpcmW1xZ3+Bzf/qn+KbBKI11jpWVZb7rrd/O2niF44eP8uCJExxdPcSqEVGvyxMZVWSI4y0PPM7h/8v/xFee+RrPnX2RF86dZXOyTbM1o53UfPnylzm4/wAHVvbhj4rwWygZta8w5J0Pv5U3PvR6zq9f5rkzL3D24jkub21w+coVLpw/zzPPPi0hy9YwcAP2L+3j1DseZG28zMF9+zn5wAMcP3CEZTdigKZIkRVJtcOiODBY5Xu+5a/y6P6HcGgeOn6CB8aHcN0sq8812V17IvbtK8b89bc8wbHVg2xubVIWJUdHB/DBSzXmhevyVqUdvV33/6Kbr+NWiB/z27qZbV9L9HmpPIjdv9cSexbFncXQ0WuJmHuJQnsVD7me2HSt47zW+xaFy72Ervkw5PmCJvNVi+fDuDv343w143lBcDEst3t9vn3nBc+9XHbda922XkrsvFb49LxjdH5frtVeewnPi9fOtdp78fuvJQxeS/i+3n9fj5sWB621HD169Kq/X7lyhX/7b/8t//7f/3u++7u/G4Bf+ZVf4Zu+6Zv45Cc/yV/5K3/lpr5H1v4k0X2MkVk75cLlizz34os8/8IF1tcb6pkUb+hW5rqInWQ2QCkkb1vqhGezgNqUUCuY0LkMdVqJkVw/klhWQjF29qYbBkRkw53wqLScmPFYSzXcB04wHBpWV0ZElvrPKQw+Trl45TmeeupJvvHU1zl/4RLrl6dMZ5Ivr7vfQiRVHJTv0ClFXlQSUsokEtqK7Y2Gc2eu8HX3IkY7CTdKzoUujEWnkBjotKNkW563oKbceGVpGI1LDuzbz/HjD3L44AnGgwMiDjJAwpMLdgq1SLs4s8zq8mEOHthiMo007QZVXUmobzIBhFbksM0rDc8+c46NjW3OnDnLoUP72be2n/FoBaMLlJJqj7PZlOl0i8vrF7lw4RIXL65z6fIGk0nNdOZpW/HgdW3knAh3R4+ucfLBB3jkoYc5fuQ4q0uHKO1BFAOIyTXYh0QHFHVyEzpC0PhW4dO5iOlaSsvAtDVMA1y+1PCNp86yvd1y8cIVjhw6xsH9x1kar+DsAE25487cGS7SiYMhVszaTba21rm0fpqz589w+sWznD59kfXLE2ZbokZ2wmpI+1FY2Ld/yEOnTvDIw49y6MAJrFqCLhx+1/elDfSXcHtT99/1uF19QBsjBCiiY224wna1SeNbWh0phyOKsISqNap0knNJpaGpMjhnpaKokrwrVhUE1VK6Eq89WrVYrWnqRoQjG9C0zJptgq+YVttEZVlWkelsE2UswQecGRBCSwwK5zRt20KUEC95qFmUbkRgp0QrRxsCRWHwwad72WOVYnNW0zBjPBQrYttESjuiy7CptWZ7so4ZKgo1oI0SujhtKpraM3RLFKlSZmEtTePRTopsoFSfuwpSTr5uRBpSRVMVwWqUUczabZSCoR2ho6VtA8NiQPBdvycKtUKlXIlQ2iG1t8xiS91OMVYmY0GygFPHVhxyKGb1hIYapcDqApOczT5GqeZMoImNTORVKjYCzLyIbrNqk8IVFHqApRABAY0y4oqMUfpYkogegwcViMpTtVMKV6BCV3gpoHQKBo8N1kixmbpqsGUg+BZNoDBDgpfQTqUVRE1dtRjnMEphjcFqj9IBH9KCgG45sHyApWLMeLAC3kpVbKUpVzT7l9eY+uO0AUq1TGENIVY8eup1rK+vc3l6BV+1FLqgbSJ/8eRXOHvxNEEH6jZQNVOaqmG2scnZ0y9w6cIGddPgVWAwLri8cZbPf/ELrCztE0FAiX12VI4Z2FsjDt6u+78L2Qi9iGJQhTizfGiwVkSh0XhM20pevW7gKYNTn/K+GFyhxB0aAo33+CDHoVKOO2PkThHnlkEbCVdxxtK2MQkG6dlpTRLjZDWyLAtmkxmtr5lOpvSVgr3vFxClgqxU/XbWSkEKBc4ZqrrGx0ippf+W9CGxX+w0WvUCfeN9yi3niTHQJDG0KCV8WBYwI2iFT7kIq7ru8w0aYyTfp+8Gv+IgVFoExRhTvrQ+GbqE5nYFf5aXVyiLTsQSl7tWmjZK3rGoEDfctML7wHgoIX1lUVBNZFFjc7vBzCzGDqi3G6pqhooaZ1KOxCDVR8tSErj7Vh7IWkmaBh8kD2uXy0hZhS8cpS+Ti3BucqU0WkNdexmzQcqjGEFrrJVngLMGnVzPZSFVgHf6Evmlm7iIM9VRFAO2tycYo7FGqhkbZSSgT2nqbalAXNe15H5LEwgfAsZaxuMlWbBRCu8bBq7s27xtpEiCdXKutZY2nBeorDEpP2Ia9KuuYITsfEh56mIXmDg/HniF3L55QPpXdfVa5W8PHjjCD7/3B0ApbArzPXbwCP/Du38AFCJ2sTO5PnXwGD/y3v8zIQSckv44+S557OhDPPy9J0SoUTYt+NOP82WY3LkR2Xk97eDC9Kv/f0USEPuJhIQVL+mSt556PW986HG26202ZxMpiGMLGuVZGy6x5sa4tI8PveYw7Wve2i8YKKBUth/tKUTMWlMDlg+c4OEDDzCJNZNmSj2t8I1EsThrGZUjhuWAQrtUuEXLSLVbjABMUHzTkYc5+a7jnNu+gveB5fESXz79df78i1/kyvblJDIFVssh73nrX6OKkYEysp0YMSrypgdew2uOn2J9us3GdBujNfuXVlgtBhSo9J0Q0TgFbriPQ6f28ZZT30wTA1Vb9aGYPogwL/1YwagcMNQFRqWM71Fh5vWKZIYo0OzXQ9YOneI1Bx9k4ms2pzMmjeQ7U0inMBwMWB6MGKmSIglyEXBI3uCRsew/sMRrDpzAE2iiZ1ZXTKqKqmkkx6mWQiujomRYFBTa4pRKJR+V5GVEhuUB8Equ6BLN8cF+/uZbvovwZhEnjdI4FE7t1BjfuX3lojQqsmoHvOORN/AtD3+z5EZF5q425ZyOSvUJoW6lTeB23f/z3IhwsvjajQgmi9vaS4y8kf26XrjojW7nZj8779K73r4t/ve1wl+v5ya8lki7KMB1Y4N+jBDCVeHOnTOwc97NOwUXw6Dnw5K77c07GeePf1EcXQyFng+/nf/ctULNOxFxkWu59F7KabjX327mnF/rmnyl195e3LQ4+NWvfpXjx48zGAx44okn+PCHP8zJkyf57Gc/S9M0vOtd7+rf+/jjj3Py5Ek+8YlPXLNT6OLuOzY2NuQXlWJSMYDDMGRlfJgHj74GE0ZsbG4xm1U0dZMGtaIMKqToRwwe71tJop/iW+WE7oS8hk5MTCvwMYmMKuy8F5JIlD7j5wpsdAKh1jAcBAZFwfLyEkvjJQkrlsBmwONjxfZ0nfPnz/D888/y/HOnubLhmU4kJDY9y/pk3V26uhiTey39LTTga6inkS0l6luMc8Um1I4wKjuvmL+cVCeGdpG1sde+GI8V+/ZZqhNHWF4Zc2DtaBIGHURL7Iq00DkqPYoBI7eP40ciRlucMyieEYFlKu470kMxeJhMAtPZlPPnZzz73GWGI8doXDIYFjgnq/KN91TThtm0YTqpqWaeto074YxBRN+IiILjJcWhw0scPXqIhx96lAeOnuTA6nFKt5L2f0gMSdRUO04+DQxMxIw1hw4c4cr6JTbWt6hnF/B1S51cg72LDxE5t7ZgNtvi/LkJzzxznpXlr3LgwD5WVqSy2XA0wtkC6xw65ZAiSqGIuq6ZzLa5srHOlcsbXLp0mY0rW0wmDbNZ6MVAkONsWjlXozEcPFjy2GMnee1j38TJ469hWK7OhUnPFc/phxPzZ/7W5Ru6XX2AMXJTDO0A5VZxztKWhm1fiTOvsehYyP2hJL8QEcn1ZSIuGlTQBB8obAnK0BIwpsWg8E2DQvKNhdASTEMTGiKRoixpg2Y2nVEYJ5N6VO8hJpIS6FupMK0kbfRSOaQwmuFghI0WvMXEQBNrCUsNAYKnNA5rLFuTy7gCQnQsqSVx9hgpqmBtSWhmbE4vUhZDtJXiE9M6oOMQWxT4hr7CJd5DYYlWwp/9rKFwIpSgoPUBo8SpElM+vhDaJCB58JHSDcXVh6ZuG6xxEjatNNpYfPT44AnBU2jLqFhhc7LJ+uYV2mFgPFil1eJnACkeUjXbbG+vMx4WDAdjCj1Ch4Hk+NMQqGn9NtEEmuiIUScHFTSxZWO6QdNOWVvaT2kKnNL4VlyOQdW0tGgcOlrkEpCqzyp6Gl+LT7hVDHQpYmqUwYYuBkCQSbOSfCfTegvVKpbKIQpDbEmTUrmvgm8YFIUkDVdGwlDbSOmW8DHQhim0EywWg8XpJWKrQUeU9ShaCmcoKTB+iFWaqIccOzDm6L6KS80FlNesFKvgNa979I1cvnwRUyhqWja3LmKUYf3CJb72ta9w4eK6DJpsxFNz/uJ5nnrqGc6tn0tpHWQmUldnmUxuTWqB2zYGACSsXwS7wWCEdjAaD4hxgCIyKId4L85RKRoh5zPGSNRSQApUqt4aaEMtbqxChCST3HgREYuU1tSzaYoTkEGrs4WEBseUUkRH8YOrgA+N9A1OS7E0Qr9uFok7YpfSUt3QGXHoKlBGo6ORsFUfMVqKmIQQxfXb1BRFCSFSWCtCSJD8oUQRGbWhz34cVcQ621dWblpP9C3Be8rBYG5wLm1rtLgbo9oJXQuIy1HrnZXxupGk3FaLcGKsIcSQJqsRjOqFJ60MPkrrDUcjiUQoBgQNbjpjUk1RjfQlS0sFW5MNtHEYLMWwSBUgJc2AQmO1LBATQxJMFShLjKF3E9StFD4aqG6ylCY2dAIpFEUx56ZIuaSiLMKgZQJtyxKMwRaFVDVVCmfE+SVPTxFIRaCQ8zQcDmnbluF4xGBQAOIEaj0sr65QNTWbW9sYqykLSYyulMeHNoVCBZyRRUmtxDGtkDaX98r3t6041ImRED0xSvEZYwxNKxV6vQ99deYYPTGa5BYMKBOI+tbc/3D7+oBubDpPinfBpjQPnfjmlMYpPff+TuSRnIEDLF0tunmdxSIpbpj73Pw/C7++9GvIfbSIiEMiFAGUUTE2I44sj6U/oBurR8CkaKaIxxCU6d9DFAFJxb6rAXZyH5bAEgXKlUS34BxK36HSmHR3hsS5fQWWTcl45bCUtlCKp7Wk/amCp0mi3DAaSh8oY3IYkwwX3fK4cgzHaxwdrSVjBXOziJ3vNVH+HueOJ9oRcWlEXOpKU0n+R0Xn3JbPSboVmZEEFft2kLZJgmdUOCxDY1lbGuKVpBNQUaHxKZGU7FGbzp8ibTvtuBSbj2kUaAiFIxbL/XeE3k+5c13omNJapW0kL3kvEsYINrlXIkpyECq163x094DX/VSCLshdI3knnZIGnf9cv9XYHQtX30wvk9s5BrgeLyX0XSvM80a2+3JEm5cjzlzPcXajvFyB6WacjHt93/XCtOfdd/PVmLviG10uw3nhcNHduFdo9Pz+Xev4OufifPhwJ0x2v1/rmF/qGLvzNb+ta7XFtbgZ5+te772VIuC1uClx8J3vfCcf+chHeN3rXsfp06f5uZ/7Ob7zO7+TL3zhC5w5c4aiKFhbW9v1mSNHjnDmzJlrbvPDH/7wVfkLhC7RrUExYGAP8OCREUcPPEz9+DZ1M6P1U0kST5rcqiCDIjwxygQ2hJhyx0hnKhcNhCjume51cWel373kMgopsbRPLr4QAr6V17wP/ZNMK1gajzl46AgHDx5hZWkNZ1LevyiPQU2gsEPWVg5y4vgjWDNiMplJ8vKULDEiImcM8h07N2anoAdCFPWcKNULw1xepi7QQVb/RdiKnQNuXgQludE6ESr9MhhqVldX2H/gKEtLhzFmicgAYoE4B0sgiQ3duquyOL3C2rBkeHzE6vISRw4e4Olnn+H0i2c5e3bCZCvQNmlwr2SfWh+ZNZ6NTY/Ss15k7UTYbr+7h5nS9HlXhkNNWWpWV1c5eHCNI4cPcuzoUfbvP8TayhGcHqOQCs1EB5RE3Q1JVLpeurU0i1MDjhw4wfJwhWOHHuQbT3+Np59+mgsX1mmalqoKktcwCcPBQ93AdBrY2Jhw2kywT5/DOk3hDNYZcbW4lAQ8TRR946nqlrrytLXkEYytCIApPRRaCuTKanCpGY40+/aPePjhEzz22Gt46MGHGQ9WcXoJxQCpkJxCydXVxXB2uDWdye3sA7rE3943aKMoyhV82zDCUQaF0g6tBwTlUbFJI0KDihZiAyhiTHmttKwKWO0IsUTHgqoOlIOCuq4w1tBqjSuXpZpkMRNxuIo4NyAosHZA8BJGqLSmmkmVSJUWJiRE1jIsSvCpOEfwWKuZ1pGBdcSmYWkwoplVDPUIP2wxJuKUZmBGtHWgMA7fNgzMiPHYcXn7MrNWboh6VrE8PMjIrVIYRwxp2BfBWEfbykhQxH+ZbFpn+uT5w6IgAMZJ+LsnENoapxRRGZS3GDMgKkXdeox2tK2nMCKyBhVABVke8KDNiKXxQbY2L3Nx4wJ1qCnLMSHOiBGm0wmT7Q2WxgOGxRJWDdGxRIWUokBDG2ZU7bYk5DeOUbGCaiKh9QRmzJoNRsOxCDRKgU7SjVbUfkodK/CGgRsSleQYbGLFtNlmezZlMByiGaCjRoWI1hKiN7ADfFRE5UBZinLAlfXzDNwQZ1cxFESnKYwltoGIoSglr1vbNCIqBIUzBd5LiDRBEX26LlA4W9KGgNFSNGVWTYmuxtqCgCFEQ0AhFexbBsahtcVRULgB4wPLHN9/LCVBmLIx3c94sEx10vO617yRzdmWXLv1BKvhxXPn+fpTT3Nx/RJKQWEc9WyLp559lmefP82X76H736cQ3+ARV00ri38iwsg1b42lqpp+lVrEuDZNfneKc6BAG0M7benCUAcpV6chFQqJUkyjd4lZKyLb9gSvYViUGC05QkEiFbSSvHxlMeDK+jrFsGQ2q7BugFaS2BugbYOE4/uAcxL62caGumrxHsbDgYi5WgSwECVvnAKMkf3rBqQm5f1sg2fgXApJ1UQjwzk5dAm7roOn9S0lZZ+wviiKlGZAJ3epoq6rXjFofctsVuGWd6oNzqoKVzhiVPjgKZzrBUEVNcYAMSI5+Dxl4SjdGk1VM6tqqchpNTZafIjUjefy+iUGRYkOinIwwiP7NhgUkrAcCWV2duc52nrf5011qYiITgMHcStoKQ6UBuxaS6VuW0iV6b76choDaKVQ1qaF2E7MTYnZtU6LtCLIKKOx1hFCF2ok19twNOgn4kZLdq/hQNFo6V/rZibbNoq2qTHGpcqQ4jb3vu3FWK2S9KV3CohorZPzD5QyVJX0H/JslNDuqp7irKFpAsamVDIg7ed07ya8FdzeecBuulFM5+zq41fizqudsN8JVfPv78SbbvTXv3dusteJbr2IdgPsiFoLOzr3n73zkLRoozT0RWICofVpgVP1O9i5JcPCtgwp/9z833tDgPzIopfadRAy9g9oNB61uJu7twPYKK5TlObQeI23P/4m1o9d4cTBw5goRgqrNNakfUz3oRTLkTH9ANW3cx8a27mQ2GlvPf+Hbs9i8r0qQOl0/mJfomNeAKQTT9VOe2uQTCYx9saITlDr2lKDTIi8J2iFMqY/BcztcyeoqijtalK/sDNJUf3cSv5TgYo7cy/dXSc7WU/TIfYnJyh2hf52Qme7cB13v3fX8dxp76/FJFn098dV1+jL5E7e/zfKvHjT8XIEmRsVYV6JWHNNgZNbNWvb/T17hSXPi3fXE6MWQ3A79srNOO8KdM5x6NAhxuMxJ06c6AuEdMVAOrFwvhDKfOGPLhdhx7zQN7/P8+dtvkLw4nF0LsRFl+RiteBrtcdiO97og+JaIcE3w8u+1m7y8X9T4uB73/ve/vc3velNvPOd7+Shhx7i13/91xkOhzf3zYmf/umf5id/8if7/97Y2ODBBx9ERI/OfWckEb0bU7oIg06cWvhRXVc6f1td499e4IrpYbTTycf+fzsXfLfiFmOE9LCJSMcvuf0M1hRo1WWJSOmL+11RjMplHjx+gCMHH6OuJ7S+JoSGtH4t/8ad7+yeOyJaSo6smKpy9kmwY0gPl/m/tcmGG3oxy/su/0yX5HP+8xKiNByM2bfvAPv3HWNpfIDCLhGjQ2FJZRlBSahm7B9tybXGgNINOLpvjf2rD/Hg8dexfuUi5y+c4/LlK1y6tM6VK+tMJhXbE0/TRtp25zj7h5eGwimcA+sUg1JTFIbBwLI0XmZ5aYkD+w6yb98B1lYOs7y0j0GxROFGSB5FCbFVXUEWJfso85huiNUNHcu07wWlGVAu72dlfIQTxx/lTa8/z5nzz3P6zAucO3eG7e0pk0nLZOapak/d+JSLSM5z20DTBCYxEEPTDyznf7rroR+4IrmGjFWUw67giWG8JBOk/fsOcPjwEQ4ffIAD+4+xPF7DsEKkgGiJ0SJOSJuEwW6osNgL3LqJwe3sA1QEp5WI19bhPZRYjFKYGAnW0iqD8mCMrIGHNiDnVNw6eIWxlsbXRB+xhcMomyaXXXt1q/JpVRpNYRxGg7ZWqkMqIFqCT4UhVMS4Mg2GQz9INapEtwZtDZGQ6sRJEvrg038rQ2gN1gxZGzmauMXADNHRYbWXvGdeUeohqJLl0jKLkSbUEh5qlijjEF/VOFvgveSdIkBspHiBTw7qNnRVlRXOJnepiVIfL0guRKtAm1JCK2Mp15eR3HwxBCkGoTRt09LGFlekKmSNJ2AYFGuoJbiyeYGqmtC0NUpLmH5VzRgMC8bjJUwcgHconYouRFAqgJYQyq2NTQbFEEOBrzxNMyG4isIZRuUYEzRaSf9mSpus1PIdTd3QqoqBLYneS0hSXYGygMXZgeRU8lKUIEa5Z4MWB47WJW2zKXO16Gl8oHQFPkLT1tgoObzQqcqpVviYrjElwqk2adJgTXIwSj42pRU+tnhf0TkP2uAZGJdy40rbGqPRPuWNjEChUdEToyK04sJUUaGDY6lcZXRkPwf0jBgbdN0yLkecPDrjDa99K9PZVAp4tIGq2uCFs8/wlW98nd/7tf/2su7Rjtt5/2skbN+noiDb21ssLY9QiEhkUr4N5yxtK0KiNsktpWLKzZfcXpj0DCTl1S2lum6kfx5qRDwurSMECQX1TYuPATcs0drSBlBNxJWW4FtUEuhjrPFeMZ014KUX6Vx8IkilfHeQcud58GBw6AhN43GSDpeoRGSq6zblPU7uVq1QWqbH1hoKJ85bSW0iTpgQgoQco3oRaziQinvOFTRenNGtD9iknHRV2CeTCaAoiwHOSO5QbTTKK4xRaF0wHA7SOLgTASTEV9yQpq/OjAJrCpq6QWtDOSwxzjDZ3mY6rTFO0VRThqMhAzNA60KqbhdaFoO0RhcqiY2grWE6neCKIoWChz7MG+S8GmN3hTCB7nM9tm2T+niN0Vac4lHSuVhtU14++awsnHbOyG5BuRUR1CqaRgrexBglnJ0k2LYyHmi9FJ6yLlKGkroW96ZvW1w5RCud7pU0IbEW1eVfUSJgFs71Dk7SNRNSOojOBUuQlDFaQ1kUhNBSlC6dH0XTiNgYQkQbR4h7h0jdLLd3HnA1ItTMjeO78Xk6XzY5r2I32GJONOr+pDoBZUew6wWrNB7tomtuhMXp2l4R3J3oE/pPdFEIaZJgHZ3LUZyBcj10h9qNVlQ/mJzb9ty/USvmHWzdrKafASkRBuc0Lbn0uGqzRLUjR53af4x//Lf+Ht3ovwhSERidXMc+bcNA0J3XXvrh7spLqWBBgU/nQ6mdcFvR2zpRk5SzUSVH4E5guUp9qe+PcCfkXM8JYelW6N8flSQTEkemRJQZdJ8iSrH7p2v4braYNrYzy9Rzv0c5Xqvki2ISd1H0UWmp5nQvhs7nEVSdYzDuHrGHq/YhJY6K8yLg3Pnf2e3+3/5vt2AacDvv/70cYjcTKnwj3Kw4c7u4lcIg7ITOLgqne+XNu5awutdru/Z57jzMVwHuqv+ura29pAtxXrBc/P16ufkWt/lSjsj57S3u+0sd51V0fdYr4JUI0TcqOt7MMd10WPE8a2trvPa1r+VrX/saf+Nv/A3qumZ9fX3XqsHZs2f3zE3Q0VX2uRpNbzTvYwGk64tzqzWKuPsuigvde/d0oPs39tvpu9vuv9XONtNluqC3JJWne9L1Pa6iD9+NpEfn3JOm79YjVnvsIDIezgtVYe7feRYf1/PvXfx94WZORTdEdJMBpwyWQj9okn/T0UZxvlhTolMOu9ifAyuT7Kjk8yo9klQhIwEcksNvCARKHTi4coj9qxUPHp/QtDNms21m0y2m1YTJdJvJrGY6q6XIQXJugkIbcUEUhaYoDcNhyagYULoxZTmmcAOKYkzhhhhGwAgkg0l/rKpr+7h3e0lLaZQaIk7KZOHDY9SQpeEqy8OjHD3yCI89vMFkeoWmnTCtNtnc3uTKlU2ubGwwnU7ZnlTUM09VeepGHJI+TRJQsnIqEyuFsQprFc4ZBqWjLEqGg6HkUBkNpHT7yjLj0RLODRgOlhgNV3F6mS7PY4yOGJwcc1dURqm567i7dOavL/a4tm4Nr2Yf0K1mSbVIiMFTOpmwRw9mYGgB5buhoeT2skWZ8hAFbCFJ442RnH++kpxYIYXgNbU4edARF0qilg7UKYtBqoU77YjRS/69KKKbJhKj7ifHhXVEoHQDCIrCWmLwhLZFx4A1VhwiSkLHTVmkwgk1RcrVR1DEoPChZVCUEjYbAgMzTiJpi9VGUikoL242IxPRpmpSFTBxGTU+JjduIWJB8OJcwotbIahUXbiVAkzG4VuPUTqFrUH0nYNFHC/RarQ3WJ0cSlYTdZSQnWKNcl9BXU+Sc8uCcQzNiKKw0p5RColEJNwvBo/XEaUtzgxZHqziY2RjayOFYGkMcm0YP6B0I6nGDDR1RVkUWFti64KahspXxFYWSeq2wbdKilUoR2hbsJL8HKSv68I+fYwQNVYNKPUArRyxtShjMESa4PEajJIphVJSnVGrlNMxyj2uunssLaRobfuKu0oZ6TeVOBUVTsSrqKQYiq/RSKVoTYlSLoVNSt/cth5rLAM3wBpHbCN1OyO4lhAairKgosUNh6wVQ/atyISKpqWwD3Di2ElOnngc+JlXftPP8Wre/9JcmhjFHWad5PSMUWF0Smzh215Eke6+G0xKmosYkdD/GKiqul/ck+tdzp/MQ0VoiW1MK9kiBtdNTe09Yz1gMBzilKZtQ3rma0JUhKBpaslzUdUNJuyMBxSqF5ObWsKK50UIrS1ETxdwJrmCY79QYbTCNy2ukP6kq/bXFZfoQ2SV6V1xXeiwtpa2qqUqrpWQYOccaEUMEnkQfQCj+wqCyhicFRG9qWq001hrGAwG1HUrFYIVvcAIkbYNUkBDa+raYwpNUTjaOuCsJBknKLl+ywEg90IsHYOiwGnJJ2lKB0b6eREfxd3cD95Nqr4eJFSpdDIQ08kl3bkLRqOBLJB4SUfinJXQ6d2DOREWw/wCZUy5ICVs2reNVAtWMeXuiwQvYVDaaIKPuEJSTqBiL+Dp5C6NIWKdiHVSUMX0kxxrLU2Tnm+6E4CSqKV2JjfBe1k8UZI/DE0qohOJqguRlnyyms5VaMUtiDhhjdKpsNqtSy0yz6s7D7g2/RAvpmtAzQ3lkdsshK49d7uu6OZyc6JYN0vQpKHuTe3N3vs393U7Ylz3eicidcqPmksRkJTEsPOxfhTbH4fa2VY/yusbZecYd8KV2eWIm//8/HZ2QlZ37hgVFS7Ni7psjt00wHfHZVT/HZEo1XXZEQBByUKGmpu1JIEwsuPy7Iq4xLnPdc/Z7vi7HZ4XvbpDT7rijhC8xwmRjPZz3rrYHfXCG+Pix2NqV7W7uMfcSfK79i9FcbHjWIWd89pdp/21F9k9jF+8bue+a/4Y+893bRt3Pr/Xv7eS233/7yUuvRKB71aEaN5sPsQ7yeJ+LVY/7t6z1++d4Le4rfl/93LkLX7/jQiENxrafa33XSsceK/X5o/h5XIj4eG34lq7Xjj1reQViYNbW1t8/etf54d/+Id529vehnOO3/u93+MHf/AHAXjyySd59tlneeKJJ17G1iO9E7AT2DpBq+sOFeysm8xfsJ0wKIP0HfO83tl2/+/8z6LYFuYeF92jYS5nTXpU7pjEd76T/oGvdz7ZVUxRMvnuRaxd3612fuKiODh3nP3hxoV/uwdeQOG7PZbkHFcdc4e4z2JMCbN953QwqBSqmnxZ7ArJ7UYoWOjrYomAohijCZTGMzCB5bKFtUDEE2KDD81OJaC4symFTpMCmaxJIniDVpLWl5QdRAZUKXNJNP15ULvas2sPEXSge2gquqwnsp1AjPOKr+SrcnqNfctHWFtpgZZIjQ8VTSM/bdvQtg3eB1rv8b4h+Jo2pATFyIRBa5WqacsEwWiDswUmVdTVWsQZ54ZYO0CrgYh+MeXUiSkxPGmypDVR/EWg/O7rrzu3UbHbSfvqPKhezT4gEKUio9ISjmdMygkYdq0Oa6Voa09UUqVXR42KMsn2sU1tGCmKsq9iGlRa4VVRxK8AxosrNmiP8goVIzqANgXOQds2opOrIJP2IJVCjVE0rU9ChoQnhiCZcGIqMqCVDIxlQC29mNWW6AtUtLQhQNCgfHIdSk5DayzJXEeIkkhd2wIVxREpCbVFGPFtI24bHbFaRBW5jyU0GyTMUNw3ChUiRpnk8pNBfpe5KPiI0wOpPBxaAhLyVKhSHA0gLqYo+XqUkrYdGI1xMpEn2N6ppZWiqiVEEAVRy/mchhqNQfmC5eE+Zm1NrSc4Z3BxgLWGNihoLMqa3iUZQysh07ZgYJekEIGBumlQRsI5beGwocAFqagu95H0AdY4Eeqi5Oey2lC3mqVyBaNLaAtCI9eGUpqAJAAnNMRoiejkJgVFN9jxGGWwupSqy7GriJbsXdoSg0KbIdGL88yaghAD1oprXKkCpUqUtngCOip8DBI6HJTk04wRaPF+xixOsUYzaVqMKYjR47y4SD2KUjJqMXIFB5dvjXNonlfz/u8EG2Ms3nuKUhasQgBnU6EF79NzS+6xAH2YqYRcql5YqaqKQEBrS+ksVmupiKy1PEYUKKN7caYoC7Y2N/GtJ9QtXteY4RDtDFFJeHqA5DAS92s9nTIul3CpAEW3wKHT7FUplaowq1TduBHnoe/Cmj3OKdrk+lNKoY1K16oIS4UrZYEghFQpXapzN20r90FKYh+DtJ0yElIdCIQYsdKJidjVbSPd0+JuDOLKVCoJmDL4ds6hpZJPn//XallgETGVPi+etQYVDDHlCooh0jaB0WCMMbV8V8r3qJXt8xfGVPxH8gt216vq8+tJsTYpyhK8l+IexqbQa9J2zZxoqkS0SFVMfUrmHKOEFhE1bZB2U1ocwEojKotWYJSEMsfY9+Fa236/JGRdQhbb6DFIn4cGpy3RwmBQpImXFApAqdSPdf12S2ruPuWKMyadT4VvW0nAGndckNYWEr0SfRLBQnKCd+FW4ijUIYlMMd6ySqWLvLrzgN0iW093rueUlUVBpOvvuxF1DLvFkXQJ77y+o6ld40tvbqf7Edfc9+w6hFT8sJvVQJfiICaRWO05cgvMiUALf+92vSt+sWuHoC9u1wmg/b6ouePv+oYYJaefknvLKCmutCNYRroslr3rT83F56huX+eNE4t7RC8Whl2vqF4sJAlmJn1apbbrzm3v9Zi/DrqpWNwZFeuu7dJiQFeIUl7byce4l0Wj35U5YS7ONXg/u1KSN7DfnbkD1ntcVPNCqdp1j6pd1+biRdDPFBfbTqVw84XrHF4dYRBe/fv/pbgVOftuxT7cyN+uxSve/7nr/6Y/uodbcHF/rifULTrx9vrMjYhyN5Lv76WOY/7ze+3P9Y71RsTIWyLA3ey5uoH3vxpC9E2Jg//kn/wT3ve+9/HQQw/x4osv8rM/+7MYY3j/+9/P6uoqP/qjP8pP/uRPsn//flZWVvjH//gf88QTT7y8CkWqK7Awd9C7lknmRbIFgWxXTx6TsKUguT76N6l+WJD+phe2NfeTlhljV8UElfav2w8JFyNKgu9dyz/pobNzPPNnOgk53aO8P7Yu9n3u4u5/mRfm9rpqusfFnDjUPyEW2gogGkIXNhwjRs89TSLEPmxb7RyNSpbf0LWFuNhU354RFWQ/ovJJqAoogjhuTMCZ7hGod9oo7gyVVH+OOplWpzbe+Yy8S3P103D+iWjm/purPk+qUCdvCWn3u313fTtqPFoHbBkZlCIYyjF1m15wZ6Z23hEsoQvDVikBifzVoJQlRkOMWoRK1eVI3DmkfhijkgiaBInd1zC7z/stFgdvZx+gtYSTxZhcEiHKJFcrUJGmbtGlE9eAMWlCHSScMnRWdE9RDghpQk6UiXIbPXXbpJXmNHn1QRx/PohYLknAMEYEGoDO4m60hZQL1BqbJtgpgX56b9s2KeSxQWkrk2TvJf+NLfBNkBBiZKJqi5IQDVElR4ktaKsGV5RAQNMJHpq29TjrxI1olTiLvKe/T6NMvquqkip/1qKVwfRpCEAhIXwq5e+QSa9MAEj3tdwuEW2NiPmtiHr9BD65aoIHZ0oJ2YsN4kSW/Ia+9WgnBVhaL+H4JlXp7BOXW3FnDoshrhBHpo2lTAAiFG6Ib2t6G0iUQXA7bdDKSr5BA04N8ToQvcLhKFSRCkkYWokfllvQy3F11wQxUuiS0hm8MrStxbce68rkfFBEpDKrUkn4DS0htBA1zkkFW600VlmIUFU1w3LQV8bU2mHdQO59XWBSigYJH9NShCF0wViSt5AUdiyhZrJY0/iAjnJdVtsTqugZDYdoHanqBu8VhS6ZtoHCLqGS61iHVy4O3s77P0YRrpRWKQw0EFsRdGKUwgwiXOmUr6/LOSjqTPCtXMMaKfKBCO5LS8MUBu7QrktkD7OmYejEHyO5/yTXWwiRZlZjRkupp5WlGZTk7zJaMxyWzKbbOCv3mrG2F7+aphGhV4ugJYKVAe/RaJyxKY+eSmHCCnykqRvKssBYlwQoTTOdEsLcIDe1Uxt8qkaeBrlo2tjStp7SWYw1oBaKE6iusqDuxTRrLdYaTJB9V6nAj/QPXYXinWdply+oc8Rp7Wh8jVJK9juKUNkECZHWyuJs7PMQKZSkWzASpu9jxBlLHaoUfk0K99u5740xKKMIje8H+lqL2zME24vK4mZM44fgd+xlSMi1sUbcz0GBSQtKpMmS1iijqdta3Op1Q9M2FNrhm0bc5yGIS9oorO0qIIqrT2mpJjwLDUVpccbJokaU9/pG0rsUzkquV5WqMGPQOvbHpJLLc+ecSU5FY2PKNx0kB6asOvX5oKbTmSwsdfdEKm5xK7it84DrcNWoRu38ff6/+7/NDf3nPxgW3nur9m1+N/YcgfXDeOlLYjcAVjvCkKF/FO8prLHH37oQ6qtiReaOe68rofu8zFJUvy/di/Ojyvlt6Ln97R1815hk9+HDc0ToBbVrHRvdPnXtlN7Unzu1e2bV/zs3TVy8Vub/e6/z021v12uds2nuS/a6BvuZmdoJFV6Y9fVC4Hx7zgu8u7azgJp7/+J+dzOCxX3aJSK+Am7n/X+j7rH7nlehiW5UoHulLrzrbf9mxLqbuU72Ej8Xt3e977qRbV77jTf2tpt5/ysJSb4WNyUOPv/887z//e/n4sWLHDp0iO/4ju/gk5/8JIcOHQLg53/+59Fa84M/+INUVcV73vMefvEXf/FmvmKHaJFCGCA9qwhcO2tpSfhbEIJ2fIIyYLr6dC7+pet+487v83pkehh1NbDEwbVTZ0ten7tASSlz+5PQCUWBXavZSWDb9b279q8Trq71Ggu/zz8u5h8B89lH5o9Xfjq3YAwpG0aXxKjf96tba9dvan7fQj/YUf1buiEO9CEUXT7Afs8UXRa+TvCSqtPyb4xdhsPQf5O0Zfe5iIoLAuGu4cCCoNi56rpSxL0gmUTNPm5B2oeYBBPc3BnoBk/sEiO703XVlbdrdLoz4ZJrSvUisGx159ohOSnjnGi6MzrqUi5HRKiMcyOvxWvm1kwMbmcfYIxGqyg5v5xNIV8KI9YOtNVUdU2hZFKr0+SxrsWZ4pxKYX/ivKpmNVqlHILOSOU7JY4Woy260GitqOuY8njJwoJSpFDx5KhB8s6BYTAoURp88HLukihpjZbiBZJUrr80jbVMq5nk9EqnMcTQh/UqIy4QozRtIzNj37Roo4haquW2bUtpB6mqqerdiv0qsvfQ5VW0JlVX1/1IsprVjAZDcZ0k4Tz6FmWlQmKIEWcds+2a8bDAB9Xvo4qgJDGf3Jepr/A+pGtfY3UJUfWhdShN2zSoYHDWyl0cAr71DFxJoEX7kASxdD0r0L6QIkWmC7G0KZQu4lwh+X10IaYa1TKbzSgGI8nvFwIqGFqvcFqLYJMWZ9qmQaGppzWudFjraGNLUZRyDaHBSE7Dpq4JVopclEmkaJqaohhSB7ke6rpNuchqjJWcaFpJKHZrW5y1dIsaOmqaOlAWOuWuDUlUdoS2pnQldSsTf6sVfYoLJSJB9IFCl9R1jTKagRtIhXgVMSpSOg2xxZaaobOooKXoSlT45pVXK72d9782GlTAJzcViAgbknuTANqJMCiu7M4JChBw1ianmGJzY4O6blIof9gRBXubSRTh3kriP61EUCoGA9o4xXuf8ilFaIOcOyKEmIqHKYpygG2kWIRGBLfOObszKVcpLFRcvYUr0ATcwImTjCRkAUUpee3SjspjSxsJ/fdBnNBdSDUkp10SBr0I2YOyxBp5NioNTkklXptyueqUvw8iTht0If2oUSJQN74BJSKtVlKgRKtUsz05oI3WfVXgGMV1HIxGBS8LGcETjeyfj+JAlom+3nHrJcEOpB/rilHFlCep9gHjjOQFNFJgSQp2qFQwTo6lq4Ao+yKuwtCNE5MjSwpcmRQGLCKiDyLykvo0rXVKqJ4WhJUsKiml6Sond09klY5bW0todgpciJARKJ04hmOAED11PQMlydLrusZZndylXaSESotZXQ5clfIbpwrTWs+54KTTb5sWZzvHpE3tmxzryALErbj/4fb2AVfVUemEjmvMcfYSiPbe8B6v3+IJdn9tzAlG86/tGj7uqEn9G7r3J2PydcXBuMffFl+f3+Z8+11r1KyU6ttfkdyKcU7YSgOOnVH4zjb6fJ3X+I5FdNwR+tTcB696b9z9azes7n5XaVsLb9393938ZO/N7v77HtdJ7P9vbgfnhtnzM7buLXsdc9dGOwLnzhzgqu/Z4+vi4h/ZaY9rcSvcw7dVB7iHudtEzRvan71u2Ffru+7AZ17JObnbzuetOlfXQsW7LDB+Y2OD1dVVrlz+D6ysjtJfu11czM3XuQKFHTfVgro336XO96jzD+N54u7PdwPLnT/t/syufei+Z77D3tXLd06yxTWfxafM/N+u8Xi56q1d28w/Kpn7fa+f+UPb3VYx+iQ6LK7eqH5gMC+q7Wxo0c0nYb2x9+F3uQwVxOR26jc9Hx4b5n46FiryilLIjstw/mkedkZe6bX+XHZpCRGXlugaSaAkHV5XuIUuBGrH3dgJ0Tuju/nzsHDNoZA8ZHNtu3BsO2bT7rOynzF9l7gL0xCsS17evaTmz/v8d+1858bGhNW1H+LKlSusrKxwN9P1ARcvnmVleUUcK1pTN41M5n2kUJbWGXwMUlEveFA+uboK2ramKDQ+tAQfKcoBTdVKKI+zKJsGtiHlAisMMblU2tDirEsTNo0PklPO+3ou1E3ECjF9RXzw6JQLTCNhgsaka46QwszBanEhxhR2Gltx/s2qhsKWmEITJF24iB/KSFhj9BgrE/a2DRS2kAvGyGRXRZ3cTEGKaDSeclCKKyYatAniVNSRJoW3GeS46mZGJPaVEo2R6oJ4EbUiDdF4rJZQW7nkPdpotJHcXtFL+J5SnrquKcsRdS2uRG0tdTWhsKUIKUry/ZgIFJILUvlWKn0a8DHQtB5LiTYQUqIiGz1NU6diCkbEDOOIGgINs6piMBgRgpeQPCxaWYwSEUgiBX3q15S4dVNfLd1IQOsKpS1ta9CtRpuIV9J/GBUxGqbTmYgQSqpf+yAh7DG2UgAgtlhrmE5qlFUUbkgIisY3qFgRFDhXEquIjgZlLdZFvJ/htZYFmxDSckmayCT3XDQtRCddmxZHmlIqFT6JhNjQzmqKwRJBOQZxhA8WrWD7ymX2Hzx01/cB3f1/4cJ5VlbGtEExmzbUzZTSFQyHZaqQq1FGxFXJ/xfxPqQqtiLQ+yagDFzZWGd7e5vBsKR0JaPRUsrRB6idIjUyGZQQ0lnTsF3NmE6nmGg4eviw3GMh4BE3vIqOtpUiVHVVSSEYU7K8siRu0hT6rmIKY1VK7mWj0VEWHdrG40qDKVwqJCailLWlhBsr3z9XIgqCVBceDIbJOWwJwWO1TmKnlkIgSgRTbeXvSiOFW5BCJj4GdACSKBm99A9WG3wjQr2PLVFHyf+pbHp2issvqpTcogVjJedv6MKLtGxPK42PXqoehYjBQArnNtake0LSGwD9s00rhTIW72Vs0bSeoiykv0+LDSIUS+E1a4s0RolJZOxCpgtZFwktMbQYLddGF8br24ixBT45G2MroioxisDqUsh1pA9l1mnxQColKwlVV5GgFXEWwRi0UdgAs1hRGKmYrJWkXqmbCm2suMqbGudsCpWWXIVKGbSCpqmwRVpgiiCh8+IMDEgRheglrLhp2lSEJYI2O4s2IcqCjobLly9z+NDBu/7+h50+4NL6zr7OCx97TVrmR73XEmRuF3vtn9rjDWqv9yqucte9XFTkKocasKdgCXJ7h7kvt1HtKpoBadSa/jDvBAxqx7XW2SduSLTc4/e99m2vzy4eWz9jutYJuIF2XRTQ9hIHe4fkdd53M+x1bvptLkwvFkXBxTacvwcW2djY4ODq6l3fB3T3/69+/D8yWhrf6d3JZP5SMNna5v1/9W/f0P3/inIOvqooD+yIIH23qHZ3x1d1gOp6wwK1x0t7PJ52iYbdBKJznc2/ppj/r13LR/2/MnHc/ajsHp+L3z+3n3v97aoMuF17zG/jWqFj8+2ye/tqV5vOZf7oKuDGPdo0ynulqbp2m2+fxf1SaXsd7c5n2OO4+v007L5MF0XK+Y92I565R2T/dJ0T0+a+R0FyIHTMHb+WtMXz7Fwac6LotZa3+98VuwXO5OZU88Jnl1ew+4xOf5sXGcPOqGRXO+01LJ53uCp2ckLeQ8yJrk3bYI2laVu0NX0cirMGExWtD3S5GYNvdyo6ItVjiSl3WRJRq6aidKWIPsYQvKQF0EZjNdLuSibTxthUobITjjW+rVPImrjqrLEp9FhC6wOB2OfB1CiVXIAxYK3DB3HHeICocdb1FYCVExHbJEFacqiJo1AbQ1GICBlR4KVIQEzhpyAiVptuxbrZEQ10Ch8eWINv5bpr6lbaLBVFUIgojpYovLZpUTaKqBE8nUcgpute3IOKJngICus0RjvaOgmx1kqVaFuKuzAlS+ocXJJjTCfRNRKaFpSRvGhRp1ByJe43xE3mtCH6yGxaMxhbuhxbVheooGmqWhxZaSLtU4Vi0nGZ1E4KEY99H4YasWUhlXCNBi99oNZpkp1cjTqFqdrCiUNRd1VSHbEN/fkaDMr0yBDRSkeNUg5jNAZLNEG+IyLnMyq5DpXGaQcx0NbikFLpdrAUkh9TS5ioTqJwk8JANQ5TDGlb0LaQ6tpBhNGg5/ulux9xjckz3jlHVU2kMIt1tE0gRDBRQ5CcuN4nZ5SSZ1qIgUBARZUq2EoIb1lIlfEQQ5/zC0TEFsfdznfGekZRFBS6SItI6ZmvkHD8AC4VSmmbmtW1NabbtZwLrVO+rp18PD4EWt/g3FCufdU9NsOcQ00ct76Vmb0yWoTzJL5JKK8Th14EFWOKT9g5v9Y6mqqWcFmj+kdzVdeMh6PekdftkzGWljYVukjuSq36fjQSpdSo6lxsMYnyIsapvthFxFipWtw9nyQ8O2B0t7CgJFTSe6k8nopqmfT8a+oam1yTJoXkF4WhbiS/a4idID5XwXBuvBZCxJh0fkhPQyUZmCWUWtP6Cmu6gkExFQ/yKYej5LI0qbp7Z2aOMdD6FqsdkgZS9UMdib6QMGBUl+MvpoWJ0IeOex8ZjYb4ILkGi6JEd1UIIrSp3bXV6bkUUFqcwVobeT5ocaX6IH2a1lAURQoz9ikcO/bhyQqFVhFr7637f54b1crutCh4oyyOEOeJ7IhvxMXcgTt0sTNdUY8bFeH2+s75F+ZnVd1wfn6KoPb4Wdzw/Hr5tYRc0r6n9bmrBMjF91+rHea+tv/9eg65vWYcL8X13vNS19u8iLnrc3PnTC1+IP0xLrx4zdni3Gfuhes/k8nc3dzd4qB6OWEQL7dr3EvA22tNZv479vquRdFmXty5mX25mffOi0N77df8368lxC2+d/79859bFMHm2y0uPKn2+v6OLtT3Gk/NXVxrfXHhfVdtaq81tOud171Y3Pf5z88d90ues/nzkz4b50O4u+2pndd2/S1tI4b0n10gx+J2u92KsJMuGmheYv/uPnwbJH+TgRAVOkg+qi5MN0TJgadUVwmSJAJK6mqfJvPWOBEVVXJWKAkni0RJ9h7pE9FbJbkD5bx4SYRvFShNV7USFHS5uhTEKI6+GGQy2yUU7xLnt61H2e5qUUmMMjshkBEKJ5PhuvJYY8Sp2HoJq1VdtcpUMTNEtBK3kBRG8UlcihhnU0VNyUfYuRsl9DCI2JC+0yfB0FhDbOnD1trkiGkaEQ7l2MS9YrVF6SjuKd8JV5LPSqPwbcQWZfpsEjcUGGWZ+RmFKUXkSJVVo5fJs+5n2Zq6bimLoXxvElZQUgCmE3mVlhx6Co2KLV1RETyYoNBRJs6zVkIIC2dJEabSTsbQtl3+SIMP4o4i6BTajFR1ThPrmGK7QvC4oqRtfX/+YvTEtH/iLAOvxLUUvFxDrfcUxqK1wydnU4xBCsJAErsiUesUpi6hrdYWxNgm95BUatXYFNaaRBIP1gzSdSdOKRHHUhGkKCGp7d0WFvESWGtFGIkBraX6tjFW3F4p5yWpInFIeRshJte3T+Hdcp/XTUXhXBKNkZyXzjGbTKRaOUnQSQKqnNuU8zAoBkUhoaIh5Tp0CmLER7lfQwyUpVRBHxQFRst59V6m8N6L01ZpUpXwnVy01hkwkdbXSdAKyaUm96RKRQoiqhfMUKoX2EmOsj7vn5KQWZPCSoP3xORidoWkaulyZvaREWnBymq5xoqykOvSe6KWHKHSfaYiJamPlXZqxDmtTP/s6dpPpRBiqzTBV0QUKmqstnhfMSgsbRsIrZfq6kalMPy0eBCD3Idd9WAj5yGkZ0AnboYUEdDl6uv6eTku6aedtWmBwkgfoqTQiU/XSiSgUh+onPSrSkmorkajtKEsS3GYA4SQlppiqhasQUkhhxAi0YJVmqYJKBVTf67xvsuVKMfXtjuuf+mnU7iyhuCh67iil+OTVBWREMCk7cgzQRG1iJttE7BOp0JopFD8e28MENU1hJVrfmDutbu4uws7uvJVI+tdswe1IwLOc9V71Z4jwZ2R6Q22oerESHl045Mw2IXX9iPexWF02li/RLAwzbjWPnSfnR/JLh5bx2I+vqs2Gec+f53vWtz2NQW367w+X816cVa4sEtX/d6f77lz1vsr0s/N5gbsv3uxEReExbv4lshkMncR11uMucPEm/h5uZ/baxs7Sat3P7Y78SuCCi/xM7/dzgE5H0Y833Orhe+8Tnuo+Z/0Xbu2N79dPfezeCydY+2lBK25714scNLvx/z7rrX/i6OIxZ+99nV+nxf/+3r7uXhO+8fv3Pb3Osd77d/i35KgGbsKyYvHsNex7TkE2+O4zc52o2Hvc7e4f3tdO+lc9deiB9XIzz2GMYWEpHoJ2QUR9Xzw4mxLOTubtqENAR/TRNCHNOBUEMU94mOacKViJKWTqq/WSR48q7TkmGs8bTfZBJRWvRAkziTJcaWMrK/7tk1NL2KBUtDUUhlYksV7bMoFFVIxkM5xEpJjR6UJeSdoxpBKKCklwlMqcBOR4gYhSJix7JdKxRaUTNi9F+eM1uJYKaxM0pMQkVJmoVW6cpIDR3KKybaMNXjf4pxFm+Rc7MocdoNiLZNi30phF2VUcuCmnFvG4AonE4wo56JtfR9erRAxra5rIgqf3H/GOkonuQblu1US04K4YZQIK23jUyVO6YdiyvkYQqAonAgfGpRRROWJ+BRG6JO7VIRbY01yHhm0dhLCHlO4uEp5x1J7drk/u/x2PqZj1lI8REIgxW3qfaBtGglVRHI4xqBTUQYtuQyDJ+BTPkeN1lZEiCR8dKGBxljJt0gSiIJUUFWIizESJJzZK6I3RK/RyknBkyguKlRMbq57hy6dhbWWtq4YlC4lvvKEIFW9PYCRypZakaoXi9cNBdpAW9cMBgMGw2FaBJB8e12lb9UJ/rFbchGRrW1bSlditaVwhVxqml646xYuIiKU29JhrUaXBqzaWSToQsSTQ9Zalxzh6T2p4nDsRWMJQZbFhi7HHxCDpMr1Xc47UvEVJFcoKUddTGK+M7ShoStQEmLEGXEcxuhRUYojOe1QiGCqMASlUSlHnlTf1H12jk6ckntBJcev3Fviyu2+XxzXbYwEpQi06R7s1AaPc10hsIBJ93DnlCS5AyXHoYjyhZUK0yCFqjpnfEgu0K4IlRHboFQ2lkR/0qahS4KSnIJRUziH0ZFIi1QCbmmTGCeOQZ/yR0JX/d1H0nOoTe+RRZauSM3Ogol0m8Y4tJEUGFEilkW87YvBREkJEBoRrq1JwqdOVaBFAI5RctaGlIpFkxzEaRwgz7suj6KSRY40FlUgDsV7jGuO9BeHw1FyzS0kndlzg/OfueEh8C1GpZ1ZzKHe/W3P4jEvtc/9cS3OV25gf+be2rUl7IQQB5VcwkR8+jeolE1d7Raz+s+nbXQC783MOPY8uP7unf/fSwt9ex7nYjvNt//C9bHYfHt/x/y+7T0zvd4Mpnv/YhKlRfReG577U3/+5n6fFx4zmUzmRrjrnINdCsSNjW1ubP1ELfy7a2vcXBc9/3q3/HK9p/FLiHlXfXZB1LmW1/yqz6ana6flqsXX59fUum3vtX+Lo4uXc1zX+1z32ku17/zb99hWL7YsDvMWRbAuvLH772tdL91QfaFNr/vvNfY9zm2jf+sNDHmuesviyEPNiYJ7CYtzwwd1I+Lu/DUMGxsz2cpe7X2X0e3j9vY20SjqJPyYAASZZg4LS+1rnBsQAzRBnGPVdMagLIlaUTcNJoojyA5K8DOUgjaKY0YbjfYREwxN1YooppVELMeWGFL+KQ/WSciYDxOUUhgTIEpOMREYjIiVoaaaNRQFKFqaVvIdeiqkuIyVnHnKSIJ6L4UTQgqfrZuGWRWwVtxGTdNQlgO6fJ1am+SSktxZk0mAKMKoA5TWVLVUMhYTWSVrEzOZkKoojkBnxcrYeE8bGgprJX+ZMmgLrW8wKjmLtCf4BhUU1pbUbS1iIDE51ESMcLqkDQE9k8I9IQQaL44iFWVaMasbrNL4qsU5A1qxfWWG1WDSJLuuW6yzSIVWxeZsii0HGB8woU25ES2xAj9rUc6jQyQqCziMCjRNhTKGJlWJNbOIDuKW6vKjaZ3clVFEkbYOFKWhjS0+eoySIiZb25U4MqMIUISGqDRt1KjoZcIOEBWm9YQUVO60QttCQq6xhAqsi0xmM4ZlAch3VLOWwaCkjRIy31VgDW2LNU4q9QZPGyLGKNpaoXXEFQ3oziE4IHoFbZQKrBrAE+oa4xwhKqbrG7vur7uVfgxw5QpeAQTqjW08npn3NKMBpRvRovqiICZ2BUw0VV1JP50ct+20YtrMaIFSOybVBGsKtDPoKKH1MYj7q/W1VJP1kVlyqlXTlnoyoRwMiNGnYkEB7aCJDUYbEZBCi1aaqvUoayhiCk03Gl+3BCOzbOeM5P7TGhUjbZgQTUBHqTjcpFx9zpb4mWxL2VZEstYQmpCKmiTnokuOPSOu4LaWa7yJnsJoQl1JYSYCyiucVkRatA7E6GhnATdURN8SoqU1GlsnsbVQ1NGjkPQEJmh864lWnINGK2I7RRtPGwO69ZKHkxalDLMQiU7hmOFI+VZjQKvQhxEDhKYGLNo6QKrMR69RxqKUvNYtyoSIFGeaRbQJ1ASpBhzBN55iIPd3HaXCu24DXomjzhgJsbfG4RuPtZpIBUqjcBAVdTPBGIXRHhUtdSUObrTHuJLZzGMUuEIRZp5Icpv7Fls4qioVWxpp6fsCUoGeQJhKH9xnMoldcZeaWAWMLfEplFkTIbmTfR3RVoTsxldoo1DR4ltwhaFtJ/g2UBS6f/TPZoqWlraucVozmWzuur/uZrp93NzY2PX3+SHXS43kO+FKLfxRz72+5zD5pfbt5j9ynS3t3uL8X9Lyxc5xzg0XI1dPHzpRKBIXXnvpvZ3PVtP93mqo00dlqTru2kfZr6tTO83n4+v2c5d4mH52FQ5RO63QFzOZ2/C1K22rPY/wmu+eu2525Rue+2CXdKTbzu79uNYezLeN2uP1q2ceN8NeFZ6vmh6wt9tn/hg2Nu6tMcBke3KH9yST+ctDdz/dyP1/14mDm5sygHnwwX94h/ckk/nLx+bmJqurq3d6N67LxYsXATh56qE7vCeZzF8+7vY+oBsDnDz18B3ek0zmLx93+/0PO2OAhx988A7vSSbzl4+7vQ/oxgA/+t733+E9yWT+8nEj9/9dV604hMCTTz7J61//ep577rm7uqLSvcDGxgYPPvhgbstbxL3anjFGNjc3OX78eMqbd/eyvr7Ovn37ePbZZ+/qAcy9wr16zd6N3Mttea/0AXkMcGu5l6/Zu5F7tT3vlfsf8hjgVnOvXrN3I/dyW94rfUAeA9xa7uVr9m7kXm3Pm7n/7zrnoNaaBx54AICVlZV7quHvZnJb3lruxfa8VwbZXae1urp6z7Xx3cy9eM3erdyrbXkv9AF5DPDqkNvy1nIvtue9cP9DHgO8WtyL1+zdyr3alvdCH5DHAK8OuS1vLfdie97o/X/3Lh1kMplMJpPJZDKZTCaTyWQymVeVLA5mMplMJpPJZDKZTCaTyWQy9yl3pThYliU/+7M/S1mWd3pX7nlyW95acnu++uQ2vrXk9rx15La8PeR2vnXktry15PZ89cltfGvJ7XnryG15e8jtfOvIbXlruR/a864rSJLJZDKZTCaTyWQymUwmk8lkbg93pXMwk8lkMplMJpPJZDKZTCaTybz6ZHEwk8lkMplMJpPJZDKZTCaTuU/J4mAmk8lkMplMJpPJZDKZTCZzn5LFwUwmk8lkMplMJpPJZDKZTOY+JYuDmUwmk8lkMplMJpPJZDKZzH3KXScO/sIv/AKnTp1iMBjwzne+kz/5kz+507t0V/Lxj3+c973vfRw/fhylFL/5m7+56/UYIz/zMz/DsWPHGA6HvOtd7+KrX/3qrvdcunSJH/qhH2JlZYW1tTV+9Ed/lK2trdt4FHcHH/7wh3n729/O8vIyhw8f5vu///t58sknd71nNpvxgQ98gAMHDrC0tMQP/uAPcvbs2V3vefbZZ/m+7/s+RqMRhw8f5p/+039K27a381D+UpD7gJcm3/+3jnz/313k+//GyH3ArSP3AXcXuQ94afL9f+vI9//dRb7/b4zcB9w6ch+wm7tKHPwP/+E/8JM/+ZP87M/+LH/6p3/Km9/8Zt7znvdw7ty5O71rdx3b29u8+c1v5hd+4Rf2fP1f/It/wf/8P//P/PIv/zKf+tSnGI/HvOc972E2m/Xv+aEf+iG++MUv8ru/+7v81m/9Fh//+Mf5sR/7sdt1CHcNH/vYx/jABz7AJz/5SX73d3+Xpml497vfzfb2dv+en/iJn+A//af/xEc/+lE+9rGP8eKLL/IDP/AD/evee77v+76Puq75b//tv/Hv/t2/4yMf+Qg/8zM/cycO6Z4l9wE3Rr7/bx35/r97yPf/jZP7gFtH7gPuHnIfcGPk+//Wke//u4d8/984uQ+4deQ+YIF4F/GOd7wjfuADH+j/23sfjx8/Hj/84Q/fwb26+wHib/zGb/T/HUKIR48ejf/yX/7L/m/r6+uxLMv4q7/6qzHGGL/0pS9FIH7605/u3/Pbv/3bUSkVX3jhhdu273cj586di0D82Mc+FmOUtnPOxY9+9KP9e7785S9HIH7iE5+IMcb4X/7Lf4la63jmzJn+Pb/0S78UV1ZWYlVVt/cA7mFyH3Dz5Pv/1pLv/ztHvv9fHrkPuLXkPuDOkfuAmyff/7eWfP/fOfL9//LIfcCt5X7vA+4a52Bd13z2s5/lXe96V/83rTXvete7+MQnPnEH9+ze46mnnuLMmTO72nJ1dZV3vvOdfVt+4hOfYG1tjW/91m/t3/Oud70LrTWf+tSnbvs+301cuXIFgP379wPw2c9+lqZpdrXn448/zsmTJ3e15xvf+EaOHDnSv+c973kPGxsbfPGLX7yNe3/vkvuAW0O+/18Z+f6/M+T7/9aR+4BXRu4D7gy5D7g15Pv/lZHv/ztDvv9vHbkPeGXc733AXSMOXrhwAe/9rkYFOHLkCGfOnLlDe3Vv0rXX9dryzJkzHD58eNfr1lr2799/X7d3CIEf//Ef59u//dt5wxveAEhbFUXB2trarvcutude7d29lnlpch9wa8j3/8sn3/93jnz/3zpyH/DyyX3AnSP3AbeGfP+/fPL9f+fI9/+tI/cBL5/cB4C90zuQydxNfOADH+ALX/gCf/RHf3SndyWTydxm8v2fydzf5D4gk7l/yfd/JnN/k/uAu8g5ePDgQYwxV1V+OXv2LEePHr1De3Vv0rXX9dry6NGjVyV4bduWS5cu3bft/cEPfpDf+q3f4g/+4A84ceJE//ejR49S1zXr6+u73r/Ynnu1d/da5qXJfcCtId//L498/99Z8v1/68h9wMsj9wF3ltwH3Bry/f/yyPf/nSXf/7eO3Ae8PHIfINw14mBRFLztbW/j937v9/q/hRD4vd/7PZ544ok7uGf3Hg8//DBHjx7d1ZYbGxt86lOf6tvyiSeeYH19nc9+9rP9e37/93+fEALvfOc7b/s+30lijHzwgx/kN37jN/j93/99Hn744V2vv+1tb8M5t6s9n3zySZ599tld7fn5z39+V0f7u7/7u6ysrPD617/+9hzIPU7uA24N+f6/OfL9f3eQ7/9bR+4Dbo7cB9wd5D7g1pDv/5sj3/93B/n+v3XkPuDmyH3AAne0HMoCv/ZrvxbLsowf+chH4pe+9KX4Yz/2Y3FtbW1X5ZeMsLm5GT/3uc/Fz33ucxGI/+pf/av4uc99Lj7zzDMxxhj/+T//53FtbS3+x//4H+Of//mfx7/9t/92fPjhh+N0Ou238b3f+73xW77lW+KnPvWp+Ed/9Efxsccei+9///vv1CHdMf7hP/yHcXV1Nf7hH/5hPH36dP8zmUz69/yDf/AP4smTJ+Pv//7vx8985jPxiSeeiE888UT/etu28Q1veEN897vfHf/sz/4s/s7v/E48dOhQ/Omf/uk7cUj3LLkPuDHy/X/ryPf/3UO+/2+c3AfcOnIfcPeQ+4AbI9//t458/9895Pv/xsl9wK0j9wG7uavEwRhj/Df/5t/EkydPxqIo4jve8Y74yU9+8k7v0l3JH/zBH0Tgqp+/9/f+XoxRypj/s3/2z+KRI0diWZbxe77ne+KTTz65axsXL16M73//++PS0lJcWVmJf//v//24ubl5B47mzrJXOwLxV37lV/r3TKfT+I/+0T+K+/bti6PRKP6dv/N34unTp3dt5+mnn47vfe9743A4jAcPHow/9VM/FZumuc1Hc++T+4CXJt//t458/99d5Pv/xsh9wK0j9wF3F7kPeGny/X/ryPf/3UW+/2+M3AfcOnIfsBsVY4y3xoOYyWQymUwmk8lkMplMJpPJZO4l7pqcg5lMJpPJZDKZTCaTyWQymUzm9pLFwUwmk8lkMplMJpPJZDKZTOY+JYuDmUwmk8lkMplMJpPJZDKZzH1KFgczmUwmk8lkMplMJpPJZDKZ+5QsDmYymUwmk8lkMplMJpPJZDL3KVkczGQymUwmk8lkMplMJpPJZO5TsjiYyWQymUwmk8lkMplMJpPJ3KdkcTCTyWQymUwmk8lkMplMJpO5T8niYCaTyWQymUwmk8lkMplMJnOfksXBTCaTyWQymUwmk8lkMplM5j4li4OZTCaTyWQymUwmk8lkMpnMfUoWBzOZTCaTyWQymUwmk8lkMpn7lCwOZjKZTCaTyWQymUwmk8lkMvcpWRzMZDKZTCaTyWQymUwmk8lk7lOyOJjJZDKZTCaTyWQymUwmk8ncp2RxMJPJZDKZTCaTyWQymUwmk7lPyeJgJpPJZDKZTCaTyWQymUwmc5+SxcFMJpPJZDKZTCaTyWQymUzmPiWLg5lMJpPJZDKZTCaTyWQymcx9ShYHM5lMJpPJZDKZTCaTyWQymfuULA5mMplMJpPJZDKZTCaTyWQy9ylZHMxkMplMJpPJZDKZTCaTyWTuU7I4mMlkMplMJpPJZDKZTCaTydynZHEwk8lkMplMJpPJZDKZTCaTuU/J4mAmk8lkMplMJpPJZDKZTCZzn5LFwUwmk8lkMplMJpPJZDKZTOY+JYuDmUwmk8lkMplMJpPJZDKZzH1KFgczmUwmk8lkMplMJpPJZDKZ+5QsDmYymUwmk8lkMplMJpPJZDL3KVkczGQymUwmk8lkMplMJpPJZO5TsjiYyWQymUwmk8lkMplMJpPJ3KdkcTCTyWQymUwmk8lkMplMJpO5T8niYCaTyWQymUwmk8lkMplMJnOfksXBTCaTyWQymUwmk8lkMplM5j4li4OZTCaTyWQymUwmk8lkMpnMfUoWBzOZTCaTyWQymUwmk8lkMpn7lCwOZjKZTCaTyWQymUwmk8lkMvcpWRzMZDKZTCaTyWQymUwmk8lk7lOyOJjJZDKZTCaTyWQymUwmk8ncp2RxMJPJZDKZTCaTyWQymUwmk7lPyeJgJpPJZDKZTCaTyWQymUwmc5+SxcFMJpPJZDKZTCaTyWQymUzmPiWLg5lMJpPJZDKZTCaTyWQymcx9ShYHM5lMJpPJZDKZTCaTyWQymfuULA5mMplMJpPJZDKZTCaTyWQy9ylZHMxkMplMJpPJZDKZTCaTyWTuU7I4mMlkMplMJpPJZDKZTCaTydynZHEwk8lkMplMJpPJZDKZTCaTuU/J4mAmk8lkMplMJpPJZDKZTCZzn5LFwUwmk8lkMplMJpPJZDKZTOY+JYuDmUwmk8lkMplMJpPJZDKZzH1KFgczmUwmk8lkMplMJpPJZDKZ+5QsDmYymUwmk8lkMplMJpPJZDL3KVkczGQymUwmk8lkMplMJpPJZO5TsjiYyWQymUwmk8lkMplMJpPJ3KdkcfAvCT/yIz/Chz70oZf92e///u+/pfuzF6dOneJf/+t//ap/TyaTeXU4deoUf/iHf3indyOTydwgH/rQh/iRH/mRO70bN8R3fdd38eM//uN3ejd2oZTiN3/zN+/0bmTuc77ru76Lj3zkI3d6N+568v2aydwcr0Q/yPzlJIuDt5APf/jDvP3tb2d5eZnDhw/z/d///Tz55JP9608//TRKqT1/PvrRjwLwkY985JrvOXfu3CvaP6UUTz/9NB/5yEf4ru/6rhv+3B/90R/x7d/+7Rw4cIDhcMjjjz/Oz//8z9/093/605/mx37sx/r/PnXqFEopPvnJT+5634//+I/f1P69mnQDsu7cZTKvJr/0S7/Em970JlZWVlhZWeGJJ57gt3/7t/d8b4yR9773vdcdDF+8eJETJ06glGJ9fX3P9/zxH/8x1lre8pa3vOL9/8M//ENOnToFXD3g+NCHPsTjjz/OeDxm3759vOtd7+JTn/rUK/7Ojr0WH663P5nMreDjH/8473vf+zh+/Pg178WtrS0++MEPcuLECYbDIa9//ev55V/+5T23d737+tOf/jTf8z3fw9r/n703j7OkqNK/vxGRee+tvXrfF+idpdl3oVFWRUTc2FRwHLcXGB0+Og4zjswwPxVHRx1HxmVkEUcUl0FBGRBkxwYEupulV3rf9+6qruXezIh4/ziRWbeqq7ob6UbQ+/Apuipv3szIyMyIE895zjmtrQwaNIhzzjmHefPmvepryEj/6vcF5J3tb1zI5sO5c+fu8zn2lx0xkJOxb1uTJOH6669n0qRJlEoljjjiCO69995e37niiiv6tbXOPffcAc//x9pRNbxxcMMNN6CU2o2o/tjHPsakSZOoq6tj2LBhXHDBBSxcuHC37996663MnDmTUqnE8OHDufLKK/PP/vmf/7nfZ66hoeFVtbnaRh3IITB79myMMZx33nkDHmegtv/iF7/AGMPatWv7/d6UKVO45pprXtU17A19333vPZ/+9Kdpbm5+3Tgtu7q6GDx4MEOHDqVcLu/2+UBjbQ1/vtgXu/573/sep59+Os3NzQPa68899xxnnXUWra2tDBkyhI9+9KPs2rWr1z79jS0/+clPXvU1DDTv/fd//zennnoqgwYNyu36p59++hUduz8747HHHqO1tZVPfepTeO/36TibN2/mE5/4BOPHj6dYLDJy5EjOOeccnnjiiVfUntocXyMH9yseeeQRrrzySp588knuv/9+kiTh7LPPpqOjA4Bx48axfv36Xj//8i//QmNjI29961sBuOiii3bb55xzzmHWrFkMHz78T3JdDQ0NXHXVVTz66KMsWLCAz33uc3zuc5/je9/73is6zrBhw6ivr++1rVQq8dnPfnZ/NreGGt6wGDt2LDfccAPPPvsszzzzDG95y1u44IILeOmll3bb9xvf+MZeCesPf/jDzJw5c8DPd+zYwQc/+EHOOOOMV932vWHq1Kl861vf4oUXXuDxxx9n4sSJnH322WzevPmAn7uGGg4UOjo6OOKII7jxxhsH3Oeaa67h3nvv5X/+539YsGABn/rUp7jqqqu46667dtt3oPd6165dnHvuuYwfP56nnnqKxx9/nKamJs455xySJNmv13QgsL/siH3F5z73Ob773e/yn//5n8yfP5+Pf/zjXHjhhcyZM6fXfueee+5uNtePf/zjA9KmGl7/+MMf/sB3v/vdfufNY445hltuuYUFCxZw33334b3n7LPPxlqb7/O1r32Nf/zHf+Tv//7veemll3jggQc455xz8s8//elP7/a8HXLIIbz3ve894Nd20003cfXVV/Poo4+ybt263T7fU9vf8Y53MGTIEH7wgx/s9r1HH32Ul19+mQ9/+MMH/BoyWGv58Ic/zG233cZDDz30ulnE/+IXv+DQQw9l+vTpNQVjDcC+2fWdnZ2ce+65/MM//EO/x1i3bh1nnnkmkydP5qmnnuLee+/lpZde6tcJcMstt/QaXw5kZODDDz/MJZdcwkMPPcTs2bMZN24cZ5999oBOhH3Bb37zG8455xyuueaafVrnZHj3u9/NnDlz+MEPfsDixYu56667OP3009m6desf3Za/WPgaDhg2bdrkAf/II48MuM+RRx7p/+qv/mqPx4jj2N922217PNfll1/ur7vuuj3uA/jly5f7W265xc+aNavXdy+44IL876efftoPHTrU33DDDQMe68ILL/Tvf//787/b2tr8pZde6uvr6/3IkSP91772NT9r1iz/yU9+Mt9nwoQJ/utf/3qvv//mb/7GFwoF/5vf/Cbf/slPfrJX+/YF27Zt8x/4wAd8a2urr6ur8+eee65fvHhx/vktt9ziW1pa/N133+2nTp3q6+rq/Lvf/W7f0dHhb731Vj9hwgTf2trqr776ap+maf69WbNm+VtuucUvX77c116XGv4UGDRokP/+97/fa9ucOXP8mDFj/Pr16z3g77zzzt2+91//9V9+1qxZ/ne/+50H/Pbt23fb56KLLvKf+9zn/HXXXeePOOKIvbZlwoQJ/qGHHhrw84ceeshPmDDBe7/3MWnnzp0e8A888EC+bfXq1f7iiy/2gwYN8vX19f6YY47xTz75ZP75XXfd5Y899lhfLBb9kCFD/Dvf+U7vvbynQK+fV9qeGmp4tRjoXTz00EP99ddf32vb0Ucf7f/xH/+x17Y9vdd/+MMfPOBXrVqVb3v++ec94JcsWTJgm6677jp/+eWX77Hd2Xtd/b5k3+1vXMjmwzlz5njve+bXO++800+ePNkXi0V/9tln92prf+hrR8yaNctfffXV/jOf+YwfNGiQHzFixG7vbF87YqC2jho1yn/rW9/qtc+73vUuf9lll+V/97V9+kPf+zCQHVXDGx/t7e1+ypQp/v7779/Nfu0P8+bN84B/+eWXvfdih9bV1fWa0/aGuXPnesA/+uije9wvs0UHQrWN2t87397e7hsbG/3ChQv9RRdd5L/whS/0+nxf2n7NNdf4KVOm7Lb98ssv9yeccMIe2783vJJ3v7u721944YV+3LhxfuHChb326fu+fv7zn/cjR4708+bN8957v3HjRv/2t7/dl0olP3HiRP8///M/u40pgP/Od77jzzvvPF9XV+enT5/uf//73/slS5b4WbNm+fr6en/SSSfl970ap59+uv/Od77jv/3tb/uzzjprt88HGmtr+MtCf3a992Kz9mevf/e73/XDhw/31tp8W3/z/0A2yJ7waviDvkjT1Dc1Nfkf/OAH3nvvFyxY4Ovq6vyPfvSjfJ877rjDl0ol/9JLL3nve8/dP/rRj3yhUPD/+Z//2eu4SZL4q6++2re0tPjBgwf7v/u7v/Mf/OAH8/l7+/btHvAPP/zwHq9j8eLF/tRTT/XFYtHPmDHD//a3v63N8f2gphw8gNi5cycAgwcP7vfzZ599lrlz5+7R23bbbbdRX1/Pe97zngPSxr548MEHOeuss/jCF74woKJvzpw5/P73v2fWrFn5tmuuuYYnnniCu+66i/vvv5/HHnuM5557bq/nO+igg/j4xz/Otddei3Puj273FVdcwTPPPMNdd93F7Nmz8d7ztre9rZeiorOzk29+85v85Cc/4d577+Xhhx/mwgsv5J577uGee+7hhz/8Id/97nf5+c9//ke3o4Ya9hestfzkJz+ho6ODk046Kd/e2dnJpZdeyo033sjIkSP7/e78+fO5/vrrue2229C6/2H+lltuYdmyZVx33XUHpP17QqVS4Xvf+x4tLS0cccQRgCijZs2axdq1a7nrrruYN28ef/d3f5ePC7/5zW+48MILedvb3sacOXP43e9+x/HHHw/A//7v/zJ27Fiuv/763FtaQw2vF5x88sncddddrF27Fu89Dz30EIsXL+bss8/O99nbez1t2jSGDBnCTTfdRKVSoauri5tuuokZM2a8LsLTOjs7+cIXvsBtt93GE088wY4dO7j44osH3L8/OwLgBz/4AQ0NDTz11FP827/9G9dffz3333//K25PuVymVCr12lZXV8fjjz/+io9Vw18GrrzySs477zzOPPPMve7b0dHBLbfcwkEHHcS4ceMAuP/++3HOsXbtWmbMmMHYsWN53/vex+rVqwc8zve//32mTp3Kqaeeut+uoz/89Kc/Zfr06UybNo33v//93Hzzzb3C9fal7R/+8IdZsmQJjz76aL5t165d/PznP98vqsF9efd37drFeeedx/z583niiSeYNm1av8fy3nP11Vdz22238dhjj+VK0CuuuILVq1fz0EMP8fOf/5z/+q//6jdl07/+67/ywQ9+kLlz5zJ9+nQuvfRSPvaxj3HttdfyzDPP4L3nqquu6vWdpUuXMnv2bN73vvfxvve9j8cee4yVK1e+6n6p4c8HA9n1e0O5XKZQKPSy5+vq6gB2m9OuvPJKhg4dyvHHH7/be36g0dnZSZIkOe8xffp0vvrVr/L//X//H6tWrWLNmjV8/OMf58tf/jKHHHJIr+/eeOONfOhDH+Lmm2/e7d368pe/zI9+9CNuueUWnnjiCdra2nopcxsbG2lsbOSXv/xlv+H8AM453vWud1EoFHjqqaf4zne+U4tcHAh/SmbyzxnWWn/eeef5U045ZcB9PvGJT/gZM2bs8TgzZszwn/jEJ/Z6vlejism85//7v//rGxsb/U9+8pN+9xszZowvFApea91LBdHW1ubjOPY/+9nP8m07duzw9fX1e1UOfv3rX/ebNm3yTU1NuTrylSoHFy9e7AH/xBNP5Nu2bNni6+rq/E9/+lPvvSgbqPLweu/9xz72MV9fX+/b29vzbeecc47/2Mc+ts/nrqGG/Y3nn3/eNzQ0eGOMb2lp6aWq9d77j370o/7DH/5w/jd9vF7d3d1+5syZ/oc//KH3vn9P5OLFi/3w4cP9okWLvPcDK4T6Ym/Kwb3h7rvv9g0NDV4p5UePHu2ffvrp/LPvfve7vqmpyW/durXf75500km9VD/9ta0/RVENNbxW6PsuZuju7vYf/OAHPeCjKPKFQiH3rGfY23vtvfcvvPCCnzRpktdae621nzZtml+xYsUe27QvysE9fXdflYNAL5XvggULPOCfeuqpXt8dyI7wXtRDb3rTm3ptO+644/xnP/vZ/O8JEyb4QqHgGxoaev3EcdyrrZdccok/5JBD/OLFi7211v/2t7/1dXV1vlAo5Ptcfvnl3hiz27GqVVUD3dMa/rzw4x//2B922GG+q6vLe+8HVA7eeOONvqGhwQN+2rRpvWzKL33pSz6OYz9t2jR/7733+tmzZ/szzjjDT5s2zZfL5d2O1dXV5QcNGuS//OUv77V9e1MO7g0nn3yy/8Y3vuG9FxXO0KFDe83l+9r2E088sdd4ctNNN/n6+nrf1tb2R7fN+1f27g8ZMsRv2rSp3+MA/mc/+5m/9NJL/YwZM/yaNWvyzxYtWuSBXnZHNk71VQ5+7nOfy/+ePXu2B/xNN92Ub/vxj3/sS6VSr3P/wz/8Qx7N4L33F1xwQS1aoQbv/d7t+gwDKQdffPFFH0WR/7d/+zdfLpf9tm3b/Lvf/W4P+C9+8Yv5ftdff71//PHH/XPPPedvuOEGXywW/X/8x3/ssW37M6rmE5/4hD/44IPzcTTDeeed50899VR/xhln+LPPPts75/LPrrvuOl8oFHZ7x6oxYsQI/5WvfCX/O01TP378+F7K/5///Od+0KBBvlQq+ZNPPtlfe+21uWLYe+/vu+8+H0WRX7t2bb7t//7v/2pzfD+oKQcPEK688kpefPHFAROBdnV1cfvtt+/R2zZ79mwWLFjwmuTxeOqpp3jve9/LD3/4Qy666KJ+93nsscd45pln+M53vsM3vvGNPC/PsmXLSJIkV/EAtLS0DOjR64thw4bx6U9/ms9//vNUKpVX3PYFCxYQRREnnHBCvm3IkCFMmzaNBQsW5Nvq6+uZNGlS/veIESOYOHEijY2Nvba92sIvNdTwajBt2jTmzp3LU089xSc+8Qkuv/xy5s+fD8Bdd93Fgw8+uMeq39deey0zZszg/e9/f7+fW2u59NJL+Zd/+RemTp16IC5hQLz5zW9m7ty5/P73v+fcc8/lfe97X/6+zZ07l6OOOmpApfXcuXNfk9yINdSwv/Gf//mfPPnkk9x11108++yz/Pu//ztXXnklDzzwALBv73VXVxcf/vCHOeWUU3jyySd54oknOOywwzjvvPPo6up6ja5kYERRxHHHHZf/PX36dFpbW3vNwTCwHZGhb663UaNG7TYnf+Yzn2Hu3Lm9fj7+8Y/32uc//uM/mDJlCtOnT6dQKHDVVVfxoQ99aDcldTYm7elYNfx5Y/Xq1Xzyk5/kRz/60W5q07647LLLmDNnDo888ghTp07lfe97H93d3YAoU5Ik4Zvf/CbnnHMOJ554Ij/+8Y9ZsmQJDz300G7HuvPOO2lvb+fyyy8/INeVYdGiRTz99NNccsklgLyrF110ETfddFO+z762/a/+6q/4+c9/Tnt7OwA333wz733ve2lqanrV7dyXdz/L4/7FL35xwOP87d/+LU899RSPPvooY8aMybdna4Vjjjkm35aNU3tqy4gRIwA4/PDDe23r7u6mra0NELvqBz/4QS+76/3vfz+33nrrq4qKquHPA3uy6/cFhx56KD/4wQ/493//d+rr6xk5ciQHHXQQI0aM6DWn/dM//ROnnHIKRx11FJ/97Gf5u7/7O77yla8ciEvaDTfccAM/+clPuPPOO3cbR2+++Waef/55nnvuubzwajXGjh3L0UcfzVe+8pXdIn927tzJxo0be3EMxphe7zFIzsF169Zx1113ce655/Lwww9z9NFH51XeFyxYwLhx4xg9enT+nVei3vxLQo0cPAC46qqr+PWvf81DDz3E2LFj+93n5z//OZ2dnXzwgx8c8Djf//73OfLII3d7AQ4EJk2axPTp07n55psHTG5+0EEHcfjhh/ORj3yEv/3bv92vlT+vueYaurq6+K//+q/9dsy+iOO4199KqX631SbyGv6UKBQKTJ48mWOOOYYvfelLHHHEEfzHf/wHIGH/S5cupbW1lSiKiKIIkEkxS8j94IMP8rOf/Sz/PCPUhg4dynXXXUd7ezvPPPMMV111Vb7P9ddfz7x584iiiAcffPCAXVtDQwOTJ0/mxBNP5KabbiKKonyBkoVIDIS9fV5DDa9HdHV18Q//8A987Wtf4/zzz2fmzJlcddVVXHTRRXz1q18F9u29vv3221mxYgW33HILxx13HCeeeCK33347y5cv51e/+tUBaXtzc3OeHqUaWSXFlpaWV3zMvdkR+zInDx06lMmTJ/f66etUGDZsGL/85S/p6Ohg5cqVLFy4kMbGRg4++OBe+2Vj0p6OVcOfN5599lk2bdrE0Ucfnb9/jzzyCN/85jeJoqhXwZGWlhamTJnCaaedxs9//nMWLlzInXfeCQiZBfQKlxs2bBhDhw5l1apVu533+9//Pm9/+9tz8ulA4aabbiJNU0aPHp1f37e//W1+8Ytf5O/3vrY9SxXw05/+lCVLlvDEE0/sNwHDvrz7Z5xxBr/61a/4zne+wyc/+cl+j3PWWWexdu1a7rvvvv3SlozI6G9b1r777ruPtWvXctFFF+V9fPHFF7Ny5Up+97vf/dHtqOHPA3uy6/cVl156KRs2bGDt2rVs3bqVf/7nf2bz5s27zWnVOOGEE1izZs2Aobb7C1/96le54YYb+O1vf9tvMad58+bR0dFBR0dHv2l/mpqaeOCBB2hoaODNb37zH50aqFQqcdZZZ/FP//RP/P73v+eKK674k6ROeqOjRg7uR/iQg+LOO+/kwQcf5KCDDhpw35tuuol3vOMdDBs2rN/Pd+3axU9/+tPXrPrX0KFDefDBB3n55Zd53/vet9fqh865fLA5+OCDieOYP/zhD/nnO3fuZPHixft8/sbGRv7pn/6JL3zhC7lHcl8xY8YM0jTlqaeeyrdt3bqVRYsW7ZbToIYa3mioftf+/u//nueff76XygXg61//Orfccgsg1fLmzZuXf/79738fEMXOlVdeSXNzMy+88MJuSpnMs1mtwH0tr23mzJnMnTuXbdu29bvvzJkz92hkFwqFXou4Gmp4PSBJEpIk2U2xZozJF5b78l53dnaite7lcc/+PlAOrWnTprFmzRo2btzYa/tzzz1HqVRi/Pjx+bY0TXnmmWfyvxctWsSOHTuYMWPGgMevfv8PFEqlEmPGjCFNU37xi19wwQUXHNDz1fDGwxlnnLHbnHjsscdy2WWXMXfuXIwx/X7Pe4/3Pn+GTznlFECe/Qzbtm1jy5YtTJgwodd3ly9fzkMPPXTAbfw0Tbntttv493//917XN2/ePEaPHp0rd/e17U1NTbz3ve/l5ptv5pZbbnlN8iX2xdlnn83dd9/Nf//3f/M3f/M3u33+jne8g9tvv52//uu/7hW9NX36dNI05dlnn823ZePUq8VNN93ExRdfvJsK+eKLL+6l0KyhBnh1c9+IESNobGzkjjvuyMmwgTB37lwGDRpEsVj8Y5u6V/zbv/0b//qv/8q9997Lscceu9vn27Zt44orruAf//EfueKKK7jsssv6jXYYNGgQDzzwAM3NzZx++ul5RfWWlhZGjBjRi2Ow1u5TXYNDDjmEjo4OQLiC1atX9yIen3zyyVd8vX8JiP7UDfhzwpVXXsntt9/Or371K5qamtiwYQMgD3a16uXll1/m0Ucf5Z577hnwWHfccQdpmg4YGnggMHz4cB588EHe/OY3c8kll/CTn/yEKIq48cYbGT9+PNOnTwfg0Ucf5atf/Wo+KTc1NXH55Zfzmc98hsGDBzN8+HCuu+663RYye8NHP/pRvv71r3P77be/IoJiypQpXHDBBXzkIx/hu9/9Lk1NTfz93/89Y8aMqS0EanhD4dprr+Wtb30r48ePp729ndtvv52HH34494CPHDmy32IF48ePz50R1aHzAFu2bAFkYszCZw477LBe+wwfPpxSqbTb9v2Fjo4OvvCFL/COd7yDUaNGsWXLFm688UbWrl3Le9/7XgAuueQSvvjFL/LOd76TL33pS4waNYo5c+YwevRoTjrpJK677jrOOOMMJk2axMUXX0yaptxzzz15QuGJEyfy6KOPcvHFF1MsFhk6dOgBuZYaaqjGrl27ePnll/O/ly9fzty5cxk8eDDjx4+nubmZWbNm8ZnPfIa6ujomTJjAI488wm233cbXvvY1YN/e67POOovPfOYzXHnllVx99dU457jhhhuIoog3v/nNB+TazjnnHKZNm8Yll1zC//t//4+RI0fy3HPP8bnPfY5PfvKTvUiTOI65+uqrc7XVVVddxYknnpiHAu3NjtjfeOqpp1i7di1HHnkka9eu5Z//+Z9xzvF3f/d3vfYrl8u5rZYhiqLa+PEXhKampt3mvoaGBoYMGZJvX7ZsGXfccQdnn302w4YNY82aNdxwww3U1dXxtre9DYCpU6dywQUX8MlPfpLvfe97NDc3c+211zJ9+vTd3tGbb76ZUaNG8da3vvWAXtuvf/1rtm/fzoc//OHdlL7vfve7uemmm/j4xz/+itr+4Q9/mFNPPZUFCxb8yRL6n3nmmfz617/m/PPPxznHt771rV6fX3jhhfzwhz/kAx/4AFEU8Z73vIdp06Zx7rnn8rGPfYxvf/vbRFHEpz71qVcdlbB582buvvtu7rrrrt2eow9+8INceOGFbNu2raZI/gvF3ux6gA0bNrBhw4bclnjhhRdoampi/Pjx+XPzrW99i5NPPpnGxkbuv/9+PvOZz3DDDTfkdv3dd9/Nxo0bOfHEEymVStx///188Ytf5NOf/vQBu7Yvf/nLfP7zn+f2229n4sSJ+VyaFQgB+PjHP864ceP43Oc+R7lc5qijjuLTn/40N954427Ha21t5f777+ecc87h9NNP5+GHH2b06NFcffXVfOlLX2Ly5MlMnz6d//zP/2T79u05x7B161be+9738ld/9VfMnDmTpqYmnnnmGf7t3/4t5wHOPPNMpk6dyuWXX85XvvIV2tra+Md//McD1jdvZNSUg/sR3/72t9m5cyenn346o0aNyn/uuOOOXvvdfPPNjB07tlelwr646aabeNe73tVvLowDiZEjR/Lggw/ywgsvcNlll2GtxTnHtddey5FHHsmxxx7LjTfeyJe//GWuv/76/Htf+9rXOOmkk3j729/OmWeeySmnnMKMGTP2mr+lGnEc86//+q95/pZXgltuuYVjjjmGt7/97Zx00kl477nnnnt2C1OooYbXMzZt2sQHP/hBpk2bxhlnnMEf/vAH7rvvvj16Bt8IMMawcOFC3v3udzN16lTOP/98tm7dymOPPcahhx4KiPLvt7/9LcOHD+dtb3sbhx9+ODfccENOQJx++un87Gc/46677uLII4/kLW95C08//XR+juuvv54VK1YwadKkARXZNdSwv/HMM89w1FFHcdRRRwGSIuOoo47i85//fL7PT37yE4477jguu+wyDjnkEG644Qa+8IUvvKLcdtOnT+fuu+/m+eef56STTuLUU09l3bp13HvvvXlI4P5GFEX89re/Zfz48VxyySUcdthhXHfddXzyk5/kX//1X3vtW19fz2c/+1kuvfRSTjnllFzZkGFf7Ij9ie7ubj73uc9xyCGHcOGFFzJmzBgef/zx3WyqrP+qf970pjcdkDbV8MZFqVTiscce421vexuTJ0/moosuoqmpid///vcMHz483++2227jhBNO4LzzzmPWrFnEccy9997byxZ1znHrrbdyxRVXDKhK3F+46aabOPPMM/tNAfDud7+bZ555hueff36f2w7wpje9iWnTptHW1rbH1EgHGm95y1v4zW9+w6233sqVV165W1XW97znPfzgBz/gAx/4AP/7v/8LyFph9OjRzJo1i3e961189KMf7XX//hjcdtttNDQ09JsT+YwzzqCuro7/+Z//eVXnqOGNi32x67/zne9w1FFH8ZGPfASA0047jaOOOoq77ror3+fpp5/mrLPO4vDDD+d73/se3/3ud3s51+I45sYbb+Skk07iyCOP5Lvf/S5f+9rXDmhY7be//W0qlQrvec97es2hWcqU2267jXvuuYcf/vCHRFFEQ0MD//M//8N///d/83//93/9HrOlpYXf/va3DB06lFmzZrF27Vo++9nPcskll/DBD36Qk046icbGRs4555ycY2hsbOSEE07g61//OqeddhqHHXYY//RP/8RHPvKR3HGgtebOO++kq6uL448/nr/+67/mC1/4wgHrmzcylO87mtbwhsQVV1zBxIkT92sewFeDjo4OxowZw7//+7+/ZqHRNdRQw4HFxIkTufXWW/M8aDXUUMPrG//8z//MihUr8qTcBwK33norn/rUp/ZLeF4NNdSwO04//XSuuOIKrrjiij91U/7sMHHiRD71qU/xqU996k/dlBpqeM3xeuMP9gXOOWbMmMH73ve+3RyVrxRKKe68807e+c537p/G/RmgFlZcw37BnDlzWLhwIccffzw7d+7M1QC1sN4aaqihhhpqqKGGGmqooYYaaqjhlWDlypX89re/ZdasWZTLZb71rW+xfPlyLr300j910/4sUSMHa9hv+OpXv8qiRYsoFAocc8wxPPbYY7W8PTXUUEMNNdRQQw011FBDDTXUUMMrgtaaW2+9lU9/+tN47znssMN44IEH9ljwrIY/HrWw4j8T/PKXv6S1tbUW7ldDDTUcMHzjG9/gne98JxMnTvxTN6WGGmrYBzz88MPs2LGjFjJTQw1vYNx6660ceeSRHHnkkX/qptRQQw1/RqjxBzX0xQErSHLjjTcyceJESqUSJ5xwQq/E8TXsf7zzne+svdg1vG5Qe///PPGpT32qRgzWsE+ojQGvD5x++uk1YrCG1xy193//4oorrqgRgzW8oVAbA94YqPEHNfTFASEH77jjDq655hquu+46nnvuOY444gjOOeccNm3adCBOV0MNNbyOUHv/a6jhLxu1MaCGGv5yUXv/a6jhLxu1MaCGGt64OCBhxSeccALHHXdcXj7aOce4ceO4+uqr+fu///s9ftc5x7p162hqakIptb+bVkMNf5Hw3tPe3s7o0aPR+oAJhoFX9/5n+9fGgBpq2L94o4wBtfe/hhr2P94o73+2f20MqKGG/Ys3yhhQe/9rqGH/45W8//u9IEmlUuHZZ5/l2muvzbdprTnzzDOZPXv2bvuXy2XK5XL+99q1aznkkEP2d7NqqKEGYPXq1YwdO/aAHf+Vvv9QGwNqqOG1xOttDKi9/zXU8Nrh9fb+Q20MqKGG1xKvtzGg9v7XUMNrh315//c7ObhlyxastYwYMaLX9hEjRrBw4cLd9v/Sl77Ev/zLv+y2fdWqVTQ1NfXa9ko8CNm+1cLI7u5uli5dyq9//Wsee+wxNm3axJo1a+js7KSlpYWTTz6Z93/gA5x04ok0tzSjtEYrjao6TnbcNE3RWmOMwXvf6zzV7Rxo+57a3N/39nSOgb7f3/57E4q+Ui9Ndb9479m6dStPPvkkTz31FC+//DLLli1jxYoV+cCfJT09//zzOemkk2hsbKSuri4/r9Z6N0bbOZefIztPf9e0L23fl/vRd3v2nYHO23ffrJ0dHR1s2LCBZcuWMWfOHO677z6ee+65/HsNDQ2MGTOGESNGcNppp/G2t72NSZMmUSgU8mMM1P7d21jd/t2vqa2tjfHjx+/2Tu1vvNL3HwYeA1avXk1zc/MBaWcNNfyloa2tjXHjxr3uxoCB3v/Fy5cwqLkF7x3WOoyO0VqhlAYf5gUn451WYQ7Co43GOYe1KdoojNJ461Da4MP3HBqFz+cbj8N7C8hxrHUoDKCAcD7vUUahFLjU4p2cKxuLldJ473HOozVoo/CEuVu5/Lo8oLxHI3O08z6f89LUglKYKOo172sd2mAtKhwk+8wYgzKaJEkwWqOUzudMYzTeeZxzeO+JwnFddm4HcRzhnJeDKo/3FucdkTY4H+beYAuBIrUpznqMiUIbevrMGINW4JVcYz5X4mQfZ+V6lPS78460YtFa+jHrB+dkf+XlfodTg/dYJ8fVSpF1hnMe7zxKa5n/lEJ5sM7isEQmwjuH9S58Vw6Y9aFHYbRBKbkH3sn1KcBZh0ZjlAakf7zzkGrK7Qm7tnaxfvV2Fr64hCULl7Bzyw5wnrScEEcFBg0dTMugVoaPHcb0I6cwfMwQGofVUWo2WJNSSS2FUoxLndibSpGmKd474jjq/Qzg8d6FzpD9lNbEhRi8kmcUhU9teLYV3oN3nradbUycPOF19/7DwGPAvavuo6G5HoXD4eVl9woVMiJ5PB4HOHlbnQKvsQoka5JC4VA40KC9AQ+JTrHKAxrjNVp6DfIfwMtWsnPIgyXvHvKMhx0hnAmy91yOJm2VtmgF3jt8aK1Co71F4bBKfnx4Lo33FLyTZ1hHODReefAe4x0Kj1VglUY5TeRlPPPK4fJm+qqWVf3mpXXa93ziQN6ZcLUATvnQG9LbRoYH2fYqRWdir6qsq+QsPutLuaNehbESOa/xiuw/+dyF70Vor+U6lMOrFKss8pRolJefYMVLP6qe+5Tdob8EdLR1cO64c193Y8BA7/+jjz5Ea2sLKEhTh3cWwvwP4dFRBoA0SXHOyZxvIkDWUFEsdkOSpjK2++x7PoyiYZZXOszhMv9lH+y2Lq+a8/I3y7sw6Wl0WLs572SeUGC0xnmPrSTSRh2hIxNsD7BWnsfIxGilsd6BB2MMKE+aVrDWyvugVT7/aS1vrPMyL/hwbkVop5PjZFyFys9nZS52oEP/ATgP1rt8HokjTWxkbEmtleNBzzujyDpJzquzNoVr8mCM2GVJmmKdIzIxCkWSJoCnUChijCFNUypJBecdWmsKUUxkDFiPs16uVymsc1ib4PEoY9BG+tE5F+weBTqze3zPPVSZHUKwN8RGyebH0LnBRpRbGg6F1oAJJojzuDTFhusBMJG0IzdUlK46jwLn8NbjrTx/skvot/AMKQ0miuRZSVPSNMUoTaRlzrJO2uoQmySz2ZSWbdZZsdO0wWgl99qDCzYXeDp27eLNp5++T+//ficHXymuvfZarrnmmvzvbAHT3Ny8R3KwL2G2N2LIe09TUxNDhw7lhBNOYMeOHbz44ov8+Mc/5r777mP16tXce++9rFq9mgsuuIB3vetCpkyZQkNDozxAA5y/7+/Z3/0RegPt29/v2Xf/GEK0+vt722egz/Z2nv6O7ZyjsbGRCRMm8L73vY+NGzfyyCOP8Mtf/pIXX3yRzZs309nZyT333MP8+fM58sgjOfjggzn22GOZOnUqI0eOpL6+nmKxmJ+jv3P1LHzMK7qGgfbtr5+rP5NFVG+Csrod1Yuarq4ulixZwtNPP83ChQuZM2cOzz77LG1tbfl+WmvGjh3LOeecwyWXXMJhhx1Gc3NzvnirJiOz8+3ted/Xfng9SvT3NAbUyMEaati/eL2NAQO9/0MHNdPU1IyzQtoZHWOtRWsDjpww0V4MV6WUGItaBwNeDEHvHdZZWSjqSJafXmEinRu7Qoo5MThRpKkligLh4gjGvuyjjRxf+WBw5uOyHNNZF9qpMZHBeY8jLFqUwXqHtxaTcVsqLNADwZWznYTzhjbKHCOGptZyHu8cJjKgNWmlQhTJosjZQDKGeck7oQq01hm/EY4NQjhl85kPhJIVUi5bA1TNez4Qky6QdCr0d0boybzV094eAhGsS/PFTT5nOSEAtVaB1JX7LddCaL8FnBB2SuVtTp2QaJkhLM9EjLfZgkjjnA1EsbRBOQNO58SHdXJPPfQstpwQdTghBrUP1+8g2eXYsbONTau2snT+Kl5euIKVK1azadMWujq7aWpqYtLkSUycPJ4ph4xnzLjhNDTWU2g01A8pYIoaFXkcltSmQkzGsRAYPrsfcn2ZnzTrq2yxkT37aZLiFdL+3GbU+FT6SmuFDWRn9b18vWGgMaChuYHG5joUsvD19JCDGZGVEYTa+0DgKpLwwAkRLc81KGJicIqKqmC1OACMj3qIQeWrHK1yLO2FUBLyqcpeR0g25cNPFWnhvcIpZIxABcI8EF/e4b1GaYPGo7zFKYdF4VSgtDxEThwBVplAGnoUHuMtXjmsAodGe41xgdhTHld1LmmMDm3NiHoh2+S6CPtn16RyT7Mnu27pbZWRgxmb8irQy1ztxREKVZnf6/wLhL4Kva4COeg9CoMKbKVXQpAGejG0XMtFkl3nXy45mOH1NgYM9P43NjRTX9cI5E9z7iRyGfmVfVgCpWTMVwqSNMU5i9bibKurK+GVIg3zc/Ah5eRz5iLInwedkVoV0jQhiiIKxRJRZPDOkyYJlXJFCMgo6hEKEeZShZA0gZxy1opT0YMy8v5DIHucQylNHEXgoFyu4JyjUChQKBQAj7OW1FlSm+SEj1Y6kGMmzKvBLRFsmYw4BIV3Qth554kLBUwU5Q6nzHnoCc5XpdFAHBvi2ODSlO5yGZc5ALXJbSJrhSTzSpyRxiiM0TlhZ62QrfVKARonzetxvIR5K9IRhaiQ95fWQgZm73wcRWijsc6SpknucCQcN18bayHqsnNnz0TmMFb4/BnxmacHMOF73kKlYoN9I4SxApyX43kNpqjFgasB7wJZlzlSxX7TkSaKZFyySYqzFqMNkTH4QGS6wFRrY1BGSV85hy5FuVPbpuIEL6mIKIrQ2uCso5JU8OFadEYYBybTekuSSB9pXUQbjYk0u+rFptqX93+/k4NDhw7FGMPGjRt7bd+4cSMjR47cbf9isUixWOz3WK9UCdbf9wciTQYPHszJJ5/MQQcdxHHHHccPf/hDnnn2Wea/9BLr1q3l/gfuZ8TwEZxxxlu44B0XMHr0aAqFQn48GxYjGSnU91x7I+ZeDfZE8GXb9iWV5B/bnoHOWe3111ozZswYLrzwQo4//ng2btzI/Pnzefzxx5k3bx6bN2/m7rvvxlrLuHHjGD58OJMmTeLMM8/kzW9+M2PHjt2NIK0mxvqSswMRlvtyvXtS6GWfV6sZs/2zyaBcLtPZ2UlbWxtPP/00N998M08++SRtbW2ALHIaGhoYPHgwxx13HGeffTbTp09n0qRJjBgxohchmJ27uj/7XvtA96Bv+wYing8kXun7D3seA2qooYY3FvaXDeCdDtqP4ChB1F3eiwGIF++pkG+iBtPBYAVZKLjgXZYDiuJEKTFeM7swU5oRFsAED7j3ogz01mGtJ4p17hH2XuGCZ1yUbSon+kwkHnox+hTeBjWX86ReyDGQ6AMZ+7PxXOXEGUF5kPeFz1SCYlzbQByooEggTYMRm5GY4mkXEs/KQgBNkqbBGx6MaaWFHAuLjKwrvA+KylxNWe1EC+SZNkG9Ke20NiWKNDoYud7qQFD12EgocF5sJ7mXHq8DeVk1pYkS0fY6p/S1qDedcygdYZ1cs1FRWJRZUc0ZjdIOlA8EW7i3iGcdpYI6w2Mi0SI55+W6UUShL31qUAmk3dCxq8y2jTtYsWAt819cxIqXV7F+zXq6urqoa2hg7LhxjB0/minTJzHl0PEMHTeIhsFFokI4fwTeOJyysnjzXp4P73E2wegYWeRU2zQuXyxlTspq56RcpxCczsnCTSmFj6VvnQJvRClqq56nA4n9bQP0tVx6SK6gCkGhvAElz2riEyrK4VVwLiMyECG4FBFR0A2rnODLiEHoUaz1PWvv7S5XtWl81XGEkiJbs4YFqMPjvBC5cm+R8cs7tAotCccP+lBseAZcOHKmbvQ9LQ7/94Ewyf6qIgZ360khMnv2zdqX9awP15MRi71vgO97M/5YDHQcVf1r9U6B4AikZw/Jl42dvteu2Vgc3hRQumcP1euf/YrMufRa40913oGwv2wAFRxnSikiY1Dei+rN2lzt5REHVRSLM8R5R+osXulcKee8wihFHBliY7BOHCsudblzyURCIsp0GlRhHgpxkbpSPdZ5ksTirA2kWQGjo1yxlqa2itjSpDalXC4jCvCYWEdC5AXnnyM8u17UX+CwLhEi3PjgvLNUKmWZf53FOQvOYrJjOE+aWoyBSMmxNaIOdmFuFZsImeu0EaeXB5c4UmVlrDJKnJ4Y8Nlc40m8xWYiSh1jtA9ElNwfbx3WpXhPTnxFkdgRaWqlH4OjNC6I47JcLpMkKcYYUcoZhfcKi4yh3iu0MmI7GI0P9zuxaXAJyduehu1xHBEXiuDFqetTIfZ0cI5mSkotDDDZOIcXwjV7d1xqxfnhpf+MioiMxkQFuZ/OkySVnFjGufydUwp0FmiixBlsvUU5g0JhbQLOEcURcWRIEkeSJmK7aXFC+lSOpVFoE6GUQRsF3pF6S8U6KjbB6DR3iUXGSFQEXpSMymOioI5G+jVzajsLFbvvNsB+JwcLhQLHHHMMv/vd73jnO98JiBHzu9/9jquuuupVHXtPSr3+tvdF388zAuuSSy5h5hEz+e/vf5/f/OY3rF+/nj889TQoePyxx/jdA9L2LAw2O1bf8Ne+7RioLdXt6I/86nu8PfXFvm5/JeTQnkJv99S//X1WV1fH5MmTmTRpEscccwzvfOc72bFjB88++yx33HEHs2fPZvny5SxdupRnnnmGhx9+OC+rfvDBBzNmzBgGDRqUh0NVn6evgq+/BJv7Eka8N/gwIVWHPCdJwo4dO+jo6GDRokV885vfZPHixezatYtt27aRJAkAzc3NvOlNb+KKK65g5syZtLa20tramqsi+j4LfZ+HnmvqY6X1g77P3UDvy4HEgXz/a6ihhtc/9tcYoFWM8gaPeKO9A5up00AUIQocEmqkjMbSM1ajwDtHrMXTLSRMT7iQc7LAj3QWVqPy7VmIjHj5FUoF5Z1SpGki87/RIQRVjH+tFZVK0kOGAc7JglxrMVydcxhM+KxHvVLtWHPOSciRrBhyD3xuX2hNmiQYbXJloHI+DxVOKpX8eNamYqx6S5oKAWa0DkaykGnGiLJGInB65p4kTUPoUkYOilPUGIMxJlcOZk4yUQwIUWWMRiuDDSqNKDJVIV8SJpOpK4CgAgjajTA35vdBqUDoySxovcerSIhjU0B7L+pDD5HSpK4i0gQkFEcHW80mojp1uFxlgZVwME1PWBkWSCHp9KxbsZlVS9eyfsVmtm1uY+O6LaxYsoqtm7fT0NDIoMGDOPTQQznsyEOYdsRBDBrdQHNLPXGDQTcofOxJvZCBaIVXWhZCiSNSOvRLkt9HZ4Xa6euMzGyB6rk8c1BnYUnZwi91aVAPOJQLqgSlM/HUAcf+tAEC5xWQBbiSbxW1i5dFo9chPNficaTeIUHljhhNgQgXwpPlWfO92a6g4sgcBNnbGQTCQNASBnUQKtMs+p6vB4VfpltzSuGweG+FFEaeM+0tRkUQiH5ZXYaQRI+0W1l0fgyIvQkkYkYQ9qgmQfdRAfq8v7K2Z+HCMsyFY2TfkbvUp/cD4RRMz/4s0FdPSvWmOaV5Og9frnJv52Rw1k657vD8q0xnmCm/pMG9Q7+zwaanH/Y3/lQE3b6cN7//rwH21xhgvctvl0ttPk4bU8yiieUJUpmzQBxoRhms9WE+FbVuV1cXKiNUoojYGJQxKCXzVyWp0FXuQutA/EUa5yC1jjSVMSPSBqUJaUeyNWUg45wQjSiZo5VWFIvF3KnTXRHlXRzH1NXXEWtNV7mbSpLk6kNlJKyU2OCtx6UOZ1O5Ru8kIsA7lNFEUUxUX0SZCGstaZKQJqnMNS4j/TQYHfpGYdBEOqTLyJxHQSFpncOlicxBgbQyUUQkHlWslzYoD5FROTGltRCB1loqZYtNhJQFIbqMiWWcqwgRZ7TBFINq0nvSRLZrE6F1TKWSUq5UiKynUIyJTSQpTtKESiXNydTcBrMpaZeVcSML63UOH9brmR0nyj9Rk6rggDORphDHRFoUm5UkIU1cIAktNhWyUEdRTuY6a3FW+lkBcTGiWFciKsVCTNuUxAopKqHBikIcowCbWpJKAloTFYrSJud6wphReG3wTuOcwlkvak8FFDTWWsppilIeoxWptXQn3fJORBFKeVIbUqeEMGfnrNh2vmfo2xcckLDia665hssvv5xjjz2W448/nm984xt0dHTwoQ99aJ+P0R8pVR1m2lcd1Z9aqr+/q4+VGWClUoljjj6Gw75+GG869U3ccvMtPPfsc7S3tbFjxw5+85vfMGfOHD70oQ9x2WWXMWnSJDFwB8DeiJi+nw8UPtw3tHWg6+l73H3Zd0/teaUkWn99nhuuVZ+VSiWKxSJDhw5l0qRJHH300dx7770899xzLF26lOXLl7N+/Xq+/e1v873vfY+RI0dy3nnn8a53vYvjjjuOUqmUL0aqF1PV17E/1ZBZSJcsfExOEnZ3dzNv3jy+8pWv8OCDD1KpVKhUKjlhXFdXx8SJExkxYgSnnnoqf/3Xf82ECRPy81Q/O32f5epQ4p52ZSFBmV95977fHyTo/sL+eP9rqKGGNy72xxhQsSmp9+Ihz4zuSFiqTN3mvJWQXSVKPsmNJ0vnSEeysHZeyCU8SosXNcuPl6QJZWvBh5AYrYORGcgGK0SXLBSC8Q9Vc5AKYbDZQsRijIy/1joI4T4ZoigS4iFNRXVgRblmq8JpPZCWLXEh7jWWV8/rmbOsWkWVkYggYaaiSpOFigaU8kRRUJoF5Zr3ucwmkKYhH19Q0IlyUPUyKsXA7pmHrZV+0UHFaLTBOUvqUhQmDxfOFlIuDSSMJp9fCU2onoVzMgxPxSa4kE9HeY1RENLI5TmO5DAK5QxpRdQdUaRlkYUXtal2QaURFgzWoVKFiiOoKNIOR9vmbtat3MTil5axcMHLrFi6ki2btmBMTLGujkIUc+jR0zjksBlMOWQSo8cNYdi4ZkpDjYQLW4tXCcRxUK1YvJZ8US5VRDrGRAW89dhUcjlqhLBVseTWstZJ2wMhm90jUXgG1auzwUbJSNosBllIKq9kUZyFoRO9dnbBgbEBets+Gdmhs5CybH2AYpdrZ9nmFaxYtxqtDRNGjeWgoRNo1YMxGWmWP9RVWrzwDGWEsUAoSpURh1XUnMNJnr+wnwFEoexEgQKkPsGSYrE4JeS8IaIIxDoCr+X73svzjOgSHZYESL0jIsIiIbTVdF9PE30VSZK1umdsgEzrKPkZM5VxduUuXL+pOq6q0kT2pWl7eubVPlN9j5mzm5JvNNuE77O/6/lLBTVkGECEQA1kYkYKhubvrkb8y8FrTVzujzFA+xiXql7zhNbisNLhLXE+kB9hbRiZSJxQeBQWrT3OS94/Qg5b5z1pKmSd1lHIx2eIohJpmtLV2S1vm4ryPHreh5y1Vs6TOWOigsF7g3UWmwYHQBUxpQIJb60lSRO88ySpQymPVoZSQeeRBs5bknIZm6Zik2hDHFhQrTU6ztqqwjVUqHR1UE7KeO8pxkXqiiUiU8J5TyXkrgOVt1fpkHJDSYh1JQkqdm3QUQTGk6ZCcCmn8MrgtYxDHo9RinJi6ewuS+hxFMk1+pBTj0DcBYW0D1kdhAA0RHGE0kZCkZ3kPUZrVFALmrgAiK1k0Ng0xSUJShsKWgtJmqc90butl8UJK9cYx7E4OpMErQ11pUJwzEoEhdGSWqZSSfAhtNsYjU2FTNVBiZ+m4nArFAqUikVwVpScwQHVXSnjK92i1NTikikoE2w05DrD/KQjg0OR+hDy7eU7RkWYENWQJindaUVst0K431iIICpqUcCGEPQ0SYSIzFSnQTHplJDJWV7iYqlIobDvlN8BIQcvuugiNm/ezOc//3k2bNjAkUceyb333rtbctI9ob8wy1eCvmTJnkJQswcrLha49OJLOerIo7jpppu45557WLl8BZVKhbVr1/LFL36Rp556iiuvvJKTTjqJIUOG7ObN7Y+YqyY1+2J/qgP7Ix33dp5XSwzC7gVDoHc+wOqQmKy/rLVMmTKFqVOnkiQJy5cv59e//jU///nPWb58OZ2dnWzYsIHvf//7zJkzhxNOOIHJkydz9NFHM2bMGFpbWykWi3muh/76ty9x1pc8rFbaDXR/0jTNw4bnzJnDxo0bWblyJT/4wQ9Yvnx5fpz6+nqOPvpoJk+ezIQJE7j00kuZNGnSgOR0db9VP0PVagk5tkaFnDli//Z/7wdaRP4psD/e/xpqqOGNi/0yBgQCKSPePOCtzCE+z3enJB8c4unNQmltmuCsFA3zSpFWHEYHYoWQb0554iiShXE2ZmrQSJiGy8NTgYycDMQcyNyglApFIySsKA7GuxwryyXoeinBIq1xRo6hVVgUZHl0tRQXEZWieMWrkc8RWuXnNyE3ngrzYKFYBISozIhJT09Scgdge+biJEnECA6hUNaJR71n/gyZufM+0uCqc/H6qoWQkCZK9ZAY2XGESOxJjo1XOaHpCYVcUHn+vKzom9JK8gjpLCOUl7CkkDxeKwIxFvK+IcVUFAYfFIUSjixKSZfKosA4jXGQlC3tG7vYuqaNpS+tZPH8ZSxZtIy1a9bjnKdQLHDQwROZcsgUDp52ECNGDaZpUCNDRjTSOLiEqVNgMg2ZRRURA9+m+TXa0E6Nx3jpH6d7lusiCBECKs//VFX1QZ513ctm0VpjtJHFk7WkmZ2sFcp7CjqSgiyB1PbutSND9pcNkHN14e/e1I4QP4HGlsUQji7fycubX+aeR+5l3osvUN/QwCknnkzTcU0017fiszx0iCop4+6zHFhZjqssv2BGlSlfFW4LgENhsVgqytLtEjqTbnbu2sn2tm207Wqjq7ODrkonXWkXSntaWgYzdcI0JrSOp0CE9UKgK6UD8SjjXEqZDt/BrqSDrrSbuqiOlriZel1HAQk/JyuqpEB5V0XkZb0irXfKkuJJcThCzi1vRMGsNL4P6Zr3hg95/w6wHdnr6L76GqopyWwvjUh7eyhdIRB9IBN7lFzkuSZlrKmy/MP3+zl/DfsN+2UMcA6cJ9JGnGVailq5kKtVnnTR4keh+FZaLmO9y9eHFSvjY1woEJmYNCPpAB1lef8cRmlioyiYgqTusB7r5f3SIYeeCk4ZmyYkKiHVPYVu8PIMZjng8J6kkpIkiRBtWlMoFtGxJk1TUZ+hiLQhUoTcgZEo5ysVfMiXp7QiCsRmkjq6KxKVFlIDYoymsVAfHKMSFlxxokiTeT/u9bBLVLEjsZ6kYkmCoj7SIZdiKsU+4ihCGY1zaV78Io5iioUCOEelu4xWilJdUQi1pEJSSWQ+cpIMwRhDHEs4cZqmpNaSWg/W5g5KyfUXoZXcP3E+OqyROR7v8SGc24dci0pDFEeYWGwlG0KJg48I76HcVaGrsxsTRXmRzyRJ8d6KTROKQynVQyzr4Bw2kYTkEiwarSX9g1bi2HShiBRK5uxYiR1pU4tPenK5ZvO1tWlotw5FZsKkFuwToyO0MrhU7pvSikKhgHWONEnDfRZeIHVCzFpriYyRdHdIlEQcRVKzAUUlScFoCoUiOHkWu3Z17fOrp/xrFW+4j2hra6OlpYXt27fvVoxgT0TLnsJfBwpH3e1YkM8U27Zu46GHHuSHP/whTz/1NM452traKJfLjBo1iosvvpj3vve9HHbYYTQ0NPRLOA5EGPZHUO3rdb0S7I0c3Fv48CshLgci3qpRTcz2d33bt29n3rx5rFixgoULF/LCCy+wdOlStm3bxs6dOymVShx66KFMmDCBQw89lJNOOonDDz+cIUOG5GRkXyJ4oPZCVd6lPvtki5hdu3bx6KOPMnv2bLZv384jjzzC4sWLcwKvqamJUqlEc3Mz5513Hh/4wAc46qij9ti3fZ+J6n7pD7LdVX0vU3Hsrp6tRt/jt7e309LSws6dO1/3RT6yMeCN0NYaanij4I3yXuU2wNbttLS2Bq9rFakUVCHOZ5XngipQCZEl80tQ0XiFS0RRWIhjlApEY1DaZEVF8hE0KFBU4MKcyyruhSrA1vcqqJGN3RnplW3LDEBPlv9Pi4HoeiokDxQdAeBVVpmvtwI/U7OjRPUGQc3keuY+USdKrsHsO9BDEKZWDNA4jvO2Z7kYdfA8QxZCrAJhZQNtoUPlRZWthwIhl4UBB3JQZ6SNnDlzbOXzsxIDP98eVHGZgZ8lEBco8DqEanlSm2BtEnIbuTxESBZuHjDoyJDnhQyEo/Zh8VF2tG/uom1rB5XOhA2rtrDoxZdZtng569dsZFd7BybSjBk7hgmTx3HwtPFMOvQgho8dTOPgOgoNWshAA1ZLCCt4CVFGIT53ISM0oUCCEnWptw68QesCqChUgLS9qhIrlc3tQo1YK4VL4nyBI8nxTSjCokLf9+TBVmSqUnmGLc572tvbGT58+Ov+/YeeMeCxHY/T0FJHeHrlecpjRTM9WZYrFFKVsMVu4tnlz/KjX93OwvmLqWto4M2zTuc9Z76b6c3TKbqSLMSULBAzGytb5ktlWxWKYsjx5VxZ9j9R3zllSUip+JQuKrTTzbbunazfvI6161azefMGdu7YQUdHO53lLqI4ZvTIMZxy7Js4auyRDFYtKK/RGDQmvEyiROyii21uO5u6N9HR3U5zfTPDSyNoVs3UUUfkC6E1DqM82jupyawkJ2lefVlZUhzdJFQQBaMCCj4ipoBRsZCToT81iLPFyxPsQj+Ejt9vRFrOVfTKgylvTNbfKh8LqwhC5VFkObekRSoQmdpL4SBCZWcX8k7KeQifqdwx1FOE5S8Hu9p2cWrLqa/7MSB7///w9DO0trQEAYjMSZVKyPumJDxYGxPyEofcolWVWm1OknmiyEgRMshtBEWYH1WYR70ov61zkqdPaVEWai1cswsVe5UHo1ChGBgIqZZ2V8B7YiPtyhyRLlQSJoR6eu9kLnChmBFICHAU8g4HB49PbeY5CsRSAZQOORFTtBZHl0TTihPNo7ChQIZU/I2xqRTxQJHbJlm+wjSx4FUusunxFQQHoMj+gp0kfWWtxaapEGPBISq5XX0w0RRGqyyBak+eSA9xXAgpR7Lq0cGuyCMRxG6J41iiEFKLTZJAOAaVnelRWwqyMTrMm2H+zO047yU3orNIHmLVKyJE0oAp4qggRc+QiIg0SXAuRWlHFBniKAYFlbRCxYq6Mxt/FKJKJZxPlIKhAjY96VGUkvBiIQxDOpUs57POXDrhGQ2OQkVwYoU8tdZlas/M4evzbVkEozZSDE+clOIS6+zs5IRjj9un9/9PXq34j8XeyLOBCJOByCP53ec3ZdCgVt7z7vdw6KGHsXDBAnbs2MFdd93FI488wvr16/nWt77F7Nmzefe738273vUuxo0blxeWqF4kZMfub9uesD9UX3sj/PZEqO6tHQMRb6/k+NnnGdk2aNAgZs2axWmnncaOHTtYu3Yt69evZ968edxzzz3MmzePp556iieffJKWlhYOO+wwzj//fGbOnMnYsWMZPXo0zc3NRFGUe997JUOH3bb3bd+WLVvYunUr27Zt4+GHH+ZnP/sZCxYsyHMIggxa48eP5z3veQ9HH300ra2tHHvssbS2tu613/b18937LHtusu++sufjdeYDqKGGGmrYIxQO7xNQWViPWKi5Es8Hy1P5kFtO4zG58aey4g6xJ0kt3noIxS+U7iHfxHssygOUlsrHXiG5e8TI00qJ8sw7jDeBmOyZUzJ1Vkb8ZfO9y4teiMorywuYV/ZFfo9MVU7d8P8kTUPVZJMXWomMePhdRjq5YLUH+ZMJRUKqizVkvdlDnPa2UTIlpix6MnVaIPrCtJEZniYyPUqJ8N0sL46E9+pcvZkTub7HBsrITeeyvD5ytDiKyQz8jBCDHjJUEq37QK5KHiNrE1F6hkIqPlR7NuHeS9hxuJ4u2LG1kx2b29mwYgsL5y1l+ZJVdHd109XRxZYtW+ju7mLIsCEcdegRHDxlPNMPnczICUNpHt1AqaUoIel4rBENljIKiwvh0z4kzA9EhTKiOXAuhGcLgY02IQzbo7UPi0yH1xbts0Vdz30BFULAJERZiGrJ2egz9Wbo1yiSXFJp2pO4XSmNCfn1oj2kwnm9wlctTHt57yF/Tq23Qq4pT4ql25XZtmsb3Uknul4RlzSpLeNcQljNyUI6U8aFQzsvSt6MKM8IqKwdITMXTqV4LGVfoYsyHb7Mju5dbGzbwprN61izXojBzo520kRCF70i5DGLcjU0gRAPvFuul5OzWDrSDlZuWsXaDSsZPngY8biI+vo6rC8SASaEIytcOFx4p4My0oeUC1aldPsuOnwnia8Q6Yg6iig0EXGottzXJu3pm6wHen5euf3ZFxn5mLVboXHh74y0cyE9hNz7antdy9wAQmz6TEeZ3SmXkwNhQSfvQ5Z4i+wcf0m04BsUkSYqFYmNCY4VRRxBZGRO8HjSpEzqPToy4lTKxoXgsNNG5l48pIkVhZ3WGB3yGIf8cJAJRqSAiQ7FtLwPY6oHo6QwmTYa5x1JpqrLcgyWikHtKM47j3ymdQRa5/lDPbK/pMeQ8E+bZkSRyoe7TAWnVMh3b0Cp7HnOCDWD9zKnWkkcLBV1jSGOYyIV0nxY+RGSUQi9KDJV84I40ZTSJElWTMWH6LzgyQNpvVZEseQBljBaIERBZLs5D1jwoV3WEkKNVVaDI39NdVBBKq2IjdgCmXNLwqljKbhhpegLKOk378mKxGXvs8sIzQDJkRyBgsQ5IdxAxgInA05WOVryM3u8lyQOOorQPgv5dnR2VcRRDUgYtAljrZPgEiWRKlkhsSiKMUaTJImoRbXDmCjka1QSEu8c3qc4bzFKnmHvJT+2joPdmKakQTEaaTmvVyEaJFRxxkuF7iRNwMvYaar6IULRw2Lsw6v3CvZ9TdGXPHm1ZFl/oaV9w14z2yNL8Jw6y7Rp05gxfTpJknDqqafyi1/8gptuuokVK1bw9NNPs2TJEp544gkuu+wyxo8fz5AhQxg7dmxe2biXAd6PSm1f272vfbC3MOE9EYB7U6DtCfuqMtytz6vUF9nnSikGDx7M4MGDOeywwzjxxBM54YQTePjhh3n++edZtmwZy5cvZ/bs2SxatIjGxkYmTpzIeeedx9lnn820adOI4zgnAvsSwn3zFSqlqFQqrFq1ijvuuIP77ruPjRs3snnz5rzicKFQYOLEiQwaNIixY8fygQ98gFNOOYVBgwb1SzS+2j7r2297eh8GUmL293kNNdRQwxsBTlusk9BZnVUeVj3J5yNjJAw2lcq53oIK5BReijtkYZ1xILEkdNOAFSPa6FCswTpsIupDo2O08iQVMdYjnS0ye9JlZIU5gLAIyVSM4vVPncNbCdfRQQXn8pw2UTDmg9owVDHOkM8nQVVAKDaSe4Dj6qrMkjNJFOUOr8N1A1pFgeAL5RGULCR0MG6z6xDpWTDWtYTOOBfsocx+UbIQMEElmAavOF6FkKMer7jMu4TKrHIp3vtcmZCpMZ2Xan9Z/kQPoIVQU14WPtZKhUYtYjy5rkD8mdC+TMWoQJQcSvIHqgRUqtixqYsVi9ez8KWXWbJgOauXrWPL+q0ADB7SyuhxI5g0fQItQ5uZNHUcB00bS+vIZkqNBXHGlUDHniw01wVy16gYjSbyWlRlIUm4txK6ZB2BrJQE+VKQRKrBikIyJYoUKT1FdSQ8XVQKEnLt8/xJ3gFaEZmYJElJbaVHPaBDMnYVcmYG5UlGhOnwDr0xoXb7K3t+IVTjVA6LpUyFrR3beHnFy3RVumhtbaYUlUgq3VRcNy6oznLiWqg1eaaCmljyl0lYWMhqhseicGgcCWUSUtrcLlZvX8fKjWtYtWENK9etZsOm9ezatQvlPY31JVqam2geNJi6QgODWocwYugIhjQOlsqiZOVClHD7qoccT6iwedcW5s6fy9znn2P0yBE0n9nK0LrhlHK9nMlzIGbfzaowZxxeiqVMmV1pO4s3LGFr2zYa6xqYOGw8YxpGE3uDdoZIxRhl+vRNdd9Xk4P935d9hicfHPLmS/fnZLAPCmSvekL/ZHCTe6DDmOQDgyKOBiFjvBaqMFAzqHBDI61DFdGQgzRXTL56vPrCLDX0B6Wgu9JNBU0cSBATKuoanTm8RLQtaikJ73Q2xXoh/IwOee4ITjAIDFYQBFURcIQcuVoTnHgyvhaLRby1uDQRgg1LmuXV1VLkQ6PEGaQNJpZiQ2kqDsMoLuCUolxJ8jFba1DOSa7DOMbhJQdyIOWM1hTjmGIhBi/V5l1wZmYpJZzz2CTNX8U0KPwzZV0lLVNxBOJRUSwUMVEM9KjNvZMCblFWSRmxcwqFImmaCHma9vAYxugwP/XQR8KfhJQMmWM2zHOSV0/nOQhtKg6W3ElmjDgdPbmNpMLN97hgAzlMpIWQDPNvJUlInSUyMVEU45xUNDZRTBwXcNYFZaIlrhYJhVBtj4TiZk4ZrSXFgnMOZ31u1/jgyBAirogh5JP2SNoSpVAqQhkfck56okgK1FlnqQRhkTiAhdw1kQqkrhCEWsdoILUJSVIODm5RHKahnplEFOhcGZsXoEsq2G551guFAk0NDTjn6erqRqNoqGtEeU+5qxvf3TtNzZ7wuiUH4dUTgvt6vL6KuixkqTqhbRzHTJo0iU996lO8+c1v5pvf/Cb33Xcf27Zt4+677+aBBx6grq6O008/nb/+67/m5JNP3i3cuD8F4Z7QX+hu9XUMFMa8p+vt77v70if70tZXQi72JQX725YtXpqamjjllFM47rjj6O7uZv78+dxxxx3cc889rFu3jm3btrF69WrmzJnDk08+ydFHH50XPBkzZgzFYrHf85fLZZYtW8batWtZs2YNd955J0888QTt7e15iM748eOZMmUKI0eO5IILLuC0006jrq4uz2fRH9G8p+vfUx+9ErJwT/v0RyTu73ephhpqqOGAomwwpYKE23gxVpJyilIGFUmFXZ8CXkgZF9Q9WiHFGrwHNN5HYT0q87rRohKUKqGiAEh9irMOo8Wra5XH6SDI0z0FCLwXtUGm/ssq94LOjTcPJOUKAHWlOBBcEtaklO7llPKAiYVkTNNUFvuBw8kcjBBCfEO1UmvTqjE9WyCF+d/TK4JBCqqEXDVpz3lNIPIyVR9Gcttmx1R48AaUHBukn52VhbYOiyibhpBgo4PhS1Agqvz8WV/FcZyfPzJGyLMwxyujxDEb2oZX+WfW2pBEPTwXgQzUSL9LCrKwOLfgKtC+scLW9TtZv2ITzz+7gJdeWMCmjZvp6uymVIqZOGkchx5xCAdPGc/4ySMZNLyZUlNMoclg6jVE4FJPYhMiZcToD+rUSBnCGkDapYKyIyw2tUbyMUUxJo6lPwgVCZWEZAs57MNizAfyNMbEEVrZPHQdwoIphF3J3yHywcs9iKIIXOhH5YgLkYQteSE0s4WNe6M6CPtReQmfndFXkqzdYtmVtLN8zTJWrVnJoEGtNDe1sGvHLlKbUrEV+Y7KNIGKEPhNj0YwIwkUzqd5bimPw/qKnMO3s6F9Iy+vXspzL81l8dLFbNm+jaRSYXDrYCZPPJiJY8czbNAgWpqaaWkYRDGqo7G+mfpiPU1xA0UKMlaREZTZWsOF6sGacpqwefs21q3bgMOxfdcOunw3TaonnYDyGq17vt1j//mQYTCl3e3i5U1L+O0Tv2XN+rWMGTmat550DmMaR8nYqaS4gg8sSRZmCb2pQKr6ab8QYb7fX8P9cTiVBmJWzhgRE6HzsYFANqisbcpX3S8FKih5g+rceovTPq/O7HFVqQ9eHWrE4IFBR+cOtHGYyJC6GBNF4qBSSO46QMdFyUSZOrq7yrmiWutIUo6kGouiUIjxxtPR2UG53EUUGUqlOqKCZPGUOc8H5bsiSYXYSZwn0YpSqUR9YyNJUqazqwOlFQ31DXjvqVTKlEPhj1IpolAsgFdY302lklBJQ0XyoGBNXSLKspDLMHVpyMHnMErlkQ14ya9rbSpEmdZEUUSxWEApLceuVGT20xrlNMrZ3KmWOnGYRiaiEEW5k8k7udYsbFVrhQm5lOV84rgsxIYoKgjxVqkAXnL9Wk93d5I7/aIoCvaNwrmUNClTSaXNWkmxF4XYJqW6eoyJKJfLlMtlIdpQFEsFTCxF4ioV2a48RMoEYjhUlS6XJZJPeaJiJOHHJhICLTUhXDoVBWBI0ZGmac8Y75FqxsrhrUeZUOhMZYo9HxT8MheIrSVzaZL0hEHr3PbzEuqeJuLs1BqfhrM5K/1hpcJ0oVQgLkjBlSQoIb1zxCEfdoRGqZjUWSEuI1EGWi/VqKNIExcKco1Jgg1RNHGxSBRJReRyIsQrSmOdZ1dnt9yjYh3Fpr4V6QfG65ocfK2Rea0UwUClym8WJs1ischxxx3H17/+dX784x/z05/+lBdeeIGOjg527drFnXfeyUsvvcRll13GBRdcwOTJk/OKOdXHeVXt7MfI64+E+mPUYgdSYVZ93ZmM2xjTqzAH9IQZZ6Ey2WfFYpFSqcQpp5zCxIkTOe2001iwYAHPP/88L730Ehs3buSee+7hzjvvZNiwYZx88slMmjSJww8/nCOPPJKDDz6YOI55+eWXefLJJ9mwYQNPPvkkTz31FFu2bMF7TxzHlEolGhoaOOSQQ7j88ss599xzGTZsWL/tq14kVvffK7nHf8zzsLuqMFN/5lvpa9rVUEMNNbxR0LXBUugKRp0GUwhhMHU942XBFwJT4HOvNyGRt45VKJwBSQpKa+I4qwUKJitGgkI58cjqkDvHOwmhFfWWGJqRNpKPyxi0k7w/mXHsg4ovG5ejEOqaeaWjyACKpJKIGjE2ErokzBJaKSKiUDFPUe3QcYFsi+PgjQ5FSqRt4sXO5spMoZhB5s/MKRlISqMl0XhQRkgBhsxw9sF4VuAd2kRhwRScps6BVqEIQlBteZeHJAs5JuSiCwRY31xCWdsjU8B5UYdm8yiqqvosQpCCEI7eisYrm+6UVVKtr8uRli2u7Nm5oZvVKzbx0guLWTB/ESuWr6Rt+04aSg2MGjGKg0+awORDxjP1iPGMOWgk9U0lTBMiQ1TgExcSsssC1BRilFcklRScoxCboNlC3Pm4UJlW411YHPkEEwUliK0QaYUPyd6znERaK0lujicikpxIiRTNMVpjQ4EblCzaep4HuT9aaXQkVQy9dVJNMbMtw/G9kkqMaCUEu351duefBCqzYXanX5QXuZlD8j4mJGxo28SCpYvo7Oxk6qFTGNQ6mMWLXqaSSlEAYa9NIIeC4jX/3UlIOFI11KpESEEkdHmX38XGzk0s27CCBUvn89Lil1i3fi3KK4YNGczEMRM4dPKhTDl4KuOHj6OReqQsjkETAz1jQgGD8Tof2zJiTq4HFIZCXEddXQOmEFMo1OGVwnqbpxNwYf9Aa/QooBAFdEpCmQo7u3fw3PznmDt/Dt2VMiOGD6dUKFIgpqAKMu4E5V3vns5aG8YE1SOW2F/3Nh95suFHSaXnChXKvovUJ1LFkxi8IqaE1pC6FOek4rtSBq+S8CZKXehUQURBwqaVBuUoB6Wt1R5Z+jpiMknyG/Dd+AtAU3MjhVKETR3Op5I3MlRlt6mE4uJTjIkoxDFGR3R3dwenmKEQF0Vl5R2dnV04b4kKMXX1daLuTiSHoVIQGyNzo1KBNHPgJHeuUSaotVNMpKhraMSmCV0dXULoGU0xLuQerK7ubhRC/OnIUClLleLIRBhlhDALTjvJf+lDtk2FVqHIppd0Hs7ZPNxX2ubp7OgM4clZ0TNRNWaF2uI4zp2EzjlUJJWKk0pCd1c33pMTW2IbJFibRdkFt4kCm1SodCfBAWsoxAXiSOwOrMMFAk85yaebhSx7pTBB8lssFfFAV1cXHZ2ddFeSEG4boirwWGfp7u5Gp9JnhTgmKy/kneSBTJME552QaDoiqVTo7OrCVCoUC0KW2izNiogNw/WLSs+YkIcvFD3xuLxwjHce61OxWayXvkDnjuQ8KiKoN63P6smnGGPEjqAOmybYJIE0EZsUiDO70ii0UUFhKXNOVkwsigrEUSxEsbdUkk66KhVMqUBdXUEcJqHKtvMSrhzFRck/GJzPaSV4LFGiZI1DvssQtl62ZTqTfS9I8oYnB6vVeAN9lmEg4mY3tRc9RpbkDKKXoe69Z+jQoXz0ox/l2GOP5cc//jH3338/K1eupFwus2DBAr7yla/w5JNPctlll3HSSScxcuTInoSfr+DaerVrL9c4UB7AvR1jf2FfiM88FKQqIXtGulXnYupPkZeFJHnvGT16NO95z3tI05R169axePFili5dypw5c3jiiSdYtmwZv/rVr/DeM2LECN7ylrdw/vnnA/DAAw/wf//3f2zcuBFrLcVikeHDh1MqlZg5cyZHHHEE48eP59hjj2XGjBk9CxTfI63OKilmCUGr2/pq+yjD3var/nz3Z3o/GnE11FBDDa8xfvPjhygWilhriQsRw0cMZcKk8QwZ0UoUidomTYO3P5L52qZOKtkVAnGC5Besby4SFSOUBV8VJqyNGKCRL0q4UAom1uTyEo2EhPosxM1LfjitcqdfT3ijKAC0EiPaOklsHkVikDprpbqss5TLlkIxzqsO+2D0UzU/ZuG3CslNpFTPsj2bK2W+7CmuVT2/SOiqzefXLH+SdZJTUYxkhw8LDxFVqZxk0DoLW+yp0ZqFYYsxnW0VssIr0XNlCj+NDr/35BnMbCCZ/+UexFGMx+ekoAsKCTHwnRBhXoMTcsUlHu+gqz2lfUsHKxavZ/WyjbTv6GDHtp2sXbWG7Tt3ktgKLS31HDpzClOnT2HiQeOYOHUUQ0c3Ew/SUPCQelEPoKpyRKk8rMkGotAYj9cK6xOsBx2J5iskW+plI2a5irxLUc4CUSAbxVaTwsphWefBWVEoOJtKKLqRhZz3IZ+g7lkMy30MakM8yklBGXwgs1VGFmfVomXJ6fPw7zcaMjtGrllVafyynFRegSWl3bWzZtsq1m5aS1NLCxPGHUyxrsSy5Svp7Oig25ZJSXFKFGMEBSfKi1rHa6SCpZViFlhSldJNQqfvYN2OdTy/5EWeX/wCazatpbvcxYQJE5h20FSmTpjCpDEHM6JhOLGKReXmIyQjlSamKFXCkYIzkY+IVERWzibLxWWxOcmltaZYqCOOSiivJRzPh/5QEnIXNHZAcI4oE6KewCpLh93F+h3rWbZ6GQ7LQRMO4qiZRzJ66GiMEmIsSwMguTtVOF5PH4dWS0fvL16Q8M5l1+F9LhB13tJFJ5s7N7J5+2aaG1sZ2TQS7RVJUO5K6GHIAYoNxWHKVKhQ8QnOewqUKFKPooBTFh9pEl+hy3WhiCiqOqKQp7ZmKb8+4QAdxSjtc27apSlaaQpxhDOidHMuxbpAoBmDUaJmd8rJZ1bK90Q6QjlIy0k+J1krYbmqAEobXJKSVBJABxJL8tVZb0lsQmLFWWbwxDrC6FCATCsskIRCG1ob4kJBxnNjg1IVGWuMIURHh/dN8sIaDThLubtTHHlxlAtkQr2VnPByeLz2QVUvORKlgK4iUhEaEyo7h3Bj7fAuJTIyj8t16dwfCIHfsC7wHhLSG3lNFBSLWmmwFo2nGCt8IQoEVJb2RBPpGBMXKOqIJE3pKAspb6KY+pIUl5IIAXEyFoiwNiWpVHCVVMahKBISztqeudUE0itT2+sIZTXFuEixWMQ5qJQrlJNEokCUoVAs5OHoIsT0WKfQVuG95C+Mo4i4UCBNUjo7O0kqKUbHxJEhMtL/OhDMNhGbLiuS5F2KUpJj0qNwaYKzicy8cQhnDzZfalPStEKaVoJaO6IuLoT6ZYqylTQyYj+UKCDpb9IuiawoFori9AujvsKTJhW6uroBTyEuSL5ChEC0qTyz1jnQoAsRum7fR7o3NDmYh6RUqbj6C73tm1Ov77+9jepMxJ6ZJb0nxOrvFItFTjjhBMaPH8+b3vQm7rjjDp544gm2bdvGjh07+L//+z+WLVvGWWedxYUXXsjhhx9OS0tLv+ftr7190R/5V/1v9bH6C2He23n79m1/ob8DYV9CpvsjcfuSmxlp2Fdp2ZckzD4zxjBu3DjGjx/PrFmzWL9+PY888gh33303jz/+OFu3bmXDhg388pe/5Nlnn8U5x8aNG2lra0NrzeDBgzn++OM555xzGDt2LJMnT2bixIk0NTX1Ii2rr8t7nw/Y/RU4GSjsO9vWHwG6pz7u7zj975P1mTjIexYr9BT4ewOjP/Xtax0uvbcw8Vei4O37Pu9Jddrf819DDX/O+MXtd1I0RSnYEUcMGzaM4SNHMWTYEKLI5LkHs3BfUFSSCgooFouSRJuUlsGNTD90KiPHDBc1YaiUmyRSMS4rFOABbyV5thiNhmJ9Ma+SGxUl3DSu0yFnTKgcHxJre7I8f2KIahUIoVShnMdgRFynQQWVkvKKyER5KIu82hprZTzXZE6xkOcGyKwTr3we0iphjy43nMNJhPC0KToS5ZjPiAAlnnAVvNkKhXIKEkXabUUpp0BHirhg5NqVCsm4U1lUODFT82qJ3ueVk3sER+KZt84GktSR50qzEqarrcJn/I8izzdmU5dXk8Zq6IZyp6V9WxfrVmxk2cI1LFu4nFXL17Bp4xYUMGzYUIYMH8zMow5h1ISRtA5rYuioFgaPaqW+tURUryDyWJKg+DBBUdfjqFQmq2jpJNG86lE1ZkoNFdQeorDQuWrSBeM+taICjGMTCNmsUAkhkboVMtUrvBUKxug4r2BoCtKG1KYoL5EsRvfYdlnollKSe82YkDg9CyMmS7DuZBHkg5TiDYYeWlrQN/zXeyGHUlJ2du5gyeqX2d6+nWmTpzBqxGi6A7lbTst0JWUSEhwpikgIQrJ5N6t4nNn7Ushjl93FtvJ21m9fz/yl81nw8iI279hCU2MD06ZMZdrB05g8ZjIjG4fRErVQp4oUvEETQUhUn1UjNl5LERp8XgzFBzIsU+ZWE59GGwpRjEHC1NKylTEgCq+XklBZvEWHoh74jDBL6bJdbNy1kZeWzWfdxnU0NjQxffI0po6bSlPcgkgWNVrHIbdimo9jKiMD87/kuabXz6uER6hNlb9VEPI7tlfamL9yPs8veJ7xoydw2lGn0VRsIK/lghAcNvznSNnlOlnfsZ6tbVsomAIjW0YzrBBJ8QOfUqFCV9rJuq1rKUUlRreOoWjimg/9dQyvCngKeG9DcSdQGYkd8sLpQBx5n+JRRJFUbk1sN6nTFAsFCnUhNDZJQh66UPwj5GoV0sihbUpciCmUiqRpSqWc0F3plhnVGOI4knnf2dxW8DZz4gBKYVSEDoW7bCrkljGR0Nipw/sKRsfgpOiYqOGk8rHCoJQoHiUCQOFSCXV1Ib8iobJtpDUWF65FcsoaI9ENWthM8DpPUaGVgljjdCDj0kTSZJhsrAq0k+nRVEsaDRkbU2vxSSIjgUx89IwFOndodnd0glIUCkWM1mgL1mc5+uS+Ou9JnSj34ihGq0jGRi+kqlEmpM6AJEmwzqK9FFiR6ukabRRoB1GE9ZKWpZIm2DQRElk5korDpkYI2kDypaHfvbNSUTmzWZynoBQ6zpx5HosoU7FS/11pI5EASJixcx6sw/oU6z2VpIK1gbw2Gq1ETGqdk1DhEOUh0RQqdwImqSNJK/JZZDCFmLpSKeR7TDBGYSKFc5ZyUqGShOJz3qGMOGcTV8brQCaHiAIf5jTvFTaFNNl3B+HrlhzcG9EEuy+uM2VZ9ll/hNdASjsIE67v/TcDqPEyI80Yw9ixY7nggguYNm0a9913H48//jhbtmxhxYoVLFy4kPXr1/P888/z9re/nbe97W0cdNBBxHE8IDmUkUd92zgQ0dD3OAMRaa6Pcdhf/+5JfThQfw6k0Oy7T/VnfcOmBuqL/tpXHYZcTRjFcczYsWM5/fTT6ezsZO3atbS1tZEkCd3d3SxZsqRXG4wxjBo1ipNPPpnzzz+fcePG5WqQPRGp/fVxf/dpT8TQQH27JwJ4z6RQ9bO5h93eQKh+Zvf0TGT79keQvxZtHIhg39N3gN2ubV/Huhpq+EvAlKkH01CoRwWyrKOzzKKFS2h7Zg4O8foanZEonsRa0tQTFyPqihqNRTlPqdDA2DHzaBncIuSgCQokL9UPJezMIBVlhRTSGgYNambUmFHEdSVSl1IsxjQ1NjBkyBAaGxowkc7VOwrEIPUphbqYpsH11DcV0IVQMdmbsBb36FiMX7oRDk/i5DAqIioIsdc7dQXgqwgfk/E8KZLnMIx7iEpSiiuE86LwLhESQSm8chgvmjKnhQhxCiIHOlUk7Y62Dd1s3byTcqVC69Bmho1pwTQrVOxAyWLcY/Kqj1ppWSw5yS8khqkN5BqhAqEYytIXHp9YXLcHq/FOixIvVvjYQ1CBRmhUqvAVR+f2lM0rd7J8ySoWvLiYZYuXs37NBro7umlubmLsmFEcPGkihx4+nbEHjWLI2EZKg0tE9RpdlHvucDgNqfJS3dI6tPJBISnEnfMur/7rg7MSJYo953qKVeig1FL02D82SfCKEFKspZoyIUzMOiFftSG1kmTcRIooFMcRJSJoFYPykDjASpib1pAEtVvUkzNKogMsSscoFeETwIZq0SlgPLoAPhLVq1I9Yd1vRGT0kUhJkOfNy/OXktLWvZMN2zZScRVaW1oZ0jqELdu356pQZ9PwrvZk+VMqKwriQs5SUc6VqZBg6aLMpl0bWbRyIS8tfomNmzcSxTGjho3i2MOPZfqYqbTGrTSpRkq+hPE6z4sHUihFZCZZjs+escKG0SOXzJE5BHSeC88owFupuGAzdSMhlFrj81DfzAaSsauiLB10sqN7B6s3rqFtVxtjR41j/KjxDK4bTJEiEbEs2L28o2kolqMy50IvElBVtXF/3U8XSEmfny0jNneV21i5cSXzVyxAFRRdthOnRCEr/g+VE6RCazo66Wb19tW8tPgFmoqNRFMjBg8djFMRqXd0+TI7KjtZsm4JLaUWhjQOpsk09Xqyanh9waYKRYxSRlwAIQWFVp6QelPSWCgpIqKCakqccz0ht5Wyw7oUlKdYEjVgkloqlVBgRImSTUUapzzWJbK/TlHGyrtoFEaJusvm6w1CdWQPNnM0CCEHgA8FrMJzGxWE9FKBWCvEQk5nTj2b2uC8ExdPmkoV3CiK8mIc2bmlSrJCq1jUiIgT0qU2qMTDuJAV30B8WCo4FI1RFIwJzklLd1IRAkuBN8JtKC35GiNtiFUBm6ZUKqJUiyITiqLIpSoVciVqLco1m6AcFCMDWpPaFGcraB2hUCFkGowuiIqRELKLByVEsNaaQlFyL1fShHI5oVAoUCgWJTWLs1SSCuXurlAMBurriyFvcVb4SwWHncWnIY+pNpgoItaaSHlx3mpNoVjCKY2FnERMKwlKiZq/WjCEl/yLYqdJb0dRARPFoY8hdS53yhkTCFAIYcaaNFvjGoUxEdY6EmuxWiFptX3uPFFOhSJ2wVEZzmsy20EbUaQqI2lKHHhvcgIcFIbKPr97r1tycF9RTXj5/KVxebhnVlWwOuwm2xf6V/5Uk1aZKqzvAr66WqFzjmKxyOGHH87UqVP50Ic+xNq1a7n77rv58Y9/zIoVK3jsscdYtGgR8+bN473vfS8nn3wyra2tvY4H5MccqG0DfdaXDMmutZpAy5h9iVHvubb+VG+Zim9fSNq+362uElydp6+vwm4gpedA58tk4NX3I/vutm3bePHFF1mxYgXPPvsss2fPZuHChXR1SYx9Q0MDU6dORWvNmjVrWL9+PUmSsGTJEm6//XY6Ojp45zvfyRFHHEGxWMwTsmbnykjJbNFWfe+rw6X2dp8G2rYv/fpK7kH2e26MvkGxt3dgT329b6Tq3rEvpN+eSOD+nAr70q6BSP59fR9rqOGNjE985iO01DehvKJcTlm9Zj0vvLSIjRs341LJAVfpLrNzxy62bdlJdyWlvrGBptZGmpoKNNXHKAvbNrSxef0mFi5aRHdaRorsSmiqQaNVhPM6ry4LDq2goaGe5uZGdCHGOo9WhrpCkfpCkTg2FAoFdCSGWJqIt1prz+ChzUyZPokpM6bQMqQJ6y1RMBYrLiVVoUgIgDdYbyhXKhTr6hgyvIWmZogKCqIQaqwVSkuBDG9BFxTGgndCJPkItBFOKR8TJbUiykluP5umeO0wOiZSEaSyEFc9AjOoeLp3JKxYsJYFz7+MB6bPnExrawOlBg2FoKzDQxThUVjlSH1F1BFKS0CiV6g4AicLHe89aSLKQakYqaBi6Njaxea12/Hd0Dqoleah9RSbFSqCrs6Undu76Njayc5N23n5pZW8OG8xa1avY9v2HWitGTFsGIfPHM0hM6dyyOHTGDliEJGOqVhHpeKwuxxFPIVIEpd7Bd1JN0oViIzkIvM2waUJyiiSJMHEYUGUOiITY1MJO4sKEWKth7Bel+CdKCB03olZihQtBKiP8KnGJ+C7HS7RJNaRWo+OIlQE3dbLvXBBCao9kQrRyoUIF4Uq3S7CqKqQ79gQF2JUBGBIuzxphyPtFBIyLmkKTVmC9VRKU6T7vjB4vaBq5qzib4INT7YA9iSuws7uNrqTLkqlEo11TRRViZIpEZtAglnXo7LzvtdxVCDpHI4EK8Sgq7C1axvrtm9g7ZY1dCWd1NfXMWzwMMYNHcOw0hCaVCMNvo6SKhETE1LKh6q4tkc9rCREUpSEUiwh0z0rAukHgFS9lryWithEmEiBCpVFfSA8MmJNVYkaFKAUVlkSn9BpO9jSvpUd7TuITMSgxkG0lAYRS8ZDYh+DlzxWYmpovErJzpBXRqomCb3r+V31oQp9j6KxP6iq/5Pv1/teCtGX0GW7aOveSYVuKABalFNZW2SBrMlym7bbTtbuXM/KTSvZ3rGNxvo6qTCORaFIsJRVhW5XZnv3zpDeId2tTQOj7zWpgT/qp28y4rP3LgMco5/vDtiU7LbslbR9g5ZMsUICRiamEEV4ZyUnrHNSEELJs2BtQne5gsJTKApB4xKLt0g4amyIkCJkUmxCcv8WCwV0kuSpGXwIM7ZZaK2WsVYqYwtBpQkVkE2Uq/JUeAmtFbsCL45LE0kF8NQ5Ce/0XtJXWJ8TaSq4K+QVFPWvzVKKaCF1kjSFNMWYGG1MeA2yey6RBZL7T/6V8GNCfj6dV7dNXUqSJIE8hXKaUnbdslY3iijkxPNBDG+xolzUjjiWOVCpoMLEYwlRdF7CqcVpZYJzMkxkJngFg0NWHBhRqOisgs0geRELcR1RSNlRrpRJ0wSjJA9vbCIsFlJLkkreRBdIymKxJE7JoDBVoaBsrzW5FYVdFEdSpFR50qRMYqUQnM6KwOSJFZQ8cwQ7DBWKkGbrfps7ZFyINsl4gTRJqDibhyUrpfJiWFIwxeKSNF/LmSgO+a7BepmrrUt6CsdYjddS3z5ShcDbBGd2cHRpJZOMV5JeJ61Y0IYoFge4cy5PTbIveN2Sg/0p0vqD955t27axdu1atmzZAoi8NCORoihi4sSJTJgwIb9JfZVt/YUpVhNq1ftV/56mPWWhMzLJGMOQIUMYOnQoBx98MDNnzuRnP/sZDz74IBs2bOCnP/0pc+bMYdasWUydOpWDDjqI448/nsGDB+fH7ht2uq/oq3CDHlIuSRLa2trYuHEjGzdupL29XaojBgIviiRsa+zYsYwYMYJCoZATidXH6k8lV00kVm/PvpP1T19ir29/KiX5c9I07ZXEPKpKyF1NWLa1tTFv3jzmz5/Piy++yB/+8IecEMzOU1dXx5gxYzj77LO54IILqKur48EHH+QXv/gFK1eupKuriyVLlvDNb36TP/zhDxx99NHMmDGDY489lrFjx9LQ0JAnds2I1L4qterqkAPdsz2RWn37bKC/9wXVhFLev/Sfk/P1jkqlgrW2F6GcISNlq0no/p6tfRlD9gV7Ihqrn4fqffpuq1ZCVueqHOgce1Lx1lDDnzvGzBxEc2szWPAaxrmhHPLmqZQ7LSSOOFV0bO5kyUvLeP65+ezY1s7g4UM4+sSjmHLIBOobxaDftGYzL724gGWrVlG2liio9r2HpMuiiEBryXXngmIN2LF1O6tWrGLtirUk1lIslCQ7lbNEWggA5xXoWHL7pBXiWBErw9zfz2PwkEHUNZRAKcrdFbwPRqBWWFfBqUSMYx+jo5iGxkYOmnQQhxw2lWEjmtGRorO7U5J8R7EQfCjiuCRFMsopSZpSqCsweGQzLYOKFOuMEI+xEImkPpB6BjCgFMJ/+pCbMYTneKnyu3PbLlav2MDGDVtpbG4QMi+VvHhGK1AalyZgU3QhJlt+m8jgPKRecj4mVvIaGiJA1JLOeinoYhVdOyzLX9rCi88tIumoMG3qwUyeNpa6xpj167by4vMvM/+FBWzduJlydxc2cdQ1NjJm7CgmHzqZkeNHMO2QKUyeNo4hI+qIiopkZ8LaJRt4ecFKOrsdYydNYNKho6hvikgTS1mnqEIh5C8MCsYQ2mRtKm33Bu09udQi9UL4eClUo0LlYBVW8FHI2yTFabQo/3zIp2Q1lV2wc30729bsoGtnma5dFbzXmEIkYaFZJWKliYqayBhcKHQTFWJUZPBaEcUx3kMpjhk8qIlSsyJq1sT1EpqkOjy71nexbvlmdnV2M3TUIMZOGUqd8fjIoeOexcQbCh55+UV2l2u8MhKqosp00smmtg3Me2kOm7dsYtqk6Rx9yLEMigfTYbrEPnNQKSdSlVxJaLsJYb9OvAQkVEhIqfiUHelOlm5cxtMvPsmCJfPZsGUjY0eP5qQTT+KIGUcysnEkJVWijjoMhpSQZyproVIh7FyRqkTO5+U+53WWvUicPB4bwsFFiSoKqEhrSoUChahA6iwd5V1U0u5A25lAB1lAziULcFE9bk4288KyF3nwiYdYumwpk8ZN4exTzuawiYcy3AynSBHrQ65FJXn/VEZQ9FIMhpuQi+tUCPWvtimzoOPwPR8CpFVGMiLKabKMkcFTkp/DhbyRDskcWGbrrm2s2bgWay2t9c006UYMWQEpB9pjKVP2FbYnu3hh9XweeepBFq+Yz7hRoxg7YxwjW0ZS0MWgskypuArtlV0sX7Uc21rGTrJk5WgyRi4n2RT9kHAhzUFot6+6AhVIWzlMdi/In9u8JwMhqvInpZr+Dv3je/q0+j7k56qmAn04Bz7PVSkUqxxPNKgmhGPvH1v4tUTBxOAciU1DmKkVx6D3ouyOCxSiIs7FdHZBudxFd7mMMQ58CBnGh3ydVuZpJ8+6iSKMNmgdgdfYJMWmZUqlIg0N9eBFlZatMdKMQKQnCN7jc44u8ze4kDYi8QgBGKrampCr3gVi2yCkjVKSBxgl+e8UKidA44KEwtrUkKYpqa1gU0LVZilklVUcBvBWnHTFUkGcRyhSm1BJEgm5dRalFcWCFMCwSUJ3V6fkuvUGIi3kXGTQ2gjBF8m6pVJJ8CoUDTNB2+wklNZbH57DnjHVeYu2EDk5ZhTFFEsl4kIR56Grq5tydxnlJQzXuVAoTmuZr0yY95wULYuiCBNFJOWUcqUsefsiQ7lcpqNTHHxxHBHFESYvLOPxKVXrd3A2pXNXhSg2lEpFnNd0dXWSlBO5ByYmjmJRHzpPZAxxXZEkTdm1axdJUpHCeGHdn5GCSkkINB6KxdC/IW+i91LQxYTvlMvdJEkZgu1kk5Q0SUP6r6xSdVgDasm1GGtJUumsxaaWtCKRIyYUTNGq53lXRkuObaXyKs+JE4XkvuJ1Sw7Cvi2Iy+Uyf/jDH3jwwQdZunQpSZLkCjnvpXDIe97zHsaOHZvniYP+VUZ9CcnqENZs/0qlQldXF93d3XR0dNDZ2Um5XAbkASkWJTlmfX09DQ0NnHHGGUyfPp0jjzySu+++m+eff54XXniB559/nvr6embOnMn555/P+eefz6RJk0SNUEVIDhRO2ZfghN7VfquJN601SZKwfPlyHnroIZ5//nna2trya3PO0dDQwHHHHcfpp5/OkCFDUEqxa9cutm7dSnt7O5VKJSdDs3bV19czdOhQWltbqaur65fEASFrt23bxqZNm+js7OzVxxlJMmjQIIYPH059fX0vErL6mM45du3aRVdXF+vWrePxxx/nl7/8Jc899xzt7e152wqFAhMnTuRNb3oT06dPzxWdY8eOJY5jJk+ezAknnMDq1auZM2cOzz33HKtXr+bZZ5/l0Ucfpbm5mSOOOIIxY8ZwzDHHcPLJJzN16tQ8D2FfFWr1/fljyah9JQz39P3s+rN/3+jqskKh0EuhWU0EZkrNamKuOjw9w94I233Zvy/BV33e6s/7qkr7tsl730uRmh2z+qcv+nsu3uj3tYYa9gWpTiGGVAd1dp2hdUwRrMKkChJPgymweVULDcV6zCDDtOlTmHHIRIZPbUTVy3szaMIEJswcS+plKS0qAQmBNTpChTBe6yxpkuIqFleBFQvX8szsucyZO49ypczo0SMZNXI4zS31WFsWg95EOCRkOC4YbFqh3NbN2hVrWbl8Jd1ruoniIql1aBOjMSG8MUVpSRZtncbomEJcYPXSlTzz+JOYWFFJK1Kh2MiiWBYdjkKhQJo4vJOqgYVSgQmTxjHtkMkMGtpMIZZFj0tTnE0xSkuojhY5QOQVOrWgPK0jmxkxfgh1zSU6d1TYtHYbmzZuYsf27bQ0N6GdwZc9rtPjrITdalWUBN9WUShIWE7qQTlPQUVS+dcCTuXhTg5QVgpN2jJ0bE/ZuHYbq5auRjmHLZdZuWwZ23dsZfGiFaxfv5U0TWiojxg+agiTphzEYccczsSpE6gf1EjcEFFs0MT1onCgDO272lm6dDnz5y9F+yJNDa0k44fiXSQ5Ko3kISIVktLoSFQNSu69hJxn1Z6FCI0iHRLHe7Qnz3elMUGJAVaFCopZhcnU4lzIpdjl2baukxeeXcqqpWvwiSKOCxTrC5hIkQa1RRTFYXFFvso0RhQYGI2KYpI0pbG+xJRJ4xg/ZRjDWhsltN160l0pG1dsZsHcJXSVy5ST0QweWU/d4EaMKYD2xIXSn+I1flVQQSqpQsCr8gpJBeBkoYpjW3krzy6dw6LlCxkxZBinHHUyIxpGUVQFjA4Eq1d0dHbRXangSqLOzBZKSkNKhU7bTlu6i52ugxeXzucPLz7NitXL0DriiMOO4JAZMzho7EHUqwbad3aw0+7EWyfPkpdUAZEuUDT1FOIidcUS9XFJ1IMhN54hJkLIPoeoh1woAhTluSvBYCjoiLpCkVKpROITul0XiSqTqgTrhfKRPInSD1Z5KqTssDt4acNCZr/wJBu3bmD8mAm8+bhZHDb2cIZHwylSkLBlpXIlYI92KSvOoXoTW6qHyNKZttC7UKMkfOKFqLbeBRJM6D5xtmQknM4JyDwHZygKA1JheXuyndUbV9PW1sbg5iGMH34QDaYZQySVlfFUVIUOu4u17Wt5cvEcnlvwPF0du3jTsSdz6lGnMHHQwTSaJmJiLFKJdHv7NnZ278Ray6iRoyWnFxZDQZ6vjN1RPr9S8taG3G4o8FUku1IYnyl24pBDsixkaxUBKvdJju+QsSTrV7zHhDxxNtB6Qpb2BHf3FIOR0G/vAwGoRGkmitduun035UQKXBWiAgZNURcp+kK4lDdW3tG0UsbGBqU83iiiyFCoK+KcCF46OzupRFKJNoojUHUkSYL3nlKpSBQVJHQ4SURhVijmohdRVWf5hSNKxUIgeCq07dgRSB9R/wF5XjptNHEkeYIlH54LKkAhq9AyJnvvRfmn5X5GUUShVMR7T6UiufGsT6rWjVDpCuruQPrIzOnwKkEZR7EgOQkzolAK82TFqxClsVJUKmU6uzowJiKOC8RxkbhYIrU2pNlK6bIVqcYblYh0yCkMWO9RTtSS1lmSRKo5R7EUCalUyuBdmO8ULrEYr/KQWoyROUtDmlTo7urEVjz1DXVExlAud1NJxalRKBZk+LJCmecMa5JiyxavFXExQpcKVJKUJKkIz9JYkmrEeEr1dRjTQLlSprtcJrVQKtThlSd1EhKulZJ74kRRKHkjvVSVVoq4UKBQKAixnjpR9nkn5DGKtFLGA4U4CuHrShSNkcl5IoWivlREKSU8UVIOa9UIay2VJMF3V4TsM4aG+ibxQVpLkog9GRdi4oKkNkvSFJfa7LUHCG5Jh9IeryCOYwrZ/pVESMdU0meYoFoUFavBxEWS4r7bAK9rcnBvi/qMLFq0aBFz585l3bp1+cJbBocSzc3N1NXVUVdXt5syp2/Our7qroyQKJfLdHV1sXnzZlavXs2yZcvYunUrO3bskOo2SYIxJle8NTU1MXjwYIYNG8akSZOYOHEiF198MYcffji//OUvefjhh1m5ciWdnZ0888wzrFq1innz5nHhhRdy0kknMWrUqJ4KRXtQLPXtj+waqkOUs+91dHSwcuVK5s+fz6JFiyiXy/lnURQxcuRIoiiivr6eYlGSsa5atYrZs2czf/582tvbc6Ij+3fQoEEce+yxHHvssYwfP566urpc/Zf1L0BbWxvPP/88s2fPZvXq1fng7ZwsdEaPHs3RRx/NcccdR319PcaYXBnmnGP79u1s3ryZtWvXMnfuXBYsWMDLL7/MypUr2bBhA5VKhfr6ekaMGEFzczOTJ09m1qxZnHXWWUyYMEEkxFV9OHz4cM4++2zSNOWcc85hxYoVrF27ljlz5vDwww+zcOFCHn74Ybz33HPPPZxwwglccMEFTJ8+nZEjRzJy5EgaGxt7PT/VBFAv1V4/9++VkIf9kdYDoW8beg5Cby/oGwTVfde3/6q3Oefo7Oxk+/btbNu2jc7OzvzZyb7/attRTWb3Fz5e/XtGDtowEWdjUi+F6F8AAQAASURBVBzHlEolWlpaGDx4MM3NzRSLxX0iI6u3/zkQvzXUsDcYHeVVBk0EngQM4unXEq7Z3t7F1m07qSSOYn0d9S1FohYNdeCLoqHwkaJUbyDKMo2FSpepRxuP95KcWimP0jHYEkmbo7NtEMNGDmXM2DHUN9Rx1DGHcthRU2geUoc3qSyAtSErLGC0xnlL5/ZO1q/YwJoVG2nfWQ7tBa8USSVBeYhiUesYo0hDdbxyVzdrV61h5crVbNveLhSUTnMj2CsfPPJhAYmSsNc0ZcOaNbzw7FxMwaCNxhAFJUSKCeQiRjzPsQOdOtCOUWOHM+WQyQwfMYyO7m5WrVrD0iXLad/ZEUJQFKtWrqahqQ4TaTHO44jWwc2MGj+Y1qHNmJLGIkpBnEFFPl9Xpy6R0CyjsRWLUppyu2Xdso0sf3k5a9auYlfbDuZ1d5OFHJuowIjRwzlo8nimHjqOg6aNZdTEYTQMbiAqKXRR4Y0i9Y5y4oitRqewc2cXm7e009bexZDWJpqaGijVx2Jcpx5NitFin2Qkk/caFckCWxshK3wgB5y1Uv3PJUElakBF4EIi/ChCRQpJWx6eK+cwPiiMnKLcVmbjms2sW7WZXe0VcYKOHEpdfYyJII41SaWCdR4TyYLHphW8lQTnNls0mYg65WlurqO+WYhRXUQIgxTat3ewbvUG1q/dSENTI3UFseNMZOQ4FYdN+nfevp6hM2WND3m/iPDKhtDfhDa3i2eXzuXh2Y+gjeLEw09g+tBptKhmQFFQBYw2dJW72dG2k0qa5Ao3nxUi8I5UOTbu2MTz615kR9LBsy88x7IVS6irq2PkiOEMHz4Cm3oWL1nCrp0ddOzqpLurSypsJikuSUmdFJmpKzXQ0tzK2JHjmDLuYEYOGkFL/SDqTF2uMFMqo9REcdcTXuhkfFCGOlNHU30ThbhIV2cXlbSb1CeIsFXhXdY/nhRPQkqH7eDljUuZPXc2S5YvYXBTK7OOP43jZhzHsDpRDJqQu1TRQzjlhGAvxWDP5zl89j/JY1mmzM7ONipJQkNdI/WFelCeznIHHZVdWJdQUBENcSP1pXrQEYZICDUl4dRGyfhUoUKZhC3t21i2ajnl7jKTx01i/LDxFE0RpSIciorvZkPnehavXcjjc59g5cb1jBg5mlnHnswR4w9ldONI6lR9ICQ1kNDlOlmycjFbOrZgTMTwwcOpjxqC8yIUYlCgsrnBu5wEVXiU1yGQW9SWIdsDDosLpKjXFhu6LaNAvScQsWEu8tVpfnpUZ0CogiqEsWiwwiAazpWr1YKCVodq15YUh6XDdbJ442IWr3iZYl09I4aNoDVuYdrwqei8IuEbayEQRQatwrztAykTUlukfcQBGZxzJElCV1cFa6FSSUgqZVF3h1DQjIwzWkJS6+rqKBRioihzFIpSTWlRFHonacQKxQJaKaxLsdZKoQ0lxckUHmctWqlcIVZd/ET4chcUgobIZAWRJM+tc5ITl6A4dAj5SHjuUIQiKE6KUpQTnJPiYpGJMCaiQoLyqYQ0Zznskk6pAGx6nKBGa+JigUiroCoVIq2SVqjYRIqvFItY56lUymILBLI0igxxVJAqzdqgixHWeZKkQuoSCkYqGnd1dOVFNqLYkFqLK5fxXqE9eG+Do0fa5jWEQU1GosBjR0YcL9k8a5REMSjvSZOUcgj1RitKUSyFR5wUQfNJKOLkwFZS0iTBhSjG7u5uOru6sN5hCqGiMeRa22IsRUGKxWJPyG+WHk0pfEhbl+X0kwgEl9935xxRJLkwjZGiYVEICa8kCeVyGed9KFwWU9SSW9GlcsxSHJOiqFQSKmmZlLLcV0wmdCZNs/WtRCFEkZbIEhWKkDjpI08KCGm8z+/eq357DxAGCtOs3t7d3c369etZuXIl27dv70XMWGspFotMmTKFMWPG7EYu9FX1VJMN2WdpmtLW1saSJUt46aWXeOGFF1i1ahXbtm2jq6uLSqXSa8FugnwY5GEolUpMmDCBmTNnctxxx3HIIYcwceJEjj/+eO68806eeuoptm3bxrp167j77rtZtGgRZ555JhdccAEzZ86kqampX6Kp7+8DqY765mOsq6tjwoQJwpBXqZdKpRKjRo1i5syZjBgxAq013d3drFu3jhdeeIFnnnmG7u7uPCw4O2d9fT3ee1paWhg0aBClUik/V9amNE3Zvn07ixcv5tlnn2XVqlX5cay1ORmY5XCsVoeVy2WWLFnCAw88wIMPPsjq1avZvHkz27dvp7u7mziOGTduHOPGjWPy5Mkcc8wxzJgxg9GjRzNkyBBaWlryY1Y/N1mfaq0ZNWoUo0ePBmDWrFkcc8wxPP744yxdupRly5axevVqHn74YebPn09LSwuTJk3irW99K6eddlpeWGYg0q7vM/xqQlz7FpPpj6DKtverNvujzvqnR/XEnxHT2YBsjCFJEtrb21m2bBlz5sxh3rx5rFy5Mle69lWf/rFtyNA3zUBfwyQjAbNnXyb3HsLQe5+rWk866aScVO+V6LaGGmoQZZCrrowXVERKiD3Kil3tZbZtbyN1nqaGelqGDqbUWMQb8FqRevBYCgWVG53OWaxLiEpZlT6LJH6TsCGcwXY7drV1sautE4NhzKiRHDR5HMMnNlMYHEHBSptShS1L2G0cARG0Dq1nxMTBHNoxHdvuUZEQHN4KyadRokaLPCoK16Wg3FFh49otrF+3gfYdHbg0FCGxBDLLUAlJ1Ds6u9nZ1s7OnTto27aVnVu3sGPnTjq7u6kkCVpHRFrCa+JYFHKFuqIUHrAQo1CpYvmy1SxevBSvNNZ7ykmZ7qSMd551Gzbz0oIFRAUDykm4jRYnaGtrKwdPnsjo8SMoNsRiS3mVL7J1JHnebCrGPkpUkpGK6O4os2HtZpYtWcnq1avp6monSRKaGwdx0MRJHH/C0cw8ejpjJg+mdUwjcb3ClET553G48K91ThYoqaKrPWHrhg62be2is+wZ3VSifmgJ3aCxxoN2KG0IrB8ohzIR2grJHHuNTcQbb4jlOTNS8Vl5jdGSp07SRklxCxNrjDJYD85loaFImDZyv3dt62DLxi10d3XROqiJaYdMZOoh42kaXI/Xnij24CUPoTIFUuuwSRllJVeaVwaLkBFRpCmWDKXGiPomg44dOIVPYOeObrZuaSNNHM3NzQwdOpS6hkJgE1QmennDwSmHV1YIFq8lib2GRGk6cbywYRG/e+oRdrZ1MOv4N3H0hGMYGg2mQEyCo0hEQ1TEWUt7RzvlpBuLldBx+P/J+682SY77zBv+RaQp79ubMT0OGAtHwhCiSFHSaldrHmnNB9gvtQd7tNcevCsdrJf0SpRICgQheDMDjLftu8t0+ap0Ee9BZObUNAcktdSlJZ43cA3aVWWliYyM/x23QQjjCdYPJ9zYuc3ffPi3DLwxm1ub+JMJ7kKWydRnb/+QXrtP3s6Td/IsVJbILebJui4CjedNOBp0OTg6oNVt8uD+Q96/+T5LC4ucOXGG1y6+xrnlczTcBlnAxkYQp3gKAwOhFFoZyawQkHOyVEs1HNthMvHwplMiHceY6NgOAQiJ8HXAQA+5d3CPn370t9y/f5f56jxvvfQWr73wGvP5OVyc2DAhBgZ/rv0qs8R4kUJEeEw4Cju8c/OnPNp7wrXLVzm7fp7hYMyTnUc0O4f4vk8Q+NRKVS6fvcSJuROUnQqILBY2UpngpEhGREISoDnst9k52MO1M5xYOUktX0UICHXEUI3YGjzh43sfcv3mdYb9IVfOXeL1q29ydn6DqlOOz61BWUJCpkxpTlt89eAm3WGXhdI81UIdB8ccDyEKCyWECbiJpZEa4xkptfG1kzFgo2IZtEzOvoQIiRJG0muhseJ7LYyBPEOKEqDiBQdhmJNCKQMsiniDQpp4FQ0yPY4wBceksFBx2JTERsVhLBEh9w4e8r9+/L/5/IsvqM/Pc3L9JKfnT3H6+6fIi6yxU/iGVQKWtMhls3E97hMGPioy6i07BlxAo2IvvcFgQLvdpt3uMJ34TKch0+mUwPdikO4puCoU2LaTqvzy+Tz5fI5isUCxlI+BSROWBXbMzjMgixAGJJPSimsMwx5VUcI5TVjJRvJpWw4qiph4HlprHNfFck3suIqMX1+U2G5ZIiXsSttFCohiqzQsizAM6PdGHB62OGofoZSiXquzvLRMqVgygR2ui4hDQHw/MAuKyvj+ZizDAAwjHxWZZ6gUxtfYzUiktvE8n6N2j/ZRl/5giO+HuBmXeq3KfKOBnc/ih5FZ2rBss9AiwBbCxJUJwwq0XTsF1aPYEM+1bWxhGdVEpEx4iTJBK0KAbRmPQRFhUpU9j0DHGIsGHYUx6BovsMTX07Xd1A5tMp4yGo8YjUYMxxOmk6lReU49vPEY3/PxPc/sA+a5L2L8RiCQytg6ZFyXXC5HJpejVCpRKpUoFAqpwlPGnpA6ngMIYSxcslkzNhs7tafZBWEUK1TC4JmaXsa+iibMRZs5ahQiJGQyDlEYxQCtRDr2M4o6PwhmFAgWbsbUn0EYmcUGx/TNKFTPWOH9svYbCw7+Ipld0qbTKffv3+fg4AAwMsSkGFdKkcvleOGFF1hcXHzG+y4Bho775EVxalGy7YODAz755BN++tOfcvfuXba2tgjDEMdx0u05jpOCFNOYopqAM91ul6OjI7a2ttjZ2eF73/seb731Fv/23/5brly5wv/6X/+L//k//ye3bt1iMpnw5Zdfsr29zfXr1/mX//Jf8od/+IesrKw8A0DNAnTH5cTJ+UmYd7N/r9VqvP7661y8ePEZIC45Dtd1KZfLlMtloiii2+2yvb3NwcEBo9HomdcmLQgCtre3efz4MRsbG5RKJXK53DPy7clkwsHBAbu7u6mUOWFURVFEsVhMvQ7r9TpKKR49esTNmze5efMmH3/8MR9//DF7e3uxr485pnK5zLe+9S3+9b/+13znO99hcXGRQqFgUP5j7K7jQGryNekHs4zCP/zDP+T73/8+w+GQL774gj/5kz/hJz/5CVtbWzx58oRbt27x2Wef8eGHH3LlyhXOnj3L1atXmZ+ff+Y6/TIJ+CzT83ngYXKuj/vSHd/OceDs+HF+3c/f9DZ7fcfjMYeHhzx69Ig7d+6wvb39XD+/WXA4ue5Jvz7ORpx9X/J5X8cI/TomYeKzKYTAdd2YAm4eXgmL8Hl+lc/b3teBwb+IXfmL/va8c/mrtOfdT897/y/6jF8VAH0eY/L4377uen3dfs9KuJ+3vX+s9qtcg192/X/ZOf2/eXz/EC3SPghjXk3yPBOxOisU+FNot7t0OkdoAcVqmUq9gpuN0/KUQNqGSRdGISiwbAtpmcl9GIVIYTzjEDHL3iBQTMc+rYMO3c4AS1g06mVqcwXsgkRkQkJ8wEL5FsOWx3gQkM9lyZdc3KzEcSyEK5kQMOoNmU49fM8nDEIcx6VYq5CrZsm6Nk4GRBZyNZvS4jqnrq3gexG2FRudhyBCgZhIvIGm243Y2T5ga3uLQj5DKWdTzlvU6iWmXsB44uMHhr3vZjLUaiVOnFpj6cQSjbkqjmMZiU2g2dttcfPGLbYf79MfjAhCgZYW2XyGnJvHsSwDVkiToqp8ReiFHOwesre7Z/5mm2ui48JIS2ESUpAI7NgMPUSpKF3t15Fh7U39EBUnuXq+IoigXKuwcmqRhfUiuhCi7ZDIUkbSG0/GI5PuYCbUoWTa8Wnv9hh0pziZHOWFKrm5HLIsEHmBlhKtDDBrW9IkB0egAk0w0IRTQRQJxqMRYWBUFUpr3LxLrpTBzdtYLlg2CAFKSkJvitCu6VOYlGAEhF6ADAXRBHpHPfqdDjryWVxc4fyldU6cr2OVBNoCGU+VdKRj6bdAiBwiNAwyLAtt6h+EhQHGRYS0BUJoiDS+Jzg6GjMYemTcPNVajVK1iO0YeoF0JI6QCDn5R7+Hf90WYezhDXZixSb5iqnw2Zns8+6Xf8etR3e5ev4iL7/4EguFeewYbLMB1zK+fVorJtMJXjiOWRSxHyAKH5+9owM+/upzbt6/TRgFTEYTHGkkwPOVBV48+wKnlk9Qz1UpWCVyViFOnzSy+UiHBJHHIOjR9Jrc23nIJzc+4cGjezzYvk9/MiR8SXF17QoyYyG0jsEaeJoiLbAFKGERYZEVWerlOo6dIQxCJhMv9h01oSWWMDLUgIAJEx4c3uVv3vtrrt/5kmK1xG9/67d488XvUMtUyJJNnOd+raYxITymQ2p6kx5fPrnB/Z0HFJZytCZttp/soIKIUrFMoAIe7zxi73CPG/e+5F//4I+4un4lDmQBVzjGhxSAkO6kz6PtTZrtNstzC5xcPUXOzRMSMdFdvnpykx9/+jc8PnjIfH2Rf/K7f8DVk1dZyC5QkAUDOMZp7FF8XgdBjwfbD3i09RBv6nN26SyFTBEtkuiViImeEGiwhUOeLI6wU6ZfFINvRhiuYndGAwCZfilj7qX1VD4djx+ACavWGltYCEuYtHdtnCNlzF5VShNZhoUMCsP9tpAC/CThQsgYZjEsZaVAS0kkInqqxye3P+bLu1/S9XrIiUOxV2ShOJ/6bMpU3v3NaULF4TyWREoXpSNS9qOQ+EHAcDik2WpycHhAq3lAv9cHLahWazRq8ywtLpgFe8CEjSX2W0be63ke4/GYx48fM5lMyBeyrK4sc+LEOkuLS+RzubQvhJHCD0KimF3nZlwgAe+0AZik9ZTqGdcAgTZ+f5EwzP8o9LC1YSdKEQcPyZhVGoONWmsCL0CFMehs27iZDH6g6HR6PH68yVGrjWM7EEGlUCFjZ5AiBi2lMmxmqXEcx+AWUUTge0gJrmsCXqIgMDYH2rx+4k1ptVvs7x/SPuqitKBSrVOfq1Ot1rAdx5AgbBulFUFgkoVdxzEevDpRXZpFCBPKZLwaldZMfX8mS8X0SSEktrRARUReQKCVAQljxp5O2ZTG2i0IA2zLJuO45pwp0EIy8X1G4wmtdpudvV0OmoeMBkMsISnmC5RLJcqVShwoYyFtG8d1Y8xCmPMVsz2jIMD3PEajEc3DAza3HhNFilKxyPz8Imura9TqNQqFQowlgQGqzbiTHH+qcNNGrhypCClFLNM2rw+CiDB8qlZ1HBvbtdFKEYRBfP1jqbY28mrDYDTnyLZMcrPSEVN/HIPSEmmR2lc4tiDz91AP/MaCg8eL2+cVur1ejwcPHnB4eMhkMnkGGHNdl8XFRc6fP0+tVjMU4DjcAp4F2WbDRKIowvd9Dg4O+PDDD/nrv/5rvvjiCyaTiRng43CMUqnE4uIiy8vLVCoVoihic3OT7e1tBoMBURSlDL2DgwOuX79OsVhkeXmZa9eu8corr7C2tsbly5f5H//jf/DjH/+YVqtFt9vlxz/+MV9++SUff/wxf/zHf8zbb79NuVxOP3/23CQBHrOAR/J9Anwkx12v19Pgk+cVmwlgOhqNaLfb7O7ucnR0NEOdfSpzTM5du93m3r17nDlzhvn5+VS+nXTy4XDIwcEBzWYzNvMM0vc6jkO5XGZ+fp65uTl83+e9997jT//0T/mbv/kbms1mKlHWWlOtVrl69SoXLlzgypUrvPTSS1y+fJlyuZwe02wYzXFWaHLeZq/37O+llGRjGnGj0WB9fZ0zZ87w27/929y7d4/PP/+cr776ip2dHf7zf/7PAJw6dYrvfe97LCws8K1vfYtXXnmFhYUFbNtO+1zCKE3AouQaJvvm+zH1eub3yXn+uuTn5HodvzeOA7iz99M3sf2i0BGlFKPRKPX+nE6nBEHwXO/B5L2zad3Hgb0EsE4epLN9Y1ainJzn49dhdvvJdXddM3mwbZuTJ09y5coVXn/9dS5dusTKykr6d3g6Ds0CWLPnYbYfz352sv/J4sYsuzf52+xiwXE25S8D1JL2PGDt+Gtm93d2H79Ojv2LAK7jQPvzXvurgpWz+52snh1PGD8OIB5///9p+/sAgc9jo85er+c9E7+uHb/+s+FS34SmLBdtmUkb2qzsmqV2CZFm0BnRaXWZeFMsy6I+X6ZYcbELoNwQKQIjP4kFYpFWsSF5BEpjWQ6+r5CWjW2bcA3tC8JBRLc1pN8fglaUSg71uRzlWtbIkEOw3AzBWNB6NObxV/v0WgOWVxc4eXIRXYJOd8ThbovD3Tatwzbj8YTxcIQKFZlMlnKlTH2uxtrpRU6eW6LUcBE5kFlBJmPjYBEGoWH/BYKoD4Mjj+3HTbYeHNDv9lHKp+pmmF9fI/PCWaS08YOQ4XBKrzek2WwzGg8plvIsrq5w+fILnD6/QK5mG/mS0Ey7Id9+/BqPbu1y84tb3H/4kJCQMxunOXXiFCsry0Q6oNVu0TpsMe6NmIzG7O3tcdBsMhz3mY6n2JZNKV8EYOxNGE/6hEGEUqaMtmzH2Ja4GbSG6dTD8400W1gmwXHkT9h6ss0Xn3/J/HKFQv08pZJDaJnCQEhTKAQRhGGE41hYCAPwjXy8wQgV+OQyNrV6kWo9g5sTBNok+AolEIHpDYTg9xWD7pSjgxHN7SOOWl163S6Bb1QSodLYGZd8KcOpc2ucOrdGfSGPnbfAUtiOHbMLJaEw/oM2AqQDlmDUm9DaPaLfGYKCSqVIqZZF5gQiB8IBrUyasLAF0jbgoIoU2jJggpaRIc2iMQxXjPwaZQBYXxD5mlFvxKA7IOcUmJtrUCi5CMfIulUQYWWMjPmb1nQsdRWxyNIIywwkduPup7z38d8inYgzp0+yODcPIsIPx4SWJBQRSvjmd8GUwJ9CFGEBtjB2AqAJ9JTd9haPnjxg1B6CrSmVipxa3+C3Xv8uL519icXiAmUnT0Y4CCyktpA4qFgKrInQdkQtU2WhuMBiYRFbW4z7Y27ducXnN7+gXKiyXF8h7xawsWIAyrCeVJxsLIRJKba1JCNcitmi6QdKMxgMGE/GqGpopNXaR4kIn4DNoy3+9sN3+ODzD8iXCnzn22/x2ouvUc/UyIsCtrZIRHOz5LGnQSK/WjNQqEUkDINuMhkxHPXpj3t8dfcmteIcV85d5vzqWbJWDltY7L6wx3//0X/n9qN73Hp0j/X5DebyOZIgElsYJ8GxDun02mzvbBH4ASuLKyxWF5HSpuV3+ezmp/z4/b+hNTnk/MXzvHX1bV5cuMicrBkfRW2ZxR1sk5yuPSCgO+ry1e0btDoH2Dgszy9SylYRZAgJ6E6P+Mmn79CfDnjrlbc5XTkF2sYRjulpImTIkL3BHu3xESrUZCyXar5ILVem4lRxyKCFINQRfuSjlca1MrjSTZlJfhQgMV5tSb/WwkpE2nHAfAI/xnWqVlhCEIoEFoyQ2jC9lI5AR0Riwo0Hn3Dz/nVqcxUaK3VG0ym9UY+hNyDQPkmAktD/5/OY/xtNY54NkQoNaxBlgpriEKhO54jN7S32D/aYTEdkMi4bZ8+yurLKfGOeQq4ISKIwwrYlUhhSi4oiHDeDZTlxWGeX3d1ddnZ22D/Y59bN23RaHc6eGbC6sky5UiKbyyFs4wObeA16ngfCSJ0d1zUWHkrh+z6+7xuJqBDx3ywcx4CBRoY6ky0A6JgFljALbcuKwySMxUUUy6WDIEzrRSGECdVKsI9I4XlTpBC42YwJ5xBWKosNlSJUCh1FWFEcnCVNiMVkNObxk8c8efKY3qBv5inVOvX6PHPzi1RrVYqFPLZl4HClzQJW1nJi4FkYYE1pE5SS/qdQKjQLtAIy2RzSsuLASR/XyeLahkmtSNLbQceybeODCGEUmQUF17A9k8CVwPPxxh4qivB8nydbm9y9f5+DVhNLSlaWljm/cYaFuXkj69XGe9C2HbK5LJZjVA6eF+D5HgJNNpOJw8Ei/MDDCzy2tre4e/cuu3t7dDpHDIcjTpxYZ2VlJbUZS+TEmUwW23aM7Nn3jH+gihBxHfSUZShTTEoIyGQy6c9RFOGHEVEYk7wsY5NgcK44AVlF+M+wEM1rbfk0JVnH837btnFzzq987/1GTxcSwCb5Hp4WeWEYcnBwwP7+PpOJWRFVSqXgYKVS4dy5c6ysrKQS1gSsOu6JdxxYGwwGPHnyhK+++orNzU2CIHiGkbawsJBKhc+ePUu5XMbzPK5fv85PfvITPv/8c1qt1jMBHuPxmH6/z2g0SoHDxcVF/tk/+2dcunSJf/Wv/hVfffUVX375Je+//z6Hh4f8l//yX/jiiy/4N//m3/B7v/d7qQQx8dAzlP3gmWNJAMSElSSESMGKBDg7DhQ4jmP8aWK2VcLE6nQ6+L4xSE0AwgR0TFh8/X6f7e1tHj58yNraGpVKJT1Xvu/T7/c5PDyk2+2m3ozJPhQKBbLZLHfu3OHRo0e0Wi1u377NgwcPGAwGSCkpFotcu3aNt956iwsXLnDx4kXOnTtHrVb7ub6SAG/Jz8evc1L4J8BdAiQlfWeWmQjmZjp79iznz58nDENu377NnTt3ePz4MT/72c/49NNPefDgAXfu3EFKycbGBv/8n/9z/uiP/oj19XUKhULap2zbTlmVs9cjOb9JH0yYqLMAWNLfk/Te2eY4zlPAWytTTEoZU63jNcZfU1b7f6t9HegzC664rpuGALnxCtBx6e8seJcAeMk9kPzdtu0UqEvO9ex7k2syG0Yzuz/HmcjJ+7LZLI1Gg+XlZV5++WVee+01Ll68SLFYfAZ8/EUg3CxAefwczN7LyTEnY91sm90WPMuSPv662W3NnvfjzNTZ1x7f11mg85cBiLMAcHL9Zs/xLwMCj//9+H7NAqqzY/3xfXiG5p+svD2HYf7rtl8Exh7/+TigehwsPw4UH18w+Ca3IAqNtFhaRIEmnHjYwjIhDEhGozGddocg9KkuzDG/VKNQccAhXTFV2iwUhXGanhWv7KvIeEXZbiItNuw3oUB5EeOhT6fdYzAccGpjnuWTc2TKFmRkGrgRDRXNJ30e3Nhh0p9ghw7RRDP2xhw0D+kP+kgEuWyO+YUiXqmEPwkY98ds39/m0a2HPLxT5ezmKc5d3mDtYgPHNYWMdDVYIVEIyrM5Ohxx/8tNntzZJpj61KtVFleWmFusUqoXsbIulmWksYFnJNEP7m9y5/Z99vcPeXT/CcVilqX1CoUlF1yNdCSlnEWpNk8hm2M6muAHPo5j89K1a1y5eIZc3uGwMwCtUUFE1skyyeewHAvLtdk7FORUkXq1RqM6hwAebz3GC/ZNISctctk8K8urnN04w8LcHHu7e9y+fZ9Od0ChnKdUzZPJOTjSoZArcPbCCRZX62RLNiJjmH4ajM8TEKDBMtb6WluoQDPqjug1OxAGNOZrNOplsnkHaWFkgZFGRqbomHQV3d0R2w932d7a4ajZJxhHoCHjOLiOTagU/nBCtzViMOzz6PYm66dXOH/pNGcvnaC0lEPaxscISxs/R0ApEywhIgimimFvgu8FlCtF5lZq5OsZZB6wQUvDAjRSUlCCGCw1/pWkYQNGSi+0YV5EkUJFGteS6EBw1OzRabaREVQbJWq1EpmMBFub1GodEUYGzPnmNQnaMDPRRtanRUAUjekPWwyHPbKFrEn11NIA0kQQaZTUeCpMgZVIRQYsJQStSFysfAImasLUm5hroQwjtVoqszK3xFJ5kTmrQTZxgdNPZWS2sLCEbQpiEaKE8ccKrIBqpkzezqEVjP0x3WmPIApTmZ1KICIRJxRrnRaNxnfOHLfjmLCaUCmmnodSJqzAAIM+oQ4YRiNawza9UZdCsUAlV6ZsV8hTIKPd9PyZx8nM8/HvLTMVOMKJk3FjF7C4T45HU8qOZq44z1ppnbzM4uBgRw6lsmERDqcjAmXea2GK9AhQ0kBkQegxnYwQSmFLx4TpKMFETTgYHnDQPcRXE+ZL8yzXVqjIKlkySJXMXaxYgg7EEuhIR0z8CWEQYgnHMCiFjMcPwVR7bPc2ORod8XJ4xUQNiYgQgRIaT3v0/B4dujRVi8ALcaULBU0mcsnIACf2kwwJCAlBaqSw0fjGpwwQRGgdYEUWGStv+p6OsISNEBARGDAbjSC2FdARIgEMtRVfL8N3tKQkwCdkytA7Yuz1sV0Xu5BlGE5R2rDGkoCVX2N98/9am048MhnPrA9qEJaZ4wRhlEqIe70uGs383DyLSwssLCxQrdQQyjLBXbGcOLlv8tksoPH8kPF4DGjy+Txnz51jeXWFx48e8vjxI456R9y+d5fBZMTJkyepVqtpPW1AvGTOZREKQWQrLCuEGMyzlAmtQGuUHyBtw+BL8Ag/8E2ojJRIO/bdU4YN6U0nWFKQsWxcx8Z17afJx6HAci1s10LaBpDz/SmeP6FULpLJughHMA2m6MAw+UXcbZSOIFYuWZbxu+31euzt7bK3t0e3e4QQgtXlE6yvn2BxYZFsJmcCszDPoCRMR8Teu1GkiCKzyAUm6CsBrqQweIRrOwjHIQwj/NGEwDfYiJCSwNdEMgA0UprgE9d1QZuUahVGRv4sJLZl42gLy4+IpgFhGCKlBZGi2WqzubXFo0eP6Xa7lCtlNk5vsH5ijXqtSrFYMDJkZQDnMIwIPJ8oUthOBifjIhwbVGTASRUhpAm2yeXz5LJFVpbW2NndYXNzi/ZRm0hHhCpidXWVarVqxkStCKLAeBcLjbQFjrSIImIMxhCTpLR+DnfQemoss6RMU4bB+EdatmMWIKKIMDT9WikQwsGyrZjQQoovjMZPsyds20Zph0j9v0BWDL9YMjYYDNjd3aXdbqfAVRiGhKExCl1cXOTSpUspk833/dRDb39//5niOCm2isUi586dY2lpKQUXs9nsM2w327ZZXl7mwoULKUiVePT1+32WlpbIZrM4jpOCgwkANwv6JF9zuRxnzpzhxIkTXLlyhQ8++ACtNe+//z77+/t8+eWXNJtN/vzP/5yzZ89y8eJFXnnlFVzXZWdnh1arlYaLOI7D3NwcGxsbnD17lkqlgud57OzscP/+fba3t1MgNQE+isUiZ8+e5cyZMynjbTAYsL+/n247GcxmGYTJMfi+T6vV4vHjx5w+fZqlpSXm5uYAI80+Ojqi1WoxGAxSMM6YxU7SNOSPPvqIbrfLdGpujHK5zMbGBouLi7zyyiv8i3/xL3jjjTdSD8bjbbZAnv35eQyp2c/u9XopCNrv95lOp+k1s22bUqmUshobjQYbGxtcuXKFyWTCD37wA/78z/+c9957j52dHQ4ODnj06BH/6T/9Jz755JMUEEpCUjY2NtL+0uv1UmA76b+u61KpVFheXubEiRMsLCxgWRbj8Zh2u83BwQGHh4ccHR0xGo1SqfjKygrr6+tUK1Wy2QzCtWcAmafH/U0ECxJQDp4Fe+Gp3NqNPSGKxWIqi+92uynYczxd+usYYLMg0izwkvwNDDCTeG/CzzM3k/1KxhbLsigWi1y5coU333yTa9euMT8/n/bjZLxKPvuXMdmOX8eknyfbSTwOE3Az6evT6ZTJZILneem/5IH0vHtkFtDO5/MUi8VUsp9Io13XJZ/P/5w0OvmXgHwJYy0Ja/q6pO8oiphOp6nEYzKZpPvueV7qIZmMQ7NsyOQYbNtOQd7kayaTIZfLpUFLs8eQsEN932c6nabg+/Fz/uuwBp/XZsHM2f71PLBzth1nkiZM5+TaPA9QngWav86i4De1ObZCCIXWRh7sWDkD9Ewl00HEUafPUfeIaTDBzVtUFgo4JQvtgBICpR3QAh0mxu4m0c9MvARREBk2jTDeNYkSyPc07faAdqeLdGyW1leorTTQGcCOTJXlSfyxot/r02ztM+wOkY7H4VGGTM4lXyqwduoc84s1csUMTkYitSacBPRbIx7c2eTO7Ycctjv0Ph7R7PT4lr7M6ReXccuGmeaEEqEkKhBEniYIIgrVHIvL6yyvz1FZKJKvujgFCyyNVhrhA5GgPs1SqNpISzEZT+h2uhxsHbK32aS8VMByNZ4X4WrH+BAGUyaDIfgh5UKVgpWntTvE86a0um280KNaKDNXNdYf7WYT35/Q6XYYd/u0mz2mfbM4J3E5d+YClUaZYjnH2ollLr5wntWVJfyh4vNPvmIyDViO4MpLlzh5doG5pTKZrI3tCIqVLOVGAbcsUDpAxwEsUlhoobAIAYmINGoi8YYRg96E8WiKIwWNWol6vYjrGATRNikjMNYMDkds3W/z8M4uh4dNoiikVM5z6vQ8jUaFUiWPm3GIQs2gP2HYn7C7tc/W420e3npCrzXEG0ecvbpO40QBO28bAAKN1BpLmJRif6DoHvY5PGgy8SfMVRsU54pYBQvlgLIwiYMKtBX3QZF4nWm0kCZdO5Zo2SLmvwoQtjCS81DijQKOmke0mx0iHVKpFciVHGQmRrrRYAkibdIPv2nN1ja2lqAUSioQiokecnf/Nnce3CYcB0S2xc07t/GGISW7aFjAQmFlLPr+kHtPHjOeThgHU6baJ4w93KSWKKEYhRO6wz6RDrFygkzO5eyZDV679i3W6ifI6pyRqcaeWTpms5hgBBBoLCRKS0JhWDhCSMOIcR2E1kynEybeiEiFhjWUAj1JUm/CJEu+M/+XwmZubh7nUYap7zHxpoQqJLR8lND42mdvvM/1B1/yeGeTSrnKlYtXOb1wmpzM4uBipaxBk3BL8nH/Ry1WKEiBFppOr02n12V4NOb0Qolvn/8WZ2tnKFEgR5ZIQDaTZ3l1FfHlZ2aBhpl0ZB27+ImQQHt0h0f0e0dUCiVWF5aREu627vCzL97j7uM7zC00uHj6RV49/SoNay6WSpvzbeTWygz1SiMtCEVIbzyg2WobGai0Kbh5wyxEMY5G3Ni8wV5zh43Tp1gs1U1cixB4ekrX73Hv8D5fPPyMg0HTgPfKQoWKyXTIfL7OP3n1D7m0dhlLS7rjNre2b6IdwZn1DaNCazYJBYxGA6b+iIztcuHEReaLC2REFhRMoindsIsXTXCEJCOylJwyJaeAWb4yNg060tiWYZyGOiQUIYfjQ249voOwbM6/cJFRMKHV7zLxxnhR0t8j1DdMUgzEczSzOGQ5FtKK685gQn84ZDAZg5TUqjUWlxZYXFggl80aP8dY0hkEPlEY4lgWwnWQrrG6sG1jKWIYaQppCbI5l1KlRLlSJggM+8+bTImCyABTjmv8+8SU0Whk5o0xky+fz1EqlQ0BRBn5c+JbmLQgDGfIChZRZBiROjBy2+FoZNhrQpLP5JCFIpaw40UFcLMCpSVSOkhpoyJQkUJIGfvgPZ2z2rZNoJ7KWKUtsDALraPJkOFgwMH+AYeHTfr9HpYlWVhcYGV5hYWFBcPOc9w00dmy7VguH6XnxvRHB9fJ4OSyGLsWo9AQWuB5U7qdHoNBn/F4yHg6IYwUWiXzU4llOdiWwUeyGYdCMU+xVCSTMWxczwvwpz4IcG2HjOvgOo7xeRTG21BLRRCE9Ho9ptMpmUyOSrlGuVwhm8mC0gSehxkcDNBsWTZuLksUaTzPR0pJLpfFsbOoKCQKA1Rk6iStTMJxNpuj3mgQKUW/3weML6JSESJmAhqLuQkyBuWMj6DCD/w03DapcTzPi2sOnuknWhsAMZPNUiyWqFQqZLM5/MBnMBwQhhGWbeHGtUwun8O2TZI1mHAUKe24/lKEYYAgYjQa/8r33m80ODjbjjNYjo6O2N7ept1up+BYgurbts3KygoXLlygWCzi+z537tzh3Xff5e/+7u/Y3t7G9/30wmUyGVZWVrhy5QovvvhimjS8tLSUst2Soit5fQIAJkX+aDSi0+mkIFfy2uRrAuQ0Gg3gqYQwCVW5ffs2X331VcqaK5VK6eCzs7PDzs4OH3/8cQr+zc3NpYEpCSMwm81y6dIlXNfl9OnTqLgD37lzh5/85Cd8+eWXDAaDtLB2XZdTp07hOA5ra2vxQBrQ7XZpNpv0+32TqHOMcTNb1EZRRL/f58mTJ894D7quy3Q6TVOGj46OmEwmRFGUFv7JjWFZFpVKhbNnz7K+vs7ly5d55ZVX2NjYYGFhgcXFRbLZ7DOgglmZeAoOzAaPzII3yfdaa0ajEbu7u9y/f5/79+/z+PFjDg4O6Pf7TCaTZ5iECeurXq+zuLjIqVOnuHz5Mi+88AILCwu89NJLrK+v88d//Mfs7e3xwx/+kL/4i7/g4cOH/PSnPwUMRbhSqTA/P8/Vq1e5evUqxWKR7e1tHj16RLvdTsEmy7LI5XKsrKxw7do13n77bSqVCjdu3OCLL77g4cOHqXw+AZ/y+Txzc3NcuXyFN15/nZdeeolcNvcU1EjuHf3rySL/b7XjbK7nMQellBQKBdbX1/F9n3q9TrPZTCXCXwcmJ9uZBVQSS4EgCBiNRhweHnJwcJCyWGffkwSizAJrSTJxFEXUajXOnz/PK6+8whtvvMHZs2eZm5t7pt/OgoHH9wsSM9tngcjZfZ0F2A8PDzk8PGR/f59Op0O73WYwGDAYDJ4B2RLwcPY+OX6ejfzBSce52a/5fJ5cLmf63ZUrvPrqq2xsbKTbSVoCCB5nAPq+eUAOh0OGwyFHR0fs7u6yv7/P7u4u3W43TYE/DmomAOgs63O2HyTXJJGFJ8BgAp4Vi0VOnDjBmTNnuHTpEhsbG4RhyJdffskHH3zA9vZ2LNsInukb/xD3zvE+N/u75732OLv7OHtTKUWtVksZ7GfOnEnHwKQd71tfZznwm9oE2rDFtIqlwRgpXwjeOOKoPaLfG5JxXeYXGxSreWTGJLRFxDJUFbO5bFNEGvaQ8R1yHAfiollHGq0F+DDpe/TbPaIwpFotMr9Up1DPIXMCpCYKNNKHbrPP3s4u3W4bbxow9nMs1GqcPr/K/GqDQrVApiCx88Zk3GhjYM6vUl+tUpor8fEHN9h8so/vbzI3X6cxV6Xm5hEohCUQtkTmoLpU4Lx1iiDwaCyUyZRsRF6AK4gsw0MSWiMdjQiN5+HcSonV1hL3bj2i1+6iA0U4CYmCEFtaRnIdCaKxotcZ0j3qMhoOyWWztNtNhsMBlm1TLpdZXKlSqebpdz12dvbZHE056gzodgZ0eyMsEeDnNAsLDa5du8Rrb17hxIUVslWXYiFLMZ/DcgVbN9v4OsItZFmsz3HpynnOX1yitOggMhhWJhoECCu+3r4y59ySWE7cD6RlgNOJYNj06LSGeH6Em8vQWKxRaeSx3FhKF4GaKno7Q+5f3+L2jSf0u2PqSzXWNhZZPb1AbaFEvuTiFCRYRnYcThVqqjjTXOP+zUW++vw2B/tNbnx6Cy0inOwZ6msFsBKmD0htoXzNuO9zeNCh0+0iXEmpXqJYzRvWq04M6wUKCyEtZOynRAQiiuLjj5811tPcVRV3IyIFAfgTxcH+Ec3mETk3Q3WuRKHsYBUlOLFsVNgm1iD4Bi4QauNcqdIQjClbvS3e+fgd7ty5w/LiMhunN8i7RZqHbZqqTaQ1fgyKjKcTdg728YKAsT9mHHn4aPKxVFkjGHoTWp0OCkW1UaJcKnHl0mVeunCNlfwyOXLJKGHAQZGETGjQBnQRwjDfEMYjMSDE1wEmv9YwDLNOxniLxaOZ1DFEJkzxKNBY0jJYodYIJFk7y+rKGrlcnv6gz2A8JNQhPkbZ0PWPuPHwSz747CO63R6vXHqJH7zxA07PnaYgi8Z/Txs5pdIGkNO/5vNMCUUkIqbaY7e9x8FBk6zIc+X0Nd648CaL+TmyykJiEaDJ2Xny+YKRFLoOjpQJvw8pDW4faJ+e3+XxzkMODw948eyLvLBxgel0zE8//lt+9N6P0FLxr//Vv+X7F7/PYm4RlwyWttLzLoRA6dBsWUIkAobhiJ3WPrsHB9i2S7lQopSrIKUg1AE3tm/wtx++Q7FY5NULrzDnNLCwCIhojpv89Kt3+eirj7AcwdrqKguNBWzbJYhC/uInf8Zm/zGvnXkLtQY2msPuHn/78Y/xnJD96WU6u00OD5pElmQaeLS6LXzP48zJM/zBb/0BZxfO0mw3+erJLbY7O0y8MTqMyMgMF09f4q3Lb1K2CrjaQmphUluVRkkIRcQgGvLhl5/w+ZfXufjiJd58+S1uPb7LV7ductTrMZ6OCY2wOUadv1lzAMfNIKSFiuJ5nzD3reNmqDfmyObyjKcTpIRCPo/rZBDC1H06VGhliB6ObcfMXIXn+2YxRkqEsAwLF2GCQIQEGY+5wtyjtrDJ2C6WlqjQJEqjBePJlIPDAzpHR4RBQDG2GqvXargZF8d2UJDOS9FGcZcAhABaK8IYNGq2W2zv7DCZTKlUqiwtLZN1M2QyORJPZGm5CGl8/ryJTxQmXpLmnrZtO57XELPXTECWkBCEAePRkG77iObhIb1eF2/q4bguK6srLCwuMNdoUCoUyWZN4q0J7IjM+ZGxF2IE0rZwhYvQAksY6TLapMpHWjMcj+l2j9jfN3P7brdDGAbYrkM2XyCbzxsWpRDoaErkhwS+T6RCLCkoFPJUq1Wy2RwTz2c6NXhNuVxhfr5BLZ9DOnGwijbhZJlclkZjjsnUgKxBZJih/tSnmDfsx0ibmkorExakghC0YXhaSEhSmYXEcl20tg1TLzLJyk7GWKEJIahWqziOHWNBtgEEpcS2jVJF6QiNJAhDBoMBrVaLdrsdk5EMwJcQMLLZnAmtiaXqSb2mtY7zIEwYipDgedOYbCGp1Qw+kc+5qNBHxOc0iMKY1GbFSlNBEISpD+qv0n6jwcHjzL6kJZ6AT548odvtpuy2pFUqFU6cOMHS0hJaa27dusVf/dVfpcDgdDpNWXDFYpGTJ0/y9ttv8/rrr3PmzJmUbZjL5Z4pzGbDTJIifzwe0+l0ePDgAe+//z63bt1KATsg9a978cUXuXLlCsvLy2mhnAB3H330ER999BGPHz9OGXaWZTE3N8doNKLf76egxe7uLoeHh2nRm81mU6aMECIFpAqFAlprer0e29vbbG5ucnh4mIamJLJe13WpVquUSiWklIzHY46Ojmg2m+m+wFOmVsLOmfVVSADM+/fvc/HiRdbX14miKGU+JvLsxIsxAQ6S7W1sbPB7v/d7/NN/+k954YUXKJfLFIvFZ9KPZ2V1X1e4J0DtrJ9kwihtNptcv36djz76iOvXr7O3t8dgMEgL5uOMoeRzDg4OuHv3LtevX+f27dt873vf47d+67dYWlpiYWGBpaUlLly4QLlcZjgcpp81Ho/NgB+nK29tbfHee++l1PSE5TUr1wY4PDxkc3OTR48eUS6XU4/D8Xj8jFxUCJECKzs7O/R7PQqFApcvXyYfy5mfARf+YW7Jf9R2XM55nDmV/C6fz3Py5EmWl5f59re//QyAlLzml4XUJD+3Wi3u3LnD9evX6fV6KWAOSRy9lQbPJKBaApIHQUCpVGJpaYkrV67w9ttv89prrzE/P5++ZhZQPH48X8fkS96jlGIymXB4eMju7i4PHjxgc3OTzc3NFIA3Momn702YhQnrMtn+cbuGWVbfLIuv3++nr0n6qtaaubk5lFKcPHmSjY2NdKUy2Wbyeck5m06nz/TtBw8esL29nT4wEwBzdl+PX/fjYNrx8zTLnky8U5PzmiwGnThxgk6nQy6XS4OqHj58yDvvvMO9e/cAnmE5/kO1456Vz2uz/fJ5zL9kO8mi0uw1OHny5M/18VkG7DdxcQAl0QrMZYiZ0NqESPSPxrT2u/jTiHqjytzcPLmCg5WByBKmBlIaESfIqsgYOkvisT5lYhmmiVRGchpMFMPWgOFRD0srqtUC5XoBOyMMy8XXWL6FmmhaW032t3YJAp/6fJ0zF85w6aUNls9UcSoW2EbaqBzDDpJaGi1soKms5XhRnmY8GtPvTRj0p+xtd2juDSjUcrgZM6FXEkROkHUtFmsllCpiZ0FLRSQ0SImWhk2A1tiWwNLCgEyxtDqMwSYpBIV8DseyIVI4WQdC8EYh/aMB48mUSGhGwYj2uM16ZY3FxTnypQKR9rh5+y43bzzg4cNH7OzsMxxPUMqhXJon42ao1cq89tolvvO9a5x/eZ3MkotwTcqv9sHrBhw0W+w3m0y9KcJSTKcjBv0JwlZIRxAJwyoQCKRjkiJ1BEQWVlzkKOEgpalzJ+2Ag80uu9tNBpMJyycWqa80yFQy6CTsY6Jpbfa59eFDbn3+EH8asX5ijYuvnWH5fJXCQgYrY8C0UBsAWQJWwcLyLap5m9Nijak3ZjwZ0m23Odxuceb8CVgCLSOwIyNvUgoVQr83Zv+wxWA4plDO05hrUCnncQwFDTzDEpMG8TY+VJHGiixQBtxAGGYEloBYvqWlQlqxlM3TDHs+zYM+k0lIrValWM+QrdkIF1KEFRBILOnyTWsqlmZpqZji0Q17fPbwOp/f+YpytcH3v/N9XrpwDSuUBEFoiqIoJFAKX/kMpwNuP77NB9ffNwV1GBFhJLpuzMzzwpDx1DMeW4USlXKZhfoCRSePnYBY2sI4nhr3wyQ9GWI5sNCE2kiaI6Ho+yO2D3doHjURtmB9bY3zJ85SyZWwMYWoARyNfNgIRRPWoAHMNCAsi4X5efL5LL1Bj26/hxdOUW6Ep30eHDzggy8+pNlscu3iS/zBd/8Zp+bOUJAlLGJ/LaHT8I1f13JOY9TuoQjo+10OOruMBiO+/dJb/M7r32c+N4+LY8ZSpcB2mHo+h81DLGmxWG9QymQxQmcLIQUBAVM95XDQ5NHuI3wVcmLtJGuNVUbjIToIGB+NoajJ5bKUMmWy5JItxMnTMvWlRChMZNSUntdj53CHyXjMyvIyjeo8WSeLJuJR8zF//qM/R1nw/W//LmfnXsCWedA2w7DHh/c/4a/e+xvma3X+yXd+wLmlDYrZApHQTHXAx599QJRXNKrVGGbW9Cc9tg53Oex3iHzNiytn+c6Vc0RCIB2L3aM9fvjOD3n/o/coFLPsrW2zt7vPcDIiVypQsHLs7u1w/+597j+8T7FY4o2N17AxrGQjX1coIqZ6yv3DB7z7yd8BFtfOv8TJ4gm2xBZ4Gn84MSm9SqEtRWy08et1gH/kNplOcLMutpskS2sTGoEgly+QyxeoRAFKxb77xHMtZSTjBq03C0sZ18WSAj/0CUPjR2xZEoTADwNGwxHtI+O13+p0kFIw15hjcXGZUrmCZTtM/amxarIklUol9sKVtFotDuIF+ka9zurqKo16g4zr4lg2rm1C1VQUICTYro3v+wyGffb39tnb26M/GGC5NrVGg8XFRRqNOq7jEqnAjDuWbZiTlkZYythZSBVbE4AQZjE1jAJsacKSAhUx9X0m0ymDfo/mwSHtZpPRcITjOizML7K2tk6j0SCTzZDL5HBsA/SFYUgYL5patsSxHITUcThcvHAjJbb91ANy0B/Q6Ryxv7dHs2XILE7G4cyZMywtL1Fv1FGxHNlIrC3CUOF7AVEUMhoN6LRbdNoddnZ2CUPFdOqjNWTcLPMLHqViAXve+LkHfmDYyLZNozFHxs1SKVZoHjTpHh2xv7VLv3PE3GKDxnydUqlIoVjEzWYQWhIFIToyKci2BhlCEPh4ykdYhpUoLRkHSJHiQpmsYZBqrQ2ILA3IbGpJhS0kU29Kv9+l1Wqxv3/A0VGHIIjI5fKsra3RaMxRLpdjn0EHFem0fjEqRwMqdrs9JpMR7bZheI6GQwAq1Qq5TAahFY4jsS2BFLGVDhrbMsuPOvKRlkXGEeSyvzrk9xsLDs4WObMBE4m0L2HJ+L6fMq+StOKFhQVWV1exbZutrS3+8i//kr/8y7+k3W6nhV8iObt06RK/+7u/y9tvv029Xn8mUGM2LjoBAre2trh//34a1OH7PoeHhzx+/JiHDx9ydHSE1jpF75eWlnj55Zf5nd/5HS5evEihUMCyLHq9Xspm/OCDD7h//z6TyeQZlmKpVGJ5eRnLsuh2uymzJoyR6NFoRCaToVAoUKvVKBaLLC0tpUy70WjE0dFRKp2dBTnsmBGQyGZzuRxg0oWbzSb7+/upP2NS2BYKBZaWlqjX64xGIzY3N1OwMQmHuX//Pmtra/T7ff73//7f/Pf//t+5fft26q03y6RMZLoJ4La2tpaussxKg2f7w3Fp3PF+krxmNrxja2uLDz74gL/5m7/hzp07dDqdZ9hMjuPEtN1sCsBMJpMUqDDGtx0+/fRTfN8nn8/z5ptvsri4SCJLHAwGgAGmE+B1MBgwHo9Thmci187n84YyHLOZZsGUIAhotVr8+Mc/TiXWjUaDQqHA0dFR7LEg0xUGIQTdoyPu37/PrVu3OHXqFPlCPj038Ro3PIurfCPa81iDz5PWJtcykcAeb88DA49/P51OabVaPHr0iJ/97Gd89NFH7O/vpwy0ZBsJuD27bSCVhV+7do3vf//7vPnmmywsLKSfkfTH2QWG4zYDx+Wgs16Jvu+zs7PDzZs3+fDDD7l9+zZbW1sp83TWT/T4viXAXfJ5sx57s2D4cUberBw1+X0iZa3X6zQajXQV7TiYlUiNwzDk6OiIL774gnfeeYdPPvkkHYeTRZrj4TDPuz7PAwZnmcyzQTOz3rPJ+xLGdz6fp1AopAsrk8kkDWDqdrtks9lnxpjnSaB/nTZ7jY8f49e9/nhLrnfCqEwWGWbbLMv0V/mc38gWCmzLNpMunVBMQHmaSX/CoDdAKKjVqjQWa7gFO2aehQaME1Y8/hnZDVKgjC4TIW38MEIpIzeypQUBeNOQwWBIt9tH6YjGQoPyXBltG/CQwPwb9xT7e116gzHFWokXrpzh5W+/wMKJElZZgKPRNqg4gVKrEKmNd4yKAEdQmstxYmOFh/f2GPW36Ta79FtDlDePJW1T5KowTVjG1iZIAVMI6dCwgSwTEYBSGrQTA4YwHnk0my1G4xF2xqIyV6ZYLeDkpPHtj8y5HAym7HfadMZDAinAcRlPAza399g7aOOHHk+2HnPnzm16nR6WFMwvLPDShWvUGgsMhxP2Dw5wHMni+jyrG4tk6w442sidI1ARDHqG4dftDBkPxnQODrn+yXUOdg7IF7IISxrppjSm45YVc6xCjWM52E48XkrQkUJEJohjb6/F5s4uPj6luTz1xSKZkoVwTFcYtAPuf7nHzS8eMBl4nDi9ztVvX+DUSw2sKig3isMrDCtCC4WK60ohJJYQ1FdyrPWW2N3Zo39vQLfZZdAesxBUEDkL4sKAyBiAT/pT+p0x02lEvmijfMG0q3C0wrIFSptrpy1QtpFtxW5oRkqMMtc7J3ELgBWhRSxpVwKpBJEfcrjX5eiwjy0sKrUCpZqDlYsMghNji1obWMCR37D7HwCFr30iAnw87jTv8d4XHzHyfd7+9m/xnavfZaNw0gB38XEakaBJhR2pPuVCjq3dTbqjHr4XgBYIYaG08WGUMXMELISwcd0sjuViy6cSWDOBkiSRMOi4IMd8sEYRioAJUw68Jjc2b3DjznWOuh3mGw2+fflVrpy5RD1XwdU2ljZ9TUnjFW1AO+MpafbFXD8pBYVinnwuxzCW5Q3VmKn2uHVwix9/+GM2d7c4dWqD333r97iycpW8zONq40ueDPkR6qmU+NfoBkZCHxKqkFavydb+FvONOr/18nfYKJ3G0Q5SW+g4sEQR0hv32dndoV4ps1idIy8dHG3ugQiFEhEjNWGru8NBt0WtXufE6knKVolCMc8rl17myztfcX/vIZ9+9inXFl6l1mhghgJhFl20Gd+FNPsX4OExpT1usb2/hWPZnD1zlkahjpNzeXL0mL949/+LF3n83pu/xwvLlymIMlK7+IQ87Gzxky/eJVcp8C9/919xbfkiJWFCVMZ6iqd9ht0RL567yNrSKg4mmKY77tJqdxC2xfm18/z+K7/LSmGZCJDC5iA8IApD/uR//n/42/d+QutCkwsbL3D5xYss15axLMl2a4c/U4pPPvuMz776lNc2XkEjjSWGeHpue16XD29+wObWE958402ubFylSIFs6MJEo0YR/sRDCgMSKNSvDQ7/Yzfbtc2inmXuWa01OtDoKEJrMx5a0jLPcNtCa4U3nRIEvmEY2g4ZN4NtW4RRiBez05J7WIVBDML0OTw84LBlvIJz2TyLjQXWVlapV+uGjag12WyWSCvCKCCfzxqwulxmfm6Ora1Ntra2ePToAe3WISdPnGTj9BkKuTzDOGtAxvOycOyxd7DH/Qf32dvbJQxD6vNznDl7lrUTa2SzWZNEi8QWVnweTAryeBqidYhAYVtgCQEiIopCpBS4roO0bSLfzA87nQ5bO9s0Dw7xvYBSocTp0+cNy7Fej+e8tgn08EI8LzSAsjYejbZjoZViNOoThkE89iX1CYQqIgqDVAX54N4DWq0WmazLysoyJ0+fYn5x3qxTabCklaZ0m0FUpum6SimicINBf8BRp8PO9o7ZXrNFJpMll3HwpxN0GCIyDtIy1hlSSOyMjWuVcIQg5zpUy0Um0zHj6YTD5iGH7Sau6+BmXFwnQ7FYopQvUcjkcKSNIy0T+mGBtkyoysQLjV9tZD7DiQkQYWg8irNx0EwQBvhTz3iNSiOVDvyQne0dHj1+yGQypVAosry8ysrKCtVqNbYCiklXloNl2WmNadiNCrGyglIhg4GxIrt3/y6t5gGe72E7kul0gudPY9m8Y8ZCFI5t4fI03yEKAjSCMPB/9XvvH/xu/gdqs+mKs0BPGIZpkm7iLTbLGANYXV1lYWGBzc1N/uIv/oK/+qu/4uDgIJUBR1FEo9HgypUr/MEf/AGvvfaaYWGEkZl0CjNZkPG0IPHc293d5cc//jF/+Zd/yf7+vkkq4uflgK7rsrCwwJkzZ3j99de5cuUKGxsbKTColGJ/f58vvviCTz75hEePHqV+e8n76/U6Fy9e5NKlS6ytrRGGITdu3ODHP/4xn3/+Ob1eLwWyPM9LGX31Wp1KqYwlJP7Uo9Nq02m1mYzGZpYYrwhkMhnq9XqatmxZFkEQ0Ol02N/fp9frpZLipGUyGTY2Nrhw4QLtdpsgjpEHs80HDx7wJ3/yJ7zzzjscHh7y1Vdfsb+//3OFf6lU4ty5c/zRH/0Rv//7v8+FCxdSluBsQXuc3XS8HQcREpZg8nkJc+/dd9/lr//6r7l582YKpiThJcvLy1y6dInLly+ztLQEwOPHj/nggw949OgR3W4XIJUbPnz4kA8//JDFxUUqlQr5fJ5er8fW1hbNZhPf91Opq23bVKtVcrkc06nxqEgklUEQ4Louo9EIIUTqi5b045WVlTSNeW1tjcFgwN/93d/xs5/9jFarlYJLZmAK6Q8HDEZDY+LP05XnpDD4pk0K4Cnr7P+0JWPILBiXtKSfJSDV7du3+bM/+zN++MMf0mq1Unr+cTbfrCw4+d51Xc6dO8cbb7zBW2+9xalTp1LA/XjfTT7365iMx++VIAjY2dnhxo0bvPvuu3z44Yc8efIk9c5LfPISHz2z4hSkANlsAMvseJoc3yyTMDme9OGkn8r0k4dWLpfj5MmTXLt2jcuXL6c2CbPHl2yj1Wrx0Ucf8dOf/pSPP/449TCdTXGeBSkT8PI4AzgxcX6ejHiW1X08BTzZ5+Ta12o1Tp48ycWLFzl//jzlcpkoishmsxSLRfL5/DOBQcAz3omJJHt2MSphUR8PNTkeZpLsS3JtEtB51s81abPj3yz4meyPZVmpvYDW+plrOdtmGYO/iLH4m9qsSGJFyX5rCED4knAS0W32GHS6aB2SLbjkKxmsrIgN6P342B0QEKkIy5KE2oA+QlhGUiJEolsETM086k/Y2ztkOB6TKxVoLDUoVIrxhFEilEB50OlOOGwP8RUsxfLUhfUiVlkYwEcLIgWRDhEiwpGWYQRFIKSFlTWAWaFcoN6osv14j+lwzHQ0IZpG4FlmommB0sZvKH4aps9xS1pILZGRQghtAKFAoHxN0Fc8ub/PoweP8QOf+eUG56+co75SgQwIW0IEwUjRPOxw0Gpz0Gkz7I/pHPXYlDu0mx2CwCOTdRAWOK7kyksXOHfuDBevvMj66RUcq8z1L+7z4YcfEngedk6grAClAohAStsAZlPNtKc4OhwxHXgQmVTeyWjK7tYBWhv5k7SlkZAqjW1ZWFoidTKpVbgzYWcWkkG/T7PTZeT7zK9WqS+WyVdchA1E4Hfh4OGQzXv79I9GLC4tcO7SBsvn6lgVgXYVWoam+I40EgvHctBaoXSEZZt7x6la1BaKlKtlVKQZ9If0ukNG45B82caSRopMBMFA0d3rcbTfxR8FjOwJd796yKg3opDPgTIJpCabFGQmi1bGt04IAxjhCEr1HCsnGsytFrBLCpwQgYVQ5rOmg4i9nRbdTo9iLsPyUp3aYhErb1iuaGFkVMKkG34T5wBaB0QCfHwOwybvfvJTHm0+4sK5i7xx+XXW82u4ONgIU3DG4KABnSw0NpVsnnwmR7vXZTrx4ntSgQgRhFTzeZbnF7hhO/T6A1CazZ0t1uur5Ko5w+IkEyclG+4gwsCPiYg40gE91edu6yHX79/g85tf0Gw1WV1c4sr5K3zn2lucqZ6mKPJGCquNx6TAWCaoePVWp/+MZ5otJK7jUCjmcPsuk+mYvaM9pv6IH73/I27cucH6+km++8Z3uXzyCiVZxtEOVprgIECoeC6YbPXXuiJEKKaRx9b+Fp3uES9feZlXL7yKLRyEjq0tpBmTPD3lsLdH6+CAMydPMleew8JB60Qor4mA9uSIB9sPGU3HnFo9xerCGo7IkBc2l09e45/9Xpc/+bM/4Yvr13ln8R0qb5ZZzM/jkDV+fDHIEOqISGhCIoZ6xF53l/3DHarlIhfOn6NcqtGM2nz0wd+x19rnn/7WH/LmC2+TIYPUNpFQ7Ex3ee/L9xmMhvw/v/cveW35NVxh4WrjeRrpKU/2tvHGIcvlVWpWDYCAiNagj+f7vHLxVX775e+yVlrH0ha2EETCSKw3Tp7FEVn8rs/6wgl+cO17rOVXyZAlImJ+fZ5HZx7z2Rdf0Ol1YodMw6K1hHGO9Jny8OgeX97+lPlqne9cfpM1d41Qh+TsvFlcmsLUn8aM1qc965vUpB1iu4DWRJFPFBq7JNc2/Ft0bL+DRmuFtCX5XB7yecNYVwbImwRTlASdkShtJMZSSnQQMR4OaB022dneYzgcUavVOHXyFAtzDYrFArlMBsuWMTMvQgUhOgpQWiOlTTmfo5zLUi7kaFTLxgKqecjdu3eYTsasr5+kVq9TyBdBC1rtNk82n7C7u8N0OjbknnqN5ZUVFhYWKeVKsXe5IvADfB3hKI1thURRyHQwxEaTcW2m/pSjTpdef0Cn28d1jDeHJY33eX/YZzQd4TiOAd03TrK8uEylUsNxMoaRKQ3OYRa4kgUFY5lgS5HuCxoTiGLbgAnGiGJfx8F4xM72DltPNml3O1iuxfziAosryxSKBRzHJpPNIiWEYUAQRpjkXQk8rcWM+jGL28hSKVUpFkrYlk2hmCcKfPJ5B9syXiFK+URRgJtxcB3LWDMEEdW5PLW5PEqtGHD0qEe73aHb6xH4EcE0RAUwGkzYDnawLEk248bBZ4aZ7zgW2VyWbD5LsVQgn8thOy5ah6hQIyMgMseiZYRtSRyZAaHxPI/euMtBs0nzoE3oK6qVOiurKywtLTE/P08un8eomGMrKz8kCCMcO/ZTRKMjnygO5cvNV6lWC7hZibTh4OAAaVmxVUMWWzgE0wAtjZeiwACYQggsO2Ok80pjieBXvvd+Y8HB2WTRWUZK4omXJOAmAF1SSCUa7q2tLX7yk5/w3nvvpcCgjpH/xcVF3nrrLb773e/y4osvGnowzxacT4tMk3KUsPUODw9pNpvPePEdb7ZtU6/XefHFF3n55Zc5ceIElUolPZ5er8e9e/f48ssv2dzcTENCkkJ4aWmJ1157jR/84AdcuHCBarVKEASsrKwAMBwOUzZeUsh3jjrcu3eP69e/4IULF6g3GvT7fQ4ODowv43SKip4yaRzHoVqtpqsHCVBlKLAGHExAh6S4TRKWL1y4QL/fT+WyBwcHKQvowYMH+L7/DPMp8dNLEpGr1SonTpxgZWWFWq2GG6Pvs5K62a+/SlE7y/ZMAOB2u82NGzf49NNP2dzcZDQapQNQLpdjeXmZ73znO3zve9/j4sWLlEoltNY8evQIP05x6vV6ab+IoohOp8OjR4/SlGzbtul0Os+A1QlIkclkqNVqXLp0iRdeeIHl5WWOjo744Q9/yPvvvx8nbfXQ2qRoJ8EPAJcvX+bf//t/z/r6Otlsln6/TxAEfPrppyilyGQyKdjgOMYHoVqt4rruc5lX38T29wU0jssy4dlE8llpeiLNvH37Np9++ikff/wxDx48SNmZz9uPWZAGnloGJEDuyy+/zLlz56hUKul987z9S4Ci58mdkxYEAePxmHv37vHOO+/w7rvv8vDhQ8IwxHXdFKxyHMesZsZS4Fk5b7LfCRiYhIjUajXK5TKlUilNu56V0M76dCa+hsPhkPF4TKVS4erVq7zxxhvpPZO8J5FNj0Yjbt++zUcffZSe12azCfAMgDl7fY7fv7PAbBIOVKlUUoZ0Pp9/BjCcPbeJvHg8HtPr9QiCgHzeUPmvXbuW+oYmnz83N8eFCxeQUqaM4dkU8FnG6HHALblOiT/ILAA9a5+QfFYSHJKcs+RYk8WE5HOPM0lnj1FKycLCQroAlQTcPO9e+Sbf/yZt2KS/aqXRoUaEoP2Q6WiI7/tk83lKtTJu3kgpIwIsSyMtw+BSgWHiCCVmkvYEQhsZmLAEhCFaSdRI09vrsru1z9TzOLW2SG2xgpuLC+qYuKUjRa/ToX/UwdKKWqlEo15FONIsylgaLBBKGeWPZSQ+WmFSc3UEGJ+5bM4hl3dxXQslQkLloWSEds0CjyVtw4RSMbCpDdCpQlPoE0oiL2bOKAj7EYP2lL2tDve+ekSvNaIx1+Clb1/k9IvL5OqmoNJTCAYROw/a3L3+gAd3HrK3vcuwN8JGUCzmyRUc1k8tsXHuNOun12gsVmkslFlen6dcLyAsmDYVllTYQCaXo1TMm3MvDVtTYRIOtdIMmz26e01sDSfWVti4cJKltUUcxyaMkkW9eCzAjCcSGxQE0wlRFCBtCdKkUE5HPsGmQHVHCEtRqdWZW1kiV80aIHaqmXY9WjtN2nttlNLMrTSYP10nNyfB0SiMGbiIWalSGkl6aC6R8f2Lixdl0F4zLjg2PiY1kOgp4KIDjXfk02/1CKZjpFSx3yW0ml2auotWCsdSWNKAoGBhWTZEmlAplBDYeZcFv0qp6lJZzJAkVdjC7J/2NeOOR7/Vw/enlBo1ivUKmUIBmcmgUURxcIbJu9D8A7ok/KO1BO4bBH2+fHCD+48esLK4wndefpMz86fJCgepwcYURIpY76ZjNqaU5FyXrOsQhQGj8ZBpMCbKlNBaYhFRdXNcOLXBvd1TfHX/JoPJiC9uXieYerTOtFirr1Mp1Mk6OYQwPF2hDSN4Go3pTts0+/s8OnjMVw9u8mR/hzCIOHf2LK++cI3Lpy6zUlqlIIomiETHi42xF6AWGuM4qSHhKQojoRQIHNv4WiEUzXaTG7duEHoBdx/do9ao88rVV7h44kXKooSrXcM/1almJBZj6qc0wl+jJdvsBwN2W/vGFujkGebyCzGjyIA3hg0ZMg4GbB8+hjBidWmdYqGMwMHcXBIlQibKY//okO3dHQDWVtdoVAyIKLCoOHVeeeFb3N95xN++9xPe+/Rd1hdXePPCG2QcF0vE1yMBXLVFJDT96ZDtvS2G4x4nllZZW1wmU6xw8/5tPvnqU9565Q2unLlCSZQwXpKKEJ97u3f54tbnnFhd5/LiZRzp4mobqQWBCBkFPp999RUWNvOlOSxstFaM8eiOBlTLNa6evcx8fg6Fxk653SZ9/qg1AC3ZuHCWty59h/XCOnmdx9I2gQjiECqNlXEolIsxGG1k6B4eWvv0vQ43bn3KeDzgu699n3NLG9jYKCEoFasUiiWTnqwVY89DOd80WNA0EwgRxeQXl8iOCPwQHSmkMP6cBrhSSMtBIAijkEgZwMaSxCQfiW1bRFozmU7p9wb0Ol367S7dzhFhoCgVy5x44SQL8/OUikVsyyIMDKvVsgVCGABSCHAsxzCPlUk3l1JSKpawV02tu9RejqXGTVrtDtVKjWw2RxRp+v0h3a6RLS8uLLKyskS90aBcKWPbLlIYibxtSaQbB6aoiADzfLJck1qrtEJYFpZjEwmYBD5K2Gil8L0Rk8mI4bCPikLyhTy6VMa1bHLZXOxNbxn2chxuYds2QejjeVNsW5LP5eLgthAVgWU5hqHpOub+9jwj89aKwXjAYeuA1lGTUIXM1+osLy+yurKUkqKiIMKPIjPSCSPnNom7GqExi4ExqKlCE3qUzWaNz3k2hxcvcjlOBtfJIIUk9M183Xf8eK5rfBGFMD7PbjbD3Pwc1VotHR+0MlYr3nTKeDIlCKaoKMQPPKaTCcPRgElnhFIRtmvjumZOXiyWqZZrlEtVXDuLYxvPRcN8NOoOjSaMpoyGI8aDIUILqqUqjUaDpcYitZLxKdQ6IgoVoTJsXitjI4QNWhOowNjhxCoDKW2kZQKU8vks9XqFMPARQuLYFlEUEKnQhMLEEm+ljAw6UsqQ3ojQQPT3CCX7jQUHjwNDSWGUyHgPDg6YTCY/B9Appbh+/Tp37txJwRcwhVriyfY7v/M7/NZv/ZZBcGNfQVMziKfMDyFNItfMdoUwicbr6+tpEZqEF/R6PSaTSbqqvbe3x0cffYRt23iel/rSJbLRhw8f8uTJEwaDwTMgQbFY5MyZM7zyyiu8+OKLlMvllCGUsNey2SwLCwuEYZjK4jzP4/Hjx/y3//bfONg/4Hvf+x75fJ6bN29ycHBAGIMRZoFNkMvnaDQazM/Pp4BUkozbbDYZxTTo5Nxms1kajQbZbJbhcMhgMEj9BjudTiobBlLJbDabTYNbZplutVqNxcVFFhcXKRzzx/t1JHyzwG7CGrx58yb37t1LQbgEhCwUCpw/f55vf/vbXLp0iWq1moIbSfJtUrDPFvgJWzLxBRiPx2kIRMLmSUCOIAhS6frv//7vc/78ecIw5NVXX+U//sf/yF/91V+lcu8gCNI+lLBUB4NB6nE3Ho9ptVrpNZllKSUg1fLycsrA/P/n9nVy5OTnhP5+//593n///TTwJfEuTVhYs4DL8fEo+RoEAYPBgHv37tHv97l//z6NRoO5uTnm5+ep1WpUKpUUAD++2DHLNJuV/bbbba5fv87PfvYzPv/8czY3NxkOh7E/xbPpwLMp7ceZdsVikYWFhdSXbm1tjbW1tdSXNHnt7DHOtoTpmgT2OI5DqVSiXq9TLpdTBqBlWYRhSLfb5fHjx3zyySd88skn3Lt3j9FolG5/FmCbDVlJ7ptkQSKRLicBIkl6+dzcXBow8nV+eglongCbCZu3WCxSq9VSEF0pE+L08ssvp8B9ArB+XbJyAv6Nx2O63S5PnjxJw40SD9PkHp2VWs/aRcwCqXNzc5w6dYoLFy6wsrJCvV4nk8mkr5kFe2f7tpSSfD7P4uIiS0tLX+uPOLvv/5Dy6H+MJmwBlkAb2oQxrxaaMAjxphOCyCeTKVIo5HGztvFusy1jHKMBYdINLSFRkSFTKQ3S0liW+VlogVASBtDd7PPk3g6d1oBsLs/iiUXmlktkSsLIlUONDgWToU9r/5DxoEvGltTLBSq1AqIISoam2JcghY51g4JAm5V3W8b+hpHxQfS9gPFoQqhCioUMbi5OHpYaJWKvxGShFIWOFDrSBJOISV8x7inGvSn+2EP7EeP+hKPDHv32GB1Kzp86z9KJOuevrJIp2PTaI4a9CdNBwOF2m4/fv87tW/fYfLKN7/nMVyssryxx6uwa5y+e5NT5VZZOzFOqF7GzFtIF4Wh0GKEmkm5vRKfdIpj4lBtV6tUaxXIBq2CjLOMTKRSMOh7N/UPGwwGFvMvpsyd49a0rLJwsG8ZnAmZE2jAObWGYWsoAi4YCn1gfGPnuqBeQ+aRIbzhhOB7RmG9QX6jjZGwjqQUiP6R/1KXX6+Jmc9TmahRrLiJrJI2hioWiWmLJuI/pGFxCoyMFkYWegtf3GA/GRGFk5EcyTrnW2iSFaIgCk3Lc6/dRUrN6apmz586wvLpMtpB9WgzIEAvjrxj4yvDRhCTwA4Iowso6VBcKLKyXsHMWylJImRQQEEwiuoddhkc9AhWSa5QoLdawcvGiVGyob6dTfFPYftOaEkbK2w/GPNzaYjINufzCi2wsb1C0TXCPFCa9VRmyJGBwMIk2vnTSQVgWoY6Y+FP8yMfAzwbIykqHpfoCJ9dP8OjgCUHks3d0iHdrytTzGJ2fcnL9FFWnjq0dkjiZSIcM1YCdwSZf3rnOjTs3OGgfYtsZ1pdPcOX8Va6ef4XFzDwFUYwBzIQtYwzr0ysSF7axmn2G3RdL5iyTvN3r9XkiNxkNRkymHidOnmR1YZWaUyUrXBM+p02RmtY1PAWG/iHgQY1iGk0ZeROcXJZcoRj/JRZ0C4lE4RMyCca0+i1wJMVyCUs4hrENseg4xNcew8mA8WiMazlUi1XydgErPl8Sl7xT4sKZF/ni1nWOBi0e7z/gxVMXqDpVbGFjxSwxIUxwQoRmEnh0Bj0irSiXqxSyRWydZTIcEQYB9WqNgpOPA2Bi9jUhneEhw36HxoUXyFsZs8CDRYQmBEbKY2tvC0sKim42BnYFPgEDb0SuUGCxvogjMkhchHBMMIZ0iMKIYW+A5WRYXztJvTSHTRaBi8IiIsJXEb4KcTMOhWIBeyZwInaRZRpM2D/Yx7Fczpw8RyVbQwkDCGQzGfK5fJooHUZBfP0l+h+gB/yjNg1RGBGEBkwxNZyNJQRh6Js0esuEOkVaEQahYU9JgVYRoSJlw6kwZDyZ0Gl3aLfa9HsDwiAiVyxSLVeoVRvUKlVT9yVz9YinfOGYnRopk04rpcR23ZT041gObqZKuVJmdXWVZqvFzvauCaB8+IjRaIwQgkq5wvzCAiury9RqVUqlIplM1shChQH2o9BYxQRhrAJybGzLpCxrYXpchEZLyBfzLC0tc2bjHNXaHI6dQSvNeDRkPOgx6Hfp946YTj02Hz+m0zlicWGZ+fl5isWimecSESnzPMs4RsIck9vRWqKTZy8aOznnrkukIwIVEUYBgfJBKDIZi2IxT6lUoJA3NYaKVHodlRAgDb4ihMSSmpg/iI7isBYLojDA84wyMgyMB4PARkWCMEzCV3Im+MPo9o0FDWahNAhDwtCAYkJKLGlcY7U2i8KOW6RUKZnrigmGmXoTPG+KUhGeP2U8NhZjfhBwdNTjYL+FVgLXzVEpVymXKtTrpsbLF8zCvx0FaCkJlJEmO7ZDMV+kXCjh2g46iAiiCC0NFmPbVmwboI3HI2Yhz7KkYQ6GEYYLrnFti4xtQNooUoRxH4l0ZGxzhCYMPcL4XhEY2b0lY9KF/asr8X6jwcHjwF8C+uzt7dFsNp8BbWaLrq2trfR3s15b9Xqd119/nTfffJMTJ048U8BJKZFxkWpo8THDiKeJqOfOnaNQKPD2229jWRa+73N0dMTdu3f57LPPePDgQcpOa7Vaaeqm53nkcjkuXLiQBlY8efIkBXuSIjnxLTt16hRnzpyhVqulx5WAULu7u8bkM5YRZrNZKpUKvu8zHA7Z39/nf/3Z/+bdn/2MbC5LGISAxnFcLMsUu67tUilXUtZgwkLr9Xop03A2tGUWcLhx4wY/+tGPePLkSQq+HvcyzGazVKtVyuVyCpYmBbPrupRKJRYWFlKw8Xhh+zxQ5ldtCWiWJBNvbW2lidbJdXYcx1DHT51KAbXZEJMkUXXWx21WfpnJZFJwYjgcsrOzw+HhYcpinWUENRqNVGaaFPhLS0ucP3+eR48esb29Tb/fp9frpWCrEIIf/vCHtNtt/uiP/igNpknAZN/3U/BCCOO1l/hsPg8c/CZKCn+dNgt2pfd2/ADvdDo8fPiQTz/9lM8//5yvvvqKXq+XnvdZWezstuDnz6PnealX3ePHj9PXW5ZFPm/StlZWVtKU67Nnz1Kv18nn86lnZAKYz8pOPc9jc3OT69ev89lnn7G3tweQ9tPZcIvZ/ZxlrSXjwgsvvMCrr77KSy+9xNraWuq1l5yfZDvH2+x4Oiv7nQXMjgebTCYT9vb2uHfvHnfv3mVzc5NOp/PMuZu9r2f9TGdf02g0OHPmDFevXuXatWucO3fumftndluz20v2MWmzYSyz0vJZEHaWhTfbZ477LybvS453OBxyeHjI9evX8TyPVqv1TGjQrKT4eecziqLUA3FlZYUrV65w4cIFlpeXyWQyadJzcoyz4OLsfiWs0OR4ZsHrbxoYeLwJy7CAQhUhdZzuqYQJZsCAZmhzjXWkEZEAxyJSNlEYonWcaivN5JAwMmCMgkBIXEsiPRBjyaQVsHXvkEf3dgk8xfr6Kisnl8nXs5DF+IpFAjXVHO0P2d9pMRlPmZuvUVsokS1LRAaENKBSqBQoMzGLVISwzQRca56m4Y4VRwcjuu0BgRdQWqlRr5fJ5l2z+u1Y+NMAAViWyVbFsiGEaCDYv9Pj8b1DmgcdppMx3niCP/GxtWSxMceFc6dZOzFHNm8x3B9x6/N9bt25x5PHu0xHPoPegN3tHfr9AVIKzp05wbfeepWr37rE4skGtcUC2VoGyxGxTYUCK75fpUBHgn57SK/Vw7YklWqJUjmPlTd+aSoyBVUUKDrNEYfNHl7kk6vkqS2Xqa4WyC1Y4GoiM7c110krEJE558nKfJSkuBqgV03BtlxcR2CJiEo5z8JihXxRGkmxFuhQEHgKLwhQwjA4LWEZSa8mvk9dY+8Ws7iEjlA6xLLMZ+vIsE4HXY+dnTb7BwdMxmOWnBVK2QLZrI2UhhGKMiyWztGQ1tEAXytOnFziwqvnWFqtka9YcYq2Nsbu2sjDNYAGFWAAPDte8JASNw9KRmAb8JDIMBy9QUDroEO328POONSWG5SXylgVSWQHJHKteHQ0Y4aKnnOX/Wa3ENBCYLtZlpfWuTwNObN6mpJrAjdsYSO0JNDGOkUII6NNntoSG1tmkNImUqaYijQEaBzAwcYmomDnqJWqNGoNptEUPwjoT8dsNncReZsRE+bL8xSyBSzLJYwU/fGAw94+O4ebPN56QKvXQUiLhfoSG6tnWa2tU5JVchRwdCYNIQEje0XIGLSJw5G0JoEI4xLXfB+P8UpFjMdDhBRMJ1MytsNcuUHNrZATbuxZGbNvYwmpjCFSkSTW/j3AoYS5ePy3SgdE2sOPfJS0sGwXgRXfr0YuKIVhfPrKZxCOiaTGcTMgrJjdacB5k4SqCEKfKAjJWC5ZyxyLpZN9V2RElmqxQd7N09NtetMug2jIlAAnZhiKGam2RhGpiEngg+Xg2llcMmRlnnK2jCVspuMJURhg2YmkW6EJiNQUi4ii5eKm9lKKSEIoFL4OmIae8WOzBEIoFIKJP8ULArK5nJGQSonGMuNIfG1RId5kZDzfi1VyTgGhbSIkWkg8FBPt4esAaUPGtmPxdZhevZCIzrDLaDwhly2Ts4vYZLDjlGXLEjh2PAbHgM6zveqb0yJtGK+z0nshYhIIcfCgigkT0iyKWEKmdb/WJjhzNBzS7XXpdDq0Ox083yebzbO8skKjPkelWMZ13Hg81gaUwzBgoyhCh5psxiXjukhpEQR+HNgR4TixrYsUqDCKFyBtCoUi9XqDo06Pg/0mw+EA13WRVpVSqUC1UqGQL2BJGxWZ9OEE3BZSICyJk3ERyRxGGNKSBFAKoTRZ2wbLppzLU87lqOVyZNycISKUS8i1ZYLQ46h3xOFhk4PDFkfdDofNQ/KFAsvLK6yur1Ofq2O7JlRDK4XS4Gtl1BehWbyyHTuVFGttPDTRAhVF4GuUp4gChbAttLQQjoN2JH5s0SFsiWtLlIrr9DBCCLBsw+oU0ny2IV0ZJYHjumRzWTK5DNPJBKVClAoxaKAZ7614ccgAyWYMMt1GYjt2ukiiImXmjjoOt0tYzpg5m5QO+bxDsVAxz3SMWiAhgU0mU6aTCZ1Wh8PDJrvdPuNqDa0CIELYdYrFElbWxdMRA2+KpyMcO4u2LJQwwSWOZcZKcxyYkCEd1w1gFjbjfdbSAIeRFqhQEQaCKJKoSKAiEEpgYSO1REcKpQyr1tIgLJmS3ITUCKGx7F99gfA3FhxM2nGmzmQy4eDgIJVwHmeOzPoTwtMCOPHn63Q6z6Qbzxa7Gp4JwwCD7CafXyqVOHv27DOf4/s+Z8+eJZ/PMxgMePjwYcocS/wRHzx4wPnz51ldXUVrzf7+vkmYjZNAZ4GzWq3G8vJyKrdNAIPBYECz2aTb7aasNeL9rVQqrK2tUSqVePLkCbdu3WInpujPytZKpVIKbNVqNebn51NjzMlkQrfb5eDgIA1bmQ0V6Ha7fPLJJwyHwzQ9OQFfZxlIiX+X8SmIfi45NpEVLy4uxlHgT72ynicL/br+8HW/TwCBpHhPzlfSEo+4RqPB0tJSKgFNJIRJuMjR0VEq5U0YX1EUpSEx9XodKSW9Xi9lDoZhmHqQBUFArVZjfX2dpaWlNPAlARISz8iEuZr0FyFECha+++67XL9+HSkl9XqdSqWSyjOTc5Swj06cOEG9Xk+P4/8NbZZ59YteM9tmQZHZsSDx+fzss894//33uXHjBvv7+3S73RQwnu2js+y8ZLvP27fjISAJAOX7Pp1Oh8ePH/PZZ5+lHqLXrl3jpZdeYnV1lWKxmDLvkv0cDoe02+00XXwwGKQp2Mn9NsuQnZXjJn1PCEG1WuX8+fO8/vrrvPzyy2xsbJDP51MG4KyU+HnnOAHDE7BtFjCbDQ2aBfhGoxH7+/s8evSIvb29NC14Frw6fl2TfZ79zEajwSuvvML3vvc9zpw583Nsyeddi+RrsmCUgGqJF+vx58hseMksg3H2vbPbnv3d7DEfB/2+jvE+C/IlbORk3JldVEm8JGdfn5znpH8dB0SPH9vsfs9ez2/cAoGMMBFxBkeJMKwYadu4GWPYPRlN6B31GQ98Sn4GYYNlWybB1xgMGnDRihMbZeyDpy10ACKw8LoB2/f3eXDzCf3OkFq1wrnzp1heq5MpWYY1qE0giTcIaB/0GXSnWDJDpVqlUithZy10FJrQCCkRWCgEpptIVLIICBAZWe+oHbD9+JB26wjbtphfmKPeqGI7FpHSSAFOxjayVhHTHjUIbWFbRuamA4WIIApCBoMR06GHpQQFN0O/12bz0YjOUYebt29z78FjDppt/DCiWCpTqZRpNObJuC7zjRpv/86bvPGDV1l8sYpdlgaZsY1M2iQMhkgUQtuIUDIdRLQOenS7AzSaUjVPfbGAJU3CsBWzLb2+ZjIOmE4DkIJyvUB9sYRTkITCgILaMRIYKTVCRGYlXJgkyDBUSMvCjtNXhQQ10gyPhvRaLVTgUSyWKBayFAou0iY2rQfLtsnkMliWwJtO6Pd6THs++YaNzFqEGAk6wnhTCh1iSY0QkigUhL7A6yke3Wty7+4m7XbPzBOlhes4WFkLnLjI8AWjbkCn2affM2Fxc4t16stFCssWVh5sEiDUwEBKaaStTeCOMnCOGTMUWkdERFhurGJRGqFAhTDt+Qw7A6Zjn3ypQGO+QqbkoG3QUqGCyPiOAaAxxuffsPsfAIHUNhW7yhsvvM4rZ1+maBcp2gVcEgP2hHFnGHORVgaGi0NGSpkyl85cwnEzrM6t4YpMLFk14I2jM1StKldWX8C1bfrBmDsP7rH5+BF7h3vstna4cec61UKZYq6IbWeY+gGdfpfWUYvJZIhjSRrVOmdOnOXquWucX7vAUnGJolUiRzbOPBaASZsV6XPM/A7DR3i6CCJjS5BYDplxzYJR76hPs93GdV2uXbzKC2dfZLW6Ql7kzDkQhsGnYqayKwQ6NqmPxN+POfp8d0JTfI/GQybDCcVMgXK2HLPbiCXdAqEtlLDohQO6ox65fIFyuWIYkAkaHnMHR+GATtcs4FdLVWrFGi4OmiiO6LEpyQKn5tfZWD/N/uEWm9tP2O3ssFpeIy9MeIwQFiaoPSLQPoPpgO6wh+tkOTF3gjm7TtYuc3bxDJVSlQdbT9i/uMd8Yw4hZAwNBowmAxCaWqmGY9looYx8VSimOuDI69Hut1nM18jn8khMkFJ/2GM6nlAvV5mvNHCEOStKKOMdS8jIH7JzsE2hkOXU2hrVbBWpE8DUSMtH0yGDfpe8m2W+UsdBpnnWioiJnvDV/a9oHnW4dOkK8/UFc+zx9bEcEyKBhlCFeL4XzxUSn8dvTjOkFgOwuo4dM9BCEIakITOCwA+YTCdM/CkIyOYyyHwOx7IYT6fs7e+xtb2VBuFls1ka9Tpzc/PUaw2y2Zy5/io0DE/biYFs80xK54paMPUClH4aeuc6NpZlwGO0YWYmdjZ7e/sc7h/SPepSKBTjGtCA5tvbT5hMRiwtLZuU3UyGbCZjEpUtSahCQh1vU2si34D7jiWJwpBg6uNPPKIgNCnWUUDke4S+Z56T0kbpiADzDCmVKxRKZZZW1zjq9NjZ2aXVbnPvwT12m3ssLC+yvLxCtVbFdR0cxzZsM8sBJ4GWQStFEPjoZP6rNKEfEEzMPxUJ7FwO280RaoEfKVzXAKdhEKJVZMI/LOOpDPF8TZjaOwjDdMFMayP/DaMARYjtWOTzWbJZF9uykAKIFOPplOnEww8NLqIFxqewUDD2Q0LiBxGRMiCn67rPWDMpFcULzSIGFQUySU+RIRlHUchIagUjcy+7BawQWq02/njMsNejXC4RhSHd3hHd/gBfRWSLuXhR0sEPFaPx1NQiuDiWiI0wzLxDKfNMcBwTTKKIPR0Dkz6MMMCnFyim0yQ0BtAWjuViCccE1JkV1PjZET9xtKHPStvCcn/1OcBvPJIwW2x5nsf+/j4HBwdpwZx4cCUg1fLyMtPplGazmSbFJoV0p9PhvffeY3V1lVOnTqVSP3gqDxwMBimYNFtAJ+m+qX4+loUl/oKJRDnZ16R4nJX8TadTJpMJrVaLfr+fJicnBWYSYDE3N0exWEyLwwS4293dTf0OZwu9QqHAlStXePvtt8lkMrzzzjv86Z/+KXfv3k3lyIm8LpfLpf50i4uLqWdYwoI6ODhIpc6WZTGdTul2uwwGgxTETJhRq6urnD9/nnw+z+HhIa1WKwUeZoGDBKAEI4Gdn59PP3vW1+t4sfs8gPCXsZ3AFO+TyYTBYJCCIcl+JLLFer3+jIQvkR6aQX2P/f39NCwkeV8URSwsLHDlyhVWVlYIw5D9/f0UCEmAieRYKpUKq6urKSgrpcTzPHZ2dmg2m0yn0xQkKJVKSClZWlri6tWrXLx4kcePH/Onf/qnbG5u0m630/NTKBRQSqXbXVtbMynFeZNSPAtcfOMAgX+ANttvhBBpH75z5w6ffvopn3zyCU+ePEkBl+P+cgkAE4Yhvu+nY8jx4I5ZBt3seZ49/8l9n/ikfvnll9y8eZPf/u3f5tVXX2V+fj7dzwRgn0wmqd+l53nPSEuTMSnpj7PAJDwFJ8vlMuvr65w6dYr5+fkUhMxkMunrkn08Diodl/3OgnfJv9n7cBasTOS2/X4/Zd/OsqOPsw1nt5P4IiZs25MnT6Z9/fhxHj/m4+346xNG3/MYd7OvmT3Xs/s6244zF5PjSvrQ7OJN8lnPA+eS/pUwq2e3ffxzZ/f7OBj4vHHy68Dsb1LzwynTYIxtZXAcF2lJdCSwXYdMLo+bzTEc9uh1+vTbQxpLBRzLFNu2ZYo5pSLjK4hAyTjUBRAhqBF4RyFPbu5x87M77GztUixmOXv+JKfOLFGZc1EWRKEyIciBwB+FDDojRr0pwVQhcbCtDCIUBJMAp+QQRtoAk1oSKY1tC4JAYTuxiboPw1bIw3stHt7bxvOmzC3WOblxgsZiFTsv0Ha8mmwqbpQysjlLCWwNVkaxfq7K3GKJyWDCUbvP7vYh248OeHD3EZ9/tcUXNz4iDH1G4wmD4RA3m2X5xAoXL73I+sl1EIKdrW22NzdZXV7ihSvnmFuvYJcl2lYomaSIS4TUMaBlgbAIfUXzoMf21iGj8YRKpUC1UcLJWghXm3TdSCA8i3Dg0zvo0Tk4Aq2YX6hSnyvj5iR27K2oFYZRoAVSGE6XYREakFFrCEINShueUAST7oRxb4wjbeYbDRYW54y8PGZOCVeQKViUigWKxTydoy77+/s0dxeoNLLYjsQGfD80oLEwcmUdCITloAPotzwOnwy5deMxd+9uctSbMFevU6yVcIsOsYESWKACxbgzon/YQ3iKciPP/FyJUs1FZhVIjcKcSxQoFRFGHkQa13VAOkSRAQls10YjCKYBYSQh1FgyA0oQ9SMGrSGD9hAXm8W5GkuLVUpFC8tShNr0mTCIsB3D9AiCOKHzG9Yy2iJPhiw2RSdL5JgUcjt2cjN+jwJbWEaGjzK+fjE71MGlkWvwOy99n7dfehtXuBRFkQxZZAxpSW2RF5rT5XUWS/MMtcfZhQ02Tz1h8+Axu80dBsMB/U6HjneICTuVuPk8a3OrNCp11heX2Vg7zZm10zScBq7I4ODg4iIQCB0/I0XM5IpXCbQWMa/LlHIpXGgIU1hIsjJDzslhKYgmAdoS1BeXuHThMicXT5Kzcjg4JgGZKPYrxACSKr7mktgf69e/JkppOu02k8GYxcUF5or1GcjJAK4BEl/D0J/SHwwp5otUCmUyuAa8IGHsKAbTHq1uCy8MKJfKVIoVECaFPQHGAqGpuEUun7vE7XtfcrB/yL1H9zi9uEEln7BITTp9QMQoGNPsthhNxtSKNU4tnKYoS2RFjuXiIiuLqzzYfsh2d4/zcxewtfmksfI4GvURjk2uUEBK24w9OgAEgZqyc7hF8+iQsy+coJAvmTAMNOPRiNDzWGpUKWULSGGk5xbSJDyLgJ5/xEFvn2qlSKNcxUbgCAlKEgqF0CYgY9TrU89XWJ1bworF1QoIdUjX73P78V1CIk5tnKZQLBDiI7AJCLAyNnbWSRfGxpNJzMD+9a/9P3bTwmI08Y1sV1rY0twnKowYTodIIXEdl2KpSEmUCKMAz/c42N/nqN2h2Tyk2W7ihQGVcplTp06xsrpKrV7DEhaBFxjbCmGk4dLQx4liJpfxhH1a00dRbOuSKrdidmFMgvG9gL2dPba2tjk66mLZFmvraywvL1MsFvH9Ke1Oi4ODQ3r9PpOpx3A4YmVlhWw2gxf65hnvOGQts8CoMSCpjMNBAi/AcjNI2yZUmkhEKMvCymeQORdcB+k4WEIgMHOgKDL755bKlIoV6vU5Ou0Oh80DOp02D766yYOvbqZEk4XFBfL5PNlczjDWhZEyq8hIt9FgxaQK181QrtYoFCt0un1GwzG9Tpfx3BzexENFoWE9IoyPojQgY6jNuXctF9dxcZwcYRgxGk+YjCdIS6CikDDwCKYTwITSBIGPNzWZD5PpBN8LmEynHDabdI66ACkmg4gX4yMf27bJZIzn+Wg8iIkBRk2gtTTjIyaZ2GBAAksIs0ARgiUhY2WpFMtM5xpMp2NaRx2azQA7a2NlHfLFIo7r4tqumesp0FIjpZnTB37IOFK4rsRxLTMnFBZSJRhDGHtMClCGKWpJFyEFQaiJhERbNtpyEFKjpEWgIVDK3AuujWOb1GWlNVEUEkQBBAJHWgT6V18c+I0FB2dZE0khPhqN2NnZodVqpSEeibebZVmcPn2aP/iDP+Do6Ij33nuPe/fuAaTFKcD29jZ//dd/TaPR4Lvf/S6VSgWATqfDxx9/zLvvvsve3t4zxVw2m2VlZYU333yTK1eupBK32X168uQJw+HwGZaH4zjkcrk0aMK2bYLARH7PSm2Twjph3iUFvNY6NbxvtVo0m00Gg0EKKgohUgnv/Pw8q6urbGxscOLECXK5HP/1v/5XvvjiC8bjMUEQpEBFtVpFa00ul0uliv1+30ycY7/BpCXJyfl8niAIWF9f5+WXX+all15K2UhPnjzhRz/6EaPRKP2chJGTMIN8308B3Hq9Tq1WI5/PP8P4S657cux/3zYrG5419Z/dn+NF8yw7KgxDdnd3uXXrFg8fPkzBweRalkolTp8+zQsvvMDc3BzT6ZRWq0W73WY8Hj8j99VaU61WOXnyJPV6PWWmDQYD9vb2ODg4YDQapf07Af3OnTvHv/t3/44333yT4XDI1atX+Q//4T/w2WefpVLvwWDAeDym3+9TLpcRQqRszdlzcfzcfNPaL2M7HQcBZyWXs6BdJpOhWCyytLTElStXyOVytFqtlImXy+XI5XIpuBNFEZ7npWD+0dER3W43tQpI+kVyTWdBJSmlkQ7EcvoEyLdtm+FwmMrwk/Ho8uXLLC4u/hyDMNnm8YCRhB2XgF2zMtnZc2JZFtlsNl0hS5jAx5nVx4G6WRbe7Pg0e36Pn//k94kkOgEFIfEFcdL3J6t1yT4m6cAJEzlZsDkeqDJ7nyTXe3Y/jwOaswDmbF+aBd6OM/1+1XTsWX/I57Gekz50nG04ywac7de/bMxL+tTz2nGA9RexB79pzbEzZN0cSsesMi0RDjhFi2K1QKVaoXXYY3/3gM37OzTmSlRl7FVlKSwMy0xjimwZ+//JUMaJsiMOH3e4e+M+e9tN8vkip1/Y4OzVk8ydyCNzoGWAjiJQNjq0mE58jrp9s9g29Rn2h3Tbffxpg1wpC5FGCoUlk4JCoCNNVmYQgUBPYdD0uXdjm68+v0vnqEVtrsS5F0+wfmaBTM1GZzXaUoQqNLJobZhptpWA2QLpWDgZjVWV5IsWKtQ8vL/F1s4WW3ub7O3s4I3GFItF5hfn+fZ33+DC5XOcffEkJ0+vkXVsnjxqcni4T66Yo9woU2wUcEsWWkbxZNoYuEfKhLoAKD/C1RbhSDHqjhj1B+gwolTO01isIzIWoQNKKmQksJTFdBzQaQ8YjaZk8lkayyZV1y4KsBRaQhQECAsMrCexbMewEgKNsEDYEmlJZABMwBuGNJs9jvpDlAWleoHKfBFcA9TpvEAHUGxkWD21xL37j9lvNbl//6GZY2UzrIgGVkFiuY5hI0YRMnKMr+RE0euMOdjpsLvVprXbIhiH2MIsYJSrRaqNHJmcAfm0pwn6MOkHtJt9osiiUm3QmK+TyQlU4KGFRtoZ/CBERxEy9jkTlkUYqTiF0YCxhhYQIR0z0ScywS744PcDus0+g/4IWwhqtSKFQsYArJHxcXPtDNIxige0mb8Yz6VvVjNCSMPzE8TAfvxbAzIplDaFkVYKIY3dgAnBMXO+jMhRs0ywj4VhoCrMfWoknQodCXJWASEtXHIU5vOcmFtleOEK7UGH/rCHN5yggwghLGwnQ75YolqpUcqVyDtZMsLBxSEjHGxtzOqtOMDkWXBGPJM+LuP/NAZnVihUzPKzsMmSZy4/x3JtFRHa5PIFrl16iZfOXmUpv0iWnJGVxYw8c8Zi33Qdh4MoMxb++viQQKmI7rBLGIaUCyVyTi4RRsfSXMNeiQgYTgdMvTFzlRXKThEbK31WK6HwtG8kwuMuAkW5WKZSqODGLlsqCtFS4GCRFznOrpzh3InzfHH7c7Z3tmn2W6zn17GFG8MoBtgZhWOa3TaRH/L/Y+9NYyRJzvv8JyIys67u6ur7mHt2d/beJbnkLpcUJdmiREmGfEgwDEHwBQGCbcqALF/wB5v2Jxk2bAM2ZP+/GKL9wZcMSIYl0YYsiaREkSueIpfLnb3m3JmemZ6+j6rKjIj/hzcyu7q259qdnUMTDzHcmTqyoqIyIyN+8Xvf9+DUAWan5mlokZlbSYujh47xvbMnubR2mQ2/yagaoU5DXFlFgUkzTJKhSVGk9G0Xk2g2uiu8dfYk1vUY64yR1eqhZrVndW2Vfr/L2Gibuq6RIW7dMvNj7vts9DbZ3N7i6MxRxusdUhKcKzAqBRxdttnqixFjbLRDZ2QSQ0b5y227Lqcunub04lmyWo1GWmcr38RryLTBqoKe6orbUU4H2VjyDFQsvn/o57kYZbyn3+3Ry3MSI2Nw0kzxSB2CzZ0tvHNsb22xfPUqly4vsrqyjPOOqYkJ5hYWmJyeZmR0BLRs/HvN7rzKSxC992UBUhGHIMwZyxDVTNIT2ULCN4sgWG1tb3H50mUuvn2Jq1eXcc7R6XQ4cOAAMzOzNBp1Gs06SZIwMzfD3Nw8586e4+0LF3nr1CkWL19mdk4KeExOTkjeTCtpUKSQhsKkibj4lMKYFJ3WUGkKSB4/qxU+M1BLKLTkWNRI/jqtZDNFHOSGNK0x0hphdnqKrc01Ll++xJXLS2xvbXHqtTe4fOEiY51xpmdnGR8fp94Q44lWiizNqnm3zPMV9UadAwcX8MqzdPUKm1sbXHz7bRSe8fEOIyMtSJKQ19egU4VJxAmqnKe/06VfFDjvSNKU9tgI/X6f9bU+/X4uv5fz5HkhhcFQaJNiEo+xGujR6+VhfbbN2vo6/TwnSVPGJ3YLdRZF6aItC3RJ8RoV+kahw7pE7h82txR4EiO5b/O8x9rmBksry6xvbYJWtEZHaY+NMdIaQScJ1npGR0fJezm97S4bq2v0t3bobm4xOT7O5OQ4jWYLkyY4PP08F/cgiNtdhxjysDmklGgKRufYImdne5Od7S0pimMt3kvxtyQ1mNTsbo6CVF5WiXi0iz79bvemr717VhwsF4Owu3ja3t7mwoULVQhnKQzCbvXdY8eO8cQTT1T5r4ZzieV5XlUALfOBlWG1p06d4pvf/CZnz57ds5hN05SZmZlqwZ3neeVIevvtt/mjP/ojvvKVr3Dx4sU9C/bSCXj48GHm5uYYGRlhe3ubZrNZLYJLl13ZtjJv4NzcHHmes76+zuuvv85Xv/pVTp8+XX12ucgs8+eVyUXLysAzMzPMz89z/vx5vPd73Cnnz5/ni1/8YuWCfPTRR7ly5UqVn68U0kqha3x8nEceeYSnnnqqygF28OBB0jRleXkZrTUHDx6s8ucNiwaDQmGj0aiS6JdOt2H3UikC3KzrbdBVUwoFWZZVVU3LHGvlccu8lW+99RbT09PVIHfx4kVeeuklvva1r7G0tFQ5xgCazSbHjh3j2Wef5fDhw9Rqtco1uLS0tCdU3XtPu93m8OHDHDhwoAodLsPM3377bTY2Nqo2DRa7OXr0KBMTEyilaLfb/NAP/RBLS0sYYzh58mTlhhwUCX/v936Per3OysoKc3NzLCwsMD09fd+LA4MutmGh51oMXuuDuSJbrRYPP/wwx48fr54rBcQy9HT4c0shrgwzP3XqFK+88govv/wy586dY3V1tcr/OXjMwbxzZXXa0n0KshHx9a9/vXIfl6H9g+L2YKGQ6/VLGZZaph8oxx/nHN1ul263u0cYHwy7Bfb0w/UKkwz2bclgaoZBcXQwz+ugMD+cymFQvB90Ypf92e/399wDhoW7QSF08Dcf/D77CWeDjw3+1oPC4X4O5eFxaj8xbnAsGn7f9UTLa73/RmPg9cbJ4cdvdjy9V1AulSrCSIitD7F3ScMwf3iWlSubLF1eZXV1jVdffhOtNccePcDU3BiNdobJJKl2yPGN6yt6mwW99T5XF9c4+9YFLr59mY3VTdpjHY4eO8LDzx5l6uEWyRiQWrQrgixhKHLP2voW6xsb9PIckxiKvmXx/BXGJ0c4oCfJRg2qJu1UieQ/srnDF4Z827G22OX0qxd49eXXWLp0hYnJFg8/fpTHnj7O5KE21D1eiSDnJJJMqjVbR2ELtE3Itws2Lm1x5vVLXF1cY3N9h8W3L3H69BkWFy+zvb1NYlKysXGOHD/CBz/8LJ/45PMcPjFHc0ry3axf7HJlZYmN7U2c97QnxmiMNvAKtNNolYiTTzmUEQekcl4EJieOtuXFS6xfXaKeGSYnpBBJbSSh50XUTLWhv2NZWdpieXmT3MPkRJvx2TFq7VQEUHLJbJY6tPfYPEfS/0s1Ro8Fn0gREKUxJNi+Z3l5k9PnLrC6uUG706TVaZCNGHQTChx57qSUQUMzeWiUJz74BIWzXLp4hfPnLgEJx5YPM3lgjGa7Rr1mUA7y7YKdjT4ry5tcubxMd7sPBUyPdnDTOctXlxlp1pidGafRTMFIaQusIt92rCxtsrmVk2RNJqdmGBmVYm/KaNAWXxRkOgFt8K7AeR/yCimsl8Wodx6Lk0rJSdhIcA5fOHzh6fcta6ub9Hs5zdEW45NjtEYzTALeK0yaAp7cSsJ+Wfh4Cfm8z3DBBYfSUrk6iF8EKQot4f5OuT3fz+ElvF95EilLEp5RIQBW8kxZLCj5fZRS1GmSekedBqOMMpVNMDcxj+1YCaXzoT+1RuuERKcYZaqiEbuZ3UqnoJLBR5efThACQw66IPa7qliMkmJEQTSsU2dMjfHxx76PQ5NHWN9ep1arc2D2AAcm5mnQICGVa0gpEZCDECkBjE4KJN2msd/j6foea911+t4y0m5Tr0m4pPRMyAuMI8+3uXL1Av3+DhMjY9R1yIoYXEh4TU7B1a0lVjeWSVPNeLtNuzZKoqS8rlIqiJ0JNdVgdmSOE8ce5fT50yxevMSps6c5NvkQWdYKwrG0cS3f4MryFbQ1zE/N02yN4JVCeU8zSTl68DCNeoOLVy6w0V1jtNESOdPl9KxFmUQKOyiNRUFiyNlhafMCp8+cBNtjcmKCtNakAPoUXN1cwinLxNiEiJs+gVA52qHJXcGllcv0ih7TnVlGsra4X5WEV/sgdG/sbLLd63Jw+jCd1hQogyLBUbCRb/LKqVdZXL1MLUn541f+mJW1VVrNJrVGnayRsr6xxtr6Cl476IPruXBpeCQ5x/1DEn4zPCQh/5o2cv0UTsQkpzw7vS7LS0tcXrzE1aUrFEVOe6zN7OwM45MTtMfGSGtZcGJpCbsd2KiW+WJp7LAiujhQSlfP4T14R6I1aS0lz/tsbW6wtHSJy5cvc+XKEltbOzTqDWZmF5ifW2B8fCIU3ZTvY53kmp6bn6dWb9BojXL+7Qusrq5x+vQZrl5dYnZ2htnZGSY64yRGNnVEL5AzvOg5utu9kI84iJZah1zMIiJqY7C6AC+/vZIBAet8laMZPLVGnVo9pd1uc/DAQdbW1llbXeXq1RXOvHWGCxcuMTk9zfTMDJ2xMUZHR0gTyeVoixylxdU4NtakVp8nq2l04rh0SaqPb+1sc/DAAebn52k0mvhU4Yrg0g8WaeWlLcYk4Cy9Xpf1jQ2uLl9l8eIi506fZX11nZHWCM5JmgHvNUUhERojI22arVG0kXHw7fPn2djY4NTpU2xtbzAzM0OnM8bISBNtymrGCpMY0iSlltZIkhRnPd1uj36/F/pHNuqcc2z1ctY31lldWWFx8QKLly7inJPfaXqKsbEO9VodZQw4ja9Bv9mk026T93psbmzQ3dlmc2udXr5NN59gpD1KmqV4JcXnrJfiQViLUSmJSim8It/eZnNjnaWlS7zx+uucOX2Kfp4zMz1DopFK1kUP7wu8y0UQTBLJ4+gc1uV4b0m0JrmFOcA9Kw6WlIvdPM+rsNcy3G5wsTkyMsLs7CyTk5McOnSoEtW2trbY3t6WBayTyjWrq6t85zvfqfK0leFrx44do9PpcOrUqT2hcmX+sN///d/n3LlzIoxlaRXqe/7cea5cuVI5GEtHUhmC+txzz7GwsECtVmN0dLQSCy9cuFDlqTPGsLW1xcmTJysBs9lssrKywpkzZzh37tyeXIDlorBer1fiYLvdBmBlZYULFy6wsrJCvV6vXG6lY7Hf7/Pqq6+ytLTEG2+8wUc/+lGMMZw+fZqtra09bjqAdrvNE088wY//+I9z4sSJPQv9kZER5ufnOX78OKdPn2ZpaYlut7tnIV0u0huNBtPT0ywsLNDpdK4bslf+fVBo3I/hSU8pFIyOjnLgwAEWFhZ466236AbFvDyXzp07x+c//3nOnTvH9PQ0/X6fS5cu8cYbb7C4uFiJKt7LLsBDDz3Exz/+cV544QVmZ2cBqtyRpQOwbHuSJIyPj1fVR8vdqe3tbS5dulTlmxwUQY0xTExMcPz4cTqdDkDlxEqShNHRUdrtNrVaja2trSokud/vc/LkSRYXF/nN3/xNFhYW+OAHP8jzzz/P0aNHeeSRRyp37J8khh1TpQg9mId08BoezC83WM138PwadNOV53+ZA29ycpLjx4/zfd/3fZw7d46vfe1r/OEf/iHf+973WF1drap1Dx53UNAaFCKttSwuLvLmm2/y1FNPVROU0o3YarVot9uMjo7SaDTY2NjY1xEJu6Gwg3kTlVJsbm5y9uxZZmdnGRsbq3JrXkt4Hw4dHu7jwedKJ+JgH5eu506nw8TEBI1GoxL+Sudg+Rmlg7EUAAerA/f7fZaWlnjzzTerDZl2u/2OXLBle8p2Dj52rZDc/Vx2w0VDht2Sw+fbsHPx3XCtY1zP9Xe/CXu3A+UStDfVoslph040uqVoTqYcffQgmxvbfO87r7F8dZVvfe0V3j63yIGD80zNTNBsNcgyEd1dntPd3GFzbZP1lXWuLq2ytrGBVTB5YIpHHjnG0UcWGDtYR7cVpA6Uk8W2TfC5YmerYGV5g9XVTbJajc50h/HOGJtrXU5++xQ7WzvMH51hdLKFqWl8SK/V31KsXV7n4qklLp5Z4sLZS6yvrTHaaXHiyeMcf/IQM8fHMWM6FP5QOGfQXpF4LYn5u56tlT6Xzl7g1KunOPPGOV59+XUuX7qKQtNujzE1M83HPv5RjDKcP3Oeq0srHDq0wLGHDzN/ZILmpIEauG3Y3ihYv7pJb71HI2kyMTFOq13HA4UFnaY4V1B6t3QwnWg0vufZXpVcj91uj1q9xeh4m5FOE5MpMmNkMVIo+psF68ubbG/uYHTK5NQE7c6oVEOUmFzJI4nB+yLkZTR4C9qHhaD3UBSlH4qib7m6sszS0mXyfpd2e5qp6XHqTQnjKZxU51RGrFKtyZRHnzxIqj2vf++MOE1Pn2FlZZXOxDitVoNmo472nrzfp7fTIy8KGq0ms5MzGDSL7hJLl5fIagmz85PMH5ikNpJAIuHWSif0trdYurRE3t2hMz7O1PQo9VYKiZJKgl6JKwDJKSjCtQGvsM6DDwsXLd/T4fBeqhvr4ChwOaytdrmytMZGt8fsRIfxmSlGJ2roOvR1KHLhg5Abhg2lQl6s+wxfxtlCEPUGHkD+6kuL1CCq+r8gJZq9T1X/CPeDcFxTSXfhnkBGXTVwyd4MfCrIfOEORFm8Qw+qgOEvZfvUnk9SDL7QKz9wpHAvlnIqjCaj1MYbTI/N0Pd9tDI0kjqZSjGYcF0ocRiVbfIirNpQ+GawH9/LncQDuXLoNGW8M8F4Z5K6rkt/eXFYaWVw3tK1PdY3N1BKM9mZopm0ZHzz4g62eHrkrGyssbm9TavZYmp8moZuIfKiDjkHVdW3rXSEY4ce4sCBg7zy6iucfON7PHr4Mcbmx0mQ9LA5fdZ31lleWaZRqzE3NUsja6JQOFeQ6pSDsweZmZjhypUlLq1cZq4hc3rvNc55bG4lh6wXF6fDsdJf4bW3X2Nx8SJ4GBsdp5Y0KfBsux2WN1ZJs4Tp8SlSkiAmeSm0gGer3+XK6hJew+zULM1aq6quXYrVue+ztr1G4Syd0QlqqhHOCEtOjyvrl3n1zZP0ix5pqnnz9OtcvHwRnUhu3DRLKfo5586el3umtXS3t8H5gYI49w9GG4rcVnnhTFpGbEge1vXVdc6dOcfp06e4unSFbndHUn2NT5DWajilWFvfYHVtA3HphnmdUjjvwx+psJ0kKYlJdp2BHoxOyLJaFQEom/iaXq/LyvJVLl9Z5MrlS2xvb1Gv1znwyMPMzszSHhuj2WhJAY/gBC9sgS0sSokQNjIywrFjx5iYnGJp6SqXLy+yvHqVM+fOsL2zTX+hz8T4JO1RWb9570l0Qi3JyEyoX1s4bBhbUqPRzkG/IKmJ8GW9FGEqNw9wYJTHKke5HyFrB0NSyxgdG2Nh4QAry6ssXrrE4qXLnD93nsXFRcYnOszMTDM5MUF7dETyBgJ5V3I9ZiZhdnqGeqNOpzPOhcVF1tbX2Th5krPnztFqjYjA2GxRz2okuqzaLnkMu/0+291tdro7bG1tsr29HQq69qnXGzRbLWr1OllN0silSYLzsulljGZqepJGo87MzDRXrlzh6soSV68usbh4AZMY6rWMZqtBq9mk0aiHyCoJi05MilYG76HoF+T9vHIsbgQn4uraGjvdbdlgaNSYm5njwMIcs7NzjIy0SZQIjAZFPc2YmBhndHSEyakJlpaWWLp8mcXLl7iweIHOmFSsbo02ybJUrl+l8CrkHvaKou/Y3twKwuIWeW+H/k6XsZE2tijItBRXq6Up9UTStuE9vrAUzuGtzJ8yo3E+RDgU+TuusWtxz4qDw4uhra2tyqVVuudgdyE/MTHB4cOHGRsbo9Vq8cQTT/DJT36SK1eu8NrJ16QqVjlYK8Xy8jJf+tKXOHjwIJ1Oh06nw7PPPstbb73F6uoqZ86cqUQ+kGSZ586dY3FxUcIGExGZ+v1+lSS1XLiXF/0LL7zAD/zAD3D8+HHGxsbQWtNsNjl69ChPP/00S0tLnDlzpsrTB3D58mWWl5d5+eWXq8VyWdSjdLiVApjWmkajwdTUFFNTU5UDshSgSndas9ms3GtlZeLl5WWWlpb43Oc+x0svvcTY2FjVhjIUEaiKl8zPz9NutyunY0npjjx69CjHjh2rckIOuu6UUuR5TrPZZH5+vnJRAvsu9t8rWmva7TYPPfRQJSgXRcHa2hogg+z6+jrf+973ePPNN6vQ58HqpqWoND4+zpNPPsnHP/5xPvKRj1QFEsow7MXFxXfkDMuyjKmpKebm5hgfH6/CxDc2Nrhw4cKesPhS6K3VakxMTFS5GJVS9Pt9rl69ysWLF1leXq4qnJZOyFarxcLCAqOjo5w9e5Y//uM/5o033uCP/uiP+B//43/w2GOP8ZM/+ZP8yI/8SCU43k+UYtCgIDbsvNqPwdeVTrlhwXu/HG+lUFS68Mrny/eWOfEOHDhQCe1FUfC9732vEtWBPZVmh0N+B51yZQj+IOX1vLCwUBUm2tzcpNfr7cl/OFjkY1AULY9/9erV6jzu9/vs7OzIRCQUrRkUGodDi4dDjgePPTjuDv8mrVaLubk5jh49WqV/2Nraekdbh/tWkvCayg375ptvUjp819bWeOSRR5ibm6vCtYfZTxAezFM4/J0GxdXh0OLBc6B8/c0IgoPi7bDD8N0w6Gp8EIVBANuzFH0XQmlCIn8DOtU0JxIOpGMYdYJGI+PsWxe4fGmJ86cWuXR+WSaTjSb1WgPtwBY5eW+bbncb7x3NkRZTM1N05sc5eGKBuUPjtDopugUuLXAUOGtJTIoqDLYH3c0+ly8ts73TpTMxxhOPP8bMzDSrK8ucO3eGxS+/zPiro0zPTTAy1kInhl4/Z2Nlk7fPXuLy20sUPUe9VufQsQUefuwIRx+fZ2SqjqrJYl4bLXn1lAJr6K56li4uc+6tt3ntlVO8/p3XOH/qLL3tbRr1BrNTExx75DhPPfM0Bw4u0Bxpsnp1i5dbr3LyldcYabZot5ukdY0KYmXe86wvd1m5tIHqwdTcOBPjbbJmgk7BaXFlee8lLDJU7MSDCnkX15a32dzsYdKM8akJpmY6NEbDpqVV4DzFtmV7o8/a8gab65ukScLk5ATtsRY6U7Kk8eIIU7p09ssC3VqPCZU6ZUFvJHF/17O5LhUDdza3qSUpnfYYoyNN6TstDhNrveRcMkDdMzqtOZEcZHJqnMXzl7ly+SqbG126Wzv0Nrv0Gy2MhiwztEdHaI+3mZmfpDPeZOnSDm+cOsNOf5vOTJsDx+fozLUwLQlhVt5Q7HiWL61y9coyaQqd8QadsSa1zEjeN5+iSSis+N6MCptIhUIpyAx4K4tWrcBZQGmUDg4NpTE6YWNrh8XFJdY2tiFJGem06Uy0JE+lCtWhvYKQrzKYMyT/0P2nDQ5x43HwnRV21cD/733ltY5dinfyihDC9o7j7Ep8pQ9xUPZ75wzFV4/tV+ijdPY4sXrufr5SGJ/Q0AmZSZG6uJqyhm7ZNjX0SbLJEP5dCai3oxyF3CMX5g5Srzc4MHmATKcilXpAeQpfSG1dlZImddojE3TGpsh0Q6qCBwm2h6fr+mxsbNHvFUyNjtJutkl1QqjNjtXSmw5xj6UqY6Yzy9T0LP61l7l45TxXVi6yM3uEuhbBdsdvsrGxxs7WNvWkwVRnkqauoyjdZwntdJTZsWneOvMWS2tX6S9YMjygUT7BF44874HP8b5Pl22Wd1Z48+wput0+jWyEVjZKQgbekRcF65vrJCZlrD0mv5+X388h966u7bLR3QADzZEmqSm9jiKEWuXp+4KtXNYG7dooqTI4ChSwla9x/tIZFhcvMD4+zuzsNFma4qwiLwp6Wz2KvKAf8th5DYXts9PdwVfO1PurIImznvJk7vdzGd9N2FzOLTvbO+xsb9Pr9kTMsRadJGz3e1y4tMjFy5fkQF5CNBOlpKqw9/SLgtwWmDSRwidaNrW0Evd2t9vDOTGHSLTbbDBoZFib0+3uyDlWy5iemmRqaoqJCSlwIiHBFrxBhUgA77zkkUsS6rUGSmuM6aOUptVqMDY+ypUrY2IGQLGxuUW91qRebwTdwmKtwzonc+3ZGWr1BO8L2iMtlJeK9IoygW+Y06IonAtFzuTqM1oHPcQCkopB1xPZDC08s3M1JiYmmV9Y4OrKMleXr7Kzs8XSZYdRkBhFvd4gKc9hJ5sTWVJjojNJsznK7OwcS8tLLF1ZYmV5mY21dS4vXqRVr1PPMgnbtbL55cI1VK6fm60mnflxtFJsbmyytbFJYS257eNwZPUMbQyuv4MrrBSRSRPGxkcZGWsxtzDL5uYGa2urrKxcZX19jfWNda4uLXEVyAYis4w2GJNUBbyc9RS5CLnOh3BzpUJNi1kmx8cZHxtjfHQ0FJBJwHqsz8VxbFLwBWniyWoZjVadzvgYMzOTXF1a4vKVJdbWVnntjdertX+tVsMkhrzfp9/LUV6RGamMnYbQ6JHRA2xvb3PlymU21tbQSioW97s5Rd9Rb4jYKYEGFmcLHB6T6OAaLShuYRJwz4qDg6IAiBvu7NmzXLp0iX6/v8f9k2UZ8/PzHDt2rBLBpqenef7553n99ddZW1tjeXmZRIf3OEev1+PcuXN885vfZGFhgQ984ANMTEzwZ//sn2VhYYHPf/7znDx5sgod7PV6AJXgkNuiWvxrpdAhJ92RI0d48skn+dCHPsSzzz5bha2WrqV6vc78/Dwf+9jHsNbyh3/4h5w5c6Za9Jehf9vb25WjsFarVU6x0kFTVl0aHx+vqu4qrVlbX+ftixe4cnWJwlmxUoewvyRJOH78IZ595hlqtRpf+tKXeOmll6pcg2maVuJTmS+xXPDPz88He/RuKGC50C7dkMePH+fNN99kdXX1HQ6kPM+rcOfBAgmDoZ/Di+CbDYsd/JxBF9XCwgIf+9jHSJKEyclJXn755SrUvDyvyhxpg2JBWWRmcnKS5557jo9+9KM8+uijldDX7/dZWVnZUzW7/F2UUjQaDQ4dOsSBAweo1+vVeXr58mVee+01VldXq/O3FErKAhKzs7N7RJ5Lly5x7tw5Njc3q3O7zEF24sQJfuRHfoQPf/jDnD9/nv/5P/8nv/Vbv8Xly5c5f/48q6urTE5O8thjj1Wu0vuJYWcXvNMlVj42GGY7+NhwYYrhyriDAmJ5vZXn9eB7y+sXRDAqCwutra1V12X5ZzC8fTjEtXTJZVnG6Ogo9Xp9j+BZVh8/cuQIFy5c4PTp02xubrK8vFw5kwf7YT8BEkSIXltbq4qgfPnLX+aJJ57gqaee4tFHH2Vqaopms1kJlYOfX16LZb7TtbW1qsgIQKfTYWZmpnIjlp9fFhsqNwlWVlYqx3LZR2Xe1VJ8K12E5eeXuRm/9a1vVZWeH3/8cZ566imOHDmyp8DP4DU7+DuV/bm1tcXZs2e5cOECSZIwNzfH1NRU5cgsGQ4BLvthWIi+lkg37EYcHvv2e/3wn/1e+6CKgiVJpqUiHQpjMhw5RdEn1SkqNSQtzdyxMRojJzhwaJoLZ69w9fIym5s7FIWnKHqsrXVJTEK9llEfbTI6NcLIWIPpA1PMHplkbH6UeidF1xQ6A0+BLbp45UlMhs9BO4/tw+pSl+21LonWTE61OXh8mgMHp9ncamMaCa999ySn3rzIW2+cl/ubUvT6OUXeJ+/1aDUaLByc5NiJwxx//DCd2Rb1iQxVh8JZnAdVyJ/+tuP8m1f5ztde5ZVvvcobr53m0sXLZEnK9MQYjz76MI89dZRHnjjKoWOHGJ1qY5qa7pJlfXUDh6VWzxhtNxkZyUgyKXICUGw71q+usbmyRj1LmZ4eF9dfPYT3Gocy8lrrguNJi6hlHexsW9ZWttle66OdZqLTZmJyjLQpFQh1CGN0Dna2uqysrNIv+iwcmGfuwByNdkMKySKhmb1uQZIYEQOViFmF9xQhkbkxGqW0FAtxsLXSZ/niJtvrPZr1Fp3JKVoTo+iaorCQexljPbKQMjWNygzNEU19Zoypo02K7cNsb/ZZX99CBxGjsAWtkYSxcSlWYpRme9WztLzM1s4mSd0we3CSo08dojafSPVrq6SYwLZl42qX9ZVNNnc2yN2OmAS7jv6Swsv6IdxHFImR81ppMZZYLwI4eDkkCqchG9WYRAQIZS2+16e7tcH21joKS2I0Pgd6gPLoAnQKXmspgOJ3xxVn77+w4ltlP+HtVhkahYcEwWG5UUQ/5fe+blisu2GzfClsDh47PKZKwbFU/HzIKZiEzy3diqpqjw+H2fUh7v1u77aXFGAw1H1GSzeRzHqGBCmA4Lyr8il6B9qljKSj1HQDLxnQZO2kxfllSPHWoGxCzTSomXpIKqCwKlRwJlRxRoT0RKXUdIbynl7RpVAFTllycpKq4InHW0uSarSSasIuuJR8EF81CYWz5K6o+j5RieToco7cdemxHRx3ntw7+rbAOYXWUhQHPH1yrJGwdrnUQqZMnWBRWCwFlr7P6bs+JtUYo8VxjIRJgox7ubfkVtIy1E1N3GEitZLTp293ACe5T9MazUaTvGfp5X0SW0hRGmWl1zR4VYasqwE/7P2DzQv6vZ6Er9YyksRU68l+r0tWT3n4xMMcPnqIjfV1+v0+9ZA/fHOnSz/PqWUZtTTFW4cvLImRe41XCusdSsumjEJJ+o48p8hz0FIYJElSsiyl0aiTZJrC5ThvmZqZZGZuunIayrxPwjyzLAlrvCTkfPRonZEkKdY5NjelDoAKxoN6vc5MLWNifLwqIqqVplGrkYZcw9YWbHe7FA4mZqaZWpim29uml0vxjrRWw6QZRQKOHLzCFQ5vJQLCEAwTTgqKKKUwCgyKJIiIzoNFkeiMrFlnpNViYW6GXr9Lt9eV/HwmwZgEpQ0qTUnTjDL81juHQZEldUbqLSZHxjg6e4Buv0thC3FPenGC5kWOLSx4hTEJWZpSy0QoS5OULMnY2t7k3NmzbG9ukaQJ9UYdj2O7u0m93iDNZCOwKPqSrs+IGJtlhsmpcabnJlE8jA0p2zY3N7FFEdbeBTs7XfJ+XjntE52E39CTJhmNRog+0VDLUpqNJrUsAxfWTEo2JDzBnZcXOOVlnDIaj+QVbtQSsslxOu0RDh08QGE9ReGqSM7CFjhXUPT7aK8YqbUYa7Vp1OqoxKBrCX1XcP7SRVhbpdCaxCT4JMEqQ996XLdP4SANblXnjQjeSSZ3CJVA0r/pa++eFQeHcz8lScLBgwf5/u///qrwR/knSRIefvhhjhw5sqdi8MzMDJ/61KeYmZmREF4XXDreozxktRrz8/MAleA4Pz/PD/3QD3HixAlOnjzJyZMnuXDhQmVxzfMcj0cbQ5amNOoNOmNjTE5NceTIkaogyPT0dBXGV/63FCGazSbPPPMMExMTHD16lJdffpnz589XFZizLKPT6TA+Pg7AqVOnKodhKUKVYt/09DRHjhxhenpaxIlEXJTPPPMMhw4dot/vV4vcNEk5fOgQzz33HA899BA//uM/zuc+9zl+9Vd/lddff53NTbHyKqVoNpscP36cxx57jBdeeIHjx4/TaDT2OK4GBdypqSmeeeYZ8jznyJEjVWgxUOVAK4uZjI+P7xFf3u0ieHABPhieC1T9fujQIUZGRjh+/DivvPIKp06d4u23365C04uB3YqycMXU1BTHjx/noYce4vjx40xMTFCv1/cITtZaFhYWeP7559na2toTjthut3nsscc4fPgwWZZVAkyapjz00ENVcReg+k3n5+d54oknKuG0/JxOp8Nzzz3HgQMH0FpX1Y1HRkY4ePAgzzzzDMePH+fhhx/m8ccf56//9b/Ot7/9bX7rt36Ll1566T31791m8BofLvox7BAbLNIxmC/zWm7DQXFwWEgcFHcGhcOyQMmbb77JV7/6Vb7+9a/z5ptv0uv1qjaUwnT5u5eu30EhsgxT/+AHP8ixY8cqobxsfylOf+xjH2NiYoLf//3f5ytf+UrlZh481wadb8PfrXSsrq2t8Y1vfIOXXnoJ7z0jIyNMTEwwNTXF2NgYIyMjVUhyURR0u102NzerXItlnster8fs7CzPP/88P/ADP1CNYSMjI9X3np6elupgA7kNT506xdLSEtba6jor+7YU5kuRcfB6WV5eZmVlhW9/+9v8+q//OvV6nXa7TbvdrtpdHqss/tLr9apJQFnxGWB8fJyHHnqID3/4w3zoQx/iscceq3KuDjskhwXkwfOx/B3L825QBB4UCW+F+/X6fL9RiSVJFdZ7ev0e4DCJkWTrCWAMSaaYHG3RWWhy8KE5+lsFO9t9il5BntuqCn2aJTQbNWqtjFo7IWtrfAq5yvFNR67knEuMwiRhfHFgrcf3FMW6ZXt5g+7mNlpZxiaaTMzVGJlV1GyNWvsoMwvjLF1c4urlFXa2uxSFRWmo1zPGO6NMz4wxOtmkPT3K6GwD3RKXjddIbrlcYbc926t93nj5bb76B9/ku994hd5On85oh/ln51g4NMsHPvgkR47OMXl0lNpEik4lXMhtweZGl/MXL7K8cpVmu87BY/NMH5ogHUkkb50Da3PSTDMzP0k6r5g7MkVzoo6u+5DvTHISOQtKJ5IcHY+14DwU2uO0p9GukdQmmTs4zdh0C91Q+BSUl9CYop/T63UxKUzMjDCz0KE93iCpI9V9nUyQkyTFGIW3tlqsGbNbYAEtrgRfQN519DcLii1LI2syNTPN+EyHWiuVHH140qQGFnzf4q3IC95I9WKfOGqtlEYfRvOMaT2KtQprIUkR0S6k5srXHFeXVjj91mk21laZPzDFE88+xNR8OyySwFiN31GsXt7i4ttXWFlZY31jjXMX3sZ9KeeVV8YwaYpDU9icNNGYxIQQ4pQkCUU1XEGSQJIa0Jp6q8XMwSkmDrRptLWEHRUOmxfk/R693harK5ucP1tj7OWUXneW2mhK0kgZmWzRnKqhUnGHeB/Hl3eyX5+8UzpRe+Q6vY/hUA2lctzfFXgjWWbYV1iKVWYgHLrmU1yQuTQa7XUQFRHxfPAzBsJVbycKaJkmjx94lNwVNLIGGWkQFiRMU2kJzR7JRnj62JPMj8/y0Pxx6rqBISExBgVYLInXLEws8KHHP8TB2QPMdeZJdRoERl0JnaUnU6NpJg0OzR7m8IGjXLhyntPnTvPwwUeoj2YoYLW7ytUrV+l3LaOT47RHOhLujBE3Lp4mLY4deIhvnfwWb1+9QN/1sKpBo1ZjrNVmc2uDs0vneezYOn3tuLJzhZe+9xKb3S3aY6OMNcdp1BuU8t7a+irrmxu0R8aYaE9I93uHUqHoADkb+SYbOxs0W3VGW01SUvlmoU3ee3b6PbY2d8hMjZH6qBRwCRLvytYyr731BljP8898mA8880EatWZwDuX0u336/R4rWyt87eVv8O2X/xidavou381peZ+NBSYx1LOa9IF1oBRploW83An9vCcRVY0anXFxmlVGgSzDpOJQE4FMQj61kjzGvX6fXr9P4R1JYmjU6tSyGq6wdHvdygCUpAkm0VhX0O92sTbH65BGwGjq9YaEhiqFt0UoEiHFM7SWEOJ6luGcFyEKxUhTosMK26ef98KGuUNrQ7PWRDU0Up1Y7N/eObxWJFmoQmw0WnkajRr1RsjFqiWPnlJKClxYi/aaVGu0V3ivJWVFovFe7jkGhQnuXOsKnBOhS3IKWqzNsbYPytNs1PEKChcKYCQpKM9ObweUIksyKQblfDWnb2QpI61gQnAW5y3eKJRRyE5g2A0Mp6dSUnm+yHM2N7dYX99ge6eLwpAkKbWsQZrWMaYm38V5tPGSbiZUBPZKCthZW5DnOVmSVrpQOU9v1BpB1JTP92Fyo/TuSCP70rsag3OOwlm6/S5ZlpGaFOss1ilQBqUMOqQHQFnZrAub28oYnJGkE0YbTFIjzeooVZpGCryzaIXkBsSgCkWe9ykKS63ZoJVq1rY2ZOy0koO5dH3WamllmLCFxSSGRrMJSs5zCWenKix3M9ySOPhP/+k/5Z/9s3+257FHH32UV199FYBut8vf/bt/l//23/4bvV6PT33qU/z7f//vqxxtt8JgKJvWmunpaT72sY/x4Q9/eF+nRZZltFot0jStFmy1Wo2nnnqK48eO0+11Q2iFFYU4CFYg4ZnlAtdaS6PR4JFHHuHo0aN8/OMfZ2Vlhc3NTba2tiS3mFLU6jWyUMa71WzSbDYZGxuj0WjsES6GQ9IGhYjZ2Vn+1J/6U3zwgx+snDllVd96vc7q6iqvvPJKJXyU7SvDkw8cOFCJUM1mE+89kxMTfPjDH+axxx6rHDqD4lmjVmdkZITR0VFmZmY4ePAgjz/+OJ/73Of43d/9Xc6fP0+322Vra4tz585x7Ngx0jStwpbL71Iu4MsFdLPZ5MSJE8zPz7O9vf2OCqLe+2px32q19vx++4l8N+OiuZajrOzf8jcYGxvjySef5NixY5WjqizmUYaAlpWUR0dHq/Oh0WhQq9XekUeuVqsxOzvL933f9/GRj3zkHc6h0oFZihdlWx566CHm5uaqMOTBY2ZZRr1ep9FoVDnaGo1G9fuWfT0sQA0WvDhw4ACHDh2qXKv/7//9v0pkvl0CxJ0cA0qxanCDYFCwKZ/v9XpcvnyZU6dOce7cOba2tqpzrcy3V1buLd2BZdGPQXGoPG/K4/b7/Uoo29zc5O233+bNN9/k5MmTnDlzhtXVVfI8r2zhw6Gog4Uyyu9Rq9U4ePAgH/vYx/j+7/9+jh49WoX5DrajFjYuRkdHq3yHX/3qV3nllVc4d+7crmt5aBOlxAV39KBzsTxPSuHvzJkzexy7gwLX4Pcor0fnHGtra7z66quV8/UjH/lI5UotXzs2NsYHPvABZmdnOXDgAH/0R3/Ed77zHa5evVqJjGWbyjGlbO+go7C8Dqy17OzssLOzw9ra2r6h2sPnzeAfY8yesPyRkRE6nU4Vkj/4nsHiKddz/w1/XsmNrrOyj8rPGKx6PPjeWznmneROXv9oh9cSRpeqVMJgXCgAoR3eFigPupaSGM1IanBFQkfVcVYqdJKICGUSCddEe3yq8Yk4KzIyfDlp8gpb5HgfQmeUhBrhFf2tHuvLq/S2thgbHWF8coSklUDLkyTQHtW0Zyc4+PAo/e3D9LsFReHQRq7Tei2hPppIKGpw8VlThqyIEOAtbFztcebVt3nl66+xurjO/NQcD594iMeePs74/CiN8Yyx6aaISonMqW3Pk287ls7vcOb1i5w7s0jhLAcOT3P44TnaMy10TeGU7HS3OjWOPDrP2OQIaaIZnWjRmq3hEo/1HrwWR5sCE9xIzvlQbReyEZh/eJLWeB3tNZPTHdIxLRVRcw9G463kAZqYGePxp4+R9x0TUx0mDjRRxuGtR6WK1Bic82hPFUrovSgelahigysHwEO72eDQoQXGx8eZmp9k9vB4CKsNokohVaF7a47ehkM5TdJKyCY9aUuBKrBZATWDTlKUdyjrJadfAa4L+bpl8c1lXvv2KS6dv0irkXHs2DwLhyaotTQqC+tsiUQEPEkK7bERCgoKq7l0aY0ri2tlhBdee7JEQrq817hC4a24zpJEoRM5r41JmZ6boZGOMNIekVyKANaQmJqEXE2Os9N1LF9d5TvfeJXzp84xNjHC4eMLHHvqMEUj5Bs04ojQWpOY+28O8P4x3BfD420p15XhwlRC3J6j+GGv3zv/dTN+LVmk7tfK8OnBAarQJEoMAn7wc0oFrWqXr8LK9cDTind+81tBo6mrjKn6JMGaSEK653soPBpo6TonZh/i2NRhRtI2NZVJ6HEZDu0VI7rFB44/w4mDD9PMmkzWp0jJSH1aeR7L9opYqmmnozx19HGc6/PGuTeYbs9IEaUQrmxI6dTHOXH4UY4ePM5kY4pEpXjvQss0iUp55pGn+PJ3vsTi5YtcWbtMp9OmqWosTM3RbDT545PfodEZoTM6wdm3z7C8cpX5hXk2N9aY7czSaY6RoOl6y9XlJTbWNjg2cZR2rS3CLQrnLVYVFD5nY2eD1dVVxlptOq0OmdoNK5a+VWxvbrKxtsFIq830xAwog8eyY3u88fabvPbGSRam5/joM8/z+IEnMSRyfjlxO/Vcn5V8hfXuFqcunKYx0mSn38X6UJH1Njhr7+j1r0K6DZBwc63xeYEN9wOdhh0dL/2XqDJ9kKII+RZtKCSUaINRhnK/VylDlmYi0QZRZSffEik2XOvOO5R3knswzUgTg7WlEWE362heFBLK6x1a7UYUeucoXB+ljVSTD6G+NpcCNEXRr+YcWolwqVAyf0GhSmHSym+c6ETcbR6cy8mtFxFQIcJcUaCwZMrIZ5ZuQWvxXqGVw5iQVghJIaKSEA3ofHBFgnfiuE2zlJqp4XwR3JTQqNfRJhRowUvuP+ewtk8vlzx9eDEFiRMvzKVD3lyFbCCaUFymXCNZW0hYbbHDxvpGSFF2hbW1DbROmRodp92eoNEYpSwQV1iPMSLSgqco7K5D1ktlZOc8eVFIVGRYp+3qE8jmjpIK91qrUCxF1tq9fg/rHDpJSLKMWloTUc56+taFMF1DmkhosnMO5234ruVcJuSkVZCmCcZ4rPV0t7vhPNRVoRTrraSp01JkVyc1Mieb4kVRYApHUxuaSYIxmgQPro/Nu1gtUbQmVUBBb1uiXbXWGOl0klsoSHTLzsEnn3yS//f//t/uAQaqfP6dv/N3+M3f/E1+9Vd/lbGxMX7+53+en/zJn+RLX/rSrX7MO0jTdE9hhXLxtF/y+UGxpgyT1Vpmu865cFLvDTEcFCIGF25lQY/BPGJQ7taFHzZUNJLdGdk5qxZ03kv8d1h09npS4fgb3/gmGxtSSad030xPT5PnRcivuMi3vvVNvvvd71bOxdItWIbIlSGv8/PzlZPFGENnrMN4Z7zqD6V2J9re7a3KOTExwac+9Skef/xxPvShD/Ebv/EbfOlLX2JlZaUqoDI6Olot1HePqarHyv5uBpG0ZFBYGHTklJ99LSFw8De5lUXy4GtLB2EpNpThmmNjYywsLOxxog06HIeFh2ExqqTRaFRhvsPfc1gQLv9er9crB+KwEDAsbpaixsjISCWmDhdPGLwGBotvpGnKBz/4QR5++GFAxO+yYMbt4E6NAYOCyWDOwME+2Nzc5PTp03zrW9/ia1/7Gt/73vdYW1urhN1SdC2F13q9Lrb1AWFwWAAr8+KVef42NjaqP9vb2/T7/aqfy1x5g+NG6e4bJEkSpqamOHz4MM899xzPP/88x44dY2xsrEo7MFgspGxPo9HgiSee4PDhwzz++ON85zvf4Zvf/Cbnzp3j0qVLbG5uVpsA5blaiqiDjstyU2Ew7Lnsw8FzvHTDle0ZrDxcHvP8+fPkec74+DgPP/zwnklf2RelW3dycpJnnnmG7373u/zxH/9xFdq/sbFRuQbLfhusGj0o7g2LZ8PX7fC5MnhtlKHM5e+4uLjI6dOnWVhYqDYABnOsDjqPy/NueNwZbM+1RL39NoX2++9+x96Pe0ksvFPXf+5smEwTxCIRoNCSh04UJYXDolLZjfbOo4wiQeG9C9UINN5ZnO3LJC3JwKQylw9V+0wii25nwHsrIWgOdKHwPdhat2yu7eByS2N8hNm5WdrjTbwBl3hIPCpz1JuGepGArYfOCV8mCJXUFDlONik9MilUKlQZhd52j6WLy1y9tErec0xMTDG7sMDE7ATtmRq1kQzjFUXf01+39LYd21t9riyucf7URa6cv0x3c4vZmXEeffI4c0dmoGYkRC/R5P0ClXlG51JaU5PoVKFrEormILgUlIiCyqGVD6ExoMIkXBmYq40ze1AcMjrTEpKtLUV4j1Me1VB0DozQnm6JQKEUaVvhswKvPRgjk3knCzUVJrB46R8VJupKh/xdWpGNKiaOtkhah/AeaiN1sk5C0gJSKUigctjZzLlyeoWLZ1awuWHmwATztk1tLpEwbsn6LaFm3qGsVGlmW7F1qc+FNxY5+a23uPT2ZdLU8NiTJ3jkyWOMTjdRNaRKsS3AGbTRtCYzTjx7gNmj42zu9MkLT6YNqVfiYC3KqpiyCCgKS79vMd5gSMnznjgqtcU7xfhEh85Ui7ShKQ1GeM/IRIuHHj+CShImZpbZWN9Ce0WjkdIaaTEy0iSrJehESx9Lp+L9exOFhrlb64D3F7Xn75Xst58h77q8S7fe4MH97gPl0bz3wS1iworWV2/zA38vA0hVOMY72vweTwSDFEuSNkGiTBD2CxSOsvpJjYQ0aeMTgnAn4cLlgjnRhhHdIG3N4VqyyM6oSZVfJ64brdRAb0qe0kwZ5kamqT/6ER479BipTuk0x6lTJyVhIpvgmaNP8/DcCdqtDmPZCDWfiqvHS3GfhISZxjQf+8CLrKxdxVoJO87IePTACT789HN89/QrfO2Pv8HYaIfEJDx07DiNZo233niD+dk5RhqN8H0tqysr2Nwx3pqgFrIXAlKJFEfuClbWV9nZ7HL4oYO0sxGSMmDZg1Rlt2xsrLG1tcWh2UNMjk/glafAcXlziVfe+B7dXpdPfPj7ODx5hDYdDAbvJL+qN9BP+iRZSqc9TrMhxQ66vR0RuUJxl9vBHbv+jSGt1USwQcJWy7lZmhpSlVBYS1FYcfnjq3Ww1impyUg9YT5rg6PMVVeW0pAmoUpxYbG5RLwYrTBaXJ8ohSsKGatNglEGq3aNAOX4WtiCosiDiC9rbW9tEP0kb51VVtJLeHG6JanBpLpydmpThoTKFW2MhN9nWksBEQe+cMER7qscns6KqGS0lkIf1c8cEgtoqQosIqBMqpQmFMoKN4eQisJ7h06kXxSa3Hq8U3idoENeT2elP/EOrSExhlqW0E88m5s9NjbW2d7psr29Q6/bkz5XhiyrkabZQFo4KZhS5BJa2+t22d7aZHt7i7zfRxvD6NgonfEJpqammZwcp9GsgXIUhZXUI6FiPF4E8l2TRhlJKEU6SIILVGtyRNCVdilxM4fCYNaF/lAJaS2R/M9K5j66jNz0koogSROUMnhn6XYLKXqrPInRaE3I6ygVrrVWeCUbxrU0RalEvkNRSNcbg/eqWvtrpSjygrzo45ULorWtzjOUvKfeaFBvNDBGzhtXrQUT8FDkUlgJIO+9j+JgKUwNs7a2xn/8j/+R//Jf/gt/+k//aQB+5Vd+hccff5yvfOUrfPSjH72lz9lvsTcswpTPla8ffv/gceTGqiQR50A4bLkoLhfEsCteDYoRZejf8OcEM4NMZD3hthzap8StoJBcBEWRc/78Ob74xS/yuc/9Xy5dukS7PcbISItWq0WtVsc5ETxWVpZZXZWcXcPFLspw1k984hMcO3asEpxgz5Tmnf2AkgnjQL+VIsfx48eZmZnhqaee4vd+7/c4c+YMx44d4+Mf/zhPPfVU5cjcr28Hj7fbL+908pW/4bBLath5t9/xbobhhTpQhWEDe8SXMnT3em0u/zsYxlkeZ/Dz9jvXBs/ZQQF7sB9uJICWzw9/Rtmua4kE5febmJio/n07xcE7NQYM5rUcZFAwvHr1Kl/96lf5whe+wKlTpyp3bxlOP/zblL/H8Lk2KKqVVXRLx275+5evVWo3fH1YOB4MNy37fHx8nIMHD/KhD32ID3/4w1Uu0tL1WQqKg6L5IMYYOp0OzzzzDA8//DAvvPACZ8+e5bXXXuOtt97i9OnTLC4usrW1VbkFy+83WJijzF9auvEG3b2DnzVY8GhQYCy/X/k5Fy5cYGtrq/r+5RhantNaa8bHx+l0Ohw6dIiPf/zjnD17lu9973t897vfraqbLy8vV/096KbbsxkzdJ1cS9QdFMzL50oHaK/XY2VlpfrM7e3takwYFp4Hz5n9KN8z2NbB4jD7iYbD1/1+48d+n3Ovcaeu/6KQIA2FxlkfJrEu5LYKlV1VIvdfKemKczKBUtqhtUzMvEeq3paTvIFwFl8K5c5XITyFAoURl0kGuYWVlR4rK9s4r2mNjNIaaWESEbyUCYUEvJNwoyQ4QrS4xawvSNAUtsCrhCJM3hMFSjny3JLoDJ0aRsfqHDg4y8qlTU53z7O6vsZ3vvsKF1cuMjE7zvhYm7oxFD1Ld6dge7vP+voma+uSgL+mFCcePsLREweYf2iaxngNV/cUzqNt6Ic0h6QgTSR3o0cScMsMweCtCt8nBx0cCM7jvQiDSmlS46vfpfAOqx0YCUvWSioyKpNgkBBC7zw7vW4I7ZVE2ZDgtMKoRDQY71DK4ZXHeyvCVum+tgqvNaYFqq5ptyWBt3UOq3JsZnDeY5wHqyi2c7ZWNnn71NssXVpn7sIUbB8j6U/TmMlIWjXAg1PoQqoc5xuepbNrnHrlAqdOnmbl6iqj7SaPPHuCxz50jM58A1UHqxy26IO2oCykKc0pzaHRSQ7peQonblVySIJ9y9pQHTI4FXJrcd5JPimv6fd66EyhVNiUSTNqrRqqASr1wY3gMaMJU8c6NCYaHNsqyPsW15c8j82RhNHxOlk7gZoaKCxDENfN9S63W+JOjQF3jmuMs7sa3D5j8c3OUW/ydWH9UM7V974/3I8Ji/ngREGx+++B71GJH4NliqmGvXetEUnhFHHZeHxwOmms212QyzgtYc/aS/tKR1Rpqij/lck2TvAISu5CjUZ5cS0r77GIYKF0WYolQdMkq9WYrM1UjkLtNQbDqBkl6SR4pTEqIfWSh1DhMUpcUxkJVmV88JEPsJ1vMVGbhCBeHhif4xMf/j46kx0uLS8xMjLG0SNHOTy7wLlLZ7C5Y252nnqtIRsn4fPnJ+eYn5zHkFAWtgApplIUltWrqxirOTh1gFbSDH0g/aiCiLO2tU6/nzPRmaCVtXA4+q7HxdVFzl48z9jYGI+feJLJbIqEBOMTUmVQzofciwkJCamWyrveO8nt5susi+9SuB7iTl3/zlmst6C1FJNRkNscm1uM3Y0OE0FOzq/CeXJfVMcQ55r8Es5bvHNyLhjJK+ucVKbWKMlp6ER8SxKNNikOH1IEWVQhBTycE5GtWuMZIxuRxpAkknJMOU/R7WHzHGt7EkardbXBBnsjXLQ26FSq1ub9XBz1xpB4Q1GKf8ZgqrBgj9Yp3hmsD/Nf5bFBiFSoYEzaNQ5QzVULbBH0DrVb0khcj7IOwjmsLzfvNMakKCXnMt6itIxB3odKuN7isWSZIa0l+B3L6toKly8vsb62LhEcJq0KC1rrKmOD/ClIE0NrpMXk5ATzCwt0Oh1arRb1RpNGs1HlcvbOkRhNpsvQXCSc2zmMVvKYs+S9voTqGhF/88JWV0CqUlSqqjFV5nIa6xx5EUxFZR5k53C2QGkbcoXKVWuDSOqdB2WkIIgOjxcWpSUcOk1ELPTO4kK4tnM9mZsqmR8VoSAZSuN9gQ2bsmma4o1sKKb1GlNz06QNyfM4Nj5OWq+F/JnhHmUkz2WRh7VqUpPQcQ8mex/Fwddff52FhQXq9Tovvvgiv/RLv8Thw4f5+te/Tp7nfPKTn6xeW4ZEfvnLX77moFDmiSopk94PL94HF/XlzkD595JrObaGb+plvrvB5wYdYzdasJVtCp8QFilyAYFYkSU/AhCec85x9epVvv3tb/PFL36RN954nV6vP/B9y93zUmywlchQFAWNRoO5ubkqb98LL7zAiRMnqhxdg+2/HoOC1OAC2jlHu93m+eef56mnnqLf75NlkpCzdEcN/wawK4YM9tt+gu21nDbDzw337804afb797UW2vuJDddblA+Lc8A1RZx3CsfvvBEPF7oYPN4w13Ihwa5wfa3Pfj+5U2PAYNgs7Ip43nt2dna4fPky3/zmN/na177GK6+8wvr6Oo2QjBh2HZVAlftvWDQrRR7vJclx6ZYrC2WUouFgzsDhXJnlbzoYVlzmxpufn+eZZ57hySef5LHHHmNqaop2u/0Oh+HgJGHw2IOTH62l+M+JEyd46KGH+OhHP8rm5iaXL1/m7bff5ty5c5w+fZpLly6xsrIihZNCRfU82P3La70cL4YrKw8WVRkUvsqxoCwGMjExwQc+8AFGR0ff8f7y+wz+tyxuND09zbPPPsvW1hbLy8ssLi7y5ptvcvbsWc6dO1elVygnDYMC7bBAOHheDI4hZfvL0OTSRdputzlw4ADHjh3j4MGDlct5OPXCfiL/IKWrtBQzG40GnU6nOj/K8OjB9w2ea2V+x8GiNKWbc3hsuBe5U9d/YhIRBZXFJGEi7xGRRCUS3kMh4lVhd+9nzksyfF2ev2FRoCTfS3mPNUoFk4vkfLKuwBHupU7j+wrXh51Nz/rGJls7O5gsYWpuikYjlZ135bFFjlMi9HhfhvvJJmHh5dx1ePlcJRKN8568kETYOrwPD83xjKNPLlBvNunMjHLuzAXWV9d5+8wmly9eopHUUVachrZwIpLWFfWxGgfnZ1mYmeLI8Xk6c03MqIYaqExCir2zJInGJQpfeLy2ksHMSm5E5cMYmyaElY4IW87ivApVHmWcUw7SVDYbVdhp7+cFOgnuwhBW45QNbgMJe7Ihn6EyBq3EiaDRkhMKWah4xHmID8KW0iitQSsK73DKY5pyLGcLaasqXVOg0GSNGuPT43SmrnL+7AXefHWV/vo2myvHmT02TWO8gUlFauht9dlc2+LKxWXOvvk2l96+QmFzDhyZ57GnT3DkiTlGZg2q5nEJWMBpMEkKToTMZERjRsSNilOYJMEEp8d+OBfC4sL8EFL5vi5Uq5WKJfSLPrkX8S/JxAWRpJqx0QZtBcFwJF1gxFuF8pCW885y/No/QuPdcqfGgHuCMLW6sbAyoCRe70DXfPe1LIql1CcLcf+Oz/ED799dl1RGAT/0yvcwVQwZtUCpqhiKtEmhgkvOqfI1kmNLCu3szuN2w7RVCAL2OKWQSsES9quUF1deaL8YFRXay6aEISUhrSRRKIuWyH1CK41XGuVNJURqdh3aWmlSEuZqs9iaR2MwKkPjGNUjPDJ9nInRcda3t8hMncn2BA7H6xtv4HLFWHuChq5jvCLVhocOH6c9Psbc1HzVHuclHUI5rk2MTPDY4cd45ODDtNJGSKUg4qFDNpH6/S5ZLWVifILMZHg8G70NXnvrJJeXL/Hk408yOzlHTdWrX0R7uX8ZDAZLiqEWfIn4EKLqEWlQ3Z4x4E5d/9p7fJ7T6zl2rKRcqNcbkGm6IbJHqyAkK0CF6D2C6qKUbOAouf9IsZoEVzhsv6Do9cXTapJwPwe0uME9Xgp6hHu3ShKUUfTznG6/i3eO1Bhx2ZfnZSKbVDu9PolJyFotTEiL0+/3wUpBKm2NOMmQa1ICIkQ8BCi8w1uLUwaXSMSEswV53sPjq7l5FRVkNCaVmgMKccUVRY7RGpPVJB1LCK9W4VrTyBzJaIOzjsIWGK1JjSFNpDCHLVMiIaIbujS7iKORsNFZriuwhiRNabczGrUxpsbnKU6EdUjeZ2eny/bObvSVCJaSE7pWy2g2GrRaTeq1erWWUCEtBkqRe0tqEsnj6xz9XIqa+MKH61qRJBpjQu5iJFw8zwtMImngwJPnfTwFJpHCKnjCxnIhm5D1VPpUaZS3uMKhfcjpiMYWYXNGa1Qi17qs03KJRpH9kcq52Ov2JXrUSI5Hr3XY7CAItjK2q1AxuwjCqTh+wXiDMprORIdGq04/z3EOsqxGs9kI30sPCLVONq3L+ZqVeZnz75M4+MILL/DZz36WRx99lIsXL/LP/tk/4xOf+AQvv/wyi4uLVSGNQWZnZ1lcXLzmMX/pl37pHfkLgEqI2s9VNvjv/ap33gyDxy7fd61j3VC0Urs3baXkRoAp3ysvsdayvr7O8vIyztmQI5BqoQ67AkaZEyBNdZVz7OjRozz99NM8/PDDPPzww0xPT1eVToeLElxLJB1s+2AYYbmQLhenZe69QRdU2WeDxxnutxv1/X6C74242dft2UG6hvg4yPBrb/q3vkYbhz/veu8bPM8G+2O/Ng/3d/ncjcTR94s7OQYAe0S8wWIQ6+vrnDp1irfeeov19XWSJKlCRMvXlOLSfudEKX4Nij9Zlu3p88ECFfsVrRj8nctrZm5ujpmZGY4cOcJDDz3EkSNHOHjwYBWaP+gwGxQ+97uuBv9bMijst1riOJ6dneXZZ5+tXHLb29usr69X+TW3trbY2dmpxpdyIjYs+JfjQJZl1Z8yn2LZt61Wi3a7XYmEw/0y7OjbT9wtj10WCfnYxz6G91JduKwsX+Ym3NnZqSoelyLnoENxUAQcbHf5Per1epVDtOyvMqz8eqL8sMN38LXl9y775uDBg3ziE5+oqjKXbc/zfI/IWBZcKT8/DRXux8fH91R/vtkx725wJ69/HRJXOxcqYAahz+Y2JN7WuMJKMulKGoIs5CCS1C8arXLAyD065CzUQbxSWkn+HmvxrgipYjRaGbwF34WNlQ2uLF+ka7eYmhpnbGqMpB4SxXtJdK4BH0KFSmxIYSKTbyQfkpKiUspaEpPivORAViicdqiaoj5lWKhP0llo8fDlw6xcWWd7dYf+Tp/+TkHRL0IFxRq1Rkazk9GabtKebDEx3SJriePRG4/XDm9AKwktktQiIpT64F5Ae4wyqIHceGiN8kkQP23YNJFE5DpMbMvwpLKCJCbssDuCQAgg4UTgSYzCe4mRVV6hvYQSew9FGPrK4hk6JOrGIXkQSwHEyeLeqlKK0RijUDi8BeflvEiaML4wxkP5EXq9LmffeJuLly9zdWWd0VfHqI+OkKQJqdYUuWVzY53VtRWszZman+Tw8YMcfWSBuWMd0rYK+R09Tosoasnku2lZjMoZKot8kyQoJf3u3W54J8FFZZKQqcp5eY0H6yRnldIinohzEnRCyBdF2Ggu0IlGpeIK8QnV7+F9CGUrP87J+Qm7r7kd3Ok5wF1FdP7dv+/h5udcamB8uuZrbjTPDMJvJRWWL1d72+Krp1R1LlTn4G1wjjkFeKl0WpoQVajV4lW4TnAhZFZXbdltka/+prxCEvnLs4rdg5ajunxA+WV19ZkmfKeg91Xin+SeU0FRlFxkCrkOK2ETSJXB0MB7cQ+pIJzUVI2EhFZjFN+Qz7Q4VrdXubp4lbpp0s7GSckAT0rKoalDzE7PkZKSkojQEzYsUqVpJnWeeuhJDi8cYH5ihoZqytCLxilps1eemZlZPlR7jsMHj0hILOL+00Zx/KHjfPiDH2GiNoHIoOF9flf00V6Has41WlkDZTRlmrF9AszfFXfy+veh8rzWhr4tyPMCZ3ck3BZFoya5/5WCfr9LUfQkVYeR3a4qtUK5fnASqumcI6vXqY3W8E7R7+d0uzvk/ZwkMdTqNYzRwWYbih72uuJi1QqTZRilMF6iEY2WkM4iL3CIMJUXOf0ilzlqo07WaEjRrSJsGLrgTEuSavMLpaq6CE6HjWsXdAWt0MFlr4Iop7UiTXbX34mSjTmTalxwACol4axWieOuuieVhoewlklTuTdbTwivLl2R0g+57VN0C3EOaslHKGsoJE9eWE+kqRQOaWRlyLUPlYolH2CShJBZV/aDfD9jQuit3EqrOXc/z+mHys6ZyiA1YRPRgfOkxpDUEhndnJeQZyvrK5NkJKnC+zCPJ2zU6wS8x1mFDQYEZTRpLQUtlaELK31mtBQJMQDWhjD2kApZhbVkoklTKQzj/e4aMc8lgq2WZaRJWqWsKoocj6sqLBuTkGiNdeJKTbKUWr1Or5eT5320TqhlKblSOGtp1CSUWIX5pLMWmWtJWLkKBhkb2gtSxbgIOd5vhlsSB3/sx36s+vszzzzDCy+8wJEjR/gf/+N/VNVgbpV/9I/+Eb/4i79Y/Xt9fZ1Dhw5V/77WInkwcXy5mLqWQHItkad8z60uxFSY0ZY3GpBpoaw+VFUafeAdpGmNgwcP86lP/RiPP/4kZ86c4ezZs1y4cIHV1dUqxC3Lsiph/vz8PAcOHODw4cPMzs4yOTlJq9WqRIxhV9t+zr3rfbfSpXIt589wSGe1O8C1f5c9fcT+otV+otx+7x90H93IpQfvdNMNft5wO4aF52sdc7hPr9eW/cSdYQfVzXzf/QTLmxEq74SgcCfHgMFKwaXYV4pP7XabRx55BKUU8/PzvPXWWywtLe0pHFSKNKXLa1BUgl3hsXxs2KlYFn5J05QkSaochq1Wi0ajwdjYGNPT08zMzDA/P8/U1BSzs7N0Op1KPBvMYTeY92+QQQfijRytg68rXzP4ujIX5uTkZHXe7Pe9r/c5wwVVBtu5n1g5KJ4NjhHD3+9G41Gn02FsbIzDhw+/4zOGcyEOHm+/Ng6Ketf6zP2+f/nY4DhY/hl8XXleNJtNFhYW9jw/2NbhfirbNOjQHB4j7mVx8E5e/2VomSSb3r0nEQQRrTRGS946CRX2lV/GOlmEKi/V98ShJYKKOO4K2bnNDN5bCfmoFrAKV1i0MvS9ZyffxJkeI5MNJufHGZseoTaZQAYoqZRXeneq+YCzKJxMKJWCMMF2VrKSa6VRJkE5yXOTGIVVEs6UZSm1cUVtrM7odJ2F7hRF32J3wkadEsdglqUS+lRXJCM67FSHuUii8MZhvVRH1IRrAgnFlgVyqAjszK4DR5XnoBOXpvNoZVDalzugsogGJHRHBEetVEhM7rFhsqrDZF92suX10n5ZB/VzycMnybylPSosjkpnXZngHcQZYoL44LFhniUirfWhHYBSnqShaCSGA2aKei1jfmGWS+cuc/XSGtvb26yubYJW1Gsp9UaGzhwHH55lem6c+cPTzByYoDmeohoeb8TV40K+5twpjBZBVIV2ieiqq/5zvnQ0hqgSwrjrnPSf1kG38FjvsF5+AaPFJSmvl3zVoMTdgCxyXOg/JSetuBbyUI3QJOH8z0FJ6JwKzlildkPt3gt3Yx1wV7nuUDyY7e/6wtt7HdFV+VnXcX8N6NCVyCb/kXHxdhSrrY4TPqQ6pipbCbtyaOVfZHeE3VVbxWUYxI1SXaQUGoeV2epb7HnUh0ccYa4MDDoVB0VS53fbo7wkjwBVOdLFDWlkI4eyPZoefbxVbG1tk+qUhqoH7xUkJNRVXZx7KpHcigP3byniUmO6NcXU6CQZCRkZiZQTgDB+4hXTozM0RtpMt2ZDiLWipjOmRiZx8w9xZPIwqUqrcG4PWG+rqtYSdG1ISWnQkHtiAbgyhPm9c0evf5WRpHW5rao+eEuaiLCT93q4nsX5lDRLaTZSCmeCozBHJ4ZESUEMPCi7O0dAKfreUthutSGWNMK9IAhJRof7l7UUzmK0CHmUm5TWURQ5vaKPDVEkSZKQJomItMHJ55ANnn5eVDkIa6FSrdwvneSwKzUFrUhMgsqScL9w4X4Ded7H5gVKQZJIYdXKNGEdRb/A+TC/0CKEWu8wSUKapegkw1EKhjJPKqxU4UWJGz5NpMBQYYvd+1WY25g0IUll864suCK5d22Iqg4h1cZQ5CIIOi+biiKeSXishEgnpEkttF3Cn10REsnoMopJSwXp8BprC3qb2+w4j9GKNEsqIdjhccrhjQIjaQWcUsH9p0SgzCXPoPfhMxJDkijSGhImbeTem2otv7stoBBBuPAeV4R5gNZSFE7tjidFbunnfYoiR2tkbqZlkzQvcgpbSOh4YqpCbDJMlGHr4qaszi+VhOrvQTw0SciFKdExrrAUhQiNsLteNan8ftZKDs3Cyn3fW0t/wJ17I245rHiQTqfDiRMneOONN/jhH/5h+v0+q6ure3YNLl26tG9ugpLSfTHMsNByLXfWfo/tJ0gNP3czDrH9nF3Va5SqEnwC1QR2v88vB41SVJibm+Ppp5+uhIvBKp3lZ5ThcM1ms6q0OujSKY97M2JC2abr9eF+C+D9jj28GN9PENuvD/ZbyN+IYXfntbjeb3or3Kgfb2bxfq3nhgXG/Z6/0ede673XavOwaPJ+8H6OAYM5AIcde1mWMTs7y/T0NB/96Eer6sJlVduysu3a2horKytsbW1VxUQGC4iUDAvtpcur0WhUrrORkRGazeYe91y9Xt8jKg4Xh7mWkDXoTBt8/eBrBs+X/TYChhk+fweFrkFBcr/zafjauZF4f73zcLhfr+WIvN7YNfyeYeH2Ru25keA/3AfD19/g7zacV3K/62rwsdLJWB5n+D4y6LDc7zvcaMPlXuL9vP4BCbMMrgrvEUFPl26U8rraDdvWauD+GCZZSutK2FFIeAZOnPragArpgnx1fvnKBaMTaE80eeTJIxS5o9MZozPXImkovLa7LkRUFT5sVBDX3G7i87DPjVTM9GFc8xSF5M6RNaiXQhdaNhGc9egRjWkoMi+70hjJaeNyCRupNL0EyB3eSU4kUY9kyey8xzoVsv8lshj3Slx40olQLbpFkJLWBgHWyO60zQux6yiFs7KZgpLv7cvrxLsgSFEqiPL7lQn3gkgrC3r5nawLeY/MQCh/OeUOwpvR8khZ9M3jSLTB4sNvK+8v5QOFQmmojRvmmx0m5kc49tgCG8s7bG/k7GznFN5SryfUWzWSuqLVaTA6Xqc2kqDr4FROjq2cUaZsnyszYWp244ZVOOd0lf9JKYKot3uuekUQVHfzfylVJkQP17gqXde7bnlfnuvIAte53bFdkpgPbES4cB5Uw4UP51q+/wX4Hnm/x4D7g9shu9zg+OUiHfYojfvMJiE46gZfowaffg/srnT2f7a6Br0K1Yl3hc0yPLhsmy//7gePKeGv1fAUFE7F7nt2RUmPhJLuGWV3G1qqgtWjYWwJ15rkN5Qcq7IwLz8kbFaEnI2lQ2d9c4NampFqGU1Lh7MEL2fVN3UDYqgJLr/UpzjvJdeZCxshAzKnJmU8m6Th+7R8k0ylaBwNXePo1GHGRzt0kjEJjfW744EvzYEqOCBRzIxN8/TDT2K1ZaY1S5akuIFeuJ28n9e/8tDd6aKQdApSACLc741Ha5CoUE8/tzgPaVKrRCdrHXm/wAP1rCYuO19gbR9X5DgnGy9yT/LkYfMO70N+y5CPz3lsz+LcjuQBzCTyJDGGxCRQJzjWRFDTQczrh1RF3nspfuWkCnHhC1ASPuq95BaU+6cI1MbJfNCGnIFoKTZSz1JIjeQkzAsRuZKk2nwziR4QyD1GywagdSIcKiO5gCXqQYpvWDwEMdGj6BchhY/bLXDibUFRuOq7yfUiAmXWGEHhRZDVCpOKmNcvduj1uiiNbGTqmmzihlyGKlwfUnjM4Hx5XkvOzvK3wztUMF8p5aklqdzrlQINWpI3U9hCcvmGHIllFILRSUhJo3BacicmIS9f3u/jcymqIllffLhvy30WZGNTcgb7sGHnRAzVjiQN4iRlwRtxXKZpjawmdSpKUbOcg5ZzxaKw1WfJ2GMqI0peFPRDcZwkNWCgb/v4EA2nCCHhicYktWr94hEhUtKJyLFraa16TvXvkDi4ubnJm2++yV/+y3+Z5557jjRN+Z3f+R1+6qd+CoCTJ09y9uxZXnzxxXd1/P3EquEF8s2IQFXHDbhAhsPfhl9/U6jyBAo3MLX/Qn7Q+QK7rpNhUWBQ/LiRWDcsPNwK1xLRBsXG4fYPi1uDr7neb3C9tt3IhXgtEe1an/duBMH93nezzp1hAWM/ge9mBbr9BJRBseB6gnf52uuJS+9XLrP3ewzYT0SDvd+3FN9rtRojIyPvEOhK9hNphgWq/cStwT4dzE83/Lrh45ai1uDzw8e8GYHoRufi9a6HG52j+33+rYhWNyNSXu/zhl8zOB5e67P2u14Hv1/52LWEz/1E1OEctNe7L+zXp/t97/3eMywGD4+/w9xIMLzbvJ/XfymK6JBM2TkXCjNQhZWIK233fu685M7RZQJtwKEorLgLJQSIyu2mQ79KUmlXiTkecYyZmmLyQJvOXEuq+KYak2lUShDdHK7wmDSRZOAuR5mwSPUuFPMo73OGoshxOLKshlFaEpQrxFGgRdB0rsA7HXaxXQjX9ZLLWMmCiDpSgMU7tAs5/hIl+fzK3F9evrv3kOgkLHOCg9E7vNch7FpeI0m4Q06kKgGTr8KQqnPQiyPNORsWNWpXxPWSo6ic30hxgt3Figi4Ih6q0gHlkWp8PuTeUbs5oMuE6i6IZXIMJM+hFz2VULFRKh/mpElN8kd5IBPhtFYz1CdH6Bwawefg+pK7UNfFHWK9BwM6BZWC1Y7C+bBw9NVvaLQJRU+kn8uK2A6ZjEtOIiV5b70kOnd+dwNZD6SbUey9b0j4dXmei7iYmHT3/AnXQelKNok4C0o3ilJqz7nmkSIo5QxVq9tXkGSQ93sOEIHSpad2/1ohAvog+90r9rrt3n07fCk9Vi6+XcmylOXlutRenLzyHnmNU7tioA/vlm2IsnG+auvgdxoUDncfKN89LJiWj4s0N/x9Sw+d97sZC4NmWYn23pcyojTWYtnqbnFl5RIPHzjKaK1VtVOhSDBVeHO4wqsNjsRLNdqGqVMoR+JDBdWwh+NDh2QqY3ZkDocIUwYDTjGatHn84BPkPkcpTZ2GiI8eydGodluCkjH++MIxpjoT9OlTU3WateZN/bzvhvf3+ncYLXld87xPP5f7gEkMppbirGOr28U6Ty2tU8vqaC2bVqDQ1uKLUElY2TCPsGjvMUpjgvNc7jFONptUCLv1Du0UiTIk2lSORc3ufERc62GjJ4zZ2mhJ/aBV0Bm9vE+JkFd6zawXgbsslFbNz5041EQIM2idVLkFC1uglCJLU8gybFHQ7fdQDBfIC4aK0r2uS30BvCuqz3OFpXBO0pSkmWykWicFhhxoZ1FaqhIbhWygiqIl7wd2ersCqNYKu9MnTRNazRFazWYoviEin82lorlWHu8LrPNBSNUiPnoxRhmT4UMxFHAY5apNOmWQOVGQ4UuBtQi/IRDWXlrug06RO4/WCWmtDk6K9Lii2DMPVIDyvhqDtAFjyihNJBy8sNUGtaS2kTlKWfk4STVaZxiT4FwZReRCURdHnovbVNYBITqgAG1SNIZ+z9Hd3kEZKqEXxGlZDrdljvu8yPfkMC+KMDc2Bo8lz6VydqLSsEGOOERvklsSB//e3/t7/MRP/ARHjhzhwoULfOYzn8EYw0//9E8zNjbGz/7sz/KLv/iLTExM0G63+dt/+2/z4osvvusKZcOLvnezQNpPZLtW9dNrff71uNYicr9jDheyuJ7gM/yd91vUDh9nuDjLfsLHfoLBtdo/LEbu1+7rCZj7tXNQaLzRb3o9wexagsB+fXktrvc73EiMu9nPuBb7fbdrffb1Xjv4+Lt57la5k2PAsOtumEExu+yj64WRXkusGu7vwXyCcH0xaPA6HT43r/Xe/dpxo/NtuJ3Dbbjee8vX7Xc9v9tz+loi361cgzf6nfY73rVE1v0eu9nvtp9gei0h8Gb6e78+2E/4u5nj3Gui4J2+/r1k6hbnqNK7iZ/D8nG42nSe55RFHlyocmhdmcBbErR7gCBAefkgEQaVAsRlSKjQa1KFrmkSJaKa12IscIgQRFhEeu/LtZk4Ds1uHitpm/xbmyRUUpZFQBLCS70CGxJ/ayPOPpwk9xcHosckEv7bz/uS049wvmgpGiIuElkIFF52vMucQGEFWUkESklorg9im8eH/HlhcaPKgkkOhw0LEtkJl3w5A/dxds/bcmOm/I28UkEoRUTT0jmpd8NxBq8N68oCKaWQFfIQYaUKdVj0KS078sYkQVD1u99Ni9hIIgt3byUs2BiDyoJB04nQSiKCmrZgUi2/rxW3pVJlFfkEVEgb4wZ+ZEBpvSsiqOAwwIdza/f6tbZAJ6nkpnIuhAsPXeNK+tuHxYikzpFFgFQelZdVLnAvoVaKkOeaILh4L64nJS4boKo2fTu40+uAe5vyPL6Tn7j7t1Io3BXuB0Q1te+b3vNnV46fahQOwpQvnw/iYNlCJYvuPUHFavCYCjUQKv1OEVNRpTvY0xo/EGEdVs57BMKB11EKd6pqoxpovciJQRgIGxq7sqPD4lgqrrCTb7Ewv0Cz1pBnwzghxVT8gKCo2P3GhLy0ikRJaKVUD7Xhs2RHxCiD9qEYlPI4xCFUVw2572lH4S2GTEI4gxrpldutQu3lMyZq47RroxJSSkIqu1nssZO+S+7oHEDl5PSquYBSGqUTnJM8vjhNYppkRn5bmxe4kAfWujCOG6hnadi0C3Ky2PhD5WLZuDE6IQuVbgEJ97WSy7bwEvyeKElt4UMYa+EtVst9IDFpCEeXTTtXSEXhwllsSIOWaIkAyPMcDyRJirjuygInSXAQhjPaq5Ar01IQ8v0pRaoy0jSRYiXeUVhLXjhSPIlJUcqAVlJ4zEve4yTRIRTaVvMprTXK5RS9HtvdXvgeiYQrh/t1UYQUFYlGh4JuzslxQJHoBGVMZYAq+n1cXuBSySksRU2cuOq0iH86rcn8wDoKC6XzXeEp8i42ONxUKWwqLRueobI0OGmP0bth38aQZTUK6+jnBXlupdiMTslMSqJTcQnLvi1pmpHVJEd9r9+TXI9Gow1oPSD8huvG+d38jCZNSBKDtQUoT60mruG8sFjnUU5CwcvwaCmwVK7BXAijdmEzT86ZxCRo5bAoklQKqzhXhOIyMp8rK5zbsFHurCQtNiYhNUZSjSBFcnUSCsd68FY2avTeAfS63JI4eP78eX76p3+aq1evMj09zfd93/fxla98henpaQD+zb/5N2it+amf+il6vR6f+tSn+Pf//t/fykfs4VoL4BuJJfs5N4aPs9/idr9F3c0s0G52MT284Bxuy37P38yxrxf2drMC5/DfB491PfGwfO21+ny/NgwLlMOft99n3qjd12rrtbiVhfftct3dSAy+ngNs8LXv9jNuB3dyDBgUVa53HV/PqTZ8vGv9/UZjyrUEwv0YvC4GHcrXO/6tCHL7XT/v5rg3e17cqO3v5pjX4kbX760IfreDa4mgN3rP7bgO7zVhEO7s9a8JO7oeKd4wsOCrwjZDH5U5iFXQbpSSpNLOQpLIxA2AMjzZli42jyUU2ghuOa80zoJKQhoPayVMM4T/6tSIK6AIuSWDGCO5b4IAFkQs55zkKfJhgasUeB1y6DiUclKYI+zIKy+OEedFaDJGkyjJueoKQClqpl4Jgt578rBrn2YpkEihEG1C3wUXgJfCIIOhPMi+O957Ed6MRpHgkRxcpQPO2kKOiYQmG7NbvV1V+Y6kLeXv4LwPu9y7Fc9tYauqkOLAdtXkHxV+Y1vIos2Xc5rgDDfiqJQ+CwsnpSgdDLpUCRJVVWDWQGJEfNWZx9q+9LFRpWUHa3OUAlOTRO95r4f3UkncEar9hvxI4tzwIQeuhPxoZSQ3rpLk8nleoIzGekl0XjozVfjI8pyQ8aG8X3m8V0FUFhGwKMRVYXTIuajCuO9c9bsoVU7+y/uNLHKVNhRh0SFahwsJ42/PPOZOrwPuOfZV326Bfd42OLbt+5ZS+9vz2QMHGhB9SgnOV8rhtRuwK2bdPKVMF2ZdISeZ2q1SzKDYJv8q2+RClr+qJX4wO+BuW8tjvoPBh0qB3ofrAz302+xKgn7gLR6PKkMVw0urf3mpJl8JmN7hsfTdNmeXTqETzeTUDCpJ0SToEAqJlvFROy3ivlLV8RWSo7TwHrx8f4tFe/lvmWu1VHY9IvYpNEqL81icRwmZrlFgq4BXsOFTHGWyAxPa5JXkyVM+DVVk1C3/1vtxJ6//pJbSaDUlZ1zuKHIrG1aFEzFFG5y34R5nMVqTJcHN3hd3mFaJbNYEoaSmDCrbdXbJvp7HW6lODDK2G5OSZhnWhgIdSqpqF9ZS5JJKg0xEGclN6Ojm3eBIY6B4l66EyX4oUJGkaRi/5fuUj5VhpUrJuF04cTOq1JDWU+omBS8biXleYG2BwpPWslD4zJOXYacqeGT9bgVbOb81LrdYb0nThHqjBUBu5T6m0FJduLsDCWS1lLSWYLQ8vtPdQXkl0Q/aVEVTtNIy1wmosJmb50EcDb8XTlH0bJWL2BiD0WWBFU2WZiTG0M/7ISw73CsVMkdxCWU6D6UUaZaSeulPlMIWTjYnVMjv7qHo51gVcr4HF6j3nu5OL2w+a9KaqaI/+v0C7yVvcmISyR0ZhouiEFeec3I8lKKX5+Qhx6IK7kdCX4irU6I7PB5rPUW+uyGdJOUcyWJC1IZzNlQ4LkJ0QLjvp1Jo0QP9It+zFvYebC4hzOXcrApZ9sEN7W5eHVT+ZtWUO8T6+jpjY2Osrq7Sbrf3fc3NOKmGXzfIrYos1xO7buW5672mnEC78jZW7sLdwjH2E0n2czPdrOg5/L79PmuYa/XHcJuGH7+ew/FmF8k38/pbWbTf6udf7zOvJ0DdSBi8kfh1M+fc+vo6nU6HtbW1a15X9wr7jQE3Ou8GuZXX3g7erZj9brnVce129MOdEqpu1292N4W193LfeT8pr6t7fQwo23n1ypLkLVJUjigXRKpS/PNexBodkocXRb6ncJGIcxK24qz8BonSwQhm8UYEutJ64bzGK0kW7Z0nSTSyhBNHIkoEIeU1Re7ChNbIEk1pUA6Ux6CkirLzJGkGEqWDVeCUuEyUs7JIFbWuEjfL/DZKywLQhmrMSimpbmyS4B7zlYiUJImIXuH1skCQ8CtdFqRAS0gRPohIgJJQk13HrcTsWOspi4EoFbRNwkI8OOIkxEbCa6RKoIS15HmBVookS1Ho6jfTofJ0WdHEWSsi3p4iHC4sGCT8StwJHmMUIA4JvLj5ypAkERflt6gKkygwqsoYJWJFYdEmofBUBUCUkirS1lrSxEjlQufIUikW4JwNAqgKVYOlGrF30v7EGMklRXjcS/4oF5wrlJ9DWURn15muSpUTCQkSYVBckMZIXHSe5yitqiTxNvyuaZqG4i7BWTLostfBIVu6FMRSxPr6OtMz0/f89Q+7Y8Dvr/0+I+2RfV/zboSt28J7vUVdUxy81oF3z2F58cDc0cPe4hvVg+Ed8mf3Le9NIKraGXKIKiSvoBTHUFhVtsUOfCcf5DmFx1SFRhRVmlW51pTfbbtHQmZDm335HQbEwz3/RcZVwUG1khoSUSvkNaEUCrlSWDTGQxrGEKtFoAHLSrHM//3j/8ubb5/hx178s5yYfpQR6qReBxdZEOy8FKBwqgykltZrpOhQobSEDXtHphIJg1TSHmllGDtAxmLvURRoDM6Juy0PKTK0dyispJeoelTuY9o7lA6/gDfgE4w2rG0s8/1jn7jnx4Dy+v/qV7/K6OioCFx+Nxc4ypPnfZx3ZLUa2hiszcWhTRDGrBfHZrmBmLsQnqkk77A2OK0onIR9aiU5BJUoc2FolhQP1op7tBSgtFJkiQh5hHyukqu3DBUuz2nk85Qi7PiJgzSRTbztXpfCWZJECk6oIATZwopoVcvQWSIpQrwLEa+hM/yuk0zy4CJtKotpFAVGJ2Ezy0txkGozU9olupGX4i1Jiq7SeTgRHpVUylaqnH/JvaYIrkilys3C0imvpQKzljyezhZYm4eKui4UY0lJtaYIodJSxFVLCpYQEu797rqq6EvFXrzfzTUIoKQuOkqEyTQ1Yd6gsYUXsS6E2iYmIc0ykiDyFf0C50KlYaNCvTgpVCcuSVPNjax11VDqw9hQRYoEd2DpFnY+uAG95GvMsgSlDP1en7xXINWEE8mDGOas4IMImMvlq8piZGFD1phqjuu8p5/nFCFkuLweyrzaVWVnJaHnJknCRrBM9jY2Nvjg00/d1PX/nnIO3gn2W+jfSIAafGzYZXQjV9u1Hrs2QdXmnW3YPd7u3wfdDsNHqe5h5cXL3vDbG7XrWgLgfkLge12o3mp7hgWyG7m8brWNpYh2K8LnrRz7ZoWX652v13I4XUuwHPztb+azb9TW+439vvt7EbRvleuJPNf7jPfbvfknwYF2Le6ntl6LPwnf4V7AIyEp5Y4yBLdaCGuRSakayNMbkjSbcufdVxNdCWUNApQX14bkGtpdwLlCFg6mplGJ7MI6QhinK+gVuewwhwTUilC1L4QBy4JAZncSlmowIWzVOsoSsyglYR+JCSGm1oaJZ5iDKnG3qSAW+iDuKK3w1kGoaoz3ksNOgbW5rESMTGqVUmg/mFJdFhDeBaFBefYUaQlCVbmM14lGOSXJr7W0Vybs8prydynb55WXBReQpLLodVbCoZ0LxZ9CpVCZV0v+x3LpXrngCKkhUCHUS1V5C7VOSI0slPBgVKhc7lSVY9DoMtRZhYJxVH0OYAtxJWol31lCAR0+d3htSIxGaxHVrLUSLuWdJPxPxAVYWHFz1OqZ1GcxUlXSenFN5kUu4ujAQtNZR5EXVd7LKiWGcyijqkVZmU9QKbMnn1CVhzAsFqpohjDv2ZOb14vI4t3uZrPSSO6oP0HcFWHwrqHe+ddq6eGHXrfP/ON2t6UU4jyVROurRoWXUHnzqt9KXrcrmA9ogddp86C4uZfdwib7HOUmvvRAIqZQ0X23vUrquuJR1JIaHzzxHEcXHmGuPUOKCfpo+c1lAe4p84/KmFWFEqJDn4BRZQGGkNpg6LsqJaKPFLsqhVcZQyVlQSjIFfSm8r0Oh0by4ykX0mooEVblnW7/jr6HUc6ASyqB1TtL3t8RR1cifV4UO7hcim8YpcNGlavue66sgG3ENWa0kbQVWjaJDBobNnPyfl5dTircdyVE05CmGUor8ryQQhaFRaUZBoV2Hl+IS99r0Gmyu4bTSvIVKk/hgiCOCJE6Q8RJ7+V+bTQ6UfiaRAYU1mK7fZI0JdFmtzCY2i1+pZWmVquRmIQiz9nudaXdSmOdpd8rQ1h9lZOvdOuVOQpNYkLKC1/lqjNhzuUKF+Ymu7UTtNbUQkhunvfJCycCljFSvdhLgTCjvdz3jcbp3RE7DwU5QGowaGPIi0IqUId5XBLaVMtSaqmh3FII8ly1J+J8cEWicD786kau2RpIgTDryIse/TwImMpIgTEszob8n1pV6UBs4ShToBgl0Q1K7W5WAFXIuAubpEoFh5+GWiYpRIo8p9/vYgsPIULEE3IphzzTSiuSREmeRefIg8vTe0LBEYPzUjzFhe+ZZmkleleRIWiyLCOrSTEevMwBJNWJlQ3OUOTkZrhnxcFrhc7t97phhl1ZN3r9zXzGtY8pt4PwzD7v3e9xv8+/BnbYqhvU/sd8Zxve2d7yNe/WiXMzbrT9qgkPi7E3c/zhNl/vsZtp97WclOXfr/XZ13vtfqLbzbZv2BU5+Njt+H32a3tkf25Xv72fLr0HmXheR0r8wL2w3OEun1EhDMWF+6sLDoHdcXp3uepcyE1nxOHmbciSZYws0pwLog1hh17eKcUloLA5Dk+SyoRPK4UvRGCrFueeEPpMyPuyO+a70sUhqlxYRoZJbggTDUtlqfAZQp/x8hlJamSZqmQHnLB7rJUmTRKMCWIQpRtNoVMNTsREh0z0tdGSC9F6CZMOa0VldvvShUVAWBeggiBW9q0UMvF7pjCSQ6/cyJLQ6jLorZx4+zBRdU7aWlZGLMVZzd65kvdloncXREuw4Xcu80SJgKirZOLeO8mtE8RFX4qD5VnjCS46CUFTSoUFkEPXDErthvv6EAIuAqEUc6H8flpjvEM5KfpilC5V00rw00kohhOEXxGSRYDwXvIaVs4qF1yhrnRJhjyL3mLtwOawE+FABYfC4AZiORer8jdqQHl0UA9KQTpyG9inG9+ri/H6773GSqB6YPCe6YdeOPyu93YO7MqAu4uUcEWxu7Ww2yo98HmlMKgHvo9X5XuBofu8G2rqnqf3+xpDLoxrrZ92f6tdx2VY7gNgldt9n1Iob6jR4PDIEQ62JMF/gpG8p8G5pMLGld/tFpQK46TaFUn14G8WhL/dVpVIDw2WDxIx0Mu4NfBg9X61W3qlGhsYyHsaXFb33QhgwecWZSBNJMw6tzmOApNkMuzmVsKHTRpcV2GTKclQJgVUqPor7r/CO5R1uL44+6t8bSgKLzl/TSK5ASWcU87TXj/HFjl4yeGXGqmCS3DNl3lqFUBRirFyLy1FYleEUGEnOeDKTT4TNpGsLXBKCpdoDImSYiq26KGUIk0z6vVmtZGUFzmFtfT7fVwSXJFpSIERCqxpJU46yY8n9zyL/DtRSO5CZ8n7vepe7p0j91LpNzFJNY8BTZIYpEBMD6Ugq4mwpY0KG2FFtRGJ0iKuGcl/6LwPAndCkmR4LxvAvX4uoqRzQeRVaAc+5Gv0XkS0MvzYeyebt86hjEabRNyz1qO1Dzmfg1TvfBDbyh3YAqeKIPgpysmOdZ68COdOmEdJjmqPbMhKGHSZszDcvTGJJg25nm3YVOzZMIZ4AEOahlyNVvrHeodRCpOkmERLVEm/CKliZM4jwqCSuV2YCxmtQ57KXZdiVVgZwuZxaJ+XEViiEMQ5mOj0pi+9e1YcLLmRSLW/U+/mF+jXctVdL8xz72uvf3w18MNVxxg+JuVk21/zeLfi0tvvsfe6wL7ZPn23n3M9B91gG250/P2ce9d7/FqfNSwMDv53P5HwdgsYt3IOD4qx1xI+HyTR6nb9Fjcrbt/I/Tq80RHFrkjkxpSihypFwFJ8QSZv4tKTharyYeLpy/utq8IyEpMCIewVUCrkB9SD17EKk6pQLEIBWnLm2DAp1l7JijXk0UsS+exy4UFIOG6dwxayKLDs5tvyIewWEpwv0Go3Ub7R4hT0LohFyI5wKTx5J6HFRhscDoUBp/FWwnUTI5VrHSFXYZl/q9QKwncLSlEQusoNK12pcza4LB2yE773B6Fa/FThfNU9p3QI+rBIUsGREAq5lO4350KYiwq/r8H7si1aKg86izHSJ65woVJxkB7C74/3Un3XS76+spKvD04KHUKrpNmygKuqU2vw3spuesgRaZSW765KAUTcIq6waGV2K/06CfwDXYWoEQrg6LBQL2UJ77y4CkKf6/CbeLEpyELW762arVU5p5T+LJ2yg4W2SgcHyAatDQ6MZDDfU3Bq2tAn5fEi7w+3x8X4Lo9xw7fd7vnGsGo38He/38P7/e0GD7ybJl9XFB18Zp91ZDVO7/dehfEpdalwRBWYHYpS7P57HznyOl2191/lneBGrxtu2v4SaLnPsrvxdOND3YukxoLr4r3CpHWSJMFoKfzQ25acrlk2gqlpihC+6gmFMKzD2p5s2g3ckzyyqaNkZwynRIRyXjZnwFdCnzdSyb4UXJM0C7tMIiUXzmOtpR/cfEmaSJi3LQtZBGe6k+JoOoS15qHQhfKIiy1UMbZB7MP2xVGuFToNgo5SKGNCkS+ZW+TBaZ4oJdXrg7PP2XLzS/LdJVrjwr24PINloynMefzA/Ub74CRMgugtRcqyJAUFzhX0+wX9vuTrTVVN0ppoybObF1Jd15hUCoa4ECYbTkrlVDVHK7WPRIHJgkhZ9OnlfRr1BllWw1pHXkjIdoENYp84OpMkxTlf3QMlBFqDDYJa2PjN0gSrJE+juB5roCS3r5wbcl/1oTiQD9EG5bxFbsniBDYg9s9SQAzF0bDBkamSqvCLC0qiN7JBq5QUCtE6q/IxF9bR7/fI875sBicGUxbPcU6Kq4VN28IW9HNxt2qlKqegc55utx9CwaXwXWKkUIwP57NzDuvfp2rFd4Jysr6xsfGO524lLPP9Yj9xUATAsOM8PJ9WCl8mzq2a73dF5aFjVhNyf+2drxu17VYFtVs51iDXC6Hd71jl8/uFF+8XEn0tB+T13KDXch7ejDi4H/uJa/s5I9/PcN79PvtWHVbl9XQ/iIRlG9fW1t5Tv+53vt5KyPHNhhUP/iY3c/woDt5eotvw5lhfXwfu/TGgbN/m9gY6CYnxwsTSe08RQj7KasO2KCpnW5YlVbVcSZQtVePQMpkXYUvhnaocgkorEq2qSbJKTMghRRDLylx8PswJPWV+HdGkrOSvQaNUyGlTWLSBNNV4bxFXGjirUK5MwO1CTjsj4mYhnyXhY4S8SH7XDeFCgY+wsHFF+D4mtAGPU5rCe6maqBTeIuFRRmG9DeJTEBudw+iQ9yqRHEDOi9AIgB6sthk6D1+JfVQLz3ISHcK4LSRp6X6T3fsyj2KpTxljBgqXKLSBfi7FQNI0RSnJp5gE92YpHnqngkgoobdFUeYo1CHBueSJNEZ+T+996KsCowwqTXerR5ogMoewpMLKYjNNM3QonOCchOppwvGck+DBsPBzxmBLcVCXIW3iLLEu5JzUJpy3sjApXIFJE9JM2lI4S5okIQzOBYdGEJ4LETtR5ZimwqLXVkVJdn8HxMXiJMTLBycKeLTRbG5291xf9zJlG7fWt+5ySyIPBn7g/4ceK9cAw+7QsOtS/u9+oLye7vUxoJoDbC7THm2jdcLOVoHzIsgVhaNwItAk2U6V864U9xRUmy6KEF6ZF1JcKjGhaBRSWVZLWgpvHd5amXOEe1PufMgrJ5WQbZ6TmoRaVpMNJVtIgRQvuY1Tb6WoRWHBeozsZOE3wSdaipqZspqxbB5JVWOZ0yhPlWNOJRIW7JQXoUer6rOUUqRmN0/g1tYWq2trpCYhSSXNhbMhNDYU9JBUJokUPTEGax29Xo9eb/e+m6QiTPX7krPQOS8bkSr0q5aCJt5biiLHe8fOznbYjJJcwFJsxdDLe1i7g8wPgvjty7I5SvLvIgVUrLOYJORIDu73tY01CmslF2SSkqSpFKBxPhSmCeIbkmNYh3QdkmtY7t3WSWGRMlrBhPvl9taWiIyUm8q7eQ+tlxzAHonM0EpD4VAuRFQojwq5pcsNTilGF9ynhYRM27J4mhoswKYlv2SSopSm3++T57kUXcsSVJVLs8ArT5qkpFmKMQneefr9gjzPAYkiKZylX+T0+zlbW9tS8TpNJX8xSMXkIBr3+zlra2t7rq/rcc+Jg6WIcfjw4bvckkjkTx4bGxuMjY3d7WZcl6tXrwJxDIhE3g/u9TGgnAMcPXzsLrckEvmTx71+/cPuHOBHD/3oXW5JJPInj3t9DCjnAB//oU/d5ZZEIn/yuJnr/56rVuyc4+TJkzzxxBOcO3funq6odD+wvr7OoUOHYl/eJu7X/vTes7GxwcLCwm5eonuU1dVVxsfHOXv27D09gblfuF/P2XuR+7kv75cxIM4Bbi/38zl7L3K/9uf9cv1DnAPcbu7Xc/Ze5H7uy/tlDIhzgNvL/XzO3ovcr/15K9f/Pecc1Fpz4MABANrt9n3V8fcysS9vL/djf94vk+xy0BobG7vv+vhe5n48Z+9V7te+vB/GgDgHeH+IfXl7uR/78364/iHOAd4v7sdz9l7lfu3L+2EMiHOA94fYl7eX+7E/b/b6v3e3DiKRSCQSiUQikUgkEolEIpHI+0oUByORSCQSiUQikUgkEolEIpEHlHtSHKzVanzmM5+RctOR90Tsy9tL7M/3n9jHt5fYn7eP2Jd3htjPt4/Yl7eX2J/vP7GPby+xP28fsS/vDLGfbx+xL28vD0J/3nMFSSKRSCQSiUQikUgkEolEIpHIneGedA5GIpFIJBKJRCKRSCQSiUQikfefKA5GIpFIJBKJRCKRSCQSiUQiDyhRHIxEIpFIJBKJRCKRSCQSiUQeUKI4GIlEIpFIJBKJRCKRSCQSiTyg3HPi4C//8i9z9OhR6vU6L7zwAn/0R390t5t0T/LFL36Rn/iJn2BhYQGlFL/+67++53nvPf/kn/wT5ufnaTQafPKTn+T111/f85rl5WV+5md+hna7TafT4Wd/9mfZ3Ny8g9/i3uCXfumX+MhHPsLo6CgzMzP8+T//5zl58uSe13S7XT796U8zOTnJyMgIP/VTP8WlS5f2vObs2bP8mT/zZ2g2m8zMzPD3//7fpyiKO/lV/kQQx4AbE6//20e8/u8t4vV/c8Qx4PYRx4B7izgG3Jh4/d8+4vV/bxGv/5sjjgG3jzgG7OWeEgf/+3//7/ziL/4in/nMZ/jGN77Bs88+y6c+9SkuX758t5t2z7G1tcWzzz7LL//yL+/7/L/4F/+Cf/tv/y3/3//3//HSSy/RarX41Kc+RbfbrV7zMz/zM3z3u9/lt3/7t/mN3/gNvvjFL/JzP/dzd+or3DN84Qtf4NOf/jRf+cpX+O3f/m3yPOdHfuRH2Nraql7zd/7O3+F//+//za/+6q/yhS98gQsXLvCTP/mT1fPWWv7Mn/kz9Pt9/vAP/5D/9J/+E5/97Gf5J//kn9yNr3TfEseAmyNe/7ePeP3fO8Tr/+aJY8DtI44B9w5xDLg54vV/+4jX/71DvP5vnjgG3D7iGDCEv4d4/vnn/ac//enq39Zav7Cw4H/pl37pLrbq3gfwv/Zrv1b92znn5+bm/L/8l/+yemx1ddXXajX/X//rf/Xee//KK694wH/1q1+tXvO5z33OK6X822+/fcfafi9y+fJlD/gvfOEL3nvpuzRN/a/+6q9Wr/ne977nAf/lL3/Ze+/9b/3Wb3mttV9cXKxe8x/+w3/w7Xbb93q9O/sF7mPiGHDrxOv/9hKv/7tHvP7fHXEMuL3EMeDuEceAWyde/7eXeP3fPeL1/+6IY8Dt5UEfA+4Z52C/3+frX/86n/zkJ6vHtNZ88pOf5Mtf/vJdbNn9x6lTp1hcXNzTl2NjY7zwwgtVX375y1+m0+nw4Q9/uHrNJz/5SbTWvPTSS3e8zfcSa2trAExMTADw9a9/nTzP9/TnY489xuHDh/f059NPP83s7Gz1mk996lOsr6/z3e9+9w62/v4ljgG3h3j9vzfi9X93iNf/7SOOAe+NOAbcHeIYcHuI1/97I17/d4d4/d8+4hjw3njQx4B7RhxcWlrCWrunUwFmZ2dZXFy8S626Pyn763p9ubi4yMzMzJ7nkyRhYmLige5v5xy/8Au/wMc//nGeeuopQPoqyzI6nc6e1w735379XT4XuTFxDLg9xOv/3ROv/7tHvP5vH3EMePfEMeDuEceA20O8/t898fq/e8Tr//YRx4B3TxwDILnbDYhE7iU+/elP8/LLL/MHf/AHd7spkUjkDhOv/0jkwSaOAZHIg0u8/iORB5s4BtxDzsGpqSmMMe+o/HLp0iXm5ubuUqvuT8r+ul5fzs3NvSPBa1EULC8vP7D9/fM///P8xm/8Br/3e7/HwYMHq8fn5ubo9/usrq7uef1wf+7X3+VzkRsTx4DbQ7z+3x3x+r+7xOv/9hHHgHdHHAPuLnEMuD3E6//dEa//u0u8/m8fcQx4d8QxQLhnxMEsy3juuef4nd/5neox5xy/8zu/w4svvngXW3b/cezYMebm5vb05fr6Oi+99FLVly+++CIvD44nAAEAAElEQVSrq6t8/etfr17zu7/7uzjneOGFF+54m+8m3nt+/ud/nl/7tV/jd3/3dzl27Nie55977jnSNN3TnydPnuTs2bN7+vM73/nOnoH2t3/7t2m32zzxxBN35ovc58Qx4PYQr/9bI17/9wbx+r99xDHg1ohjwL1BHANuD/H6vzXi9X9vEK//20ccA26NOAYMcVfLoQzx3/7bf/O1Ws1/9rOf9a+88or/uZ/7Od/pdPZUfokIGxsb/pvf/Kb/5je/6QH/r//1v/bf/OY3/ZkzZ7z33v/zf/7PfafT8f/rf/0v/+1vf9v/uT/35/yxY8f8zs5OdYwf/dEf9R/84Af9Sy+95P/gD/7AP/LII/6nf/qn79ZXumv8zb/5N/3Y2Jj//Oc/7y9evFj92d7erl7zN/7G3/CHDx/2v/u7v+u/9rWv+RdffNG/+OKL1fNFUfinnnrK/8iP/Ij/1re+5f/P//k/fnp62v+jf/SP7sZXum+JY8DNEa//20e8/u8d4vV/88Qx4PYRx4B7hzgG3Bzx+r99xOv/3iFe/zdPHANuH3EM2Ms9JQ567/2/+3f/zh8+fNhnWeaff/55/5WvfOVuN+me5Pd+7/c88I4/f/Wv/lXvvZQx/8f/+B/72dlZX6vV/A/90A/5kydP7jnG1atX/U//9E/7kZER3263/V//63/db2xs3IVvc3fZrx8B/yu/8ivVa3Z2dvzf+lt/y4+Pj/tms+n/wl/4C/7ixYt7jnP69Gn/Yz/2Y77RaPipqSn/d//u3/V5nt/hb3P/E8eAGxOv/9tHvP7vLeL1f3PEMeD2EceAe4s4BtyYeP3fPuL1f28Rr/+bI44Bt484BuxFee/97fEgRiKRSCQSiUQikUgkEolEIpH7iXsm52AkEolEIpFIJBKJRCKRSCQSubNEcTASiUQikUgkEolEIpFIJBJ5QIniYCQSiUQikUgkEolEIpFIJPKAEsXBSCQSiUQikUgkEolEIpFI5AElioORSCQSiUQikUgkEolEIpHIA0oUByORSCQSiUQikUgkEolEIpEHlCgORiKRSCQSiUQikUgkEolEIg8oURyMRCKRSCQSiUQikUgkEolEHlCiOBiJRCKRSCQSiUQikUgkEok8oERxMBKJRCKRSCQSiUQikUgkEnlAieJgJBKJRCKRSCQSiUQikUgk8oASxcFIJBKJRCKRSCQSiUQikUjkASWKg5FIJBKJRCKRSCQSiUQikcgDShQHI5FIJBKJRCKRSCQSiUQikQeUKA5GIpFIJBKJRCKRSCQSiUQiDyhRHIxEIpFIJBKJRCKRSCQSiUQeUKI4GIlEIpFIJBKJRCKRSCQSiTygRHEwEolEIpFIJBKJRCKRSCQSeUCJ4mAkEolEIpFIJBKJRCKRSCTygBLFwUgkEolEIpFIJBKJRCKRSOQBJYqDkUgkEolEIpFIJBKJRCKRyANKFAcjkUgkEolEIpFIJBKJRCKRB5QoDkYikUgkEolEIpFIJBKJRCIPKFEcjEQikUgkEolEIpFIJBKJRB5QojgYiUQikUgkEolEIpFIJBKJPKBEcTASiUQikUgkEolEIpFIJBJ5QIniYCQSiUQikUgkEolEIpFIJPKAEsXBSCQSiUQikUgkEolEIpFI5AElioORSCQSiUQikUgkEolEIpHIA0oUByORSCQSiUQikUgkEolEIpEHlCgORiKRSCQSiUQikUgkEolEIg8oURyMRCKRSCQSiUQikUgkEolEHlCiOBiJRCKRSCQSiUQikUgkEok8oERxMBKJRCKRSCQSiUQikUgkEnlAieJgJBKJRCKRSCQSiUQikUgk8oASxcFIJBKJRCKRSCQSiUQikUjkASWKg5FIJBKJRCKRSCQSiUQikcgDShQHI5FIJBKJRCKRSCQSiUQikQeUKA5GIpFIJBKJRCKRSCQSiUQiDyhRHIxEIpFIJBKJRCKRSCQSiUQeUKI4GIlEIpFIJBKJRCKRSCQSiTygRHEwEolEIpFIJBKJRCKRSCQSeUCJ4mAkEolEIpFIJBKJRCKRSCTygBLFwUgkEolEIpFIJBKJRCKRSOQBJYqDkUgkEolEIpFIJBKJRCKRyANKFAcjkUgkEolEIpFIJBKJRCKRB5QoDkYikUgkEolEIpFIJBKJRCIPKFEcjEQikUgkEolEIpFIJBKJRB5QojgYiUQikUgkEolEIpFIJBKJPKBEcTASiUQikUgkEolEIpFIJBJ5QIniYCQSiUQikUgkEolEIpFIJPKAEsXBSCQSiUQikUgkEolEIpFI5AElioORSCQSiUQikUgkEolEIpHIA0oUByORSCQSiUQikUgkEolEIpEHlCgORiKRSCQSiUQikUgkEolEIg8oURyMRCKRSCQSiUQikUgkEolEHlCiOPgA8YM/+IN89rOfvWuf/9nPfpZOp3PNf0ciDwr/9J/+U/7aX/trd7sZkUjkHiWOEfcGi4uL/PAP/zCtVivOVyL3JHd7bg/w+c9/HqUUq6urd7UdkUhkf+6FcaJEKcWv//qv3/Tr4/hyZ4ni4G3kP/yH/8AzzzxDu92m3W7z4osv8rnPfW7Pa7rdLp/+9KeZnJxkZGSEn/qpn+LSpUvV81evXuVHf/RHWVhYoFarcejQIX7+53+e9fX1Pcf55V/+ZR5//HEajQaPPvoo//k//+f33P7Tp0+jlALeuTC53ncrL9rr/fn85z/PX/pLf4nXXnutOubwvwF2dnb4zGc+w4kTJ6jVakxNTfEX/+Jf5Lvf/e4tf49vfetb73juB3/wB/mFX/iF29InkfubjY0NfuEXfoEjR47QaDT42Mc+xle/+tXq+TzP+Yf/8B/y9NNP02q1WFhY4K/8lb/ChQsXqtecPn2an/3Zn+XYsWM0Gg0eeughPvOZz9Dv999z+44ePcrnP/95Pv/5z3P06NF3fZwvfOEL/Ok//aeZmJig2WzyyCOP8Ff/6l+9LW0s2e+a29jY4E/9qT/FE088wfnz5294jH/1r/4V4+PjdLvddzy3vb1Nu93m3/7bfwtI35RjizGGhYUFfvZnf5aVlZXqPcPj0vT0ND/+4z/Od77znT3H/mt/7a9Vr0nTlGPHjvEP/sE/eEc7vvGNb/DDP/zDdDodJicn+bmf+zk2Nzff0db/9J/+f/bePN6Sorz/f1dVd59z7n7n3jv7ygy7ArKIgLKJgAsixgCKBhPUxC8aIwkaggaM+SlJNLhGiQpuIIQoUVFRZHVBQPZ9GGAWZr2z3P0s3VXP74/q7nvOXWbu4ACD3g+vw9zTp7q7qrqquupTn+d5vsVhhx1GU1MTra2tHHPMMVx//fUNaeqf6bvf/W4uvvjiHdbPNHYtbr/9dk455RTmzp074UR1Kv0fptYu7r77bl772tfS0dFBZ2cnJ510Eg888MAfXIbJxoj6Nl3/2X///RvSvOUtb5n02k899RSnnXYaPT09tLW1cfrppzfMVV4s7CjfO5pj7SwuvfRS1q9fz/3338/y5cu5+OKLtzvX+cQnPrHDa073/5cWPv3pT3PYYYfR2trKzJkzectb3sITTzzRkOav//qvWbp0KaVSiZ6eHk499VQef/zx/PdvfvObk7aZTZs25ele6Ln9RP3pf//3fykWi3z2s5/llFNO4eSTT57wur/61a9QSvHggw/+wXncnbEza4pdNW+bxksPUxkndub9tGXLFubPnz+OFFu/fj3veMc72GuvvdBa79SadnvY0Xp3w4YNfOhDH2LZsmUUi0VmzZrFUUcdxVe+8hVGRkbydFOZO6xfv57Xv/71U87bkUceyfr162lvbwfgiSee4LjjjmPWrFkUi0X22GMPPvaxjxHHcX5O/bvaGMOCBQt43/vex9atW3e2ahqumdVL1tf/GDFNDu5CzJ8/n0suuYR77rmH3//+9xx//PGceuqpDcTWhz/8YX784x9z7bXXctttt7Fu3Tre+ta35r9rrTn11FP50Y9+xPLly/nmN7/JL3/5S/7mb/4mT/OVr3yFCy64gIsvvphHHnmET3ziE5x77rn8+Mc/flHKlnXa7HP66adz8sknNxw78sgjKZVKzJw5M7/m2O/VapUTTjiByy+/nH/9139l+fLl/PSnPyVJEg4//HB+97vfPW/lm8afHt7znvdw44038p3vfIeHHnqIE088kRNOOIG1a9cCnpC69957+fjHP869997LD37wA5544gne/OY359d4/PHHcc5x2WWX8cgjj3DppZfy1a9+lX/6p396sYrVgEcffZSTTz6ZQw89lNtvv52HHnqIL37xi0RRhLX2ebtvb28vxx13HMPDw/zqV79i/vz5OzznXe96F8PDw/zgBz8Y99v//u//UqvVeOc735kf+5d/+RfWr1/P6tWrufLKK7n99tv527/923HnPvHEE6xfv56f//znVKtV3vjGN44jRrPx6umnn+bSSy/lsssu46KLLsp/X7duHSeccALLli3jzjvv5IYbbuCRRx4ZN3n6h3/4B/76r/+aM844gwcffJC77rqLV7/61Zx66ql86Utf2mEdTOOFw/DwMAceeCBf/vKXJ/x9Kv1/Ku1iaGiIk08+mYULF3LnnXfy61//mtbWVk466aSGieyuxOc///mG9++aNWuYMWMGf/7nfz6l84eHhznxxBNRSnHzzTfzm9/8hlqtximnnIJz7nnJ867CjuZYYyEiJEky7ng2Rjz11FMccsgh7LnnnsycOZN/+Id/aKjb7PPud7+bjo4O3vGOdzxvZZvGi4PbbruNc889l9/97nfceOONxHHMiSeeyPDwcJ7mkEMO4YorruCxxx7j5z//OSLCiSeemL9nzzjjjHFt5qSTTuKYY47J58Evxtx+LL7+9a9z1lln8ZWvfIW///u/55xzzuHGG2+ccIPviiuu4NBDD+WAAw54wfI3jWnsrpjKOLEz76dzzjlnwr5VrVbp6enhYx/7GAceeODzVp56PP3007ziFa/gF7/4BZ/61Ke47777uOOOO/jIRz7C9ddfzy9/+Utg6nOH2bNnUygUpnz/KIqYPXt2Tl6GYchf/MVf8Itf/IInnniCz33uc3zta19rmLcD7L///vk64YorruCGG27g/e9//y6okT9yyDSeV3R2dsrXv/51ERHp6+uTMAzl2muvzX9/7LHHBJA77rhj0mt8/vOfl/nz5+ffjzjiCPmHf/iHhjTnnXeeHHXUUdvNyzHHHCNXXHHFpL8/88wzkjWJiy66SM4+++ztXq++bPU4++yz5dRTTx13/IorrpD29vZJv19yySWilJL777+/4TxrrRx66KGy3377iXNORESAcZ9FixY1lOO+++4bl4djjjlGPvShD+Xfv/3tb8shhxwiLS0tMmvWLHn7298uGzdufM51Mo2XBkZGRsQYI9dff33D8YMPPlguvPDCSc+76667BJBVq1ZNmubf//3fZcmSJdu9/1Ta0qJFi+SWW26RW265JW/bfX19orWWu+++W0R83+js7JTDDz88P+873/lOPl5ceumlsnjx4u3eJ+uH1113nSxbtkwKhYKceOKJsnr1ahEReeKJJwSQxx57rOG8//zP/5Q99thDRBr73OrVq2XvvfeW448/XgYHB7d777F461vfKq997WvHHT/mmGPkjDPOaKibSy+9tCHNJz/5Sdlvv/3y77fccosAsm3btvzYj370IwHkgQceyI9NNF699a1vlVe84hX598suu0xmzpwp1tr82IMPPiiAPPnkkyIicscddwggX/jCF8bl/7zzzpMwDPM6rX+mZ599tlx00UUTV8g0XhAAct111+0w3dj+P5V2cffddwuQP/uJ0kyE5zpGTITrrrtOlFKycuXK/Nhk72kRkZ///OeitZb+/v78WF9fnyil5MYbb8yPfeQjH5E999xTSqWSLFmyRD72sY9JrVZruNaPfvQjOfTQQ6VQKEhXV5e85S1v2W6ZdoTt5Xsqc6xsXPjpT38qBx98sIRhKLfccoscc8wxcu6558qHPvQh6erqkmOPPVYWLVrUMMeY7Hl897vfFWOM3HDDDfmx+++/X4499lhpaWmR1tZWOfjgg/Nxe7r/v7SxadMmAeS2226bNM0DDzwggKxYsWLSa4RhKN/+9rfzYy/G3L6+P/3bv/2bFItF+cEPfpD/HsexzJo1Sz75yU82XHNwcFBaWlrkK1/5ioiM9qvrr79eXv7yl0uhUJDDDz9cHnrooe3mvR4PPfSQKKVk06ZNIiKyZcsWUUo1vPs/+clPNtTHQw89JCeffLI0NzfLzJkz5Z3vfKf09vY21M0HP/hBOf/886Wzs1NmzZo1rr8B8l//9V9y8sknS7FYlCVLljSMITuzppjqmDyNP36MHSd2hgP4r//6LznmmGPkpptuGjePrcfY9rc9/CHjxEknnSTz58+XoaGhCc/N1uZTnTuMnXPdeeedctBBB0mhUJBDDjlEfvCDHzT0uYnm82Px4Q9/WF796lfn3y+66CI58MADG9Kcd9550tnZmX//+7//e3njG9+Yf7/00ksFkJ/97Gf5saVLl8rXvva1cfWS9fU/RkwrB58nWGu5+uqrGR4e5ogjjgDgnnvuIY5jTjjhhDzdPvvsw8KFC7njjjsmvM66dev4wQ9+wDHHHJMfq1arFIvFhnSlUom77rrreVMi1GOisu0KXHXVVbzuda8btxOitebDH/4wjz76aG6KVb/7umLFCpYtW8bRRx+90/eM45hPfvKTPPDAA/zf//0fK1eunDYd/hNAkiRYayfsR7/+9a8nPa+/vx+l1HZ9T/X39zNjxoxdldUGtLe3c9BBB+VS9oceegilFPfdd19uynjbbbfl48Xs2bNZv349t99++3avOzIywv/3//1/fPvb3+Y3v/kNfX19nHnmmQDstddeHHrooVx55ZUN51x55ZXjVDJPPPEERx11FPvttx8//elPaWlp2anynXPOOdx8882sWrUqP/b0009z++23c84550x63tq1a/nxj3/M4YcfPmma/v5+rr76asDvQk6Ghx9+mN/+9rcNaarVKlEUofXoK7NUKgHk7eV73/seLS0t/PVf//W4a/793/89cRzz/e9/f9L7TmP3x9j+P5V2sffee9PV1cU3vvENarUa5XKZb3zjG+y7774vmNnZN77xDU444QQWLVo0pfTVahWlVMPOfrFYRGvdMD62trbyzW9+k0cffZTPf/7zfO1rX+PSSy/Nf//JT37Caaedxhve8Abuu+8+brrpJl75ylfuuoKNwc7Msf7xH/+RSy65hMceeyxXZ3zrW98iiiJ+85vf8NWvfpW7776bk08+mdNPP53169fz+c9/fsJ7vve97+WSSy7hpJNOyo+fddZZzJ8/n7vvvpt77rmHf/zHfyQMw+ep5NN4IdHf3w8w6Xt+eHiYK664giVLlrBgwYIJ03z729+mqamJt73tbfmxF3Nu/9GPfpRPfvKTXH/99Zx22mn58SAI+Iu/+Au++c1vIiL58WuvvRZrLW9/+9sbrnP++efz2c9+lrvvvpuenh5OOeWUKed9//33p6uri9tuuw3wZsv138HPb4499lgA+vr6OP7443nFK17B73//e2644QY2btzI6aef3nDdb33rWzQ3N3PnnXfy7//+7/zLv/wLN954Y0Oaj3/84/zZn/0ZDzzwAGeddRZnnnkmjz322JTyPY1pTISx48RU30+PPvoo//Iv/8K3v/3thrnFi4UtW7bwi1/8gnPPPZfm5uYJ02SKvqnOHeoxNDTEm970Jvbbbz/uueceLr74Yv7hH/5hp/K4YsUKbrjhhgauZCxWrlzJz3/+84a5/THHHMOvf/3rXOF922230d3dna+x1q5dy1NPPZWPOX8yeLHZyT82PPjgg9Lc3CzGGGlvb5ef/OQn+W9XXnmlRFE07pzDDjtMPvKRjzQcO/PMM6VUKgkgp5xyipTL5fy3Cy64QGbPni2///3vxTknd999t8yaNUsAWbdu3aR529GuwR9Stno8V+VgsVicdAfk3nvvFUCuueaahuPOOTnttNPkkEMOkZGREREZ3f0olUrS3Nzc8NFab3eXJVN57KziaRovPRxxxBFyzDHHyNq1ayVJEvnOd74jWmvZa6+9JkxfLpfl4IMPlne84x2TXvPJJ5+UtrY2+e///u/t3vsPUaGed955+U7X5z73OTnjjDPkwAMPzHe6li1blt8/SRJ597vfLYDMnj1b3vKWt8gXv/jFhl29K664QgD53e9+lx/LdjPvvPNOEfG7aUuXLs1/H6smzPpcFEVy3HHHSZIkz6lsSZLIvHnzGnb2P/7xj8vChQsb1FmLFi2SKIqkublZisWiAHL44Yc37CpmO41Z3ydV/7z5zW9uuOfZZ58txhhpbm6WQqEggGit5X//93/zNA8//LAEQSD//u//LtVqVbZu3Sp/9md/JoB86lOfEhGRk08+edwuZT3a2trk/e9//3Oql2k8v2AKysGJ+v9U2oWIV7csXbpUtNaitZa99967QcU3EXaVUn3t2rVijBn37tyeAm/Tpk3S1tYmH/rQh2R4eFiGhobkAx/4gADyvve9b9J7/cd//Icccsgh+fcjjjhCzjrrrD+4DFPN91TmWNm48H//938NaY455pgGtXCGU089ddLnsHHjRlmwYIG8853vHPdba2urfPOb39xBaabxUoO1Vt74xjdOqOb78pe/nL9r9t5770lVgyIi++6777j3wYsxtz/77LMliiIB5KabbpowTTYfqFfJvOY1r2lo91m/uvrqq/NjW7ZskVKpNG7s2R7e+ta3yrnnnisiIn/3d3+XK/4ee+wxqdVq0tTUJL/4xS9ExKsITzzxxIbz16xZI4A88cQTIuLrpl5NJOLHg49+9KP5d0D+5m/+piHN4Ycfnj+fnVEOTmMaIhOPE1N5P1UqFTnggAPkO9/5jojsWDG3K5WDk+F3v/udAA2KYhGRrq6ufH6d5X+qc4f6Oddll10mXV1dDTzHV77ylSkpB4844oh83v6+972vYZ1w0UUXida6YZ0AyH/+53/mabZt25ZbYznnZMaMGfLpT386t8b67ne/K/PmzdvpOnup48WnpP/IsPfee3P//fdz55138v73v5+zzz6bRx99dKevc+mll3Lvvffywx/+kKeeeorzzjsv/+3jH/84r3/963nVq15FGIaceuqpnH322QDP6y7Drirb9iB1O5MTYazi55/+6Z+44447+OEPf5grNjJcc8013H///Q2fQw89tCHNPffcwymnnMLChQvz4AEAq1ev3gWlmcbujO985zuICPPmzaNQKPCFL3yBt7/97RP2oTiOOf300xERvvKVr0x4vbVr13LyySfz53/+57z3ve993vJdv9OV7aIfe+yx3Hrrraxbt44VK1bku1zGGK644gqeffZZ/v3f/5158+bxqU99KvfDkSEIAg477LD8+z777ENHR0e+c37mmWeycuXK3O/nlVdeycEHH8w+++zTkLc3v/nN/OpXv5rQb+BUYIzh7LPPzlUKzjm+9a1v8Zd/+Zfjnsv555/P/fffz4MPPshNN90EwBvf+MZxvhR/9atfcc899/DNb36Tvfbai69+9avj7nvcccflY9vZZ5/NX/7lX/Jnf/Zn+e/7778/3/rWt/jsZz9LU1MTs2fPZsmSJcyaNashXzsav6bx0sRk/X8q7aJcLnPOOedw1FFH8bvf/Y7f/OY3vOxlL+ONb3wj5XL5ec/7t771LTo6OrYbxGMsenp6uPbaa/nxj39MS0sL7e3t9PX1cfDBBze092uuuYajjjqK2bNn09LSwsc+9rGGd+f999/Pa1/72l1ZnF2GsXMB8H7jpoo4jnnb297GrFmz+NrXvjbu9/POO4/3vOc9nHDCCVxyySU89dRTf1B+p7F74Nxzz+Xhhx/OVej1OOuss7jvvvu47bbb2GuvvTj99NMnDLB1xx138Nhjj41Tw79Yc/sDDjiAxYsXc9FFF00YZGufffbhyCOP5PLLLwe8SudXv/rVhGr+emuiGTNmsPfee++UAu+YY47JVTtZMLWjjz6aW2+9lbvvvps4jjnqqKMAeOCBB7jllltoaWnJP9mcpL6/jfXbNmfOnIYgMGPznX2fVg5O47lie+PE9nDBBRew7777NvjX3l1x1113cf/997P//vtTrVaBqc8d6pGp9+tV01O1Srzmmmu49957ueqqq/jJT37CZz7zmYbfM97i7rvv5qMf/SgnnXQSH/zgB/PfOzo6OPDAA7n11lt56KGHiKKI973vfbk1Vr0l1p8SpsnBXYwoili2bBmHHHIIn/70pznwwANzU5TZs2dTq9XGheLeuHEjs2fPbjg2e/Zs9tlnH9785jdz2WWX8ZWvfCVfzJdKJS6//HJGRkZYuXIlq1evZvHixbS2ttLT0/OilG1XYM8995z0ZZwd32uvvfJj3/3ud7n00ku57rrrmDdv3rhzFixYwLJlyxo+9QTi8PAwJ510Em1tbVx55ZXcfffdXHfddQC7NJLrNHZPLF26lNtuu42hoSHWrFmTm+7sscceDekyYmDVqlXceOONtLW1jbvWunXrOO644zjyyCP57//+7+c130cffTSDg4Pce++93H777Q3k4G233cbcuXPZc889G86ZN28e73rXu/jSl77EI488QqVSmZAkmwyzZ8/m+OOP56qrrgK8C4CzzjprXLoLL7yQf/7nf+Yd73gH//M///OcyvdXf/VXrF69mptvvpmbbrqJNWvW8Jd/+Zfj0nV3d7Ns2TL23HNPjj/+eD73uc/x29/+lltuuaUh3ZIlS9h77705++yzec973sMZZ5wx7lrNzc0sW7aMAw88kMsvv5w777yTb3zjGw1p3vGOd7BhwwbWrl3Lli1buPjii+nt7c3by1577cXTTz894dixbt06BgYGGsavabw0sKP+v6N2cdVVV7Fy5UquuOIKDjvsMF71qldx1VVX8cwzz/DDH/7wec27iHD55Zfzrne9a7um9BPhxBNP5KmnnmLTpk1s3ryZ73znO6xduzYv1x133MFZZ53FG97wBq6//nruu+8+Lrzwwob2P3bD7vnGzsyxJjKPmsxkaiL87d/+LU8++STXXXfdOFNQIA8q8cY3vpGbb76Z/fbbL59fTOOliQ984ANcf/313HLLLRMG2Wpvb2fPPffk6KOP5n//9395/PHHJ3zmX//61znooIPGkdEv1tx+3rx53HrrrfkG5+Dg4Lg055xzDt///vcZHBzkiiuuYOnSpc/LovnYY4/l0Ucf5cknn+TRRx/l1a9+dcP85tBDD6WpqQnw5oinnHLKOBHAk08+2eBmaKw5v1JqpwIrZWN+ZiZaj76+vjyC6jSmAZOPE1N5P918881ce+21BEFAEAT55lp3d/e4YBsvFJYtW4ZSalzk5T322GPcuhp2PHfYlViwYAH77bcfb3/727nkkku4+OKLGwQCGW/xspe9jEsuuQRjDJ/4xCcarlE/vhxzzDHMmDGDfffdl1//+tfT5OA0nh8453JG/ZBDDiEMw1zlAt5H1+rVq7fLkmcvsew6GcIwZP78+RhjuPrqq3nTm970gvonqC/brsDb3/52fvnLX+Z+Bevvc+mll3LooYey3377AX5h8p73vIfLLruMV73qVc/pfo8//jhbtmzhkksu4TWveQ377LPPuN3Eafzxo7m5mTlz5rBt2zZ+/vOfc+qpp+a/ZcTAk08+yS9/+Uu6urrGnb927VqOPfbYPFrh890HOzo6OOCAA/jSl75EGIbss88+HH300dx3331cf/31O3yRdXZ2MmfOnIYIakmS8Pvf/z7//sQTT9DX18e+++6bHzvrrLO45ppruOOOO3j66adzn4Rj8fGPf5yLL744T7+zyBYdl19+OVdcccWUfaUZYwC2q8bKdnO3t0jXWvNP//RPfOxjH5vwWrNmzaKlpYVrrrmGYrHI6173OsCrK4eGhrjsssvGnfOZz3yGMAwb1IjT2P0xlf6fYbJ2MTIygtY698kD5N+f78i/t912GytWrNiuv84dobu7m46ODm6++WY2bdqUR2v+7W9/y6JFi7jwwgs59NBD2XPPPRt8hYJX7NTPd55vPNc51s7iv//7v7n88sv5/ve/v91I7HvttRcf/vCH+cUvfsFb3/pWrrjiil2Wh2m8cBARPvCBD3Dddddx8803s2TJkimdIyLj5shDQ0P8z//8z3b75Isxt1+0aBG33XYbGzZsmJAgPP3009Fac9VVV/Htb3+bv/qrv2oY0zJk1gUA27ZtY/ny5Q3ziB3h5S9/OZ2dnfzrv/4rBx10EC0tLRx77LHcdttt3HrrrQ2+vw4++GAeeeQRFi9ePE4IsDNE/9h8Z9+zfM+YMYPu7m7uueeehjQDAwOsWLFietNvGsCOx4mpvJ++//3v88ADD+RE99e//nXAW8Cce+65L1xh6tDV1cXrXvc6vvSlLzWsG3aEyeYOY7Hvvvvy4IMPNqisx/bHqcA5RxzH251XfexjH+Mzn/kM69aty49l1lg33XRTPr4ce+yxfO9732P58uV/ev4GgeDFzsAfEy644AJe//rXs3DhQgYHB7nqqqu49dZb+fnPfw74XcVzzjmH8847jxkzZtDW1sYHP/hBjjjiiJzg+ulPf8rGjRs57LDDaGlp4ZFHHuH888/nqKOOyp2XL1++nLvuuovDDz+cbdu28Z//+Z88/PDDfOtb33rRyrYr8OEPf5gf/vCHnHLKKXz2s5/l8MMPZ+PGjXzqU5/iySef5Le//S0AGzZs4LTTTuPMM8/kpJNOYsOGDYAnB3Zmd3XhwoVEUcQXv/hF/uZv/oaHH36YT37yk7usPNPYvfHzn/8cEWHvvfdmxYoVnH/++eyzzz65Si0zG7v33nu5/vrrsdbmbW3GjBlEUZQTg4sWLeIzn/kMvb29+fXHKlV2JY499li++MUv5s7Ms52ua665hi9/+ct5ussuu4z777+f0047jaVLl1KpVPj2t7/NI488whe/+MU8XRiGfPCDH+QLX/gCQRDwgQ98gFe96lUNwQPe+ta38v73v5/3v//9HHfcccydO3fS/F144YUYYzjrrLNwzo1zWr4jnHPOOblp9je/+c0J0wwODrJhwwZEhDVr1vCRj3yEnp4ejjzyyEmv29TUxHvf+14uuugi3vKWt0y4uAH48z//c84//3y+/OUv546Rv/SlL3HkkUfS0tLCjTfeyPnnn88ll1ySB6c44ogj+NCHPsT5559PrVbjLW95C3Ec893vfpfPf/7zfO5zn5vUOf00XngMDQ2xYsWK/PszzzzD/fffz4wZM1i4cOGU+j/suF287nWv4/zzz+fcc8/lgx/8IM45LrnkEoIg4Ljjjntey/iNb3yDww8/nJe97GUT/t7f38/999/fcKyrq4sFCxZwxRVXsO+++9LT08Mdd9zBhz70IT784Q+z9957A17pv3r1aq6++moOO+wwfvKTn4wj3S+66CJe+9rXsnTpUs4880ySJOGnP/0pH/3oR/+gcm0v3zuaY/2h+M1vfsMHP/hB/vmf/5k99tgjbxMZSqUSURRx/vnn87a3vY0lS5bw7LPPcvfdd09vDrxEce6553LVVVfxwx/+kNbW1vyZt7e3UyqVePrpp7nmmms48cQT6enp4dlnn+WSSy6hVCrxhje8oeFa11xzDUmSTGg2+GLM7euxYMECbr31Vo477jhOOukkbrjhhlw119LSwhlnnMEFF1zAwMDApIH7/uVf/oWuri5mzZrFhRdeSHd39065NFBKcfTRR3PllVfm794DDjiAarXKTTfd1OBi6dxzz+VrX/sab3/72/nIRz7CjBkzWLFiBVdffTVf//rX8w3DqeDaa6/l0EMP5dWvfjVXXnkld911V4P1wHnnncenPvUpZs2axate9Sq2bNnCJz/5SXp6enjrW9865ftM448XOxonpsIBLF26tOGamzdvBjyBVh8IMXv/DQ0N0dvby/33308URbmAZlfjv/7rvzjqqKM49NBDufjiiznggAPQWnP33Xfz+OOPN6igdzR3GIt3vOMdXHjhhbz3ve/lggsuYOXKlePMg8fiyiuvJAxDXv7yl1MoFPj973/PBRdcwBlnnLHdwF9HHHEEBxxwAJ/61Kf40pe+BIxaY11//fVccsklgF9jve1tb2POnDl/muT/i+Lp8I8Uf/VXf5U7yu/p6ZHXvva1uePcDOVyWf7f//t/0tnZKU1NTXLaaafJ+vXr899vvvlmOeKII6S9vV2KxaLsueee8tGPfrTBCeejjz4qBx10kJRKJWlra5NTTz1VHn/88R3m7w9xWjyVsmV4rgFJRESGhobkwgsvlKVLl0oQBALIsmXLZM2aNXmazDHp2M+iRYtEZOecB1911VWyePFiKRQKcsQRR8iPfvSjSc+dxh8XrrnmGtljjz0kiiKZPXu2nHvuudLX15f/nrWjiT6ZY+4smMdEn+3hDw02cN111wkgX/nKV/JjH/rQhwRoGAvuvfdeeec73ylLliyRQqEgXV1dcvTRR8uPfvSjPE3WD7///e/LHnvsIYVCQU444QRZtWrVuPuefvrpAsjll1/ecHyyPvdv//ZvYoyRK6+8cqfKNzIyIu3t7TJjxgypVCrjfl+0aFFDXff09Mgb3vCGhvtP5sB49erVEgRB7iR9svHq05/+tPT09MjQ0JCIiLzrXe+SGTNmSBRFcsABB8i3v/3tCfP+jW98Qw455BApFovS3Nwsr3nNaxrqexq7ByZ7j2T9cir9X2Rq7eIXv/iFHHXUUdLe3i6dnZ1y/PHHyx133LHd/P2hY0RfX5+USqVJgyOdffbZE5btnHPOERGRj370ozJr1iwJw1D23HNP+exnPyvOuYZrnH/++dLV1SUtLS1yxhlnyKWXXjrunf79739fDjroIImiSLq7u+Wtb33rcy7TVPK9oznWZOPCZI7dxwYkyQI8TfY5++yzpVqtyplnnikLFiyQKIpk7ty58oEPfKDB4fo0XjqY7Fln8+m1a9fK61//epk5c6aEYSjz58+Xd7zjHRPOy4844ohJg5q9GHP7id5/zz77rOy5557yqle9qiF42W9/+1sB5A1veMO462T96sc//rHsv//+EkWRvPKVr5QHHnhgp/N06aWXCpAHWRPx/TAIgnHBApcvXy6nnXaadHR0SKlUkn322Uf+7u/+Lh+rJurXY/s0IF/+8pflda97nRQKBVm8ePG4ICpJksgXvvAFefnLXy5NTU0yf/58OeOMM+SZZ57Z6fJN448TOxonRHb8fhqLyd5X21sDT4Y/NCjpunXr5AMf+IAsWbJEwjCUlpYWeeUrXyn/8R//IcPDw3m6qcwdGBME7o477pADDzxQoiiSgw46SL7//e9vNyDJ1VdfLQcffLC0tLRIc3Oz7LfffvKpT32q4R170UUXTRgk8Hvf+54UCgVZvXp1fuzAAw+U2bNn59+3bNkiSik588wzn3N9vZShRKY9qP+p4Nhjj+Xd7373pDt+zzcuu+wyPvnJT/Lss89O+H0i/OxnP+O0007jM5/5DB/4wAdeqKxOYxrPKy6++GJWrlw5qSruhcQ3v/lN/u7v/m6cH5RpTGMaLx52pzFiGtOYxu6LF3tu/1KHUorrrrtupxSO05jGSw27yzhRrVYpFovceOONnHDCCROmWblyJUuWLOG+++7joIMOemEzOI1pn4PTeGGwZs0afvrTn7L//vtP+H0yvP71r+dnP/sZW7duzeXV05jGNKYxjWlMYxrTmMY0pjGNaUxj98fAwADf+9730FrnkcWnsfth2ufgNF4QHHzwwcybNy9XQYz9vj0cd9xxz7tvpmlMYxrTmMY0pjGNaUxjGtOYxjSmsWtx0UUXcdVVV/Fv//Zv2w3mNY0XF8+bcvDLX/4yixcvplgscvjhh3PXXXc9X7eaxhTx7ne/+0WT52YOU7P7j/0+jT8uTPf/7ePYY4/dbUxY3v3ud0+bFE9jl2N6DPjDsDuNEdOYxs5iuv+/cHgx5/Z/DBCR6bH2ecD0GLB7YXcYJy699FI2btyYBxuaDIsXL0ZEXvT8/qniefE5eM011/AXf/EXfPWrX+Xwww/nc5/7HNdeey1PPPEEM2fO3NW3m8Y0prEbYbr/T2Maf9qYHgOmMY0/XUz3/2lM408b02PANKbx0sXzQg4efvjhHHbYYXmYaOccCxYs4IMf/CD/+I//uKtvN41pTGM3wnT/n8Y0/rQxPQZMYxp/upju/9OYxp82pseAaUzjpYtd7nOwVqtxzz33cMEFF+THtNaccMIJ3HHHHePSV6tVqtVq/t05x9atW+nq6kIptauzN41p/ElCRBgcHGTu3Llo/fzFIdrZ/g/TY8A0pvFCYHcdA6b7/zSm8fxjd+3/MD0GTGMaLwR21zFguv9PYxrPP3am/+9ycnDz5s1Ya5k1a1bD8VmzZvH444+PS//pT3+aT3ziE7s6G9OYxjQmwJo1a55XJ7A72/9hegyYxjReSOxuY8B0/5/GNF447G79H6bHgGlM44XE7jYGTPf/aUzjhcNU+v+LHq34ggsu4Lzzzsu/9/f3s3DhQtasWUNbW9uLmLNdDxHBOUeSJFSrVYaHhxkaGqJSqeTHnXOICCKCUoogCAjDkCiKKBQKDf9GUYRSCmNMvrsylV2WLE1mUf7HtjNTX656q/n6cmZ1nH2stcRxTK1Wo1arUalUqFQqVKtVnHN5PRcKBYrFIqVSiWKxSBiGBEGA1vp53Yn7QzEwMMCCBQtobW19sbMyDpONAQ+uuoam1iJGa7BCaAxJnACK7EkqAYzGiqBUgNEBiXUERoM4tFIkSYxzFqU14PL7KKNBGWwiBFoINYgy1JzFKoVWGkmc/xcLkmB0gBIDKiBxliDwbSyJE1AOpYTAFLBJAghhGFKrVn3b0OBEUEYjTqEshEahsCQOUCHWORQKcQ5lfP5FQpQGpOILrAzWOgwBoHE6oawGWTP0NDffexs3/+pu4mrMEa98BUcdeCTL5ixlRtRGKC2QlDDagarhEIwC5xKqiUGbAoEWxMZEQYQ4hyBoBU4cIg5tDADWCTiNMRqRBHCI9vWpAeUsNZsQqyIYTaAqKBISiRm0I1gSKskAQ3E/lbhCQZWY1TKP9qCbQBURBEliFAqNQaFIxCGBRnCIxBhlUKJANEoZnEtAKZQOcHFCaEApixOH1QalApSAOIs4i9LG16sDJYLSIOJQ2mCdINYRmBCFIUnH7iCIQAmiEpyLEQGtDM4JRhvEgXIOowXrLKKFwGiMCn3+xSFWEATnLMbotDUbMAqUwzoL6TGNAicYHfjn7hxxXCOINFr55pAkCVprjDYordLxyuCsQ5xDa3+5kcEKey9+2243BkzW/5+6+j5am3avvD6/EOD5fxcrAYNvJw5BhdqPjyg/nopGlMYpledIiUNnfSQfQxWIIhuPBf9eVVohYlEKlAZnk7Qf+4YoaJyi7tr+qCBIejy7oMr/zP6qry0ZTdRwzCdV2YUky59Pm80Ixl4t/yu7tyiUpHlWqiFN4/nS8IsCtPj76jTnkl5XsrTZ3yqdq8horiStp7H5Uvl3Gf2rbk6jUI1znDFlHBwZZOnpB+12/R8mHwMeWLOa1l26DngufWwq50yWZmfu98L0/12L5zPP089q10IYHBjkwAULd7sxYLL+/8NVa2jO+78w0VJ1nGc0AZ9QjUsn4tLrqHHr4AzZb9naMFvXTbSuzP6uv9bYdXX999FjAGPXp5C/+PKCjOZponI75xquPdlavp5TqD820fXHHvdlzPLGmHSC1o1lH5uHxnqov964XDL6jNN3nOQrPfKZgGpMLw3vSDXBOdCw7vOZmrC8U0FWnrF1v73rZe1oLO9Qz91Mlo+J2udEecrSjW1/qm69PDwwwCmLptb/dzk52N3djTGGjRs3NhzfuHEjs2fPHpe+UChQKBTGHW9ra/ujIwehcfDISMJarQaQE1PVajUnpjLCsFarNaQvlUqICFEUYYwhCIIGkkprPelA8cdGBo7FZKRnfd1nA2tW59baXNoexzHOOaIoolQqEUURxWKRYrFIoVAgDEPCMMw79s4Qsy82nu887mz/h+2NAS2U2koESmFEY/B9xCkItEErRaAM5VoFpxXGhCilMcqAOBBIbAL4fqG0phbXMEajUyLFEJI4kLiGlgQThFRsAlGIdRblhFJYwJGQ2CpGGTQhohQjlTKFQojWCmutfwEYUGhwYU4qF5sCtDaepHKOKIhwotJ8WpTEaAziNNb5pbcoDcaR2CoFU0BZASJEKxKXoLVCaSGhSkXFLF/zGD/93S94YPmjFLtbedMrj+R1h72Gea1LKbgixsVoilgpEhlBpIoDjBaSuEyTitBBAWwCzlAICjjrUlLVEDuLU0IQBIhKyUvnKAYFcIpaYkmM4LQlVIrI+pdnTIgLFIlylBmmagfoG9nEUG0YpTVtLa0sLi2iSbXTbNoxOkIB1sUIRZQOcdZhSAiMUHMOKwqtmxBl0kV1Sh1IAVISQqxDK0FrQVAkaJTykzylFOKEpBYTBAFxEnuSzvjJhFYKJxYl4glSUWhjEAWBColdzX/H15ESz4IoURilCQTA4cR6gkUcgTZYpXEi4JQnscWhBAKjMMp5clMrbOJARwQmxLqEJK6gdYAFlA49+UKclxsRAhVgsSkRosgoG2ct2WTYyAszTu2qOUBrUyttzbvXIualjpyCUp4cDFIC0DmbTl5B0Clhpzw5DWjA4nAaRAuS/q4km3j661hxmDBIx12LzhYQKN//nCe0PFHmJ9daxuQva5+i0On1ncoWAWPJMvL7k/Y7zwyOkoOCzsm5LJmSdEOg/s7K58hp37OUgMnT1JF1eRY0qHTZoeqXH6BEe4Kw8UxICUEZTYhC0vrO0qkxNGQ96khElREUAmh/nZ3YHH6+sCvnAK1tbbuYHJzGNP6U8dKaAzS3tdLU2gJkJIw/PnVCZ/ymTv35ExFhY4m+7YlpxgpQtpeuMU3DtzyvGUE4EdGj1Phy1+dxsvtlp3iCavR4JkTa0fpVKTW6u9Xwg38nT1Zfk9XFjuoh28xGJiYH8/pSjfMBn8oTjxmZmc35G9/Ok2MizmDsvxORsDsiB8diYgJ2PFlbz1nUo56wHks+N6TP5hVZ/usIzR1hl5ODURRxyCGHcNNNN+Wh4Z1z3HTTTXzgAx/Y1bd7SSJ7MJnqrFQqAeQKtiRJGkjCetIwU7cNDAxgjCEMw3xgzdRsURTlZGEQBJMy29tT1r2UMbas9eXMBsQ4jqlUKoyMjDA8PEy5XPbEk3NorSkUCjQ1NVEqlSiVSjkpmBGw27vnnzJ2Zf8XEXCCU6DTl2YhKmLFEx5a+beI0hqtFVqDtTFGi1/YauOXpXn7V+nCU4NSnozLFrpK4xKvCIvCCFEabTSiYhJXQ2sIjSf8YpdgTEChEPkXNoKIRRuvXjPagfFKU2cdgQ68QkdpQmMwKGzNkhjl0xshQECcb5+BhkBRTWoUgggkwQQGcSGJWE8OBo5Yl9la6eW+FQ9w3S0/ZfmaTbzikAM44ahjefnMpcyNZlKUNrQYnMMrJ7Xyi3Ll1ULOOUwQ+udka2il0EYT2xqBDgBFNamiwhBQxIJXR2q/Q1eOy0SqBCrEEePSXduqqxJogzEJNapsc1tZ37+a4eo2dBFaWlopqXZmhrNopx2TROACUArragQmwDqhmli08ZojjRBpsKJxhFgHorz6ESxJXEM5CKIiFj+WGhPhBDQa67zCzjqNJILCENcsQVRABxrrLLF1GCVE2oB2WEnyHVKABAvKegIyXaA75whN4MkL63C5Dgq00TgriPLtUWMQhEqlhgkjtA68ssokGK28AhHjie1KDRHrlYeBRjlHElfRUeAVi1p5Alsp4iyfDt9+rcOl7Slr/9lO5/ON6TnAbg4FCeKJaFFoKwQm8gShEowRxFqwiR93rSfcgiAgFkFS4ksJdRq3jNAS4moNbYJUSevbn84XNqpueq/q/qojvbKJfa7ck4zpy+9Geq96inCUxhxdN0imQshXldSpFVXd1VQ6do3eSuFyIq+evGvIQVoHDn8Ll6VQ+DE/HQtUXsLResrLS2PecnVEXZGzP0XV56Cu7PULghd5KjLd/6cxjT9t7LoxYCwBNLFqCiYmZTyh1ph2ewq6iVR+E+aqbl059npTOW9ikjN9P8pE77qpKchG0449v1F1OZHycdz16omx+lcw5O8nqSMsJ1JN7gj1hGf+HHHpu1DXPduJCkn6qlV5UUfTqTH1PLZoU6vLiRR5k7WRHZGC9epB8ARfNiefjKzeXp4mOmdX4nkxKz7vvPM4++yzOfTQQ3nlK1/J5z73OYaHh/nLv/zL5+N2LxlM1iBNaqoHEARBTkw554jjGGttTg6OjIxQLpcpl8u5inBwcBCtNWEYNijcsk9GFmZqN6BB4lo/uP4xklyZSjAzFXbO5XVZqVSI4xgRycm/YrFIU1MTTU1NRFHUoBLMMNGO0TQ8dmX/j3Tgd6icI8abw4kIWnm1HgEEgfFKFQeh9ibAgvJmm9pQLpcxhYJX2JqU0EsVLNYlWBxGOYrFEMGisQxVygRhgAGMhjiugTJ+mae82alS/uWVkW3+ZWbQCmKbEOgAYwKsCM75RWbiqoSiKUZNVGwMocKhiZ3FKI0y3oRVXEIpjBCJSbRQqwnagYkcNhhmSA2zYssz/OT2G7jr3vuoVOB1RxzOm459I0tmLKSJEkVKBM6SxDE60IizBMR5fpQJsDqhbKu0Bs1ol5Dx3qKFWLv05a8JtCFUBhtbsH7h6wAdBgy7MgZNpAJQniSTUDMiFbbUeumtbqav3I9Shlldi2nRLZRUEwVdIqRE4oSyJBiEyIWEqoCrJSilKRlPqFUFaqIoaoVBqDlNYgUxGlEW5SzFsABisTZOzX9L/mkqB66GKItVGUHhUMqb9WoDTmKsWIIgwqS/ebPAIK+TSIdYLDVnvcIIQesAlUqfas6bMAcm8irVJMaIrymNQ9sErQzaaKJmg8ISx1U/9gAOTZKaPIehEBY9OVKr1FIT9oBiIWI4LqfjuCYyAbXEKyA1CtHpJE15E3ZtjN90cg4TRn9o154ypucAuycU6Xseh9YBxnlFbCKCFsHYhOqWTdxz969Y/uyT6AgCNBpN4mDPPV/GAQcegdEhgvNK2HpojUkSMEWcdYTFEjrdZEAbkMx0OJ1gi0Llu/peVWd1SpipOgWdZBs79RglGwFcTpylk2btF5YKlxOZoxXhr+VSRYLkV8vUkOI3UFRWb2qUIMxvMZofnaocdLoarb9iToCmCoys7DL6E6kVsr9WanNdt+wYvcro//J/NX7hJqqOaHyRMd3/pzGNP208X2PAZCTUc1mTTUSK7QwJN1atNZZ0m9ikePJjo//WvzfG5217ar8s+ypXlue53S75lG0kN/yWvjfHk2ukWotGhdv2lJj16SYiU0ePmXxzffTGGYnZUJwxeRpNO0oKjyEed0ReSmqfsJ1y7EjVN/6SjW0iQ/1m/WSmyNvL62RtoKF96VRJmVaWU+OFTZPheSEHzzjjDHp7e/nnf/5nNmzYwEEHHcQNN9wwzjnpjjBZJx3HNE9SiVNhYaeqnJtM8jkWOxpotvfb2A6jlFcfiQilUin3S5j5xMvUbhlxWKvVKJfLDA8Po9Sov8J6P3mFQqFBVVhvglzPau+oXM+lTJPV10TPb6o7ENtLl3XeJEkol8sMDAwwODiY16O13pQqI1PrSdV6lWBWN2PLMJX2NtWyjT13e+1msjobe53J6uX5xq7q/wAiDmcdBVMgkZhMTRgEISPxCNp4s02TEnWBDrGSEMcx2misZOotC4BWgfe15SzKBDhnESPed551GANOLMUwQsQRmZDEDhOGGlRIYkGURolXn0ZhiEJjVHotEUQZjA5T4hBqtQRjIrSGUhhhxCtqQq1JxEJqXhwECus0oVZY5bA4CqqIiCIxDtGWMoNsqK5nee/T/OT2m3hk+ZPssWQurzv8WA5ddgSzCrMoYgjQKJvqUsQhohEngM9zbDWCV1YWQ4N1MYH2C2XnBBVE3pRYxBNt4glPpf0uYqBNbv6mVeB9I1pLQo2arlJ2g2yqrGfzcC/WCZ0ts+gszaJNd9JCkQDjlX3aeBLNmNxXmXMJkTa+3NZRVRaUV/aVrcWkJuKh0qlix6B0iIhDUglP1caI1mhdQIny98NiXWriqANc4tBa4eIYHWqv9HSOxNawWJTzGy4IWPH+EgXvW1Dj61NrQ+ISHEKgg9R00SBiKZoSsa1gdGrGLoJLPIEo1puXG4U3GRa8r8yggFIO52o48WYRYbGAiKOaxAxWhiiUmlA6NYfWglHaKxaVIo4TRKBYKJK4BCveFDxQhlo8vMv6+I6wK8eAaex6aPCqbHE4NKIUoTH0r3uWX/7wan5+y49YW9tEXATtHEYMENBUamO/JfsRqACvk/OSAklpNgBx3l1DqdDMq171GhYv3QujglHLnjpysF4UIkpRbG6mvbsbMcZT6spBatyswM/4s0kxY+Yr+btudGGDcihJDYvFp8nI85xiy1+R/npayJV+yi+N8n8zBTh49Xq2/FKpem9UXSFImndfN5kCcpTMy7Lk6UtpUAVm6zqnRgldVKp1lNF7enoznQ/sHrwg8OL0/7FL4Wnsvph+Vn/82FVjwETk0lhRS33aiZSAY79PtE7a3npsojxNtPaqV+GNFd08V2XdRPnfHgcxmjYjCMefX3+NseRmriasy4An23LGLT0ufk2RkoQZVzFZndTffyIh0o65ElX/+h/9LVXmp18YHVmEzCx5sure3rq8nrybikJwKm1mrMqyXhi2vXN3lPcMk1kHaZ3V3dRHXSW7mfxpYGCA9vZ2+vv7xzlN3BE5ODbtzhyvv16GyRjf53Lf54qJBjtrba4mTBJPhFSr1XGKwqyhjDU/znzoFQqFXHGYqQu3tyMx2fGpEll/KLbXQSd6RlldjYyM0N/fT19fHyMjI96UMq2TepVgFmDEGDOp38apDs5TGbyfSxt9rucNDAzQ0dFBf3//bu/LMxsDnu79Ma1tzSj8wjVbXWbtOkkSjEl9rClPpChtUvIvJX5Ij+dqMUViLc5ZgiBEEE+AoSgog1JC4hySkn1GK4x21KgiKvQmqSiMUtg4JgxCcCr1W6dSB1qpzzcFKI04jXNegRgoh41BKU9iKu235rS2CA6bKH9vpUAbtGgCCyIxiakyoDdz15q7+L9bfsmd9zzG3nvM4Z1vOYVXLHoF7cynSVrRkqAlwTpLqCJENDbb5ROHUglah1hbJFGKRJVRSYViECJiqFlJTbIhEYcxGpRDxKbKSkA0gQoRNFacX/SqGhX62OLWs6m8ns19myhFbczr3IOucB4laSewmkiBVl7fqZUP4pFosGLROEKXEDqNk4AYg0Qh1tYwYn05tF8ga9GEOiTOgiloIXY1n5cgwImv91A0kRisq6WBEAwGg7UxYRSSuATRlhhBqxCXVNF4Mjkw3n9aFHrTa0W2SeAnS0YH3kdgSjY450CJJ1uNQTnng4Qg3tekcwipOYGkPs6sv69XnoKlijYOJPGEqfMkN8prrLT29R4hBMqrAgHvksI6lNIUogI2JXczQnPbtn6W9Jyy248BWf/f9KMV0z4Hd4jnsszOKClAAmrOQcEQJQnJxo389pc/4fs/u5rHBldTbTFoJ2inUSpAOSEUi/aRdzxdlpJ9GbmlnKLgAkKrmdsxi0Xdc4kkyCfwKS+WIt2QQFETxd4HHsSbzzgD3dxMIpBk47dzBFp7nzni+6FWGmd90CalNEhqGlxvbptp7pSkVFpKaSq/yhA89ZgFFHKJTcn/NGgQ6eIjvaR1DhMEJC5GaYUVH7DKB2FymPTeNv3odMMhXUuhxavfvajR+T4teLVklsilSkHtfZQqlW1EaIwov4mlPdlorXdnYdP6354wYGB4kJlvWrrb93+omwP0943xOfhSpJVeinneFXgplvulmOepY3BggD3ad/91QNb/f7ltW11AklFMpN7anopve+dv79hYEmuqaq4GjGG0JgpkMT4f9eXLyDkfUGWsWGU80Vaf3+yakL11x7bwqZB09XkavW5W95NbHE6cv8Z7TmWtnM0TGmcPAmPIT//8s52/LDhJlscJrjrmYP2zqS/DRGl1RvjWHZusLY4tZ3a83kXZ9ojrHWEyohpUw7MbHhjghM72KfX/Fz1a8fYwWWfNftuR2moqbO9kg0w9Jtt9mOzhTxVTY//HlylrUBnZZ62lVCrR1NTU4KswjuOcPBQRyuUylUolj7qbRTvO/BVmEZAz1Vx2v11N8E2F2JragDF5nderLAcHBxkcHCRJEq8EgjzYSL2fxnpicKqKxcnysyMScXs7C5O19/qyTXa/yfK4m+0BTAki4v3Wpc+jUouJUjVntuviECLjTSqtKMojNQqlElqJDyqhvM+nzN+ciANl0VpwUvM7N855n3SSoAhQ2lCNa363BU9iCYZYvGmx9ro8tFE4V0Nh/MIV66PDpqbFSkEtroLz5sa5OXLgyR1tQ7Ax4hJcADb1CajxJsRgERJqqkZZDbN5ZCN3L7+Tu5+8j8pwH0cf+DIO3/cV7NexP53MJCRAuRidR7fV2MQTgVqHJCpdQAJKal73IppIaUQbQLwiD6+eNNpHfCZVvggarQJUSgyEGhwJNcoMu2FiO0z/SC/DtQFMVGJW6zKadTvdeg5FSoQiRFpjCDxxpX0wD7GenFUGYklQxgfvUM5HTbUuQSQBpQmDECsW52KUShU51pJYcDh0qLzTZWsxJCgErSK/CHf+GtnsKIwCYlvFKR9IAdE4vHpPqIEIsSQ4HDVXw+CD4HgSUABDEseAj2ytkDxKdmACRLzZpVcJpf5k8yjJGic+O1FgcNWE0ARgFMpqND4itlKCUykhqxXW+UA2Nc8wkyTeR21U8IGpMvP2xPro3MaolLzVKLNbv+6n8Zyw8wtZRWYGKzjl0AGI80o409rC0kNfyemzu9iaDBEH6STWKVTiWPXMCm65/RcktpJa+kquvPMqZUWgFcoJxgQMj5RZs2EdgVOQkmSi6qP0pu8vpaghbL13K+sr64kjQwy4zDu5c/h9FK9eUKIIlGLRgoUcfdSr8+jARns/ryjfJ53zLii8GwXf5wRFqamJKChA6tfQCWirfMR1Yk/G6yzWcAqnCFM/itqpdKMgG08UEPj+jkr9hqb9X5mU0ExNlpTKI5L7zQDJzYqtFpz28Yq1OB+pHP89HXZRWpFgPbEZGRLn6prBHy+x4bGDedkOU0wNO3OdHaf9Y38mk2H6WU1j12GydfdEBEuWbiwmUrBNdHyia022xqpfI0+6LhyTfjS81kTpR4NgiWTchPeprtT4so61astIoSzfGTGYE4Vj6mJcXifgRPzx0Txl11OZ6IDJuZAd8TD1z2D82jbLi7/nKNHnF1ie+qt/ZuPPHSUVd4yx4qiJiM38XmOuurP8T/31d1ZRWo/JOIDRfjFZdOjtY7ddLUzU0aZKcGyvgndGljuRam8yBnx7A8NE96sfTOp3ECbK61hkBNbYtPXOLbPAJvVReOsjINdqtVxFl+UnUxdmRGN9cJOMSJxogJ4KCTs23c5ionqvL3P2e0YKVioVBgcHGRoaolKpoJSira2N1tZWtNZ5mYIgGBd1eGfy+lzLNJnycWwbG9u+JmorY9uoiOR1MDw8jDGG4eEXzqRwVyEMI4K0nVtxaUANDbn5LhRMkTipUggilCjCsIBSAU75YBviLEFoMEZjlA+04YOGjDqK947nnfdUqEMQlTuY10oTuxgfaNP5RS9exWhtgjGebA5SYsaKxYlfuJH6oFLGq1qUUtSsA+3N2V0tJkDQCizebM9R8zoaJaAcNVWlt7aZux67i1t/dxtPPrOKvfdewFuOOZH95u7L3NaFFHU7hiK4GqFOCTNR6NTfYeIsSgKsgprEKJdQMAalLWITJIEw8EFTXJL4+rYxQRRQ0N4PXhaoRyQBlM+bDJNIlU3VDazcsoo4rjC7axazWhZQCNsJVDNSC4hciNEWk0bmrCU2JaoszkEQaKzU8C99TU0UThSh0ShnPdmgQ6zzQTbEiVeSSkIiVYIgTKMHA2m9iYsxGpRYlEqIrcWKIwp8MI/ExRhlUMarQCEbQy1JYn2erI9iHAbej2KtViMMfGCRWpwQRQYTBD4ggfJBaVIjPx90RnyE18iUsM5hxZucJ4lFdIIJQ0SsD21iEpTOlH+GJFHeX2Xsg0IowMWOQIdkhggujgkCk6oEHdZZtPHkeSJewUhGAuEmDKQ0jd0JflK/qxbNk6NOw6edJ9ysQ7RCtTQzb5/9mbXn3j44UbqQCZRGOaG/bzMnv/ZNWBLv13JsTkUIlEJbh8Q1Nq5dR+/6jeAsgUlJsSzKYV5av8qwWli++mmu++n/kYQaa4BUPUcaCTwPgmITlEB7cwu/vOnH3h+rUojL/Cl6VaF/V/rNJWt98CUR6Oroor25DWoOowwiGtEaqzX7HfhyjjruWHRY9MpF0qAt6f0lcURhiKQkpHd54BWNWmWBVFJy0lqU9kG1SN/xibUYUxcARaduL9Jo6SiFEz+GBNrXu3LiN7zwZCJag8YHpzIaaxP/HJXJn+6fAsb2lV1V8p25zti0z6X/Pv99ftdiV5Rx+lm9MHip5XdHmIi0m+o6bGcEE2PXtWPXYJ4rq/OLW38fGut8orVbw3mq/j7kmveMkFN1v4/NW72vQPJz6u+943KN/X3H4hj/r87W3dsRV9UHxWu8xuRczCi5l9Oq2S8wYY1Tl05N8PcodsRXjF1/T9ZOJhOUbY+3mrpKc/y9JkozlpSemJ+pTz9hUSbEbksOTobJKn6qxOFYpnYijLXbnqwB1N97Rx1qR0TnzuS/fjDMFu2ZojA7npFfIkJzc3PD4FYfDTkLejI8PJyTSf39/QC5wrBUKtHS0kJzc3ODwi6zl59KB9tembMdA5HRaD4TkagTEWf13+t9C/b39zMyMgJAa2srHR0dtLa2UigURgf3HeycTAU7em4TlXl7159s8BjbxurrJ6u/LAJzf38/a9asYdWqVWzdupXu7u4XLFLpLoXyw7uzDmV0vlOj0bnZdyyJJ42sJbGCCqOUnPOLtSiMiJ03+a25BOe8rzcnDpt40zCjDEYZUIrEBVSrjkBHRGIgNduq1CqEQYhKFCEGAkGHIXHisE6oSUygAkQ0SnvFiHNCaLzvwcQKiKCNIlHW+66KvALGYEiqDky6SDaOWFfYKr08sPZBvvv96+jdtI19Fi/i7LedyZH7HkpHUxtNqo2QVmoVh9NQDAtUbRXlDEo5nCSYQIP1PidCBNHO+wu0Duc0pbCJWm2EcpxGzzUGLdAUFIirVbQBE2icxIiuUqbMiJSp2AqDAwP09fXT3F5kbvcc2nQ7M8IejCpgbYK1DgkicKATIZGEclIlDIoQxyiE2AkmDNAmNRMWg1hLISgRKIWoGmD9DmoiJMQEofdHJnhfiUoLSapUEqXQyiE6gTRAjMJ4k2UTpDux1hOLNvGBbWoJJghxLkE759XYsUM7f89KUqapVKIp8EEWcEJTWPS0skuo2RhRQjEMSHAkzvpAKOLbbU1iFBrnFLGzXv1ofXRhhScqI4P3MymePHHGUK5VaCo1+WA2TtCBoVKpUVAgSlCBphrHJHFCoej9pFo3Oi5Ya0F0vsvq7HPYPpzGDrHrFl+q7v/PHwS82wJR6MSBTt8hItg4ITABkSl44k8ExFETizGGps5u9poxc0xu6yIQiyfnEYdB2He/BBvXPMGlNKLS4CQqfR+JS1caAspHAz83qWINiCaNxm3QKvDjuwhaHIFSKOX9qT76yENce83VrF2/Ng0e5Mc+rdN3ZUriKaWQ1PR33VMr0VaI0ChxKG2ouQQbaX519y/46ne/QMVArL2/woIzhA7mzOjmfX/1Pjpa2hCb9TWDEyEKC7S1dxBFJZ95p3P1oWi/ARkUIpTRJKmSUYkfnwsSohPtr6m8WtIpvNpbBBV4f05+Mebfd1oUBo1Y602VU1cQf0rYHUmPHSyrJ0yxO5Zje3gu+d0dyzj9rHZ3jBJEfu3TuB6aDH55NJ4QEfHvnfq18mTkzVTW6KPvvEYLu4lyVp/nyQNHZWVsNIPNSMKxfMfY9WF9ev9T9p4VUp8bSGbWNMGdPZME9W5CsnJORGZaGS1JvYJxrOl0oyKvkdiqr61RpWOW/1GCa7RuRhOIGvtM/KJRpjAr2yHnkj7Xsem3Jwgbr7acnGOYiOQeu06fVLWYPu/MhVZ9+onPkTH/7hi7LTk4ERHnnMv97U1kG559zypdaz1OZZdVXkaQJUlCkiTjIsdkg8dETGz9tTKffZm/vuye2X0yMi77ZL9lpF59HsfeMytvHMcN5NlYGXW9D72xfgMnIpuyiLzZNevVhcPDwwwNDeWqu61btzac09zcTHNzc4M5bhb4pD7AyWSo95Uo4tU4WVnr63kyBd1YUjSrz3rz4VqthlIqj/rc0dFBqVRCRPJoxUqpcUFZdoTtvSyyZ5WpNbN7jI1yXP8MsntPdq8swrK1dkJTb6UUcRznPhU3btzImjVr8s+2bdsIgoB99913h2XbLSF+KAuCgFqtShiGiBOv8HDWR9EUhTaGIAhRgZCk/U1rhVMxcWpeqfEmo4hCERB6jT7itA+KEcckIkRhRKEYghUcCUonVFSNSlgGBBMI5ZoQUQRrCHWTV5tZR6EYIs6rAhNbwxiVti2D1oqajVFaEyjlfVahqboaVe3QxQCrLMO2zMaBDTz4zP3cfs8veerZtcyeuYD3nvVeXrnsQGZETV5dKF4dppKEIIzQRtMfb0EbjVYQqgBDQGxjjAlJbEJiq0SRSomyCKUK1OIaOoRQBzgrPt+BISFGF8CqhAHbx2CtjxE7QiWpECcxzkJzUzt7LN6LZl2kICFKAqCAEHglnPE6FwBLQk1qJKFQkSpaGUBhVICPsRkgqc2zCRQ120+/G0aMxZIQ6gJhIUSLIcF4AlRDYhKUWJIgoU+qhDogxKAUhISEFNPrBiTWkxbKOKz2z6JGgpiEhDKIRSlhQAZQYYRK86cFRtwQgQ5RyhCoVFWoI7QKCMCrg8Sl5pn4QDlKkdgEExb8K9k4DGClRpWyVwOSkKiajzQsFrQiJsE6iEpFajJCqL1ZNA7CpgI1qliXUDQBkfaK7jAMGyZTvg/4to1SxLUaNlWFTmPX4qW4+HIotA7Q4nDiNytQijD0CuwkEUSTEod+nI2tb1NKTGoOrFKd7OhOvcMrX7Xx7yajA4JiMY14qPCUoUrdG6Smwo58QaIRoia/6ZPNd/yiSCFoAmOQJPaKcKNxNuHIV87kyMOOI/OBiB/asTYBDYH2bgy8r1Sv7V2/chXrVq+hoDVGgcVCoBlOqtz/2CPc+8iDDLsaifGKwdApTGLp7+vn4x+/EBIf6Vx5O2WcOEJtaCk1UQgjSINUiRViZ5nR3cOrjz+ezrmzmLNoEbFKjYUdhBi6mtopRsWULEzNiQsBhUKBxAlOUp+KzvssDFMyV2sfxMoTn/55TWP72Bkyf9errqafz85g+ln9qaNRPbazSkHIXMBkkJQ4m4Do2w5ZlK3t69MKdaKNunTbu5bLyDwa17Oj90mDa9SRfhmBluVhLDE4UbDMCZVm+a1SM9OUaxu/PmU0bcbDNVzM/09lC7QJ7lmfp4kELRnR6TfrJ3qemRl0I+GZXSfz46tNprFszN/2eL8dPeeGNBOIz7L8aq0n5KG2x7+M/X2H958g36PzovH3GKso/EOw25KDGTLyanh4mC1bttDX18fQ0FCueqsni7L0SimKxSLt7e10dHRQLBbzTpWZkVYqFXp7e+nt7aWvry8njervmxE+2TXrSTzwD6C5uZnu7m66urqIIu/3qbW1lebmZgqFAtVqld7eXtavX8/g4CBNTU20tLTk+W9vb6erq8vvyjc1EUURQEOZt27dyvDwMEmS5Ca/WmviOMZaSxAEtLS00NnZSUtLC2EYTrgzIiK5H8JKpcLIyEhOmPX19TE4OMjIyAgjIyOUy+X8+tm/WmuiKMrL0NTUlPsuzIJ6NDc309LSQrFYzOs6qy/nHIODg2zYsIFt27ZRrVbZsmULlUplHCFYr/Csf8YZOayUIooiWlpa8kjOcRzn9VgoFBgcHERE2LZtG83NzQ3+F6MoyonOLH1Wb5O1w/p/s/xk5O/Q0BBDQ0P09/fnpsxa69w8u57EjOOY9vZ2Zs2alZs515c3+wwNDeXtJlNv1pt4Dw8Ps2HDBtasWcPatWvZsGEDg4ODAHR1dbFs2TLmzZvH/PnzqVQqf2hXfMER2xoxRbwVlUZZhxXnSbH0OYUSECMk6SK3WqsSRqH39aT94kkDSeoLEKOwNos6GflgEU5QOiLUCqcccVIlUAYrFWI1Qm9lPRsqm6gkVXAJTRSY1TSX2U3zsapKISphtMG6xJsao9E6wEmMI0Gc8xE8Q0VVahQkJEw0MTVsIAy6IWoywqb+TSxf8zS/vu8Onn12LYvmzOavTj2LVyw7nJnNczGxBluj325jy+B65rbNpScoIq5GDUu/6mfbwDbaoy66Cz2UXNH74FKC096hv8YRO40og8YSBCDKgksITUSioOKGiHWNsh2hP97Gs32r2LRlIz3t3SzuWUxzy0yaTRsBBTQhBfEmdlZBooVh+umrrMcgdBRm4oD1Q2tYP7gBjCIK/EJXVERPUxcLSrNolnaUFHAKygzSW13JhqG1xIEjAUig1TTTXZhBV9MsCroFKwmOKmsHn6F3ZBNiAlQaMS0ioqvUxYzSHJp1O2K9QtQZwaoyNVWl5mqUayMMJ4OUkzKJq5JIhZr1AWkCEyIWCkGBtmIrTWETpaCVkCLGFCigIL2u2NRPmAJEvAmj1jijqLkKsbY4leAkoeLKDNYGqVQHKdsRYomJnUMZT5gmNgGEYhBia5amoJnWsJVSsUSBJrSKMBKiaUYlXqFqrEUrQ+JsukvsfECUdPJltPL+EKcxObKhXUndV1X3f380TzaFxWP99Oy5LDXr/emoCf7auQVx9g7z35xSWOVJN52a7yZO/AIlSFcOzhsOa60hJQUF17BoqJs25wsv5xTaeGKv5rzO1zvMywKYAKRmwuniSqER5aOi6/R9qcUvQESBk8Qr5lK1t7MOrX1U+VxZkSb2QUdAiVBLfNCSxNOSKGD2wv2Ys3D/0YWYeFJRDBz2mjf59wnKE40iGOuJy9XPPM0vbryB8sgQPgqxQ4lDK0GqNYb6+0lqVbQIgTHeTYNWlOMa3/ve5QzYKsNYYu2VgTihJYg49YSTmNvRBamSU5Sira2djs4unynRCF49uec++9HRMxNxjhiF076wmdnzeDRIMV7iGO19k/822e87+qXuGunCNNfNjDtJNd5uxxfe/v3+8AvtJphqpeyKZ9V4rbEj9XO53/i0U8/F1DEmLzv7ktheF/gjx0RWfNCoixJAVDbSC3Wr+tT1Qh2ZN+aTEX6kCjap6/pjxUKubs06IRGTvpyl7vycFKMuxm4dWenfh9tpxXX3H0cu7aAdNRB2aXqZYBjLriV4dxg+SHHj7EMh6ImGxTH5TDObj6eTZa6RIByrFqw7Jb2O1jo/lrvaIK1jGa3AcWo/f7Dh3g3kWn0FoDIhZX22xikhxz6T+jnZZO11bNnrMjPpe7r+XvkzVAqj9Wi7neCa2yONt4fdnhwET8JkRMnq1avZtGkTIyMjOdGTmZNmKqumpibmzJnDwoULmT17Nk1NTYAPQpGZllYqFbZt28batWvp7e3NibJM1ZcRaBlxWCqV6OzspKmpKX/Qxhja2tpyAjEjw5xzudKrWq2yadMmHn74YXp7e+no6KCnpyf3/zdv3rxcRVZvqhvHcV7mZ555hk2bNlGr1Whra6OnpwdjTB6ZuFAo5OHhM5PfekItq5/MZHjr1q1s2bKF/v5+kiRhZGSEoaEharVaA0lXT1ZlJGGmuMtIyubm5jzycRb9t6Wlhba2Ntra2nKiMAxDnHO5ym3z5s2MjIywceNGhoaGxjHwY8lBER9Qpa+vj/7+fmq1Gi0tLcyaNYuZM2fS2tpKW1sb3d3dtLW1MTQ0xMqVK9m2bRvd3d309PTkykjnHC0tLXR3dzNz5sxcdTkZJmPxs7aX+TfcsGEDa9euZdOmTQwODqK1prOzk7a2NorFIkqp/JnNmzcvJybridys/VUqFTZs2MDDDz/Mhg0bKJVKdHV15WrBjDjetGkTQ0NDBEFAZ2cne+yxB/Pnz2fevHl5XURRlJOGLyUocSCW2Na8GZmOvHIsdoQBYBw1iXHiCRGxoFw6OBvjFTHWeiJKBJMGs0A0gQ6oiQ8mgfIEIQ4fFEJ5X1s1bVkzuIpHVj9IsaVEa1MHSkJ6B7bQ3zdIsDCipzAPiSsoB9poSoWA2DkcQqBDb7qsQKmAJPGmdZWkQikqUFM1eoe38tuH7mRV71OsXLeaDb3rWbbHYs5442kcttdh9JRmUpQSkRRRBqraUa6OsGLjk0RRRGfLTJTRbJMtrNiwnKTmaJ87A1FQE0FZEJeglEMZIFUMiSiSahUCC7qG05YRGWTAVRiqDDAy0o/SEUngqNoquqjo7OxgdmkuRZo82alLQIizMUYbREONMgPxRp7ZsoLWUhvNUSc1G7N80xP09m9hXvc8XM2rF0dqMZs2rcXN24slLXtSchFWGWJtWdO/kme3rKG7czZt0QwqlSqbKpvY5NbR3byBhT3LaI6aEUl4pvcZNg5sZFHX3pTCEomtUrZDrNi2lUJhHXvO2YcZQTdOFFWGGbJb2NK/if6RPoaHhjBBhAp9/ywYhVKGWpKQKKFSq1CTCk7VMErR0zqLjqYeWqIZdIQzKKpSGvwFatZ6FZKzKA01Eiq6wpAbonekF+vK9PX3Uq3W0mjYiqIOCYMQYwoELkwnr36CWBkZREnCYHkzm+P1mEKAc45SsYWZnfOJ1Qzaww4iU/C+DJ3yPtU8ZeAjY1sfLVlUGhn7JYVsyp7+nU2I0sW6ZEoC52PKaqXJRQIqn+o30Gv5AjKbrNZNjg0alZp1W5Ub5GDqGbDU6Z3CpP7t8GNPOvHXku6oA45UfZdlWZz3TwmgsmAX3keeoj7KnmCUj3BtjeCUYFIXklp0vhQejaLbSNHVlzS/ecO/qRlwGmXcv1/T2tY6Jct8ubL3kq3bOM3vqBqvrUiDtdNIQKJMOmFO8Epifz/NqJmsT+8lhFp51xGZUz5RCsRHnxdx6Xju/cH6fBtwnmxzupHURKWmt6QBi1LCUYw3idJOex+BPgIINVvzakkdoR0oq329pGVduGRf3vPXe6fzkrT+xd/L1aoMDQwQ16po5d9dWgxaaQZHhnlk+aP01YYZslVEeyIvQDHUu5n7fvU7ft2/jSAzKcaB8ebRnkP0wU+qiePQVx/FzKULibEkAogmImJuRzeH7Ptyv8mVLoSVMjR3dhMVW/II7C8l+O4w2qNUrh6qTyNpW/XPKYvPonQWAsaPHf6Z6fqzkLS9ZdsBIqkPTskWhn4j0StXswVZ3UiS9hvJOGbBk+DULd7r86rGHMA/7XQ1jveoyWi+x6yNs2+S/38s6o/Wj3yj/5+YQ8juP0qT1PEBjGY7K/D4XKWDXN0dJlgQ15+nXFohE1xnsvNHKZzG35UPKNZ43pj6SZ+L/2nsfcemze6hs4daV+76vIw9X8akG1MGJZCatjpSFzkZYZS1a7+rkRMTWdT0rF2Sjj1+mB5dN9S/6xR1vusm5yV2f6i0TWXvlewwo48F8C4YAFGaGo4RSaiKpeoS4sTixBEFhmIQEShDhKaIJhQIhVGiK33vZwShVv49mT6y0YB0KXGWO4DOspi+Nw3+GfpXWNonXVoeIFGKiiRs6e+nf2iI7u4eWgtNBAiRKCIUKlXW1TNUmWJRp8dE/Ka0b82NPV/y4yptQxm7NXpsTGUDyru+FV+fMY6qOLYMD7Fp2zaKhSKz2zvpjEoYRRaSK7UM8Pd09e0/zbqq626CyzcFsx+ymdroWtt5q7B0HLJpnZNdK91IdEqo4hiShIpYrPPzQKMMLg0IlouT8gFNRjckBcSlbwIRQm0oqIBQKf/+RAjArz+zis25Fd/7TE76ZvMi3zZ0Nn+S0WfjZJQW1llwREl7bjrny2ogs6hQOpun+idan3dEEJ0FuMl86I+2AaXqJrKQB4CbCl4S5KDWmubmZmbOnIlSis7OTqrVah5UY/PmzQwPD7Nt2zYAisVibvKaJAnDw8OEYZgTWZmSsKOjg0qlQqFQyE13M6LIWktfXx9PP/00/f39dHV1sWjRItra2nL1XUYO9vT00N7enivaMnKu3jR0cHCQvr6+XNlWLpcb/P6NtTXPSL2M0Orr68vNZZuamjDGMDIyQrVazZVo1o5O/jKV4MjICNu2bWPjxo2sX7+eDRs20NfXR7VazQnAIAhoamqivb099ymYKQILhUKuUhwcHMz9+WXmx6VSie7u7rzOBgYG2Lp1K0EQ5ARhpp7LzGKjKGLGjBm0t7fT2tqa1xtAPSFYr9SsVqusW7eO5cuXs2XLllyVlykYOzs7mTNnDjNnzkRrnSv5BgYGKBaLeSTnjAQOw5BarZabAD8XCW49kemco1ar5QTs4OBgXrfGmFx5OTIykqsHs/uO9WGQKRHXrFnDI488wtNPP533gXK5TLlcxhiTq1YPOOAAFixYwNy5c+np6aGtrS1/bhnxWK1Wd77jvcgwSmNEEBI/0VERoYoIAjBaSFwNHRiycPVGGXQYEBMjyk/ytUAgPhAJoTdFDTDgBK39BMyJoxbXKIQFbFxNfQc6KnqQR1Y+QFA07DVvGTOC2aCgr6OP3oH1VHUVJwmRClPiTfIFt7V+tmGUSSPXBt7MDYsNYp7Y/DS/euQOfv/YQ/T2bQaTMLN7Bqe/6S0cuMf+zG9dTKvuJJBiag7nzVbBYVXCSG2ERBKcSigzzOO9DzFQq7Js1j60Ra0AqMirLY1/dYMTRAV+gqMEEyisSogp01/tY23/esqhpa2phbbmFlrCHkwU0tbWxPL1jzAwNIhqDVC1kCD1W5IFvnDKT19raoT1/U8xYgeY2zafgimBcgQlxexoJi9b8HJKeL+QI0mF+5+5jzXb1jC/bSFN+D5VI8YamDNzAXvPfBkddOLEMeQG2Dy8gZVrn6IS1zhgj4P8xkykmDtvES+beQglaQIdM2z72FhZz5ObVvDAyiGO2+t4RuIRHl33MJvL64hdlVmdM5nTMpPmsINCsRulI4oCJVPAWkfF1RDtqNhBtlU3sq3cy4b+VazatJLuGfPYa+a+9JiZ4BRapeSoJIgWUI7BuJ9NlY0807eS3kovkbG0hBGdzd30tC6gEHTQbEo06xLWiY/inMQUChEasJSx1KjYKsPxCFtqmxlM+tiwbRVr+1Yzu30BizuX0qFn0GTaCXXRE+VYjHYYJWijqdmE0GjiuPYi9OLnjmzxnk3KVN2UNt99dz5CuFEmJe0YnYzn69z6lYXKrzXe748CNJIShNlCHSdpdHKDJfEBfvAxaUe97flzPYGX5k1LSoWlk0PxCw2nUv97ZGuFLHahNwFXzge3UUZ51a9K1QSOtEYyYjFV8VG/+M9rbAw1IKMTSjVmYV2/qMh2utN6HK227B0FoxVdtyBO61Uyaw7r/Zv66L8+SrxWOj8n0woq8b4xjVYoIVV8e8JEkdFBki4yRokhT8ikFJhkpse+HrXO1PdesZivx1Ny0YrFafC+DLXvu/gFZGaSrETq2kc2+Vb4gV5nxW0gC1RYpLmrLf1ifURop1FK04owe+nLSYxLn7s3SY6UotK3jdWHn0S5Mugn/s4gJJQrm+ntXYtRDvHsJSaMuPexB/jB979FvxvBaTAYIhvSETbxq9nzCbT2rcL5BVZzx0w6ZszjzWe+i5cc6usXSfvR6GIsb8v5wlNyEsVli6vU/3BGoGRXy55u4lTa5kChGdtzcpIo/cvh/MIp4y3StqKMJwQkSymj7cdlsWuUT+uyJHjCX6dkj1aj5P+4Cqjrs5MRg1OrzPp0Ks9IfZeWhroaR8VNcE9hfJ4nul/9mb7/Zt8a6S3qvqu6upScYGksV76VM75sebKsnajR0ybJ3ih1Ul+uMddruMYEv01wzewd5KgnKn2b9aVQuVIrG3WyaOZKFMHYu6Qklt/bVhjVWH95ucV539wvMd/juTWOzgQvvp5sSuoorYgVVMXRXymzYs0qVm5cx6aRAcrKUhVHLY4BKIShD/Ikio5iE8tmz2PvBYuZ2dRGyWnfp3PSzZM/VhzaeFW2lsxtRr0ynXxsyf7OSMtMpRgrvxEVKr8hVkvDDg66GvetWs5DTyzn2KOPZ+msEqXU4qPed7Qo8RtZ6fdsPpONSr7fuvzdq41JCU6XlsUTg34zzbclP8pJ3fwDtAr879mmnAaLYltc5b41K7jz4Qfo7urm2JcfSmvPgrznOpfgN1O0d62jdD4H0yk5Jun7vKGruax3+zYsisz0xpNomemw1r4PpOX38wL/KTvHqr5efvnAXazcsgFTKHj3HEAUeMFPLUkIogIieNc64snBUOm8HqxYb4GTWFrCAjPbZ7Bo7nzmdHUzo6mFJgwB6QOv2xQ26WYeOcEH+Tih/HwoN/9WOvf64TkDv/70hLPCIiTOb5hkYcUyMs+lDcsTitnGX2a96OtFp9yJzdpBZpHYQBn+EZCDY+W6xhhKpRIdHR0EQUAcx8RxzMDAAOVyOSezRCQ3cQ2CID8/84uX+ciL4zhXwGXmps65hkAecRwTRVFuNtva2kpra2vuny8z5y2VSkRR1EAO1qOeKKw3Gx2bZqwtepYuIw8nOnespLVeMRjHcU5ADg0N0dfXx7Zt2xgcHMQ5l6vZMkVlc3NzrjyMoihXBwZBgLU2N4/NCNc4jnPiLiPcMiIqM/E1qZlfZv6c+UQsFAokSUJLS8uEQVWy5589r3K5TH9/f/4MRYTW1lZaWlryZ5T5Qcyul9XDWIedE9XZWMXiZO1xR222/jnXKy/rf58ogMxYZMTwyMgIAwMDAFQqFYaGhiiXy7lqs6Ojg9mzZzN37lxmzpyZE7wT+Tp8qcGKD0QRmJBIBVSdg1Tt55KYKAypIVRq3t9TKQyJk7I3IYtroDTiDM4JUaFIzSWIUTjRSCLo0EBKwgeBITQhFqglFYypkah+VDBCe3M3XUEnRduEJiIMmym2FShog7aegEFplPIO9WPrd5O00iTOkdRSB/oaJEioMMy2Yh+P9a3m/meX01wI6CiGLJrfxcuW7M2CtoU0J82oqsVSRkVh+hJKEBKSJIbEBzKJlWVIymy1WwlMiZaoBU3oIyq7BK0hVD4SshLjlRNSxRJTi6oMM8yQ9LM13sxW20dBFSnQRGvYQ0vYiSXBOP+SGbLD9NsKpXAGSmKwVUJnMFFIzfqgLDUdM1AexNqYgorSGCuOpiBEaoYO10GJIkaFlMMa3a2rqLptKMqIrqLEERGgrMGokIKUCGxIMSgQ6RBXhA3RVjaXtzEiw4R488KQAoEKMDbEJZrWoBtpEjY2baR/6xZG2MoIVTYMrmNLtZdSoYDSITM75tBKJ4GaAU5TVI5AhEQ5moMO3wbDJppNiCSWjW4zA2oYappFwXxqNBERUaSIQ1PGUVU1ymqI4bCfrZVNrNryNFY5WqISe/QspEd3Mas0DyMlQhdADcQUUYEGnUCqQAy18UFNFARRTKnYSW91JUPlPjYObWRbTdOtW2iONIYCiCdKnIQkyhFXHIUgxIn37VaKSi9uh95JiEq84lHy2H35pFArv5yyqTLYocCmazRtU3OZ0aV9do2cWEpJvdFpNiQK728zjlHWm81ohY/kK2AtEGqM0YjVGAlQkqCUwuZkhSf/MofeTiBAE4hCK7/QswgmJfuMCDaJ/YQ68FNVpf09tWiMeDWicZkqEaxSuIwAzckMH6VcpSsTr05sXEhqGF3NNEBN8NfESCk9v1mR1W22sBdvFWuM8tHglcJph3M+YIZSisT54B2ZgkuUworybVeN+mRCsoVPpq9k9C/ln5XfnSe/vlF+M8g6h8VvDok2udoQ6zcxjNYYrXBWeXcIaBKlEby6XFlBx/g0OqMFM5KgvsU00kgZ9+CX9YZEKdAmqzHvPF2kLpoxWBdTbG1nz5e9DGsMFq8YCMRRHtrK1jWrKCa+ndaUUAojhjcM8Ih7mFq5TBhqvwDBMmAHuXvVwzhlSACjhBBFtHYFPZ0LOFlO38HT3T3hVTySL9p9v3W5WjdrG4L4PpI2YpUt0ElVo2k6my9J06eqPAkgStDpsiyPEC+eRPamazrVoGosSapQ8YGmsr4AnmC0jFm863RB67L8CdaC0Z4ISqwfP4IAbJKeZFR+fiOl2UiITlxpkCeoZ/0aE9ShfrCo/y0rmUaUasjLhNcRhd/kaKyRcVAAJu9bjf1pNH1O0CtpvHc24DRQDtnYNjoykRI03h2CGsP1OSDxDSVXEuZPbJSYHGXZRonJ7D1SV7Rx+cPncWydKXTq69rnNMn8oWpNjOSKqmzV4vPtL+jd42RjjMuDRri07H5P2vcPQzDa0pXyAZBy5exLA0q82aRSPtK9s+LV7SmJniihhmIExRaJWV7bxsNbV7Optxdt/aZhGBgSa6nGNZQOKJRKtLa2IK0FOs1cCoAYKAgY5/LNeK1Aa4NDEYsjc19hxM8/jIBLLIhNg0EpEutp38h4Nx2xWMQYRCliESLx87oEqNqEweoIw0mNOCXwJH1zobNxqo4IVOTbkZlqLVOVAqjUv7TLxsR0fHTKCyCc8/5zg3Su4lLFu1LGmw9DTup5QtHPa2IlDMVVtg4NYAoR5VqVBEcgZKNl3XzLz1kklVEbo0kSmwqvvA9sr9RO+7yQBkgh3xz0fo4D0BnvkVpRpP6CJc2vBUaUsNVVeHTdKlZseJa2tjZagwIuTvx7Pgj93DBdb2ekmyQWV4tJrPWknPFtQJyjGEbMqg3hupoxqg0lCTXlaFEBIX6eotN1vEvbSrplCCq1GHHZ2KHSOvWknZ+neEsKm24eZzNRl/4eaJ1vMPs1Jel8SIH1G9O5wlCpUeLUP9S8v2QNJ1MVpmzjlPvebksOZshIlIzAygi5Wq1GuVzOSacsMEihUKCzs5PW1tacJMlIwIzEyxRpY30IZmRWRmJlhFlGPmaRbmu1GpVKhWKxCHglXD0planvJnIuOdZZ5Vhyamz6yc6r/7uehKsnwzLT5E2bNrFhw4bcBDUjBtvb23PVYBaJOMt7Zh7c3t5OoVDAOdegABSR3NR5eHiYcrlMqVRqCHaSpcuIrswseWxk4vqgLtmzyJ5PFEU+wEPqTL/eX+CMGTPo6OigpaUlj6ZcKpVy0rKeZMw+9f79doY8G5t2nM+LOgJwsvPH5mNsHuqJ3Uqlkqs0M9VoVp9ZH5gzZw6LFi1i0aJFzJo1KydK6wOXTJbflwJ0GCLG97cEiwmK3ueks5QKYbqjBk2FZsQlJK6GILmSz4mPhBuqyC/JJSG2/nUahQUio3yQDuUXD4KjXIspRD66rXU1Ekloam4hVCW0CgmkQCgBUdRNqAK0FNFExNZipYZoMHgyL7EVJFD+JVYZpkaNvtpW7lt9H/930/Xc8/CzLJgzn3ee9npetscSusM22nQXzbRQkMAvukNDjdFom4n4th0YTYJlxFV5qvcZtvb18Yo5y2gzLUQ68pF/8ZF/K7UqxUKJWPmgIEY7Km6A3tpm+msD9A/3U6tVmNM1lzlNs2lVnRhpwqYv0pagi9biDFZueYZNIxvoaO2kGU2g/cS+Wq1ilSaIAkYq/VhXoaO5nYjUVF9AWzBBgJUYp4qp6idBkSASYyUmSaoEgSdBtTIYiQiICE0BW3FEQZGZhbn09wyx/pl1rN66ioXtC70qw0GRkEJYIJGEUBkclp7WWcRxlfXxevrK/Wyt9mKMYun8vVjaujct0kyztCFSAisUtIBLUFqRxIYoKCIOWgWWdjahmwos3/IkfUPbeHrTkzT3lGgznWgHwyNlouYCA7KNjZV1rNjwBGs2rGTenHks6F5CZ6mDFmmmx3QRiPfXqAONDjSOkFhsPpkoqsBPNp3f+Yu0RSWKWYVFFOaWaIpWsurZp3h46F5k8ctIopg25tIcdmCrCToIiAqR3wQzIc7FqVrhJQTlcnJIi5/selWFkFjrJ2SiRp30SGqemgjG+EmnpItkTxqM0kz5zn9OEUDi/GRNB37mqROHxqDT8VSUX8gprbwxWKrkzRZmSo0uTLPJtkGjLCjnzUyVEowWsDWU9XOOIIqwWhGLIrEWJUIUGF/u1OmPEpMvFUQ5bDrJy8x4lTQaEo8uSEcXz9kkdFTt+BweCdniM7t3/UKeVMk9ukHm0omzcUISC6IMQeTnRjYNBBcohXPWPy+tQOm8pWoRvwgj0wap3Gwnv2u6kFK2zszaudS3rN+oEfFKdK9usLjYeoI5XVCRmuKKFYx4otFP6m3ePrJ/8wW3qDqfTdJQEwoFyhOEXk2a81to5/MqScX3y7iCdTGm1IyOijhtSLSmqXMOpagNnSpKJd2AOqVnPge/+miG4mE0DoyiUqvx23t+x0133k7FWpzSBMqiXEI8UmFgqJ8sUudLCgI52SO6rvUqxMFwuUqlZklFMvmCMwoUzU0hURiMbtSmpF2SQKVco1z17h9Ee4JQKW9KZhNFqLMFuHhlofHjQxBASymiECkgoeYCFN6vr4h3R2CdEFcS4loyql404KzniqNCiHMBK5Zv4+c/+zXViiLQBd8HiCmVhBNOeCUve/kcgqiersorZDuV5ZXFo6117Dl1rhUaxgE1xuRZjVZm3YZCPVnXYK82zqS3UYFJw3l1uVKjvWo8MdhYLmk4WlcrKdFI3fg7ygJ6oYaMY+iydGkZ0gBpWZpRSm9UYZ5piVVajtHtEZ+ful9Hj6vRcuXXSX+yKcVnjPHKP4GRkSqVmvNR153fLxIl6CCgqRASBSlJKGkZU3IgSYRKpUYtEcR5k1RFjWJBpaIOlZuivpTgiRLvqiVQo+ahiYFhHCM24alNz/LQk8tZuXEdlCL2XLSYNx19PDNbOmnVhdQ81JNmZZewYXAzy595iuVPPcnjjzzGotlzecXe+7HX7EV0R00Y6wg0BMor3g3p2IsPXpU4S2w9MasCfzwmbS1GY4A4VYWhNLE4jNJEym861PDq9Y6oyIFL96GzeQazW9opiCKSbCPRqw09KeifW+IcznmSyGTcQmbBw6jfPRHnVePavy8yQgqEuBZjgagQEaRuWCQllZxJ33mZ0g2FxtEWFNhv3mJCZWhtbmF2xwxCgQKjKr6su2kBsZZAKXSgqQk4Y5BAp2bKaS9R4O2Xs5CFKUefHtH4wI2i/fZOpDRajWqNHZ4UrgI2NOhixOKlS3jNIa/iwDlLaVMFwFOtddkjo8r89p2nCr3ncksNR9/wAKueXc2atWu598H7ufOuO+lq7+CAffdj3zl70F1oplkpSiponE0nqXIznc97AlZSMjNVBGvjX2PZeyIdQbwq0D9nozQucek637uoy+YizjnEpaS18ZussUvQJgAUSgmh8fNEJ5nSsrE/jY/uvJ2+N+WULwLqiRatdU5MZZGGgZwUAyiVSsyYMYPu7m6am5tzoikMw3GBITKCJiMCs8msMSb3kVcul3PSKlO8VSoV+vv7c+VhRs4VCoWc3MoImnoHoPXKs7Hk0EQEYYaJiMPJyMZ6QixTVW7dupXNmzezZcsWBgYG8qAm7e3tdHZ25kRgFuQiu1YQ+Eh5pVKJ5ubmPNBKS0sLhUIBgFqtRm9vL8PDwwwMDOTqykxdWB89eWzU5SywCJCbwNaTtll5Ml+Amd/EJEloamqip6eHnp4eWltb8zxm5GQ9kThRXWWEcP1nR89gnGPTSUjAiTCWFMwC6Yy9V0bsZkrPbdu25T4WK5VK/kw6OjqYMWMGS5YsYc8992Tu3Lk5GT42otZEf79UkC0Gw6hAUq0BGoegwpCK8xErTVAgdiO42Lc3rQKs+KHfKq8uEJf4KMLGYJxX2AhC7GKctUSmQOxqxLZGFAV488AmjOkkKs5gw8AgM1sHmaGaULZKQYOLNc4UqFhNBBS1JggL1Kz3Y+WUJTEJQwwRqxrVcJiHVj3KLffcxSNPPYbRAacccwTHH/oaDlqwPzNMF9YpxGqU8WbQTaYFMFhVJiZGa8FoH/zD6YSKGWHVwCrW9a5nj1l7srhlKZ3SQWwdiSTE4ghUSLEQgYoZpp8RGWZwZBvbKltIlBCogO5CJ13tPXQVeyiqEEThRBGnBlSGNnpaF7GydyW9W1azR8tcjOoE0cRYTBghSlFmhP7hzUgywsLOvZlhZhASMuyEkVpCLRlhi9vEiBqhllSpuiEGk610tHQQUMKIwcU1XBiDEgLliZAER7FQRMRikzItpSbaO1rZWu5nVoeQpKbWCTGGCig/vQhpojXqpupWsWLLKkwIbR0tdLd2M7dlHiVpo2Rb0DZChwEqhESqWAsihiAqYnFYZ1CqmdCFzIkWUO1MKNdqbNi6nnnNM2mKWrAKdAmG2Mq2ZC2rt6xgy+BmFs9ZzF6z92V2YTaRKxBKROSKOAdlSTDKoCTGuCoFU/A71EoxnNQo0oQRQemUBDclFCVC1Yqe0UZBt/DE0w9y3/IHOXjfEipsxUhEMSqhNThXQQeaxFoC7dv1SwleYQXGeTWV0w6nQaemJybxsW9daqLhnPdlYzAoa1DaL95GF8OAHlX1ZRupJl3/hlphnXdJ4NVKJr824iNNK7FegYvgROEC0oAQXmmYsxSk475AoCAgdTlgY4xyde+UgDgBqzQSRigd+GWpAhFL7ulMkaoFBautd5uQqgqziSFk/g7rNoVyOm+0DhpT7BwaF+gNTwsgjdjtCLRCWcHVYgyCdn7Cb7Fgawgu9VmkMDrACiTa4FIznYyo0JLpEVROxjlR/pmlv1vtSBBIF3QKwYhvGwZvSuxN0EE5IdCpqZaznjDXEVq831ArCqf9Yku51P8c9SSgz5efY2vvlxBysrI+nTfrUvmiKdUHoMVBtUzf2pU889hDrHn6aSqVEZYu25eXHX4UTbPnYU2AVYKKinmdZ36XTGcni9s7PZdhFGiDioW9Fx7Mya8+Bee8CxNcQi0p85Nf/JR1m7YRMLlf5d0VWoFO/Y75AAApQeiEZ1ZV+da3fsaDD61AMToXL5fLLFw4m7PfdTRHvmpx2m8UVmBbX8xdd67kxz/6PWvXbiKIQOFIbII2mjlzZrF40WLWP9vLpo1bKI9UUMr4Rbi2FIuOM97+Ol57/D60Fr3rgHzDQSlCgRVPbePaq3/Lww8+7ZUhyqIIcImiu7uJ09/+avbeewHXXnM7N974W6pVTRA04WwCUqVzRsArDt4XYXbqvzYjvcfrCBvJKFv3mx7Tx+vSTsDZjX7PlupZRHJPKowSYfVUZR0ZpzQNJr2ZEi9X2tXdVI37Y4KMZMey+k3qjpkJrpONanVOXhvyIDlR12iSnS2BRz23jR3fsiI0ztezstdTBCZjPNO8SV1aNXotEaxLlcmQBhHTrHiyzNe/8WOWL19DGBVRYjHGizwOPexlvP3MI1m82LstGDVFhBKKux99li99+Qa2bRtGqwI2sdhkhMVL2vnoR/+CuXNLqZprgmrejVEToQgUtEGs3yxKFJTFsWpkG797/EEeefwxZrZ18YbXHM+SWXNpVRHFdJZvJKWpXUrCBCFLOxdweOcCBl/xGlZu28ANv72V/7vtRg7a52Uc+/JX0lIo0IyiVWmMaB9sTnnK3TohUZ6crCmh7BLKcZUkcSiliUxAIQopGU0RRYiimD4rEYjF4qyjaAxFFPt0zWXPrnmAIrBCqIJceWfSNWLW0ozRaD260YT4wPZW+Y+k7xrBq/aV9SrIANL8K5qiCAfUrPdVh/XzGh2kikMBQftNTBGaRBGpgNbOuew7Y17qqkkwzps6g583KZ0SovgxODP5rYgl1n5jpRrXqKYu2TKTYkn7ZRiEFMMiTWGI0RCplNMQwSUOE6QaRec3cvwGoWBTNw1JrUoYhswKSizWzbSlwbmyuZRL/9b1QxLZ+zqdVwGutY1X7jufyr6WdeV+Vmx8lnuefJTrfnMrv5/5OMfu9woOmrMEE/i+HqrUSiz0amDR5D6SxXpFaaIlVwT7aYBDowl1qiAUr4p0DkKTjjPKK8yV9gIBlFfMGqNxmRJTKZQ2xOnorFD+GUhdW1ApQZiJl3ai7+225OBYYjAjmMBXXhzHVKtVBgYGctKrqamJGTNm0NbW1kDUZcRRRtrVq9WySLeFQiFXZZVKpXHKwkzxlpkzA7lSsVgsUiqVclIrI8SyvNaTdmPJqsnIqR2RUPVk01gFpLU2N8Pt7e1l06ZN9Pf345zLTVHb2tpy0k8plftQzPwMZpF8M1PdjJiqr4tarUatVmNgYIDBwcFcvZeRVFldZubLmeKyUqnkwU+y55gFdaknB7N/R0ZG8qjNcRzT3NxMV1cX7e3tuSI0C+4RhmFDZN6xxGo9Qbg9QnCi+t6eonMqqH9mE5kU1/uJ3LJlC729vWzbti2Pzp3V78yZM5k7dy5z5syhq6srNwefLC8vRWIQSBfhfiKojfcz4gLBGYujikiMdglGBaAtSewITJhOICwjqorgpfQFpYmU8btRJFRtDKqGMX7SX1FV/wJxVZp0M4kLKOhWlszai0fXPsLKvhWYDkWJIk6VCKMi1qYRkFWNGlUQqBmL046qjLBpaD29Q9vYMtLH2g3r+NVdd/DMsxs4cL+9ePNxJ7P/on1pN81EKsC6GuIKBKqQRuQ0xCSITXAqxikf9VJQOKdIlGPLSC+1oc10tHewqGMP2nQ7QRLiTJLvUMWmRs1YKnaAjeX1bB3ejBZoa+qgrambZt1C5AwRBSIiAgwKDdrgbOx3PSnQVZjBnK55VIaG6YsHaIk6iQhRKk538Szb4i0MVLfSVCjREXZSpBlEo7SimlR4YuVjDFcHKRWaqNWqDAxuoVIrc8SBr/GmBIGCRBFS8MRLOsd2IlSdJTAKQ0hR+zFluFz2SxPjF/pa0qWMMqjEvxWbTZG2phY2JBswKqC9cybtpW6ULVAIWtASEGiDk4Q4TlDa+R0+AsT6aVnivMrIENEStNIZttEStbB5eAMDdogk8IqoITtEv93Cqm2r2dzfS2fbDJbN2oeZhTm00o6xConF+5cyEIVBqgz0u83ivOLRotEmREQh1hIGytu0OsEEJYQQjKapKyLQAcvXP85Tm1YSdxQotjYTOD8xDIPAk+SSahReasNAGoQhUww65XV6uARjE6qbt9K/aQMjI0MktuZJF0WqsBqzkE7tiUVJHYHjF4O6QQCjsM4RFIrMX7IPTS2tuGqF3rXPMrB1M+K8b5r2zpn0LFyCaiviVEow5otCcjM2v0aMkbhGMjTAwLbNDAz0EVdrhEFAe2cXbd2zKTS1YpUjMQZROlfUebO0dBotGdEkKEnNiNMy+slh42I08yc0EScwxQfA2EW75EqYUXK1nnzUSucqKoNDJzUGejfSu2Gdf8e71Gw68/NvoRAWmb14CVF3jx931Ki2MQ/0AKnXoszfT2rS5PAkmlFo59Bxxf9rHW6kwvDgAMPlQSrlMnGc4MRhk5gwCGjr6KSjeyZReyeJCr0hnjaIdWm702l56+Zs6f8le9dOUrcKr97Ro8xCdiYqLvPs4/dz88/+j8cee4BKeQRxiq3r1tJSLFBY+wxxuujJ6FytFE4ciQWtDHPmLaJz9lwkDEnQmMBQnDGHPbp6Rp+5+IAmnTOXUC7XaC607HQLePGRtV812r8UxDVh9aotLH98Iyue2Ow3qMSiNQwNDzF/4UK6ZnbjPbAqAoTezWV++MNH+en1d7BqVS9o71/U2YQg0Cxc3MUrX7U3BxxwINd+7zaeeuZRhodGfORsbajVqrS0FOhdXyOpCVLMgsd4Wk4jlMtw+21P8rOf3cXwYIwKDE45nIWWUjP77bcHey+ZS/+2QR566EnixHgzOTSJjVBaMXN2N/PmNFMqgHeiYuprA18bjJJfeR1lNEK9T1Cfs4k3hkbJt1HV4ESE1qjpoMqCw6TpVboRm21DiMqNHMe8c0bNh73+p94PVt39pG4DI1csZpq9enNhk489o6Rl/fexfVLysuR5zVLXlV2h87MV9WRa9h5RdXnXuVlxdt38mqOVROOWjUPEEgaBVyoLGG2ILTz8yBoeevBZVj3bSxQWvEpIO0pFA1LAhAVfUuXndi4lUBKB5cs3c8fvHiIK23DWeNV0MkQYebc7uYnyS2wO4M1QNdYBBpzRjGjhqf7N3ProvazauI5DD3wFR+97MO2mQBFFIJ7YyoJdKVKSTaUKQhFq4v237TdjLt2vfRNPrHmaSsX7EE+cxmFwymvLTEZ+CQy4hN7hAdZs3cTW8iBWQbVaSdev3qKgGIW0FEvMntHF/BkzaTMFQhEC8ZYAShscQoyjbC0V64iCiKY06qxNA2SY0RYD+BYYi98oBh+csKaEqjjKSY1qreZNp8X72ysGIVEQUApCCiogcD4AllUwZBwVG1MwPvgGIn59RPqOktQ8Vnm1XxVHzXm1ZLMKaFYmt1qo4bzyVXtBQaKEwWqZDX1b2dy3lUriNwPjJKZWrRLXYiSLj5Cq4ZUJMEFIYDShMfS0dbKgZw5dzW0UjRdgBOI3AxEIjCLAKxu18r7dQ+VVlyEQeNYNScm7rHeKFTJ3BE6pfE9A8C5eMpSUoViaQc+SDrp7evjN4w/w+3vvxVZraGPYZ/ZCZugiiBDjXdtUXUwsghJNURlKxm/QaPE+KzMXA8p4YjF2jkRBTUFNOZR2NKmQwPjn4RBvNq/9pk+AoYAPGGNc6sXRaKz4oDGeYPRrx9GgKmk1141FU8VuSw5ORHRkJqGZmWpfX18eddc5R3t7O11dXbn5cb0CLlMDZgRNpiYE8sAl9crBTBmY3dM510BgFQoF2traaG9vp6mpKSceJ/MlN5EJ6fbIwcnqYKy/vLHqt/rAGH19fWzevDkPQBKGYUOe64lBICdLM9+KTU1NuSIyM7eufw7lcpnBwcGc8BsYGMiDYWQEYeYLMAtYUi6XAXLlYBYQJPPhmH0y34fOOQYHB/NyiAhtbW10dHTkhG9mFh2GYQNJOlldZ89worQ7apP19f9cSbf6vNQ/06x+tm7dyoYNG9iwYUNOfCvl/TR2d3czZ86cPAhO9owyP5cT5fGlaFIMEKoITUgS19AmxClFjRplN0gsg2gRSrqFiCJhEBFXYkQsUSGgqkYYYJCqrVKQgG7TTChFtPI7Z8p4BU7ZDlO1ZYZqIwRRkY6gGeMg1K2EUmBuy0Kq8yqs3fQ0T1XLdLfNpqU0gxbXSpvppGA01tUou34Gyv24IvSN9LFm4yoee+ZR7n14Jes3jpDUBggD4eB99uC0153IYQsPoEQzcVJjWPdh0US6jXYV4RKX+lVRoBOsKzNcG8QqR7HQilIR/QP9bOxfS0/7PA5ZdjgdQRvGmdx5tTaahCoDaoBt1a1sGliH1kJ7Uysziz006XYi2oik6MlII9TiCtYERKbk/RY6QZIaJlJAkZ7mmTyx7XE2DG9iRjQXnMHgfWdUVZXe8np6BzaxeOZ8ItowUkABNolxxBA6iIRCc0gYaYzpYsuWLaxet47OYCamWKSoWhCMd44MgCLUEYmCKomfGFvnFR0um0ApoiAi0gGBBNQSECuEgSESja3WiHSIcRHiDBR8dGARX8WO2BMQqY9LpUOcFSLrUKEm0QbB5YFclChU7M1Lq8rh0uVOohO2lrexbaSPUqnE4p6FzCrOpUlawXkz8SisUyI40KTKd+cIwsCblSpvTuEjlnozeq385NOJIImjJWgiwDG7fQEDrp/1mzfSX9tGhTLNYQEVWxC8j7UwRFy2kHwpIUAIvNlJGvRGFATOoiojrHzwPu6+5SZ6N68nsVV0msbqukUb2QIwW2Rm//kFb0ai5fpCbUgSoa1rFm875/+xuLWZ4d6N3P6j63jyiYdRzpLElgMPPpITTn8HxY4SSb15Wboo1CiUE/5/7v4rSJIrP/MFf0e4e8iMSJ2VpSUKGoUG0AJs3WQ3mxxyyFGcmbu793JnbfdpX/d9n/ZpH1aY7YzZ2t2R997hkLQ7HJIt2RLdjYYGqlBA6aqs1CoytLsfsQ/HPSpRgya7yRGNOWZVqSI83I+Lc873/4QQDmnGbNy9zuWfvMTta+/R7XbJxmG8W5hf4tLzn+TkxSeJmi0q8wsYVSbZldEFHgpZtPegvKQU3lpxWPb2MJzngrysABXF5LU/73XwEDBYfhWHodXw3WT54ktfJIu3Ofn+Ppd//BI//MF3yLMh3psg45QCckdExNzsEb769/8RyzPTeBGHZbn3HwQGhS+ABwm+SBz2PgBwzoM3aGeRWcp4d5fVm7e5e+M6W5urdLrbjEZDsszifJCkJ0ox1Wxx8ZHHeebTn6V15gwiihE+TPgVgRFqBJQsrA8wDooOKAHMEp8pXzfBNVyRfk0IIImk52DzPt/5s3/Hq6+/xBiDECrI2KXljZe+xcbBFqnLCVpUENYVixiBsAInIn7tb/8Dnl2cw8qIXIZFY7ie48CvFw4hNLiY+aPnkF7QGXR/zvP+y9fcIRDae0hzy717m+zvjzBWIJQHqUhNiorg1Jk5FpYb5ISC0epqj3/7717hj//4FQ4ORlhn8ROPcMG5Cyf4R//4M3zui+dwTrC41ALpMGQBnLOqYIREjIYCmwdAqmT1lvv249fu8PWvvUGnM0ZKjc0NMgos5uMnZvjKVy8xt1Djze+ssLa2gbM6hA65MU5EaGm5+PhJZmYbuNInVTwoNHxQ2l42cejr4fu7BAvhP5b5PmiHn4qHmXeHP/VBsWFyFh78/gPvgQlAOQHRSvDSTZ5n4T2lA5g7tGsC7wMTuvTOwwsEmsBqdA8OrTzSQ5YKh+/LDz69Pih7fvC3EhQsWZfRZJ8nvTrBBUsAs9iCUEUY0oP24EwcPidlXxafJT3eGxB6wgzzeG7cvE+nm4JU5N4Gqbl3RFHE0WNTTE9Xwj5OvOLCKLA/gHurffr9lOaUxVnwLnzieJyB9xO/WSE//Br4ZW3C+cIrVmAE5N7x/u4m33n7p7x77yYvPPcCL557hgVVQbvCwqIAfawvJaW+CAELIzMigGQRgXBQr7ZYPv8UxnuU1Ag8MRAXDL5chKtjdXjA27evc/XeTUQlYnnpKPP1GWqtiFgrvAvS7l464sbmCi9deZ2F1iyfufQCJ6YXmEZREeEOyATsuzHv3LnJ7dUNLj35DEfbs9Sso6402oPxLsw1hcBLGOMxMrDb+27M1bs3uXrnJtvdDg5PpDSR1iipcMaRFVkA7XqTU4tHeer8I7TrLTLvudHd4kevvsyp4ye4cPIUNTQzUS346hXjl1CSAY5tM+La2l3evXOTqXqDF848xvnppRCO4x0IiRUwFp6ddMhbd97n7fevMkrHHF06wpHZBdrVFo0ooRJpYqUL9QeAwHrPIM/pp2P2h11Wdzf4yfuXqeiIp85d5IXzT7JYmaJGAKxEodLQovB/9BApiZbqwd0mBF6H4B9DUACo8j4s6HROgsUVrP8wZ9NeTEgGAdhTnKjP0T1/kTv3V7i+cZ/6tXeYmm5TqcY0wqvopH0u377Oza1VVBJzZvk4Txw5TSuqEPvCXTWYZU+enh6P8Y6tYZ+3b7/Pzs4On376OY61F3BCkHrL7vCAd66/S61a5dLZx5iNkqIPwjEYBLlUdO2Ya/dvc+/+ChfPnef8wvHCj91PQlCEKIHRn6/90oKDZTsMcByWXXa7Xba3tycAShRFE4+8Wq02kW6WQNVhqSo8AMJKMPCwD56UkvF4/IFgkRJg0lpTr9dptVrMz8/Tbrc/EORx+LV/lbfdYYDow153eH8fZsAdfv9hQLIEB7vdLvv7++zv7zMcDhFC0Gg0JunBSqmJNNs5NwHxWq3WxMevBD1LZmLZbwBTU1MsLS3R7/cZDAbs7u4yHA7p9/sfAGdL78FGI1StS9/GMuSkDIcpWXNZlk0So0sQeGdnh83NTQaDwQSUbTabRFH0Afbmw0EcDweBlP10+Dx/2Pn667S/ivF5+O+H+7N8bZ7nDAYDtre3uXv3Lrdv32Z7e3sSiqO1pt1us7CwwOLiIq1W6y9lC/630ILZr0CICIfDSsPY91gf3GT3YJX56Tlmo2WUSkhkhVpSIct6ZG7IUBywma2y199jptqiWTuOMh7lCNUWHSrePTFgfXSH7b0N5tvzjKJZlisn0TRQVIhoc6bxKLOqxf54g63eGhu9Teab86i6o2amwHtsZHlt5TX69NhY3+Xu6hrX765wf7WDyCO+/JlPcOb0IqntEVcSMiGpeEkv63C7fwO0YnnqDI2oQiKreO/IbY4Xlp7b5/bOPZK4xtG5Cl45Nnd22Npfo3KuTiIECQKHxTDEioxMZOyku6we3Md5QzNpsNw8woyaQdgEfERuPF5atA6eVsoLjM3wPgtwl7MoHeQMioT56hJ3xHV2+2sctE4g1QIxEWk2pssee+NNnIR2dZmENtZJhDBoJWnWKjx6+hEuLj9JU00DgfWzt7zLrY0bXLl3BXEs4lTtXABWRDD1Nd4Fv0l0YI6JMcPRHmY44vjSSRIfE5kIl8E4z6hEUziRF0mpll42wBjDkell+sMuOzubiFrKkVPzeJGTqTAZcLkNLCEviL1AOIHWAqRHOoHxljEpfddjd7BPr3MAxtCSdWIfowXg+5j0ADsaMdOcZimZpelrkKsw09AS48GbUOWzxqJ1hNISTEijts6ADEuZzIXnhfUiVNCVwAsdZBx+TCIjtFO0G3V29y2p6WJkTuoNVaXxQuOdQqDxXgSG7UeoiYI5GDzbCqmvdyjnMKMBGys3uXP3fXZ7OxhlguxY+MJKIHjMSS9xzgauipT4SWpJyfZgspKU5bQtV3itsZGHyDM42OX23ausbN9CmBwyz5PmGbQO0llZeOXlzhGLIuyoqBYLk7Fy5R2++ad/wOV3XmOUjTAiSEmEh9sbN9jcX+HEu69x4YmP8bEv/jqIKsgAjlvhJvIoHFipydEhyV2AdK5Y/AhEkUYI4J0l2ImHharzHimDasLiJ5zDX7QFBqcopE0PgIoSA1BChnRnpRHpiGxvj627d1hdvUUuUozMA9PPQ2QkDVWj1WojNcVkPjQ5cfoPDkMioPYEM//gLRlMyi3KOeI8g9GAe++/y5s/+RHX33+Xzd1NUjvCkGGdwbuSiRoW+mpTcf/+Lfq9Dp/723+X2vJxfCUOMl0TmB5CulBw8YTrRogQgFT4AU36pag0lKO+KwDZ4KsaOkgKgUxzbr//Lj954yUyP0YoTewCZ3t+eoH7G3e5vX4HI11gyxQzeycDU0hZTSyqGGGROgQYeO+IAfIAGkgVfh8A4ShI1jnEdvwINed9AQwSgKIC5On1LCv3duj1hmgd5lPWebyVzM3Pcez4DEkSwj2u3djlD//dK3zj6y+zvdMn0hWEVEjpSGJ45pkL/MN//CU+9vwStarGGMfy0gL1So1er4/xFq00zjqMdQwGY/LcIIkLM/gAqq2tpXz9z97i8uU7RFEN73K0jrAm5+TpBf7hP/4Czz69wHDsuHO7SzqKULqK8BnWBaC73lC88PGLTM81imtJTgByQbgcHBaBC6FjH2AElpTcQxJZofmPwELBB973AELU5W3MBNDzJXgWQDsomWtM/L8Cn1tMJPiu+AglwBbOWgIBXlGWDnzB7LLOIaWYvDs8S4L/s/MgP+CfqCl5VCUk6Qo+8eR4io3IAtApGXxChOeVw6KKJ324mkRR0yjCOyaBNsVaroAzw/4fKrv4gmMoimcrPEARD0GTorhuy7RW5x2yAAVL4NUJ6A8c71+/S68/DGxW5xE+xjtot6c4slynUqUASIOlhXceLSVb613u3dkppOnhU7WKcT5DKR2YbwQZ6EdORVQEb0gJOYJ9Z/jpvfd57doVji4tc3HxNLNxDVw4r4jAJJc+2JEAE09RCri5ZI4VfFiEc1SFxKvwd+UFuqjJ2SINeXXQ4ftvv8KV6+/zxFNP8dTZR1msT1OTgc0lnCvAH4kVnieOn+T1O+/x+rvv8Iff/Tqfe+FFXjh6PjDaRGAz92zG3d0Nrt67yclz55hvTxM7V9hnFgVGGQT1IzwHPud+d4e3332Xq9euYp1jaXGJi6fOcXR+iaauEBWhM96FZN6Ry9jY3+bu6ipv3X6P2cVFTj5ynp1Rl7fWbqFm6iz45UCuimphBlR4NeeEPk8FrA8OePvODRbn5njk2CmMCL0Z/BhDVGIvHXJ39R6r91ZYnl3g6fNPsNBs0U4qJEIR4ZG+YLEKQnov4WHifOA4j/Bs5UPeWHifl978KX/68g84GA/5/GMf40x9BocL8H05FheS3MOKw+Au64t7t7wPA/MeDoWf+qJIXNyLvrhHnAchg4VVcIE1pCYnNXn4LB0UBhpBLIOPbTWpsXziBGt2wNs33ufW9jopnseWz7AQVYkApR6UCgQUKjbBVFJHSs2t1XtUq1XsRc1ca4b73T2+9+pLOG955sITSBGsgWSxPrCU14bjjdvv8+rlN2nUGlyUMRCk3ZEUPBhAxQddEP6K9pFZLZQAT5mUu7+/z9bWFjs7OwyHwwlYUoZqlBO3kv13GLQpL6QkSSaMtofZViFd54NAkxBisv35+fkJS/EwI7HcxuGvh9uHgUQ/j7T1MMD1sGT5sCdi6c1XBln0er2J5LoEBqWU5IX2v0wVLj0IZ2ZmaDabkwCWw/tYMiuFENTrdaanp5mdnWVnZ4dut8t4PKbX6zEzMzOREpf9XQJcJYOzXq+T5zmVSoXRaDSRamdZ9oHz1ev12NjYYHd3lzzPJyEk5TFXKhXq9fpE8vyzkogPswcfZg7+ovLi8nz8vO3hc/dwSIoxhm63y87ODvfu3eP69evcunWLvb09tNbMzs6itWZmZobZ2VlmZmaoVquT6/RhT8sP29+PIoioiwmdVJLM5zgsY3oc5Nus9+5h5JCpuXkQitwUj12lyd2YTI05yPbZHq6TJIJu1qWq60CEUAkKGNIjF4btdJdbO9cRlQwhNBkehEKh0NZSFS1mq002kyqdqQ73t1e4uX4NP28413iUJKrRy0fcXL/D99/6Ef0dQ2+Q4yN4/OJ5fv1Xfo2PnX+Cek3x3v23WN26z1R9gXqjRaU2xbg74v79+8Snqiy0FvAyQQnJeJwC0Mm7dG2Xo40WUnq8zWk0Ghw98SxHWkeCrLIypue7ZDKln+6yO9ylOxoxOz1DK5mmJaeZFm2iPCJzPsQiKhs8MqTAWB+YJiIMkGHiGxgrVoD0mjoNlmYWWNm7we5gnWZzGu1jKkmC7Q/Y3l1jujVDPZrG+xivNGCQXuCMJXYRTdWmyTRVGmihmGss0TjR4PLWFTb66xypHsWLDC9yhNRoofHWkvkcETl6+Q4ruzdJtODo9DLKSnxqEVWB1JqhGZN5Cwr20g3e37yCMTknpk6xI9fZWltle3Sf29UaWcsxV18gIiaO4gAWyWB8rCMNWJy3RbqcYei63D+4x3u3r7C2cZ9HT59jPpmhSkKajjF6hLVjtIeZeptYxsQiRuoomAebDKUjECrAM0JivcfkOUqWXmhh0uW8QRAjRVENFeUiwyOERUiL9TkVFRNbgZYOIT25T8mxSKNQWhOskQM7xXrzM++1X8YmSj6LKANEglTTZmOG3QMGB12wQUrocJgi0EXgUUIhnUR4gRZRSM7F470qAEIX3uNydKRxzuPJERa0TziyfIR6vQHGkI36HBzskJGitCNG0p5tkVRqYXpcLJSFEFhbiM6EQOSGvVvX+Nb/+ge8/tp3ScmwSiClxnkLEYy95/ba+9y9c500Szn39NNMHTuD8SXDxoFJsalFxnUiIbAFcJiZrJA8ySCFVXLCgFVKgJMF9yawb4wNLDWl1ANK3n/U/mPOzcNnJXj5+ImsyD5Y1QdgUAqcz5E4ep1dOrsbWJdiYkMqLQaPRgaplVacPXOGRrNZ0oAmk/bDjCDhBRgTFvcyCsEweJQEMRrTWV3hnZdf4icvfYftnQ0GaZ9cGryyGGuIpCrYlkGmnimLI4N+xiuv/Ii5k6d5fnEZZw3GOxIKeXHAJMOCizCWR1oFtrWQOGuxLkj4nQuQQ1hYFABJwQC2xhKh6e/uc+XtN+lnA+KKQsmIjz//Kzx57imm6xU2/2wTb8JCNYpCSFGOIVfBI0rkhtZUg+bcHF4Hf9hISHyaownXQvDRVXgfJGpeBgbxRwwWAEK/TwClQtLurac/sOzuHgRJtjeBcY1GKc383AJL89NI63n3vT3+1b/8Pt/5i9cZjx3Vag0hJKPRiEZD8ZVff4F/8k++wvJyTPCLD8WgZr1GvRrS3bWKkSL4SVljGQwG5HmReVwA3Wnq+fFL7/P2W7fQOnhtO+NI0zGzs1N84XPP8unPXKBRF6yt7vDe1btEMsGjiLTGZGO0jmi3G5w73aYSKXLrsSYAS8YTCleRDICPKJ85BbPOBwbLg1ay3EraSPk7W/6A96UsWuCtJ3dlMT1sqsy61SqABVnmULLcukBKFeT8BVhorMfZsOgFyPBoLVFShr8Zj3WBqekLbwelC9sYgn+a8wKlwHmFc5DZIrGUUoJbAgOeSIlQmKGAD0Vggnl3GLwMi33jC/9KFVhOgiIVukihdcWxKxXuIRkiVUMwCCHkA1ca/fsAVoXaNZGigGtD/cAaF57vjgloWkk0Rkyw/jBOyIJ1ZeDuvR737m4wHmXoJBRkcaGgcPzkIkeW2oRapQRhCwAzSIrX1ve4v7JJpGMCmCxC6BKWRr068SdUyACgfYSaUAJUOM5UeHo+Z7vXQWnNs48+wWKrjQIiEVJyyxTbAPeKCV+2HKKscwV4DFqKoohTpPX6gnVWhFlJJE4Kuli++86rXLt1g489fYnnzz/FYq1JAkhvUdYTyXAdm9whY0mlNsXso8+x2J7n66+/xBvXrzItE55ZPIYWihyHlQKrRCjklCB4ycoXxbXkPX1n2LcpP7l5hVfev0yeZTz5xOM8feYiS41ZKkqTCIXywYpEF9dijsfgObt0lEsXnmAnH/L2rff48+99i9XtLbLxGOdhPBoTO4VLmgG49uFe80IUadCOsTOMTEZmbfBNLIBBJUI4jgam4zpPn7zA+eUTIaNAB1As8h6VG4RzKKkK479iPS4KQL4gDydKIuIGnzjzFH2b8o2Xvsubt9/n9NHjnGhMU1EKYcHakD8fbJ0Ew9GIyNiQOk8Ik4rCLBvrPBaLUhItw/E5a0PxWJR/LxzufSiiGVyRgm1Z2d/izSvvsLu7y4UTp3jh4lMsxS20LzyuRZCeTzeaXHrsKWS9whvvvM2f/ug7DD9l+eTxx5mSimpxHQYvZHDGI5WgoTSXzj9K3Kjw9rtXSLbvcbwueG/rNmv727z4xHM8cewCNRGeSdZTHKcgxbE22OPNm1cZZGO++KnPcXx2afJMDjXLMGcL3f7z4wC/1ODgw9JN59yETdbtdifg13g8ptlsAkwAk4cBn5J1+LCfXfm3w59jrZ38/WHvw5IhWCbklpLZh9Nxy+3+PMf4YTLk8ljK1zzcDjMGD8tTS3Cw1+txcHDAaDSayKBLFiUwSQ8GqNVqNBqNSTpzrVabgG8Py27L4ysZlHNzc2xtbU1YbiX7z9pgim2MmXxfBpmU31trSZKE4XDIYDBgPB6TpinD4ZDxeEye53Q6HdbX19nd3SWO40m/H2YgViqVify5PPc/q68Pg4S/CCj4i7afBU4e/nfYt/Hg4IDV1VVu3rzJrVu32NjYYDgc0mg0mJ6eRkpJrVab/CuZl6ZIfDx8DX0UgcAPbcIgpcVYh9KQiRxLDjHoRoyuJ3glQuIWIFWCRBELAe4AcOQ2w0gLcYQlQjiNzRxeFxJE6xgPMlQcISoaU1TkMwwSQ015hBV4q2mp41SZp7k0y83qe9zZvUsznmVGzWO9YL+Tc+fmgHTbMbuQ8LkvPctvfvpvcap5moQIITxPnbjEd69+h/1sg5E7RSIbNOJZqo0DNjpbzFe7LMVTVLxERAlDhtzf28BKSzuqEWFQMmd5Zo7zFx7BjB0ru+vEtRpxVOfO6m26422OLh7h/JFTTMslhEuQNib3gHCoWIbJkVMF+8YhpArhGEoUHkMKfI6QButBoklkjdbUDDd3LPvDLU40TuFtTCpGDLMuUaRYah+hrhp4G4gC4VqUKFlBoKjQILF1KqIaDNiFohXNMze1QLe3z8h2iLQgUgInckZiQKwivLB0/A439q5y5+AuF45doK7qDG2GjyD1GQOfUlMaK3L65oDbe+9zf/cGTz3yLDXRoFGZIW7VOUhH3O7fRjYqKC+YYZ7EJlR0DUOO85aRHYGTKCXI5YiO3eH23jXeuf4a99buUKs3qFXrVHUtGP3HAeixSmEEdNMRvXTEdMWijAdnkbJgTOka1goyl6FUEsgedszY5CilQ9qgVSgLxo4x2gcahnAoGdhgBhBeoXzggOXO4mVYPMcioRk1sMYFhposzJA/aqwBHF5YrCj5Ii54CSHQSjM3M8/Zo2cYZH2stBiX460JshUvsRaMFSgdIaXGmJzc5QjtOBh0OBgekCLIbeFV6D1SKSQxi4vL1JMaZI78YEDeHz7gm0hNUm9ClABFGiougE/uECtvPODtl3/E5TdfxvgRxIKEiLasozTspAeMfIpRYay9euMdLl67yvMnz+FMCORxzvHNf/tv2bp5m+c++Stc/PRniYTEaYmIFLkgyMyEQCMLyVpgpoqy3wo2jBIam7sA6snSAezh9rPHjhJfEAQpj/KHitHFpsqhx1oLJmNvf5f9XgejLF4FzyXpfVio2oha0uTY8kmqtSY49WAx7pkkPgvkpC8C2Gkw3qBx+Cwj29vm3R/9kO9/52tsHKyTyZw8tqA80kFD10mcZqbRxFhDLxtz4FOGIieNHBvDPX78xss89aWvoD3oKCrM1mXBPPIh0ErqAATnIWgktxahQpp1bm1Y+Bfu51oWli15itbFXFMEP7yVlbuIAiA5d+YRPvvV3+TEqUcYbm1z+uhZSEtZlGdgh+z2d9kbdsi9IxoJnn76MY4sHMN7hRLhOrfCI6IQ7KJKv1Qpw3OjAJqd+AVoA7807YNuSSU4uLm5y72V1WIOKLAuAOXGeo4fPcby0jJvvdXhX/6Ll/jBS6+SZZ4ojjEmx3vH4vwUf/t3PsXv//6naTYlSgQQXaFwERw/GhPFkBtDrCOMCQUy4WE8HOJsYIQaHwCx27dHvPTSTVZWt/A4siz8PdGS5y49ym/+xsdptyW5h/trHW5cv4ZQGQ6DtQZvc6r1Bk89/iRxXOXGzQPeeXOHN998j7v3VxAIpmdmuHjxDM8/f5zjx6dpTmniSE365TBX7YMg/wS95wFgKCd9OugavvPdVe7e3SNLDeAL7+4uTz99khdeOM79tSEvv3yTfj8PoBqGY8fnef6Txzh1tML7N7r8+KW77G0PwnWpMk6ebvPCJy4QR46XXrrDe1dXSeIWSVxjMOwyN5/w2S88xvETMUoF4D5PLbv7IzY3R9y8fsDNW2usr6+zs7OLd5pGY4qZuSlOnTrC408s8cgjLWamK0gdnmZaSHY7hp/8aIVbt9fxXpOmFiEkrekKjz9xjPMXWuztDLl7Z8DVd+9z5/Yqe3t7eO+pN6o88eR5Pvu5s5w526JSCdJnheeNy1v89OV1hsNgMSVURqUmuHjxKE88eYxeb8iVy1u88doN7t3bIBtbkmrE8eNzfOyFx3jyyTkWF2ok5fyGHNAMBhnf+84rjEeCWrXF2PSCVDKC3kGHY8dmWV6eR4iSPRsYlQ5BnsHWZpe93U6YOwCIwCis1hucPX+cajX4w4Xixn+2G/U/SzN4MsKjzOI5MH16gz7VKOJke5GZAoAq/fkOO+I6QeFXXIzvEABtQt3bZgGR8lIUoR6hkCJlWB/mQA/DveEOV1dvooTn+bOPcqzWRAqH9iFdVugCHPYeJwOBtEIALB9ZOor5+Kf44cs/5d7qCo8uHAnFYV+CYqIoshV+4gXjNS2UBUjB0DveX7nDj996nVR6PvexT/Dp008yI6Mgoy6nJYVnIT74EkeEsVMisTpiRlc4//iLLFan+Td//kfs7PeoWpip1KhmntgG24uoYANO3Ep94NEmOiKWsrA1eWBzkIgg0c69J/aCmbgeQDcf5gNeCHyki/P5oE3cfAVIFdh7FtDCk0hBRUh0FJF6xzBPGXqHdFDxIqiZJgUPUEmMSmK81sU5F2TOF4CkLEBChyN40Msi+M15X5TP5eTKKVOVD/yYm3vr/PDNV3jr2lUW5mb55GPP8NjMcVpCB7CvOE81IdEiIVYR4th53DjnOy//iB+8+jIJko+dvIAgIi4ezcIVRVYXru1pXeXs4gnubWyw2t3h6k/usr62xlPnLvL40VPMFkFrsugvWxS7d/sHfP+1n7B30OGZ849xqjVHW4oAyHpRkmQppok/oyD84e2XFhx8GJgrfy5Tb0tw6zAbrASWDgNhJWBWegh+GFvvMOMM4GexsMrXlim8Dycfl/v58x7fYZDqZwGEf1krk28Pv7cETw+HfpQsyRIYzLJswhgEJr59h6W5D/vhHWa9AZPXlCBhtVql1+uRpilZlk3kxMDEV7DcRilNPuzhWDbvPVmWMRwOGQ6H7O3tcXBwMAESoyj6AFOuPA+H3/+XgbKHAbT/XODgwxLwh6+t8nhLcPDg4GACsG5vb08k2kop2u02c3Nzk8CYw8dWgoMfvUX/z9ecN8GbBQ8uUKQVEdbBcJQzrgSDe60EQgY/mtzmOOVxNiRC4R3eGSyezFkSFePxZGaMin0wdxWK3Dhya6jUFCPXoSGbRASDXiskxiuU10jviKnQqrbYZoed8U5gv9o+g9GQfAxae6aqMcdbi0zZOpW8Qi1KCvZZTJJUyP0Ij0FSRfooJNXaEWMzwOgU72tIqcmw5MqCkSRU0Gi0UmAkIlckUUIutthM71NnGiqWKjUaYpqamSLRFSJRwcuSIR0mltKBdTlIimp/AC/xjtz5wERzDuElXobKmxagnEIJTWZzUj+mpnKsMIxEGsRDXiOcJpaBNWh9YD0EGYFC+pDSZXKD95YoTqh4T0NX6bOJZYQgZpRlpOT03B5KBI+ertml7zroiqaWTCHRxBKcgoEd0PcdrMjJ/YgeHXp+HxnFJKJOTExCQrMyha/kdId99sZ76KiKrMSgBJlLybwJ7AjlQWm8cPR8hwPfYSgGdEZdxnlGTWiEqGCcxGPC9akjVCxRVUEuUuJYk2NQugZOEgW6R0hzFQqhFLk1CASxihibMd6BdDJMYFSQiloFQgq8CMmRToT0t0gqbO5I8yC8TnMb2K4EebjwIdhECPDOkufZf8W7+a/RROnm+IFfgtTIuMrM8nHy3DEc9QJTwlvwjqioJhshsTYwXCIUPk8RLmcw6nBnNaPT3Q8Tp4C7EosEl0Gl2qDVnEPrSphkpmO8t0W6HyRJlbhag4KdBQ84OyGcxCOsZdjv0D3YwogUoxzeRzRq01w4eh7w9G6/FYBJ78nyjDQbk2ejYIztAwNycLDP6vpd7u/cIrnXYPCORBuYmZ7j2KlzxFEFZLgnnbM4X6YAh9VgbixaFnJcAUIlgYXpXbjf/7qn5tBirJQXl6OedYZICoz3DMdDxjbFYjCFnkih0D4i8jG1ahOZ1APLuNzAQ9sr1j44EZLcHQ6tBJF1kI3o7W6xt3kfy5hc5KQyhEIp64l9TDNqceLECaZbM4xHQzKXc2dzhZXdVbwWWGVJx0P8aEDUnA6MTAo2kveoUq5t88BF8WF8UUrivAmAZ/HsdEVQjLOACJ6nZLao3HvMeMhwOMB7gbaKucY0SaUOOkbWGsyeOo9PWoV/Zk5vuEv/vS7KBd81JSVTM3OoegOrwudoHxK6fR4Ykt7Z4DslPLZgQ/silOij2QpWVglwZDl379yns98nyz1CSYRUWO+oVuvMzs7z9tu7fOObP+T1194sWPEKaw1KWU6dWuTv/O4X+PWvPEZ7akKFK2ReDuMls7OCZlOgpMc7V3g3SaRUZNkYY00BiiuGw5yXX3mXy5dvYfJgvSMQ2DzjxIl5Pvf5i5w7V0UISIewsZEzGtpCMe/BK7SSxHGVZmOeb3/zFi/94BXef+8eeR7S640x4O/w4x9d5mt/3uJ3f+dzfPU3HiOeqUzE1g8YdJ4JQ9CrAjAIi+8Ac4UX+6JoYIxnZWWXf/Ov/5RefxCYj1Jj7ZD7q49y+txv0Dlw/NnXXuLmjTUEGmvHPPr4aZaO/waNxhJ/8h/e4N/9z98mHYe+qjYcf+/3PsOLn3mMH/zwbf7f/68/Ym93iDGaWDdAjPnM5x7j8186j5cJ6Vhy706PH/3oJm+9dZWbt+6ytdEjzQBCIEx4Iq7jvSWOoNWq8MwzZ/mdv/spPvbccaJCQX1/fY8/+uPv8cYb72GsCH7VzjI90+S3f/srvPrqCj/5yavcvbvCoJ+HPiqKbELCq6+9x5Wr5/jvf/9LPPnUMlqBywwv/egy/+pffo/BEIRUeMbMzDT4zd/6DBtbY772tR9x9d1rmFyCj7A2jLuvvn6V73z/NS49e4Hf+dsf5xPPH4dIBl9ZBJ2u4fqNdUbDFO8lkdIoFeb3tXrM6VPTLLR1KIx4WYCEAe0aDizr6336/QylKngCizbPRszMNDl37iRJoor3fng56Je9ldzQwmSE3OSkWU4ZxXr4mKR/yF3S+wesQUIKvSGk23vtUVLiCUXUoNqQSBFYZ5ogkR9lGRZIoqgAg3zhWRhYho5wj6JkYW8QQCekIBKKpFpDJhFGCTLxAJaXLsiREUXQGsEX0YnArnV4Ug97ZsT28AAvBbPtaeaa0ygRxvmolLf7MrDswXpdQsHICyEZdREA05lKlaXWDPs7O+R5zshkSCdBKQKZ1gU3UCUInoJFAm4ZIlKU6ISXhWS1CHglEDWk82ghUD4kcSsVQgmtL4rVIsj+A57Ag4IjTEKPVLGtLM9p1OrEUYwWEqUCe7gsfQReucTkBicFxoVzmxVsvtJeIEw9ApyZhQkx0hX7UVp3FAXJMZ4Dm3G3v8t76/fZPNijWalwcnaRxUqDRgH+UqzFpXhgg2KAhohoVeroJKaTDlkfdNg36QOylQ2MZl1IfpUQRCIo5aIkZnPQYX1vl1GW0aw3SaIYiScBjAsguZeCXAgG3jK0KVIr6tUqsRBUCssBDyj5AA8snwE/b/ulBQcfbodDG0qPupK5Nh6P0VrT7Xa5d+8evV5vkmZbgjMlQAV8QJ9etsPg18Py3cMef1EUTdKJS4nsLxJqUX5Wyfg7DFb+Iu8vt1EGhQghJkm3Ozs7bG1t0el0sNYyNTXF1NQUcRyTpin9fh/nHI1GgziOWVxcZHl5mdnZ2Ykc+OG++bB+qlark/4vWZylpLndbk8k2yVg6L0njuNJHwKTBOiS7bi7u8vm5iabm5usra2xurrK9vY2SZKwsLAw2T9jzMRD8XBC8sPA7sPfl0CiUupD+/4XPQ8Pf334/Q8DkIdlxCsrK2RZxsrKCrdv32Z1dZXNzU12d3fJsoylpSUuXbrEiRMn6HQ63L9/f9JnEIDg4XBIlmUTwPW/peZE6RMRBr9g8i9wuUDJhEhXiVSEEA4tLN6naOWw3oSJROHJ4ouULXTwH1NCUI01uRgGircXRKq4j4Wj4hXaOjSqAA9UWFwIQyIjIqrMyTnuR2ts9DYYyxF37tzmynvXwTrOnp3jc598gRcf/xTH6idIXAPtg4ShIqaYac6zP9xkXO/SrFSZaczhk5R7q3dJ0y4kGYI6HsfQDhimQ47NLiNUgiE4iUUqQjpBo1LjYLjD3ZvvcXb5UY5OnWJmZo5ZuUjVNFBGIrXHupxIxeAl3lmMz/HkIRnNh4m3cy54ACkFFIEWuUDFEjBYDM2oQVVPMRikYcGSWEZuyIHpU4nrVHQdJSKEz3DeoFSClFGYaLhA5Tc2Q6kIqRTehglZjMYZw9j2aahZ0rFjrbeGrgimohbj0ZCtzgaDcZdTS2dZrB8lFjXG/oAsz9nsbNKeapOomJEZ0h3vMRwNOHHkHLOVJapUcbLFyelT7Lk63qxy7/4anakR6WLOYjJHVSagJREK4QWZzxmaAQdph3ubd7m1cpPVrXWkUMxOLzIzfQQpaggUkXTETgd5V+QwfkTqh3jCIC5VFCYk3qOsw/gcoQWxCnJEZ3NirfFIpPTIQkLsvEOrODAVBHipMd4DCkuG0Ip05LFeoYiIiFCFT1+YcBpKWZ7W6mffbL+ELRhPl0mVMJkO6oTq7AJnn29y9tnnCEwz+4H3eSmwUmKdQwHaeuR4xGhnnTde/RE3Vq8HeYwUeCdQXlHVAWh77tlP8eSl56gkFUy/y373gGGeYqIwaZ6ammaqNQ1aFwE1vtRvBD8wKRFpxvvvvMGrb71MzwzwkaQSNXn+hc/xpS/8LYxL2fkX/w/ev/lu8KFSim6vy+b9e7jREKmqIfCms887V9/k5vZN3ti+SvWlPyO2ihPTR3jysUvE1TaZ83z+177M/PKR0GeAMAafGtxwTGYdUVJB1Rq4SBSSnr/RmaH0OfSALzyeBGHiKqRA5I68P2Rze5P9XgcrwyrAu5DNHQlNpGLa03NMHVlCNeqUQSRBQvpB7pNF4JTCCofwDo1FjAds377Bj//iG7x5+RU2e1uMyPBCopyg5mJOLZziuWc/zVMvfILqbJt00MeajO9968/Z/vafkrsUKw17mxt01teozy6iPfh0TDYa4W0eAEKtiStVRBRjRmNMbogrwXYl7fdx1gS5JBDV6sikhhnnjEe9IM/0Qbmys3qLzc01tIrRaOampqkIhc0tldY0z/7al/HGFdSWAdfeeYW3338zLPKc58TZc1z6zKdpLM4H2SYCaXNIx6TDPgBxtYasVALgqGThPCkP+Th+dFoJYIe1dljwjlLDvbtbDIcWiCYLWIrn5btXb/Lmm+9y8+a1gkkbLqZqQ/Hoo8f5+//g83zyU6dpNwJ7pGR/eBcoMkpALRG0Z6vEsSI3QcquEAjhGacjstwEwNdaLl9e5dvfep2d3QOEjMmMIVKCWj3hc194kl/7/AWC5QAMhgHM6fazYJMvFS4LzP0szXnl1bfZ3t5k2B+G4r/3GBfCZSSS/sBx88YW/79//h9othRf/erTKBXuwUMlaR5QeR+E+JSwySQ1uCARxtWIU2eOoROJ7YOSmlGeI4Vn76BDlg6Zn19gYWmRa9fWMLkhqUb0BiMGg4y339nmhz94j17fEscxmenx8Wcf5Xd+5xNs7/X4/vdusb09QCiJjCWjcZ/TZxb59OcvMb9UYdC3/OSHd/naf3ib11+/ynB4QGrG6CgJ4WBOgJBYn4NwWOPxPmZnJ+drf/4K/UGPOPkKTz55FBkJNjcGrK52sD4hs1mQ/XpBv5/z0g8us72zSaeziyOwgZ2zGGuJdYL0ijTLeOutW7z77hbnLhyh3ZDsDDw3b3TodIcklSmMdRgjGI4k3//+Nfr919jc3ETriNxYrElJ4gQVRaSpZWt7wDe/9RqjoaHV+AqPPTZDHGlyB5vbObdubZJmARxUWoFzWGc5deoYp05Ok0jPoABW/AQAVuzt91m5t8VwkKPjKl4Emw0vHO12nZMnjxEn6gGl+6MGDzob2F8qOEwiCD7NkSYXHkNROOJB1JZATMbk4ukxARH7NufG5ioru1sM8gyULNJsPbHWTDWmENZxcnqOE9PzWGsZDoZIIWnWp0h0UhSNwmYlwTrCej+RpiNLWa/DCkVSqzH2hp5JyYC42E9dMMeMe5AmLRxIFRwqDZACW6MD3r55jTTLeGr5OKdnjhYyYsAXHsKqIO64B9eIFQHgC8UVV/gYwtLcPI88epHbO2ukWDLpSSLJWAQAKpGlB18A3iY8QR98wEs+YoG14QrAVEkRCjX+wditRTGQF4AYBTlGChnAOOcLtUV4vhvpGYqc9VGX9Z1NXG5Ynp1nrt4OScs+nPOy/OFxeGNRXpAbS3c8pGNTnEqKwnLBDiWsvR2QueBNHStFRAAtjbV4AUOTs3Gwz8ruFldXb3Nvcw0FXDr/KJ96/BIX2ks0UCG0pcSHXEEAkoJICqbiGscXjnD29BneeP8Kb167ynSzxWNHzmBkTJ2gfAEeWLQgiFXMwtIR3nn9Lnfv3uPk4jLHl47TTOo4gu2Ctx6hA+DZtTn3Oztsbm+zuLTEk6cu0oiSid1LGO6LkmBxrsL18PO1X1pw8MPYUKV3Xbvd5uTJk0xNTTEYDCay1H6/T7fbpdfr0ev1WFhYYGZmhlqtRp7nQepSbKdSqXwomPRh7cMAn7+pLLUE9kqA6mE2488CmR5+/2GJdOnH2Ol06Ha75HlOkiQTD8ESTMrz4Fk2Pz9PHMeTfqpWqx9gU5btwxJ6y8+tVCq0223m5+fZ2tpiNBpNzkm1Wp34G6ZpABNKZiIwkXlDAH1LX8LD3pKDwYAoimi329RqNdI0ZW9vj1arRbPZnDAFy3+Hz+fDfXhYKl6CqofZn39TBmEJLB/+V+5XmTicZdkkZRvg4OBgwhSUUtJqtSbbOnv2LOfPn+fo0aNsbW2FlMsiiXpqamoCBo/H4w+cu/9WZMXWSRDBPlorgcESEwVZoQyDuncOoTzO5eTZkGoS422ONTneOSIRoXWCsR6tEzRR4YkFBok3FpuZotqlMEYgqhWsAeEtXlq8DXIgYon0EZKEqqgz3Wzz6vtv8NqVPlfeusn9zX1On53nq5/+Ei8+/QnmG4vEvoGycRjAdIIUlrnWLHsHazif44WjEbdRsWLVb7HfPyBtpiSk5CKnn+4ijKWpGigTgRaheqxBRJaUMRbPzs4BTxyvcrS+TFvMU/GNgsESJtNahcpz5rPAQvMeicaZHCUF6DChUE4ghAMniGRS+NXkYWEmYiqyxkJrgY39LXq2T9O3GPoBqRnSrk4zpafRMgye3sPYZGQuZZSPaMZTOGww/Pel4XdYjMSyhXMJncEBtbiFGWfsbG8ia4ZYV9nZ2CEbZlw89TjH24/QkHNIW0zKcsN+d4fb23dQKPZ3tpF4njj3BGenz9GkhXSSmCqLyXFaYoYaLepilb3hNnfXLrMrKyRxFV2rUo3rYAW9tEu3t4cZjdnpHbB/sIvwOe16jRPHjjDTmENTw3mN9J6YGtIkDIcGI/qMZ4ZkKkWIOPD5rAngoVKBZakFkRNIG8IyJBrjIbcWJyVCBo+1CEdusiB5UcFq2TnJ2KX0/YjU5qSjlOZUnciqMPEoqqvWW2Ih0FIQ6Y9WAcGVs8/Jojb876XAxxoVJdigcSMSKiR8h7kmVvggT/EW6Szs7bG5vsIPv/d13r76Bpv9HTJtA4/NSaaiBk88cYnq1Ayf+OKvMXf2NEhBnmds7G5gSmGzg3Z7muZ0GwpGqyj3U1BoN2A4POC965dZ31sPmQBeMDO9xDMvfomZM4+S+pRTZy5y+95tevkIpcJKodvdZdjbpz5TAeeZac/yhRc+wejHu6x2t+hkI6SXdHrbXFm7iheBMfqT699nqjUD1iOcZ7Y5RbvaYGNlFYWiXm/x+JPPcOljH6c2M4+TUUh1/gX4ZA8q0IGB4AoQDwJjAx9ShbUQyNwx2t1je3uL4XiIkA+M5aX1VJQk8YqZuVmaszPYSE0SpUvBkReyIEIU3lBSBmaIt2jnGO7t8varL/Ojn/6AbtYhVXkAICzERjHbmOZTn/o8z37xN6lOz0BFU81SpIBjN67Tqk+xM97GeYPJRuxurHH0kUdQXnLjzdf50Xe/Ta/fwTnL3Pw8n/zUpxiOU15/5TXSccqvffnLeDzf/uY3GAwGIDytVovnX/g4XmheeeVlxoMeM606vX6X4XjIwaBLzhApwXjDK2+9yq2VdX7jd36Ps89/HFmtILxDCk9vvctPX3uV7f19ZOEX9onPfYGjTz4JQGwtYjhk7cY1fvzDb7O1uYo1Gc1Wm+c/9SKPXvokUXMWYWRxL30UZcVh6S+KFY5CsNtz3L/fZzDIELJCZg3IACpnJufa9evY3BaAGngR5nqXnj3P7/8fvsATj85RSwomoqNgcAVQ2xF8dnUcc/ToMklyq7DfETgR/CXTNMU6G1KQN3K+9Y33ePfKHXInQEUIL0lqgk9/9il+47eep9GKiiAf2Ov0uLuyxjDNSCoxzltUHFiN43zArTvXUSoCLUnzDB2F+Yo1Bi9cCPzxVe7fO+Db33qbC48c4eIjCzzg0giKBAbC8rlI4RWlRL54jorAp/JAXIETp5tUGx6/58hMYJ4Koensj+j1c5aPaZpThfrIh7nRcDjm7u2U7a11bt9cJdJVjB1y6vQiv/GbLzIzO8Uf/uG7vHv5FpFqkrsc5yxTzSrPPfcIz106Sq8H3/vm+/zxH36P96/eJQQxCYSIscYx1dLMzE0TVWLW1zbp9XKkDJ6fKqogqXL18m1ef+U6F88fAadYXx2wu3uA8IJIK4QIPqhZbrl+/WbwFRQarMe6IDnWWmKdIU0z4kSTDR2d3REms8QIVu8P2Fzv44zE2bxg5wrG4xE3r98qUoUTvINYq2BP4vJQbBWFD2Auef/qfb79rcscP/EiMzOaPLWsrOzR66dILTDmkCckKU8/c57lY0fIoZiLhSqML5hVm9u7rK2vB0mrs1gCOKgiydx8i6UjM0j1wA/xo7Y2kMUYkOcWGSlioahEwX4icyOszxEiovSkLGcMcJhxHsTYmRCkzrLfH7C5t0/PpPgozEMHw1CEjysVlHN85sLTLE8vFFsSwT/SGnJnEFIVoFwBtDsTWMUiMLaUEIXHcQBpjcsZj0fk6RjhHFIdYrKJguxRrqt9GEu9cwgpGPuMzf1dtvZ2adebzNenqAtBA0XswnZsMddTPjArPSHIzHgX/PCQh4JDijDWRmC2CVmw/6xDe4iEmCT1Oh8YkVIE31CNQiNRIoRdpAK0LATu3uFtAEqFkBMJr9APnjsgCi/DMkysCMmRkIvgbzjEsePH/PTGZW7fucOJuUWePf8YR5ozYb+EIPchdA4hgsRZhHna1v4Bb914j9FBP4QKKolTIUBM+hCW5qUIIYfOIhGBOSogtRnDdMxwNKQ/GDBOM6QSPHrmHBeOneLs7CJHKm2mZIT2RXhJodqkxBQK5nniYLk+wycuPMnu1jb3N9d5/85NKklCm5ilapOkOYtwhW+qCLL2SEbMNmdIVExFaBanpqlrjSKwvD0eqQVDb0mFYq/f49rN60RCcWr+CHNJg8SH+RXFeBNA8wI4/wWLwr+04CAcQmYPSUhrtdoELCr92sogjL29PVZWVlhbW5sAVcYY5ubmJuDg4QCPh9lWh1lxHwbOPRwk8WF/L/f38P5/WDvM+vswBtvPkoo+LGM+DCxaaxmPxwyHQ9I0RQgxYepJKSfsydIzsd1uU61WabfbE7D0w/r9w85J+TWO40koSAlQZVkWJlCFd2MJkB0+tvIYStZgp9OZSIhLWbKUcsJ6nJ+fp16vI4RgPB4TxzH9fp+9vT2stTSbTaqFgXTJLD3877A3I8CHycv/qr7/edrDTNXxeEy/35/4O3Y6He7evUu3252cv6mpKc6cOUO73WY0GrG6ukqappNU4kqlQrPZpNVqsbq6OmHGlsndo9GIqampCdD6s5KSP3JNKrwoqPrWkPuc1AzDZE/AaDTE1zxeOpQvwoKEYiglsvAZG49SpBMkKgYHaZ6BEcSJIpJVvBPU4gpyGAZWZz2pszRD+TVUl4XDGYtwGuMMQnliEeGt4catW7z9zh062ym1pueLX/w0v/LMZ1lKlohcjHCSKA6BCMZnKCFoxHU0CpNn4AUJVZCK6akjjOyAPiOauo1hyNbePaTz1HWDZtwmJ0cKxXDc5+76HaYaM1STBnOtJRJVJaFKxdVJiPEqJPhKpfEOnHKgwoLACRkYThNpBBhylACNRukEkYPzOXgTKPBIIhHTiJpIsUPmcwyOg3Sfbn+fxdkFaqKONw4vNHiNVKHPrRWkuSHHhEFdaLwNiwWhBLl3CBkVDA1Jo1ZnaW6JudlZvBV0og4kkqXWCeb0McjCMy0RFSKtmGlOc2zxOJUowYyG2HHGfGOBtpqhYit4J4hklaqIiHxCUkto6QbbWYvN7gr7u1sMd4fIWi2AwZnFOkOsJCoPVdFmc4p6JDl77CSnl45TISIRccF4EkhboVWZpVmZ5uBgk829TdpLx1HExEiUDmB05jOMCom6LoOK1wgVqq9mnIGKsVLijCfSmjRN0UqACkmVWkgy4XEyY+z7HAz2aVZqNKMKsQsSwsw4VDUJ/mPOk2ZhQftRah4micJePJAPeaHCxFUKvIqRCLICRBKoYiJlES5HZzm+e8C111/he9/+U67dfpdO3iXXof4dIZmfmeeTz73Ixz/9JaqziyTTLaTWgKff63D33t0AghWLs9b0DLV2C7ScSG3CwkQErznv2Nxc5969W2R2jBQeKWLOnrvI/LFT2DhCGEuU1AGFUBKLAe/w1uDzDOEtZjzkze/9Be++/ip5t8uUisgRWCWx3jEWI4y1qKTCe9ev4JydsFNjrUiUxmQGgSJRCT9+64f81vZdvvzrv011/iheRkFaWCyqeIhZJg79D0yYgiX3SBTn6HAKrlQKk6cw6LN65xZb2xsE63CB9Tbch2jajSmassXxk6epNBvISGFEYCy4YmIbGImBwyClCgmeEPyBRimrN29y7eo79EYdRirDSwfGE1vNVFTl4vnHeOSpZ6gtLpCpCOstUkXEwiJ1Yc1fzEWcz0nTYZBWDUes3nqfd996mX7axXnPwvY8+WiPtfvrbG/sUK/V8Z/+BGsba7x3+VUGoz5ewOL8PD7rsrqxwfbmDrH32BPLrGzdpzPqYURZ+Q/SrI3dDbY39/jil74aki5VCELR6YjV29f56Ss/wUvIUsdTTzzLY89+El1p4KxltLfLT77+53zvG39Ct79Lmo/CelPCW2/+mK/8rX/A57/694imFzDOPwhT/Qg1R2BRioIxj/Gsro1ZW9snywxJJSx2HYSil3OkeR64Lh48kjS1zM4u8sXPP8vHnpzHFswqQTCTx5XeVyXLBnQSc/LUCer1OsNhL4A2hQVH8HkOVYgfv3KTl1++zij14fnuQ6H79OllfvXXnuTsqRZehmtaAHv7XVbXNwKzmeAPGhb0FmctUSypNwQnT54gTT0rdzfo9kdIqZACTJ6hogRPzK2b66zc3eHcuQW0OnynUujzCrZV2QrwPQSRhJ9LD64jy5Kl5Snur3ZDiJNWpOmAg+6I3sCRJDDdiqnXEsaDIZnLSMeCb37zJXqdYQAGlKM5VeFLn3+WFz9xmtdeW+PP/vS7bO/sk6WgIkWkPbPzCV/9jUu02jF/+qdv8//9p3/GztYAISDSYIzAZpYz50/wO3/n1/jEi8fRkeAb37jOH/7Bt9nd3kHpELwjpCLPLPt7KaORZzyyrNzbpN/rk1TDfSIKX04JaAVRJJmdazEapfS6Y3IT2FZCB1uUIPFWTDUbaBV8Jq9fW2FtfZc4TihllVIKnLPoSFGpRCwtTrO0sMjGxg63794HIdE6IctSSlFs72DIjRur7O562tPQH2TcurVGrzcGPHGssUZibYZSOY8/foSjRysTtlQ4f8V16mFra5f19Q2QILQEG4gIjVrM7NwUs3MPgnY+coaDFGvFQp6b4qjJCtVKhXQ4Ymt7izPtI6gkCvy2ojDnxSEyjQgjlQXwUIsSHjtznpOnToayulAY79ke7HNzY4U7m6uMugN6NiXDgVRUq7XgV+o9RgRQ0HofpKBIhFDFeOgKgDB4/iIDqOa9J88zXBbGeEHw8CvEuUip8UXwkgyBy0RSkAHDdMj2/j7D8Ygjs/NMVxvUhESV5FFRHBjBK1FYP5E068KnLiByxVgtwxxJSEFuggQdwnNQCwr/RnhgTxfUG9ig8MuNKcI7CoAMNxmTA04mAguPEKpjCYFlh4Ha8H1QHlgFFskAS9+nrHd2ePfWNe7evcvi9CxPnbvIk/MnaemkYHmHkC0nH0xXfIEt9AYDbq3cY9TpoRx4JREFC9cZExQlBKYlQiCQDNOUzrDH0KaoKGJpdp5zR49zcWaeUwvLzFQbNFXMlIipIhEusNOlDMVK48LzW+vwTI18CIFDKk42Z7h08hzpcMT65iaRjphSMfboaZaaM2gZpNflXWm9ZTQeYnODN458lB5SZEDmi7KpUBg8a90dbt27w5ljx7lw5CQVCmvyEpgutisP4Tm/CLbxSw0Olu0wMBdF0cR37jBjLE1TFhYWmJqaIkkSbt26xf7+/gSEmp6e/kCCcRlg8WFy4p/VgQ97E5b79vO0h/0TS+bdz+s5+PDnPuz9V4JwZSiIMWZyrHEcT46rZF/WajXq9foHfAb/KiDw8PeHgVCl1CQpugT8ggwuvLZk9B2WdjsXTH0Hg8EHwlMO+w0CLC0tcfz4cebm5ibsyFKWXAKEo9GIvb09KpUKlUqFPM8ngFzJFi37ojyGEiA+/Lu/7MY5DJQePvbyOiyPrQQEB4MBxhj6/f4kzdpaS7fbZXV1FYDFxUXOnDnDY489xrFjx3DOcfPmTfb396nVakxPT5OmKbu7uxMZeJIkdLtdDg4OJmE4JRj8sP/i4X3/KPoSKmewWJwPxuBWGZwG4wxpntOqRRhbSL6IkN6FhC4Zk3nNOAveV+Qp0jqEcqgIUDGpMyF9NI4wLkfgyPMxUdVTkwphHSbLURFIldGIKmTWksmcVKaspStcufkul9+8xUEnoz2T0G7HPHLiFM2kiSZCe5DSIoUhzUZh4oeHQgwhVGDt1GQNbx0LM4tcWX2bg7zDtJ5hQJ/+uMNi6yg1VcfgsaT0hzvcW71Lqz/DC0+d5ej5M6xurzAYDuhPHTCr58nTDKkjakktJFYWFWxdrOhz77CEtGKtNML5EOQiHbkzGGepKoUtWRI+hJVURMJsdZb7epXu4IBB9YDt7hYITyVJiIQgpoJ1EWOTEglFNa4T6yqemNwJhPTgg1+sVorM53ifYW0KSpBi8VKxPHOM060z1GSNhWiW25s3qMcJNZ9AJrDaY6RAEXNh8TxPTz0VKplHx2zvraOEJyJBikoYYKXCW0FkDI14mplqm5nqIvNTx+gt7HAw2KXT66AjjRCaSMc0my2EgM29HVbWV9B+ljPHn2RGLtISTYKDpSmqtBFVakxFDTbNCnf3V5iZO4HQwbtSkiC1Cv3uJZIEEWsy54h0WMjFlaiQlHiQUWBPRaE6K32YijkcXjoGvsPG/j063W1mmzNMVaskQqKBqJKQehsWpVITxTXSbPBf7V7+6zTBA0CjlJl6UXjTeBekhlKG76Fgx1gkCo1D2ZR8d5Nrr73M1//833Nr/SZDOcbFoHJLxWtOHTnNi1/4Mpde/ByVmSVI6oSnjkc5R39nj7u37qClxOKwFmZmFqi3p4tx7QFr0HtfeB4JOju77O9sF55GoVhx+vwFWu0prHSYPGV9fQNvLdKH8ALlNbW4TlJp4EYD/uJr/57/8Ef/I/3BFl55EqeC/N6V4H7MyZNn+N//D/9nlh59mv/b//X/wk/f/CFoGLqcLik+lNtxIgXT5f/5b/8/DOKcF3/1byHiOmSWGEk9qVGv1otFigBfeCIVIIMXAh0pjPPoYpLtpC0QXIkr2An4EMySjQe8/JMfsLW9XoyRgA4+eMZDqz3NYnOZEydPoqMKwQY9iOlFwWoqFzXSFyoDqQIDzitMali/e5eVu7dwLkfowhMO0AYajToXHnuC9pGjWBXhRZAQOZPihaXXO6A/6hXXmcArRX26DU6Rpik7BxsM/YCRynA41nrrrL+xibAC5WPOHjtGrdXizqs/YWgGjMUYp2Glu876lR2M8WAlxxuL1JJpvF/H+SKpWoT0YGEFSkXUdJNabQpUNVw/UnKwt8r3v/01XD7ESktSm+Ljn/oCC8fPk7sIlefcuvIG3/z6H9DZ2wSl0EmEsTlYw6C/z7f//E9YOH6epz/7peCF+NGbAkC4kymXdSJ3vP7G2+zu7BMnGu/ToJp1DuE0SlYRmOCnS5DFKSXY2lrl1dfe48XPnGZhXhVFh5C6KWTpMBnAMwmIWHL0aIukIsltGlLjRUihHowzcue4vpXz3R++x+rGVpFcbXC5Z2lhni9+7uM888xZVBTYrt5Daj0bm122d/dIKjFZmqNkhHeCSlyl3Yz4zGef4h/9bz7D2TMNdrYz/qd//TJ/9IffY/9gAFIglCd3I3RVst/rsbbZJctDYm7JEIGSExiW7Yd/LrLUi98FKFQgiSPFo+fPcfXtLXq9FEEooO53+nQ6KfWK4NTRaWqxYI+QyHow6HFw7TqaBCFBqYynn3ySL33pOdZWxvybf/FDrl27hxcKr8I9Pb9Q4/f/yVd59LEZXnlllX/2T/+I4UDjVYTHkJocKWJmF+b53/7vfpsv/OoJdGSx1nH82Ay1eoWdLYP3AmsVwkqkqlCtJ8SRYHVtizt37xSM7lAAsgaiOEFrz9nTR/i9f/h5Pv/Z01x+u8c/+6d/wtvv3Aj3owIvJZnNmW1EzC9pqjXBwHlu39mk2zsInq4+FIEcllot4fSpI/zu777IV77yKI2qYns75X/5t2/wB3/4LXb3+2Ft4QwKTZ6FlO3h0JM7GIxzNjf28bkiswYdFWQGJTiyPMfRo3UiWfA/i2RlFdA+uh3H/btDut00+Cr6MEMET7Mxxbkzx5hpH8aPQkjER6nJQJPEiZAeXBGaZnUK5+De6hoXj51nOWkExh2lT37BmvJuAvhLgpw3RlBVGqc0TkiMgNzDdBRh8hEbu5uMVOk/KIikotWcIoo03V6fTjpmvuZIhChSsQMsGHzwHBaDVJqSf9dJu7x35zo7B/ucm1sOTEjC6ZBCo2QMvjDLhMkd7BA4EQIVnTPUqhXarSnqlSpKhPmhKu5k6Qu2oCvEC+JB6jEFY9CHWUjRQwbvDFoJlPDgLEH0W4SiUGIhASjUBHabl+CiwIoUBCBREwLGhPchKbxgtoaCW/E8FSFoJfPQNRldM6abpaTekotCyruzzf3VFTY3N/DecmppmU9efIrHF0/SksnEXkp4GcDKAvAVBHYk3jM/PcNzjz3B+fljVJXCWYfzvgDHXLCUUgodx+QmFBZu3b/La+9dYTAe0Ww1efri43zy3DO0VUJDCGpI4qIoLL0Lo4T3eEtQMhR+hbY4c9J7KkKivGc2innxsadxkeSnN97l1uYKVa9otae46E+HMBskijCnzU3O+voqSngqtQrrB7tsDA44Up2mISXB5Sp83ua4y42tFVLhOHXyNMfa8xBKFhgJDybOIRkdSuzm5ycK/dKCgz8LqDrcDstqS4CqlKWOx2Pu3LkzAVHK4AwhBIPBgEajMQEaP8xf8K+zr3/ZNh4G2Eom24f5Ff5V+3CYwVge98PhKIf35TCTsWROlu85nEj880isHw7XOLzdh4HWhwG1w+BlKTPudruMRiOstRMmZykLr1arLC8vs7CwQKPRQClFtVplamqKSqWCc24CJJZsxYODgzC539mh0+lM2KPle0tAuFarkSTJB6TGD4NoD/dh+brDnn+Hk6F3dnbY3t5mZ2dnkjb8cB8YY9Bac+rUKZ566imeeuopTp48SaVSYWVlhdFohPd+wubs9/uT67XZbFKpVCbS+dLXsQQHq9Xqh6Zsf1Rb4KqFhWqkI4QKJrJKK5JqQlSJIRFkwhB5g7S+YBoGAEpJsFmOzx3e2uDRJhM8DqU0kYywucGKEPAQRxW8kIwYE8khVg3RAipMFUwljxEZW9kWf/wX3+S7P36JvX3DE4+f5uOfeJxufz98tvdF9S9cz0bk6CjB+BwnLMPxCIRGyqgIOREkqk49miKpVhmZId4bMjdER5JaPIUQET3fpee2uLb+HqM85bnTj3Fm9gKJrGPqcGvrPXZH+yw1x1SiJmmekZrgNVgaqnsF1qYYUvp2iEcxJVvURIx3YbGEUDjvSa1BlQUUJUMfOFBSUakmDH2PPbNDb9gjEgn1qIZyEozDy2Cu62UOrpzQhnAI6z25C0UFvCd1YYEXRQnVuB3ky9UE5xU1mkwzDw3BQbpPb7zPqNajVZ3FSU+ep6hYkuiYOhUiNCeax+mN9himfVwtOHoYn+OsI5KCOKmDCU5cFe+ZkZrpZAabjBnNDDEuSFRyYUgZ0x0f0OsPmKq1ObVwgqXGcWpyBu0rAfTwDi01ykONBout4+yl+6zvr3J/7w7VmZiGrqC9DtczYSIrrCS3OUkck/sMvJ/4WoVplppUlCf8EpeTkTFkyP54i9urN8htxtLsEepJk0RWIKXwUQoskxBa5CbBER+VFu7/sDCY/ILSR0gE5oYNz2I10eoE4Jm0T+f+Xd75yQ/4/nf+nI3dNTKRh0WGEzRUndNHz/Krv/pbnHvuE8RzR7AqIYeQQOstLk/pdXcZ2yHGBb+rKE6otmcQOgGCZK00eldakY9ytAoyl3GWFn0e0vGSOA5n0mWMxl02V1dwJpsAWx5JpdkmrtZYv3mdH//FN8gHPSIvqSYtzp17FGccV65dIXVjpBOMt/uk2z0q5zx/90tfZbC5yr3N+xgJSaXG/Pw8w/GQ+7urpCpH1yX/6g//Bf/jv/s3CDSRgaqKeOapZ/jsF75ILgW2AEG0FygrqMVVzp45S63RQBUeYOUCVqsYqROEkQgn0Nbh84z97TVWV28zzHtkIsMXSd3SCaoq5vjSMRbmjtNcWMAnFXJXnF+hioVKcc4lhXwnTH2tA+UcNh0zSseBDVvgmbm1aBROSlSc0GxNo5ME7y2REJDlyHGKMGO6e9ukdoxOJMZBFFeZX1hGeMlg74D1tfukdoQVFqWDJ2DsFbGooGTMk08+jUVwb/UeY5vjI1EAfg7vLAkaLWKeePIS5y6cpzLX5O13XmOUjumM+ohIMD+9wCNnHufEyYvMnj4bJI5KYwYDrrz2Mi+/8VO8cEQy4vnnP8XFZ19ARjW8F3QHHV566VvsHWwgFLRaM3zs459kZ3eH9956DWdHjLsd+tubqNzgowpOjv7L3Lj/SVtY0IQABskwG3Hjxjp7e32kikF6rHVIqQGFyS0eg5ClnNOhtCZLc65eucUbr97ms587S60SrEkCE6vAELxECF8wVQXtKUWjkSCVQjg1Sas2RtLrKd6/dpMb11cZDEZIqalWEjIz4tKlE/zqlx5jbroo1EqPAnr7Gffu7tLZ6zIeWeI4Ag/CeZqNmN/67c/w93/v4ywtBgbR3FyF3/ytj/PTn15md38Q1jlShoAVF+4F43zpi/8BcLD85uEn/qFVCA+kyEEKe+HcWRrVN+l2DpBxFBKZfZX9XUmWSebmZ2i12ty520XmHhlrhK+ATfCMOP/IMX7zt54D7/nn//w7/Oill6k0pshtKHctzk3z23/rU3zhc48x7qe88vJtOvt54NQpgUdhjcO5jKmpRW7e2mb7fx7Q7e7T2e9w+fJ1Vld3QOjA+lYS43LOXTjBM8+eZKou+MGNe1y+8j5xtRrkhDJwtKS0XHz0BP/kn/w6z3/sCLWK4MzZBosL08RaM8gGoXiqY9LxiFa7xuxsBSlgc8uyvtElyy1aJ1hvsCZcY2fPHOf3/4cv85lPHyWJw+g+O13luWdP8PJPl9jZu46QijiKwQm8SzF5ji3Uw3vdjL2dAaCJdJCBO+9RQjM/O0d7KqihnA9JzM77wkdXcu/eFlcur2BMKCwaY4mimOGoz1SzxuOPnw1nWgQGfgCkfn5w4JehiQJwss4jlKImJMv1aVrVOqvbW2yPeozaC2HuJGTBxivWpKIoNvnSmCQUyWMpCnaVD6EXCMbOE9nAuq9ECYnWKDyxUMzFTRZbc1zZ2OKd6+/RerzO0UYLIUG4Agb0PrDihCDHYYQkx7Oyt81Lr7/C1u4O8sKDtb4FcuHwwofkXVRR9PSTlF9HsJEBx6DfIxuNAgGFYl1EGUISwLGAUxVjZwHMIUplQChg2qLMomVIsNZKEcURGFkw+5jMUX2xzeBjLIi0Dk+NCfuxOPYCcypBygcVCl/QOB8wEcfW8Orld/jp1XfY7h0gKqFA3u/3GQ0GzLRbXHrqKT5+8RLnpxaICc9wnJvMCSIVmHOu+DBTKBTnmjM8euoczy2cpUEILitZjb7w8C4ZjJ4Q4vXU8hkeP/cIP37/Cldv3+DNt95C555LZy/SrE0HQDmQxB+UVQp2Z8nQCyB0ca16D96hlKAhYlQcc/boCbbGPW6trjAcpez3u3TSHvWkiUdgfKCLjEzKwX6HU8dOcOLUKe7cuc0bl9+m/UTEo4vH8d4HwM7Drft3uXrrOs3WFHPNNk0hC39HPwGGS49JPoAx/TcADv5l7cNYdCWrsNFosLCwwO7uLjs7O+zu7tLv9ydgS5loPB6PJxLl/xrtMDD315F9HgYCS8ZYKfEtmYCHwbjDn1my2MoU5yCTeJAu/PO08hyUn1EmIJfbOczKLL83xkyAv+FwONkHrfUECNvd3WV3dxfvPdPT08zNzVGr1Sbg7vT0NDMzMyRJAjCR1Y5GI4bD4WT7/X6ffr8/Ae76/T6VSoUkSSZMy1KGXTJPPwwkfVgOfTgtu9/vc3BwQKfTYX19nXv37nHv3j02NjbodDoTj8UkSahUKpNjOHnyJJcuXeLJJ5/k5MmT1Gq1yXa63S5aa1qtFlEU0ev1UEoxPz9Pq9WaBL90Op2JT+RwOKTb7U7AwQ+Th38UmxeEQa8w+rU+VNsEkjzLQDg8FissNgpJggKLtQOQKVoRJodekOU5USwQ3uJsBjoK3jE+MOWsgJHNySPIhGEr32Kc7zElK8yLJspr+vaAe+Nb/OC9H/CdV95kbWvM0lKLz3/uBZ64cIbX3n2Trb1t8tkcJz3GETw9hAxpYDJMVrb397FCIlVIUw9goiJRDapJnYNhh25tn53+LkmlRrMxQyYMO/kmG6O7bA53qE+1OTZziik5g3WSucYy9w9W2O3vM6gN0aoGUSHplx7pdUgedg6tPYP8gM10lUo0ReQjIimJhAwJZD4smpzUQaIpbBFuEcCAhPCcWd/ZwCvPMB2x2FygGbVIfADcvXQYYTB+jBcZzqd4E0x/rQ/ShpBubBEScpeR41CqhkOS5iO00sSiiqJGQ86QUGPnYJPt2noIB/AKIXKEdhBJrPQkRFTjKWrVFtvDDgeNA6KohtAQFywJ0HipQDhilxDZIO1EeAyG1HushK7Ypze+z+rGKrnJODJ7lNnaEk29gHZ1tKyFFDZjQrIdOVVdp6HmWZg+Tme0z/befeZr00xVm8GPSNSwxtJIqlhnkfhCQiQxrpRch4UezmBdCFfIncdGEiMdA9tnP9/j3tYtRuMhx46doBHNIGyVLIdEaFJn0YW0XiqPz00whP4INeFlIS8NFeLit8WyViB9kGohCKbWFoT02KzP/sptXvv2N/jhj/+Cre4mmTJ4HNopGqrKhZMX+PTnv8xjn/wMsjlLLuOwKJOln41nnI24ffcGuR8jpEUiqdYatBeXENVakA4Ve+PxWOuDjCVcYmFi78G7wDI42N0m7e6glGL31nuMhx2sCMm6IbE0IZpq4hLFztY6s7U6zSOncNZy5OQFvvL3fo/e/i4b/+z/zv29e2GhlxvIU0y/wxvf+w7j1U2mnKJSb/Lixz7Pp7/4Je7evMof/Id/zUp3FSMkKEldCrQzwR/QG96/8jJvXP4RA+EYK4+VAukFMrO0K3U+9ewLzLZni5CEcDzSeB459QhPXLyElpWgH7I5vd113r/yGsOsx4gUFxU2ItaToJmttTi+cJTpYyeJ5qYhCWmkWMkkk9L7CQMEKBihQf4kpMArEcJklMLb4HFkhUBqhfGSXjpmc32D5Z0d6lrhvMANMjr37pF1d9nb3CAXjthLlFdESY1KawaMpL+7z972dmBBSnC5Zbo+zWPHL7LUXkYlNR594hLpuEd/0CcrmJ/CStqVNueXTnF8cRlQPP3pT3PssUdpz7XZuHOPzXybqsow3nL+1Hn+7j/872ksHMNV6uTCE7uMzetX+f63v0auPMIrlmaWefrZT9JaXAYPGsvgYJvN7RVSm1Kr1HnsyY/xu7/3+1y7+h7Zfo/+9ho6qVONE7AepwXmIwYMhBaeWZJgfH9/07C+OiTPFRWtC5uFwKYVwhNrSRQl5CYlzTIEGqU1lUrC+uou3//OO1x85BinTlVLmg0f9N0M4U1KQLuumZubJom7DHtDtFIorRgNHW++vs3b71zmzu0VlNIoGWFyy1NPneG3f/dpzpypF8nVgQ0kgf7BATeu3cXmAiUiIq0xWRY8LWdn+epvPMHsggqMGA9KwZGjCZWaRkgdFsPOI0WEEJ5qJaFZiwnT9nJ1Wkr+SiaS5wEf6cFxeigerCG9WEnJ+QuLtFp11tYOeJDgq1lfG9DtWawTIGKEiBDChuez0eCCEuvSc+c4enyR//WPf8CPf/wqUVzFZh4pNc1mlU9+/CJ/+7eeZ2pK8+6VXW68fx+sxqkM7zzOx8V4ZVjfXOGP/mgXSQzek2cpaZ6itCbRMd4ZqhV49Nnz/L3fe4HnPnaKkRHcudujsz+kWpktAGVHmvaZnZnhN776Ai98bIEkCeEw/V7K1tYaWgu0Dexo5wNYs7w8x+x0HSVgfbXD3m4X4xz4MK4qqYExx08ucPbCEaIoSMqDOkuQVCU6UgVTLCI3BYADxIkmqQDeMxrkHHQGOBcKf0o7tKqilaKahGIMBADGOocQCgX0+4a33r7Fu1fvhPMkDCLEGlCr1Hj04hEev9As8JniCv8oBhKVQJ7wOG+JpOTRoyfZvvg4r1y7wu3OBqfml1nWVVR5nfuSmwe44DcnRfCGs8IVARoBNHIyAGaBIReYdcJ5lA8M+UhABcGl848yGPZ599Y15mfnqJ+8wIJOgrezK0nu4TMcMHaeW50d3r5/G2LNzPwc9Xq9GN1Cs8JjpQvUeBHAKyHD9VMWQCtJlebUFFIruoM+/dEA1/bFs6UA/MQDdmgJgtqSuOMewEFWBG9rRUkkKsHmoEjJfaGYKBmJJePOB+UfhT9f2bWlBmoSX1KCUh8AoALzsyR61OMKj517hOmlefomJyd4DQ7GIw66HQ46HbZ3dnnl8uv0l05yfnqJ5alpKlIjnS/mBQUAJopnt5bBa1gKYjx1PFMQfCJ9CHjxZX/5EtAL29Ay5pHpI7gLYa/fuvk+P7ryBsY7Kmcep9KYRiOKE+wfWLh5P2FYUpxTKSReBEm5L0w+tZAcay/wxOlATgiZDENurdxh4fSjVJQkBw7yjM29bXKTcXRqmaNHj1OPYl5/5RW2j2xzcfE4iGC/NMoz7q7eIx2N+ZVLH2d5ZiGcgwJId8U51OJBccjDL+wq8JEGB0twrJSOlj/HcUy1Wp3IaUsQqvTAM8YUbIr/mOH2X6IdZhr+TcMwDoOEhz0MS5DIWou1diIpLi/uMiSjBPRKRtzhfflZHog/K3CjBCFLcLCUYR9mDZZsuzRNJ/1e7lee5/R6vUn6dL1eJ0mSyWeXIGLpo1ju48Os0cFgMDnvJYjX7/cn6cxKKbIsm0hwsyz7AIPy4eMsvy+vmxKQLMNEdnd3WV9fZ21tjc3NTQ4ODhiPxxPgtlKpTNKikyRhfn6excVFZmdnw4Ah5aRfyv0qr11g8nOtVqNWq036qjx3xhiyLJtc04f3/yPrNwgYafHCFgEagAi0cghyN5sFDyslY7yLCjDOhsW99DgFRAqfROQ4cm9JhCCKNAhFbiHNx+ANxuRhsByP8ZWUITn7aR8dx3giUpszEn3W++u8c+09trZ3yTLL9HSFxdlZWpU23kB/2Mc6g9ISLaJJZSk1A+IomGAPsxyfRHgVIUUcKngEyW+iPJ1xnwM/oG9HRHECCkaiT8dsMGZAo9kKnntCIY2iqqoYP6KqI9J8SN8NifyYWDQL7zQRqorWYLMxPsrIREZKH4QklUOsTIiJEaa495XFGk+s4iALwhPLCFMAmQrBcHiAExljm6OiBCkicu8xBNPwILOweCxSBmZw5C04gyBG+DBB8cKRkxLstF0AIlXxbEMijUbLClPxNAfygNRn+MKcRQLOWkxuEb6CEFUUDZSsM8j7jG2KjwxaeLQPVVjnLHnmqcYxOItUitwGf78YiSdlyICMIQPboTPcoRrXaNZqNJIG0mpi3QgyjiIF0rvSzzUm8Q1qqkFF1+iPO+yOd2lW2lghqXhJRdeK51ZgL+Y2C/0qfDG50+BB+dJDLwRh5B5yBKk0dO0u3XEHpRXT9QW0adBIZoio4oRCSo/FYooQlEhpjM/+y9/Ef4PmJvKYIsEWCPd+kLAG2WthyC2DP1nkDT4d0Fm/x92777Pf3yGVOUY4tIyInKYqqpw6dp7zj13CJHWUjJE+RknwwmILFlvuHN3eQZDBEyZX9foU1XobpALrCyC3MAb3PiQYe1Mwk1Wx3LBYm3Gwv0F2sE6lUmF36x5jM8Tg8V4jTEgvjJQGAbpaYf74CfRgHm8NC6dOU12cY5wPadTq+E0QxewviiLccMDGzhqpGyGdohU3eOKRSxw//Tj5YMyR+hL9rT2clFgfEcc1tIyQOiQG5sphXcrIjhDW4n2IYFGRpJsP+PrL3ynOSeAeCC9wI8NXnv8sy+06iapiXQDK1zZXuLpxjQM9Zlgh3KvlORMRqt6g0moRt6egWsHIIBFSQoC1qJLKVeLBxfNfyAAIS++RMiJSMTERyqsg+fEhvAIRpKBbW6sM9zZI6qCihLw3ZHvzHrtbq+wN9sPC0Dmk12iZgErw3pC6ESMzCHJloXBOUqu2ePyJ53j0/FOoWp2ppRnuvfcWzmRoCd56Eh/Rqkxx4cLjPPXUM6hKjcax48hKFWshTQ2pDRYEHkiqTaJKC1FpkQmJUiCzIen+Jr3t9ZBsjmKmPcfC0tGwOPMW4Q1+0MNlY5y3eC2ZXZxHVSrUW22OHDtFJ4oQukql0cLK8KCUH8FAkoKUAgS/v6tX1jg4GKB0SL0vFMEILI1GzAsvPM10e4ZXXn6T23fuIZXHmCFSCYxTvPXOTX7y03dZXnqSqFEEGRS+ZCWPrvQ5bVZjjh6ZJ1L3kMrhyTBWsLdv+fOvfZ/9zh7ey6BqQDI/1+bv/J0X+ewnz+IIkmYhHFI4vJWsr/W4c2sNZyVaBm9J5xxJknD+wnGOLEYoRcEcF+SZ59aNAXt7Q6w3SKHw3hNJRZaOmW7PcWSpSaXgN3gfxssC+TuEBRWL90OLw0MzewIL27Mwr1k+Os3tOyGkp5xzbW5tcfdunyvvrnF/bTP4MHuPNRYlwfngQra+PuTf/8mr/MV3X2cwMkihi3PjePLJU/zeP36BY8ciMgcHBzmD3igwIV0RPoQG7xFCIqRlPO4RySSkgPuUej2iUtXMzrY4cXyRZ54+w6c+dYFTZ6ZJKoLr1zrcvrmPFBGODOckUiiUgOl2xAvPnacSaxItGI1gd2dIrzdkNB4HEEoqTGapVaqcOnmMdquBd3Dv7irbOzvkNkVHCusNWTZiZrbK0WMzTDUDSI33REIzzmBna8T+bh+lEoLnncF7Q1IVzC1M0WwInIMsNVgbkqGdCOuNPM+RkSRLTfBMBMAipMfZwOt6/c11vvnNK3QOUpwLAnkpFM4Yzpw+ymc/9zTtqQh7+FyL4vn4EWpSiCIMI8wDHILpRouF+Xncdc9e/4C+HWF0hcyFMKzJ+pVg0SAmBmz+QQipnxDuAn7l/YQB5kQYy50P0toYyZGZeWbn57m2cZ87/R1OmRPM6KQkrUPBogvsPYHxlnvbG6ysr7Ewt0CkwvqyFH5DwbwTIQAwuPcFko5T+tDxa3QcI6OITEDf54zwRCoU6SgYkEIU7DZflAIKFuUkGMU/+J4CGAzrRhPmO0UZo4AoJ8nwgeEImfBkPqSqBzZj2YrSqH8wQ5Oi3NqD8xBRYqCKU1OzLEy1yAAnFak35Hj66ZDb9+/x7q3r3F69j8kMSkc0Gk2UVMH2yJeYRwF4EeaJ1jukC56Oqvg8LwpAtDzJxXkWzk/2Ee+pyYjl9iwnl45yY32FlZ1NbqyvcH75GPONFrGQVKQEGwqWVpQMywIjCchwGEdkARIX+ymBJhELlQZLzWkGtTq9bpf9XpexM9SiChbYTwes7m3jrKUmI2Z1g6XWHBjHOM9I8ZP+7OYj+oMBsdIsTs0Gr/ECGM4FxRhQsG29n4QThvbz3/8fSXDw4fCPwwypEihKkmTiTXjYe64EUw773z28nf8U+1du82f9rQTE/iZpuYeBtfK4D4eDlL57ZThI2S8lYJimKcAEZPowFuOHyYgfBgdLAK5kAx4G6kpgtmTolaBWCV6WbLd+v8/m5iZbW1tYa2m32zQajQlolyQJjUZjwiIs+6sECpMkmQDC1lp2d3epVqtsbGywtraG955Op0O73f4Ay7KUV/8seffhgJGyL0spcbfbZX9/n/39/UmYSrfbnSQvt1otFhcXmZmZYWZmZrKvR44cYWZmhmazSRzHZFk2YSE65z4Q7pIkCTMzMywsLJAkCdvb2zQajYkcO8uyD0iL6/X6B3wHP6qsQaBgUnmcM8Xzt7jeRmkIvcgtiYiwxmEsSGuJEoWWURgoZWDJZM5QqdSxhIqx9A6vcqwKYRg2z/DWBXZhJKih6acpu90OzWqdPE7JRcp+vsOVm+9yd2UV4TPm2zHL81MstxdoiAbCCbr9DqkfkfmUyFXCIkAIZCTJhcELwTgfkktL5BOcCQ9zKQQ1mVBXVfbYok+XTnZAI6mSyTGd4T4H3S2mppscmV5iY7BBLCOEFQjnmIortKt17o/3SP0YGWmklSivQ9XZWyIFFSExMsIbT5oOSW1GvdHGi6kwgEiNdznKO2IdgXdkhWl6XviYVqM6NVUnUppuf49aPEU1riJJQMa4AhQJxYYI4VSQIsvgC4k1KBnYEzkjBrZHL+0ghSMiQhG8XjSSCIXyHmkE9aRF5gx908cIiL0k8glYgck9wmusUyhqtOrzbA/2GOQ9qBgUxUKQIEetRBLlPErH5MKiELhyUCVn5Lr0zQ773U2cTWlUZmlGderUqKkq3hLAZGcQLqSkKiFwBhqqynQyy2J7mXR7wHZni0pUh0aMkDFV2SAjB7LAevEGpSGSKiz+CSw1n4ck3ODZBFY5xqTspjvs9DYZZQMatSlqoklLz1CVTRRBtu29J5YJ/XwU5PPW4j5ihkPl5K9kPIYJZ0BKvS18iCUYk4PwJFrAsM/a1Sv84Dtf5+rNy6R+HHyApMZljoqu8uQTH+PJj79IvLSMS6p4oZFOYrIUKyxRkqClZNzrc3/1PsY5Eh2BlZw5dZHjx8+A8Xgl8Y4wASuZ9MbghefosRMcP3mGne1VEAoBvPzyj7n+7rtIPN1+j1E2DvQg6yGHo0eOcHRuHmlyzjx2keWTJxBpTr6zzd7BPmtX3uL2zausrN9HRxWUUDSbTWqNJlfeeJON/U3GIqMqqxw9foIzjz8FImZ++Sy/+Rv/iGF3l3Ga0ZpfYvbYGVSUhAmz8IAlxdB3I4xwOGmRKvT17bu3+Jf/079mc38bLxxS2OB/JhRvvHuF7RvrgTQgASy5S+mYPvtpFx8XfA4nUU7ivWTx7CmOPXYe2WzjYzA+I9IC4QzCWyQ6zOxdIQISAYCQXoFIwDviesL5J5/g1o132Hv3NbQWRBKEczjrGOYDXn7jx1x57210NUYIhTeKbDTC2jEHZoDQGuU8iUo4fvw0UVTB5GPWN+4zGPUDc9BrhIx5/jNf4pmv/jaJqiGUx9oRq2ur5FmKcTnaS1rVJp/45Gf4xFd+i2SqhdAaoWMym7O1u0d3FJ63Tga5Y73ZotqYxniNVBKNYWdnjW99+0846O4QRTHNqVk+9vFfYenUWdBR6GQvMGOHzwVaJZjc8e1vfpODTp8XX/w0X/47f69YC0fUZuYD49hlhVfTR6v5IsnTeYGxcOPGHTqdg7DWkwIdSWzu0Vry5S9/gv/uv/s0No/oH3RZW1sNhRLAmJRh5tjYsHz7L17h0rMnuXh+FqkKEfuk6EixanSoOGJmtoWQFh1JsjwlimLG6Yitze1QDC8WxfWa5vNfeJ5PfOo8OvKlm2GQxCFIc9jcyNjZ7IfMTx1h7IhIa6q1KidPnyIuCt7GBfb4zk7Gn/3pT1nfCEUg521gmOFwLufRx05z5uyxwoQVQEwW6R+y8vgAn+fwKwJTUhBXNMvLi1Qqd+kPRkgVogm2tre4fGWXn7x8jf1Oh0q1BuRYK/AuQwiHs4Kf/PgyEIrzzim88+jI8vQz5/g//p++yMVH50NaaB5CW4bjEQ4bgPvc4WzwLW5NT/HEE2doNhKSSFGpJDSaTRaXFpldTJif08zNxNRrFaoVhdYhnOP+/U1u3lrHE4EIXtQ2k8Qq5sTxac6crBBrgfaQpSnXb6zQORiE8DTpMcYi0FSTCkeXF2hOBSb+6v0d9vb2UVqGcA9vUJHAuYzxOMVY8KiQOO9hfbPDD75/ha2NA7wThQ9dQG6azTonTx1hqh3OR1jL5qEwqBRCEDzrhGJtbZuVlSFPPEWhioFYwetv7fIHf/AKV99bJTcOqQRSKEya0WomPPfcKZ579ghWiUOSYjc58x+l5lygf0l8YS0BCYrZ+jSz0zNBsTW/yolTM0QTEKRw2PThukYUIRRQWAgEZCj3TMC6fpaxN+gxytIQHuJD8IP3nhiYlglLcwtUm3VurN7jyPQc7eMXaYiIuLj/CideUu+4tbvJ2vYmM9MznH3sApffemviVVmMangfvP9CkFhhZ1CCWT4Ao3ViFtpzLMwvkGYZu8M+Q++oozEEkNMXoJclFFNDSq0omHVh35wAK4L/4GA8Zne/E1h3QpCmGbkAXVOFP2rhQSgK4E2A9a4IGpk8IGHynWCyI0U7hBoEeatnMq9PkFS9whI88nIRQOw8qdBc1miheOO9y1y7e4fUGKanpklaC0ThhinkzgGMLc/2hN1Y/GwLJuPhmSOEIBRfqLnKBO8EwWxU47Fjp1nf22Z7b5fVtVXebr9PTUXo9hGk0CRKFHNSPznG8vj9g4srMA1FAFYlgXk6p2ucnF6gIzLe3d9na3+XkbNBpSRgp9vl9v0VZpotZqst6iiaOmGm3eZg3Gezt89SvY3xjtvrawzGI5Zm5mnFVSqhrFKMDbawUhAF2eBQkN8veO995MDBw6zBsn2YN9zD/nfl3w8Dgh+27f8UAOGHyZ4f9rSTUk5AtIeTcx/ejw9jgx1mCpYegtVqFSklCwsLdLtdBoMB/X6fbrc7AcKSJJn0QQkolWEizWZzItd9+HNLcKx8bwlA9Xo9Njc3WV9fp9vtTkCxWq02AQ6zLGM0Gk0AvBLkK5l15Tbu3LnD/v4+MzMzLC0t0W63JwnVrVZr4jVYAqIPn+uyH5xz7O7u0mq1kFKyv7/PeDxme3t70keHJdYlYFyCxofDUx4OGyl/Lj0OSzl1mZwtpZzs7+LiIidOnGBpaYmZmZkJ23FqamrioVgGmJQy+FJO3W63EULQaDRYWlpibm4OrTVHjx5lY2ODbrdLt9tlbm6OSqUykVSXx/fXlav/MrVYVAK4VVTxjHFIpanX6sSjmMyMSd2QpnYF4FNjnHYwiUd5xXic0e11qVemSG1KpGIUGkWMFaEiK6QgjhskcS348tUTUuFQFYcQOcOsw6i6TdeOub71Pt/7yavs7/d45vETxBgeOblMM0rQQmCynJ2dLfb7myzOLgLB3yzPDUQxmRyxlW3SSzucWTzNlK5TdRWUt0QiwSFpRbPct3fppVv0zQFxLWYr36Tb3aedTLMcL1GtbDNOeghhkDHEaFIE05Ummwh2BxvMxYtURS3Q6AUhVEQKFCGhtambJCLmzuYK0lWZm54jpkqhvgA8Jh8SqQoVXQl1TRPSlW0O2iWkvZz72/c5d/w87bhOlSoRCRmlb0qME5LcadKxINICh0JFCcJJnLGM5Zj9/z97fxZkyZWfd4K/s7j73e+NfcvIDbkASOyoKgC178USd5Za3WXNVluPNDZmGsnGROlF/SLxYYYPMzaytmmjTc+YWuoxiaahti6RRZESKbLIqmKxCqgCUFgTmcg9IiMz9oi7ufs5Zx7OcY8bkZFYCigs7DmwRETcxf34cT/b9//+35etcXtjiValQ1s2PcaQOazM6WU7NFybapxQFX5jvpmu0bU7aDEGTqFN7IE1DFoJKsS0bI3YCrZ7G/QaGYg6LvORZUdGRUVI4dMvBILc5f4ZczkD2SW1u2ztrLGzvsn82DxnF84xJmeI8yrkFkufWrWKCbF5JSUSjTA5OBiTLY60jtPtbrKyuczl9HVW9RrHZ09h6zkd1SKWmtx67SknjBckJ8YYixZ+jO0OuqhKhaFI2bW77Irb3Nq5ytLaVbTSnFw4w1z9CA3XIs8cWvtIdO68Blo9qvhIooSBHL6PvfmdF+kA57WEkJCaHCUlkbCoLMWt7fLK9/+cb/zb3+LayiX6coiQjprU5ENBqzLGuVMP8vmf/2Vmzt1PHsfkDiBHCYeqaLDCByOsZXtlmbWVZe/Am1tiUWN+/gT1iSlyqchRWCW9plFwSvSMmozpxRN84ef+KsNhyuuXXiUzGdu7Gflwl2YUeRA39aZEsfSMj5mJOY7OLpD3ulx5+UV+73f/Vy5fugS5RWaWSDgy1yNLU4xyaAuL07M062N887vfYHtjE60liawwu3iUyuwcmRE0p45wbmwGpMAKiZUKEhU08lxgZ/nULRP6Ps6iAqP54SNP8dWP/lWs8s+Uc8YzZYTk5oXLXHvlPMZlSFK6qzd56aVn2Li+hlIwND4gIpxPhzPS8Iff/xb/+fvfIRMap3wIwOYGLRTtSo3xZgtdibBakAkPhigpIIMnP/YpPv7ZzxI1YipnpvnMX/9lGn8xzTNP/4Dt1VWy4RATCVIhGKZbbA92SLZiKnGFerOFYchgsEsmcqSKcHlOHCWcOXWaSAgGu7uc//ELuNyipCZNDSdOnebeh58gmZlhmGVEJsNs51y4dJFuOoQ4wmWOqakZ7nnwMarzJ0Br8nRIJBXD7V2u3bhGN+thZIZLM8bbE8wtnkQkVa85JWHr5nW+8S/+KT989UcMZUYj6vCJz3yFT371l1HVNoiEofWb5Ml77uOhRz/N9h/3SIc9+lvbfOc//0e+960/pJbU+OhHPsEXv/ZfkrTbPvVLuPIZ/VCVsME1Dja2HNeX1un1U6SM/dtOYfKc48dm+eSnTnHsRI0K8NGPzPIX36+xtZthrMQ4SZzUkDLh+Wev87u/+zQn/uZnSNqVQCpxJVnV9wdHEscszM3RqDbp7ubEOiHLc+IkwQoY5o5YVcGlnDm7wGc/f4r5mcTr9mJLHVGF4MbSJj/4wXlQMU4Yhmkfqbxbaq/X5zvfeY6PPnGSkyeaSAWrtwZ889+/wO/8+2/R7fYRWiOdQuJQwrJwbIaPfeweZueqlNvU0W3HyJ9Fl94rbXQzxAAAiodJREFU+z9o8ft6pSOmZ+ZJkibdng9aWjHk+tJNfvtff4Ner4cQgnot4cEHH2Vre4sLFy4xHKQY6+gOTNhjCZRMqFYSzpyd4r/7332RB85NY4QP80Qa4kRRq8UI6QMsDuXBPGs4cfw4f+NvfoHTp73RhHCQ5Y4LlzO6A0eSePkBIfbYX92u48rlHXZ2Uiq1DsOsi3QaZzRT03Uefuh+gvwgAOkg5bXXrtLt51ghcc5LekgpaTZrzM01qFQly0uO69c2GfQssW5g8VID2kXsbvX50TMXeej+UzzxxDxxIrjwWo9/+69/yJ/86Y/pD1OsMwjpgQvpBNNTYzz55IPUqgotBc1mTKfTIM9XkJEPOObO4nLD6lqX//f/9Ptsbn6RJ544Sp7B00+f53d+90949fwSuRefI8t89szEWIuzZ+b5ypc/ytR4DUNO5KEKj1vsS2r9kBRRGFuANN4uo6IUxyam+ciDD/OdH/6AFy69ykxnnBOtaVoyQgPK+udGSLwMBoQMpAIk8sDgUAhWzZDnb1/hx5deY3fQww6G3jFWOK+xLQR1IXlw7gTiCcGfPfs033rmeyxvrPPAmftoRTUioRE4enmP2xu3uXzxMlIoHjpzH81mixu6Qg2FdpQGFFJopIo8Ey8wDl34fyIkmXPEwjFbbXB24Rg/fOVFXrt6kROzczSbs1RF5NmRITZpJPtcrX1Oi98D5kCfnNxJXlu5zo/Pv0TmLFEc+7SUIIFQMP5y4UiB3I+MPhvLOWxuSnfgInjrjeP29E6l84C0LZmI3plYFGCldURCkIi9ZzF3Hihs1cbonKgwFid8+4UfcvnmNb714vdR5x7nXHsOKSEK9sdG+PVJRUYkSiNDum/qHJkA5UKauPMgJ8I7OgcyHcZ5hqgUUBWC2aTGJ8+cQ1vLs6++xLMvPE+/28U+8DgPTB3FCYUo26nQcqQca10A6QS+Sb0jsw9s1qTi5NQcOwquXrnGjdVrXN+8TTxdYygFFzeXuXn7Fo+evZ/FyUkiIehUa5w5cZIrS9d4+crrVM88SE8Oubh+g6gSc/b4KSYqDRSC3Dqvf6k9LiNxpY2Xs2GgfJtwwAcaHHwrrKdRFmEB9AwGA3Z2duh2uxhjShCoSK0t0m4PgojvtC53+95BQ4siFfYwYPDg+YqU34PXPApwJUmyT29wenqafr/PYDBgeXm5dLwFmJqaKgGkgkHY7XbZ2toqz1+0V1GvPM/pdrtsb28zGAwASJIEIQSrq6tcunSJpaUlBoMBY2NjNBoNwAOHw+GQJEnodDqlZmCR3mutZXt7m6tXr3L+/Hk2NjbodDqlO3GhEdjpdBgfHy+ZhHe7H0UbjroZFyy84vvFfbfW7mPsbWxssLm5SbfbZTAY7EvFHnVjrtVqNBqNEgAt0pQLdmSv1ytTRTqdDs1mswRDlQppISNsxaINlpeX2dzcJI5jWq0WzWazTJHvdDolGJokCe12myRJgn5Bl1arhTGmZBIW9/fDnlasXYR2GoNBCEekYqSTRDIizVKEcPTcLgN2UCLCWYWqCFJ26WY7rG+usbPbpV7dIZsasGs3wFqEGyKtpCe36Oa77Pb6pKmjWW1SUQkVKgitqcc1bu8sIyPL8q0tfv/b32ZldYV7Tixw+tQiYjDk5PxJEl0NUThLf7DN9bWrTLcWgIiWrOOkY2AGbLLGyzefQ8mMTlxHC+UX4NaSDVNUrOjEbZpJnVcvvMLApKRpzkQzY6IyzpH6ImOiwUAPELl3RsUacgxSaRp6jFhW2NheJW3tEuspbywSXLrAp7II51NQ6nETpTQD12NAjxbjPgnYWd/ekSDPhsH9TGAkkDsS2WSsNkO7OU7/6oB6UmW82kZah3MZKHDGIYQXVtdSI6Qgsz7NOHUZxg2JZMRQ9llL10jzjFbcRroYYwfkaU4ca5IohhTy3BDLCtWoxsbWBt32Dp2khXEpSoAS4EJiskASi4RalLC6uUR38hixrKBlFRBoEeGc8VFj48idA2lxKmcod1hLl7m6folbGzeoqAqL4ydpygmqtEh0nVjH5NmQ3PR9BDPSOGt9apQAZRxV1WA6FpjZM+QmZ3XnNplJcbeDtEWlR8VWaEVtf//wEWUZdkNOgtWC1GZk9EnjjPVslRvrl7hy8wIqEsxPLTJRmSHKYzTau7qGJZkQEuUk6XCIjqOQ9vrhGwv2RWbxi848sIKdMBiREtmM3u0lnvvjP+HP/ug/cO32VQYqxyiHMAZpNONxi489/nE+/3NfY+LESbJKhVwoJMqvjaVfWApvCsewu8vVC68y7O1ihTfUmZ2a4+Q996AkSJsjnfEGSPhU1zzPkXGMUQJjBfc+9lFOnTzBay88y+uvv05uHYtzC5yYnuRf/ZvfYv3CFiYbkqgacbXG3NwC9VaLp//sT/i3/+afs76+grCKxYXjPPzg47hswDNPf5tt00NoAMXi8RNUYs12b4vMGLCOarPC9PS0T4W0js31dXrbW2AdKmnSmp0HoTFCoJRAuYCKIEonQFE8kZ6WQCWuhvkk8JKEd0w+dWacM6cfRkqDy7rceP6HbCzd4MrSVRySWLrwXEsm6h0eOvMAtWaLtZ0dhrlD69iDn7bwUXXYLGNn2GWYpx5YFH7sAMnv/N6/45/8i/+FnjY4UmKXEjlHZB1HxidRSYX1/g5DZxDOoeMaCydP8tkvfI5UWn7w/e/x6ksv0M1T0tRQlYLW5Bjzx44gK7B5+TqvXn2VLZMSKY1JLWfvf4hTZ+4lNQanNTLL2Vxa4cql10mzFBmBdJLx8VkmZo5go4QcgU68gUV/a5vlpav0s10GYoAWktmJeU4ev8cDEi6n3+/y3T/497zwzHcZDLrUKk0+/rFP8itf+68QtVrQFeh59oS1REnEz//K17j31HF+9MwP2dzaYWvjFjdXrrO1s87v/odvYOKEX/7V/w41PhkcKz9kwAAFy8evm2+tpNy+vUvurE+xxDLIMoy1zM1NMjk5FiJbjk99+hzP/fgG//53vo3UCVrF3uwiyxBC8L0/v8ZTH9/hE09WKPZOgW+Bs94MSiWC2dkW1ZrEGgNSIaSg1+uSVGKSRJMN+xw5MsHP/JWP8cBDs0gtSudKv3H0m9Gt7QFLSxsM+xbrDEr7AIcxFqTm5Veu8H/5jd/i1MljSKm4euUaF89fJjd+HZ4bi5IRQloiafjlX/k8n/vM/Wi5l07oy+i6uOD5FHBnsZvdgw2LDb4DqpFibn6cRqPG5tYuxmRYmbPb3Wa359lpmRlw+swCn//iR/nRMz/mwvnzntUmbMjwCJtQMeCes/N8/Vc/x6OPH0EnsqyPk4JOJ2Z8ooUx1xFSo6RkMOxTqSa8fukS3/qTq0gxQzURrN42PP/cVX73D/4zSyu3WZid5/SJoxxdHOPJJ+/l4UcW2NnOuXV7l62dnjdAkUVq3ZCxsRan7z1KsRR2wNbOgPMXX2doBiC9hqOwFmzG3Pw4M5NVlHEsL29y/doK6dAgI+8WjMtRSpLoGq+8dI3/8X/8Hf7wD48hteHV81e5dOEmxnkHWwlEUYUsHTA+UecLX3iIRx9qhUApTI0nzM+NU02ukJochEQpb8JgneDipRv8D//Dv6BajchzT0IY5hbrJDrSHmSKFOkwZXKqwy/9yhPcd24MYotmL6VSEFiEbxcheJ+LE14Ps9AJlMK7u07qKg/NnGRt/jYvX36Nbz3/NINzj3B6bJaOjKlIUZqwWGc9OIXvK9ZZrzEuLBvZkOduvs53XvghV28u0Wm3if1gWc5bOA+2TMuEx6dO0ngk5gfnX+Dl8y9z6dpVWtUG1UpC5jK6/S7ZYMiJsTkeuucsc1Pz3Mo2PBlIaS+tQQEQCpyx5FnudeoI7ur4Th0L329nkhaP3XMftzbWubJ8g+/+6GmqD34U3ZmlriJK1dQAejmK/XEgBggYCtjKc17fWOaZCy+ysnqbYa+HksrvkY3CBhalEp6BaLBIz3NGC+kNnIwD6/Y9Rd7wpTBiDCYYgbEqwj10QpBDWGNJIgIQGeZ97YLhngQlK1SPnGUr7XHte7d45cpFTi8c42RrGiUViSIEFMBhMSbHZgahvK2L9oIOHm+xXm+wmEMcgPQa3s56BqIWAuVAoDndnkfd7yUfnn39VV69ftnv/aOIE+0ZGkITO0cUXIr3EdBEAYwWRG6v+6eFRkuFCvr4R6Zn2Vhf49kLr6KrTXbzATduLTMxMcFse5yW8CSimWqLR+65lyvXr3H19hKLJ++hx4ClrTVmJsZ5+Oz9tKTX2lQCnAzzV3jmJWH/b4MGpXxznGu0fGDBwcMu4jDW4EFNuG63W6aSbm5uIoSgWq2WzrRa6/LvAgQ7eMzDymGpzG8lBbdgmeUhJW8U2Cvckg+6C4/qyBXstCItehRMHNXaG/1XAEPg9YiWl5fpdrusrKyQZRmdTodWq1Wy/4o02SK1tlqt7jNqSdOUjY0NLl26xO3bt3HOlc6/6+vrXL9+ne3tber1esn263a7JVA1MTHB3NwcnU6HatW7bxUae1evXuXy5cvcvn2bJEk4duwYc3NzZR0ajUYJKI7WqQDuRtmgRbsVgGoURbTbbcbGxjh27BitVqtkPxZMOyllCSIXxiZZWEAWYGC1Wi0Zj8XxxsfHy+tRSpFlGZubm6ytrbGzs4O1tjQhOQhEjwLSBaNxaWmJjY0NWq0WvV6P3d3dEuhM05TV1VWA0r24ADY3NzeZnJykWq2WYGEBRB7UtvywFWtyUpPjiiiMMyipqcoKlbjCZneNle0lorYmFymxqmKxbOfr3NpeYuX2MrfXVhEy4tb0MlFTYmSOElUQjh27wa2tW+wOezSqTRqyQc0l1KmhpWCsPsH5137Mi5fP8+rrK7z4ynWqSczpEwvMzk1huoYjk/fQUFP03YAkiZmcarO2u8717WvojkIrn3LaM3020uts9W4w3ugwFnXAQi78IlFHETkpSgi0U9xeukU3HdCMxmiPtZlrHGVCzyOxCBGjVRVhFVr5wd86RVWNM9ac5draRXbSDTI9gzER3rwhwgnpjVBMTkVXqMk2jcYYRuZ0s12GeoBwEUooD1y6HCcsubGeHycEUnmGkZIVqtUOOk5oVOpURQVpPKvBYhDKT5SpGSJVjhA5mclJRY8cUGIAFtaym1xfv4zNHFPVWWqiTjcAjFJoNBFCSoSUVGWNuc4i3cFrdM02KR2EzDEixYkEJSTCeZCtrltMNidZ2Vxic3iTidokSigUikhonyKW+PSdCI1zGT12WM2vcjNd5sbudRCWxemTTFbnqLkOiaiT5waljAdABWVk0MflBUJ6HUPtHImFiXiek7NeQ2irt87G7ioXb51nd2yaTq1F1/WoiTaR85HPgdsl1jEmN6AU3WSHHbPBZned5Y1lbt2+hZSahYkjHOucpi0nqLo6KgclLVmeI7RCByFqKVRY5YLU74/51jstxeYVBE7K4DbnnR2Vzch3Nnj12e/z9DN/wrX1K/R0jpEWgfMu0ibiwXsf4amnPsfYsZOYWsOn+hfR3+CE69U0PcjfG2xz8eJL9IddXOwXt7V6FZN2uX7hRT+mOnBO4UXiJfXOONWJCUSswOXsbKySdbc4ee99nH3gIdKh4dbSMt/+9h/z6muvkuZDL1g9dYTTx+/jxLmHGGB46aUfcnv9OkoYKrrKz375Szz06S9z/sfP8+yPv4/ZyjBIdKXJ2JEjyE6NYVXhhEJjyfKM7s466eYtVq5f5w+++b9y5dWXsYMhp+5/nF/81b/J+MnTZE6i7MiCVhDYg17/yoZ0KakcuLy8HyIwFZwDJz03IbaOvJdz+fxlli4vI4eCRGh0EHeSVjAZV7m3eYSzH/kIrln3kXj8e1iLExYXRBydsjjl2SJJUqE+PYGrVPnxj17g6R/9kG7eRzIg216nu7WJyTLSrV1IUybHJjASbGrp9QY8/dpL/OlrzzLUOZYc5TyzXKNQOmIYwwuXX+DyxhJLVy+yarboVRwyc7RbbWaPH0M2qwhj0KlBZpZLL77I7s46jgxlHBXdYHr+GGOzC5iwRBfW4axh49Yya6s3yewQE4G0kvGxWaZmFnFS4myf7/3Bv+OP/9M32N5eRQvJwuQcn/zYx1m6cQMjb4DxYOfE5AR5nvLKCz9md2uDWrXCz/zCLzF15Div/ej7/C//n/8nK7eWQGQMuusM+12qYjKwZ9QhveuDXWzYhma55crlZVZvb5NnOXFFIpwBZ4ljyZHFKaam2kjhyICF2YgnP3GSHz1/nqXlDZwLOlXSb5qvXb3Jt//0BR568DPU6xIp/BrDb2x9EM0JaLQU7bGYOBEMhz49VEd4OQkhqNfhKz/zMJ/74imaDQILUQazJN9H+hauLW1z9eptMiMRQiLwpIVcOKwR7HaHXL60wisvvU4lqQUZiAyltdf5yv3z1GgkfPELH+ULXzhNs0UYtTzw5zfie6OlR/y9+qETBSwx+h6MbCcRSjE5VaHViRBLKTqSOCHJjbcdsMIyMdHgqz/7GE98ZILXzhuUyBlmChVprMsAH0A4dXqGX/1vnuRznztJHO9JZVgHkRTMTLQ4d+4Mzz17iW4vxVhvGGfyIetrGf/in/9r/uD3G9SqMd2dARsbO/TzjMwoXr+wyq3rO1yYrjA70+HRRxbY3NrmxtItcpP74JsNSYuxYXqhzrET00GT2pFbwdXlPleu3cBgMS4DK4mkRsoB991/lMmpNlmW8ePnX+L27U20VjiXIxAoHQMG5yzORFy7usHV66sgMm9S5S1eQTiU06QDw/h4i6985RF+6RcfpVavFBmITHZqPP74WX749AVu3dohy0IwRTmEtGglyIwl200xub8PUnkw0xlvE6cixyOPHOGv/ZdP8YXP30ut5lUOYS/1UYgPX2CgKNZZDyoJj3wJB7GAmbjGZx/6CL1Bjx++8iK31lf5+LlHeWDhHmZqLSIgEgKnZWCmGZSUGATb+ZCLa8s8f+U1zi9dRVQi7rvvfrLBEPpDL0+F13DTAsi9QcmkimjMHOfY5AwX15a5vHyD7R0vqYVwHJuY4dTCUU5MzNOJauyalO7uLkorkmqCkCP7MOulkUQG2vm1rhP5SEqwH7FbIuJIY5wHT5xiY3uL5195kWG/zyce+Aj3zR6lrRNiBM7kRFL6a3RAAOR6GNb6PV5Yep1nL75Mz+acvu8+Xn7pJU9AieLSadePHgGww7sCCxwRgkTqPdYj4REPY6ZwIzqOdnQM8mAg+MB3kZXkAGH3juWlHTxgFytBVQjmx6c4vniEC1cucWNtmdsLx0lkM+xFfC0tAicFKsgQSVuwH/3Y6xFxVQJlpmAzigIs8+m4wnnzGSFhsTXF5x57ClWv8KPXXub518/T7fX49CMf49z0UcakDmBikLwJ7GVvliJKcFWMsLcVPh2+5RRnp49y8/YKL1y8QHVygp1dT6J64tyDTDc7JAGZVgimkhZT4xNc2r7N09deILeGXAsmOxM0pCYK9ShzAsrM0rA+tf46f5Ld/wcaHDyobTfKwBt1li3SV3u9HktLS5w/f54rV67Q7/dptVoliFMwyQomVxRFh4Imo+m/o6+92WdGXx9NF11bWysp+QWjrUiBHQUoC32+4XDI5uYmt27dYnV1lZ2dndL59uD3C0ZbAUIVabhTU1MopUoTi6WlJdbW1rh58yZbW1t0Oh3a7XZp/DHKVMyyrExDLsCzjY0NlpaWeP3119na2irPVTDsilTaJEnIsgznXJkSOz8/X2ruWWvZ3NwsXXfPnz/P1atXsdYyNzfH4uIi7Xa7BOcajUbJUiwMN0ZBr6Kti7TeAnAr6lUwK0evozA+2d7eLnUCnXPls5IkCfV6vUxlLp6dUYZmtVqlUqmUbMACyCsA1yL9uDBqKcxaRsHBgrW5tLTE0tISq6urpZHJ7du3SxB4VA8xz3O2t7e5ffs2g8GAarXK7OwstVqNNE3pdrulluHos/WhLNJihQtC7IJIJcQioZG06NQ7rO+ucm3lMv1Bj+nmLI1am0GWsrK2xO3Nmwz7XSo6QTjB1ZtXGAy6TLVmqOg6WZ6x1V3j6tJlDI65qQXGKuNU3BjYCk6lqEhz89YGf/H0K6ys9RCRZm5hika9wlZvg8XJo4xVfTrugIxarc5Ca5FIV7mxcR0nDN3mJBJY3V5nZXMJjGShs0jDVomEwYohTikGeQYyxcmM3GZsbu3QqDc5MXOMxeYiU2qa2FXoiS6p8Dp0eUi3joKTmyShFo2RmoyNwRppbUikNcJKRIhMOgVOSJzQVOMxJsdnuL5xmQ3WmGrNkFiBljEYgXE+7V+iSa1FK4k1KblNQUKrPsY9J8/SaExhXIyTMQ4dIosSJTSRNBSOZ2ubt7ncuEi12sbkkKYDbmxdZbO7xr2TZ2gnY+AsUklUrPG+aiosOCyxihmLxqjqCpv92/RrEz51SzqGNsU60EKFdJqEWjSOUJrb27c5WbOgJNZ5FoaMNAMzRKgYnCG1u6ybFdayW6xs3WKYG46OzzPTmqclxqjTQDtNSuoBATzopsKiW8gopCh7rZgECblDRi1cPEcyldA126xu3WJja5NrN7dZr9Zo1cZJVJ0kSmg3WtjcoJwiMzkWWNtdZWuwxvbOOulgSC2uMze2yGLnJON6iqZoIdOgVygsSjpvQqISbB621s5vIfOfkP3+fpW9Le+eex8EkxLniIxBdbusXrrC83/x51y+fom+HeC09MlUVpCImNmpeR554uPMnbkPkVQxKN8nwC8vXQB5LQitwVk2bt/i6o1rpC73Go5Yrty8wr/9d/8cFUUob5+KcxLpNM24wcc+9Xke/+rPYq1guLPNd//TN3nx+e/TaDfQcYW8l7Nxa5Xr1y+R2RQlYuamjvD5r36Ncx95iqRRo7+7yXCYebk96ehJw5/+4Nu89voVbt64xq31FZzybTE3t8jE3FFUa5x7H3qM5asX6W+v0R0O+fZ3vsXK0hJrmxu8cvE8DIdUZczRY8dpjo/71nQ+FcbuyziRYaFOWF0HwKFY6BbIYEi3ss4irIFBj81rl3nlpWe5vbFC7vKQxmfBehmVrd4Gf/bMn/LM+WexSvlUnwDIQjBQKNZCwm8hqlaxMLvIZ7721xg7McOjj32axx//JNKl9FZv8Nyf/We+/8z36CvoRb4PKq1KJqiJLZFNqVhJ7DwYqaxEuYhYJsRRwurGDr/3zW8igG5vnZQhQ2kQzlJVKX/0zB/z9MrrkGtaUY0Hj53gW0//McvpGv04A6GojY8xefYkNCrg0lIjy+xsc/7FH7LRXcNIn1qodIX61Cyq1cZpwdN/+m3+w+/+G9Y2l1GRXyNsbK/zr//dvyC1zutSWofJDL/4S7/CzOIR/uSP/oAXX3yOar3Kgw88yNkzD3Dj2iV2e1tYZ6k1Wxw/fZb65IQHeIO8xIetFODGcGC4cP46u1s5Wla81qeVKOlotSssLLRpNHTJEhFK8uADx/nYxx7i937v23S7DinjUls7G8IzT5/nxRfu5yMfmUHqQDCwDq2k38Q7qFa90Ug12SIdZChpURJM7uUDPvG5x/krf+VRpicrCHzKvfB3H4HfFG50DVevdkkHAuGSktmTxFWOTM+wsb7F+vo6w36OlFUGfYNSGue0l/CIBEqnzM2N8fnPP8Ff+dlHOHG86ftj2Id7lqIFUShdifK/onfvsQgpP+OL1yq0AsY6inY7QQhHljqk0mihAUkSOX7h5z/D5z53nFoEjXpEEldJ+2CtQApNFAvuP3cPv/rffIrPfu4ksfIjiiy38oFlO1bhc589zdKNZb7znRdZ3+hhne/zFhiklqvX1lFSgvV8JCcTlMjpjCWcu+8YP/NXPsanP3MKqRwrN7e5fXMLZ7U/U+7NvOrVGvOzs3TafswWwPbGkOefXWLQi5EScuNQLkYiUCLl7NlpOmMJ2zt9Xn75KhubQyD2Jg0h22diYpxGvcr6+ja73SE45ddVZN7AKjCxIyWZaNf4uV/4JD/3Cw8wNdXw6wbpAYpqXfOJT5xk5eYn+A+/932WljaxqKBDlyOUIB2mCBER6SrWOEyWg8jRyjE93eaJJ87xi7/0GB95fMEzUZ1HtgtAcISywofNkMRaSx6IIAhB5oprEFSRzFfafOnRjzM2Psazr7zEf/z+n3F+4QoPHD/DdGeMsUaTWMc4IHN+L7a8dptLy9e4tHSd3UGfe8+c4djiMbZ6u5y/dJFub+DNSfCAl3cG9iwzaSABplWV9sxxHpw5Cvi9nF9/SZTw7DWFoN/rsbS8FOSmGmVvLNKavbnFHrNXGIcK8VzPlhQkQtCMYs4tnsTg+M7zP+S5189zc3eTR0/fz7mFExzpTFKVkWeWO4MVjlzA2mCXS7eWuLJ8g/XtTRYXFjl+5CTX1q5z9eLr3kivdDgnsBqFB+6cRUifHpzjyLBhXt4rzlGue0VADEOyAbhiFAzZBs4FB+SR7+ODMCYAdS4wQyWWehTRqdQwvQHbGxv0e11EO8gOBaDfChsYgBItCs6gB1Wd82m9Svjr2dOTLXpBMCYJfUUJD4hJJ1BJk0+ceZB2tcb3X3yeC9evoOOIWCnunzgCSOIiwEwAN8MIW6axO4cr3VmcZ/wDC7U2pxaO8dK1S3z32e8hc8cDx+7h/qOnGJMVpLEI5zVIjZScOnqCy8/f4rvf/g7NsQ6njx5ncWaeKmqPgSl8QEKKMOo7V46lHiN9ayS40fKBBQdHHXQLZttomnDBBCyAwe3tbdbW1rh69SrXr18v3WlnZ2eZmJigVqtRqVRot9u02+0y9fIw9t9hLsJvxr4aZQpmWcbu7i7Ly8tcuHCBixcv0uv1aLVatNvtMl22cOMtgKSCFbaxscHKygrXr19neXmZnZ0dtNYla60AzAoNv1qtVrZHoTdXsMcqlUrJeFtaWuLWrVvs7OywvLzM2toaSimq1WoJFhZ6eMUxwWsTrqyscPv27dI0ZDgcUqlUGBsbY2pqqmzTApBrt9vMz88zPT1Nq9UiiqKSnXfz5k2uX7/O5uYmFy5cYHt7ex942Ov1AEo9v263uy+duGANFoCcF1UdMhwOSzZhr9djMBiwvb3Nzs4ON2/eLJ+Tor0B4jhmbGyMI0eO0Gq1yn/NZtOLvQcQGSgXBqP3OcuyO8xWiroU97QwximYnQWA2u/3WV1dZWlpiZ2dnZKpWNT/oElKkQ5traVare5LCS+MVnq9Ht1ud5+24t2A7A98Eb7NvWcjICzCKmqqwXRnjrXeOteXLtEbdNne3UTIiDS3DPo9BIbZyRmkTkjznCxLuXDtAmvtVSKpEEIy7HuX4sXFBebG5qhHY9TcBE5ounaV27trXL2xxvXrParVOq12xPh4A3C0201OzB+jFbVIiImEF9ufmpylXmlx5foVLq6cZ2XnOnEUe7OZzHBi5iTTtSPEtkaiNBavDzc0fVADenTpui71ZoszJ+7l5MQ9TKhZqq6OQAQNGY2uxqFPqDKSmhNRT1qMj0+QkzF0fbSoIoT2OhvSLwEyfIqeokZVNqjomNQNMKRoUUU7ibFgrAe6EBabZ+RGksQSiQddZsZmSJMztOIpHBWcrJDlDmsdURRjTBE1lGS5YWXjFjmWuF4nN5Z00GV30OX4wgmOTp+gqmoI6zyDMtLEIsFHHi0uFyir6ETjTNYn2Uo3vemLSKjU6sRJlUhUgnFBjpYxFdViYmyW3V6PvusjqBKLBCEtxqYI5dOAM1IymdJ3A9Z7W2zv7DLRmGS+s0hTjBNlFWKdgLXEyouXC+tTD/LcobTEugwhtY9GZn4hEDuFG0o60ThxXCMXQ8aSCa7ry6xsLHFr9Sa33S20jmmMNah0q+XaPTM5290dBnmfzKRUdcyR8VmmGwuMR3OMqTkSW6OiajhSIq3IbF4uTk1uiKQOUUyLFhrPqfnwlGK2HQUG/QsOYQ3KwvrVJb71jW9y+aXzZGlGoisYEzahVjDemeTTn/oiR+97ANFq4mQEIYXbHzFsn51ASuWdr23Gy889x8bqGhHKLxaFIB32Wbp2GSGdT781JohOK+bGFpieaPtFq4BLr5znu3/0n7i5chEXC3KpULlE+bwd4kqNL3/553n4o59i9uhpVL2OkYYEx8LCPTSf+xFZ3iV18MLLL7McX2divE0UKeQQKi6iIiroqA66yhd+7mvowYA//cNvsrW7za2lZbaXVkixWK2ZmVvkqz/3Kzzy8c+hq3WMASdVYBrtNW3BIhzJzcA56YM0whssWGzQf/Q6doqc3vptvvuH/4HXz7/o+1ZIcSkYVAADO2B5awk2lj2LSUiQEoNP/ZFCeYZc4CMI65gfm2bmvodoNyeJRYPMOaS05Fvb/OiP/5xv/+7vs7K2RKYhd3kA530KvQhmUFUJFSKUjIh1hcw4Hnv4Y3zmKz9LZawNAYLeurXM//Sb/3d2+jlRJEmqCcbC9599mv5LzxG5iFoueabRYHdrlYEbMFCWoYRBf53/+Rv/nGcuv8ZXv/qzzM7N4aRg7fZFfvTy02xkOxBLRAat9hgLJ05itQSt+PHzz7Fx6xaRkH5jj2JnZ5cLO+d9ENHmSKfIM0d/mDJ27CRPferT3Ly1xPb6LV780Q+4+OILpPmANE+ZmprnZ37ur/LRL34VldQwDpQz7N/WfXiKBNKB4dKlywz6u8QRGJsjhHe3rdc0szMR9RqB8QIIwfR0jUceWeRHP2xz5dI6QnphfSUtxqRcunCB3/nGH3H/fV+n1ZQI6facyYUNwXzF9FQbLQ241IOPZoh0ihMnFvjqVx/n9D2TninKnh4VUGpbra9v8frFS2Rp36f9uQG4jInxab7ypU9y9doV/tN//COcVZjcoZTEupxIJThncKbPpz79CL/wC0/xyCMLtDsxUvtNt0+fO3hni22+YD8IOFqEB5DKvwRaQrspmZyskkQ+vV8KjTUWgeCRBx/gy19+kNmJGukg94Cbyv3c5zRK5jzy0L386l//Ck88MUOsACwSWbaLxLuKKyk5c6rD3/ybn+fY0UV+53f/lOtLN71zsTVYs5cuLYQ3AomV46GHzvLVrz7OYx9ZYH62SbWi2O1Zbt/aYXtrAyVSrBMo4XAmo15tcGR+knrsN+2xhNWVVb733R+gZUzuUjSCWEVIkdMZq3DyeI2qcry0PGB1LSPLJFJE5PkQKw3WZTzwwFk+/uRjfPs73+F73/8hw8w7UkstIYDElTjm8Ufv5Zd+8ZM8+NAME9MRSomQhgm5y0BoJqcS/up/8TinTx3nX/+bP+Hpp5/31y486KCVw9kMrEArbxI3MzPGJz7xKB//xBnuv3+K6RmfDaN1Ic/g7+/o7d7380NSfEBKlEEjGxhgwoEwlkRJjjcnqd/3EeYnZ/n++R9z+fZNrm3cotNo0W54ooQQEoNlkA7Z3NhkOBgwPTHJRx97nLNTx4kjzYXsCsLYsG+SZe9BCJz062GL80ZIxrviahmhHOC0T63Hy9Skwi/l1rc3efW185w8eZyp8XGkkEH4BayUyChCx3EpBVloBPpgnPBSIA5qUjObtEmOn6PV6vD0hRe5cP0q33npWS5cv8KRyRmmWh3a1QYOx26/x07aZ6vfZaffoxLFPHTuQU5OHSfSMSurN3C5IR0MGaYpVRH7PTV4Zj2CfCSUYIVn3CFFcOQtGKke/LLh3pQpvAEM1HIkQ4MAQQoR2Hv+QjO/AKNI/bXOj70agcgtpLlPx1YiyObIYGgYgMzwoBQeBgIRWIPBPTqYxpUryD0NhvI1H7QQQdPVB/0XKy3qJ+4liWK+9dzTvPDaq8RIKg9JTozN0BJxOL9nCcogqRBmEApovgDopPTXJBHMNjscmZrhBy8+R6fa4Oj4DGMiDgqh1u+7nGe+npiY4+TsES5dvoIc5BydmuNoe4bYSXSI7BoRGJh29IzF/dlbO/+lAAcLVliWZWxtbXHt2jWWl5fZ3d0tQa/CmbYA1FZXV9ne3kYpxeTkJAsLC0xMTJQpqvV6nVarRb1eJ469oPEbMQRH03+LdN1RfcCDDV2ATjs7O1y5coVXXnmFy5cvs7OzQ7PZZGFhgZmZmTKtuV6vI6Wk3+8DsLa2xvXr10tQcHNzkyzLqNVqTE5Olv8K4GfUoXe0jkUpUn+r1SqtVovZ2Vlu3brF8vIyKysrpYbgzs5OmdY7+q8AxQpG2traWvmdNE2x1pY6fgVLLYqiEmybmZmh2WyilCrdkdfX17ly5Qqvv/46u7u7XL9+nTRNEUJw7dq1kpVYlCI9dvS6CgC3UqkwPj5eMg0L92XnHCsrKywtLXHp0iX6/X7J+KvX62itS1Bzdna2BDfb7XapUTiqJziqK1AA1gU4OBgM2N3dZX193Uekw2uFnuPu7i7gHaG11iWjr9lskqZpeZ+r1SqLi4ssLi7SarX2OVkffDYLncJr166Vz3yv1yOO4xKczPOcJEk+nKBgKLH0Wmr91OsKJUlEVVWxDBmLJnhw8UGEsez0t1jbWsVY72rYaYwzN32EqU6HSCdkxnB95QbLazdZ3bhNlvdo1OpgYibbs8x3TjCbHKXimuAkRvRZ7V3j209/hxcv3EDULHMn2ywcaTM92aDaTDgyfZLxZJ668IKwNvds2Xq1xXR1luFYjwvXXmSni3fqlAlH544xO3GEiuyQyAkGaYZwKZFOaFYky4M1LmWXWdpe5uSpEzx8/DGaYgadNYl1lTzfIZM9qknCzMQUtaSOyxVSaCpaY4GmrtOJ2/S62+wOd6nGY7jcYhEkUqBwGOmjipGKmBAT9CoT9Ac5u6ZLhSrkkjiqo/DaNyo4wfrFgyFGkSNoiAaztTnG9AQVUcVagxKOONLekVwmaJmgiEkqTZwQrG2tIQbbWJfTiBNmx2Y4OXaajprycTBpyUyGthWvcwYIKYljxdAaJBHtZIxevgsYpHDUa3WiuEoucuqihnNec6+mGnQqHVIVEwuoBudji9egMRZcnpG6IRtssDLcYK3XZbw9wbGxY4xHR2gyiUBgbUSsNUZYMpcGrcHYE6OMZ0dKAWnuDZ6EsTgLEVWktUiZYIUjUlXkuKbTHOP21gpra7fY3tnl2vVNokqMsJBnGXFcoZcPqFYrLEzMsji5QIsmU9EMDTFJIpqkmWNoMx8tDlsvY/ziqqpr5CZHa4V1YEz+oUsqFM4GrTQAgbIiOBDiF3wWOq0OX/7CV/nsUx8nI8XpkFAVUlSqzTHaR44RjU1AUsWokJYsAbzgeLF1xRi0tGAynnz4UR6cnCIix2qByXISF8T7FSjjI9KZsORSkjQ6TJ19GKGrOOM4deIsf+tv/B9ZX7rAjZs36A8GtKoN2mPjzB0/TnPhBMn4EXSlAdrr/4ElqkZ85av/BY+cPMPll5+jt7vD5NwcJ86dI25U2bm1TD4Y4Kyk2plmbGqe3EXoxhhf+drXefLxx7j20itsraxgzJDW+ATTJ+9h/Pg91KbnEZVa0J60yBDhHt1D2hBJ9y1eRP39T/96kLqWIrCFDAQJjY8/+Qk++sADCGnJjAkpVD5lE2cxwuAEREiECctnJciCbLl0glh55k9mLE4oaq0Wndl5okaFPO+B0uTGIGLFRz75JA+eWmR9ZZmdzQ12t3YZ9PrkIfCXxBWqtQb1dpvGRIfW9CS6PoaqtVGVOlG94ZnD1iCdIW8v8A/+D/89yg4xzmAiSW16mmh+nkEcI1LvHL302svY3W2EhNfWlvj//tnvszncoru0ybVbr/GH3/4GRBXSPCc2OXbYgzhHWA+MzMURY52mT2UdDPilL/8sXzp3HyL36WfG+qCPdAah/CZKGIFSNcbuO4eutHnqy7/Affc+yLVnnmH79gpbg13GZyaYP7rI5OJp6jMnkfUOea4QUQBlQqrhh6lkuSFzDutgYlJx7uEJKpUKxhgEEdlwyIOPnOT0mXmUgNxmZE6gpKZSFTz0yCxf+vJDPPvDC94oQ0ksBikM1gyQ9Lh08RoPPngEJSTWOlAe5pNAsxHx0MNHWLm5wubGgLgiMTYFJ/nEJ57g0YePkWjP8lEBiCsT6oQ3AhBSMDWlufdck0pSw9ohMnJMz0zyxS8eYWLyCI9/ZJo/+Ob3WV3dYTjcQceSWqXKffef4fOff4KHHmzTaEZo7TfF1tkgJ0LYk4DfAGoKsNuVHVuEDXGo2ciSsIBcPBQQ0WrEPPbYEXrdDba3B0jhAyYTY22++KUnWFxseVMcLTlxcoaPPnWC9dUdnJMcPX6En/35J7n/3BTVWJSC+DgfMNRqJNgtHXEiOXGiya/+9Uf49GdP8a0/e4HvfvsZtrb6DLIMISDSiumZKe679yxPPnEvD9zXotGIcFoE8AxvcBDn3HO6xdxCzTPABQhhmJ+f5oGHpomUD3DkTtA3ObPzCfXmvA/0oRFGIzE89tF7mJ4eoz80XL60wu3bmwGsMAiVoZRm2O9z9HiVr31thgce+Swn72nzo2df5vbtbaxw1Gox9509xWc//REefXSWqSlPspDSj54Fd8+rkPl9wdRMzOe/NMejH/1lnnvuKX74zCu8+urrbKxvI6VCqYgoipmdm+Pxxx/mscfmmJuPqVa9rrN3JnWeo+n8s3cnR2vvjn9YShHAtaXhVwHYgQwSFBEwoavUZu/hyOQcV7du8eqNSyzdWuHy6nJwoRbESUS1UmXhyDz3zC5wsjNPO6pSI8LgmG6Mc+LoMQZZyvjYBDqk4Vs8u29ohgwHQ2rVKtUoCuy0MH+akNUY6i0R9LDc6m9xe3uTc40GnUqLKKBHvn9aTHAsVk4QIbBaMHSWCIF03pguEpIYz8DVukpl+jiL4zO8fvIGF5eusbR6i5eWLyNXJElS8cZjNifWmrFWm3vPnObk1BHmog4NqdmxKTK3RNKbAFkcmTFIQCNwxoN8cSQZ4KiqmIXJGR48ex9TY+OMNVslS044MMa7AxvhSPPUM2OVJtFeKkeW7GY/DtkyY6FYW4QbGn56mRZHf5ixubuLiGNaY+PUq02f+YMHI4dhfdiptjhz5jS6ElNrt8iFJANv/uIIrGVKFLAICBfigHvrn1BR51PJmyJGRZoHjt6DalR56fULYGC5t83k2CQVLFFgl0pChytjrd5NWbowB4SglQp1n210+NTDj1PVMZONFg+dPO21DwEVnMmL56ipE+6bO455KMVKOFIfoyokuqiuGKm927vW8vVyvBcjc8Kblw8sODgKwhSsrMLwoTDTKJha3W6Xfr9fsrOKVNtRfb7C3CGO4zsYWaPlIBgzal5SvH83FmEBIo262xZ6gYU7cQF8FSh3AZwV11O45hbaeQWgVKS1joJlRVpxkf47Cl4V9SnOUxyjcCyu1WpkWVay+Ypzj4JhRSpskepcXIfWutTlG9X9s9aWAGFxrUU7Fb8X6b+FpuIoE28wGJTsuqKNivt3UG+yYNFVKpUyBbqoQ5Zl9Hq9fam8xfeLVOBGo0Gj0Sj1BEeZggXwfJjrb3F/i2KMOTS9u2DsFSBfcZyijkX79vv9kvE4ygQtvlO0w+j5Ch3LAvQe1TQcTb3/sJfBcICMFFJpVKJQYdFeoYqxLdIso+XGGfQzakYhtQdHkqyG6lWoNdvUozqZzdm1A3Ll2FVdMtUniRXa1ZhsTFETVaSVaKmwYsjWcJWl1WW2+7vUazGxrDLdbDNT7zCRNOjIDtPxPA0xhrQapA2sPM8iaqg6c5V5+rUdesMuVilwiqppoPIEKxJyJbGJp89vp6sMzC55NCA2VRpykrqs0XRtaq5JTIU896YIDVVna9AlMRViEmKVoJB0+11spKnohHE9Sb3SoKZbJDLBKU2Kf+a0FOROop3E5YIURd012DVr9BkgI4FQgsxkRCrGBYp7FNJ3szz3Y6nQtFUTk+VEWYyKJEJ4RoYwoGTNL6pMjhYxdTHOWDwLJvMmA9IR5YIJJmnaDtIk5M6DBZGoMBZPkrgIZSsMjSVSoJUmoU5dTlA3O4hM+8WS66AyReQkufPSAkooaiJmPJlic7CKMwqhHGAwNifSMdL5dGeUInI1arJOixbjuk2bMRJbQUpFpP2GKzVed00pTW4zImWCXgk44cjMsBQTF9JhjSGKEr/IIyJ3FgwIDWZo2Up7NEROtdFku7/j+ZxSIGNvAFOJmsQiotKrUe83majNUTdNlIsRiSKOPJPZGc+ej7RESU2OZZj5McU441OfhYP8w8Uc3Bv1/EqniFY7ryru9QcrCW5sjKheJbIGF4xvihQwKlVUs41LKsG1Fc+ExXrGjfCMEgF7boYqQiZ16u1pYgS5CPqFOIwI6fZIpANFjtGSqOlZiRa/mYkqNWqdKQa7O7R7jiQZUk0SWmOT1MZmqLbGcdU6Q5Q3SdIBeJMalTSotiapt6dRUZ3m+BzVsTniSoUsVeT9PrHUiFoT4hp5LlDVKqJWp9KeodnZZLibgTBUx8ZJWlPUOnPISsdzR2WxmN1LMSvWjP5ZLmP8HhAsFtThvUioMG8H3R8nkXGVeGwSogQtBXFgYgpLAOv9Qt4SQBTnxd4za9HColQwQ/FoB7ELDrPtJqbaREUeXJcy8KWiCFFpYBttqik4WQe5jUy6ft53jkpSodlo0+yMkzQbVJsT6NYEotrBVSJyJRBGesavy3FxnUpjksQZEJBrRa09Q9yYpiIgShxZrkkntkl1g1jHrA6gattYoUgSz1Ya9rbYdRtkkXdBTSKIbGCEGceOHLDbW2PY3SKO2sSVFozPoWzmnSCFLplDLoiYu8xRrbTQlRaGGBdJ4sYUzYkj5KlAVHtUGy0q7TmSiQVkcxzjIpyU5Ma7dn/IcAEAEikRFqanKvyD//7rSO0vwxYbbANKexIqQCQiJF4iAAfHFjv8rb/1RQRf9IEGGx6xsJFTYk/EHyBSMgQX/CauUY/40pce4stffAjhs7u9IVFoSyUIa2FHpKPgrOoQwZnXAovzHX7t137BBzXCiawDqQmulvBLv/QgP/OlB+nuQn/gUNoyOSap1kQwZQhfdQ5j/ZiuhCyDJ64cHX0R5bY7sHhg36c8syyoiwlBRERqcxrNhF/+pY/y8z//UbTy12nt3gZTBiJiLgSf+ORZPv3psz74FKT2VGALOjIvuSCUT92T4RhCBrH8Qv9LUKlKzt7b4tTZj/Or//XH2dqEXt+hFbRagkoVkigw6USoQ7g+i6BaU/zCLzzKL/7yo4yQZkp6k1KQGRC51/J74NxR/q//t/+9zxrIKA3NJJBaEAp2tgZcuHCdW7fXvEmVkoE5ljMx2eb4PW06FcmD5ya598yX6Pe/xPYOZDnU6tBpQaKL9tirTB6AhwKqlSENUgBDHGPjFT73ueN89jPHsQZ6PchSiCKIE4hif8wClIoFCAwGi3D7w3+edVeE1sToqx+aIiwUmppSBFObYDIhAZRP71QBNLQqItVVBpUOSduyIROGqd/nxkrSjJpMU2HSxkyomKoQxA6GNqeWO2Z0nb5VtPB6buD7S4phIx/QN0MMCQaHNhaNIJISoURZT4tg4Byb6ZCtXhcX1s+eNbZn2lHsnwuGme8PhkJoA+flPawIbEbrqOAN/iIRM1R1+nGTNOlClvvAm4r9GlJqanHCpK4zTcK4VTSFB+ylcCipGOYZaZ6VHWuQpeSRJtFeuy83DqUcNSeYEAmLlTYtVacezO9KYzIJGTCwhp10iBFQUwInIlK8M7GWIjAsR8ar4lEsUorx0gYWR886NrI+u3lGXKlQkZrYOrT0gQYhBJGQVHAkAmZrbXSkqVt/jVgbUn4Fxvr0aG+sGNK4XXH+ginu+6c1frCLtMYBCY6OjFistNlJWmAdY1F1L53X7R97nQjp4CHlGOc1G4vju1D3utBM6hpzcYNOVKclYqLwJOTO+OdeKIR0xEATxWxcJ4oTplSVhAC64o9Xpg9z2DT/k038bwsc/Ef/6B/x67/+6/teO3v2LK+88goAg8GAv/f3/h7/8l/+S4bDIV/5ylf4zd/8TWZmZt52xQpgBvan6q6vrzMYDCgMOQoArgCZWq0W09PTLCwsMDY2VoI8SZLQarVKcKgohzkVF522SLfN87xM5y205g7TcxtldvX7/ZLNNTExwcLCArOzs9TrdYQQJQglpSzBwMKApGCZdTodGo1GyRgs0nOLtimAscJcZdSopACICrCqSFltNptMTEywvr7O2tpaqb+3vr5eut0WTMaD+o6VSoXJyUlqtRo7OzsMBoMSYCzYcJ1Oh8nJyTJ9umjrAmAsvmOtLUG6PPfizt1utwQdR8HAUbOW0XtUq9UASkBxe3ubjY0Ndnd3uXnzJisrK+R5XrZhcR/iOGZycpKZmRkmJycZGxsr23IU3CvOc/D+Fr8Xz96ogYtzjjiO2d7eJs/zUp+wuEcFuLi+vk7h9uw1TCY4ceIEJ0+epN1u7wP9RsHBAlzc2toqzVAK85UCJC0+99NgDb6XY0BciUkqsXfKFZbMZn4BSkRLjhGrChMnp8hdSj/zrFEpNZGqIFHEQqGFwEVw5NhJBjZjJ+3htCGzfaI4QmDJ8z6b/RUu7VxEGMd3n/0u3/vxM9RaCZ9/4iM8dupTHJ89QVzJ0NZR0TW0iKnRQooYR+op3VJCLmkyxlRrjmP1U+Q2wyqH0N7/M6aBpsqO69JN19gc3va6gy4lG1rqeoJPnfgSjahGSzRReUTuDA6H9zTSTCezNFSDioqRwmKtwEmFFI7EKRaqx6Eq0CJBOP8MKSFxNiPNQ2TKSjQVtFToRHJrd5O14W3aUYuG8KLGiBznsqAYZMlthlAaiMA6KlQYiyaoiBhlwbghWoIzButSjDVIqUhElftmHuTM1CmfruC8PkuMJCImoY6kSpaDc5pEtJiOFbHWSBKciMIE7xBEjNfmaCUdtFJIEXF8/BzW5X6nKBzOKaSFGM1MtEB7fJJYNnBoDOCkxjhv0gIWhaKlxolixezsJElUJRF1lFQ4M0CqCsKCNV7fJFIRBou1rlzceUBSkGW5XyHIwjXM+DHEGhIU0iXEQlOtt5iqLWLtgDzv47TAWuN1tJQktwYRea+4ikhIXAwDqCVNUms9yCO8LlocR36zledkWY5UmizPqFQroQ5+LKhF79yQ5L3s/wAj6y7voCc8uCSVJkuHiPEOlbEm5DmR8btQJyTS5+/5RL84wkg1ItpsUa4ABwsuh8I6iRBepqI+t4iePhIWtMGARvmFpXMKZTUi9ztOIy1Ox56Z6ARSWFQtpnn0GLXpaaYGKVmaobWgUqtAJSavVHCx39wr6zVDrd/NoRtVOqdOUp0ZJ7c5Sa1NXG3jlKLVmQWX4azxUX+pccJAZkFXqM8tcrw+wZH7dzEiQ1Sr6FYHEdWxVqGEwmK8MYPYgw18EeWKt9xMCrFvwSmsZ6BZ8MLgUmKdgEqN2uIxagKEVCC9SQvG7cEAQpabgOK4zhqE8um0wtkArEtcHtCZOMFFmlx6sW9j/JJfijpRM2K8OU4+O8SmGSbPvXMhBpzxaTxKo6IKcb1K7hwuquJ0xY9lJkfKCOcgcxbRqjF57t4SLLJIUBoT0n2dgWpzknseGsdZA85RXTlLL6vSTwcobTGuz4uv/ojnL72EcxlOOYwzWGNRUmMjuLS9xG///m9zdXmNj3/8q0zOzlGdngjP5J5eEMo7SHr9Mfy4EtUQTiOlojY+w+JHKsz27vWs1yQhqrdwlRpD5++vxKNQVtgRlsY7K+/lGGCd38xKKRAy6I8JiRKehYLyqWUe9HMo6TeXCNDlpqlw2fZryViN7AsDCFv8mVkfQCs0qRyQRMKzXVwQ1ZcCZ/34IZBUdBwq6xlKQhZjSghSKM/etha0Ks7rvMukDJtiJ5A1qDf9oUQwkrJFoMN/JWw6g7NoYFM5MQr+FAiklw7Z67mu/Of7c6FL6NstxwMGnrkDWglEYBtKuce2sc5hgssnUmCcB/60LOrtGcCeB0WpSRaiAX5qxGvHOXz6rwAMPg2vWhHU5wN8aYt7UGhpFcBw0J/32gV+zYHPGhEBPPQyaqIEgbUAKR3WgFKWwlM6ibQP2IUHIY78ULq5Y1i+uVmaNFlj0MoHCY8fP8r8wozXX7OCSEHccjQabkROIUCX1gdFjLMIqQNIKsJ98FraDokTwj8b+LpY7e/1WDuc343cTVEEc3wWhA8rhWeuBKDlXTCBd74neC/7f2F0oQIJRUCY24PUkPMZIAKoK0UkJc32LCfa0zgcqTGeDR/AKekgEQodgEbhPPMwEZpKc4IjzQk/zFpHFEyJUgGptbx09SI/eulFHnnwYc4dP8N4VEELQjAh6HY6hxGStcEOf/r807x44RU++sDDnJk+RoTAhKiGFTBMB2TpABUphPTjhcY73ArC2jII+Fm/OAiptD6rqjm1yD1TR+gLQ+qCHr8ruP2ghSQRijgo8XnmmHdEtgJUEqPiCCcFLneoyEdZBtaiLGgtqSLQIubc1CL3Ti0ikGgcyjmMEyUzemgtVzZWefbVl1jd2mRufp4HT93HeK1OTUckAmLnsz9gbzSCMLbin/MM2LE5VzZW+NH5l1laucXx2TlOzx1lStdInHcXzq0P8FakYCFpM3nucQRQFZoqYey3oXco6bMTBPvGkTJeJlwJ8ikhwjrFjzmxUHRcTKMxxX0Pz/jvhTGsMK9zTpRjsCuIWfh5RYQ1nRdX8uCnz56AuXqT6Y88iXKFRiXlnGKlJ/koPAh6fHKWo+MzIP15lQExGuUKjepG5jkXgHTYj2O81fK2mYPnzp3jD//wD/cOoPcO8Xf/7t/lm9/8Jv/qX/0r2u02f/tv/21+5Vd+he985ztvu2IFKFSYanQ6HWZmZlBKsb29zXA4LJlqBfurXq8zNTXF5OQk4+PjZVplkYJaOM8Wdb6bGQl4LbpWq8XCwkKpQTc2NrbPlOIgyFiAdlEU0el0OHr0aKm5Nz09TbPZLM9ZuN8WbDKgBLG01kxPT5fafe12u0zfLZhhRbrwqBPzYRqJxd+jdWs2m0xOTpauugXour29XTrhFqzN4h4UoJm1lp2dHW7dusXa2lppaDI2NsbMzAzj4+OMjY2VgNlofYp08ImJiZLhNzExUZ7nYP0PPg9A2Vaj17S9vU2/3y/1EHd3d0tTlampqRKYnZycZGpqqgQyi/tagGwH23D03KNO1cXPwjRl9HOFQ3K/38daS5Ik+8xdChC4ME5xzlGpVGg2m6UGZZH+XADbB89fuEUXzNY0TRkfHy/B45+2W/F7NQakCB8tEl7zyzj85gBFLBMkXrMvExm1xCCdN8HAKR+RNyKwDQ3OZlRkBBVJJoa43HJ78zZXly9z/cYVbq5vcWX5FnaYk3a3uP/M/XzhU5/h9MK91NU4MVWs6xNpFdJWhJ9kbQ4SnNXkmfDaO1So0qYhJshIQRoGok9OxsB26dt11rbWyW1Klg4Yb7VpVSaoNhpUxDjKRghniWQdoTXWpn7jEQT1hbVURJ3ISYRzDLKh1y0RPuKUiBgZmIKeDVxo93n6gSii1SInlhGWJrNjR1gb3mI92yKK6rRVA4zx+iJCYZxDi8gLKbssLFokiawE6WWHKlgbUiCFRCqFcxBZTdM2QFTRwqcxGJt7vQwL1oCONTryLGpnPPAYy5jMGJRUSCRZPkSqiMhJtBBEUuOcQNgI43K/qBLKm5QASmhilxBHFXCS3PpUXyFVyLLy4t0aqNqERHWQqkWIr+LyPDCVPDirtfbix7iQciLKKKgIlAZnwyZAaZQrEjP91sczAyU4nybi9Q+rWF3HSYVQKizyvaYWOKTw2obSCOI4oUjxtCZHSYGQkFsbWK8iuFtK4sCkVsKzN3K7l870Tst71f9tseV1DkZSIq1zXgQ78mxMISPQfrFKYKd49ptn8PjnzV+/LFN/Do6HLmyGgzFJXPEsII+x4JTzhjb+kzgjEJEFIqxwCKX9wl/6DRtKIZIKIqlS7Uiq1paR9txZUP7ZxdoyZUo4fEqQAJNUqVSrCK0wBnKnEconpTinEcIFR0Lv2upZOQriKtF4lajdxkkf1c+FwooADNoR4G9koyhGtAEPlmIhXyx4/Urab6ats8jggi6SKiIYjQghve6fK4CZYjO8h3PJ4g8lcdZ4wA1/EhH5NGYnFE5JnDMBaA/HEQonYu+mWI+J6sI7U/qeO8KU88CLwXm3T+mTHZX0iT8e5PHPixUSV6lhXHA0LBbZIsy7SmEI55ASTM78wjH+2tf/W1AKZzOcS/nB9/+M+T//FrkbYnTKtaUrXLl6lTQzGOnITM6PL7zAjaVV2pNTfPrIz/p0dBvWFQRRdyECOBhS6oQ3VCpAXac1ujNO3O54Ji1gkFilEHp0jCvu4N3v8dst79k+QIZU9wBSRSMA1565gjcQCXKByGJj5DxY4w2ZrAer5QinThDashgR/HrBP96uBJrAbySdxI//DqQK0GEIQIgwvxY9ylFAb36HqIXYp+9ZjCRF/bUQKO1BMpzXNBVCgAb/FIB3OaZ0bpUiaGvtA3yKnirLv8W+sa54nouq+X4syxYN7qOF7IIPAZRAlgev/TPlA2MjbVloLnrKa/imBw8QRbq1G9mk+/HB4lDB3RdkeTlFHfYME4Svc2iHvdi3fya0DM7NTgTtyL12KZiehfGMHAmMCBX6t/BXoICN9ZTVW11MBkoKjPXAjpaSo4tHmJ4cJwWfNRLmbCGCTIUMAGWYp7TwoIsNYBRFG4WWHYl/UdgISAhZCIQ1iggfCk9WqZsm9tqrmPMCYPDOYcC7l/eq//v+6nwKfXiWy2cfSpS/mJe8oURg50mFVdqD6M4DRnu9H3zPKoIHECO8+6vzmnMCnxKqgZqMWJidY3ljjecvvsLN7TXOHruHuckZaiLybFAB23mf5bXbvHj5NW6u3ubMqdM88dBjzMQdjICB8oBa1zkuLl3l+tIS7UadZlyhJhQxfhzbMzUO0YsAVvnLdWXAQOKInQQSDyyFviXxfbsIAVhnPcmCAGA64wNGBdAlvfkfAh+sU3sGdhJHQhEe2HuGC4cPA2gpGW93ODK/wEZ/h+defYHXblxifnaOuYkZxhpN2rU61UqFSHlile+rjtwa0jyj2++xurnJza1VLly9RD8d8uS5B3n45L3cMzZHEoBTZywKz0a0ws/tSQjyqXKFLEDIchRUYU9QSKbI8BwRno0STBcE9re/WuW8HJEUe2x1Qhs6jF+ryPDFoiP7waBcNxXrSCtC/3Zekqbi1Egf9UxH54rRW5TrVikEFeEBQ2tDsEyIPQOYEgAsnpii7++NzaIY899GedvgoNaa2dnZO17f2trin/yTf8Jv/dZv8fnPfx6Af/pP/yn33Xcf3/ve93jyySff1nlGU4EbjQbz8/OlM2u32y113Yq0zQJs63Q61Ot1KpVKCbzdLdV19FywB/gopUiShLGxMQotuwK0GTWVKNiDowwtpRT1ep2ZmZmS2VY4Bo+CiVprKpVKmXpaAGTVapXp6emSjVcwDEddcAtQqEidLurxRgBQAX4VdS90CJ1zpGnK7Owsg8Gg1BMcdQYujpvnOf1+n62tLSqVSglGFS7DBQBamJmMpuQWTMfx8XGEEMzMzNzB+hyt/+g9Ga1Hwbzrdrul2/Dy8jK3bt3i9u3bpGlKpVJhZmaGmZkZjhw5wuLiIuPj46XRSsGoLIDew4DVw57H0WekqMsoqFkA2VNTUyUDskhzH00rLgxLCmZpo9Eo7+Hu7u6++1m046g7d9Ge09PTJElSMhSL56RIHy/Ku21I8l6NAQ6QSvvJQCiU9NFygcAagXRxcL9SWJfispyK1mQCnBTkzpIJgxUZOSlDs8vG7gpXbl7h1auvc3npCpeuLCFsRmdihpnZRRpRhUdPn+b+xXuYbx+lJjs445BS4VyjXIykJkVIicktKpZoElpRh4QakgiIUCJmmKVYaRmSsjlcY72/itQSHcdMJjPUZZ1EJMRoElEFq3FIjLU+Kqe8I1ekJcL6CUNKhcmsbxskOlIIqUizPDgES89aIQcVA6pkHTgRwAjnQPitgBQx49EUfdNnI92kodo0ZRutRNhwel0eJfxyybocIRXaKa8tpoq+oMJe3zMQ8ixFKk0kI7Tz6VBCSJ+WlYPLLbVKndSlWJOTRAqnNf0sw2uV+WvJTeqBN+d1O3KTkURxME71OjtWRFhjSVPv6i6UZ1jo3JINM2QkyXMvdB5FnnmhtAwpFsIboRiJRKOUZ2EbPAPNT/IWazIinXhmmhCkQYbBhona4VA6JneC3KlSH6eIVFphcdJ7N2IdsZS+TahirCTLHVoHfaKQwpxEEakbIpVPj1BKE6uY3GZeEzIsGEzhRh02lkqqEMxxHii3MMjeHc2x96r/23IDtb/4YKwMz7H0hFEhsbIIILkASoVxOgAnhcizX0UVi8W94xZ8IVGupkKWWgGujNi9WmyZKiJEAbrjwSaEZySqES2wYqMXrsd6Sk1YoAYWg9/5YgGhY9/vnCz3+S4wiP3v5RLYG3mE4xp8BB4dlQvdvWW9pXQbdsUSdLS8cQCpABVKVv9owEzpsD727ebc3hI13LDil/I1UzZGAHnESFqcYG/RTQBpQ8q2C8zFYjVsAxOi6GlWeCCNYkEcQJ0ix08UjKsSEA3gSAhAuaK+Isybwm+enPObRRDe2EIpr09nAkNPSISs8Ogjn+LeEw8hbIbTGS+/9EP+zTf+Haub68hY0k932O1tst3fYnu46TXwggajbzNbbmR8i6myGf098P1YyLDZk6oEDD1hSoDxz2eRwvZusQaL8l6NAeG2lH94L8viBXno58qNUZFSKSRi5Fnf6zm+/+7BLOHvfecMZyuIWGr0OMUHXbkRLE9djvrs/RQj/D6xV/fy1WIzP7oODscZvXvlWnDfuQ4Wwf6XxR1vUwwDI2/fOSKMEiD8T632NrXiwDmKtvUgxWG1Gh3T/aAp72invc/77idLsHb0hKPPxWiL7QdLyyOF7xQ7/GjkWy6Mu4LcQJRbblxb4/bNTbJh5rMNnELriFYzYX52inYr2QMKwv1XUlIAlb4fymBAsYcbHNIgZVvsPTH7QXwZnpVyLjnYSHc58OE9/t0ZB96z/g/ljR59Nu1on5MuBAP9rF4+d854Dbfyaw7p/FGK+aMAiQvQTYQxs5Do9LxODywe78zQfqzJS8uXefrVF/jBKz+mVa1TF16POneO3bRHt99jZnqGR+5/iJOzR3BpxtXNazRrDZqNNptpl1euXOSP/vxPiaTi8499nGPNCSoWIge6AAJFca2+rqNwb5G6GiGIGNnjub3xQ5TjjSvbzs+TXjM0inQAjWyYu/eewaJNXHBt3gMcyxpRzLfCQVUIppIqtROnOT67wMrWBlfWlri6fIMXX3uV3Bp07LUBtFLEOsJZS575zL7eoMf21jZKSiY6Hc4cP8npuWPeZCWu0kAHjVVDFNYJXnrD359AFMbhU/elEKVZSbhkDurteQOVwjzFC5XKIpBRgHRub8lY9G7Cs2Kd3YdxjN6fYt1gD75Wtporlpijn9hnBlfMTN4UkrAwKQL+ewGwAiwu7vnocyCkwLNaedvlbYODr732GvPz81QqFZ566il+4zd+g6NHj/LMM8+QZRlf/OIXy8/ee++9HD16lD//8z+/66BQACVF2d7e3vd+AfxFUUSj0dhnuDCa9lqAPaOgXQGkFeDKYfpxdwOCCmCucJod1Y0rzjmqzzda3wJELJiCBetu9Jyj6aKj4GW9Xt8HAB0Ergq9u1HAaDTt9GB9Dl5f8b1Ch7Bop1arVbL5Cs1EoHyt3++XTr9FevbCwgLVapXx8fEy7blo/4P1LgDXIlW6SI8dZQLerYymaxcOxHmel8YvS0tLpSvw3NxcCQgeOXKE2dlZOp1OmcI9+hyMPg9vBAwefDYO/hxlZdZqtX1g50FGZJGOXKRZj4+Ps7GxUTI2d3Z2yvZut9sl2/UgiFmwSgvX4oNtPvp8vNvlPRsDzABhE0xuMUogtE9DkS6kxjqBSVOUNChhkZHEiZSMjD4Zqbb06HL55gVefu0Fri9f58r1q6zc7jHIU2am2ywemefxc49w/4mzjFfHaUZj1OMGkUtIRJU8NdR0QpamSO0nU2sNHkaKEM47kNZFg0dOPIKONTECIXOGZAzqO2zlG1xduoKuJDQbk4zHY9SpkpAgbEg3VhERmszl5LkBKTEuB5eRDfskSR0lFAOTIYQm0v76rXGggpZF2AhaZ70RaIijOQtYGZg5Xh/ROgsywuKjrZFTNHWN7u4669ykVW8RuwqRjILhisXkCqE0WmpMYPloqfxELBUYz2KMk4Q8zzDOEMnAHnZegDtNUwSOJImxwjvDJnFCalJSMyTSgRFqHXm+50wuhcWq3KeZObC5IYkSP345Sz8b4IA4TkD4xYKxhswY4sinT+fKYqQLAKUHHZ01WKTXFpQKk1tyYzwXUoR0MJMTqxingy6MM0jhNws4ryXmcGQ2xYOaEmdyz+yShSGDACdDiowgt5l3zi2ih06RRBolYJimgKASV8hNRiRjrMuRUqCkZJBloW9LbJ4TKV2GBYWQKBGRW++j65wJDJp3bzx4r9cAB8veHDc6Vo9uxkdYIf4L/t0DY/th26d9W8sDG9+D64XRsX104TfyP3/uErXYC9KMmgSPRnlHDs5+xMMdAgTsr0t5jtG5SezNn3cGid7+RvHgGrNo3+J8P3kQ6iCYMYLjcsi8XM6ne+23t0inbANXgq4ji26x52Z48JjFop6RY7rioPuX8aF/K5y0Pu1PaUxu0NUGjVoDbx2Y8tj4BGcffNKP1UnEldd+zP/8//p/4JzgyORxpIlQKiL11Idwj025AbzbksQV1zLSHvuBpfJT+3rHu1HeqzEg8MsO+cZd4ZayHOztd/zlRo5yR7u90bEOvHI31OdAHe9en73PjT6j76y8hasYAU3e6lXvf+ewMfiwb+09g3cvd4GyxJ3j7tv5/v73R2eFg/UuAhmCbm64fuMW3e4OstBllRKb92nU68zP16hWBKnLEfiMiuIIBYBwyNByBzjxVq7jzst+8+f+8FJ8790ZBd6r/m9G9lIH9dQLcNxnn4ex8q5jBSXYt/f0ukNAE38MG44tC0kJHAkwllR4/NhZ7p09wc3tVa4sX+PK9WvsdnepV6o8cuwUxxePMt2ZpBXX6Q4HPHf5PH/x3A9ZXl9FBmfidDDg4XvP8ZmPPMWJ9gwNpUksJLYAL4Ob7+gD4A7WdO+1goFasJn9mtvt+751wekX6dfiw5ydbo/bGxtkImYmaZHKCJxnUMqR83ntxwBoiYIFR5ipwFlL5KAtFZ1ai+O1Fo/MHGH71JDtbMBuPmAr77Mz6LPb7ZLnedgTQDWu0KrVqVcqNOMqrbhGK6lSkRLpHBUkwnqxWC9Z4MpH2cc59991R2BghzlfOLEPdBstPvhbfLF4HkbWFmHd5cpAHSXwFgkFYi/sdGCJ8JbGrX3rzZEQ3sHnUlCAhCMpw+Wafz++UH6n+NWOHMze8cDftbwtcPCJJ57gn/2zf8bZs2dZXl7m13/91/nUpz7FCy+8wM2bN4njmE6ns+87MzMz3Lx5867H/I3f+I079AuKUgwIo2YeBbhyN53AUQDvoInF6DHfSikAu8PMMIpy2LFGzU9Gz3u3MmpSEt1FF2oUZHuj9+9Wv8Oue5TxVrRtHMflQ12YhOR57tP9nCtZhwUQW2jqHQSwDqtfof2YJElZt8M60MH2LkDBXq/H7u4uy8vLXLx4kfPnz3Pjxg3SNC01+06dOsWxY8eYnp6m0+mUaeSjgPEbAYFv1qHv9l4BHh+8f4c9g0Up2K5jY2NsbW2xu7tbGpRsbW3R6/XKlONRl+2ijQtA8LBBYvSc7yZr8L0cA7TwCRtOgZPF5C+DRqXXlxM6J7V9hDIYa9jNBqymm2wNt3n16nmef/U5Ll99jZs3hySR5tjiBJ//1DmOzJ/k5OIp5sYWqIkKDaFoEiOpkluNcQqX+7h5mmZ+4+dsAMIkwkmsyZAu9mLcUjFZn8aIjIweQ9elm/dZ3b1Nt7vNZGuCqeYCiWgjrMINcqI4JtHe8TYbpjiRowREWiBVxMCl9NM+tSTBOK/bpXRE4aSIxacdB127OKqQ54VmaYgaCYsTBmN9ulocSa/zozWZ8XQIK4YkUjMpxxkm22z3ttiOV+lEnsEcOY1GeQdiq9CxxgQGUqw0WTb06X3CRwWNNT6lGEeaDkniCi5EdKuVStD0cjhrSbPMR921RrjgVKxVYFPbwHwChNc+sTaI+0pNmqceDFOSJE4w1jLMUp/i4ny0tJ54F2Vjcw+QBfpTGRGVe4ZKnomuMNaDz87m+HTihEGe4qshgtaS9Sm/Fp8+KUCLmCzPUBpyjNdBFBqE2nPbk35x48WKQarYpx0BQ5shiFBSo1WEDSxPa3xaXKQ0ubUkUVwyaFUAZ4316Z3Weoamc5Ss7IIx/m6Ag+/1GuBu5bAxvPj9sOss1wS88fbosJHy0PkiLL4LlmGxGN8HSo4e8+A8cMiCtoz0Fwv7Q+pwsJ7F5wUH5q4RsPCOer+DUpyv3GoeBFx9Pt1PduxRcG+k3xPWgFCk/FBGysuU2xE21f4F974T3Am+jIKvB+oAo8DRnUBPUU8pBcb4UVlHkQ9KSEUuJcJZdKVJJxmDzLO+2/fW+T/9rTqpsZw8fT9aVXxCpvSpp4XwfrEHKsqbAVn7Nkl3/vKulfdyDLg7nPH2gZY7397rZ4esWN/C8d/h+Q98bn9f+klBoJ+kvJXzHAp5vYvHf4Nvv80x6257PFEEXEZBupFfJRArx8BAHBkWjtRZWGyWhivOGU6dWODEiRbVigipp6PAE2Eu4MAAdPc9wNsvP+179eblvez/B3XeiyJHxmnp9t/SvVJCLXvHEB5IkxQ6cyPnKuZRKLNrtNJIIdHOgXBoNDUBnUrEXKXGQ9NHSR9yDF1GLAQNPGNfBYCxUq3z5LnHOXv6LGu7W3T7PbTSTLQ7TFXbNEVMBc8YVIXOrnpr9+pu+/m7fU44n3pfE5r5ziRnj55g+dJVls+/zqm5Iyx+osPUWK1kW/rMfL++GX18ipwAD6wZtJAU8i0KnxZtrUM5QSOpMZlUyAAnvNlTFr5fZtYIiPFOyQIPGEYEoN35tFkpJEiHMZYcu6fHH9YJB++lOND9fY+4E3GTxZiwr732t2nRucXe18IxAxi978ThZAeHn9EmLAJ6xbiwN7GXmohFCrJ/de8cJSYm5CH3eoS76GCPCbo3IN3RBm9Q3hY4+NWvfrX8/aGHHuKJJ57g2LFj/PZv/zbVavXtHKos/+Af/AN+7dd+rfx7e3ubxcXF8u/RBigWgIWxw2GfGS0/KVByMHW0+P4bgYI/ycB/sE7FRvVux7v7hMdd2+Nuv9/t72KjnKYpg8GA3d1ddnZ26Pf7CCFoNps0Go0SqCo2naNsvLvVcRTYvNt9GI0QFUY03W6XtbU1lpaWuHLlClevXmVpaYmdnR3iOGZubo4zZ85w3333sbi4yOTkZKnzdxBMHWVrHixv9dkovn/webjb4HzY8YXYY4sWgGmz2aTf79Ptdksm4fb2dgmKdjodOp3OPk3B0X93K2/2/tsp7+UYYNGYPAzMQnj9PB0htKJv+khhGbLNxvA2Kxu3ubh0gxdePc+NpZusrt/GiIw4jpiZnuXx+xf46P2Pc3L2BM1ojFjV0aIGTqOcJHY+DUY77XVjlPR6YNZgpSZ1DueM15/Jc6TLccYzskQU4dBYJ9kxPTbTm6R5n2xgmGhMs9Ccpy0nqNHAZI5cgqlqDJbU5UgrEHgBchEJhDMYOyTPB8SRArwLs5PFxBA0URTkNscIr42R5YZIxSgdeV1AfATNOO+AKTFIZ8iyFCUraB2Rk6PxWnqWnOnKDN3uDje2X6c20aAhJ1BO44xA65G0A2dKvUVGU1plCA4ID5iqIGxeTqjOeP07Y1FaEUUxImi5CTSCjCzvezBf+jRiHz2OPbCvlM9gFArrQ5ZY44FihaQSx4BPE3bWYrK8XClYk4PwVP8kSkgN3oHShn0iIJQXu0+z1IuQa4WVDhHSQgUSJRTGeM03FcUYlwUNwhyFQosIlCUNCxaJLDf0Ljc45QGFrGBox8o/WyEFCSfpDwbEkaASaYZ5ihKaLM8ROsIFRiDOX6MUmoI3Kghu6NYDrpW4Qm5zhlnKMH3nbsXvxxrgbuWtzPsH/36jUbAcnd/CWFkwzPZtw0bng7sde6Q+o+e7YxvzFsdrN/rzkCDbuzXulyWAoSUQetjxf8Jz7mszIfa1RcGiK45d6K4h5R1g4B2/H2SbHFbeaP4s6nNgbSbFnui5DHrMDq+3qize4R0d2MnepMU5h252OPXIRz1O4fyGyYnCcMlraxECDvuuZQR8PljvfWDqTxlT+iCNAe+0vOv9410rH7R6fdDq88bl0PvqB6yDL+C3+X5Hb3E0mxH/1dc/zS/+8qeREvLg7aKENzapVkAp/x0BWEwIZBc2J29YM95gFHqXyk/3Xr2X/f8g2aRkv49osQshSsbmaBrn3vcKRjh743zQgy6QoNF5XEAgXXh9YGdtcMaVpQZcYTDhBORBAxfnNSaRoszI0UJQEZpO0uFE0vFV8JOSH6pd0PBzzgNCWnBYfO1u+MXdXr9jL2sDiGYMkYLTnTnmvvLLrG6us721RTOuMlNveVOsPQv0kSyE8sh+Peu8bp43ywnp2DJo+zq/rlZInIWKkNQQYFwgM8pSk9Nah1IC45w3HcRnOwhB0PUDpCDHZ+2gBUoo8qKCAewVeLBRjIBie420Dzbb10aOO8cKIdj3bIG/nyJMyMXKxLoR0LAM5Imyi++DHYsYgiirFOp6cL3in8Q9UG/kfhbnEyMHYRQIFXuCBKPnGR1y3sbQ8LbTikdLp9PhzJkzXLhwgS996Uukacrm5ua+qMHKysqh2gRFGWWS3a28EWD2TsrbPd7dgKHR9z4M5Y2AzVFwsND1K4DBarW6zzjjYKr13Rh5B0GxN2qr4j1jDMPhkG63y+rqKtevX+fy5ctcuXKFW7du0e/3SZKEyclJjh8/zpkzZzh69GjpplzU7eBx3wgkfjvPwxuxSd/Kdw+C3qN6gQXTcWdnh16vR5Zl9Hq9UqeyaPsPQvlpjgHeet67j0LQDnMWJ3OMHLCRrdM1m9zYvs5fPPdDvvfDl3n9yi3SoaFaEdx/7zQfe+wjPHz2QY5PLjKmp4hsHWE0CTHCSXIjsEF1WOhCeyPHBa0vay1WOLT0AExuMg+AORECfBqDY9d12bZrrA6XuXTzPLPjsxwZP8GYnqFGA5FLUpuhpRcfNyZDK40WMkx7RTTML1WtyahEid+UWomOYjKX+/etDawy45XRAZM7pHFY4ZctWsY4MnDCT8A+8OYdHXXkwSbnJyLjBBExNeE3ts3KGLt2C4PBOIe0PtKqdCEE7ttJCgE2Q+LNIGRYyOXBfME/4iJoDYpyEsW/7FltOgqbYefTqPEMyAL8giBeLmxwqQtxX1Mo+exN0LnNw72KgqSaQIkIJ0yYNP3iQyvpXf5EkYLvGXpRFJUgp3OglPYuedaL2dtw3cZ5UwEnfKo01pGRlQLxLoCfkfaxUGMy71TqQCp//tx4vUIhlQcZg8WitRkOSxxLrAlWJlJhTI6QwdFYCHDKL8gEZSSxaHNrLZGOsTgym2GtQam7s9LfSXmv1gAftPKTsFneqBy2xtkHPP6E5Z0BhHevwXsJqtxt4/NTAT/fYhnNerDWejZ5CO4afADH2sy7lwoR+r4MzGcFUuOcRShdjiven8YgXGnzsO+cbxbgdrw/7fG/1THgg1nebNR4N0aVv0xlZG9CYHw5R7UK1WoBABQaZH7NZ20x51rvDhtc2K14M2Bw//n+styr96r/v9He0d3xS/gO7IOKCub5QeBm39q0AK5cMNKSIYCDD+pKB85YH1TWElHqFvr1lwpreBeCt8VY7tevnv0mEURKlk7WBYpj8ICkEgF8fLMMgpG58OA+u9yb4jNWwO8BKtYDeTVVZXryCHJyMTg5exdiaQM5pwjQCVHGnDyRwZXKrxa8vIYLgF4JSgW4vaTF7a3TJW4kn9cHwgqtP+vCd4SHIQttybwADqX0WUqEfUEAVvdr9e2BmuV2Y1+7hXsbqrYvVf0QpmqRFUKosisuNrxw0PKpbP/iC29QCmZiwIvD/mO/LNnovd0HGo7U6W7Fjfz/7ZZ3lGe0u7vLxYsXmZub4/HHHyeKIv7oj/6ofP/VV1/l6tWrPPXUU2/72G8Gtr1dxtRBYO/NvnfYd95Oudvn75bqPAoyHXwgRr93t2s47LXRYxS/vxkwV7D1+v0+vV6PwWCAtXafpmMBYB0EBw+r65uVg/V2zjusFtqCt27d4tq1a1y5coUbN26wsbGBMYZGo8Hs7CxHjx4t04ibzeY+5+bDzvNel30de+Qe38FCCCnJhVNxvV4v3ZQrlQrgDWHyPD/UwOX9Kj/NMUAKEFphRSGyLxgyYD1bY3l4g4tbr/Pnrz3Df/yLP+X7L7zErbVthFNMdGo8cP9xHj33APcfPc3R5hHGxSSJaRK7NhE1b1YhIdIgtXc7tBgyMq/h5zxgJCPt03BNjrSgXPD/UhF5MEFIRU5PdlnPVri1fY2JiXFmmvOMqWnqto2y3jjFKYdRBikdkRNE6EClN+jIYUnJTU7mcoISHj6htzCuEDgb/FKtd9myzrPjhPDudlpGCCGx1vjdpiMI85qQjuudeH1arI/uRSJGCI1DI1xCpzLNRG2WmAqxjNBKYZ0hz70mTF6K94II/p1RFIcFiPMaeILg3uh8upzz6QGRirxZhvSuwpnNvFMpPo3Dp0JLnFNgPUtPK+UXS8Ii8NojWIsWPjLrQTXjU0CCu533/AMnC59bv/jwdbGk6RCpZCn2ba2vn5essGgliQpXe2vJ09QvCp0lNzk60SRRjHReELmcqAXkxoT4qkKEulpnINyDock888lBpBQ4S55lOGeJlCTSIb1C+fR1Yywi1Ns7GHqHVeEKoXaBcZ49aYOrq3EZBAMKn2ZsfZrzu1x+mv3/3SyHzn2HTVMHQ7k/6bHfhXLn6P7WznHYnPNu1eDNzveel5/yae/WAgfXbCXLwdMOwgYn9D3hNzy5y4ORTdi8SO8C74Qfxy02jH93nvit3dP3Zz3wfo0BH+Rw/PtXtzd7Bt4nMP19OevI+d2IQZJ/pWyKvW13wQfzAI8SEAnQwhJLRyQtCINUBh2cChzBJEccuMYwDuxRxQ6bWD6Y9+rtlvey/x/cK47+XrCnR/8BgVnm1+0Wzy60I/eruPOKwkBO7IFPQu5p/wmBwae1WglWQyYsmXSkypEp5x1lcQWCvMfckt5Gy4Z1Osqvo/cx4qXwwKRwe8+Pv7hSSu2NMu4OyyQTAeALuwYI1xhbR9VCJbck1uspRs6vp2Ww23Yy1CnMVy60n7MgrEMYh3I+HViFFpbW+TVv6G9WOPLQRkU7pRpS5f9lCoZYUhyZcOTSYgRkznnWJoHQIMMezdm9NnWBvetK+DHcX58xlQtHLv35jZ959+beom8eeKZGn6XiPf8i+0Bk4fxIcVeVy4LpN3K8chQo7uHIsYtrOOxY+4HeAFR6lNKf/y73ft95xd6/t1reFnPw7//9v8/P//zPc+zYMZaWlviH//AfopTi61//Ou12m7/xN/4Gv/Zrv8b4+DitVou/83f+Dk899dRP5lD0FsubMdHejeMf9vvdPvdWQM0PQhkFIA+y9XZ3d0sNPGMMSZLQarVKY49Co/Dtalgddu2j4GUBTO7s7JRpxNeuXePatWusrKzQ7XaJ45jp6Wnm5+c5evQoCwsLzMzM7NMXfKN79k43Te/0/t3teRViT/uxMItpNBr0+312d3cZDAZ3ZUO+l+W9HANEbsClSGXIRcq22OHmYJ2XLr/GC6+9wrWbS9xaW+H22ipSWBZmxzn16GnuOXmaMydOM9WaYqIyQ0N2iGyMJkYKhSXFigxrMxAaZOL17XJIYo3B+BQR59AohlmXOFKkWeaNKFQCQjMQKQO1xTYbXFp7HTBM1hcYr8wyqaepmAQtfaQsNzmRinDOa3niwFlLJixKSzDW6/mpCmlwqs3TjCjy+nfGeNc8LSNMnoOQREr56J5MvcmQUOR2GGRCwsRpQsqFMAEy84wVLQUmT/20rmJP6xcCKRPqapyaaJAQ4/IUpCtZe7n106wNYtxSxWXkqkh3tc54xh2QZRnWWOqVGg6LscYDl4BQskwDwAbNwuAsaSQMBylDmyOVoJLEYZHiATChwAjnzWFEaCOXowKIJqUE4zBZ6s1QkwrGDhFeSMVr9pm8nEy11j6NWEb4DBGLy3P/OQkoQV5cl7Eoq0GCsbkHkUMEUEqByS1aacgdWilykaE81ZLUZPi0CoVzAmcznMmIosgDsMaFGdwFB+QcKVzQQwxAoQgJ486SpSlaScrkSufbJBegI+3TjqVAlSIy76x8ENcAP3E5dCX2ntfCn/YtzSvvvHJFHP/DVA4L9O0tsN/ed9/u9Y/apd15rP2L/FF3Zv9S2FziwcKCcWCEY89DWCBsMKszBXP97nW9m3zJe7mu/KCMAW92xe/ns/6Xr6e+s/p8YO6VGO1d4aV9nW7/dl+IkFIY/i4yEPx7o9k7o7U/AEIeCo3+NK/2p9ua72X/39OC3u8lcND0sSglY4sDQAx+TFYFj89HcvYBTQWr0OfF+jcKVqAHnWw5xgvlRVyEA6wlGmFz+TVomKcCC1GEs+1LZR197Iq9uPDZO/sgJ+EBocOY8gev/TBCUSGBUrDxBA7p/NUU12hDo1hAyaKuIQgd2gf26myd18fDWN8npPCajaG/2IC9KQKDMACGhf6dLBx3nQf8yjaHoAsZrmmkJYTb66vCFam3e/OuC01VzNlFz5OMaEIfIHyNmqIeRnQinKPUND7kHhy8F17WZ+88+1h/Aax9o737YdjM3YhubwQW77uAPST0ruc9WN4WOHj9+nW+/vWvs7a2xtTUFJ/85Cf53ve+x9TUFAD/+B//Y6SUfO1rX2M4HPKVr3yF3/zN33w7pyjLWwXl3o33f5Jz/jSPcdh3f5JjvdHDdPC1NE1Lbbtut8twOERKWbLYGo0GtVrtDmH7N6vXwcHqsM8XoGCv19sHCl69epWVlRV2dnYAGB8fZ2FhgaNHj7K4uLjPdKRwXn6zer3X4Oxh53vDzQ57hjZRFBHHMdVqlcFggDHmUAD0vSzv5RgwlF2c6JHSZ3O4yY3uKn/27A/4/nMvcPX6EsY68kzxwNljPPbg/Tx57l7Gqw0mqjNEqkHkqkSuQUU0AYPJDSiHJ4R5N1pjHcLlSBUjnNcZ8cCd36wJZ4gjhRCGOIrIrSUXKTkZXbXFreFVljavEcUxc61FOmKCmh2jYhIqQgSmiAG846+zijhOyFyGxevyGTwTT0nJIE0xJkfHCiLlXYutB6WQ4GxeTjKZNeTO+TR0FFk2RCpBbrwGTqwiz1QbDokrMU75dFgtI6wxXjPEOHqDLlESI6KIzKZUhNdjNHkf4XKfsqxjcIrcWFSkkYHpl5ti2VMAWn7Ta6zBAZUoQSVej2uQDqjoBK0UqcnC4srrtighGaQDnHJhQSKoJjHOalKTkedhAtcKIb1LcpoPsSYP5icWhyE3+LQ86cFXiUIqSZZlXhfMGb9IVN7IxBivVSiBzBocppxArTHoOMISXJfximAqlgjnynRpqSTCGULuIE7K0iEtHeREscS5nCzPcUKgZRIcjwXCWSIFxqRBd9EbjGRpjo4ILGjrtQ+t35BESpNmQ6QQVCuVkvFojU+VjuMYKRW5zXHOoaQu2/Sdlvey/7+b5ac5Xn5QAn5FecMg5pt+++1vLN+P6/+J12fv0vn3lvuHHD3g9AVAGLax4W8/wbgw9hVsJf+JQmzK3nHow6/3/QGQPhhjwJtf+/vfK++s41u/Y+9/7feXd1Kf9/9eiRC8e2P23h6sdNir/vcCxAjQRBmjECPA4yg8dbdz/TTLT/c872n/F3eOfW+0pzyoI7dvb+VRmXBcv5rb90QIv2Zz4db64dpL6uzdaDWKXAEOZcU+gxQRUKrC/ESEn6PM1XIqYK9OI1fxhtcxes2j5qx3I+uMmnWVM5cQFHY6ruga4k4mnBytZ9GEYvSlA2+OvjIyHRbsyJIhJ8oe5NnyI4cpWI4C9kBcF45c3oo9jd3DepmjMFQ5pJ4HP/9mGMbdXr8LyUcIUbipAPvvy76wwSFA7qgnwjvJXC2PAYcPcW/l++59ywc5vGxvb9Nut9na2qLVar3f1flLUe6GNBcOxIW+4M7ODjs7O2RZRpIk1Ov1fRqDBbJ+sLzRg3uYZsIoKl6Agpubm6ysrHDlyhWuXLnCzZs32d7exjlHs9lkdnaWxcVFjh49ytzcHOPj4yUoeFi9PmgbtrdS7nafrLVlOnGRzv12B4wPU78q6vofl//PmFrKhWuv89qlS1y6vsRrl66QGahWYo4uTHHq6AkevfdhHly8j3HdoS6qCCKU1ZjMoVQMOJTyLK9YReTGIKQmtRKTpdTiCCUFubEh3TgiNxbrUqT0aWBpalGqApGlyyZr9jY3dq/S66/TSpostk5QNy3aehppvWaeUjm5sxgkxkAsNYlUWOtACobZwFPcVYSQCucy8kGXRMdoHZM7H41TLifLMwweCIykwlhLZr2jRqwkxuTBadd4IMg5bJ6jpHdbc8pP6rmzKBTC+HRkrWIckoHNQUsiHRFZhxsOcfRRkcCRkBnpgTXtZ/VIKrACZ/1iyZJj8xyhBELt6a3YEH3M84wkikl0QmYy/3rhtO18ZFFLD+plWebPoVWIFCpy60EuD/jhQTolA3PPa0L69HOf9iuQPh0Z/93MWKQqIsHBxMQ5Eh1jcoOSijz3yjIFyCm98wnC2QDmeX0YJ6RP9pY+xXcwGFCpVH1qr9SYHKQTRFL747kcJ3P6uU9lFiry7EMEmJwo0kjhHYhNnkIA8pRS5HnumX9SYpxBiYTM5TjrAU0RmJpSBV1CIT0Ymns2orEuMBslW9tdjo//3Ad+DCj6/61/f4FWvXnH++8PJPL2yvtXx7ud+f2p0V/me/VGC2fpwnZQFEwGtydGPpLb48e3PYCwTIw6aLf4Vou8+5Vsd3eY/rl7PvD9H/bGgNe3Nml+wOv6/pZ32sM+DD303SqH9Slx6Ft7yZijQF8hHSDZAwfF6JcOHKj4veAyjYI3P+mI887u1c72NifbnQ/8GFD0//+0uUaj2WK07Ub1XuGt7/UE+JTX4jgleLIfYBL7Pu/XmiUQVaBaoRRpysCe/l35Zf+MFAYZLoBbPgVX+GByCQLiU3nD8Q7LcDu4l76bVNrddPNGGYzFo1sod49evSxqbR0qAIauaK9CPqN4FIUb/TWcdORocq9tix5UfL64oyUjsPjcKKi4H03bO3fR5tKnO+9jiDLSa90eJFumh49e7RsAz4d95m734NDPvUF3PSz997D6HFbuJk136Gf3QdLQ3d7mS52xt9T/35Ehyf+/fDjK3dh6aZrinKPX67GxscHOzg7GGKIootFo0Gq1qNVqJTA4ery3iymPdgRjTPlva2uLlZUVLl++zMWLF7ly5Qqbm5sAtFotZmZmSrbg/Pw8ExMTNBoN4jjepy14EGn/MJa7dfZCj3D09Q/rNb6d8o1v/QE3d25xY3mJXm8XqTQLU5Mcmz/CPUePcuroCRbGjjBZn6YpWsQkYAQKhRKKOIxuhhysIVERBhBSY6wgEglIR56nWKVxKCIVk6VBvw3hP+scIlakpOy6DW5nN1jeuYqSMNuYZbY2T1uOI6zym0LnvNEEllxYlCjSO2GY9zEOtIgw+PTiWMQYkwPGu9HqiExIcqzXO3SSJKp6ty6X41MgLMbmaC0wxhtmOMBYgctzpCCATn4S8rpzXvBeemM14jjGAYNBDx1XkFqjgoagUhqlqlhhMNahhA2LJInJLWiNVJoszN4SBTo4kgsXnIwlgWOIinxKdx4YhS5ELveifwaJxBgPbkrp3Yi1UmQmRSqNEN4ZMDWGWOmQbuJNXKyw5LnBSYGwEgQY4zfZ1gkI444QzvcnrSEILyvlkVNnfVjTs6MFmbUhXdnrPVrn04WNc5g8xwU1Rym9KYlSkizPsRaUihimA7RUGDcgiiPiKAIhcUFDUimJUB6U1Nq7xEkZ+Qnd7Qmf+9QLn/aSmgFaRt4JGm98IqTy46l1SOW1KLX2IDiBoeRwZXT7w14OXsVPe3v7Vo5/8DPvX0vf7czvT40+zPfqsA0jb/La3kbo4E6pYCMJ9ngRxYEchTLqCDXiJyp3++Zfjp7/ZuV/S0BXUd7p9b5f7fVBuFcHgb294krYZAQALM0V9sEPd375jl4o73zpJ7r097u93vtSrA8FJRHLv37IPuiNQBwIINQogFak2xZnKnFi54fjAECqkb1vkYKK2A/w3FHn8H9XmpX4oJCXFRR3OtUWxyl/7Af6Rs8l2HPylYfUYd81Cr/2pQT6/El9lrA3FtmvQ+dGrm8vsFUyb0MzHTT8KCtWApDhJeuCsaR/rwD4nABb1Odg33MFmHrgBOX98X8U+oHlHqJoK0fpKO3x2P0A2UH84jBQ9WB5S+m7d7x552cO6mSOArsH33s79XjLn3kbS4v/X3v3FiNFte4B/L/WquqemzMDCowg6Ox9ONvjwXCMF0J8lIjGGG8vh/BgjAlR4cFLfPBBecRo4oOG6Jv6pMYHNBI1IYK4jYiKuFVQwtlRMcplC3ucYS7dVbW+87CqqqvnxsxQTFfT/18y4kxXV61aXeurqq9XrcXkYItJDsJkRmJrbTrG4NjYGNrb29PEYFdXF3zfnzQAzzY5Nb4rdBiGqFQqOHXqFI4ePYrvv/8eP/74I06fPo1yuZwmBFeuXIkrr7wSfX196O7uTnsKZnsLXuyJsmzwSH4Hpv7W4mKx5+9fIfRCGN/g8iV9+K+//gWrV/4NK5f9BZd2LEC76USXuRQSGZR0W3zCtRCl3IyRRgM2cuNiaA+hywwiEoFRPqrVURij4osODUQaojWgXa8yZTxUlSCyAUajsxjWf+Lk6K84awfQUSqhr+Ny9MoSdNlulFUZVR0iiMeXi6yGGI2qUvAkhK/i8eV0/G20RjxuCaAkgBFxiUkDVCFxYtAl5CKr0l54npeMBaLi2XDdhYSGRsVaKO2hrdyGMAohyiIUGz8CHM9iq3V6MrVw37y1tbtZ4sQGUHBJxEhpiLhkHeDGfCkZl9gyYoDIPTJtdQgRBYEGlHaDB8M9Jmy0RhBU4cYmdL0aoTSgFWxkYeIkm9LuBB9EVRht4JsyADcAMWChtIZFCKUstHFjeFkl8LWHSjwZC5RLphmloI1Lxko8kYevPFiE8IwPIH6sGBpKRaiEgestalycs/FMYaLi2ZhFQRkvTsi6Cw+J3JiG1rr98kq+S1RaHV9QAiIhPN/NSKeipLequ8jUENd71ABKuQlJXA/uAEqZuLenu0DyPLcvYTw7njElVKpVlH3jBmyOJ3kRBSTXsBInMiPregyGUYgoqo2D0oymu5WcbTJotpIL1enWMd1rRbgNnk8X1WeV3qXMfPvJ/6TjFaYTEiRbqN1sJn1FknRi7YHGWV5fZd9yrlxF0zqfT3aydcz0aMujBU+VRJr9ei9UPJn7eueyb43+rKZqJKr+d8n29jOof58gzbZMsb7a1wBq/JrPy/l9Vs1DqVr9pWmhSe51ZtIxJB3LbkJiLklCohZItcQ9vMc9Dqyyn6IFRMHE70nKaZNrQBX3GsxsTwBEClCSKYGqbTZNJE5VF3Gyry4Bl7mnzy7nnmyR+DB1Xw67K2qpHbqQNImWSCZrcdfDtdJkt+nqPHtUZyozM1KvxAsmw12nfXHThHucE0hTfrU3Zk+92aPWPdacJHallqiM3xzPFQSbFN1lUadNvE032ctkpu0xmFGX1M08NTnbbU76mPwU2564zswnN4sZSZgcbGHJQZTMROx5Hrq6utDb24vOzk74vj/rSUdmu/2kV1xnZ2f6qHBvby/6+/uxcuVKXHXVVVi0aFGaqDTGTLm+iy1BVrAn/ufdyHAVi67sQv9/LsN//20lbvyP/8EVHUvRKZegDZ1QoUab6XQzh8UzfHnw0llZA+uSfNoziCQZ18lCRW4Mv5KyboIH30c1DOEpgVYeRCL4no9QIkRRiEhXMSCncWzw/zA4cgZLL12GZe1XoBsL0Rb2QEcGkVhUVAgB0GkUjFWwFigbgzAYg/E64rOawCiXiNPx4B2i3eVHJXSTVfgaMPHMtkq5E7xn3JhzUeDGkdNlH0Z50NAucahcoimyEUJrYQFUgyo84x5v1Vq5sfjEXbCKuJnVAAuxEXxl4ClAJIIYA2vceIwiCloEIiEAH0ZpwFhAQozZCGE8UQngtpM+jiNAaOPEn6qNeeIpEy8RxYlHwNMeotCN3xeFIUS7zwyi4vEWTToen/tW0Y2VKMr1DjTGTWLiGQ/auIlk3JcRbh+MBnzPz0yUEiEZXtrzDMS6Hn/QgFYmTQwqpTAWVOBrD1EUwOh4vBnttudrjVDEPZ7tuYletAJsGMH4LjlqVeSWtwCse0AjigKUSj4ggshaGFOGFQWjfRjjuwSl0rBRCOO5iUt8oxEqNzS61j5CKygZD1AaQWShjHbfSmuNIAphPB0nvQXG+PA8hbA6Ok8tN3/nc1uYx1lhqnXM5CbtYkwcnk8CcLr3F/WzGp86mHlJFCDZxxPjcZ3SU7ub0VHqnslKXm/GI+NCyvvoGJfoOa8jejbbPb/1XqijYu7rnY+WnOdnpepvklWS/rFI5quduMbk5jr+/zThn31keGKCMEkw5S3fz6q4avdAtj55h4mJkmT58YnC+nSeij/vTOopydFlE1KZnnF1W0h7+CXJ32Rd8REQP+2hREFnZsawtfBf96grVLJKqT/HJEnAzD5OuB8USb9wzu7vZHWBuMME4l58NrM1ndmt+pLUXlDxLqe93SDpaU3S7Gr8fpV0uMjsT7zm5NyXPOI7yRziaaI2+S47OwZkkmxMxiBUStUm/8C4jyd7HEyXNJ7Dffa0n8sU65/sce/x6xyfQEz+nm5z/LoxPmE7yXozKVw9i/ZfuORgsnODg4MNLsnFYaqxC8IwxOjoaPpvtVpFFEUYHR1FqVQCgDQ5mGfSLRlnMAzDdKzDarUKAGhvb0//TR6jrVQqGBkZgdZ6yrH25joGRdGda/yD2UjaUzMkHJMyGmlDm++jo+yho1yCjEWwUDDoQrXqAVAIRkZgdYhQBfCUDxsJlLUwng9YjSCswBgNaM/NCKwjaKtgwyG0eT5CBQQVlzhCGOLP4N/wjIanPZT8MgargxguVfB78Bt++dcxtJfaEI5o2KCEKnyEYQSFCKPBWYzqEKWSh2pUQZtug7UCpSNEEqASTw6hlECb+JJDSq53l+cevVUCGAEkDNwkJsYgUhq24mY6Np4Xt10LOxa4R3+hIWGEIKpCPANlFIwFgiiE1h6qBjAI4YlKx9mzAohRiHQ8GxkEJgJKSkGpABURBMpHFFh4YuHrEDAGQVSB1gJfuxN8oIAhGwDWoN10QokgDCowGvCMdkk9ieILINdjM5LR+IRuIUEI3y8BUnGPSUQWnnEXL5GN0i8mosi6iT4ige977jEPAYbCEXi6BKUFoa0isq6XIbS7IVfikpRtXhsCsbA2rlflZhcOggoADa19ACod0zMMqoDWMH4ZUWgx8se/0dHR5mb8TSmXA4175Pm+j9AG0MrV85hvEARVtJU6EcK6p8EjQbnkIwrGMKrd7OOhCGykABiEQYC29vZ0yIXRkWF0XdLlHtFWCsYzCEUhrEbwfB8qErT5PgIbAkowNjaCUpsPaPdofTWqxhdIClAaleFKXfsqqqR8QyNDyV8w85vD+Td5aYpd5gun2Ps9m89qQn5OZrMnSVJgknN4ZkZUCxePRNk4QZh8iTO7pEJaVqUmvi0ud9Keit7+gUwMGBxE0Y6h/DXr/k1W7iLvSyb9MiE5mIw3nHQ+iH8Xr3ZrnU1OKQEQojYcgMm8N9mWwPU8rJ/mQWYXSHLiPpehJrkPSMo3PDiY6fGFtP6n6j04Pjmo42tFiJuybvz9o0icuUvfk/wn7uWmajMWu+FekkRU3DswM12JAqCt1MbPTnveoTaJR/JvkuDKliV+3W184n17/WPQE03VMy79e/KjJJ13WWV+kvS2TfdRpQk6k37RlXn0NemaF59zsl9vpdtO/yDJGbXuXJUkB7OJ0WxPxvokavw5ZZK57ru3WnIwPf+NL8Q56iZrqnkSppPXU3yTJQeTvyeJ4OxxCFWb5GX8sZ+WI6qVcXho5u2/cMnBZGba5cuXN7gkRBefoaEh9PT0NLoY0zp9+jQA4J+vn8U/cRZ/x78A/KOxhSK6SBQ9BiTXAH/93+saXBKii0/R2z9QuwZYvXxFg0tCdPEpegxIrgHuWtHf4JIQXXxm0v4LN1uxtRZHjhzBNddcg19//bXQMyo1g8HBQSxfvpx1mZNmrU8RwdDQEJYuXXpBHxXPw8DAABYsWIBjx44V+gKmWTTrMVtEzVyXzRIDeA2Qr2Y+ZouoWeuzWdo/wGuAvDXrMVtEzVyXzRIDeA2Qr2Y+ZouoWetzNu2/cD0HtdZYtmwZADdbbTNVfJGxLvPVjPXZLBfZSdDq6elpujousmY8ZouqWeuyGWIArwEuDNZlvpqxPpuh/QO8BrhQmvGYLapmrctmiAG8BrgwWJf5asb6nGn7L+5XB0RERERERERERHRBMTlIRERERERERETUogqZHCyXy9i6dSvK5XKji9L0WJf5Yn1eeKzjfLE+88O6nB+s5/ywLvPF+rzwWMf5Yn3mh3U5P1jP+WFd5qsV6rNwE5IQERERERERERHR/Chkz0EiIiIiIiIiIiK68JgcJCIiIiIiIiIialFMDhIREREREREREbUoJgeJiIiIiIiIiIhaFJODRERERERERERELapwycHt27fjqquuQltbG9asWYMvvvii0UUqpE8++QR33nknli5dCqUU3nnnnbrXRQTPPPMMLr/8crS3t2PdunU4evRo3TJnzpzBxo0b0d3djd7eXjz44IM4e/bsPO5FMWzbtg033ngjLrnkEixevBh33303jhw5UrfM2NgYNm/ejEsvvRRdXV247777cPLkybpljh07hjvuuAMdHR1YvHgxnnzySYRhOJ+7clFgDDg3tv/8sP0XC9v/zDAG5IcxoFgYA86N7T8/bP/FwvY/M4wB+WEMqFeo5OBbb72Fxx9/HFu3bsXXX3+N1atXY/369Th16lSji1Y4w8PDWL16NbZv3z7p68899xxefPFFvPLKK9i/fz86Ozuxfv16jI2Npcts3LgRhw4dwq5du7Bz50588skn2LRp03ztQmHs3bsXmzdvxueff45du3YhCALceuutGB4eTpd57LHH8N577+Htt9/G3r178fvvv+Pee+9NX4+iCHfccQeq1So+++wzvP7663jttdfwzDPPNGKXmhZjwMyw/eeH7b842P5njjEgP4wBxcEYMDNs//lh+y8Otv+ZYwzID2PAOFIgN910k2zevDn9PYoiWbp0qWzbtq2BpSo+ALJjx470d2ut9PX1yfPPP5/+bWBgQMrlsrzxxhsiInL48GEBIF9++WW6zAcffCBKKfntt9/mrexFdOrUKQEge/fuFRFXd77vy9tvv50u88MPPwgA2bdvn4iIvP/++6K1lhMnTqTLvPzyy9Ld3S2VSmV+d6CJMQbMHtt/vtj+G4ftf24YA/LFGNA4jAGzx/afL7b/xmH7nxvGgHy1egwoTM/BarWKAwcOYN26denftNZYt24d9u3b18CSNZ+ffvoJJ06cqKvLnp4erFmzJq3Lffv2obe3FzfccEO6zLp166C1xv79++e9zEXy559/AgAWLlwIADhw4ACCIKirz6uvvhorVqyoq89rr70WS5YsSZdZv349BgcHcejQoXksffNiDMgH2//5YftvDLb//DAGnB/GgMZgDMgH2//5YftvDLb//DAGnJ9WjwGFSQ7+8ccfiKKorlIBYMmSJThx4kSDStWckvqari5PnDiBxYsX173ueR4WLlzY0vVtrcWjjz6Km2++GatWrQLg6qpUKqG3t7du2fH1OVl9J6/RuTEG5IPtf+7Y/huH7T8/jAFzxxjQOIwB+WD7nzu2/8Zh+88PY8DcMQYAXqMLQFQkmzdvxvfff49PP/200UUhonnG9k/U2hgDiFoX2z9Ra2MMKFDPwcsuuwzGmAkzv5w8eRJ9fX0NKlVzSuprurrs6+ubMMBrGIY4c+ZMy9b3li1bsHPnTuzZswdXXHFF+ve+vj5Uq1UMDAzULT++Pier7+Q1OjfGgHyw/c8N239jsf3nhzFgbhgDGosxIB9s/3PD9t9YbP/5YQyYG8YApzDJwVKphOuvvx4fffRR+jdrLT766COsXbu2gSVrPv39/ejr66ury8HBQezfvz+ty7Vr12JgYAAHDhxIl9m9ezestVizZs28l7mRRARbtmzBjh07sHv3bvT399e9fv3118P3/br6PHLkCI4dO1ZXn999911doN21axe6u7txzTXXzM+ONDnGgHyw/c8O238xsP3nhzFgdhgDioExIB9s/7PD9l8MbP/5YQyYHcaAcRo6Hco4b775ppTLZXnttdfk8OHDsmnTJunt7a2b+YWcoaEhOXjwoBw8eFAAyAsvvCAHDx6UX375RUREnn32Went7ZV3331Xvv32W7nrrrukv79fRkdH03Xcdtttct1118n+/fvl008/lZUrV8qGDRsatUsN8/DDD0tPT498/PHHcvz48fRnZGQkXeahhx6SFStWyO7du+Wrr76StWvXytq1a9PXwzCUVatWya233irffPONfPjhh7Jo0SJ56qmnGrFLTYsxYGbY/vPD9l8cbP8zxxiQH8aA4mAMmBm2//yw/RcH2//MMQbkhzGgXqGSgyIiL730kqxYsUJKpZLcdNNN8vnnnze6SIW0Z88eATDh5/777xcRN435008/LUuWLJFyuSy33HKLHDlypG4dp0+flg0bNkhXV5d0d3fLAw88IENDQw3Ym8aarB4ByKuvvpouMzo6Ko888ogsWLBAOjo65J577pHjx4/Xrefnn3+W22+/Xdrb2+Wyyy6TJ554QoIgmOe9aX6MAefG9p8ftv9iYfufGcaA/DAGFAtjwLmx/eeH7b9Y2P5nhjEgP4wB9ZSISD59EImIiIiIiIiIiKiZFGbMQSIiIiIiIiIiIppfTA4SERERERERERG1KCYHiYiIiIiIiIiIWhSTg0RERERERERERC2KyUEiIiIiIiIiIqIWxeQgERERERERERFRi2JykIiIiIiIiIiIqEUxOUhERERERERERNSimBwkIiIiIiIiIiJqUUwOEhERERERERERtSgmB4mIiIiIiIiIiFrU/wO4fMzLhK62fwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(3, 5, figsize=(16, 5.5))\n", + "for i in range(15):\n", + " ax = axs[i // 5][i % 5]\n", + " random_index = np.random.randint(0, len(test_captchas_dataset))\n", + " test_image = test_captchas_dataset.__getitem__(random_index)['image']\n", + " ax.imshow(test_image.permute(1, 2, 0))\n", + " ax.grid(False)\n", + " predictions = best_model(test_image.unsqueeze(0).to(device)).permute(1, 0, 2).argmax(-1)\n", + " text = tokenizer.decode(predictions, drop_special=True, to_text=True)\n", + " ax.set_title(f'{random_index} | \"{text}\"', fontsize=10)\n", + "fig.suptitle('Test captcha predictions')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/experiment_info.json b/experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/experiment_info.json new file mode 100644 index 0000000..66f8488 --- /dev/null +++ b/experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 99, + "train_loss": 0.20460229263275484, + "eval_loss": 0.22667 + }, + "history": { + "train": [ + 7.474794321422335, + 4.601671568955047, + 4.482716554327856, + 4.407654206964034, + 4.3926886968974825, + 4.383409385439716, + 4.3643438242658785, + 4.351827054084102, + 4.327183475977258, + 4.288188101370124, + 4.253056737441051, + 4.237245583836036, + 4.21497398086741, + 4.192919181872018, + 4.151153878320621, + 4.060844231255447, + 3.969439503512805, + 3.40532013434398, + 2.736350201353242, + 2.22719536853742, + 1.8379024131388604, + 1.5868311954450003, + 1.3268549925164332, + 1.1804814663114427, + 1.0782012494304511, + 0.96314545749109, + 0.8742181915271131, + 0.8160303212419341, + 0.7613078876386715, + 0.6958911320831203, + 0.6655475225629686, + 0.6185498237609863, + 0.5898696904695486, + 0.5567171335974826, + 0.5388461951213547, + 0.5185936478119862, + 0.494251296112809, + 0.48876763408697105, + 0.4858396004272413, + 0.4552773640880102, + 0.4359423936922339, + 0.4229008147988138, + 0.4196196322954154, + 0.41002785480475124, + 0.388508718602265, + 0.3894110869003248, + 0.3760479224633567, + 0.3761454537699494, + 0.35906109421313565, + 0.3515298596665829, + 0.3504030772402317, + 0.348206295620037, + 0.33598872528800483, + 0.33573182398759865, + 0.3274257752714278, + 0.31507090243357644, + 0.3082205647531944, + 0.3046629768383654, + 0.3046883503092995, + 0.30675201268890234, + 0.2912692327665377, + 0.2862265879594827, + 0.2999667408345621, + 0.2881554548121706, + 0.28957333689249015, + 0.2706757129370412, + 0.28019605331783054, + 0.28175595025473005, + 0.28264813370342495, + 0.26669829423669017, + 0.26676003144511695, + 0.25708295310599893, + 0.2691444132146956, + 0.25465964101537875, + 0.25381804719755924, + 0.2537935504430457, + 0.25597068384478366, + 0.2472354068031794, + 0.2406197392110583, + 0.24760646495638014, + 0.2428064272750782, + 0.23173385933984683, + 0.2284139649400228, + 0.22771800394299663, + 0.24517416803142691, + 0.23691140134123306, + 0.25361957712264, + 0.23134631597543065, + 0.2205837278426448, + 0.22987172818636592, + 0.2239124786250199, + 0.21986827141121973, + 0.22484416750412953, + 0.2204116718678535, + 0.21964902006372622, + 0.21922560705791547, + 0.2114865249848064, + 0.2108864010889319, + 0.20367810262154928, + 0.20460229263275484 + ], + "eval": [ + 4.62078, + 4.54395, + 4.42116, + 4.40495, + 4.40167, + 4.37782, + 4.35313, + 4.3496, + 4.30549, + 4.27316, + 4.28197, + 4.23966, + 4.21443, + 4.17726, + 4.11107, + 4.01558, + 3.73457, + 3.23988, + 2.57004, + 1.99632, + 1.76847, + 1.46295, + 1.21081, + 1.1731, + 0.97638, + 0.88813, + 0.87675, + 0.76712, + 0.72723, + 0.67653, + 0.63932, + 0.66086, + 0.59021, + 0.53745, + 0.5251, + 0.52956, + 0.51291, + 0.49835, + 0.47941, + 0.44904, + 0.44594, + 0.42173, + 0.42981, + 0.41637, + 0.41631, + 0.39542, + 0.4144, + 0.40706, + 0.37007, + 0.36168, + 0.38227, + 0.34657, + 0.36647, + 0.36619, + 0.34927, + 0.33928, + 0.33536, + 0.33481, + 0.31706, + 0.3353, + 0.31337, + 0.30883, + 0.31053, + 0.32962, + 0.29774, + 0.29235, + 0.2872, + 0.2878, + 0.30269, + 0.27265, + 0.30007, + 0.28004, + 0.27551, + 0.2679, + 0.25541, + 0.30045, + 0.27299, + 0.27866, + 0.27718, + 0.27015, + 0.26678, + 0.24985, + 0.25283, + 0.28619, + 0.26582, + 0.27605, + 0.25317, + 0.2408, + 0.26005, + 0.25337, + 0.26107, + 0.25116, + 0.23573, + 0.25207, + 0.24146, + 0.24163, + 0.22955, + 0.23934, + 0.22944, + 0.22667 + ] + }, + "architecture": "OCR_CARNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): SelfAttenBiLSTMImageDecoder(\n (norm): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (self_atten): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/tokenizer.pickle b/experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/tokenizer.pickle similarity index 100% rename from experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/tokenizer.pickle rename to experiments/cnn_v2_128_64seq_alstm_1h_2l_100e/tokenizer.pickle diff --git a/experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/experiment_info.json b/experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/experiment_info.json deleted file mode 100644 index 6ba732e..0000000 --- a/experiments/cnn_v2_128_64seq_alstm_2h_2l_100e/experiment_info.json +++ /dev/null @@ -1,180 +0,0 @@ -{ - "best_epoch": { - "number": 75, - "train_loss": 0.199158231385901, - "eval_loss": 0.18656 - }, - "history": { - "train": [ - 5.695687330221828, - 4.622447532943532, - 4.624046482617342, - 4.6237458941302725, - 4.616142544565322, - 4.463726586933378, - 4.4231264440319205, - 4.4156665983079355, - 4.395407809486872, - 4.371692204777198, - 4.318465130238593, - 4.255147294153141, - 4.203890323638916, - 4.106589546686487, - 3.8182993116258066, - 3.2649054949796654, - 2.3941221357900884, - 1.7351404307763787, - 1.3852954816214647, - 1.0486197599881812, - 0.8818656206130981, - 0.7431851059575624, - 0.6408727236940891, - 0.6398729874363428, - 0.5665971251982677, - 0.492572022389762, - 0.48083524537991873, - 0.43331150239027, - 0.44087585844571076, - 0.4259733282312562, - 0.3962343112577366, - 0.41639879723138445, - 0.36815771913226647, - 0.35090253851081754, - 0.32937524156479897, - 0.332817665006541, - 0.30900424435923374, - 0.3091733018054238, - 0.30527646481236326, - 0.30310596129562284, - 0.36226685156550587, - 0.307404586597334, - 0.300343856215477, - 0.2922435133140298, - 0.269517107477671, - 0.2858541025013863, - 0.2920907867860191, - 0.27139110750035395, - 0.24530418632151205, - 0.2350993135684653, - 0.23299382400663593, - 0.244954513598092, - 0.24069360577607457, - 0.2600733922629417, - 0.26258018292203733, - 0.24317597362059581, - 0.2792991637429105, - 0.24846799879134457, - 0.22071706305576277, - 0.2305944969382467, - 0.2206617505112781, - 0.24661761371395255, - 0.23668841093401366, - 0.22551126174534422, - 0.21612720021718665, - 0.27338691772539403, - 0.2514074171268487, - 0.20980115913892095, - 0.20934158431578287, - 0.19511742776707758, - 0.24607637109635752, - 0.23696271999727322, - 0.22937084564679786, - 0.25457652894001975, - 0.20766104550301273, - 0.199158231385901, - 0.22513199871099449, - 0.2370671265864674, - 0.2662787784503985, - 0.21301947364324256, - 0.19551872037634066, - 0.2712811752210689, - 0.24346983244147483 - ], - "eval": [ - 4.6288, - 4.63006, - 4.63472, - 4.63531, - 4.6268, - 4.43216, - 4.47325, - 4.41832, - 4.40295, - 4.36555, - 4.29559, - 4.22941, - 4.20437, - 4.08795, - 3.89258, - 2.99573, - 2.12719, - 1.72044, - 1.18657, - 1.09346, - 0.81269, - 0.69855, - 0.6512, - 0.63749, - 0.54979, - 0.48471, - 0.46712, - 0.45649, - 0.43907, - 0.39582, - 0.48894, - 0.381, - 0.3705, - 0.36359, - 0.32908, - 0.2957, - 0.31549, - 0.31437, - 0.30781, - 0.32369, - 0.33116, - 0.29976, - 0.30047, - 0.30112, - 0.28311, - 0.30747, - 0.27415, - 0.28959, - 0.25733, - 0.23915, - 0.24581, - 0.24465, - 0.25289, - 0.29171, - 0.26553, - 0.24863, - 0.27436, - 0.24335, - 0.23498, - 0.23583, - 0.23186, - 0.25395, - 0.21686, - 0.22707, - 0.23091, - 0.30117, - 0.21694, - 0.19875, - 0.20302, - 0.22691, - 0.24757, - 0.243, - 0.29536, - 0.19957, - 0.21838, - 0.18656, - 0.38184, - 0.21141, - 0.20857, - 0.19536, - 0.20437, - 0.30017, - 0.20045 - ] - }, - "architecture": "OCR_CARNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): SelfAttenBiLSTMImageDecoder(\n (norm): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (self_atten): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/experiment_info.json b/experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/experiment_info.json deleted file mode 100644 index 24e8b27..0000000 --- a/experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/experiment_info.json +++ /dev/null @@ -1,174 +0,0 @@ -{ - "best_epoch": { - "number": 77, - "train_loss": 0.1846152728871454, - "eval_loss": 0.1713 - }, - "history": { - "train": [ - 7.819197769406475, - 4.510398134400573, - 4.41275336470785, - 4.399229478232468, - 4.389810109440284, - 4.3809847047057335, - 4.374137962920757, - 4.36928911450543, - 4.345212163804453, - 4.299092685120015, - 4.290989024729669, - 4.259554790545113, - 4.234691396544251, - 4.205075752886036, - 4.152896862995775, - 4.065614000151429, - 3.7812128248094004, - 3.0764526898347877, - 2.4995459936842135, - 2.004783164096784, - 1.7365896973428847, - 1.4037555078916912, - 1.1674681494507608, - 1.0275429706030255, - 0.904001114489157, - 0.790484113783776, - 0.7002696764620044, - 0.6312588027006463, - 0.5800800198995615, - 0.5403968804999243, - 0.5172081404848944, - 0.47729214195963704, - 0.44194770274283013, - 0.4067611030385464, - 0.4068594069420537, - 0.38735135861589937, - 0.4831711506541771, - 0.378794867026655, - 0.34411325296269185, - 0.3266987359221977, - 0.30914146952991245, - 0.2953778465714636, - 0.29319301870050307, - 0.2887548159194898, - 0.27519626010067855, - 0.27037508333031135, - 0.2774227731212785, - 0.2739529449351226, - 0.25313518620744535, - 0.24076914881603628, - 0.2432456052378763, - 0.23546037134490436, - 0.2348004949243763, - 0.24226485909540443, - 0.24804305898237833, - 0.21797551837148546, - 0.2137219221154346, - 0.21679388609113573, - 0.20904024530060683, - 0.2031566407295722, - 0.2045465515384191, - 0.19736617332017875, - 0.19624964968313144, - 0.1987280519325522, - 0.18563088906716696, - 0.18307040348837647, - 0.18030698465395578, - 0.1836901248633107, - 0.17294188900084434, - 0.1792189701448513, - 0.18964402170120914, - 0.18907726150524767, - 0.1823226511478424, - 0.17980331352239923, - 0.1713859609599355, - 0.1670503635195237, - 0.17693939097697223, - 0.1846152728871454, - 0.16540620909838738, - 0.16555126416909544 - ], - "eval": [ - 4.60943, - 4.43251, - 4.40975, - 4.40015, - 4.39249, - 4.38242, - 4.37086, - 4.3684, - 4.31727, - 4.28168, - 4.27727, - 4.23558, - 4.21878, - 4.17445, - 4.10871, - 3.98296, - 3.55445, - 2.7232, - 2.31545, - 1.84204, - 1.54105, - 1.26371, - 1.06498, - 1.10112, - 0.84168, - 0.70911, - 0.64666, - 0.59916, - 0.5488, - 0.49318, - 0.49687, - 0.44066, - 0.41818, - 0.41994, - 0.37635, - 0.50741, - 0.38578, - 0.36131, - 0.33045, - 0.29251, - 0.29209, - 0.28171, - 0.27653, - 0.28489, - 0.25852, - 0.2797, - 0.28197, - 0.26072, - 0.23711, - 0.2467, - 0.24713, - 0.22801, - 0.22375, - 0.23463, - 0.21924, - 0.21311, - 0.21217, - 0.20976, - 0.20766, - 0.21477, - 0.20426, - 0.19378, - 0.19935, - 0.18524, - 0.18024, - 0.19066, - 0.19078, - 0.1856, - 0.18947, - 0.21452, - 0.18448, - 0.19636, - 0.19111, - 0.18524, - 0.17636, - 0.18208, - 0.19192, - 0.1713, - 0.18981, - 0.18233 - ] - }, - "architecture": "OCR_CARNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): SelfAttenBiLSTMImageDecoder(\n (norm): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (self_atten): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_bert_4h_3l_100e/experiment_info.json b/experiments/cnn_v2_128_64seq_bert_4h_3l_100e/experiment_info.json new file mode 100644 index 0000000..670ba41 --- /dev/null +++ b/experiments/cnn_v2_128_64seq_bert_4h_3l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 99, + "train_loss": 0.1264927929526643, + "eval_loss": 0.15154 + }, + "history": { + "train": [ + 5.449838831454893, + 4.441414772709714, + 4.411831113356579, + 4.408952586258514, + 4.398057816903802, + 4.368298325357558, + 4.2734429564657095, + 4.023315731483169, + 2.7486218968524208, + 1.4154208611838426, + 0.9815378543696825, + 0.7896169461781466, + 0.6812367763700364, + 0.607089296926426, + 0.5595107591604884, + 0.4922310211990453, + 0.45895396003240274, + 0.43332424759864807, + 0.41694816305667537, + 0.3991320110574553, + 0.37273154756690885, + 0.34468998203549206, + 0.34043759069865265, + 0.3223423606987241, + 0.31973600632782223, + 0.3130137618583969, + 0.28833753606186635, + 0.28408937552307223, + 0.28119556700127035, + 0.272535120007358, + 0.2727369649123542, + 0.2675096053111402, + 0.25288346466384354, + 0.2480784637641303, + 0.24800774511657184, + 0.23573550393309775, + 0.23406888997252984, + 0.22381411738033535, + 0.23300182498708555, + 0.23476420852202404, + 0.22752741450750374, + 0.21857949091663845, + 0.21828089861930172, + 0.21296419052383567, + 0.20501482382982592, + 0.20959422558168822, + 0.2022802052618582, + 0.21427061550224882, + 0.2081483708152288, + 0.19835608744923072, + 0.19483275145669526, + 0.1941113951085489, + 0.18741336785539797, + 0.1845598409447489, + 0.18531777983224845, + 0.18393019577370415, + 0.18086307920232603, + 0.18177639636435086, + 0.1801722364712365, + 0.18162163535628137, + 0.1781305829180947, + 0.16953250275382512, + 0.1675583933350406, + 0.16915555854764167, + 0.16627527509309067, + 0.2179070897871935, + 0.1742534492212006, + 0.15856472006704234, + 0.16279266406840917, + 0.16340424233599554, + 0.16513254106799258, + 0.15973430919119075, + 0.15826488210807874, + 0.16888974625853043, + 0.16329026118486742, + 0.15696367338488373, + 0.1564271108636373, + 0.15503420812796942, + 0.16006842161281198, + 0.14666039638126951, + 0.1467705190747599, + 0.14191980320441572, + 0.1400907517799848, + 0.1447131704491905, + 0.14700075370978705, + 0.14439250076118904, + 0.14937899497490895, + 0.15033244916909858, + 0.1431165694058696, + 0.1390854805896554, + 0.14337806714863716, + 0.1447210385452343, + 0.13989398232366465, + 0.13350010153990757, + 0.15242056906977786, + 0.15114240291752393, + 0.13842466954566254, + 0.13536152356787573, + 0.12807307066985324, + 0.1264927929526643 + ], + "eval": [ + 4.50876, + 4.42563, + 4.41354, + 4.41455, + 4.3968, + 4.31995, + 4.22104, + 3.67806, + 1.89829, + 1.20143, + 0.88309, + 0.75272, + 0.66186, + 0.55411, + 0.52424, + 0.48225, + 0.44945, + 0.44166, + 0.4136, + 0.39407, + 0.35395, + 0.37033, + 0.36042, + 0.32554, + 0.32811, + 0.32428, + 0.29888, + 0.28875, + 0.27976, + 0.28455, + 0.28461, + 0.26268, + 0.27714, + 0.25143, + 0.25733, + 0.26193, + 0.24257, + 0.24017, + 0.2591, + 0.23488, + 0.23488, + 0.24278, + 0.23338, + 0.22443, + 0.22239, + 0.20794, + 0.21721, + 0.23137, + 0.21954, + 0.20795, + 0.2138, + 0.20198, + 0.2172, + 0.20472, + 0.20697, + 0.19373, + 0.20207, + 0.21504, + 0.1946, + 0.1921, + 0.19734, + 0.19974, + 0.1955, + 0.1891, + 0.20278, + 0.20553, + 0.18679, + 0.19169, + 0.19397, + 0.18237, + 0.18274, + 0.1783, + 0.18092, + 0.17714, + 0.17531, + 0.183, + 0.1765, + 0.17616, + 0.1795, + 0.1763, + 0.16015, + 0.17319, + 0.17333, + 0.16381, + 0.16862, + 0.16751, + 0.17279, + 0.17164, + 0.17542, + 0.16942, + 0.16664, + 0.15933, + 0.15795, + 0.15895, + 0.16441, + 0.16284, + 0.1595, + 0.15195, + 0.15707, + 0.15154 + ] + }, + "architecture": "OCR_CNNBERT(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): TransformerImageDecoder(\n (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (length_embeddings): Embedding(100, 128)\n (model): TransformerEncoder(\n (layers): ModuleList(\n (0): TransformerEncoderLayer(\n (self_attn): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (linear1): Linear(in_features=128, out_features=512, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n (linear2): Linear(in_features=512, out_features=128, bias=True)\n (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (dropout1): Dropout(p=0.1, inplace=False)\n (dropout2): Dropout(p=0.1, inplace=False)\n )\n (1): TransformerEncoderLayer(\n (self_attn): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (linear1): Linear(in_features=128, out_features=512, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n (linear2): Linear(in_features=512, out_features=128, bias=True)\n (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (dropout1): Dropout(p=0.1, inplace=False)\n (dropout2): Dropout(p=0.1, inplace=False)\n )\n (2): TransformerEncoderLayer(\n (self_attn): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)\n )\n (linear1): Linear(in_features=128, out_features=512, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n (linear2): Linear(in_features=512, out_features=128, bias=True)\n (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (dropout1): Dropout(p=0.1, inplace=False)\n (dropout2): Dropout(p=0.1, inplace=False)\n )\n )\n )\n (out_proj): Linear(in_features=128, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/tokenizer.pickle b/experiments/cnn_v2_128_64seq_bert_4h_3l_100e/tokenizer.pickle similarity index 100% rename from experiments/cnn_v2_128_64seq_alstm_2h_2l_80e/tokenizer.pickle rename to experiments/cnn_v2_128_64seq_bert_4h_3l_100e/tokenizer.pickle diff --git a/experiments/cnn_v2_128_64seq_lstm_2l_100e/experiment_info.json b/experiments/cnn_v2_128_64seq_lstm_2l_100e/experiment_info.json index 383ce12..9f0ff6b 100644 --- a/experiments/cnn_v2_128_64seq_lstm_2l_100e/experiment_info.json +++ b/experiments/cnn_v2_128_64seq_lstm_2l_100e/experiment_info.json @@ -1,213 +1,213 @@ { "best_epoch": { - "number": 99, - "train_loss": 0.09294252668189097, - "eval_loss": 0.11361 + "number": 92, + "train_loss": 0.11980348467072353, + "eval_loss": 0.15293 }, "history": { "train": [ - 7.4113435443443585, - 4.421765122232558, - 4.400896464722066, - 4.390799015383177, - 4.379751368413998, - 4.369692162622379, - 4.346108376225339, - 4.310795687421968, - 4.28749418258667, - 4.257911959780922, - 4.198409581486183, - 4.037111013750486, - 3.321006835261478, - 1.9890416785131526, - 1.1550291965279398, - 0.7952551653113547, - 0.6281971052477632, - 0.5180913379675225, - 0.45004828972152516, - 0.40436415261105646, - 0.36804452349868, - 0.33677317560473574, - 0.32467512541179416, - 0.30360738008837157, - 0.2787084330486346, - 0.25774843066553527, - 0.25385020654412765, - 0.2419076169593425, - 0.23480766917331308, - 0.22680444279803505, - 0.22331068296975728, - 0.2152450152590305, - 0.20180516416513467, - 0.2018812510031688, - 0.21269628292397608, - 0.1917449584867381, - 0.1791576244219949, - 0.1890365550223785, - 0.1810350053106682, - 0.17409656479766097, - 0.16522840740559977, - 0.16678915927304497, - 0.1672328927471668, - 0.16756580581393424, - 0.16113969381851487, - 0.1559978736258006, - 0.15087925340933137, - 0.15574375238222413, - 0.15707144971135295, - 0.14565062381421465, - 0.14980536586121668, - 0.14598820075581345, - 0.15148134831386276, - 0.14379062248936184, - 0.16122257813245436, - 0.14327698578185674, - 0.13665612824732745, - 0.13339716082886804, - 0.13137273914829084, - 0.12874141241176218, - 0.12587769980294794, - 0.12824983998567244, - 0.12529682632111297, - 0.1209962083663367, - 0.12307852657535408, - 0.12318147077590605, - 0.12255474434623236, - 0.12432905710950683, - 0.12373685676463042, - 0.12630478405877005, - 0.12362909057660948, - 0.12162788353766067, - 0.11645457884178886, - 0.11268881963023657, - 0.12054178580830369, - 0.11843623852805246, - 0.11219750920051261, - 0.10851545895956739, - 0.11381531374741204, - 0.11094005613387385, - 0.10798817278840873, - 0.109027237030147, - 0.11178862624153306, - 0.10158167463503306, - 0.10581765729415266, - 0.09905041942868052, - 0.114343359500547, - 0.09795802510991881, - 0.1148490586046931, - 0.10267156315377995, - 0.10176451956924004, - 0.09947771852529502, - 0.103787766038617, - 0.10107776664103134, - 0.0923252236333829, - 0.10022606247965293, - 0.09729042154135584, - 0.09468563966736009, - 0.0927132319517528, - 0.09294252668189097 + 7.378146044815643, + 4.4211281583279, + 4.401753015156034, + 4.386934395077862, + 4.37591298622421, + 4.3551900175553335, + 4.317495750475533, + 4.282314505758165, + 4.248624324798584, + 4.229110560839689, + 4.20744743830041, + 4.158213114436669, + 3.902866689464714, + 2.791049803359599, + 1.7347686124753348, + 1.2291411976271038, + 0.9656029826478113, + 0.7447840284697617, + 0.6266589172278778, + 0.5540813471697554, + 0.4903209586686726, + 0.4622514149810694, + 0.42596062678325025, + 0.3895158133929289, + 0.36953602900987936, + 0.35289624484279486, + 0.3546527539250217, + 0.31926027166692517, + 0.3058022413449951, + 0.2954258537745174, + 0.2870525823363775, + 0.27001544040969655, + 0.27857174111317984, + 0.2689813454694386, + 0.26028277998483634, + 0.24301448407806928, + 0.2417706758538379, + 0.2350189076571525, + 0.24461531016645552, + 0.22018241071248357, + 0.2157027406405799, + 0.2161175838754147, + 0.20835188087783282, + 0.20196407354330714, + 0.20511807142933713, + 0.20440249673173397, + 0.19719800598259213, + 0.18985577889635594, + 0.18916452572315554, + 0.191443861002409, + 0.18785615831236296, + 0.18759998283054255, + 0.18202101118579694, + 0.1767585817960244, + 0.174196972594231, + 0.174639011391356, + 0.16913017885217183, + 0.1684491518366186, + 0.17486590307347383, + 0.16785395843318746, + 0.1588317140748229, + 0.19124422863691667, + 0.15667563837163057, + 0.1703857633320591, + 0.16108726078196417, + 0.15516247392832477, + 0.15243851695256896, + 0.14790320622770092, + 0.14686815138859086, + 0.14709036787853966, + 0.14799744984771632, + 0.15304465412716323, + 0.15025287206414378, + 0.14513976975709578, + 0.14615689142595364, + 0.14203929599327378, + 0.13859946837153617, + 0.1372095552992217, + 0.13025226425143738, + 0.14053727761854098, + 0.14047357572030417, + 0.1285577201390568, + 0.13657824336727964, + 0.14064505809470068, + 0.1390959971313235, + 0.14473884109454818, + 0.12602769889974896, + 0.13097325306904467, + 0.1299422595508491, + 0.12563589243571968, + 0.12532125130484376, + 0.1240394885026956, + 0.11980348467072353, + 0.12337850600103789, + 0.12136764022745664, + 0.12138092036865934, + 0.12160839102690733, + 0.11873776220445391, + 0.11981858558292631, + 0.12656528842222842 ], "eval": [ - 4.46183, - 4.41186, - 4.40232, - 4.38661, - 4.37247, - 4.36254, - 4.33916, - 4.30273, - 4.28594, - 4.23105, - 4.16207, - 3.95771, - 2.62405, - 1.46989, - 0.94523, - 0.66423, - 0.59289, - 0.46553, - 0.43472, - 0.39393, - 0.32233, - 0.33457, - 0.31445, - 0.29225, - 0.28435, - 0.25255, - 0.24853, - 0.24109, - 0.23039, - 0.22803, - 0.22225, - 0.21508, - 0.19963, - 0.2085, - 0.2111, - 0.19147, - 0.20005, - 0.19423, - 0.18255, - 0.18526, - 0.17987, - 0.17314, - 0.17821, - 0.17639, - 0.15721, - 0.15856, + 4.4541, + 4.40992, + 4.3946, + 4.38454, + 4.38292, + 4.34184, + 4.3103, + 4.27112, + 4.25404, + 4.23401, + 4.19831, + 4.10816, + 3.53603, + 2.23677, + 1.55267, + 1.22406, + 0.8349, + 0.71101, + 0.63663, + 0.59087, + 0.52526, + 0.51395, + 0.42035, + 0.40147, + 0.37092, + 0.35951, + 0.34369, + 0.34239, + 0.32802, + 0.31619, + 0.29532, + 0.30178, + 0.28582, + 0.28247, + 0.27002, + 0.27034, + 0.2605, + 0.25875, + 0.24222, + 0.23762, + 0.24992, + 0.23346, + 0.21831, + 0.21776, + 0.22885, + 0.21497, + 0.2274, + 0.22181, + 0.21388, + 0.23943, + 0.20896, + 0.21036, + 0.20154, + 0.2078, + 0.20577, + 0.20895, + 0.20053, + 0.20474, + 0.19158, + 0.19881, + 0.19322, + 0.19448, + 0.19361, + 0.19394, + 0.19887, + 0.19144, + 0.1789, + 0.17951, + 0.17455, + 0.1849, + 0.18347, + 0.1742, + 0.17256, + 0.17689, + 0.1745, + 0.17077, + 0.17544, + 0.17482, + 0.16358, + 0.16685, + 0.16778, + 0.16239, + 0.17018, + 0.17468, + 0.17414, + 0.1616, + 0.16124, + 0.15529, + 0.15397, + 0.15979, 0.16963, - 0.15642, - 0.15074, - 0.16354, - 0.16862, - 0.14959, - 0.14631, - 0.15796, - 0.15251, - 0.14722, - 0.13724, - 0.14523, - 0.14551, - 0.14887, - 0.14035, - 0.14717, - 0.14848, - 0.13394, - 0.14244, - 0.14402, - 0.13875, - 0.13781, - 0.14383, - 0.1356, - 0.13354, - 0.13974, - 0.14659, - 0.13237, - 0.13091, - 0.12381, - 0.12607, - 0.11922, - 0.12441, - 0.12397, - 0.12243, - 0.12736, - 0.12404, - 0.13031, - 0.11887, - 0.11839, - 0.12511, - 0.1406, - 0.11916, - 0.12384, - 0.12296, - 0.12114, - 0.13121, - 0.12106, - 0.11772, - 0.12924, - 0.11733, - 0.11526, - 0.12527, - 0.11361 + 0.15858, + 0.15293, + 0.1601, + 0.16294, + 0.15713, + 0.15855, + 0.16186, + 0.15953, + 0.16514 ] }, "architecture": "OCR_CRNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): BiLSTMImageDecoder(\n (norm): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" diff --git a/experiments/cnn_v2_128_64seq_lstm_2l_80e/experiment_info.json b/experiments/cnn_v2_128_64seq_lstm_2l_80e/experiment_info.json deleted file mode 100644 index 2268ba2..0000000 --- a/experiments/cnn_v2_128_64seq_lstm_2l_80e/experiment_info.json +++ /dev/null @@ -1,174 +0,0 @@ -{ - "best_epoch": { - "number": 75, - "train_loss": 0.11322676975138579, - "eval_loss": 0.12077 - }, - "history": { - "train": [ - 7.456976178326184, - 4.5024352134028565, - 4.4044601404214205, - 4.3920989700510535, - 4.377857226359693, - 4.363548791861232, - 4.331792589984363, - 4.288393732867664, - 4.227206918257702, - 4.091510983962047, - 3.7356443314612666, - 2.6702281478085097, - 1.5927666606782358, - 1.001464328433894, - 0.7406679746470873, - 0.5872646958767613, - 0.49944709863843795, - 0.4496242785001103, - 0.40627134449874297, - 0.3720190909844411, - 0.335924858911128, - 0.3178180131731154, - 0.3058015828645682, - 0.28057105801528015, - 0.29308214066903804, - 0.274399021192442, - 0.25047379505785206, - 0.23659122480621822, - 0.24186358383939235, - 0.22319071013716202, - 0.21596974304205255, - 0.2111376280648799, - 0.2098031177928176, - 0.19450642706095417, - 0.19670058088966563, - 0.19607711819153797, - 0.19552827070030984, - 0.18327099565840974, - 0.17773670561705965, - 0.17854303423362441, - 0.18840589534632768, - 0.18607477240170103, - 0.17038498573665378, - 0.16607113012784644, - 0.16198430370680894, - 0.16006517344260518, - 0.15861171012437797, - 0.15370561456001258, - 0.15383501492346388, - 0.14438403397798538, - 0.1794265376616128, - 0.15874583679663984, - 0.15314167549338523, - 0.14955794886697696, - 0.13694360324099095, - 0.13463740050792694, - 0.14153570106512384, - 0.13283900256398357, - 0.14257955277645135, - 0.13734629929442949, - 0.13103444827131078, - 0.12727048813919478, - 0.1274012663885008, - 0.13130412524259544, - 0.1256055020833317, - 0.12362402932176107, - 0.12130385109140904, - 0.1205253726508044, - 0.12291670967883701, - 0.12027509133272533, - 0.13274054116086115, - 0.13052007008956956, - 0.11914790167084223, - 0.12130168608472316, - 0.11511275408011448, - 0.11322676975138579, - 0.11631539218787905, - 0.11674661557131176, - 0.11241269658637952, - 0.11310225272480445 - ], - "eval": [ - 4.62005, - 4.42045, - 4.40113, - 4.39038, - 4.37156, - 4.35854, - 4.31235, - 4.25811, - 4.18806, - 3.97395, - 3.49261, - 2.04131, - 1.18209, - 0.90516, - 0.62666, - 0.50817, - 0.46456, - 0.40011, - 0.38275, - 0.33456, - 0.32057, - 0.29218, - 0.28947, - 0.27829, - 0.26884, - 0.25166, - 0.25701, - 0.25251, - 0.22737, - 0.22142, - 0.21293, - 0.20654, - 0.20801, - 0.20775, - 0.20917, - 0.20167, - 0.20893, - 0.17619, - 0.18417, - 0.1876, - 0.19202, - 0.18372, - 0.17764, - 0.16945, - 0.16958, - 0.16206, - 0.1658, - 0.16752, - 0.15662, - 0.16308, - 0.16196, - 0.1624, - 0.15596, - 0.16271, - 0.14862, - 0.15281, - 0.15333, - 0.14384, - 0.14657, - 0.13683, - 0.14549, - 0.13554, - 0.14717, - 0.14535, - 0.13711, - 0.13894, - 0.12915, - 0.13186, - 0.13215, - 0.14743, - 0.13082, - 0.13444, - 0.13096, - 0.14078, - 0.12521, - 0.12077, - 0.13531, - 0.12313, - 0.13038, - 0.12681 - ] - }, - "architecture": "OCR_CRNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): BiLSTMImageDecoder(\n (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/experiment_info.json b/experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/experiment_info.json new file mode 100644 index 0000000..d920e83 --- /dev/null +++ b/experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 95, + "train_loss": 0.15822239305022395, + "eval_loss": 0.17647 + }, + "history": { + "train": [ + 5.567880473559415, + 4.4206212623209895, + 4.411223321021358, + 4.398974895477295, + 4.397652312170101, + 4.395984619478636, + 4.390868307668952, + 4.3742038449154625, + 4.353803381135192, + 4.212720243236687, + 3.224787358996234, + 1.578547040118447, + 0.9175818487058712, + 0.7332934903193123, + 0.6060113280634337, + 0.5452173721941211, + 0.5089267835586886, + 0.47072842641721796, + 0.47048604412923883, + 0.4115251570562773, + 0.39791252567798274, + 0.39198562389687647, + 0.39500535138045684, + 0.38630984931052487, + 0.3741982681087301, + 0.39518088517309746, + 0.37953144689149493, + 0.3539000212014476, + 0.3103537272803391, + 0.3144017082603672, + 0.2840315859906281, + 0.2719208556639997, + 0.2718093785681302, + 0.29777519046505796, + 0.33551643958574606, + 0.2739097700466084, + 0.3019304848924468, + 0.30035619814939135, + 0.27136188236218467, + 0.2641408943300006, + 0.38967146168026745, + 0.2790695970194249, + 0.28054879398285587, + 0.24378409793105307, + 0.24407037621057487, + 0.2616668717016148, + 0.2559386786026291, + 0.25824296738527996, + 0.283613223818284, + 0.26206891219827194, + 0.24903152675568302, + 0.23381730367111253, + 0.24891794538950618, + 0.23096202559108975, + 0.2578446302987352, + 0.25248040447506725, + 0.2350375062868565, + 0.2177923206664339, + 0.20129639268675936, + 0.21264248407339748, + 0.20942348185219342, + 0.23555576933335654, + 0.25836481003067163, + 0.2479099257837368, + 0.21263059219227562, + 0.20244285973566997, + 0.19255694011344185, + 0.2063893887061107, + 0.18952017928226084, + 0.18424632051323034, + 0.2095665086673785, + 0.22746094155915175, + 0.19962939648311348, + 0.20492373350300366, + 0.20487130268276493, + 0.1835183008939405, + 0.20514764410408237, + 0.19254596908635732, + 0.23017454864103584, + 0.19268953413525713, + 0.17857057403160048, + 0.21019762433782407, + 0.2061166912317276, + 0.2521995683259602, + 0.22671769276449952, + 0.24081946758529807, + 0.22042412112785292, + 0.24921742779544637, + 0.22764694709566574, + 0.20753441241723072, + 0.18461269989043852, + 0.17140085816006118, + 0.18647852341962767, + 0.17282358934230443, + 0.1672426547053494, + 0.15822239305022395, + 0.16274405648059484, + 0.15158551742758933, + 0.15695711281857913, + 0.163827887724472 + ], + "eval": [ + 4.4385, + 4.43702, + 4.40465, + 4.40444, + 4.39714, + 4.3967, + 4.38325, + 4.38939, + 4.32456, + 3.96982, + 2.48794, + 1.10122, + 0.78698, + 0.65187, + 0.56346, + 0.50513, + 0.46562, + 0.46901, + 0.4577, + 0.38795, + 0.39527, + 0.41976, + 0.38653, + 0.38417, + 0.33582, + 0.44577, + 0.34849, + 0.34082, + 0.38299, + 0.28872, + 0.29791, + 0.27525, + 0.27606, + 0.35232, + 0.27912, + 0.32546, + 0.31135, + 0.29435, + 0.30505, + 0.43697, + 0.30021, + 0.25787, + 0.25958, + 0.24193, + 0.2616, + 0.25668, + 0.23891, + 0.26175, + 0.27882, + 0.26316, + 0.23841, + 0.23845, + 0.24002, + 0.23339, + 0.24673, + 0.2372, + 0.23035, + 0.2264, + 0.22271, + 0.21644, + 0.22549, + 0.25701, + 0.28553, + 0.21087, + 0.23103, + 0.20722, + 0.24069, + 0.21211, + 0.19362, + 0.19104, + 0.20712, + 0.20784, + 0.21187, + 0.21192, + 0.20086, + 0.20859, + 0.21133, + 0.29341, + 0.22916, + 0.2001, + 0.20594, + 0.22291, + 0.24934, + 0.24156, + 0.23422, + 0.22811, + 0.25369, + 0.28616, + 0.21556, + 0.19893, + 0.20329, + 0.19075, + 0.18787, + 0.20192, + 0.17838, + 0.17647, + 0.18236, + 0.17911, + 0.18809, + 0.17797 + ] + }, + "architecture": "OCR_CARNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): SelfAttenBiLSTMImageDecoder(\n (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n (self_atten): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)\n )\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/cnn_v2_128_64seq_lstm_2l_80e/tokenizer.pickle b/experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/tokenizer.pickle similarity index 100% rename from experiments/cnn_v2_128_64seq_lstm_2l_80e/tokenizer.pickle rename to experiments/cnn_v2_128_64seq_lstma_2h_2l_100e/tokenizer.pickle diff --git a/experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/experiment_info.json b/experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/experiment_info.json new file mode 100644 index 0000000..6b014a0 --- /dev/null +++ b/experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/experiment_info.json @@ -0,0 +1,114 @@ +{ + "best_epoch": { + "number": 30, + "train_loss": 0.15432585577798796, + "eval_loss": 0.16528 + }, + "history": { + "train": [ + 0.16505638745766651, + 0.1732242143229593, + 0.1895122288525859, + 0.17964294062385075, + 0.17898087844818453, + 0.1638498227996162, + 0.2126844931818262, + 0.17163064990994298, + 0.17110714099452465, + 0.2423086462518837, + 0.21411810834196549, + 0.2998869901970972, + 0.20132583143967617, + 0.19282862185677396, + 0.1810473814795289, + 0.1759782682491254, + 0.19602437373958057, + 0.1786144878479499, + 0.181720857567425, + 0.1733776722339135, + 0.15547163784503937, + 0.1649710558637788, + 0.15597713399159757, + 0.16327244854426082, + 0.1586038755087913, + 0.1503878557417966, + 0.14910278629653062, + 0.13882422881035866, + 0.14785099303043342, + 0.14473532508068446, + 0.15432585577798796, + 0.16411222399601452, + 0.15175508443690552, + 0.17173695941514608, + 0.1780188439201705, + 0.16422349686109566, + 0.14432296166314354, + 0.14114092427152622, + 0.16068348081051548, + 0.15357504162607313, + 0.1872362131370774, + 0.17156068377102476, + 0.161883460381363, + 0.1497576854462865, + 0.1541427064545547, + 0.1424230616303939, + 0.13663507446269446, + 0.13452327487212193, + 0.12720950692892075, + 0.14375920489996294 + ], + "eval": [ + 0.19163, + 0.18958, + 0.21962, + 0.23301, + 0.17722, + 0.17683, + 0.18832, + 0.19415, + 0.35629, + 0.21915, + 0.32131, + 0.23933, + 0.21391, + 0.20325, + 0.2214, + 0.19856, + 0.19487, + 0.21947, + 0.17751, + 0.18944, + 0.18534, + 0.17262, + 0.1989, + 0.17734, + 0.17768, + 0.17559, + 0.17455, + 0.17369, + 0.16822, + 0.19119, + 0.16528, + 0.17834, + 0.17451, + 0.17637, + 0.20471, + 0.18513, + 0.16947, + 0.19077, + 0.17112, + 0.22108, + 0.24348, + 0.17899, + 0.17801, + 0.18264, + 0.17967, + 0.16612, + 0.17493, + 0.17208, + 0.17725, + 0.18009 + ] + }, + "architecture": "OCR_CARNN(\n (encoder): CNNImageEncoderV2(\n (layers): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(3, 32, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(32, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)\n (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (3): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (4): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (5): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): SelfAttenBiLSTMImageDecoder(\n (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n (self_atten): MultiheadAttention(\n (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)\n )\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/tokenizer.pickle b/experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/tokenizer.pickle similarity index 100% rename from experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/tokenizer.pickle rename to experiments/cnn_v2_128_64seq_lstma_2h_2l_150e/tokenizer.pickle diff --git a/experiments/resnet18_128_lstm_2l_100e/experiment_info.json b/experiments/resnet18_128_lstm_2l_100e/experiment_info.json new file mode 100644 index 0000000..afaf4a6 --- /dev/null +++ b/experiments/resnet18_128_lstm_2l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 94, + "train_loss": 0.12464742079565796, + "eval_loss": 0.16665 + }, + "history": { + "train": [ + 5.7470638540726675, + 4.391800892503956, + 4.376589648331268, + 4.347095266173158, + 4.316054869301712, + 4.261601641208311, + 4.219692121578168, + 4.195442362676693, + 4.187173638162734, + 4.167255486114116, + 4.153102959258647, + 4.062702806690071, + 3.7977922687047645, + 3.1460514642015287, + 2.2052706132961224, + 1.4881232282783412, + 1.0879578371591205, + 0.8345607036276709, + 0.6871793843522856, + 0.5903358685819409, + 0.5272754476040225, + 0.4739253049409842, + 0.43414563506464415, + 0.41461470345907575, + 0.3759882352020167, + 0.36035491922233676, + 0.3419581066958512, + 0.3365754519082323, + 0.31859826305999034, + 0.30373991686332075, + 0.2858391970018797, + 0.2805888107683085, + 0.2671813404635538, + 0.2704003358943553, + 0.251669519875623, + 0.24995979874194424, + 0.24292057639435877, + 0.24364168168623238, + 0.23106833971753904, + 0.2352972920936874, + 0.22225909821594816, + 0.23147315579124644, + 0.216565529002419, + 0.21253884366795986, + 0.19913092802597, + 0.19899674042870727, + 0.19995441863053962, + 0.18837179054942313, + 0.20880111165439028, + 0.19876901107498363, + 0.18917194310622878, + 0.18095659351424326, + 0.18712592313561258, + 0.17245631089693383, + 0.17837968298906012, + 0.1751172883978373, + 0.16657671275772626, + 0.16985229751731776, + 0.16776305767177027, + 0.16635213471666166, + 0.1677312034217617, + 0.16184273560213136, + 0.15879191929780984, + 0.15991511724040477, + 0.15293257938155644, + 0.15322613687832146, + 0.15853517832635325, + 0.16162938473722602, + 0.15063469517457334, + 0.15177495060842247, + 0.14472368416152423, + 0.14380096672456474, + 0.14429429220625117, + 0.1459252003438865, + 0.1488386670811267, + 0.14439067433152017, + 0.1427225946814199, + 0.13684395186697382, + 0.1377766127639179, + 0.13647688378261613, + 0.13782309882248503, + 0.12784863697199883, + 0.13530217837306519, + 0.13385130531048473, + 0.1427570937932292, + 0.12823108960933324, + 0.12419188645067095, + 0.13521036090730112, + 0.1259322712504411, + 0.12319920410083819, + 0.1280516278517397, + 0.12381529100710832, + 0.12240249918231481, + 0.1262339034789725, + 0.12464742079565796, + 0.12273508074540126, + 0.11747449419543712, + 0.11311873784170876, + 0.12200362480516676, + 0.12496133686243734 + ], + "eval": [ + 4.43846, + 4.3814, + 4.36463, + 4.33074, + 4.28736, + 4.24031, + 4.23488, + 4.19686, + 4.18729, + 4.16586, + 4.12937, + 3.99628, + 3.52568, + 2.78672, + 1.85945, + 1.28273, + 0.96602, + 0.75763, + 0.68824, + 0.54675, + 0.51973, + 0.52334, + 0.44877, + 0.40937, + 0.3846, + 0.38595, + 0.34919, + 0.34144, + 0.31704, + 0.32157, + 0.3088, + 0.30052, + 0.28966, + 0.29662, + 0.27874, + 0.28433, + 0.26482, + 0.26693, + 0.26579, + 0.24908, + 0.27234, + 0.25285, + 0.24291, + 0.24519, + 0.24308, + 0.24142, + 0.23773, + 0.24708, + 0.23947, + 0.22679, + 0.22716, + 0.21827, + 0.23133, + 0.21629, + 0.21959, + 0.20859, + 0.19904, + 0.20552, + 0.20716, + 0.2053, + 0.20586, + 0.19278, + 0.18599, + 0.18919, + 0.19421, + 0.19865, + 0.19499, + 0.20249, + 0.18669, + 0.19595, + 0.19135, + 0.19408, + 0.1826, + 0.18314, + 0.19448, + 0.18006, + 0.19521, + 0.17312, + 0.20786, + 0.17552, + 0.17433, + 0.18194, + 0.1821, + 0.17922, + 0.17141, + 0.17348, + 0.17744, + 0.19499, + 0.17792, + 0.17654, + 0.17214, + 0.17226, + 0.16826, + 0.18147, + 0.16665, + 0.17622, + 0.16795, + 0.16736, + 0.18283, + 0.16687 + ] + }, + "architecture": "OCR_ResNetRNN(\n (encoder): ResNetImageEncoder(\n (pre_bath_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (model): Sequential(\n (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2): ReLU(inplace=True)\n (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n (4): Sequential(\n (0): BasicBlock(\n (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n (1): BasicBlock(\n (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (5): Sequential(\n (0): BasicBlock(\n (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (downsample): Sequential(\n (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (1): BasicBlock(\n (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n )\n (head): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): BiLSTMImageDecoder(\n (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/tokenizer.pickle b/experiments/resnet18_128_lstm_2l_100e/tokenizer.pickle similarity index 100% rename from experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/tokenizer.pickle rename to experiments/resnet18_128_lstm_2l_100e/tokenizer.pickle diff --git a/experiments/resnet34_128_lstm_2l_100e/experiment_info.json b/experiments/resnet34_128_lstm_2l_100e/experiment_info.json new file mode 100644 index 0000000..91507fc --- /dev/null +++ b/experiments/resnet34_128_lstm_2l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 97, + "train_loss": 0.11368791674134097, + "eval_loss": 0.14845 + }, + "history": { + "train": [ + 5.632418258280694, + 4.402018136615995, + 4.380014316945136, + 4.3506213562398015, + 4.275899488714677, + 4.236413708216028, + 4.213360840761209, + 4.142596788044218, + 3.960466716862932, + 3.6214097149764437, + 2.970017484471768, + 2.318420558036128, + 1.8005737609501127, + 1.4035991777347614, + 1.0722936874703517, + 0.8000283512888076, + 0.6829486293128774, + 0.5872268382507034, + 0.5119761643530447, + 0.470224641923663, + 0.44479703224157985, + 0.42330356715600703, + 0.38710127035273784, + 0.35987429000154325, + 0.35139886525612846, + 0.3388355827029747, + 0.2992573174871976, + 0.3005806898014455, + 0.2917527954412412, + 0.27291310305082345, + 0.2647766838722591, + 0.2563976905768431, + 0.25690410540828224, + 0.2603127765881864, + 0.23959214344054838, + 0.2367032594695876, + 0.22616471802886529, + 0.23149504389943956, + 0.22289970083327232, + 0.2272715583632264, + 0.21076317886008492, + 0.21015254757072352, + 0.21475761845896515, + 0.20487768155864522, + 0.19673438964388038, + 0.19299158925497079, + 0.19786633588845218, + 0.18544118238400809, + 0.20296994342079647, + 0.18519999294341366, + 0.17472223796044725, + 0.18379416741147825, + 0.19370148302633552, + 0.17944386733483664, + 0.1739351205244849, + 0.16773667771227752, + 0.1676427613519415, + 0.16498279298030877, + 0.1635718031585971, + 0.16264437242776533, + 0.15142817078511925, + 0.15890273715876327, + 0.15490526734273644, + 0.15454391871072068, + 0.14865905999005596, + 0.1541963362052471, + 0.1475132141686693, + 0.15499675622846507, + 0.14982502049283136, + 0.14707298133569427, + 0.14108617047343072, + 0.1427375469592553, + 0.13699861050029344, + 0.13615075149868108, + 0.13825119673451292, + 0.14339741984311538, + 0.13572344749788695, + 0.13138046794677083, + 0.14083655838724934, + 0.13990019205250318, + 0.13416485092307948, + 0.12261797751806959, + 0.13554550877100305, + 0.14274736540981486, + 0.13560563174984122, + 0.1280071809887886, + 0.12085560030197795, + 0.1260514803513696, + 0.12390890830679785, + 0.12150563978696172, + 0.11553662345756459, + 0.12029376324219039, + 0.1203423421594161, + 0.133636966724939, + 0.12228623843645747, + 0.1220776268009898, + 0.11418641943343077, + 0.11368791674134097, + 0.1130608809711058, + 0.11438512981315202 + ], + "eval": [ + 4.52358, + 4.39336, + 4.41024, + 4.33667, + 4.26067, + 4.23016, + 4.22348, + 4.15107, + 3.91293, + 3.37063, + 2.77979, + 2.14943, + 2.13947, + 1.41424, + 0.93994, + 0.79525, + 0.69384, + 0.57622, + 0.51247, + 0.52896, + 0.49893, + 0.41198, + 0.36211, + 0.41475, + 0.37149, + 0.33092, + 0.33738, + 0.33525, + 0.30885, + 0.28411, + 0.29604, + 0.29416, + 0.27271, + 0.28311, + 0.27192, + 0.25565, + 0.2525, + 0.23665, + 0.2449, + 0.23885, + 0.25378, + 0.21322, + 0.2376, + 0.23311, + 0.21125, + 0.23078, + 0.21618, + 0.21551, + 0.21462, + 0.2156, + 0.19627, + 0.22093, + 0.21333, + 0.20818, + 0.19929, + 0.18888, + 0.21443, + 0.21045, + 0.18922, + 0.20557, + 0.19638, + 0.20259, + 0.1997, + 0.17727, + 0.19594, + 0.19444, + 0.18966, + 0.17723, + 0.18331, + 0.17309, + 0.18991, + 0.17794, + 0.16913, + 0.16911, + 0.19936, + 0.1763, + 0.16288, + 0.16649, + 0.1737, + 0.17444, + 0.16974, + 0.17395, + 0.18327, + 0.16743, + 0.17316, + 0.16882, + 0.15324, + 0.16253, + 0.15831, + 0.15617, + 0.1676, + 0.15693, + 0.15947, + 0.17098, + 0.16513, + 0.16205, + 0.15717, + 0.14845, + 0.15359, + 0.15849 + ] + }, + "architecture": "OCR_ResNetRNN(\n (encoder): ResNetImageEncoder(\n (pre_bath_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (model): Sequential(\n (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2): ReLU(inplace=True)\n (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n (4): Sequential(\n (0): BasicBlock(\n (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n (1): BasicBlock(\n (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n (2): BasicBlock(\n (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (5): Sequential(\n (0): BasicBlock(\n (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (downsample): Sequential(\n (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (1): BasicBlock(\n (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n (2): BasicBlock(\n (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n (3): BasicBlock(\n (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n )\n (head): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=128, out_features=128, bias=True)\n )\n )\n (decoder): BiLSTMImageDecoder(\n (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/tokenizer.pickle b/experiments/resnet34_128_lstm_2l_100e/tokenizer.pickle similarity index 100% rename from experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/tokenizer.pickle rename to experiments/resnet34_128_lstm_2l_100e/tokenizer.pickle diff --git a/experiments/resnet50_256_lstm_2l_100e/experiment_info.json b/experiments/resnet50_256_lstm_2l_100e/experiment_info.json new file mode 100644 index 0000000..c03993e --- /dev/null +++ b/experiments/resnet50_256_lstm_2l_100e/experiment_info.json @@ -0,0 +1,214 @@ +{ + "best_epoch": { + "number": 94, + "train_loss": 0.08948586942462981, + "eval_loss": 0.14489 + }, + "history": { + "train": [ + 5.263433728037001, + 4.396957928621316, + 4.372395207610311, + 4.33993940111957, + 4.260824185383471, + 4.10947716688808, + 3.665190144430233, + 2.2529985482179664, + 1.2519338862805427, + 0.7771595724021332, + 0.604942600183849, + 0.4684629723241058, + 0.4178961040098456, + 0.3708315416227413, + 0.33611842801299274, + 0.3119156405895571, + 0.2780939087837557, + 0.271452776804755, + 0.250035766465, + 0.23770484252821042, + 0.22095574249949637, + 0.2486983547105065, + 0.20866832759561418, + 0.21349255816091464, + 0.19667207930661454, + 0.18695737487530406, + 0.18533054522321193, + 0.18960260609282722, + 0.17631575597237936, + 0.17369380253779737, + 0.16714015574772148, + 0.16763134432744375, + 0.15923303695796412, + 0.1496838812209383, + 0.1466992826590055, + 0.14406159633322607, + 0.13988541028922116, + 0.1469090553590014, + 0.1418055836347085, + 0.13814262696836568, + 0.1500124697443805, + 0.1331263302436358, + 0.13045391468684883, + 0.1404832470454747, + 0.15226419185158574, + 0.12791305799272995, + 0.12619526835182046, + 0.13020242099897772, + 0.1199713985942587, + 0.12311835860527015, + 0.11756885084736196, + 0.11727944799239122, + 0.11206659486022176, + 0.11732008902332451, + 0.11674968247549443, + 0.10902173798295516, + 0.11635927271239366, + 0.1318951663148554, + 0.13051437746874894, + 0.11756787967832782, + 0.10414574917735933, + 0.11088038207609442, + 0.11512646239392366, + 0.10445978964054131, + 0.09587898378885246, + 0.10221038117438933, + 0.10046981822086286, + 0.0951656979284709, + 0.10404707255619991, + 0.10710679871749275, + 0.10260763009892235, + 0.09621105956125862, + 0.09621196353360068, + 0.10132574077837075, + 0.0875335777579229, + 0.08842190171155749, + 0.0853790743158588, + 0.09566751443132569, + 0.09197298182716852, + 0.09118588042410114, + 0.08634748729535296, + 0.07918725129735621, + 0.07971378236631804, + 0.08798484207142758, + 0.08862924189129963, + 0.08416352166405207, + 0.08244141118152987, + 0.08650362882998926, + 0.08460016520340231, + 0.0851406127308743, + 0.08350365806983996, + 0.09482224592113797, + 0.09563153680366805, + 0.08445750073164324, + 0.08948586942462981, + 0.09620831293773048, + 0.08026613049869295, + 0.09070205919538872, + 0.08126811155035527, + 0.07844826140547101 + ], + "eval": [ + 4.49665, + 4.38662, + 4.373, + 4.32296, + 4.24605, + 4.04438, + 3.09011, + 1.75729, + 1.02287, + 0.84378, + 0.59414, + 0.49178, + 0.42008, + 0.36555, + 0.35996, + 0.31988, + 0.29982, + 0.29158, + 0.28793, + 0.27192, + 0.26788, + 0.25099, + 0.26999, + 0.23908, + 0.22317, + 0.22094, + 0.21508, + 0.20625, + 0.23089, + 0.19192, + 0.18692, + 0.18591, + 0.20218, + 0.1733, + 0.19415, + 0.18913, + 0.17952, + 0.1828, + 0.17287, + 0.18436, + 0.18406, + 0.17534, + 0.17576, + 0.18698, + 0.18114, + 0.17322, + 0.17706, + 0.17887, + 0.17224, + 0.16404, + 0.16874, + 0.15675, + 0.16329, + 0.16485, + 0.15299, + 0.15553, + 0.16432, + 0.16217, + 0.1669, + 0.15422, + 0.14806, + 0.18143, + 0.16393, + 0.16075, + 0.15841, + 0.15871, + 0.15091, + 0.15007, + 0.15656, + 0.16647, + 0.15474, + 0.15185, + 0.21667, + 0.15567, + 0.154, + 0.15059, + 0.15502, + 0.16071, + 0.15441, + 0.16208, + 0.15196, + 0.14946, + 0.15319, + 0.17038, + 0.15032, + 0.14854, + 0.15541, + 0.15403, + 0.15765, + 0.15756, + 0.16331, + 0.17403, + 0.16565, + 0.14535, + 0.14489, + 0.15891, + 0.15675, + 0.15324, + 0.17087, + 0.15048 + ] + }, + "architecture": "OCR_ResNetRNN(\n (encoder): ResNetImageEncoder(\n (pre_bath_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (model): Sequential(\n (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2): ReLU(inplace=True)\n (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n (4): Sequential(\n (0): Bottleneck(\n (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (downsample): Sequential(\n (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (1): Bottleneck(\n (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n )\n (2): Bottleneck(\n (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n )\n )\n (5): Sequential(\n (0): Bottleneck(\n (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n (downsample): Sequential(\n (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n )\n )\n (1): Bottleneck(\n (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n )\n (2): Bottleneck(\n (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n )\n (3): Bottleneck(\n (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (relu): ReLU(inplace=True)\n )\n )\n )\n (head): Sequential(\n (0): ConvBlock(\n (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (1): ConvBlock(\n (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n (2): ConvBlock(\n (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n (pooling): MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, dilation=1, ceil_mode=False)\n (activation): Hardswish()\n )\n )\n (dropout): Dropout(p=0.1, inplace=False)\n (out_net): Sequential(\n (0): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n (1): Linear(in_features=512, out_features=256, bias=True)\n )\n )\n (decoder): BiLSTMImageDecoder(\n (norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n (rnn): LSTM(256, 256, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=512, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" +} \ No newline at end of file diff --git a/experiments/resnet50_256_lstm_2l_100e/tokenizer.pickle b/experiments/resnet50_256_lstm_2l_100e/tokenizer.pickle new file mode 100644 index 0000000000000000000000000000000000000000..03296167e3e6a496a0dec29d13f2e00e82a548a6 GIT binary patch literal 1090 zcmXZZNpDkU7{&3pBu$Ak&+|MvqwNgN94B^$a(EINpbRU(F&sl0mkjq z(^aJ|x<}#@bk!|8J_sw;J;A-3|9xJ)y7#@m`@HmzL}|&FD<~_R=8hhDP`RHvxRQU6 zJjjyzrlWG$_yH3&*Eg3BsBD(NQ*Yn#&(+dwJ^r^|xQPh3>fh6AnW6+-@no zZZ;Bx4&8P&-E{j?S#bNPeCsx-?75|t>u%l3fm>3!=(epqb-SnJ+@32@w}`Uo7FN=F zw6f)PqC9iEs1)3y%0stK1#TZIf>7S=Z%r|`O(jvBZn(YBly!Te(Cw3UX58Lrdf*l) zmx^z=Ry^Q$ZbMpp?DkH%?ePsJ^d+@5N>@Ag@r zvh8+3)1uoi$`!ZYl#}AguDY#i+Hm_-*>yV?F1+#s{mcw+pTu*AXTOpa_=;hiVmTjnGJL=hi26m#6U1(xAn%RRE z_M(-2Xk$OxIe-ohqLV}D;xM{7f*y{dml5=F4E-F(04FfWNepoc!<@zlqZnlj5ymmb z8H{rl6P&{&=P|_urn!J97ZKwU;#|fIS1`*}%yA9#Tt|XQEN}yh+{6-7SY{e4+`=li zvBn*&a~H{=Y~|`6)*L0eyR?zkU8oS0=MLj%KxaC#sgO-rHkGoel1;U2YGhL@n>yLl z%cem#jk0NyO|xuTWYa2}Hrcexrb9NJvgwjdw`_W3(<_@k+4Re1KsJN28IsMgY(``= zDw~LG#$+=tn+e%W%4SM7)3S-mCMKJ>Y-VILE1Nml%*!Srn+4e{%4SJ6%d%OK&8lqH lWV0@tq--{1vniXDY|^sXlFhbkc94`$2@N6c6$*Ez{sSL^Jg5Kw literal 0 HcmV?d00001 diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/experiment_info.json b/experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/experiment_info.json deleted file mode 100644 index 1238f92..0000000 --- a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_100e/experiment_info.json +++ /dev/null @@ -1,46 +0,0 @@ -{ - "best_epoch": { - "number": 15, - "train_loss": 4.315873979013177, - "eval_loss": 4.30548 - }, - "history": { - "train": [ - 8.609323483479175, - 4.614390095577964, - 4.606606320489811, - 4.591026070751721, - 4.529715326767933, - 4.4717580879790875, - 4.4315538828886005, - 4.406640650350837, - 4.3905764833281316, - 4.3798571115807645, - 4.371822326998167, - 4.361318624472316, - 4.351292091079905, - 4.338045560860936, - 4.325946005084846, - 4.315873979013177 - ], - "eval": [ - 4.62723, - 4.61905, - 4.60848, - 4.57788, - 4.49137, - 4.44938, - 4.42367, - 4.39967, - 4.38686, - 4.38563, - 4.36487, - 4.35798, - 4.34628, - 4.33005, - 4.32966, - 4.30548 - ] - }, - "architecture": "OCR_ViTRNN(\n (batch_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (encoder): ViTModel(\n (embeddings): ViTEmbeddings(\n (patch_embeddings): ViTPatchEmbeddings(\n (projection): Conv2d(3, 128, kernel_size=(32, 32), stride=(32, 32))\n )\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): ViTEncoder(\n (layer): ModuleList(\n (0): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (1): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (2): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (3): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (4): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (5): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n )\n )\n (layernorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (decoder): BiLSTMImageDecoder(\n (norm): BatchNorm1d(65, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/experiment_info.json b/experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/experiment_info.json deleted file mode 100644 index 13bf3e6..0000000 --- a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_200e/experiment_info.json +++ /dev/null @@ -1,414 +0,0 @@ -{ - "best_epoch": { - "number": 199, - "train_loss": 1.1318448019933096, - "eval_loss": 1.19293 - }, - "history": { - "train": [ - 8.539476998244659, - 4.610996288589284, - 4.570891977865485, - 4.510913957523394, - 4.468658537804326, - 4.431269494793083, - 4.413335824314552, - 4.400933169111421, - 4.390138589883152, - 4.394655269912526, - 4.386508893363083, - 4.371907566167131, - 4.36317678041096, - 4.352925161772136, - 4.347023613845246, - 4.33781721622129, - 4.331581375266932, - 4.31970479820348, - 4.306288876110995, - 4.291466809526274, - 4.276433099674273, - 4.261107674127893, - 4.230525246149377, - 4.203801813004892, - 4.179752156704287, - 4.1475917598869225, - 4.120695681511601, - 4.0926120069962515, - 4.06802710400352, - 4.053289033189604, - 4.0177941925918, - 3.9845428979849515, - 3.9523157831988756, - 3.9141264655922035, - 3.8865597610232197, - 3.8521907631354995, - 3.8230064911178396, - 3.777155556256258, - 3.7486079795451106, - 3.7127359667910804, - 3.6759220829492882, - 3.629915225354931, - 3.5925051683112037, - 3.5580379721484605, - 3.509688326075107, - 3.479449700705613, - 3.446887650067293, - 3.402533238447165, - 3.3708678740489333, - 3.322316275367254, - 3.2940192645109154, - 3.26227066184901, - 3.2159958700590496, - 3.1824469898320453, - 3.1470177867744544, - 3.1285879038557223, - 3.081336784966384, - 3.0517174925985215, - 3.0128804369817805, - 2.9817035982880413, - 2.941229183462602, - 2.9234144114240816, - 2.8894288449347774, - 2.8621298783942115, - 2.822637331636646, - 2.7912565484831604, - 2.7657044959973685, - 2.7251311012461215, - 2.706112300293355, - 2.6820044155362286, - 2.6482966217813613, - 2.6172468028491056, - 2.597312447390979, - 2.572273369076886, - 2.54141936724699, - 2.538559325133698, - 2.522761133652699, - 2.482433786875085, - 2.447482051728647, - 2.4138832092285156, - 2.4026986104023607, - 2.378875512111036, - 2.356968592993821, - 2.335925669609746, - 2.320613676988626, - 2.295622065097471, - 2.2673917541021034, - 2.254964647413809, - 2.2451534965370277, - 2.2120829081233544, - 2.19808519942851, - 2.1720821631105642, - 2.161029690428625, - 2.130905256995672, - 2.1185487282427053, - 2.104834055598778, - 2.082875977588605, - 2.064155477511732, - 2.0547327950030945, - 2.0403364081925983, - 2.0288218546517287, - 2.0082441734362253, - 1.978588117828852, - 1.965618891052053, - 1.957268886928317, - 1.9286987419369854, - 1.9183912413029731, - 1.9015056649340858, - 1.8943958840792692, - 1.8752917730355565, - 1.8684199490124667, - 1.8491838581954376, - 1.837713279301607, - 1.8222337116169025, - 1.8120705643786659, - 1.7833217231533196, - 1.77764010731178, - 1.7711441411247737, - 1.7657302104974095, - 1.7466999232014524, - 1.7329820319067073, - 1.7195869548411309, - 1.7135270743430415, - 1.7161249118515207, - 1.7074264031422288, - 1.6773389592955383, - 1.6548425155349924, - 1.6434073161475267, - 1.6439894724495803, - 1.631062708323515, - 1.6297634492946576, - 1.6037962617753427, - 1.6010838022714928, - 1.5918937001047255, - 1.584775911101812, - 1.5775756081448327, - 1.5726746124557303, - 1.5578416812268994, - 1.5450152732148956, - 1.554784370374076, - 1.5240432024002075, - 1.5229535480088825, - 1.5302521729771095, - 1.5145159386381317, - 1.4939734301989591, - 1.4783938595011263, - 1.4778381902960283, - 1.4681295548813253, - 1.4541012848479837, - 1.4544561935376517, - 1.4358196801777128, - 1.4341093558299391, - 1.4283021356486068, - 1.4093793917305861, - 1.4043345632432382, - 1.4041736291933664, - 1.403216454047191, - 1.3904957273338414, - 1.3880563023724133, - 1.3710762126536309, - 1.3709983599336841, - 1.3524325286285788, - 1.359505525118188, - 1.3645101257517367, - 1.3352971816364723, - 1.3244298824781104, - 1.3180288151849675, - 1.3074811304671854, - 1.309502215325078, - 1.3055291658715358, - 1.3019615804092795, - 1.2931678340404849, - 1.2952918840360037, - 1.2753648199612582, - 1.2683780480034743, - 1.272740139236933, - 1.2628247239921666, - 1.2489174649685244, - 1.2553559677510322, - 1.248564899722232, - 1.2373814099951634, - 1.2283691258370122, - 1.2319433040256742, - 1.227677683287029, - 1.2253733541392073, - 1.206895671313322, - 1.2062911489341832, - 1.202836942069138, - 1.1932320051555392, - 1.1940960944453372, - 1.18210721166828, - 1.1763760756842698, - 1.1634590165524543, - 1.173790788348717, - 1.1649485969845252, - 1.1587138900273963, - 1.1514875903914246, - 1.1542207591141327, - 1.1505472222460975, - 1.1318448019933096 - ], - "eval": [ - 4.62981, - 4.60602, - 4.53658, - 4.4892, - 4.44674, - 4.42127, - 4.41827, - 4.39783, - 4.38775, - 4.39513, - 4.38305, - 4.37138, - 4.36806, - 4.34965, - 4.34867, - 4.3512, - 4.31766, - 4.3132, - 4.29927, - 4.29113, - 4.2689, - 4.24178, - 4.21787, - 4.18357, - 4.15771, - 4.12666, - 4.10192, - 4.09004, - 4.04598, - 4.04368, - 3.98923, - 3.97377, - 3.92279, - 3.90354, - 3.86236, - 3.85739, - 3.79621, - 3.77486, - 3.71637, - 3.67498, - 3.63923, - 3.59205, - 3.56334, - 3.51312, - 3.46212, - 3.46144, - 3.39759, - 3.35456, - 3.3366, - 3.28961, - 3.26828, - 3.20654, - 3.17348, - 3.14009, - 3.1119, - 3.0788, - 3.07162, - 3.02956, - 2.99559, - 2.94246, - 2.94817, - 2.88997, - 2.86495, - 2.92452, - 2.7886, - 2.75856, - 2.72841, - 2.72134, - 2.70221, - 2.64178, - 2.62831, - 2.59948, - 2.57186, - 2.55984, - 2.5197, - 2.53275, - 2.48912, - 2.44701, - 2.44445, - 2.40626, - 2.38224, - 2.36033, - 2.33686, - 2.31936, - 2.31697, - 2.26964, - 2.25842, - 2.24266, - 2.25129, - 2.19689, - 2.1829, - 2.20025, - 2.15709, - 2.12514, - 2.11245, - 2.10401, - 2.07039, - 2.06994, - 2.08549, - 2.03886, - 2.02161, - 1.98713, - 1.97884, - 1.96214, - 1.96238, - 1.94132, - 1.94899, - 1.89907, - 1.89416, - 1.89893, - 1.86426, - 1.85508, - 1.86484, - 1.82886, - 1.82691, - 1.79982, - 1.81534, - 1.80452, - 1.78037, - 1.75544, - 1.75025, - 1.75934, - 1.72605, - 1.72304, - 1.7132, - 1.69614, - 1.68129, - 1.67736, - 1.6601, - 1.66017, - 1.63688, - 1.6548, - 1.63187, - 1.63389, - 1.60933, - 1.59553, - 1.59256, - 1.59281, - 1.59143, - 1.55123, - 1.55292, - 1.56394, - 1.5402, - 1.54142, - 1.53286, - 1.53592, - 1.49746, - 1.48194, - 1.48231, - 1.48493, - 1.47225, - 1.48535, - 1.45335, - 1.45178, - 1.45235, - 1.45354, - 1.43595, - 1.42607, - 1.42829, - 1.42194, - 1.41474, - 1.39602, - 1.41967, - 1.38741, - 1.3717, - 1.38281, - 1.35522, - 1.35715, - 1.36039, - 1.34298, - 1.33926, - 1.32872, - 1.32142, - 1.31089, - 1.31234, - 1.32683, - 1.30242, - 1.30825, - 1.30386, - 1.2891, - 1.30183, - 1.28455, - 1.28818, - 1.28248, - 1.26438, - 1.2397, - 1.26456, - 1.2483, - 1.27222, - 1.24018, - 1.23288, - 1.24749, - 1.22102, - 1.23051, - 1.21403, - 1.21592, - 1.20989, - 1.20119, - 1.20906, - 1.19293 - ] - }, - "architecture": "OCR_ViTRNN(\n (batch_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (encoder): ViTModel(\n (embeddings): ViTEmbeddings(\n (patch_embeddings): ViTPatchEmbeddings(\n (projection): Conv2d(3, 128, kernel_size=(32, 32), stride=(32, 32))\n )\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): ViTEncoder(\n (layer): ModuleList(\n (0): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (1): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (2): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (3): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (4): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (5): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n )\n )\n (layernorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (decoder): BiLSTMImageDecoder(\n (norm): BatchNorm1d(65, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/experiment_info.json b/experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/experiment_info.json deleted file mode 100644 index 8a22bb2..0000000 --- a/experiments/vit_128_512_6l_2h_65seq_lstm_2l_400e/experiment_info.json +++ /dev/null @@ -1,414 +0,0 @@ -{ - "best_epoch": { - "number": 197, - "train_loss": 0.6238415618486042, - "eval_loss": 0.70024 - }, - "history": { - "train": [ - 1.1397836027266104, - 1.135824865932706, - 1.128569495828846, - 1.125587419618534, - 1.111249929741968, - 1.104564044294478, - 1.1094773547558845, - 1.104593493515932, - 1.1059289114384712, - 1.0963998557646064, - 1.091350941718379, - 1.0885185335255876, - 1.0825227732899823, - 1.0697950886774668, - 1.3784467389311972, - 1.3417239249507082, - 1.1485157525992091, - 1.1036415665964536, - 1.0786898596377312, - 1.0622891149943388, - 1.0536553603184373, - 1.044862025146243, - 1.0469408042823212, - 1.0428643053091025, - 1.0343302043178413, - 1.0266170758235305, - 1.0367577943620803, - 1.0216525815710236, - 1.0202594678613204, - 1.0175057906138747, - 1.0124849405469774, - 0.9993335755565499, - 0.9976604558244536, - 1.006601207618472, - 0.9902391184734393, - 0.9945328514787215, - 0.9919786076002484, - 0.9813875480543209, - 0.990074915976464, - 0.9742973959898646, - 0.9727111556861974, - 0.9687397231029559, - 0.973914501787741, - 0.9658128883265242, - 0.9732922066616106, - 0.9594361940516701, - 0.9523814350743837, - 0.9462103187283383, - 0.9473920645593088, - 0.9479771150818354, - 0.9423518354379679, - 0.9421454245531107, - 0.9420443388480174, - 0.9380591881426075, - 0.9247878804991517, - 0.9314463515824909, - 0.9154342722289169, - 0.9242821916749205, - 0.9145315855364257, - 0.9119443101218984, - 0.8996460301966607, - 0.9046983892404581, - 0.9028600099720533, - 0.8941048594969737, - 0.892935366570195, - 0.8968356296985964, - 0.8931825809840914, - 0.8863655555097363, - 0.8865997240513186, - 0.8737225034568883, - 0.8725759296477595, - 0.8825129496900341, - 0.8720255531842196, - 0.8716524356528174, - 0.873908926414538, - 0.8650844534741172, - 0.8540055178388765, - 0.852465587326243, - 0.845202819456028, - 0.8588660050042068, - 0.8742189437528199, - 0.8441137580931941, - 0.8378269234790078, - 0.8365559623211245, - 0.8311055725133871, - 0.8284198151359076, - 0.829531499856635, - 0.8376463447945027, - 0.8279350814940054, - 0.8182597311237191, - 0.815787313859674, - 0.8292848249024982, - 0.8150045328502413, - 0.8078308392174637, - 0.8061544110503378, - 0.7974804398379748, - 0.7981118431574181, - 0.7958171918422361, - 0.7936092532133754, - 0.7891728862931456, - 0.7836682728574246, - 0.7850555347490914, - 0.7858572896522812, - 0.776645640783672, - 0.7829527024981342, - 0.7726197280461276, - 0.7723646156395538, - 0.7666069518161726, - 0.776098288312743, - 0.7640378814709338, - 0.7626806075059915, - 0.759730689887759, - 0.7561388981493213, - 0.7676716914659814, - 0.7541511903835248, - 0.7517306118071834, - 0.7493740576732008, - 0.7525282917143423, - 0.7484342486043519, - 0.7423397702506825, - 0.7344492289084422, - 0.7386490144307101, - 0.7339498476137089, - 0.7278259185296071, - 0.738372300999074, - 0.7291512534588198, - 0.7293326515185682, - 0.7267369635497467, - 0.7185387000252929, - 0.7152698153181921, - 0.7213179967071437, - 0.7125460588479344, - 0.71210630634163, - 0.7084233647660364, - 0.708374646645558, - 0.7042658902421782, - 0.7025161355356627, - 0.7145586549481259, - 0.6967202206201191, - 0.6967122962203207, - 0.6923554524590697, - 0.6964213780209988, - 0.6974076839941966, - 0.6921646866617324, - 0.6899355234979074, - 0.6770515758779985, - 0.6858053426199322, - 0.6730278119256224, - 0.6756675190563444, - 0.6821189749089978, - 0.6723955862129791, - 1.4530204768422283, - 1.381950215448307, - 1.987076388129705, - 1.9105822572225257, - 1.3271752113028417, - 1.0869385766077646, - 0.9607806598083882, - 0.9130591229547428, - 0.8552755343763134, - 0.8397441264949267, - 0.8073823127565505, - 0.7862359602240068, - 0.769104224971578, - 0.7511139112182811, - 0.738114093677907, - 0.731443006026594, - 0.7284399286101136, - 0.7139300553104545, - 0.7089369493194774, - 0.7038086071799073, - 0.6854125585737108, - 0.6937331300747546, - 0.6792756809463983, - 0.6768484440030931, - 0.6753381143642377, - 0.6710476105726217, - 0.6694619723513157, - 0.6700863785381559, - 0.6689110141766222, - 0.6561060329026813, - 0.6523067053360275, - 0.6545474310464496, - 0.6499593703052665, - 0.6469217350211325, - 0.6444422964808307, - 0.6432002401804622, - 0.6589891782289818, - 0.6577570000781289, - 0.6437230479868152, - 0.6406142160862307, - 0.6339557321765755, - 0.6319500849216799, - 0.6266551779795296, - 0.6364323444004301, - 0.6309240558479405, - 0.622457391853574, - 0.6238415618486042, - 0.619608531269846, - 0.6208653615999825 - ], - "eval": [ - 1.2069, - 1.17463, - 1.17738, - 1.17239, - 1.18439, - 1.17238, - 1.17322, - 1.16122, - 1.14954, - 1.16218, - 1.1586, - 1.18106, - 1.14284, - 1.16379, - 1.20757, - 1.24872, - 1.17199, - 1.13223, - 1.1366, - 1.11127, - 1.10462, - 1.10041, - 1.0938, - 1.09599, - 1.09476, - 1.08898, - 1.08393, - 1.07588, - 1.09304, - 1.07726, - 1.0733, - 1.06901, - 1.07488, - 1.05918, - 1.06435, - 1.05747, - 1.05617, - 1.05377, - 1.04944, - 1.05822, - 1.03613, - 1.05189, - 1.0264, - 1.07803, - 1.02128, - 1.02225, - 1.02726, - 1.01061, - 1.01514, - 1.00854, - 0.99884, - 1.00569, - 1.01802, - 1.00528, - 0.99218, - 0.98107, - 0.98501, - 0.98495, - 0.97773, - 0.98696, - 0.96334, - 0.97263, - 0.96681, - 0.97405, - 0.97238, - 0.95132, - 0.95895, - 0.962, - 0.93881, - 0.94904, - 0.94192, - 0.9386, - 0.9373, - 0.93366, - 0.93455, - 0.91872, - 0.92405, - 0.92205, - 0.93077, - 0.9585, - 0.90912, - 0.92525, - 0.9113, - 0.90696, - 0.89714, - 0.91519, - 0.90953, - 0.90487, - 0.89785, - 0.89148, - 0.8986, - 0.90966, - 0.89777, - 0.88644, - 0.8852, - 0.86917, - 0.87291, - 0.87804, - 0.86272, - 0.86944, - 0.84992, - 0.86946, - 0.85095, - 0.86939, - 0.85138, - 0.85513, - 0.84775, - 0.83219, - 0.83965, - 0.83276, - 0.84564, - 0.83405, - 0.85009, - 0.82713, - 0.82224, - 0.83366, - 0.82901, - 0.81935, - 0.82796, - 0.82483, - 0.81283, - 0.82131, - 0.80927, - 0.80821, - 0.80934, - 0.81827, - 0.80492, - 0.79545, - 0.80853, - 0.80058, - 0.80676, - 0.79153, - 0.79807, - 0.79388, - 0.79745, - 0.79812, - 0.79924, - 0.77756, - 0.77903, - 0.79062, - 0.77035, - 0.78452, - 0.76341, - 0.7888, - 0.76281, - 0.7755, - 0.76231, - 0.75812, - 0.77518, - 0.75344, - 0.76447, - 1.42185, - 1.3148, - 1.70962, - 1.41153, - 1.18368, - 1.01611, - 0.96014, - 0.92324, - 0.88763, - 0.86943, - 0.84421, - 0.82767, - 0.81456, - 0.80494, - 0.80377, - 0.78611, - 0.78691, - 0.78362, - 0.76178, - 0.76383, - 0.76487, - 0.75835, - 0.75153, - 0.74681, - 0.74987, - 0.74876, - 0.74921, - 0.76089, - 0.74404, - 0.74446, - 0.73942, - 0.7327, - 0.72961, - 0.73294, - 0.73331, - 0.71891, - 0.72792, - 0.72546, - 0.71707, - 0.71599, - 0.73002, - 0.71401, - 0.71837, - 0.70719, - 0.71072, - 0.72708, - 0.70024, - 0.7023, - 0.71729 - ] - }, - "architecture": "OCR_ViTRNN(\n (batch_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (encoder): ViTModel(\n (embeddings): ViTEmbeddings(\n (patch_embeddings): ViTPatchEmbeddings(\n (projection): Conv2d(3, 128, kernel_size=(32, 32), stride=(32, 32))\n )\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (encoder): ViTEncoder(\n (layer): ModuleList(\n (0): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (1): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (2): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (3): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (4): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (5): ViTLayer(\n (attention): ViTAttention(\n (attention): ViTSelfAttention(\n (query): Linear(in_features=128, out_features=128, bias=False)\n (key): Linear(in_features=128, out_features=128, bias=False)\n (value): Linear(in_features=128, out_features=128, bias=False)\n (dropout): Dropout(p=0.0, inplace=False)\n )\n (output): ViTSelfOutput(\n (dense): Linear(in_features=128, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n )\n (intermediate): ViTIntermediate(\n (dense): Linear(in_features=128, out_features=512, bias=True)\n (intermediate_act_fn): GELUActivation()\n )\n (output): ViTOutput(\n (dense): Linear(in_features=512, out_features=128, bias=True)\n (dropout): Dropout(p=0.1, inplace=False)\n )\n (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n )\n )\n (layernorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n )\n (decoder): BiLSTMImageDecoder(\n (norm): BatchNorm1d(65, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n (out_proj): Linear(in_features=256, out_features=65, bias=True)\n )\n (softmax): LogSoftmax(dim=-1)\n)" -} \ No newline at end of file diff --git a/modeling/base.py b/modeling/base.py new file mode 100644 index 0000000..e4a5198 --- /dev/null +++ b/modeling/base.py @@ -0,0 +1,121 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from torchvision.models import resnet18, resnet34, resnet50, resnet101 + + +class RMSNorm(nn.Module): + """Root Mean Square Layer Normalization. + Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: + https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. + """ + + def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None: + super().__init__() + self.scale = nn.Parameter(torch.ones(size)) + self.eps = eps + self.dim = dim + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # NOTE: the original RMSNorm paper implementation is not equivalent + # norm_x = x.norm(2, dim=self.dim, keepdim=True) + # rms_x = norm_x * d_x ** (-1. / 2) + # x_normed = x / (rms_x + self.eps) + norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) + x_normed = x * torch.rsqrt(norm_x + self.eps) + return self.scale * x_normed + + +class ConvBlock(nn.Module): + + def __init__(self, in_ch, out_ch, ks, stride, padding, dilation=1, pool_ks=None): + super().__init__() + self.bn = nn.BatchNorm2d(in_ch) + self.conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ks, + stride=stride, padding=padding, dilation=dilation, bias=False) + self.pooling = nn.MaxPool2d(kernel_size=pool_ks) if pool_ks is not None else None + self.activation = nn.Hardswish() + + def forward(self, x): + x = self.conv(self.bn(x)) + if self.pooling: + x = self.pooling(x) + x = self.activation(x) + return x + + +class ResNetImageEncoder(nn.Module): + + """ + These models accept images with size (64x256). + It reduces the size of H component to 1, so we can use W component as sequence for RNN. + Replaces 2 last layers in ResNet with 3 ConvBlocks. + """ + + MODELS_DICT = { + 'resnet18': (resnet18, 128), + 'resnet34': (resnet34, 128), + 'resnet50': (resnet50, 512), + 'resnet101': (resnet101, 512) + } + + def __init__(self, model_name, out_dim=128, dropout=0.1): + super().__init__() + self.pre_bath_norm = nn.BatchNorm2d(3) + cnn_model = self.MODELS_DICT[model_name][0]() + self.model = nn.Sequential(*(list(cnn_model.children())[:-4])) + self.head = nn.Sequential( + ConvBlock(self.MODELS_DICT[model_name][1], self.MODELS_DICT[model_name][1], 3, 1, 1, pool_ks=(2, 1)), + ConvBlock(self.MODELS_DICT[model_name][1], self.MODELS_DICT[model_name][1], 3, 1, 1, pool_ks=(2, 1)), + ConvBlock(self.MODELS_DICT[model_name][1], self.MODELS_DICT[model_name][1], 3, 1, 1, pool_ks=(2, 1)), + ) + self.dropout = nn.Dropout(dropout) + self.out_net = nn.Sequential( + nn.LayerNorm(self.MODELS_DICT[model_name][1]), + nn.Linear(self.MODELS_DICT[model_name][1], out_dim) + ) + + def forward(self, x): + x = self.pre_bath_norm(x) # [b, 3, h, w] + x = self.model(x) # [b, ch, h, w] + x = self.head(x) + x = x.flatten(-2) # [b, ch, h*w] + x = x.permute(0, 2, 1) # [b, h*w, ch] + x = self.dropout(x) + x = self.out_net(x) # [b, w, out_dim] + return x + + +class CNNImageEncoder(nn.Module): + + """ + This model accept images with size (64x256). + It reduces the size of H component to 1, so we can use W component as sequence for RNN. + """ + + def __init__(self, out_dim=128, dropout=0.1): + super().__init__() + # self.pre_bath_norm = nn.BatchNorm2d(3) + self.layers = nn.Sequential( + ConvBlock(3, 32, 9, 1, 4, pool_ks=2), + ConvBlock(32, 64, 7, 1, 3, pool_ks=2), + ConvBlock(64, 128, 5, 1, 2, pool_ks=(2, 1)), + ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), + ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), + ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), + ) # [b, 128, 1, 64] + self.dropout = nn.Dropout(dropout) + self.out_net = nn.Sequential( + nn.LayerNorm(128), + nn.Linear(128, out_dim) + ) + + def forward(self, x): + # x = self.pre_bath_norm(x) # [b, 3, h, w] + x = self.layers(x) # [b, ch, 2, w] + x = x.permute(0, 3, 1, 2) # [b, w, ch, 2] + x = x.flatten(-2) # [b, w, 2*ch] + x = self.dropout(x) + x = self.out_net(x) # [b, 64, out_dim] + return x diff --git a/modeling/encoders/cnn_bilstm.py b/modeling/encoders/cnn_bilstm.py index d7fa207..0d9f1e0 100644 --- a/modeling/encoders/cnn_bilstm.py +++ b/modeling/encoders/cnn_bilstm.py @@ -1,105 +1,7 @@ import torch import torch.nn as nn - -class RMSNorm(nn.Module): - """Root Mean Square Layer Normalization. - Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: - https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. - """ - - def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None: - super().__init__() - self.scale = nn.Parameter(torch.ones(size)) - self.eps = eps - self.dim = dim - - def forward(self, x: torch.Tensor) -> torch.Tensor: - # NOTE: the original RMSNorm paper implementation is not equivalent - # norm_x = x.norm(2, dim=self.dim, keepdim=True) - # rms_x = norm_x * d_x ** (-1. / 2) - # x_normed = x / (rms_x + self.eps) - norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) - x_normed = x * torch.rsqrt(norm_x + self.eps) - return self.scale * x_normed - - -class ConvBlock(nn.Module): - - def __init__(self, in_ch, out_ch, ks, stride, padding, dilation=1, pool_ks=None): - super().__init__() - self.bn = nn.BatchNorm2d(in_ch) - self.conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ks, - stride=stride, padding=padding, dilation=dilation, bias=False) - self.pooling = nn.MaxPool2d(kernel_size=pool_ks) if pool_ks is not None else None - self.activation = nn.Hardswish() - - def forward(self, x): - x = self.conv(self.bn(x)) - if self.pooling: - x = self.pooling(x) - x = self.activation(x) - return x - - -class CNNImageEncoder(nn.Module): - - def __init__(self, max_seq_length=32, out_dim=128, dropout=0.1): - super().__init__() - # self.pre_bath_norm = nn.BatchNorm2d(3) - self.layers = nn.Sequential( - ConvBlock(3, 32, 11, 1, 5), - ConvBlock(32, 64, 9, 1, 4, pool_ks=2), - ConvBlock(64, 64, 7, 1, 3, pool_ks=2), - ConvBlock(64, 128, 5, 1, 2, pool_ks=(2, 1)), - ConvBlock(128, 128, 5, 1, 2, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ) - self.avg_pool = nn.AdaptiveAvgPool2d((max_seq_length, out_dim)) - self.dropout = nn.Dropout(dropout) - self.out_net = nn.Sequential( - nn.LayerNorm(out_dim), - nn.Linear(out_dim, out_dim) - ) - - def forward(self, x): - # x = self.pre_bath_norm(x) # [b, 3, h, w] - x = self.layers(x) # [b, ch, h, w] - x = x.permute(0, 3, 1, 2) # [b, w, ch, h] - x = x.flatten(-2) # [b, w, ch*h] - x = self.dropout(x) - x = self.avg_pool(x) # [b, max_length, out_dim] - x = self.out_net(x) # [b, w, out_dim] - return x - - -class CNNImageEncoderV2(nn.Module): - - def __init__(self, out_dim=128, dropout=0.1): - super().__init__() - # self.pre_bath_norm = nn.BatchNorm2d(3) - self.layers = nn.Sequential( - ConvBlock(3, 32, 9, 1, 4, pool_ks=2), - ConvBlock(32, 64, 7, 1, 3, pool_ks=2), - ConvBlock(64, 128, 5, 1, 2, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ) # [b, 128, 1, 32] - self.dropout = nn.Dropout(dropout) - self.out_net = nn.Sequential( - nn.LayerNorm(128), - nn.Linear(128, out_dim) - ) - - def forward(self, x): - # x = self.pre_bath_norm(x) # [b, 3, h, w] - x = self.layers(x) # [b, ch, 2, w] - x = x.permute(0, 3, 1, 2) # [b, w, ch, 2] - x = x.flatten(-2) # [b, w, 2*ch] - x = self.dropout(x) - x = self.out_net(x) # [b, w, out_dim] - return x +from ..base import CNNImageEncoder class BiLSTMImageDecoder(nn.Module): @@ -123,7 +25,7 @@ class OCR_CRNN(nn.Module): def __init__(self, vocab_size, hidden_dim=128, lstm_layers=2, dropout=0.1): super().__init__() - self.encoder = CNNImageEncoderV2(out_dim=hidden_dim, dropout=dropout) + self.encoder = CNNImageEncoder(out_dim=hidden_dim, dropout=dropout) self.decoder = BiLSTMImageDecoder(in_dim=hidden_dim, hidden_dim=hidden_dim, vocab_size=vocab_size, lstm_layers=lstm_layers, dropout=dropout) self.softmax = nn.LogSoftmax(-1) # for CTCLoss @@ -133,74 +35,3 @@ def forward(self, x): x = self.decoder(x) x = self.softmax(x) return x - - -class SelfAttenBiLSTMImageDecoder(nn.Module): - - def __init__(self, in_dim, hidden_dim, vocab_size, num_heads, lstm_layers, dropout=0.1): - super().__init__() - self.norm = nn.BatchNorm1d(64) - self.self_atten = nn.MultiheadAttention(in_dim, num_heads, dropout, batch_first=False) - self.rnn = nn.LSTM(in_dim, hidden_dim, num_layers=lstm_layers, dropout=dropout, bidirectional=True, - batch_first=False) - self.out_proj = nn.Linear(hidden_dim * 2, vocab_size) - - def forward(self, x): - x = self.norm(x) - x = x.permute(1, 0, 2) # [B, T, in_dim] to [T, B, in_dim] - attn_output, attn_output_weights = self.self_atten(x, x, x) - rnn_out, _ = self.rnn(attn_output) - x = self.out_proj(rnn_out) - return x - - -class OCR_CARNN(nn.Module): - - def __init__(self, vocab_size, hidden_dim=128, num_heads=2, lstm_layers=2, dropout=0.1): - super().__init__() - self.encoder = CNNImageEncoderV2(out_dim=hidden_dim, dropout=dropout) - self.decoder = SelfAttenBiLSTMImageDecoder(in_dim=hidden_dim, hidden_dim=hidden_dim, num_heads=num_heads, - vocab_size=vocab_size, lstm_layers=lstm_layers, dropout=dropout) - self.softmax = nn.LogSoftmax(-1) # for CTCLoss - - def forward(self, x): - x = self.encoder(x) - x = self.decoder(x) - x = self.softmax(x) - return x - - -class CrossAttenBiLSTMImageDecoder(nn.Module): - - def __init__(self, in_dim, hidden_dim, vocab_size, num_heads, lstm_layers, dropout=0.1): - super().__init__() - self.norm = nn.BatchNorm1d(64) - self.rnn = nn.LSTM(in_dim, hidden_dim, num_layers=lstm_layers, dropout=dropout, bidirectional=True, - batch_first=False) - self.cross_atten = nn.MultiheadAttention(embed_dim=hidden_dim * 2, kdim=in_dim, - vdim=in_dim, num_heads=num_heads, dropout=dropout, batch_first=False) - self.out_proj = nn.Linear(hidden_dim * 2, vocab_size) - - def forward(self, x): - x = self.norm(x) - x = x.permute(1, 0, 2) # [B, T, in_dim] to [T, B, in_dim] - rnn_out, _ = self.rnn(x) - attn_output, attn_output_weights = self.cross_atten(rnn_out, x, x) - x = self.out_proj(attn_output) - return x - - -class OCR_CRNNA(nn.Module): - - def __init__(self, vocab_size, hidden_dim=128, num_heads=2, lstm_layers=2, dropout=0.1): - super().__init__() - self.encoder = CNNImageEncoderV2(out_dim=hidden_dim, dropout=dropout) - self.decoder = CrossAttenBiLSTMImageDecoder(in_dim=hidden_dim, hidden_dim=hidden_dim, num_heads=num_heads, - vocab_size=vocab_size, lstm_layers=lstm_layers, dropout=dropout) - self.softmax = nn.LogSoftmax(-1) # for CTCLoss - - def forward(self, x): - x = self.encoder(x) - x = self.decoder(x) - x = self.softmax(x) - return x diff --git a/modeling/encoders/cnn_transformer.py b/modeling/encoders/cnn_transformer.py index b77d23e..c2dc8e6 100644 --- a/modeling/encoders/cnn_transformer.py +++ b/modeling/encoders/cnn_transformer.py @@ -2,52 +2,7 @@ import torch.nn as nn import torch.nn.functional as F - -class ConvBlock(nn.Module): - - def __init__(self, in_ch, out_ch, ks, stride, padding, dilation=1, pool_ks=None): - super().__init__() - self.bn = nn.BatchNorm2d(in_ch) - self.conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ks, - stride=stride, padding=padding, dilation=dilation, bias=False) - self.pooling = nn.MaxPool2d(kernel_size=pool_ks) if pool_ks is not None else None - self.activation = nn.Hardswish() - - def forward(self, x): - x = self.conv(self.bn(x)) - if self.pooling: - x = self.pooling(x) - x = self.activation(x) - return x - - -class CNNImageEncoderV2(nn.Module): - - def __init__(self, out_dim=128, dropout=0.1): - super().__init__() - # self.pre_bath_norm = nn.BatchNorm2d(3) - self.layers = nn.Sequential( - ConvBlock(3, 32, 9, 1, 4, pool_ks=2), - ConvBlock(32, 64, 7, 1, 3, pool_ks=2), - ConvBlock(64, 128, 5, 1, 2, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ConvBlock(128, 128, 3, 1, 1, pool_ks=(2, 1)), - ) # [b, 128, 1, 32] - self.dropout = nn.Dropout(dropout) - self.out_net = nn.Sequential( - nn.LayerNorm(128), - nn.Linear(128, out_dim) - ) - - def forward(self, x): - # x = self.pre_bath_norm(x) # [b, 3, h, w] - x = self.layers(x) # [b, ch, 2, w] - x = x.permute(0, 3, 1, 2) # [b, w, ch, 2] - x = x.flatten(-2) # [b, w, 2*ch] - x = self.dropout(x) - x = self.out_net(x) # [b, w, out_dim] - return x +from ..base import CNNImageEncoder, ResNetImageEncoder class TransformerImageDecoder(nn.Module): @@ -64,10 +19,9 @@ def __init__(self, hidden_dim, nhead, dim_feedforward, def forward(self, x): embeddings_ids = torch.arange(0, x.shape[1], device=x.device) - x = self.norm(x) - x = x + self.length_embeddings(embeddings_ids) + x = self.norm(x + self.length_embeddings(embeddings_ids)) x = x.permute(1, 0, 2) # [B, T, in_dim] to [T, B, in_dim] - x = self.model(x, is_causal=False) + x = self.model(x) x = self.out_proj(x) return x @@ -77,7 +31,7 @@ class OCR_CNNBERT(nn.Module): def __init__(self, vocab_size, hidden_dim, nhead, dim_feedforward, tr_layers, dropout=0.1): super().__init__() - self.encoder = CNNImageEncoderV2(out_dim=hidden_dim, dropout=dropout) + self.encoder = CNNImageEncoder(out_dim=hidden_dim, dropout=dropout) self.decoder = TransformerImageDecoder(vocab_size=vocab_size, hidden_dim=hidden_dim, nhead=nhead, dim_feedforward=dim_feedforward, tr_layers=tr_layers, dropout=dropout) self.softmax = nn.LogSoftmax(-1) # for CTCLoss diff --git a/modeling/encoders/resnet_bilstm.py b/modeling/encoders/resnet_bilstm.py new file mode 100644 index 0000000..5dfd59a --- /dev/null +++ b/modeling/encoders/resnet_bilstm.py @@ -0,0 +1,37 @@ +import torch +import torch.nn as nn + +from ..base import ResNetImageEncoder + + +class BiLSTMImageDecoder(nn.Module): + + def __init__(self, in_dim, hidden_dim, vocab_size, lstm_layers, dropout=0.1): + super().__init__() + self.norm = nn.LayerNorm(in_dim) + self.rnn = nn.LSTM(in_dim, hidden_dim, num_layers=lstm_layers, dropout=dropout, bidirectional=True, + batch_first=False) + self.out_proj = nn.Linear(hidden_dim * 2, vocab_size) + + def forward(self, x): + x = self.norm(x) + x = x.permute(1, 0, 2) # [B, T, in_dim] to [T, B, in_dim] + rnn_out, _ = self.rnn(x) + x = self.out_proj(rnn_out) + return x + + +class OCR_ResNetRNN(nn.Module): + + def __init__(self, resnet_model, vocab_size, hidden_dim=128, lstm_layers=2, dropout=0.1): + super().__init__() + self.encoder = ResNetImageEncoder(resnet_model, out_dim=hidden_dim, dropout=dropout) + self.decoder = BiLSTMImageDecoder(in_dim=hidden_dim, hidden_dim=hidden_dim, + vocab_size=vocab_size, lstm_layers=lstm_layers, dropout=dropout) + self.softmax = nn.LogSoftmax(-1) # for CTCLoss + + def forward(self, x): + x = self.encoder(x) + x = self.decoder(x) + x = self.softmax(x) + return x \ No newline at end of file diff --git a/modeling/encoders/vit_bilstm.py b/modeling/encoders/vit_bilstm.py index 404d803..7cade01 100644 --- a/modeling/encoders/vit_bilstm.py +++ b/modeling/encoders/vit_bilstm.py @@ -6,7 +6,7 @@ class BiLSTMImageDecoder(nn.Module): def __init__(self, in_dim, hidden_dim, vocab_size, lstm_layers, dropout=0.1): super().__init__() - self.norm = nn.BatchNorm1d(65) + self.norm = nn.LayerNorm(in_dim) self.rnn = nn.LSTM(in_dim, hidden_dim, num_layers=lstm_layers, dropout=dropout, bidirectional=True, batch_first=False) self.out_proj = nn.Linear(hidden_dim * 2, vocab_size) @@ -37,7 +37,7 @@ def forward(self, x): return x -class OCR_ViT(nn.Module): +class OCR_SoloViT(nn.Module): def __init__(self, vit_config: ViTConfig, vocab_size: int): super().__init__() diff --git a/training.ipynb b/training.ipynb deleted file mode 100644 index ad0e245..0000000 --- a/training.ipynb +++ /dev/null @@ -1,1724 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:36:51.025306Z", - "end_time": "2023-04-05T17:36:53.558316Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.optim as opt\n", - "from datasets import load_metric\n", - "from torch.utils.data import DataLoader, random_split\n", - "from tqdm.notebook import tqdm\n", - "import torchinfo\n", - "\n", - "from utils import OCRTokenizer, OCRDataset, collate_batch, save_experiment_info" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:36:53.597295Z", - "end_time": "2023-04-05T17:36:53.599566Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": "'cuda:0'" - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n", - "device" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tokenizer & Dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:36:53.600753Z", - "end_time": "2023-04-05T17:36:53.614838Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": "[(' ', 10061), ('8', 3028), ('S', 3012), ('b', 3006), ('V', 2992)]" - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tokenizer = OCRTokenizer('./synthetic_dataset/train/labels.txt')\n", - "tokenizer.counter.most_common(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:37:09.768545Z", - "end_time": "2023-04-05T17:37:09.784982Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": "(20000, 1500, 5000, 5000)" - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_dataset = OCRDataset('./synthetic_dataset/train/', tokenizer, do_train_transform=True, image_size=(64, 256)) # need quadratic images for vit, 64 h for others\n", - "val_dataset = OCRDataset('./synthetic_dataset/val/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", - "test_dataset = OCRDataset('./synthetic_dataset/test_clean/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", - "test_captchas_dataset = OCRDataset('./synthetic_dataset/test_captchas/', tokenizer, do_train_transform=False, image_size=(64, 256))\n", - "len(train_dataset), len(val_dataset), len(test_dataset), len(test_captchas_dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:37:10.193226Z", - "end_time": "2023-04-05T17:37:10.359740Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAEpCAYAAAAtX3BPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0kUlEQVR4nO3deVxU9f4/8NeAMCwyg6gwkAiIJeJCSYmTiRuXUcklNSVNsVzSQHNJ0Xu7uN3CXPJmubSKlZZ6c0kpFUW0FFExUlG5aij61QGXmEGURfj8/ujHuY6scwRZej0fj3nkOedzPuf9mTPTvDhzzhmFEEKAiIiIyEwWtV0AERER1U8MEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEfSXNWbMGHh6etZ2GXVCTEwMFAoFLl26VNulVOjSpUtQKBRYunRptfZb1vh79OiBHj16VOt2yqNQKDBv3jxpet68eVAoFLh58+Zj2b6npyfGjBnzWLZFDQtDBNU5CoWiSo+EhITaLtXEmTNnMG/evMfyQfzee+9h27ZtNb6d2vLjjz+afKjWF4cPH8a8efOQnZ1d26WUUpdro/qrUW0XQPSwr7/+2mT6q6++QlxcXKn5bdu2faTtfPbZZyguLn6kPh505swZzJ8/Hz169KjxIxzvvfcehg4dikGDBtXodmrLjz/+iJUrV9ZqkNizZ4/Z6xw+fBjz58/HmDFj4OjoWOX17t27h0aNavZ/xxXVlpaWBgsL/k1J5mOIoDrn1VdfNZk+cuQI4uLiSs1/2N27d2FnZ1fl7VhZWcmqj/4arK2ta7T/4uJiFBQUwMbGBjY2NjW6rcoolcpa3T7VX4yeVC/16NED7du3R3JyMgIDA2FnZ4e///3vAIDt27cjJCQEbm5uUCqV8Pb2xsKFC1FUVGTSx8PnRDz4ffunn34Kb29vKJVKPPfcczh27FiF9cTExODll18GAPTs2bPMr1x++ukndOvWDfb29nBwcEBISAhSU1Ol5fHx8bCwsEBUVJRJ3xs2bIBCocDq1asB/Pl1T25uLtatWydtp+T77JycHEydOhWenp5QKpVwdnbG3/72N5w4ccKs57eqNQN/Po+NGzfG//3f/2HQoEFo3LgxmjdvjrfffrvUc37r1i2MGjUKKpUKjo6OCAsLw2+//QaFQoGYmBipv5UrV0pjLXk8zNx9VCI1NRW9evWCra0tWrRogX/9619lHpEq65yIjz76CO3atYOdnR2aNGmCZ599Fhs2bADw53kMM2fOBAB4eXlJdZd8vaVQKBAREYH169ejXbt2UCqV2LVrl7SsrKMuN2/exLBhw6BSqdC0aVO89dZbyMvLk5aXvGZLnrsHPdhnZbWVdU7E77//jpdffhlOTk6ws7NDly5dEBsba9ImISEBCoUCmzZtwrvvvosWLVrAxsYGvXv3xoULF0rVRA0Pj0RQvXXr1i307dsXoaGhePXVV+Hi4gLgzw/0xo0bY/r06WjcuDHi4+MRFRUFo9GIJUuWVNrvhg0bkJOTgzfeeAMKhQKLFy/G4MGD8fvvv5d79CIwMBBTpkzBihUr8Pe//136qqXkv19//TXCwsKg0+nw/vvv4+7du1i9ejVeeOEF/Prrr/D09ESvXr3w5ptvIjo6GoMGDUKnTp1w/fp1TJ48GUFBQZg4caLU17hx49C5c2dMmDABAODt7Q0AmDhxIv7zn/8gIiICvr6+uHXrFn755RecPXsWnTp1Muv5rUrNJYqKiqDT6RAQEIClS5di7969WLZsGby9vTFp0iQAf/7l3b9/fxw9ehSTJk2Cj48Ptm/fjrCwMJPtvvHGG7h27VqZX2E9yj4CAL1ej549e+L+/fuYPXs27O3t8emnn8LW1rbS5+Ozzz7DlClTMHToUOnD/OTJk0hKSsKIESMwePBg/Pe//8W3336L5cuXo1mzZgCA5s2bS33Ex8dj06ZNiIiIQLNmzSr92mvYsGHw9PREdHQ0jhw5ghUrVuCPP/7AV199VWm9D6pKbQ/KzMzE888/j7t372LKlClo2rQp1q1bhwEDBuA///kPXnrpJZP2ixYtgoWFBd5++20YDAYsXrwYI0eORFJSkll1Uj0kiOq48PBw8fBLtXv37gKAWLNmTan2d+/eLTXvjTfeEHZ2diIvL0+aFxYWJjw8PKTp9PR0AUA0bdpU3L59W5q/fft2AUDs2LGjwjo3b94sAIj9+/ebzM/JyRGOjo5i/PjxJvP1er1Qq9Um83Nzc0Xr1q1Fu3btRF5enggJCREqlUpcvnzZZF17e3sRFhZWqga1Wi3Cw8MrrLMsa9euFQBEenq62TWHhYUJAGLBggUmbZ955hnh7+8vTX///fcCgPj3v/8tzSsqKhK9evUSAMTatWul+WXtcyEefR9NnTpVABBJSUnSvKysLKFWq03GL8Sfr7Hu3btL0wMHDhTt2rWrsP8lS5aU6qcEAGFhYSFSU1PLXDZ37lxpeu7cuQKAGDBggEm7N998UwAQv/32mxDif8/Hg89deX1WVJuHh4fJ66nkefr555+leTk5OcLLy0t4enqKoqIiIYQQ+/fvFwBE27ZtRX5+vtT2ww8/FADEqVOnSm2LGhZ+nUH1llKpxGuvvVZq/oN/Vebk5ODmzZvo1q0b7t69i3PnzlXa7/Dhw9GkSRNpulu3bgD+PLwrR1xcHLKzs/HKK6/g5s2b0sPS0hIBAQHYv3+/1NbOzg4xMTE4e/YsAgMDERsbi+XLl6Nly5ZV2pajoyOSkpJw7do1WbXKqblEyZGSEt26dTN5znbt2gUrKyuMHz9emmdhYYHw8HCz65O7j3788Ud06dIFnTt3luY1b94cI0eOrHSbjo6OuHr1apW/NilL9+7d4evrW+X2Dz83kydPBvDnOGrSjz/+iM6dO+OFF16Q5jVu3BgTJkzApUuXcObMGZP2r732msk5JI/6nqH6g19nUL31xBNPlHnyW2pqKt555x3Ex8fDaDSaLDMYDJX2+/AHdsmH1R9//CGrzvPnzwMAevXqVeZylUplMt21a1dMmjQJK1euhE6nw+uvv17lbS1evBhhYWFwd3eHv78/+vXrh9GjR6NVq1Y1WrONjU2pQ+NNmjQxec4uX74MV1fXUie/tm7d2qzaAPn76PLlywgICCg1v02bNpVuMzIyEnv37kXnzp3RunVrBAcHY8SIEejatWuV6/by8qpyWwB48sknTaa9vb1hYWFR45cRl/c8lXw9d/nyZbRv316aX93vGao/GCKo3irre+zs7Gx0794dKpUKCxYsgLe3N2xsbHDixAlERkZW6ZJOS0vLMucLIWTVWbLNr7/+GhqNptTyhy/ty8/Pl07IvHjxollXnQwbNgzdunXD1q1bsWfPHixZsgTvv/8+tmzZgr59+9ZYzeU9ZzWluvdRVbRt2xZpaWnYuXMndu3ahe+//x6rVq1CVFQU5s+fX6U+qnLuRUUePsG0rBNOAZQ6obWm1cb+oLqBIYIalISEBNy6dQtbtmxBYGCgND89Pb3Gt13e/9BLTnp0dnZGUFBQpf3MnTsXZ8+exdKlSxEZGYnZs2djxYoVVdoWALi6uuLNN9/Em2++iaysLHTq1AnvvvuuWSHC3JqrwsPDA/v37y8Viso6i7+i8T1qDSVHWR6UlpZWpfXt7e0xfPhwDB8+HAUFBRg8eDDeffddzJkzBzY2NtVe9/nz502OXly4cAHFxcXSCZklf/E/fAOpy5cvl+rLnNo8PDzKfE5Kvg708PCocl/UsPGcCGpQSv4ievAvoIKCAqxatarGt21vbw+g9P/QdTodVCoV3nvvPRQWFpZa78aNG9K/k5KSsHTpUkydOhUzZszAzJkz8fHHH+PAgQOltvXwdoqKikp9XePs7Aw3Nzfk5+ebNRZzajanz8LCQnz22WfSvOLiYulyzgeV91w+qn79+uHIkSM4evSoNO/GjRtYv359peveunXLZNra2hq+vr4QQkjPUXXX/fBz89FHHwGAFAhVKhWaNWuGgwcPmrQr6/VuTm39+vXD0aNHkZiYKM3Lzc3Fp59+Ck9PT7PO66CGjUciqEF5/vnn0aRJE4SFhWHKlClQKBT4+uuvH8th1aeffhqWlpZ4//33YTAYoFQq0atXLzg7O2P16tUYNWoUOnXqhNDQUDRv3hwZGRmIjY1F165d8fHHHyMvLw9hYWF48skn8e677wIA5s+fjx07duC1117DqVOnpA8Cf39/7N27Fx988AHc3Nzg5eWFNm3aoEWLFhg6dCj8/PzQuHFj7N27F8eOHcOyZcvMGotKpapSzeYYNGgQOnfujBkzZuDChQvw8fHBDz/8gNu3bwMw/UvZ398fADBlyhTodDpYWloiNDTUrO2VZdasWfj666/Rp08fvPXWW9Ilnh4eHjh58mSF6wYHB0Oj0aBr165wcXHB2bNn8fHHHyMkJAQODg4mdf/jH/9AaGgorKys0L9/f2m/mSs9PR0DBgxAnz59kJiYiG+++QYjRoyAn5+f1GbcuHFYtGgRxo0bh2effRYHDx7Ef//731J9mVPb7Nmz8e2336Jv376YMmUKnJycsG7dOqSnp+P777/n3S3pf2rz0hCiqijvEs/yLrc7dOiQ6NKli7C1tRVubm5i1qxZYvfu3aUuvyzvEs8lS5aU6hMPXS5Xns8++0y0atVKWFpaltre/v37hU6nE2q1WtjY2Ahvb28xZswYcfz4cSGEENOmTROWlpYmlx8KIcTx48dFo0aNxKRJk6R5586dE4GBgcLW1lYAEGFhYSI/P1/MnDlT+Pn5CQcHB2Fvby/8/PzEqlWrKq374Us8q1qzEH8+j/b29qX6LLlM8UE3btwQI0aMEA4ODkKtVosxY8aIQ4cOCQDiu+++k9rdv39fTJ48WTRv3lwoFAqpn+rYRydPnhTdu3cXNjY24oknnhALFy4UX3zxRaWXeH7yySciMDBQNG3aVCiVSuHt7S1mzpwpDAaDSf8LFy4UTzzxhLCwsDDpE0C5l98+XHvJc3fmzBkxdOhQ4eDgIJo0aSIiIiLEvXv3TNa9e/euGDt2rFCr1cLBwUEMGzZMZGVllfl8lFfbw5d4CiHExYsXxdChQ4Wjo6OwsbERnTt3Fjt37jRpU3KJ5+bNm03mV3TpKTUsCiF45gsR1Z5t27bhpZdewi+//GLWlQ5EVPsYIojosbl3757JFQpFRUUIDg7G8ePHodfrH/nqBSJ6vHhOBBE9NpMnT8a9e/eg1WqRn5+PLVu24PDhw3jvvfcYIIjqIR6JIKLHZsOGDVi2bBkuXLiAvLw8tG7dGpMmTUJERERtl0ZEMjBEEBERkSy8ToeIiIhkYYggIiIiWRrsiZXFxcW4du0aHBwcauwWukRERA2REAI5OTlwc3Or8OZiDTZEXLt2De7u7rVdBhERUb115coVtGjRotzlDTZElNyG9sqVK6V+tpiIiIjKZzQa4e7uLn2WlqfBhoiSrzBUKhVDBBERkQyVnQ7AEyuJiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGuzNpoiqm+fs2NouoUouLQqp7RKI6C+CRyKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGQxK0SsXr0aHTt2hEqlgkqlglarxU8//SQtz8vLQ3h4OJo2bYrGjRtjyJAhyMzMNOkjIyMDISEhsLOzg7OzM2bOnIn79++btElISECnTp2gVCrRunVrxMTEyB8hERER1QizQkSLFi2waNEiJCcn4/jx4+jVqxcGDhyI1NRUAMC0adOwY8cObN68GQcOHMC1a9cwePBgaf2ioiKEhISgoKAAhw8fxrp16xATE4OoqCipTXp6OkJCQtCzZ0+kpKRg6tSpGDduHHbv3l1NQyYiIqLqoBBCiEfpwMnJCUuWLMHQoUPRvHlzbNiwAUOHDgUAnDt3Dm3btkViYiK6dOmCn376CS+++CKuXbsGFxcXAMCaNWsQGRmJGzduwNraGpGRkYiNjcXp06elbYSGhiI7Oxu7du2qcl1GoxFqtRoGgwEqlepRhkgEAPCcHVvbJVTJpUUhtV0CEdVzVf0MlX1ORFFREb777jvk5uZCq9UiOTkZhYWFCAoKktr4+PigZcuWSExMBAAkJiaiQ4cOUoAAAJ1OB6PRKB3NSExMNOmjpE1JH+XJz8+H0Wg0eRAREVHNMTtEnDp1Co0bN4ZSqcTEiROxdetW+Pr6Qq/Xw9raGo6OjibtXVxcoNfrAQB6vd4kQJQsL1lWURuj0Yh79+6VW1d0dDTUarX0cHd3N3doREREZAazQ0SbNm2QkpKCpKQkTJo0CWFhYThz5kxN1GaWOXPmwGAwSI8rV67UdklEREQNWiNzV7C2tkbr1q0BAP7+/jh27Bg+/PBDDB8+HAUFBcjOzjY5GpGZmQmNRgMA0Gg0OHr0qEl/JVdvPNjm4Ss6MjMzoVKpYGtrW25dSqUSSqXS3OEQERGRTI98n4ji4mLk5+fD398fVlZW2Ldvn7QsLS0NGRkZ0Gq1AACtVotTp04hKytLahMXFweVSgVfX1+pzYN9lLQp6YOIiIjqBrOORMyZMwd9+/ZFy5YtkZOTgw0bNiAhIQG7d++GWq3G2LFjMX36dDg5OUGlUmHy5MnQarXo0qULACA4OBi+vr4YNWoUFi9eDL1ej3feeQfh4eHSUYSJEyfi448/xqxZs/D6668jPj4emzZtQmxs/TgznoiI6K/CrBCRlZWF0aNH4/r161Cr1ejYsSN2796Nv/3tbwCA5cuXw8LCAkOGDEF+fj50Oh1WrVolrW9paYmdO3di0qRJ0Gq1sLe3R1hYGBYsWCC18fLyQmxsLKZNm4YPP/wQLVq0wOeffw6dTldNQyYiIqLq8Mj3iaireJ8Iqm68TwQR/VXU+H0iiIiI6K+NIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkMfu210TVrb5cOklERKZ4JIKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWfhT4EQNTH35afVLi0JquwQiekRmHYmIjo7Gc889BwcHBzg7O2PQoEFIS0szadOjRw8oFAqTx8SJE03aZGRkICQkBHZ2dnB2dsbMmTNx//59kzYJCQno1KkTlEolWrdujZiYGHkjJCIiohphVog4cOAAwsPDceTIEcTFxaGwsBDBwcHIzc01aTd+/Hhcv35deixevFhaVlRUhJCQEBQUFODw4cNYt24dYmJiEBUVJbVJT09HSEgIevbsiZSUFEydOhXjxo3D7t27H3G4REREVF3M+jpj165dJtMxMTFwdnZGcnIyAgMDpfl2dnbQaDRl9rFnzx6cOXMGe/fuhYuLC55++mksXLgQkZGRmDdvHqytrbFmzRp4eXlh2bJlAIC2bdvil19+wfLly6HT6cwdIxEREdWARzqx0mAwAACcnJxM5q9fvx7NmjVD+/btMWfOHNy9e1dalpiYiA4dOsDFxUWap9PpYDQakZqaKrUJCgoy6VOn0yExMfFRyiUiIqJqJPvEyuLiYkydOhVdu3ZF+/btpfkjRoyAh4cH3NzccPLkSURGRiItLQ1btmwBAOj1epMAAUCa1uv1FbYxGo24d+8ebG1tS9WTn5+P/Px8adpoNModGhEREVWB7BARHh6O06dP45dffjGZP2HCBOnfHTp0gKurK3r37o2LFy/C29tbfqWViI6Oxvz582usfyIiIjIl6+uMiIgI7Ny5E/v370eLFi0qbBsQEAAAuHDhAgBAo9EgMzPTpE3JdMl5FOW1UalUZR6FAIA5c+bAYDBIjytXrpg/MCIiIqoys0KEEAIRERHYunUr4uPj4eXlVek6KSkpAABXV1cAgFarxalTp5CVlSW1iYuLg0qlgq+vr9Rm3759Jv3ExcVBq9WWux2lUgmVSmXyICIioppjVogIDw/HN998gw0bNsDBwQF6vR56vR737t0DAFy8eBELFy5EcnIyLl26hB9++AGjR49GYGAgOnbsCAAIDg6Gr68vRo0ahd9++w27d+/GO++8g/DwcCiVSgDAxIkT8fvvv2PWrFk4d+4cVq1ahU2bNmHatGnVPHwiIiKSy6wQsXr1ahgMBvTo0QOurq7SY+PGjQAAa2tr7N27F8HBwfDx8cGMGTMwZMgQ7NixQ+rD0tISO3fuhKWlJbRaLV599VWMHj0aCxYskNp4eXkhNjYWcXFx8PPzw7Jly/D555/z8k4iIqI6RCGEELVdRE0wGo1Qq9UwGAz8aqOOqy+3aabqxdteE9VdVf0M5W9nNFD8YCYioprGX/EkIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWRgiiIiISBaGCCIiIpKFIYKIiIhkYYggIiIiWXjHSjPxTpBERER/4pEIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoV3rCSiWlGf7v56aVFIbZdAVCfxSAQRERHJYlaIiI6OxnPPPQcHBwc4Oztj0KBBSEtLM2mTl5eH8PBwNG3aFI0bN8aQIUOQmZlp0iYjIwMhISGws7ODs7MzZs6cifv375u0SUhIQKdOnaBUKtG6dWvExMTIGyERERHVCLNCxIEDBxAeHo4jR44gLi4OhYWFCA4ORm5urtRm2rRp2LFjBzZv3owDBw7g2rVrGDx4sLS8qKgIISEhKCgowOHDh7Fu3TrExMQgKipKapOeno6QkBD07NkTKSkpmDp1KsaNG4fdu3dXw5CJiIioOiiEEELuyjdu3ICzszMOHDiAwMBAGAwGNG/eHBs2bMDQoUMBAOfOnUPbtm2RmJiILl264KeffsKLL76Ia9euwcXFBQCwZs0aREZG4saNG7C2tkZkZCRiY2Nx+vRpaVuhoaHIzs7Grl27qlSb0WiEWq2GwWCASqWSO8RS6tP3uERUPXhOBP3VVPUz9JHOiTAYDAAAJycnAEBycjIKCwsRFBQktfHx8UHLli2RmJgIAEhMTESHDh2kAAEAOp0ORqMRqampUpsH+yhpU9IHERER1T7ZV2cUFxdj6tSp6Nq1K9q3bw8A0Ov1sLa2hqOjo0lbFxcX6PV6qc2DAaJkecmyitoYjUbcu3cPtra2perJz89Hfn6+NG00GuUOjYiIiKpA9pGI8PBwnD59Gt9991111iNbdHQ01Gq19HB3d6/tkoiIiBo0WSEiIiICO3fuxP79+9GiRQtpvkajQUFBAbKzs03aZ2ZmQqPRSG0evlqjZLqyNiqVqsyjEAAwZ84cGAwG6XHlyhU5QyMiIqIqMitECCEQERGBrVu3Ij4+Hl5eXibL/f39YWVlhX379knz0tLSkJGRAa1WCwDQarU4deoUsrKypDZxcXFQqVTw9fWV2jzYR0mbkj7KolQqoVKpTB5ERERUc8w6JyI8PBwbNmzA9u3b4eDgIJ3DoFarYWtrC7VajbFjx2L69OlwcnKCSqXC5MmTodVq0aVLFwBAcHAwfH19MWrUKCxevBh6vR7vvPMOwsPDoVQqAQATJ07Exx9/jFmzZuH1119HfHw8Nm3ahNhYXhlBRERUV5h1JGL16tUwGAzo0aMHXF1dpcfGjRulNsuXL8eLL76IIUOGIDAwEBqNBlu2bJGWW1paYufOnbC0tIRWq8Wrr76K0aNHY8GCBVIbLy8vxMbGIi4uDn5+fli2bBk+//xz6HS6ahgyERERVYdHuk9EXcb7RBBRdeF9Iuiv5rHcJ4KIiIj+uvgrnkRElagvRyB5xIQeNx6JICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlnMDhEHDx5E//794ebmBoVCgW3btpksHzNmDBQKhcmjT58+Jm1u376NkSNHQqVSwdHREWPHjsWdO3dM2pw8eRLdunWDjY0N3N3dsXjxYvNHR0RERDXG7BCRm5sLPz8/rFy5stw2ffr0wfXr16XHt99+a7J85MiRSE1NRVxcHHbu3ImDBw9iwoQJ0nKj0Yjg4GB4eHggOTkZS5Yswbx58/Dpp5+aWy4RERHVkEbmrtC3b1/07du3wjZKpRIajabMZWfPnsWuXbtw7NgxPPvsswCAjz76CP369cPSpUvh5uaG9evXo6CgAF9++SWsra3Rrl07pKSk4IMPPjAJG0RERFR7auSciISEBDg7O6NNmzaYNGkSbt26JS1LTEyEo6OjFCAAICgoCBYWFkhKSpLaBAYGwtraWmqj0+mQlpaGP/74o8xt5ufnw2g0mjyIiIio5lR7iOjTpw+++uor7Nu3D++//z4OHDiAvn37oqioCACg1+vh7Oxssk6jRo3g5OQEvV4vtXFxcTFpUzJd0uZh0dHRUKvV0sPd3b26h0ZEREQPMPvrjMqEhoZK/+7QoQM6duwIb29vJCQkoHfv3tW9OcmcOXMwffp0adpoNDJIEBER1aAav8SzVatWaNasGS5cuAAA0Gg0yMrKMmlz//593L59WzqPQqPRIDMz06RNyXR551oolUqoVCqTBxEREdWcGg8RV69exa1bt+Dq6goA0Gq1yM7ORnJystQmPj4excXFCAgIkNocPHgQhYWFUpu4uDi0adMGTZo0qemSiYiIqArMDhF37txBSkoKUlJSAADp6elISUlBRkYG7ty5g5kzZ+LIkSO4dOkS9u3bh4EDB6J169bQ6XQAgLZt26JPnz4YP348jh49ikOHDiEiIgKhoaFwc3MDAIwYMQLW1tYYO3YsUlNTsXHjRnz44YcmX1cQERFR7TI7RBw/fhzPPPMMnnnmGQDA9OnT8cwzzyAqKgqWlpY4efIkBgwYgKeeegpjx46Fv78/fv75ZyiVSqmP9evXw8fHB71790a/fv3wwgsvmNwDQq1WY8+ePUhPT4e/vz9mzJiBqKgoXt5JRERUhyiEEKK2i6gJRqMRarUaBoOhWs+P8JwdW219ERFVp0uLQmq7BGogqvoZyt/OICIiIlkYIoiIiEgWhggiIiKSpdpvNkVERLWjvpyzxXM3Gg4eiSAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFrNDxMGDB9G/f3+4ublBoVBg27ZtJsuFEIiKioKrqytsbW0RFBSE8+fPm7S5ffs2Ro4cCZVKBUdHR4wdOxZ37twxaXPy5El069YNNjY2cHd3x+LFi80fHREREdUYs0NEbm4u/Pz8sHLlyjKXL168GCtWrMCaNWuQlJQEe3t76HQ65OXlSW1GjhyJ1NRUxMXFYefOnTh48CAmTJggLTcajQgODoaHhweSk5OxZMkSzJs3D59++qmMIRIREVFNUAghhOyVFQps3boVgwYNAvDnUQg3NzfMmDEDb7/9NgDAYDDAxcUFMTExCA0NxdmzZ+Hr64tjx47h2WefBQDs2rUL/fr1w9WrV+Hm5obVq1fjH//4B/R6PaytrQEAs2fPxrZt23Du3Lkq1WY0GqFWq2EwGKBSqeQOsRTP2bHV1hcR0V/RpUUhtV0CVaKqn6HVek5Eeno69Ho9goKCpHlqtRoBAQFITEwEACQmJsLR0VEKEAAQFBQECwsLJCUlSW0CAwOlAAEAOp0OaWlp+OOPP6qzZCIiIpKpUXV2ptfrAQAuLi4m811cXKRler0ezs7OpkU0agQnJyeTNl5eXqX6KFnWpEmTUtvOz89Hfn6+NG00Gh9xNERERFSRBnN1RnR0NNRqtfRwd3ev7ZKIiIgatGoNERqNBgCQmZlpMj8zM1NaptFokJWVZbL8/v37uH37tkmbsvp4cBsPmzNnDgwGg/S4cuXKow+IiIiIylWtIcLLywsajQb79u2T5hmNRiQlJUGr1QIAtFotsrOzkZycLLWJj49HcXExAgICpDYHDx5EYWGh1CYuLg5t2rQp86sMAFAqlVCpVCYPIiIiqjlmh4g7d+4gJSUFKSkpAP48mTIlJQUZGRlQKBSYOnUq/vWvf+GHH37AqVOnMHr0aLi5uUlXcLRt2xZ9+vTB+PHjcfToURw6dAgREREIDQ2Fm5sbAGDEiBGwtrbG2LFjkZqaio0bN+LDDz/E9OnTq23gRERE9GjMPrHy+PHj6NmzpzRd8sEeFhaGmJgYzJo1C7m5uZgwYQKys7PxwgsvYNeuXbCxsZHWWb9+PSIiItC7d29YWFhgyJAhWLFihbRcrVZjz549CA8Ph7+/P5o1a4aoqCiTe0kQERFR7Xqk+0TUZbxPBBFR3cT7RNR9Vf0MrdZLPImIiCpTX/4YY9ipXIO5xJOIiIgeL4YIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIFoYIIiIikoUhgoiIiGRhiCAiIiJZGCKIiIhIlmoPEfPmzYNCoTB5+Pj4SMvz8vIQHh6Opk2bonHjxhgyZAgyMzNN+sjIyEBISAjs7Ozg7OyMmTNn4v79+9VdKhERET2CRjXRabt27bB3797/baTR/zYzbdo0xMbGYvPmzVCr1YiIiMDgwYNx6NAhAEBRURFCQkKg0Whw+PBhXL9+HaNHj4aVlRXee++9miiXiIiIZKiRENGoUSNoNJpS8w0GA7744gts2LABvXr1AgCsXbsWbdu2xZEjR9ClSxfs2bMHZ86cwd69e+Hi4oKnn34aCxcuRGRkJObNmwdra+uaKJmIiIjMVCPnRJw/fx5ubm5o1aoVRo4ciYyMDABAcnIyCgsLERQUJLX18fFBy5YtkZiYCABITExEhw4d4OLiIrXR6XQwGo1ITU2tiXKJiIhIhmo/EhEQEICYmBi0adMG169fx/z589GtWzecPn0aer0e1tbWcHR0NFnHxcUFer0eAKDX600CRMnykmXlyc/PR35+vjRtNBqraURERERUlmoPEX379pX+3bFjRwQEBMDDwwObNm2Cra1tdW9OEh0djfnz59dY/0RERGSqxi/xdHR0xFNPPYULFy5Ao9GgoKAA2dnZJm0yMzOlcyg0Gk2pqzVKpss6z6LEnDlzYDAYpMeVK1eqdyBERERkosZDxJ07d3Dx4kW4urrC398fVlZW2Ldvn7Q8LS0NGRkZ0Gq1AACtVotTp04hKytLahMXFweVSgVfX99yt6NUKqFSqUweREREVHOq/euMt99+G/3794eHhweuXbuGuXPnwtLSEq+88grUajXGjh2L6dOnw8nJCSqVCpMnT4ZWq0WXLl0AAMHBwfD19cWoUaOwePFi6PV6vPPOOwgPD4dSqazucomIiEimag8RV69exSuvvIJbt26hefPmeOGFF3DkyBE0b94cALB8+XJYWFhgyJAhyM/Ph06nw6pVq6T1LS0tsXPnTkyaNAlarRb29vYICwvDggULqrtUIiIiegQKIYSo7SJqgtFohFqthsFgqNavNjxnx1ZbX0REVHddWhRS2yXUmqp+hvK3M4iIiEiWGrljJRERUX1Xn44819ZREx6JICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlkYIoiIiEgWhggiIiKShSGCiIiIZGGIICIiIlnqdIhYuXIlPD09YWNjg4CAABw9erS2SyIiIqL/r86GiI0bN2L69OmYO3cuTpw4AT8/P+h0OmRlZdV2aURERIQ6HCI++OADjB8/Hq+99hp8fX2xZs0a2NnZ4csvv6zt0oiIiAhAo9ouoCwFBQVITk7GnDlzpHkWFhYICgpCYmJimevk5+cjPz9fmjYYDAAAo9FYrbUV59+t1v6IiIgeVXV/1pX0J4SosF2dDBE3b95EUVERXFxcTOa7uLjg3LlzZa4THR2N+fPnl5rv7u5eIzUSERHVFep/10y/OTk5UKvV5S6vkyFCjjlz5mD69OnSdHFxMW7fvo2mTZtCoVA89nqMRiPc3d1x5coVqFSqx779mtaQx9eQxwZwfPVZQx4b0LDHV9/GJoRATk4O3NzcKmxXJ0NEs2bNYGlpiczMTJP5mZmZ0Gg0Za6jVCqhVCpN5jk6OtZUiVWmUqnqxQtGroY8voY8NoDjq88a8tiAhj2++jS2io5AlKiTJ1ZaW1vD398f+/btk+YVFxdj37590Gq1tVgZERERlaiTRyIAYPr06QgLC8Ozzz6Lzp0749///jdyc3Px2muv1XZpREREhDocIoYPH44bN24gKioKer0eTz/9NHbt2lXqZMu6SqlUYu7cuaW+YmkoGvL4GvLYAI6vPmvIYwMa9vga6tgUorLrN4iIiIjKUCfPiSAiIqK6jyGCiIiIZGGIICIiIlkYIoiIiEgWhggZoqOj8dxzz8HBwQHOzs4YNGgQ0tLSKlwnJiYGCoXC5GFjY/OYKjbPvHnzStXq4+NT4TqbN2+Gj48PbGxs0KFDB/z444+PqVrzeXp6lhqfQqFAeHh4me3r8r47ePAg+vfvDzc3NygUCmzbts1kuRACUVFRcHV1ha2tLYKCgnD+/PlK+125ciU8PT1hY2ODgIAAHD16tIZGULGKxldYWIjIyEh06NAB9vb2cHNzw+jRo3Ht2rUK+5Tz+q4Jle27MWPGlKqzT58+lfZbH/YdgDLfgwqFAkuWLCm3z7qy76ryGZCXl4fw8HA0bdoUjRs3xpAhQ0rdQPFhct+vtYkhQoYDBw4gPDwcR44cQVxcHAoLCxEcHIzc3NwK11OpVLh+/br0uHz58mOq2Hzt2rUzqfWXX34pt+3hw4fxyiuvYOzYsfj1118xaNAgDBo0CKdPn36MFVfdsWPHTMYWFxcHAHj55ZfLXaeu7rvc3Fz4+flh5cqVZS5fvHgxVqxYgTVr1iApKQn29vbQ6XTIy8srt8+NGzdi+vTpmDt3Lk6cOAE/Pz/odDpkZWXV1DDKVdH47t69ixMnTuCf//wnTpw4gS1btiAtLQ0DBgyotF9zXt81pbJ9BwB9+vQxqfPbb7+tsM/6su8AmIzr+vXr+PLLL6FQKDBkyJAK+60L+64qnwHTpk3Djh07sHnzZhw4cADXrl3D4MGDK+xXzvu11gl6ZFlZWQKAOHDgQLlt1q5dK9Rq9eMr6hHMnTtX+Pn5Vbn9sGHDREhIiMm8gIAA8cYbb1RzZTXjrbfeEt7e3qK4uLjM5fVl3wEQW7dulaaLi4uFRqMRS5YskeZlZ2cLpVIpvv3223L76dy5swgPD5emi4qKhJubm4iOjq6Ruqvq4fGV5ejRowKAuHz5crltzH19Pw5ljS0sLEwMHDjQrH7q874bOHCg6NWrV4Vt6uK+E6L0Z0B2drawsrISmzdvltqcPXtWABCJiYll9iH3/VrbeCSiGpT87LiTk1OF7e7cuQMPDw+4u7tj4MCBSE1NfRzlyXL+/Hm4ubmhVatWGDlyJDIyMsptm5iYiKCgIJN5Op2u3J9tr0sKCgrwzTff4PXXX6/wh9rq074rkZ6eDr1eb7Jv1Go1AgICyt03BQUFSE5ONlnHwsICQUFB9WJ/GgwGKBSKSn83x5zXd21KSEiAs7Mz2rRpg0mTJuHWrVvltq3P+y4zMxOxsbEYO3ZspW3r4r57+DMgOTkZhYWFJvvCx8cHLVu2LHdfyHm/1gUMEY+ouLgYU6dORdeuXdG+ffty27Vp0wZffvkltm/fjm+++QbFxcV4/vnncfXq1cdYbdUEBAQgJiYGu3btwurVq5Geno5u3bohJyenzPZ6vb7Mn23X6/WPo9xHsm3bNmRnZ2PMmDHltqlP++5BJc+/Ofvm5s2bKCoqqpf7My8vD5GRkXjllVcq/IEjc1/ftaVPnz746quvsG/fPrz//vs4cOAA+vbti6KiojLb1+d9t27dOjg4OFR6uL8u7ruyPgP0ej2sra1LhdmK9oWc92tdUGdve11fhIeH4/Tp05V+L6fVak1+POz5559H27Zt8cknn2DhwoU1XaZZ+vbtK/27Y8eOCAgIgIeHBzZt2lSlvxTqky+++AJ9+/at8Odu69O++6sqLCzEsGHDIITA6tWrK2xbX17foaGh0r87dOiAjh07wtvbGwkJCejdu3ctVlb9vvzyS4wcObLSE5br4r6r6mdAQ8UjEY8gIiICO3fuxP79+9GiRQuz1rWyssIzzzyDCxcu1FB11cfR0RFPPfVUubVqNBqzfra9rrh8+TL27t2LcePGmbVefdl3Jc+/OfumWbNmsLS0rFf7syRAXL58GXFxcWb/zHJlr++6olWrVmjWrFm5ddbHfQcAP//8M9LS0sx+HwK1v+/K+wzQaDQoKChAdna2SfuK9oWc92tdwBAhgxACERER2Lp1K+Lj4+Hl5WV2H0VFRTh16hRcXV1roMLqdefOHVy8eLHcWrVarcnPtgNAXFxcnf/Z9rVr18LZ2RkhISFmrVdf9p2Xlxc0Go3JvjEajUhKSip331hbW8Pf399kneLiYuzbt69O7s+SAHH+/Hns3bsXTZs2NbuPyl7fdcXVq1dx69atcuusb/uuxBdffAF/f3/4+fmZvW5t7bvKPgP8/f1hZWVlsi/S0tKQkZFR7r6Q836tE2r5xM56adKkSUKtVouEhARx/fp16XH37l2pzahRo8Ts2bOl6fnz54vdu3eLixcviuTkZBEaGipsbGxEampqbQyhQjNmzBAJCQkiPT1dHDp0SAQFBYlmzZqJrKwsIUTpsR06dEg0atRILF26VJw9e1bMnTtXWFlZiVOnTtXWECpVVFQkWrZsKSIjI0stq0/7LicnR/z666/i119/FQDEBx98IH799Vfp6oRFixYJR0dHsX37dnHy5EkxcOBA4eXlJe7duyf10atXL/HRRx9J0999951QKpUiJiZGnDlzRkyYMEE4OjoKvV5fp8ZXUFAgBgwYIFq0aCFSUlJM3ov5+fnljq+y13ddGFtOTo54++23RWJiokhPTxd79+4VnTp1Ek8++aTIy8srd2z1Zd+VMBgMws7OTqxevbrMPurqvqvKZ8DEiRNFy5YtRXx8vDh+/LjQarVCq9Wa9NOmTRuxZcsWaboq79e6hiFCBgBlPtauXSu16d69uwgLC5Omp06dKlq2bCmsra2Fi4uL6Nevnzhx4sTjL74Khg8fLlxdXYW1tbV44oknxPDhw8WFCxek5Q+PTQghNm3aJJ566ilhbW0t2rVrJ2JjYx9z1ebZvXu3ACDS0tJKLatP+27//v1lvhZL6i8uLhb//Oc/hYuLi1AqlaJ3796lxuzh4SHmzp1rMu+jjz6Sxty5c2dx5MiRxzQiUxWNLz09vdz34v79+6U+Hh5fZa/vujC2u3fviuDgYNG8eXNhZWUlPDw8xPjx40uFgfq670p88sknwtbWVmRnZ5fZR13dd1X5DLh375548803RZMmTYSdnZ146aWXxPXr10v18+A6VXm/1jX8KXAiIiKShedEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsjBEEBERkSwMEURERCQLQwQRERHJwhBBREREsvw/pzhntvmyW6EAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(6, 3))\n", - "plt.hist(np.array(list(map(lambda x: len(x[1]), train_dataset.data))))\n", - "plt.title('Train texts length distribution')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "start_time": "2023-04-05T17:43:28.993785Z", - "end_time": "2023-04-05T17:43:29.607506Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAHmCAYAAADOajgCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wVxdnHf7N76r3n9t7g0rugKM2KgiVq0NhjXkGMJraYpjGvUTSxJWpMfGNsCWCNFYzRWGlio0jvXDrc3utpu8/7x+7O2VMuXDp4ny+fw7lnd3Z2ZnZ3duY3zzwjiIjAMAzDMAzDMAzDMAzDMEy3QznaCWAYhmEYhmEYhmEYhmEY5ujA4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMMxxjBACt91229FOxnHP/PnzIYTA/Pnzj3ZSGIZhGIZhjigsDjIMwzAMc8QQQnTpcygEmvb2dtx///3HvNjz3//+F/fff//RTgbDMAzDMAzTTXEc7QQwDMMwDNN9ePnll6N+v/TSS/j000/jtg8aNOigz9Xe3o4HHngAAHDWWWcddHyHi//+9794+umnWSBkGIZhGIZhjgosDjIMwzAMc8T40Y9+FPX7m2++waeffhq3nWEYhmEYhmGYIwNPK2YYhmEY5phC13X85S9/wZAhQ+DxeJCXl4ef/OQnaGhoiAq3dOlSnHfeecjOzobX60WvXr0wdepUAMD27duRk5MDAHjggQfkdOV9Wec1NjbiF7/4BUpLS+F2u1FcXIzrrrsOtbW1AIBgMIj77rsPI0eORFpaGpKTk3H66adj3rx5UfFs374dQgg8/vjjePLJJ9GzZ094vV6ceeaZWLNmjQw3ZcoUPP300wCip1zby+Kvf/0rhg0bBo/Hg5ycHJx//vlYunRpXNrfffddDB06FG63G0OGDMFHH30UtX/Hjh245ZZbMGDAAHi9XmRlZeGKK67A9u3b91om9rTs67pMmzYNiqJgzpw5UcfedNNNcLlcWLly5QGX49NPP43evXsjKSkJ5557Lnbt2gUiwh/+8AcUFxfD6/Vi0qRJqK+vj4qjtLQUF110ET755BOMGDECHo8HgwcPxqxZs7qU70WLFuH8889HWloakpKScOaZZ+LLL7+MCtPS0oKf//zn8r7Jzc3FxIkTsWzZsi6dg2EYhmEY5mgiiIiOdiIYhmEYhume3HbbbXj66adhb47ceOONmDlzJq6//nqMHDkS27Ztw9/+9jcMHjwYX375JZxOJ6qrqzFw4EDk5OTgxhtvRHp6OrZv345Zs2Zh3bp1aGtrw8svv4ybb74Zl156KX7wgx8AAE444QSccMIJCdPS2tqKsWPHYv369Zg6dSpOOukk1NbW4r333sPzzz+PESNGoLa2FieccAKuueYa9OvXDy0tLfjnP/+JrVu3YvHixRgxYgQAQ9Tq1asXhg0bhpaWFtx8883w+/3461//ClVVsXr1auTl5eHrr7/GtGnT4qZWW5aU119/PWbOnIkLLrgA5513HsLhMBYuXIgJEybIRUiEEBg+fDiqq6txyy23ICUlBU899RQqKyuxc+dOZGVlAQDefvttPPjgg5g0aRKKi4uxfft2PPPMM0hNTcW6deuQlJS012vVlesSCoUwevRo1NfXY/Xq1UhJScHHH3+M888/H3/4wx/wu9/9DgD2uxxHjBiBYDCIH//4x6ivr8ef/vQnnHTSSTj77LMxf/58XH311SgrK8P//d//YcqUKZg+fbpMtyXYVVdX46c//Slyc3MxY8YMrF27Fh999BEmTpwIwFiQZPz48Zg3b56chj537lxccMEFGDlyJC6//HIoioIZM2Zgw4YNWLhwIUaNGgUAuPbaa/H222/jtttuw+DBg1FXV4cvvvgCV111Fa699tq9PwQMwzAMwzBHG2IYhmEYhjlK3HrrrWRvjixcuJAA0KuvvhoV7qOPPoraPnv2bAJAS5Ys6TTumpoaAkDTpk3rUlruu+8+AkCzZs2K26frOhERhcNhCgQCUfsaGhooLy+Ppk6dKrdt27aNAJDX66Xdu3fL7YsWLSIA9Itf/EJuiy0Di7lz5xIA+tnPftZpeoiIAJDL5aKysjK5beXKlQSA/u///k9ua29vj4vn66+/JgD00ksvxe2z09XrQkS0evVqcrlc9OMf/5gaGhqoqKiITj75ZAqFQjLM/pZjTk4ONTY2yu2//e1vCQANHz48Kt5rrrmGXC4X+f1+ua1nz54EgN555x25rampiQoKCujEE0+U2+bNm0cAaN68eURklHG/fv3ovPPOiyrv9vZ26tWrF02cOFFuS0tLo1tvvXWvZcgwDMMwDHOswtOKGYZhGIY5ZnjrrbeQlpaGiRMnora2Vn5GjhwJn88np52mp6cDAN5//32EQqFDcu533nkHw4cPx6WXXhq3z5rqq6oqXC4XAGOabX19PcLhME4++eSEU0gvueQSFBUVyd+jRo3C6NGj8d///rdL6RFCYNq0aZ2mx2LChAno06eP/H3CCScgNTUVW7duldu8Xq/8OxQKoa6uDn379kV6evo+p7929boAwNChQ/HAAw/gH//4B8477zzU1tbixRdfhMMRcXW9v+V4xRVXIC0tTf4ePXo0AMPC0h7v6NGjEQwGsWfPnqjjCwsLo65ramoqrrvuOixfvhyVlZUJ87xixQps3rwZP/zhD1FXVyfz3NbWhnPOOQeff/45dF0HYNyPixYtQnl5+V7LkWEYhmEY5liExUGGYRiGYY4ZNm/ejKamJuTm5iInJyfq09raiurqagDAmWeeicsuuwwPPPAAsrOzMWnSJMyYMQOBQOCAz71lyxYMHTp0n+FefPFFnHDCCfB4PMjKykJOTg4++OADNDU1xYXt169f3Lb+/ft3yc/fli1bUFhYiMzMzH2G7dGjR9y2jIyMKH+AHR0duO+++1BSUgK3243s7Gzk5OSgsbExYdrtdPW6WNx5550YPnw4Fi9ejGnTpmHw4MFxce5POcbmzxIKS0pKEm6P9U/Zt2/fOEG1f//+ANDptdi8eTMAYPLkyXF5/sc//oFAICDT+qc//Qlr1qxBSUkJRo0ahfvvvz9KmGUYhmEYhjmW4dWKGYZhGIY5ZtB1Hbm5uXj11VcT7rcWGRFC4O2338Y333yD//znP/j4448xdepUPPHEE/jmm2/g8/kOS/peeeUVTJkyBZdccgnuvPNO5ObmQlVVPPLII9iyZcthOWdXUFU14Xay+XK8/fbbMWPGDPz85z/H2LFjkZaWBiEErr76amkB1xldvS4WW7duleLa6tWr48Lvbzl2lr+u5PtAscrksccekz4QY7HusyuvvBKnn346Zs+ejU8++QSPPfYY/vjHP2LWrFm44IILDjotDMMwDMMwhxMWBxmGYRiGOWbo06cPPvvsM5x66qlR02A7Y8yYMRgzZgweeughvPbaa7j22mvx+uuv48c//nGcpVhXzm1fSTgRb7/9Nnr37o1Zs2ZFxZ9o6i8QsT6zs2nTJpSWlsrfnaWzT58++Pjjj1FfX98l68F98fbbb2Py5Ml44okn5Da/34/GxsZ9Hrs/10XXdUyZMgWpqan4+c9/jocffhiXX365XBTGSsv+lOPBUlZWBiKKOtemTZsAIOpa2LGmaaempmLChAn7PEdBQQFuueUW3HLLLaiursZJJ52Ehx56iMVBhmEYhmGOeXhaMcMwDMMwxwxXXnklNE3DH/7wh7h94XBYClkNDQ1x1mGWdZc1tdhafbcr4hcAXHbZZVi5ciVmz54dt886l2WpZj/3okWL8PXXXyeM8913343yf7d48WIsWrQoSjBKTk5OmM7LLrsMRIQHHnig0/TsD6qqxh33f//3f9A0bZ/HdvW6AMCf//xnfPXVV3j++efxhz/8AePGjcPNN9+M2traqLTE5mNv5XiwlJeXR13X5uZmvPTSSxgxYgTy8/MTHjNy5Ej06dMHjz/+OFpbW+P219TUAAA0TYubCp2bm4vCwsKDmubOMAzDMAxzpGDLQYZhGIZhjhnOPPNM/OQnP8EjjzyCFStW4Nxzz4XT6cTmzZvx1ltv4a9//Ssuv/xyvPjii/j73/+OSy+9FH369EFLSwteeOEFpKam4nvf+x4AYwGOwYMH44033kD//v2RmZmJoUOHdupX8M4778Tbb7+NK664AlOnTsXIkSNRX1+P9957D88++yyGDx+Oiy66CLNmzcKll16KCy+8ENu2bcOzzz6LwYMHJxSQ+vbti9NOOw0333wzAoEA/vKXvyArKwt33XWXDDNy5EgAwM9+9jOcd955UFUVV199NcaPH4//+Z//wVNPPYXNmzfj/PPPh67rWLhwIcaPH4/bbrttv8r2oosuwssvv4y0tDQMHjwYX3/9NT777DNkZWUdsuuyfv163HvvvZgyZQouvvhiAMDMmTMxYsQI3HLLLXjzzTdlWvanHA+W/v3744YbbsCSJUuQl5eH6dOno6qqCjNmzOj0GEVR8I9//AMXXHABhgwZguuvvx5FRUXYs2cP5s2bh9TUVPznP/9BS0sLiouLcfnll2P48OHw+Xz47LPPsGTJkigrTYZhGIZhmGOWo7VMMsMwDMMwzK233kqJmiPPP/88jRw5krxeL6WkpNCwYcPorrvuovLyciIiWrZsGV1zzTXUo0cPcrvdlJubSxdddBEtXbo0Kp6vvvqKRo4cSS6XiwDQtGnT9pqeuro6uu2226ioqIhcLhcVFxfT5MmTqba2loiIdF2nhx9+mHr27Elut5tOPPFEev/992ny5MnUs2dPGc+2bdsIAD322GP0xBNPUElJCbndbjr99NNp5cqVUecMh8N0++23U05ODgkhosojHA7TY489RgMHDiSXy0U5OTl0wQUX0LfffivDAKBbb701Li89e/akyZMny98NDQ10/fXXU3Z2Nvl8PjrvvPNow4YNceH2xt6uSzgcplNOOYWKi4upsbEx6ri//vWvBIDeeOONAy5HO/PmzSMA9NZbb0VtnzFjBgGgJUuWRJXDhRdeSB9//DGdcMIJ5Ha7aeDAgXHHWnHOmzcvavvy5cvpBz/4AWVlZZHb7aaePXvSlVdeSXPmzCEiokAgQHfeeScNHz6cUlJSKDk5mYYPH05///vfu1SmDMMwDMMwRxtBdAg8NjMMwzAMwzCS7du3o1evXnjsscfw61//+mgnp1tTWlqKoUOH4v333z/aSWEYhmEYhjkmYZ+DDMMwDMMwDMMwDMMwDNNNYXGQYRiGYRiGYRiGYRiGYbopLA4yDMMwDMMwDMMwDMMwTDeFfQ4yDMMwDMMwDMMwDMMwTDeFLQcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOMgzDMAzDMAzDMAzDMEw3hcVBhmEYhmEYhmEYhmEYhummsDjIMAzDMAzDMAzDMAzDMN0UFgcZhmEYhmEYhmEYhmEYppvC4iDDMAzDMAzDMAzDMAzDdFNYHGQYhmEYhmEYhmEYhmGYbgqLgwzDMAzDMAzDMAzDMAzTTWFxkGEYhmEYhmEYhmEYhmG6KSwOHiVKS0sxf/78o52Mg6a0tBR/+ctfjnYyjgr3338/RowYIX9PmTIFl1xyyVFLD8McTqZMmYL777//iJ3vrLPOws9//vMjdj6GYbrGka4LGIZJzFlnnYWZM2ce7WQcN2zfvh1CCKxYseJoJ4X5DnP//fdjypQpRzsZTAKOBd3iWNcLuoU4+Oijj0IIEdXRtF4QiT5vvfUWAKCurg7nn38+CgsL4Xa7UVJSgttuuw3Nzc0ynvnz5yeMo7Ky8qDSPH/+fJSWlgI4sIZ4c3Mz7rnnHgwcOBAejwf5+fmYMGECZs2ahY0bNyIpKQmvvfZa1DG6rmPcuHG4/PLLAQAtLS34+c9/jp49e8Lr9WLcuHFYsmTJfqVjby/ig+38B4NB/OlPf8Lw4cORlJSE7OxsnHrqqZgxYwZCoRAuvvhinH/++QmPXbhwIYQQWLVqFQAkvIavv/76AaetMzRNw7333otevXrB6/WiT58++MMf/gAikmGsxp5Vdkz34JFHHsEpp5yClJQU5Obm4pJLLsHGjRujwpx11llx9+lPf/rTuLhmzpyJE044AR6PB7m5ubj11luj9n/88ccYM2YMUlJSkJOTg8suuwzbt28/6DwIIbB9+3bMnDkTZ511ltweK6QDQGNjI2699VYUFBTA7Xajf//++O9//9vlc91///0J879ixQqZDgBRzxE32JjvCqWlpQnfW9azXl9fj9tvvx0DBgyA1+tFjx498LOf/QxNTU0yjpUrV+Kaa65BSUkJvF4vBg0ahL/+9a+HJH1dqQs++uijhO2lgoIC2f6xsJ7jOXPmAOD3JHNkeOaZZ3DCCScgNTUVqampGDt2LD788EO5/1A+Z08//TQGDRoEr9eLAQMG4KWXXjro9O/t/deVNr7V5ohtD//lL3+Je0Y7Ojowbdo09O/fH263G9nZ2bjiiiuwdu3auHTtrY9ibw+XlZXh+uuvR3FxMdxuN3r16oVrrrkGS5culWGsuu+bb76JOkcgEEBWVhaEEPttjHGwfYLO6j/m0PD555/j4osvRmFhIYQQePfdd6P2h0Ih/OY3v8GwYcOQnJyMwsJCXHfddSgvL4+L64MPPsDo0aPh9XqRkZGRULTZV5v6QLCMhOz9fQCoqKjAD3/4Q/Tv3x+KohzVQfIpU6bI+9/pdCIvLw8TJ07E9OnToev6ITlHWVkZpk6dih49esDtdqOoqAjnnHMOXn31VYTDYVRVVcHpdHb6/N1www046aSTAET6BbGfgQMHdiktzz77LFJSUhAOh+W21tZWOJ3OuOfY0n+2bNlyYBnfCzNnzkR6enrCfbH3++GoaxyHJJZjmCVLluC5557DCSecELW9pKQEFRUVUduef/55PPbYY7jgggsAAIqiYNKkSXjwwQeRk5ODsrIy3Hrrraivr48T1jZu3IjU1FT5Ozc39zDlaN80NjbitNNOQ1NTEx588EGccsopcDgcWLBgAe666y4sXboUjz76KG6//XaMHz8eBQUFAIAnnngCW7duxXvvvQcA+PGPf4w1a9bg5ZdfRmFhIV555RVMmDAB69atQ1FR0VHLH2AIg+eddx5WrlyJP/zhDzj11FORmpqKb775Bo8//jhOPPFE3HDDDbjsssuwe/duFBcXRx0/Y8YMnHzyyVH3xYwZM6LExM4ezIPhj3/8I5555hm8+OKLGDJkCJYuXYrrr78eaWlp+NnPfnbIz8ccPyxYsAC33norTjnlFITDYfzv//4vzj33XKxbtw7Jycky3I033ojf//738ndSUlJUPH/+85/xxBNP4LHHHsPo0aPR1tYWJfxt27YNkyZNwi9/+Uu8+uqraGpqwi9+8Qv84Ac/wLJlyw57PgHj+Z04cSJyc3Px9ttvo6ioCDt27NjvZ87j8eCf//wnfvWrX6Ffv36HJ7EMcwyyZMkSaJomf69ZswYTJ07EFVdcAQAoLy9HeXk5Hn/8cQwePBg7duzAT3/6U5SXl+Ptt98GAHz77bfIzc3FK6+8gpKSEnz11Ve46aaboKoqbrvttsOeh9NOOw0OhwPz58/H1VdfDQBYv349Ojo60N7eju3bt8tO07x58+B2u3Hqqace9nQxjEVxcTEeffRR9OvXD0SEF198EZMmTcLy5csxZMiQQ/acPfPMM/jtb3+LF154AaeccgoWL16MG2+8ERkZGbj44osPS9662sb3eDz43e9+h8suuwxOpzNhXIFAABMmTMDOnTvxxBNPYPTo0aiqqsIjjzyC0aNH47PPPsOYMWMA7LuPcvbZZyM9PR1Lly7FOeecg6FDh+K5557DwIED0dLSgn//+9/41a9+hQULFsjzl5SUYMaMGfIcADB79mz4fD7U19cfUPkciT4Bc2C0tbVh+PDhmDp1Kn7wgx/E7W9vb8eyZctw7733Yvjw4WhoaMAdd9yB73//+1HC8jvvvIMbb7wRDz/8MM4++2yEw2GsWbMmKq59takPNYFAADk5Ofjd736HJ5988rCdp6ucf/75mDFjBjRNQ1VVFT766CPccccdePvtt/Hee+/B4ThwKWnx4sWYMGEChgwZgqefflqKeEuXLsXTTz+NoUOHYvjw4bjwwgsxffp02U6waGtrw5tvvolHH31UbhsyZAg+++yzqHBdTeP48ePR2tqKpUuXyrpk4cKFyM/Px6JFi+D3++HxeAAYbZIePXqgT58+B5z/Yxb6DtPS0kL9+vWjTz/9lM4880y644479hp+xIgRNHXq1L2G+etf/0rFxcXy97x58wgANTQ07FfaevbsSfPmzet0/7x586hnz55ERDR58mSaNm0aERGtX7+evF4vvfrqqzLsG2+8QR6Ph9auXUtERDfffDMlJyfTnj174uJtaWmhUChEuq7T+PHj6cILL5Txejwe+ve//01ERO3t7aSqKr3//vtRx5900kl0zz33ROXjoYceouuvv558Ph+VlJTQc889J/dv27aNANDy5cvj0mK/Jrqu07Rp06ikpIRcLhcVFBTQ7bff3mn5/PGPfyRFUWjZsmVx+4LBILW2tlIoFKK8vDz6wx/+EFcGPp+PnnnmGbkNAM2ePbvT8xERPfLII5Sbm0s+n4+mTp1Kv/nNb2j48OFy/+TJk2nSpEl0//33U3Z2NqWkpNBPfvITCgQCMsyFF14Yd4/94Ac/oGuvvTaqXGbMmCHLjumeVFdXEwBasGCB3Laveqy+vp68Xi999tlnnYZ56623yOFwkKZpctt7771HQggKBoOdHmevhzoDAG3bto1mzJhBZ555ptw+bdq0qGflmWeeod69e+/1fLF5ff/99yk1NZVeeeWVqDgnTpxIV1xxhQy3fPlymQ4iinqOpk2bRpMnT95rHhjmeOSOO+6gPn36kK7rnYZ58803yeVyUSgU6jTMLbfcQuPHj9/ruQ5lXTB27Fj6yU9+In///e9/pwsvvJAuuOACmjFjhtx+3XXXRcXD70nmaJGRkUH/+Mc/Ot1/IM/Z2LFj6de//nVUmF/+8pd06qmn7jUt1nPQGZ29/7raxj/zzDPp+uuvp6ysLHr66afl9ieffFL2UYiIHn30URJC0IoVK6Li0zSNTj75ZBo8eLCsm7raRxkyZAiNHDkyqq1iYe9zAaDf/e53lJqaSu3t7XL7xIkT6d577yUAsr9llce//vUvGjt2LLndbhoyZAjNnz8/Kv599Ql69uxJAOI+9uMT1X/Moacr/TciosWLFxMA2rFjBxERhUIhKioq2uuz3JU2dSK60ta0dAB7fz+WRG3+BQsWkMPhoIqKiqjtd9xxB5122mlERDRjxgxKS0ujjz76iAYOHEjJycl03nnnUXl5uQwfDofpF7/4BaWlpVFmZibdeeeddN1119GkSZNkGKtfG8ucOXMIAL3wwgud5i9R2idNmiTLRdd1GjRoUKfPuBWGyOijKIoir53FjBkzyOPxyPogtn2RiJ49e9KTTz4pf7/wwguUlpYmr3FBQQE98sgjcv9dd91Ft956Kw0aNChKtznjjDNkXn71q19JPYXIqB8B0Icffii39enTR5ZXbLkuXryYsrOz6dFHH5X5SktLS5j+2Pv9cNQ13+lpxbfeeisuvPBCTJgwYZ9hv/32W6xYsQI33HBDp2HKy8sxa9YsnHnmmXH7RowYgYKCAkycOBFffvnlQaV7bwwcOBCPP/44brnlFuzcuRO7d+/GT3/6U/zxj3/E4MGDoes6Xn/9dVx77bUoLCyMO97n88HhcEAIgRkzZmDhwoV44YUXMGXKFFx99dX4/ve/DwAIh8PQNE0q5BZerxdffPFF1LYnnngCJ598MpYvX45bbrkFN998c9x0yH3xzjvv4Mknn8Rzzz2HzZs3491338WwYcM6Df/qq69iwoQJOPHEE+P2OZ1OJCcnw+Fw4LrrrsPMmTOjpim89dZb0DQN11xzTdRxt956K7KzszFq1ChMnz496pg333wT999/Px5++GEsXboUBQUF+Pvf/x537jlz5mD9+vWYP38+/vWvf2HWrFl44IEH5P5x48Zhzpw52LRpEwBjuskXX3whrVUZxsKalpSZmRm1/dVXX0V2djaGDh2K3/72t2hvb5f7Pv30U+i6jj179mDQoEEoLi7GlVdeiV27dskwI0eOhKIociSwqakJL7/8MiZMmNCpVcCh5r333sPYsWNx6623Ii8vD0OHDsXDDz8cZQll57XXXsM111yDV199Fddee23UvkcffRTvvPNO1Ggww3QngsEgXnnlFUydOnWvU2ybmpqQmpq611H0pqamuDrncDJ+/HjMmzdP/p43bx7OOussnHnmmVHb58+fj/Hjxx+xdDFMLJqm4fXXX0dbWxvGjh3babgDec4CgUDC9vbixYsRCoUOPvEx7E8bPzU1Fffccw9+//vfo62tLWF8r732GiZOnIjhw4dHbVcUBb/4xS+wbt06rFy5sst9lBUrVmDt2rX41a9+BUWJ76rGWvGNHDkSpaWleOeddwAAO3fuxOeff47/+Z//SZjeO++8E7/61a+wfPlyjB07FhdffDHq6uqiwuytT7BkyRJUVFSgoqICu3fvxpgxY3D66acnPBdzbNDU1AQhhLx3li1bhj179kBRFJx44okoKCjABRdcEGU52JU29ZHmjDPOQO/evfHyyy/LbaFQCK+++iqmTp0qt7W3t+Pxxx/Hyy+/jM8//xw7d+7Er3/9a7n/iSeewMyZMzF9+nR88cUXqK+vx+zZs7uUhrPPPhvDhw/HrFmzDjgfK1aswPr16/HrX/864TMOQLZnvve97yEvLy/Ov+qMGTPwgx/84ICtev/0pz/h7rvvxieffIJzzjkHQNfaJB0dHVi0aJFsk5x55pn44osvZB9mwYIFyM7Olu4M9uzZgy1btiSc9jt37lxMnDgRDz30EH7zm98cUD4OOYdEYjwG+de//kVDhw6ljo4OItq3xc3NN99MgwYNSrjv6quvJq/XSwDo4osvlnESEW3YsIGeffZZWrp0KX355Zd0/fXXk8PhoG+//Xav6duX5eC+uPDCC+n000+nc845h84991yprldVVREA+vOf/9yleKZPn06KolCPHj2oqakpat/YsWPpzDPPpD179lA4HKaXX36ZFEWh/v37R+XjRz/6kfyt6zrl5uZKq7yuWg4+8cQT1L9//71aEtnxer30s5/9bJ/h1q9fHzVqSER0+umnR6WZiOj3v/89ffHFF7Rs2TJ69NFHye1201//+le5f+zYsXTLLbdEHTN69Og4y8HMzExqa2uT25555hny+XxyVETTNPrNb35DQghyOBwkhKCHH364S3lmug+aptGFF14YZzXw3HPP0UcffUSrVq2iV155hYqKiujSSy+V+x955BFyOp00YMAA+uijj+jrr7+mc845hwYMGBBlwTp//nzKzc0lVVUJAI0dO3af1s9dsRbqjNjRvAEDBpDb7aapU6fS0qVL6fXXX6fMzEy6//77ZRirfvjb3/5GaWlpcSP79jivvvpqOvvss4ko3nKQYb7rvPHGG6SqakJLHIuamhrq0aMH/e///m+nYb788ktyOBz08ccf7/V8h7Iu+PTTTwmAtGjIzc2lxYsX01dffSWtKbZs2RJnRc0wR4pVq1ZRcnIyqapKaWlp9MEHH3Qa9kCfs9/+9reUn59PS5cuJV3XacmSJZSXlxf1bCRiX5aDe6MrbXzrPez3+6lnz570+9//nojiLQc9Hk+nfaxly5YRAHrjjTe63Ed54403CEDC2UGxwLSk+ctf/iKtMR944AG69NJLqaGhIaHloGWhQ2RYkBUXF9Mf//hHuW1ffQI7P/vZz6hnz55UXV29z7Qyhx50wXKwo6ODTjrpJPrhD38ot/3rX/8iANSjRw96++23aenSpXTNNddQVlYW1dXVEVHX29SxHKpZKp1pF3/84x+jNIt33nmHfD4ftba2EpFheQaAysrKZJinn36a8vLy5O+CggL605/+JH9bz0FXLAeJiK666qpOdZPO0m63HHz99dfjnvGqqipKTk6WH7u18t133029evWSekdZWRkJIaKsOqdNm0aKokTFkZycHDU7wbIcvOuuu6igoIDWrFkTlcYXXniBkpOTKRQKUXNzMzkcDqqurqbXXnuNzjjjDCKKWE5alowNDQ2kKAotWbKEdF2nzMxMeuSRR2j06NFERLK/Fluus2bNIp/PR6+//npUGqzrF5uP5OTkLlvKHgzfScvBXbt24Y477sCrr74aNyqWiI6ODrz22mudWg0++eSTWLZsGf79739jy5Yt+OUvfyn3DRgwAD/5yU8wcuRIjBs3DtOnT8e4ceMOu5+A6dOnY9WqVVi2bBlmzpwp1XWyjWx1heuvvx4FBQW4/fbbo3wmAsDLL78MIkJRURHcbjeeeuopXHPNNXEKv91vnxAC+fn5qK6u3q90XHHFFejo6EDv3r1x4403Yvbs2VEOQWPpaj4HDhworwtgOD5duHBh3LW+9957ceqpp+LEE0/Eb37zG9x111147LHH5P7169dj9OjRUcckGjm2Fkexh2ltbZWjTG+++SZeffVVvPbaa1i2bBlefPFFPP7443jxxRe7lB+me3DrrbdizZo1cQ54b7rpJpx33nkYNmwYrr32Wrz00kuYPXu2dIir6zpCoRCeeuopnHfeeRgzZgz+9a9/YfPmzXLEq7KyEjfeeCMmT56MJUuWYMGCBXC5XLj88sv3u/44UHRdR25uLp5//nmMHDkSV111Fe655x48++yzUeHefvtt/OIXv8Cnn36a0GLb4sEHH8TChQvxySefHO6kM8wxxz//+U9ccMEFCS1xAMP5/4UXXojBgwd3urjZmjVrMGnSJEybNg3nnnvuYUxtNOPGjYPL5cL8+fOxbt06dHR04KSTTsLJJ5+MmpoabNu2DfPnz4fX643yJ8YwR4oBAwZgxYoVWLRoEW6++WZMnjwZ69atiwt3MM/ZvffeiwsuuABjxoyB0+nEpEmTMHnyZADo1KrmYOlqGx8A3G43fv/73+Pxxx9HbW1twvj21X5wuVxdbmMcSFvkRz/6Eb7++mts3boVM2fOjLKiisXefnc4HDj55JOxfv16uW1ffQKL559/Hv/85z/x3nvvIScnZ7/TzBx+QqEQrrzyShARnnnmGbndWlDjnnvuwWWXXYaRI0dixowZUQuTdqVNfTSYMmUKysrK5CI8M2fOxJVXXhnlnzwpKSnKH15BQYHsmzc1NaGioiKqX2s9B12FiA75YmBZWVlYsWIFVqxYgfT0dASDQblv6tSp2LZtmyz3GTNmoLS0FGeffXZUHFZ9bf/Y/bQDhtXkCy+8gC+++AJDhgyJ2nfWWWehra0NS5YswcKFC9G/f3/k5OTgzDPPlH4H58+fj969e6NHjx4ADEvm4cOHY/78+Vi9ejVcLhduuukmLF++HK2trViwYEFcH2bRokW44oor8PLLL+Oqq66KK4uUlJS4fBypVda/k+Lgt99+i+rqapx00klwOBzS0e1TTz0Fh8MRN3Xt7bffRnt7O6677rqE8eXn52PgwIH4/ve/j+eeew7PPPNM3GImdkaNGoWysrJDmqdYVq5ciba2NrS1tUWlJScnB+np6diwYUOX47LKKJY+ffpgwYIFUtyypjf07t07KlzsVEQhhKx0LcHRvnKbRWNjI9LS0gAYzoQ3btyIv//97/B6vbjllltwxhlndDqdon///l3O4w033IB33nkHLS0tmDFjBvr06bNXoQEARo8ejd27dyMQCHTpHF3lzjvvxN13342rr74aw4YNw//8z//gF7/4BR555JFDeh7m+OW2227D+++/j3nz5sUtpBOL9WK36htrcaHBgwfLMDk5OcjOzsbOnTsBGCsipqWl4U9/+hNOPPFEnHHGGXjllVcwZ84cLFq06HBkKY6CggL0798fqqrKbYMGDUJlZWVUY+DEE09ETk5O3JSeWPr06YMbb7wRd9999xETOBnmWGDHjh347LPP8OMf/zjh/paWFpx//vlISUnB7NmzE7oOWLduHc455xzcdNNN+N3vfne4kxxFUlISRo0ahXnz5mHevHk47bTToKoqnE4nxo0bJ7efeuqpcLlcRzRtDAMYolbfvn0xcuRIPPLIIxg+fHjcasMH+5x5vV5Mnz5dLsSzc+dOlJaWIiUl5bCJTl1t41v86Ec/Qs+ePfHggw/G7evXr1+UuGbH2m51srvSR+nfvz8A7FdfJisrCxdddBFuuOEG+P3+Q+quJ1GfYN68ebj99tvx0ksvxS16yRwbWMLgjh078Omnn0YZwSRqL7vdbvTu3Vu2l7vSpj4a5Obm4uKLL8aMGTNQVVWFDz/8ME4MT9Q3P5Tt4/Xr16NXr16d7lcUJe589j69tYig3Q2Zqqro27cv+vbtG6dL9OvXD6effjpmzJgBXdfx0ksv4frrr48TKK362v6JXST29NNPh6ZpePPNN+PS3bdvXxQXF8u2h6UXFBYWygWl5s2bFydKnnXWWZg/f74UAjMzMzFo0CB88cUXCcXBPn36YODAgZg+fXpCrUNRlLh89O3bNy7c4eA7KQ6ec845WL16dZTSevLJJ+Paa6/FihUrojqkgDHq/v3vf79LL2BL9NqbaLRixQpZoRwO6uvrMWXKFNxzzz2YMmUKrr32WnR0dAAwbqarr74ar776asIl21tbW/dqkZeI5ORkFBQUoKGhAR9//DEmTZrU5WMzMzORnZ2Nb7/9Nmp7c3MzysrKZAMAMBpHF198MZ566inMnz8fX3/9NVavXp0w3h/+8If47LPPsHz58rh9oVAoyi/KlVdeCUVR8Nprr+Gll17ap18mwLiGGRkZcLvdAAzhIlY4sUZs7KxcuVJeCyuMz+dDSUkJAMMHROyorKqqh2xJeOb4hYhw2223Yfbs2Zg7d+5eX7oW1iiSVd9YK3naX7b19fWora1Fz549AXR+DwI4YvfhqaeeirKysqjzbdq0CQUFBVECQJ8+fTBv3jz8+9//xu23377XOO+77z5s2rQpztqSYb7LzJgxA7m5ubjwwgvj9jU3N+Pcc8+Fy+XCe++9l3Amxdq1azF+/HhMnjwZDz300JFIchzjx4/H/PnzMX/+/CifPGeccYZsbLO/QeZYQdf1qD7AoXzOnE4niouLoaoqXn/9dVx00UWHzXLQoqttfEVR8Mgjj+CZZ56JW631mmuuwWeffYaVK1dGbdd1HU8++SROPvlkDB48uMt9lBEjRmDw4MF44oknErZLGhsbE6Zx6tSpmD9/Pq677rq4vp4de/s9HA7j22+/xaBBgzoNH9snKCsrw+WXX47//d//TbhaLnP0sYTBzZs347PPPkNWVlbU/pEjR8Ltdke1l0OhELZv3y7by11pUx8tfvzjH+ONN97A888/jz59+si0doW0tDQUFBRE9Wut56ArzJ07F6tXr8Zll13WaZicnJwo4yVN06L8OZ544olyHYWu9j0sY5933nkHe/bswZQpU7p0XCyjRo3Chx9+iIcffhiPP/543P69tUk+/PBDLF68OK5NYvkdnDNnjjzmrLPOwr/+9S9s2rQpzt9gdnY25s6di7KyMlx55ZWHxbfsAXNYJy0fQ3Q2b3/z5s0khIhaUcbigw8+oOnTp9Pq1atp27Zt9P7779OgQYOi/IA9+eST9O6779LmzZtp9erVdMcdd5CiKPtc2ehgfA5eccUVNHr0aAqFQtTa2kr9+vWL8odXV1dHAwcOpOLiYnrxxRdp7dq1tGnTJvrnP/9Jffv2jfMtFrtyj8VHH31EH374IW3dupU++eQTGj58OI0ePTrKL2CiY4cPHx7lj+jhhx+mrKwseuWVV6isrIwWLVpEF110EZWWlsqVxWbMmEH/+Mc/aPXq1bRlyxb63e9+R16vl2praxOWgd/vp9NPP50yMjLob3/7G61YsYK2bNlCb7zxBp100klxPg5vuOEGysjISOiX6b333qMXXniBVq9eTZs3b6a///3vlJSURPfdd58M8/rrr5PH46Hp06fTxo0b6b777qOUlJQ4n4M+n4+uueYaWrt2LX3wwQeUl5dHd999d1SYoqIiev/992nbtm00a9Ysys7OprvuuithPpnuw8033yx961VUVMiP9YyUlZXR73//e1q6dClt27aN/v3vf1Pv3r2lDwyLSZMm0ZAhQ+jLL7+k1atX00UXXUSDBw+Wz+2cOXNICEEPPPAAbdq0ib799ls677zzqGfPnlEr/cVyKP2M7dy5k1JSUui2226jjRs30vvvv0+5ubn04IMPyjD2OnvDhg2Un58fVYcnWpXs3nvvJY/Hwz4HmW6BpmnUo0cP+s1vfhO3r6mpiUaPHk3Dhg2jsrKyqDolHA4TEdHq1aspJyeHfvSjH0Xt35fvrENZFxARzZ07lwBQSkoKffPNN3L7ggULKCUlhQDQV199dUDnY5iD4e6776YFCxbQtm3baNWqVXT33XeTEII++eQTIjp0z9nGjRvp5Zdfpk2bNtGiRYvoqquuoszMzH2+xw7G52BX2viJ+k6nn346eTyeKJ+DHR0dNHr0aCopKaE333yTduzYQYsXL6ZLLrmE0tLSaO3atTJsV/soixYtopSUFBo3bhx98MEHtGXLFlq5ciU9+OCDUe0e2Hxw6bpONTU10h9cZz4He/ToQbNmzaL169fTTTfdRD6fj2pqaoho332C9vZ2GjhwIJ1zzjlUXl4edU2ZI0NLSwstX75c+pj+85//TMuXL5c+4ILBIH3/+9+n4uJiWrFiRdQ1svsKvOOOO6ioqIg+/vhj2rBhA91www2Um5tL9fX1Msy+2tSJOFifg1beRo4cST/84Q9p+fLlUc8QkfH+LykpIZfLFeVDkyjxarezZ8+OWlH70UcfpczMTJo9ezatX7+ebrzxRkpJSYnzOXj++edTRUUF7d69m7799lt66KGHyOfz0UUXXSTruEQ8++yzlJSURO+//76MPzU1Napcvv76a/L5fDRmzBj697//TZs2baK1a9fSM888Q0lJSfTUU09FxdnW1kapqamUkZFB559/ftw5p02bRkOGDIm63hUVFVRZWSnD2HWLhQsXks/ni9Mxpk+fTl6vlxwOR9SxL774omyTxPqCra+vJ0VRSFVVWr9+vSxzVVWpoKAgKqzdl2NFRQUNHDiQLrvsMrnC/f6sVnw46Pbi4G9/+1sqKSlJuIz23LlzaezYsZSWlkYej4f69etHv/nNb6LEtT/+8Y/Up08f8ng8lJmZSWeddRbNnTt3n+k5UHHwxRdfpOTkZNq0aZPctmjRInI6nfTf//5XbmtsbKS7776b+vXrRy6Xi/Ly8mjChAk0e/Zs6czTnpZE4uAbb7xBvXv3JpfLRfn5+XTrrbdSY2PjPo+NFQfD4TA99dRTNGzYMEpKSqLi4mK66qqroho9s2fPptGjR1NqaiolJyfTmDFj9imw+v1+euSRR2jYsGGy/E899VSaOXOmfMAsvvrqKwJA3/ve9+Li+fDDD2nEiBHk8/koOTmZhg8fTs8++2zcPfHQQw9RdnY2+Xw+mjx5Mt11111x4uCkSZPovvvuo6ysLPL5fHTjjTeS3++XYZqbm+mOO+6gHj16kMfjod69e9M999yzV8e2TPcAQMKP1fDfuXMnnXHGGZSZmUlut5v69u1Ld955Z9xCQk1NTTR16lRKT0+nzMxMuvTSS2nnzp1RYf71r3/RiSeeSMnJyZSTk0Pf//735cusMw5GELj33ntp5MiRUdu++uorGj16NLndburduzc99NBDUQ2N2Dp73bp1lJubS7/85S+JKLHI0NTURNnZ2SwOMt2Cjz/+mADQxo0b4/bNmzev0zrFejamTZuWcL+905+IQ10XdHR0kNvtJp/PF/Xu9vv95PF44rYzzJFi6tSp1LNnT3K5XJSTk0PnnHOOFAaJDt1ztm7dOhoxYgR5vV5KTU2lSZMm0YYNG/aZvoMRB7vSxk/Ud7La07H1RGtrK91zzz3Up08fcjgcBID69u1Lu3btijt3V/soGzdupOuuu44KCwvJ5XJRz5496ZprrolaxGBvneXOxMHXXnuNRo0aRS6XiwYPHhzVb9tXn8CKI9GHOTJ09txZwtPerpG97x0MBulXv/oV5ebmUkpKCk2YMCFugYqutKljOVhxsKvv5XvvvZdUVY0TqroiDoZCIbrjjjsoNTWV0tPT6Ze//CVdd911ceKgdX6Hw0E5OTk0YcIEmj59ekLdxE4wGKSbb76ZMjMzKTc3lx555JGoBUksNm7cSJMnT6bi4mJyOByUlpZGZ5xxBj333HMJ3/s33XQTAaA333wzbl9nda3b7ZZhYnWLBQsWUHJycpQQad0/AwcOjIp/+/btBIAGDBiQMM/Dhw+n/Px8+buuro6EEHT11VdHhYtd6KW8vJz69+9PV155JYXD4aMuDgrzRMwRprS0FDNnzky4rDXDMMyxxpQpU1BaWtqpo/W98dOf/hS7d+/G+++/f+gTxjDMEYXrAoY5NjjrrLMwZcqUA55edzj58MMPcemll+Lxxx/HbbfddrSTwzBHjPvvvx/bt2/HzJkzD+t5brjhBtTU1OC99947JPFNmTIFjY2NePfddw9JfMzxyXfS5yDDMAxz9GlpacHnn3+OWbNmYcKECUc7OQzDHCW4LmCY7sUFF1yADz/8UPpoYxjm0NDU1IQvvvgCr7322j79cTPM/hK/RC3DMAzDHALuu+8+vPrqq7j00kvx05/+9Ggnh2GYowTXBQzT/Rg/fjwvJsQwh5hJkyZh8eLF+OlPf4qJEyce7eQw3zEOm+Xg008/jdLSUng8HowePRqLFy8+XKc6Lvn5z3+O0tLSo50Mhjks8PP/3eOSSy7ZbzcITz75JKqrq/Hcc88lXMGR+e7CdcB3F64LmH3Bz/+RYcqUKRgxYsTRTgbDxNGd64CzzjoLl1xyyWGLf/78+Whvb8eTTz55SOOdOXMmTylmcFh8Dr7xxhu47rrr8Oyzz2L06NH4y1/+grfeegsbN25Ebm7uoT4dwzDHEPz8M0z3husAhum+8PPPMN0brgMY5vjlsIiDo0ePximnnIK//e1vAABd11FSUoLbb78dd99996E+HcMwxxD8/DNM94brAIbpvvDzzzDdG64DGOb45ZD7HAwGg/j222/x29/+Vm5TFAUTJkzA119/HRc+EAggEAjI37quo76+HllZWRBCHOrkMUy3hIjQ0tKCwsJCKMrhW4dof59/gOsAhjkSHKt1AD//DHP4OVaff4DrAIY5EhyrdQA//wxz+Nmf5/+Qi4O1tbXQNA15eXlR2/Py8rBhw4a48I888ggeeOCBQ50MhmESsGvXLhQXFx+2+Pf3+Qe4DmCYI8mxVgfw888wR45j7fkHuA5gmCPJsVYH8PPPMEeOrjz/R3214t/+9rf45S9/KX83NTWhR48emDd3J3y+1EN4JgKwvyMQXTmmszD7c74DSdvR5tCnmUDQBUHIuAWEeSYLQZHfJIzfipkO3YrFliyFAGFu0IWAAgJA0AQAUuDQjTCkEIKKDgEBp6aAhAZdMdJDVlpIQCUjvHE+AV0x0qPqAAmCLoyUK2Rs04VAWJhhzJiIBAgCigB0JQToAiAVVmYVEkZcipFZxSwHo4QAo4SMRBiDakKWjdBl0QEC0M1wra3NOGd8T6SkpBz8hTrEdFYH7Nq1C6mph7IOYI42ibxYEFGno8O6riMcDqOtrQ2NjY2oq6tDdXU1ampqUF1djdbWVgSDQTidTqSkpCA9PR2FhYXIyclBTk4O0tPT4fP54HQ6AUCeh4iizqtpGsLhMPx+Pzo6OtDU1ISGhgZUVVWhpqZGfjc0NKC1tRW6rsPhcCA1NRXZ2dnIz89HSUkJ8vPzUVhYiIyMDKSkpMDhcBwzI9/Nzc0oKSk55uqAzp7/7c+tQKrHB1j3jPUthCxTYRv9JCLAvK5WOPkxDyddNz5k1K0CABQBIRQIxai8Rcx7jcisbWU6EKl/rbpXns58VwgReT2KSIxkVOCdQ2SGibzohMxz5FCdCERGPshMs3FqJfLOtJeFGYciBISZ3+hzUqSM5N+Rb2HlQR5v5VFExUE6yWcrltjnIFE4IQQURZFlSUTQdQLpupFnWxhFMb5l+drzYS9kEfm2p8C8XRKkQ0TKM0G6ARhpsiKJFG/k3iHbV/QlSIhMBygmTgGhKBAK5Ei//drKeyVBOkXMH80dLej50xOOuecf4DbAsULss289g4fTyow5fNjbOZbVUI8ePY65OqCz53/J8l3wpez/838ketSH5RzHoxSARI0aqxPataP5Wh0ZWpubccpJXesDHHJxMDs7G6qqoqqqKmp7VVUV8vPz48K73W643e647T5f6iEWB7/b7Os+PR7uY3uDXjE2xIcRljgGQJAhiEXFYYWJjx1QoBIB0KEJAUCFqgOKDpCiw6Ua4qBDUyAQAik6dBAICmSHgYQpNgqQEFHn0YUlTAooRHAYaiXCpoCokKX/KdAIUAFACQEkoEA1zyUAUxyUYqG9dMz8G5soUlbC6lSY6QTJ9EV1ew6zULG/zz/QeR2QmprKHYPvGHtzcWsX7jRNg6Zp6OjoQCAQQH19PSoqKlBeXo5du3ahsrIS1dXVaG9vBwAkJycjOzsbAJCVlSXFO7fbjaSkJLjdbikqWA1mXdcRDAYRCATQ3t6OlpYWNDQ0oLGxEVVVVaiurkZFRYXc1tHRgXA4DFVVkZKSAp/Ph8zMTOTl5aGgoAAlJSXIzc1FXl4eUlJS4PV6TaEj8sx1RTQ53BxrdUBnz3+K04sUT3JEiFKU6HdYAnGJKDKcFN3RNYU/KQLaO7uWEEeR37YzRcrLiNsSZCwxEra9UcKlFAiFFBQjx1rH2IS22HzFiESR3QSNdOi6LlMsFEswUyNCHiKdw1iRUJ7H/AaR3C5sgpv9vHu9a+wirBWndQ5LjE2APW1SCLO+bXFZ4iAsoVJEl5v9WksxN0aVi81PJHxnWYq+BxKdKyq8/RhCXBuk8/MnSLN5C0rx01YmSHCvyI+um9eVokRsAAiHw3H5OhxwG+D4w/4cWu9Ia3tc/cQcN8QOgsZ+Hy4OmQ6QkoqUAxAHvzMkeokcrfMnOrdsN1GkrdNpYOZYoSvP/yEXB10uF0aOHIk5c+bIZbx1XcecOXNw2223HerTMSb7utTHw6MqyGzAk/EBIum2rAF122+7MCjDi4jRhSESmpERIEyzDQEdCoRh+ScEhAKQ0GHY2SnQYTwYQrdeqkJaD5I9UbbzkvmHbrN2tBroQicpalrCnTATquhWdGRYEsLWoLdVzFZ+rF9Wp5IsUxTSAdIAKNKy0ChPxSyUI3MH8PPPHCiWYBcOh9He3o7W1lbU1dWhqqoKu3btQnl5uRQFW1pa0NHRAVVVkZycjJSUFGRlZSEnJweZmZnScs/r9cLpdMoOTygUQiAQgN/vR2trKxobG9HQ0ID6+no0NDSgpqZGWig2NzejtbVVCoLJyclITU1FWloasrOzkZ2djaysLGRnZyMzMxOZmZnw+XxITk6W5+yOnapDVQcIodos3IzKMV6OiT0GAJSYDpEtuBBR9ujC+l82bBMMown7KLiw2W3HiFLGH1EdMONvK06C0GGKXFbkxiCO3brQjBDRPynqb4GI1RyAiKhm68jrppWkJarFdvTt1oCxgpMlHJItThIxIoFdwLQdY/1OLIRHfxtB7SIcmWWhy/QRCEIVpsW+7WLa38PmbSJIyPgiohlMoSy+YyyEQFcf0URi4L7C2M8DRIt1UVaOAtH3jpKgE28Xg6MsoHXDktEUjK37TVEEVKsOEgIO55GZKMRtgOOTRMJ1d3x/fdfY1+Dk4eBQ1wHHg3HLvojPwz6UtyNzqQ4Rkffyd/NaHc4zWRxbpXZYWgu//OUvMXnyZJx88skYNWoU/vKXv6CtrQ3XX3/94Tjdd47vwsN1wJgdANn5EsZGqyunRwWMdPKkpSFFwpEwZ+ya3QKVAJWMGIRibbdN0bULfbpiCGtWh0REhEHZQLe+ybAatHU1Eenq6YYYaHWApIhpdBAVMwvG1A2CEIpp1WiWAoloXc8ML4ikiEogU5y05yXSMbZ3bY8E/Pwz+wMRySm9LS0taGlpQXV1NWpra6UgWFVVhYaGBmlJqCgKsrKykJmZiYKCAjmdNysrC/n5+UhNTZXTiTVNk9aBra2tqK+vR21tLWpqalBZWYna2lopBra0tCAUCknLw+TkZOTk5CA3Nxc5OTnIz89HZmYmsrKy5JRln88Hl8sFl8tlWm9FT3XtrIP1Xe54HZI6QFUMa8EE1g5yCjEi01uFYoSHEBC6IZToug49HDYsqgAoQkARirTC0i0rUpvQFS/uRRNrpWbbYbwniKT1Haypr4jU/6quA7o1ghUjLtqwBpDitisKFEvQM+81nUwhUNNB1jvOiMSYSiwUaZlmT3OsoGjPo8ynJTBGDjLSoCgQqhqVf2ETCS1hzxrAipzLTJ15/az0Wuc1ikuJK1tLfLUKUkqHFDkHkZV2e7M7okga2mN8ng+qA21LW1RT33YfJaoH7NujrBEJIOhGeoUl4hr3kiVUR9oEAgKqMSOCFJmeRHAbgOkM6x6034fBYBBCCLhcrqOcOuZgCIfD6OjogKZpR/S8h7IO+C60lBLnIVFdfQzl1uoUd5YmEf/jGEp9fGe9ixzZPBybis9hEQevuuoq1NTU4L777kNlZSVGjBiBjz76KM456XeBw3FZj73b5MggreOE9cu2T0SPuoMi8pvdkkPAEMYUGFZ4KgDN7EYY/gJN2z3d6DQZxwiAFCgwLCUAAV2oMhmGj8CIUCltEIgi1o4gGJODTeFOF2bHVTU6oDaLFUX2Cw3LRcDsAFMYEBoEHKagqIOgRlsrmlYjhkWilSgFpAqrv2XkyOoPWWV1BEehutPz352IFRUSbbfv62wKrb0DYlnyNTc3y6nD1dXV2LNnjxQF6+vrZePW4/EgLS0Nubm5KCwsRF5eHoqLi5Gbm4vs7GwkJycjKSkJqqpC13U5Xbi5uRm1tbWoqqpCRUUFKisrpd9CywqRiOBwOOD1epGRkYHMzEwUFhbKc+Xk5CA7OxspKSlITk6Gx+OB0+mEqqoJBaPvsvi3Lw5FHWBNLU/kB0tYopcpjllCGmwdIAGj/ldUB6CS7b1qm2Iac4102zRYMsXFWDHJskJVFCVaFEo0zRSwjWORYf2oG775oNssx+zH2YWrWItCE0vsJHOqqHU+w8WEWSaWQBljZRb5O3rUWop29ncHOnmeiaBrulHechprRKSzh4/ND4RN8CWCYhcmTOth4z0HGU8iQdP+dyJxU7cJhbaD48oyzhoyOiLjK6qkYu4d696zvm1xdsXPoiwWq26UL2tLUKTIuSJmkIlFzJhnxX6+sO1eOdwczjZAV8Vb+7vmQEj0jkv0LMRu21u9vze3Evt6X3YWLjZM7N+dHWe577AL1JYrDU3TsG7dOmRnZ+Piiy/uUjl2tbz3NuCyP/nuLM59pWF/r09n6eosrq6+/w/FfdxZ2ei6jpqaGuzatQtlZWV4++230dDQgGeffbZL5zwUcD9gf4hcP+tSyvfxUcN6d1r3s7Vdvplt30cmnXt/trquBHIbfd8IOlJ2xl2kubkZaWlpWLK4Mcbn4LGpru6d4zHNh4IDy7fVrbALhPLmtNrItsARYc4IaS1OImxOByOLhJAhDJIx8VYTMC30zA4fGdZ31vRhTdiqa1udI4SRSoVgfqwOgoaQUAFBUIgA3ZreC4TNacWKEHCSMZU4rAIhXUDXNRAJOBQBl6JDUTRTmNSh6jp0OBFWBCK9TB0KCSikQOimwAhCWABhGP1NARhTioSh/isEtLQ14eTR6WhqajrmffhYdcDxkNbuxIGIg4k69bquQ9M0+P1+NDU1obGxUQp227dvx549e1BRURHl58/r9SI1NRW5ubkoKipCcXFxlCjo8/ng9XqhqirC4TCCwaBcVMQSAi1h0LJCbGtrQyAQgBACbrcbPp9PThe2RMGioiI5fdg6h8vlgqqqx13D4nh5rqx0Vv5jA1KTUuKEFikIARHLQjl9UonoKDoBumZ+6xEBx6Sz66fr0QJaZ/e3FKXMT2SwKpqIBV5kmivpMcKZ+X6IVuas85hypvkOhGWNR9HPWNyzpihR042ltaX5LbEsXROEsQamhLk/6lrIPNvPH+0/zzoNwRACLQFNHm//JsOCkzRNirRR+Yn57O0ami9r2xUxPsJ6j1KkdSEFXnu+zY+Vb/u59n3uREKM1XawpVBErm/k2trLMXIwxZ7Xur629EVdN9PaU7eEbiI0t7cg/6ZBx/zzD+y9rpLXRoiE30DkfrFfh71Zce+rs9jZ+Sy6Kox1Jtx1FqYr8cYOuHX1vtQ0DU1NTQiHw7JM//GPf+Dxxx9HSUkJnnzySUycOHGf8cYKkJ2JpV0VT+357qy8Ozt/V8ogURoSlfG+BFd7WhPFsa97rStp3dd91xnt7e345z//ibvvvhsdHR3Sxcm3336LESNGHPN1gPX8ry9r6gY+B62er22LvM7WvWVsT3jtD1Rm2Odx1jtIt51b2JoOFCMYHr72cOJnK1YMTCAOdqIXHjVx8LBdq67R0tKMQX271gc46qsVd53jqyNmcDym+VBw4Pm2Ohtk9CYgJxjb6s/IYiWGAGesKCz7HZGuAFk+AA3RL2SYVcjVgO31hhFOyHMZKxUD0M2pPbZkKLAER7uCqMhzKqSDSEGQgKBmiIAkAKdizgwyt7eECP4gQSOC26ki3SXgUQxLQdVUQkmmkGTejRWYDWEwrAMBXcCvAwGdoMM4h8sBuFTAqxjHHEnLQea7yd5Ev30dY2EJd9bqwxUVFaioqMCOHTtQXl6OPXv2oK6uDq2trdA0DS6XCykpKcjNzUV+fr4UBvPy8pCXlwefzwePxwMAaGlpQXt7OxobG9Hc3IyamhrU1NSgoqICtbW1cnsgEAARyUVMUlJSkJGRgezsbBQUFMjpw5b1oLWgSezKw11tqDMHhsPhiKwybbOGJlMUAxH0sGbutwlIMdaEAogszmQTfohITtG1C32KqkaLZyby/jcTEduk18mYVhuRnERsBBFRU7XvM+p3soWztkII6ZNQinFEhh9b0gHLZ61dcLPiMMUjYY/X3C+fX3s+dV2+aaQYaeWFjPNZuTIG8OIt+ADD151l9yeFwgQCJkzxyo5stANR11GKnFY+EsXXCVECZuQtH7EAtMoZkNaiUccLId0FxAoB0fVgJA9WEiN1pTXl2aZZWgImGeVtvy8tUS+6bKPzRJoWdf/Z62XjGAUOhyqvi1sL7bOsjifs+bVb+AKG8GVdL6s8E1mj2eOx749dnde+kJV1TCJRMpE4Zic2ffbjrN+J3rOdCUP7Y9tRW1uLFStWoLW1NSpOO3379sUTTzyB5ORkDBw4sFOxzp6XWKFMjxH1rbK3pzlRfNY+TdOkNb5VLgDkM2E9j1bc9mudqNzs8eu6HlXu9nwkKlPr3lEUJe5Y++9EYmFXiL13AMhzdZauzoSNQCCAZcuWobq6GsuWLcO8efMQDoeRn5+PM844A0lJScfcKsXdj8igj3H5ou/9ROGjSTCYIBJt7UJK9nmcgLDcVVGMBT7s77EjR9Q934nwt9/xHEFiy9xqK1hlDCRO24Fe44PhOBIHuwGHSB0+5ByhdFldJNmhIUBAAZmrEpNuTEESVqNbFdDI8LcExZhmpplhoBkimdXV0ECmOBhZsgM6TAHSmIas6JHVfY3pTmbCzOm7QpGJMjsnwhAJyUq9gCAdQifoILQHBVqChICmQ4eARxFwuAHFAbSHCA1+QmtAR1ADUr0qnELA4RBQVIKuGx0G3WqAUWTVYpDhUzEMoD0MNAcIbWFCEARNJ6iKApeqI8klALcCVTk2byvm+GVvnSxru7XPasAHAgG5CIg1pXfnzp1SIGxoaEBLSwvC4TCSk5Olv7+cnBwUFhYiPz9f+vrzeDxQFEX6EGxra5OLilRXV6OhoUGuMtza2ir9J3k8HmRnZyMtLU0KgtZ3enq6tBC0REfLj6A9r/vTIWMOHFVRoVhTZAGbaGa4aSAiqDFCtRScTCFJrrxrKTNkWKZJMQ0xAo/1HdNpSySIx1qxAYYIacQdWWUWtvMYU4pjhB9FQJirDEeJXrH3GZn/EYFgWkKSbXVaa7c1qkSardxEVGfE3v6UUqT14rUsFoQVX6TsotJkjt4bHWhTPLTEQGGIhIqiSmHPuj5SXI0RCYB4Ucamssm4E3WSjWK2LwBklXlEdjWCRwt/nWEXIKIuQZTYZ78nIj0VYQmniiHQSZE3kohIfmxioP3c8ZbJsY2w2L8FFMUexu5/UQcREA53Le/HA5YwZC83635STT+YltBkF5f2JvJZH0uY6kxAtAu3sfdr7P1sXVtVVaEoCjRNky4yrPeR0+mEEALhcFj6uk2U30SdxkSiYUtLC15//XW8//77aGlpkWns168fJk+ejKKiIjidThCRtIK3yiklJQU+nw9Ehs/BxsZGmU6HwxElgNmfD/v5rb8ti0RLWFcUBeFwGIFAAKFQKOo+dzqdMt9CCLnfLspZ31bc1nWyv5+tadL2tNnvgVhBtDMBzv5usNJjlZP9mFiRN1GcnV0z+zmt9MXWbbECpHVsrJC8YsUKPPjgg1i9ejX8fj9qa2txxhlnYPbs2cjOzkZJSUnc4GZ34HB0XQ8mzqhXelREAoljte7HzuM80LTs67jIs2AOF4rIOzXyt+Xf2BpkO8DEYO/lmvi+tdoU5nOqxCdAFndMW2pf9cBBJ7gTYoVBK2n2due+jttreg7owMSwOHjE6MKddKzW20coXYRI58oSBs1uDWCJfrJCIEAzKi45OiwMAY/Mp816VnSyVgE2LB90AlQi06LOtCzRFZhbIEBwmPGTHjGjJg0QqtE5hVT7Ia0kdDM+EEEjoC1MqO0Io66pBRACuakpSHOocKpAR1igqrkD28qr4Q8DvYsK4ct2w0fmIinCkjDtPg1hDiEIaAA6NKApRKjz69hT14iaxkYEOvzwJXuRnpaKkrwMqCA4XYB9RUiGOVg6s6Czv3Q1TUM4HEZbWxtaWlpQX18vRcE9e/agqqoK5eXlcvqw1VnJyMhATk4O8vLyUFRUhLy8PGnhZ3UI2tra0NTUJONsaGhAXV2dnKbs9/tlB8PyIWitLJyfny+nCmdmZsoOkcfjkaJjZ8IAc+QQ5rANmeKXIaqZ+4QpvCjR96HsmFuikB5Z9TZiea7AaElaQhvkAk4E832CmKmvarT/PnMlqGjBzBrdjRIG7KKZTcSzW8Rr5sfKtRBRnYHIdGSSDUlFGG9Hy+pRimEyGlvard82YcreWCbYOx9WOIpubEYKPqanYqRVIcPHn+HozxBtNB0Ik80nYoygaomG8lkz0xi5hjbxzXb+2OnS8hhdh6ZrZoasBVMUWCtek3UtbOJOPBHxD4AUbhXFNPuHcel13VrEJnbqsyxFM2wk/XFSnxCRbXIBGyXOV6TMv5lH42PeW1ZeYpqX9vo48ncnWT7OsAtiluBUUVGB1atXY8OGDaiuroamaUhJSUG/fv1wyimnoLS0NEpMsspk2bJl+O9//4sRI0bgrLPOQlJSEoB4kchOc3Mz3nrrLRQUFOCiiy6KE+jswg4Roa6uDqtXr8b69euxY8cO1NbWSqEpJSUFhYWFGDRoEPr37w+fz4eMjAx4vV7oui5FKSvtlZWVWL58OZqbm+V5w+GwHAzTNA1utxujR4/GM888I4VHywrfmkpmCZV2IbOmpgaLFy/GunXrsGvXLjQ2NiIYDEJRFKSlpSE/Px9DhgzBqFGjkJWVJYXU2HKyBFGHwwFN01BXV4d169Zh9erVMl7LnYfL5YLT6YTb7UZSUpJ89xcVFaGoqAg5OTlITk6WYRO9k6381dfX49tvv8VXX30Fv9+PkpISnHzyyRg0aJC8rnb/wNHPRvx1tgvH8+fPx7Jly3DppZeiX79+cuXdrVu34vrrrz+gRVvsgjMRYfPmzXjjjTdQW1srxVtLjD7hhBNw/vnnIzc3F0IItLa2YtmyZdi9ezfeeecdLFy4EG1tbcjNzcUZZ5yBKVOm4JRTTkFKSkpU3pqamvY7ncciXdVlDkeV19U4o4Zq5HsgEgPF/I6OPN5STw48JYj/UBEfJ5l9R2GOQ8aKgCLSZLAikP1js642g8v31F5SHWm/xIeiqAaJgO01nfDdFnc+EQkf16xQ4vRD+6kSpdDc1bUrEFuusfeD0ZS02p2IKr+o8ImSZxc6ZT/f/psO6EZhcfCI8R1pmR1WDN95AqbvQLMyUsh8tIRN6FMEFM2U81TTR6BOZmcx4guBdEiBzRkWcvViVQMcwnxBmw+nMY3YnJoLxbAA1AHNtOlVFUBVhK0mIWMtYnPw2JjSawiUoRDQHCJsrWzA+rIyuFxOjBw0EHmeZHhdAgFNx47Kanzx7UqE4ILbnYRemXnQyWxowqoQzBFDqyMqDGvCjrBAY5Cwo6EDG3aUY8P27aioqUWoIwi3Q0VhcR6GDeiDwcUFcKW64WRhgzlExHYEYrGsDqypw9XV1dLf3+7du+VCI01NTWhrawMRyY5Bfn4+8vLyUFJSgry8PGRlZckGbigUktaBtbW1UmCsqqqSU4otiwK3243U1FS5qEheXh4KCgrkqsMZGRnSh6DD4YhbYdj67nQk77vS0z7GsTqauq5Dt02jVFQViqpCtcQUmGPvVj0pRZNoCy9jTEdEiYrmieKsOeKOsQttArJFSrbwcaKWMN1VCGsRFMU2uGQdHW9JYr3yIAQU1WEKYpYYBkAnkK4BWmKByBIpKbbzS9HTfK10UeTkkTKRompETIzKI+xB7QvEGIKuTgSdIisdJ7K2JN0II8W4GPEw0lK2N4BNoQ/WsdY1UqAqttWTAUDXZRgZv6rY7etirr2tZW4rE9I0w2+lLZT93rPKJvY4eY/ElF9s2FhL1cj2yECF4WPQPKdiDHDK9FnfUcdGC8eJLNKOJ2LLTNM0VFVV4fPPP8dnn30GTdPQr18/9O3bFw6HA7t27cLs2bMxe/ZsXHnllbjggguQlJQkBRcA2LBhAz755BPU1NRg0KBB6NWrF4Bo4ciOEALV1dX4/PPPce2110ZtByL+Sv1+P6qrq/Hll19izpw5CIfDKC0txUknnYTCwkKoqoq2tjZs3boVq1evxsKFCxEIBJCSkoLBgwejd+/eWLp0KdasWYPk5GQ4HA7ouo7BgwfjqquuwvDhw6VVmaqqSEtLi/IhZeUx1uJO0zS5CFhbWxsaGhqwbds2NDU1Yd68efD7/SgtLcWIESNQUFAAl8uFUCiE3bt3Y926dZg5cyZmzZqFiy66COeccw7S09PjptZa5VBVVYVFixZh7ty5aGxsRGlpKYYMGYKCggJ4PB5pRdne3o66ujpUV1dj69at+Oabb9DR0QGn04nCwkIMHToUw4YNQ48ePZCamirf2XbfsJqmobKyEkuXLsV//vMfaJqG3NxclJeXQ9d1DB06FKmpqXJRnkSDf/b7ym6lt2rVKjz33HMAgEsuuQQAEAwGsW7dOgQCAen6wn4f7E1cjr2fLLHvo48+wtatWzFmzBgkJSUhHA7L69ajRw/4/X5s2bIFFRUVuP/++7FixQqEQiGkpaVh/PjxuPPOO1FUVITc3Fwp2u5tOv3xzPGQC4Ho+souZgHxgpZ9f6SqEzBmt5l/JtIRDyFxglxMmmMhEjKf0dWzzWCg02Nt541XAiO2+GaTx/YahxC2AHah0JwJGNuegt1aKBKL/CvGk0h0euzXxBIt97Pw40Ri62+beGmN39qaDdhr4cfEaZVB9HsyooUIESuw7p3ju7XAHDIOxyjEgaSBTO9/EJBWhGT9hiHA6QIgYVgSKuaCiVZfzfDHp0EhAFCgkflC1AWEBnOhEQHSjDMKIRCGQJAEQrolFpojJLowrB80gqoAXrdAkgo4TAsBAiKrKFvxCmNjCEBLQEfZ7kp8u3Y90lJT0be0FCFKgg6BQDCE8upqlG3fAYcnBa3tHaYoCoAIQpDpwF010kmGYKrD8GHYFiJUtwaxdscufLVsFXZXVqItEICqEfztHdhdX4PWjjYkOR1Ic+UjhbVB5jBidXhDoRBaWlrQ1NQkVz7cvXu3XGSksrISzc3NaG9vBwAp4iWyFPT5fBBCoKmpCc3NzXLKsLXASE1NDVpbW6XVodPpRGpqKrKzs5GZmYmCggIZp7UtPT0dycnJcLlccdNsEk3RSpTProRjDp5QKIywMwzLStDhjIg6hmCjS5+DgPUOEFLIMyz+1Mh2G5almeVjzhLYLBEmkfWosYiIeZzxl80O0N5YNUVAKegZrjGsc1rnsxItbAIiED+KTaSDNN14hwERsVEICNUQu2xmCBGRiCJWi7ptdyxRHUdLhLLKz95iNQetLGs9mV5769PMlFAsL7yydMz0RAa9bJojLKcZEXHOmmZn1S22qdiIFhHl9SS7rz4rT1bSIvmRZW0mIM6/n82/IQFR94cxfcm8P4ThD1LYzh/bCY+cM/FAipUfKywh+l61tgEwV7eO3O+JxERZ/mYPJnKZEoiexxGxnar29nasXr0a77//Pvx+PyZNmoSRI0ciJycHTqcTuq4jGAxi586d+M9//oM33ngDzc3NuOaaa6QVWTAYRFVVFbKzs9HY2IiNGzeiuLg4anprLNYqsIqiYMCAAXFpFEKgtrYWX375JZYtWwZVVXHppZdi+PDhyM3NBRFh06ZNaG9vR0pKCvr27YucnBzs2rULNTU18Pv9KCsrw5dffomsrCxMnDgRp5xyCoYNG4bc3FxpUWbVT7GiXGxarHzouo62tjbU1NRg27Zt2Lx5M/bs2YO2tjaoqoqkpCRMmjQJw4cPR35+vhTfrKnEVplv374dc+bMweeff46kpCScc8458Hg8UWmoq6vDN998g4ULF8LpdOLss8/GCSecgPz8fCQnJycUqiwLyI6ODrS2tmLPnj3YunUrtmzZglWrVmH16tXo2bMnzjnnHPTv319aRFp5a29vx44dO7Bnzx643W70798fALB582Z88skn8Hg8UlC1TzuPvcaabbV7ACgrK8Nbb72FQCCAnj17Ijc3V94H1dXVGDNmTPSz3sV72B4+GAxi8eLFWLNmDa644gqcd955Mo2apmHDhg1YuXIlXnrpJcyaNQvBYBBDhgzBlVdeiZycHFx44YUYNWpU1NRku2Wtda69WR8xh4vOetYETTPrb91sS5BphW8NAlrvsMhb/6gghGIK8MZ7OCJmCdPgXYk9wmwfRLbE10/7mQiy7mHjfabrBF3ToZPhF1FVE5cPRdtvyvMqitVuiB2MS1zKMsghFEqMNpoAkQ5dJ6iqYqYrtnBI5v3AzmPdPRQf9V44PsTBo6lcHey5D1na9xbRwZ3EbuVw0BxEUgQILtNuDzogKPKwynuaTF+COoF0IKwrCOmAIAFVMfwEKrrh+w/QQaagpuuAFhTo0A1ffSoBXiGgqECbDrTqhPagaemgawiTuZhIWANIINmlIkM4obqMh0bY8iqNMsw6UYNAiATaghrKa2uxp6oKuiKgCcNyUSeBYFBDY3MzWlqbkaw6oCoEBwgqRZrxKplCKCBPohMQ1IHWEGFnbR1WbtyMTTt2AEKBLzkZThLQQmFU19ZDKISinGz0yMyAbXCzW9BZQ+y7QKedzAPMY6KXYyLruc5M3C2fgh0dHWhubkZ1dTWqq6uxe/duKQxWVlaisbERbW1tEEJI59g5OTnIyspCXl4eMjIykJGRgaSkJOi6jvr6ejQ3N6OpqQk1NTWoq6tDY2Mjmpqa5CrGDodDTj2ypg4XFhbK6cPW1OFYH4JdMdffW3kdKoFwX/fpd/k+3hcUIiBEso5V5LvAFILIZhUmG9UR0YYEmVNhCHJFJqkWwVzdyTqbUetaspJuvDVks1yBMF1KGO8a84kw0qHp0MNhaOEwNE2TPg8VRYXD6YDqcEBRI5Z/lpinkwZN1xAKa9DIWKFXKIBQFagOwzJSqEbm7V4hFB0QGkHRjL9hNf6MQgJU0+pF2BYkMRvBxirAxpRUXTfEVc1c0dmwUlPhcBhpdigKoKg2IQ1RgqpurQRN5jRnS1A1LdyM9MiraVoSmh+doJNZVqbwp5gDYIoQUBUFqpn+SBTSe6D5k0DCHJhTjMFEUqxnRDGs/0kYU8bJ9FVsDgoagql1P6kRkZdIirARBCDUyHuegLBpuUm2IFKwVZRIB08oEIj4vBS6Dmg6LF+RAMxBQEQLg0IYcVJkIR3D4tRMm00Yteoia2ATwhSD5T1v/B1Sjj9xINbKMhQKQdM0rFixAu+++y4KCgpw6aWXokePHgAiIrCiKPB6vejfvz8mT54MIQQ+/vhjDBw4EKeddhoURZEDWMOHD4emaVi/fj1GjhyJrKyshPWsZb1eUVGB3NxcJCcnyzRa35WVlXj33Xexe/dujBkzBkOGDIHP50NbWxtmz56NPXv2IDs7G16vFx6PBz169EBpaSlGjhyJ4uJiBINB1NfXY9OmTVi0aBHWrFmDTZs2YejQoRg/fjyGDBkCt9stRTH7+S0rMcta0Ho/tbS0YMeOHVizZg2WL1+Ojo4OZGZmon///hg4cCDy8/PhdDqRlZUln2EAcT4GLavGoqIilJeXIzU1NUo8JCKUl5fjo48+woYNG3DyySfj9NNPR1ZWFtxud5zv3liLNpfLBZfLhbS0NOTl5eGEE05AS0sL6urq0NLSAiJCjx49pBhpHR8KhaQF5J49e5Cbm4tLL70UiqLgs88+w6pVq6S7kL59+8Lj8SQUVS3R1bJErK6uxuuvv46UlBQMGDAAPXv2hMfjgaqqaGlpQVtbG3r37p0wHvszab9GicLu2LEDn3zyCfr374/TTjsNgCFqfvDBB1Jo3rhxI5qbmzF27Fice+65GD9+PAYMGCAHUPf2/Nifi+MOo/Iz6zJzRpUc9LC1wcjugEk335dmvQ/5xjCrVeu5UcxwOqCrEIIAocvjpCMI27kBxXhfCR0ga0q9bp5Hgd2nrf0oAd0Ugox3ecAPNNQH0e7vQCikQQvrEIoCt8cBX7IXPp8LHo+A0VQgKMLsEENBVGPAzCai3oxme8BW/dv3WcYssfEottYPCQW6bpSBpgFtrRoam9rQ0e4HkYDDoSA5yYfUFDeSfDoUVYcedqDDTwhrgMsp4E0GVCVsnkcxLP/MsgwGFfgDRmqSvIDqMF6J4bAhkOoiki1hWk7qmoDqMJokmgbU1ITQ2NiG9LQkZOe44VKMK2DXCqALBENAR8Bop7icgNtjLBhq3CKG+5NAh4JQmOBQAI9XwOmMzN4QMM7X0WEsOuc19xtGR4BpiRS5x8w2h9E20Wz3ACDMaYZkXstAkFBb24621g5kZaUhK8sJRY26WEbzS2ggoUPXHGhvF9DCgNsFuD0ERSEjP2QMHhI50NFBCIQAjwdwuQDFtKiMtWbdG8eHOHjI6rT9Ua5sd8bB0KXju5Kuve3vbN++Tx55UR0iFfMgohAEOEI6oCjQdAGdBMIEOS3JSqqqGh2G9hAQ0oFwGBAhwO0U8MmHwGpQK9AJ8IeB5gBQ5w+jLRhGituJDJcK1QE0BHWUt3agrqUdwVAQoaAffk2DP6wh4A/C5XCiJCcTfR1ZSE12wAvTQhFGhUpCGI1+oUInAd20OPSHNTQ0t6LD3wFFUeByOaEoRmXrD2no8PsRDvmhUhhulwIHjM6e5eMBVh5EpNOqkUBAAxraAti0fRc2lG1BIBBE39Ke6FNaAq/ixo7du7Fi4zrU1tZh845dOKlvP/hS3Qd+Yb4D7EsEStRw2psws7f4DnUj7GBGfA82nXsLY4mC7e3taGlpQW1trRQFy8vLUVFRgerqajl9GADS0tLk6sCWmJeSkoKkpCSoqioXLGlra5PWgs3NzWhtbYXf7wcRSUEwJSVFLiJiX1QkJycHqampSElJgdfrlU7XE12/rkz7if19uEbg9yUMdjdUXYGqq5DWdYowX8mGKCSEgEIKSCG53wgjAGs1etKNkVnoEUs/AWmNbrc0NHfBEo9AZE7fJUDTI0IYFCiqQ05HV4SxujFpOnQ9DISNaWmKCiiqAhVkjLCrhlgEYfoOJB0UNkQmXQ9BI80QIhUHFIcAOQVIEdAEQSMNmq4Dug6FBJwQcECFUyhmg9OyeDcGwkhEd07I/I/MQIYQBSgOFQos60rL2tFYCMaakmyUmSI7XLr5MQa+I74Qdd1oFAvdyKaiGm9i67pBgenj17CKV0iNiGbmQl6CCIpu+DCEmV/rOkRyAykYk2IIkDoRrMnJRlCjcyM0BUI3BhsNfTNi70nCsHAUiiGqGvm3nkNh6cWyDMgmcBJ0w70iRcpdmCP8CgAVAqqighRVLqImLf9INzuLZt5lpiJxRbfLIn8J6961VoQWxhBoRCwHSCFTlCTThyEARUH4+Gjtd4p9+ujcuXORkZGByy+/HD169JCuBxJZcWVnZ2PixIlYtWoVVq1ahREjRiAlJUW+m0aNGgWn04n//Oc/WLVqFU499VS43W55TntcgUAAFRUVKCoqgsfjkdt1XcfOnTvx6quvora2Frm5udi+fTuam5sNsV1VkZKSgpNOOgknnngiMjIyovJlXW+n04nk5GQUFBRg0KBBWLlyJRYuXIjFixejqqoKF1xwAUaNGoX09HR5bCLRDQDa2tqwe/dufPPNN1i7di3C4TD69OmDE044Ab1790Z2djbcbrd8NyZaITfWGg0AfD4f+vfvH1c2u3fvxuzZs9HQ0IBLLrkEI0eOlOXY2WBaZ20qK01WOyHWCtJuHWcJthUVFUhOTka/fv0wYMAApKenIxQK4ZNPPsGCBQtQW1uLK664Av369UNSUlLUzIHY6bft7e2YO3cuvF4vJk6ciJdeegmDBw+WlpuNjY1wOp3IycmJEhVj89KZRae1vaWlBV9++SWICH379sVLL72EqqoqfPXVV1i0aBH8fj8mTJiAu+++G6WlpRg0aBD69OkjBeBE2K9lbPket20Kc/oqkfFyIetFDqNaFSBjAE/ArJ8tYtp3ZliY410wBRyjxjaFMcM0I/ogOSClm8drUhw0amRrdMcmIlpvGgKg6BCkml7vgfo6Pz79ZDHKq8sRDhPCYeMd6vO5kJeXiT59StGvbxGyMt1wOBHxpd95AdnyGvnb9gqTeyJiYsyzaIYghAFygkggFCbs3tOIdWu2Ydu2nairb4JOAm6XiqyMXAwe2AcjTimCL0WgtTWElat3oaqqFj17FGPY8HwkJUeEUzJeSwiFdeza3YT163dDdRBOHNEP2TkeNDf5sWd3E0KhIMJKGAo5IKACFDYGhnUV2dmpyC1IRqCDsGTpJqxctQHDhvTF2WcPgdfjQqSIhPV6RW1tEMtWrkWgQ8OQIb3Qp28aFAeZoqWOYBBYu7YCW7fvRHZ6Nk4Z3Rdp6dY73WgnNDSEsXz5VoS1AE4Y1huFRUkwBo9VJCp7S38wLZzMXbohIFunhkBbWxDfLFqLTRu2YuyYE3Ha6QPgkreVsJqycoCvrU3H8uW7UFNdh/79emDgoBy4XGHb9dbR0a5j9Zrd2FVeiV69CjB4cDE8blkqe7mHojkOmwsHI2Ltz3EH08HvahrlVY/fY6sI9tdc3TwKiLoRYpyZkv3v+Ibo3s+5v/nrQkgyKneVXAhpAoEw0BY2Ft0Im77/FEFwCcDjVOBSBBqDQHNQRziowQEgLVmF0yFME2NhdgMUhHWgI0yobA9jQ2UNapqa0Ss/D72z0+FRBfY0t2HR+s3YWl6BYCAAXQshqIUR1nX4AyEkuz04adAAFGSlQieHLCZhPvg6EVykQ5BirqoMOR054PdDkA6PywlVEXCpAqQT/GEdHYEQdC0Mp1OBx+WAavo8D5MwrRnM+M3XlQ6BsA4ENUJ9Uyu27diDuoYmZGdkYnj/fjhxYF8kOb0oy85AdXMttmzbhtqGRjS0+ZGftP8Ok49nuirkdRbmcFuEHQ66Knh1JY7OfgOQU7ZaW1vR0tKCqqoq1NTUoLy8HJWVldizZw+qq6vR3NyMQCAAVVWRnJyMtLQ0pKenS/9IXq9XTgGrqamRi4y0t7ejtbUV7e3tCAaDAIzpxz6fT4qB2dnZcvpxdnY2UlNT4fP54Ha7ZbzxK37uO79dDXuoruehvFbHpWXA3lAiFnNysMcas7Msq0yBxxKLIAUrRPYLFZEx5ciCE7GdJYHIVFVrlWSIiN883RQKjRFhYwEOxZw6rJq+v1wOR2Q1ZMuaIWz4qyMFpmpmCFqKEHAoDihOxeh0KmRYDToNq0GowhAFQwGEQkH4gwFoYQ2qDriFE17VBVVxQVEVkFCknqVYIpauQ9N1aLYFTYRurugqFAjVCcXphOp0QnG6IIRi+NzVNFA4DC0Uhq5pMDXRiNhoWcgB5oIf5tRcTQPp5gqlgGFBpypQFXPREXPqj0NEC7PGxVXM/pR5JinOiohQa31sw+oCkXwppr2nkVBhLDJGAqZZISzn3FYnSOgAabZ7QFUAhwPCoUJxOAwLT1WVrkN0MuYhCDI6qcK0/hO6KfLBuD+Fbgid0AwxULfuS5j3pW2KNETUl3E8yDJGiPTjIJNvbDTvQzI7GjoImjAsLgyR1HwX6MbMB2gagqHI4jDHM9YCV7169UJmZqZcMdZuTRZbFyYlJcHlckmLc8CwQgyFQkhKSoLP50MgEEBtbS2CwaBcYMIejyVAhkKhKEs4wKibmpqasHXrVmRmZgIAtmzZgvb2dni9XqSnp2PUqFHSwtFOrBW7EMbqvZmZmXJRjnXr1qGmpgZVVVVyoa1YMUpVVSmcWQu11NTUYMeOHaioqEB+fj769u2LXr16IScnB16vV9YLdpHRTuwMAiGEXExF0zQ5/RWAnA6ckZGB0tJSaeFopdUStDq7Toms+a1tlvgWK4hZ2wOBAAKBAFwuF7Kzs+F0OuH1euXgY1tbG6qqqlBXV4fS0tK4vMb+DoVCqKmpQXZ2NjIyMqBpGrxer0xPMBiUg0OxlpCxeYrNj/13IBBAY2OjFJpXrlyJbdu2YcmSJfD7/VBVFaWlpTj11FMxdOjQqIVPYgXJRPk5HG2WI4thyWcM7Jim/gSo5mBTWBOm/mIOZpFVXZoz0GATCmWX2BIXYW7QYYxowRxos1aWl//JY4VU15So7q0lJElLbzOYIS7JV5J8tdXWNuDTzz7F9l07oAgHBByAMKzAkpI8KO1ZirFjR+Lsc8YgL89rRmZzqxKHiP7bTLtdJiV7OEtstRpUZJW0JYwa1mlbNtXg0zlf45uvl6Kurg7BoLGIkVB0JLl9aKw/Df0HFSAlxYUOfweWLvkWX3+zGCefdAp697kUSUmW70vIwggFCGtWb8asdz5Cdm4G+vUpRmamC1u3lOPDD75AdU0FdEUFdAcUoYJIgwIBh+rGmLHDMfG8kxAKCaxdvw7z5s2DQiGMG9cfIDfkbALz+gsBNDS24OOPP0XlnjpceeX3UVxyMhyWawEAbW0BfPHlIsybNx+9S/uid58pSElNhbXYqU5ARXkt3v/Pf6E4gMKCLBQWJwFkuIsRZJfclEhZC0OylosS2BqzlkLR3uHH6lVr8dWXi5GdlYYx4wbAZd1B5oAswRCWQSqamzowf+43WLt2DS6+aAL69j0dTpcGIRzGPSiAtjY/vvziG3y9eCnOPuc09OmdD4/HabY9ul4HHIfioIh6KA+UaNks8b4DOgUhohTvkwSiYKR2syIzHkYkjteeD6sRLZ2QyxhMH3nmzWNVjPJctpGW+BeImQZYFeP+5c/qpHV2BNn/JyAEgdagQFOY0BgktOqEgE4IBTV4VAVeVYFPAzwKUK8Buxvb0FRbjxSPB32LspFKhg9Bp+UnAYZ1YVtIx476eixavwbVjU0QKlCQlQJFV1FdX4fV69dh887d0EIaFNINU3HVEONSk5LRUlwA0jTD9x9Zr53IQiYOXZdjTUQCugboIR3hYBAqBJI9LrhVBS4HgBDQESK0BULQdQ1JHjc8TicUYYiKwTCBBOBUAF2JlBOR4XEoGAYamtpRXdsALRRGYW4OBvfqiV7Z6VBJwFHaE8s25mFn+R50+ANoD2oIdfGKfVfYH0vBzsLurTF1MNNS95eDsSizp/NAppjElpMlCjY1NaGqqgqVlZXYvn07KioqUF5ejvr6ejQ1NcnVCN1uN1JSUpCZmYnMzEykpaXJaUHt7e1y2rBlIdjW1iYdgjscDikI5ufnIzc3F/n5+SgoKJCrDft8vigfgvY0J7pGXRFQj+VG9KEQgI8X/MEw3A4NimKIdcbUVWt6cWQSkdHgNlrnOswpq2bD12qY68JqvdutBMkQWYikeAP7gIytM+xQHbJjYA3nCQIQDknLQuiG9SBphmhEZL0hIPsThrkeIhZv5t/GzBvDGsyw/NPNBjtBgQqX4obiVEGKBhHWoOgECocQojBImFOQHQ4oDhVCVaEqKhQADjMdxtRnYxqxrunQNR1EYSu7Rn4U8/khczq1EFBUNWKVJ8VWxVwMRjUtJiJTq/WQJt+ThhUgGXaJJHsfZhnbCzHSDiCY/v1AkFNvLeENkaKMbg8ZQqwKMqdGKYbFnOoAhAOWIxDSyRBpNS1yDohIB0kAgG4YLIZN80vdnKJuWT8KwxLSoagQwiEXwLGuu+EbUjenCmtm4Vr+giILjSV8eqPaYobQSBS5x2UwAXPaPOR9AyWycrWhC4i4foCaQPw51okVknRdx+7du0FEGDFiRJy/O+sYILquTE1NRUZGBpqbmxEKGa2huro6AJCDTGlpaVi3bh1SUlIwduxYKfJZ51UUBX6/H4FAAIWFhVAUBW1tbQgEAqirq8PDDz+Mb775Bn379sWPf/xjXHnllcjLy0NycnLUoiB27OKbfQEKy2VGv379EAqF0NTUhG+++QZz585FSUkJPB4PkpOT5eq7QgjpLy8cDqO5uRmLFy/G7NmzEQgEMGbMGJx33nkoLi6WZWadd2+Lc8SWqVXWqqpGHdfS0oI5c+aAiHDxxRejsLAwKm/2VY27OmOhMwHPfk8QEfx+P6qqqlBdXQ2fz4fBgwcjPT1dWjiOGzcOu3fvxo4dO/D1118jIyNDWg8mWm05HA7j22+/RV1dHc444wzpKsK6H4gIra2tACAHN6302K0vrfRa35awaX2Hw2EpBH711Vd4/vnnUVtbC0VRMGjQINx5550YMmQISktLkZqaGpVvKx675aNdEIxtA8Va1h4vRCy9zSm5hmaCsA7oGqG9TUd7u4aMdCc87s66pmEQCIaVlyr1g8ibx/b+t1xQ2OtPcxuZ/T4IAmmRRdCsd4cuBTmrYjbURGGJjAJy5liHP4iG+ga0tbajIL8Aqanp0CmM9rY2NDW14Nulq1CxuwJaSMf3vnc6MrJccDj30pG2UhIlbFBU397YZrrZkG0d0+qMVJlHIVRomkBlZQfe+/ccfL7gG3T4/cjOzUReXh7cbhc6OlrR3hpAstcLl2q4AHG7jQXiKioqsXbtOtTXnYvs7DTYX1466ehoD2NL2W5sLtsGX0oqkpI8gCDUVDdh6dJV2FOxC77UTKhCgSKMd7cAwak60aNnPoIhYxaH39+C5uZGBAIhkK5Ck7pG2DinYrw7nU4HWlvasW3bLmzbvgvtbcOR7HVBKMZsh8aGNpRt3oJtW3ciGNBQXV2L0l6ppmsQQAsDlVU1KNu6Bfn5+XC7DFchsMRDa50EWO5IyHbvKDL71jvbKH3D9YyRjyCam1vh9wcj06KFMZvCkJM0c7VUBeGQjvLyCmzbtgP19Q2G30oChELy5g+FNVTX1GH79h2oqxkMLRyGAqfZPv5OiIOU8E+rZUhxGzt5bmxKn5S5SJgPjnWQcbmsn1IJjjqPrUNhNXYN7T2iwiVSweQIse3GgXUbUUR0E0KKddGd/8i0UqNxKaL3SX3PViIU9WUm15i+Egmzd3HD1tSS6baXQ+KwifcIgnTcHRvaaCwbf4cJaPUDjX4dVW1+lNXUY2d9I1qCIQQDQSQ7XchNTkbP3BwUZaahSdWxsbwSW9ZvQnFWNjLTU5Cd7oVHCChQoAsdmhlvWyCELXt2Ys3mdQhDRUeov1mhE1qamlC5Zzfaa+vgcLnh8jjhVhU4XE4IxYGM9HRkpaTA43AYU3+tS270HaABUHXDkoAUozLQNEI4rEMLBOBSAJ/HDZdDgQOG1WBbUENHIAgdgDfJC5fLiXAIaAlq6BA6nCqQ7DKmeKmKDsuqxRBoNDQ1t6CpqQUKFORlZKIoIxXZHuPcQXIiLysTTlVFWNMQ1nVZcXZnDlYo21ucXd1+OOhs6sje0pDouY89zt4AD4VC0qegtfLwzp07UVFRge3bt6O2thYNDQ1yoRGXywWfz4fU1FSkpaXB5/NBVVW0t7dL60Br4RJryrDlAN3j8SA9PR0ZGRkoKChAQUEBiouLkZubK0VGy4eg3UeSvTwOdgpNIqu8w3FNj/+R/cOH6nRAdToMUdASPkTEbwpZI09y2B4Rv34g6PJf5P1oaHPWtRTGdB8dphBl6ncU8V0ooMjzRhrg5lRj0qXgBFhimsNoqFlhdKuBTtLay3hh6+bbXDGsHhRjhFoLawgGQ6YPQsMGTFFVqKoDHtVlWMU7CELTDGEybFjrhUMhICxModGaHhyZImz48ROAUzWc9lh9AyIgEAQCQegwTTBlO8bwG6iY07XJFLpML+TQTFEOlvClKFAdMDsgZqPVbHgJ2dCJnCKyw/hY4iyR1SU0fgvzOOOwyPNin/Fgb68AMK35dABhgHQIYTXoATgUkNkMj0wTNv9ZVgckrNXLIuVhqqiWxSNZqipMwdqhQDjUSHlYbTnd8DVoXE4yLQ7N7AvIe8yUFGzlY8MUSK12YFTtRJAWoXarWWsKm7Rc6WQa4rGOvY4MBoPYs2cP0tLS0KtXry6vwNzR0YGOjg7k5eXJqaFVVVVITU1Feno68vLyMHr0aHz44YfYtm0bcnNzkZ6eLsUjRVHQ0dGBsrIyVFZWIjk5GV988QV27NiBefPmoaysDPn5+Xj33XcxbNgwuYKtJdQkEgZjhSS7VZjly8/pdKK0tBTDhg3Djh07UF9fj2XLlknBCIgXQ3fu3Ik5c+Zg8eLFCIVC+N73vodx48ahoKAgKl2WuGefomsXnzobAI21mASAFStWYM2aNbj44osxYMCAhIKj/Rx7Y2/7rXgtgc3y0bhr1y4Eg0EUFhaid+/esr2Rm5uL0047Da2trfj444+xfv16ZGRkoK2tDX379kVpaalhRGAKq6qqYt26dZg7dy5OOeUUDB48GJs2bUJSUhKSk5Nl2srKypCTkwOHw4GWlhZUVFRgx44daGpqAmC4T+nRowdKSkqQlJQk4/f7/QiFQti5cyeWLl2Kr776Cp9++imICB6PB4MHD0ZxcTEyMjLw9ddfm9ZaQQwYMAApKSkIhULyvrCXQ6wVoWVNGwqF5IrW9oWXjh9sbVvrQ0AwoKO2pgNr125FQ0Mjzj77ROTn+Yy6TzGElIi3Wi1GNRSyjpbvOXkGey89cUqM+jXRQAslOM6yQlRln996jQICSUnJOHXcOAwZOhA6QmhpbMX2bbuwcuVaVJRX4eNP5qOgKBdjxg5BmsuazdBJUcW8FGzSQ+cHSEs7VW7SdKC5JYSvv1qOBfMXIRQK4rRTR+GU0cNRVJwPl8sJv78NDfWtyMnKhS/FCdIFPF4nSnoUwOvxobqmHlVV9ejbN80oKjKaDQRCW2sIVVV1IAKKi4qQkuY2F+JwIBgMw+P14KQRw5GXn2m0w8wp36qiYtDg3vB4nOjo8AMIgSgMXTevmzCnnUcVv46kZDdysvOgKFvQUN+IgD8IwAcIYyGQxvp21NTUgUhBa2sbamrqENZ6Q3EYzTddB2pq6tHREUBOdg5SU71m/Wm9Ya1RT4e8C6T2Yb3PYbunBGAtvSxM7UjXAMsfZaRxYB1nKYpka8tSJIhwQDfXURKKdRcqIFINwdrUlhSpdXWNY1wcNGU0it4qR5utbxJQokIYJSXIMOkk2QDVoQkVCgHOMCAUHRosldfypQM4YSjoumIT3YQwV4wlCGNJC+imDKzD8IOgaKall1xO21p9FggJo5pwEkEXCjQBOAnQoMNBhvmrLnRzhVyBDrPd7NAAp1NAOABF6BCkgcgw+4WIxK8D0KBBFyoUTUAJC4QFQVUEhEqGxYEIgyBAwmXUC2FChwZ0kOHvLkkQ3C6Crlg9rYhxtlMHNKFDEwpU6S3ULJ/Y2kdEGrFOAkAKQgLQFGORDVU3RDQdBCcJY4VdCNSHgFo/YU9dM9Zv3YG127dhR00VWjraoYSAJNWNtPQ09O3dE6ecMBSeFC9qqmuxeesWtHe0YfDgfuhFXsC0GFSEgBLSENIVVAfD2FlVg4baZmTl5iInKQmZioKOEFDf2gG/vxVuj4LMkiIU5GYj1eVCkjMZDqeKtEwvevcsRKrLCRcBYQXQVIKia3CEVYR1Ba1+BxqFgEMRcOmGINkRCCAQbgc5gBSPGz4y7tV2IRAKBqF1+CGECq/HA6fbgXpdoL2N0BgMwut1IdenIE0A6S4FiqJB0cMQcCIIwB8II+xvB0QAniQVSQ4HkhQgBOM+0hXAoTvgEi4Ip7KXF8R3kwMRWuwjsvbpNlaD1v6JPUeiRtfhFnus9HWW3tgVV/dlLRebn3A4jGAwKEVBa7Vgy6egtcKitcpiKBSS4p7P54PP55O+fYLBIPx+P/x+v+yoBYNB2YjNyMhAcnIy0tPTZWctJycHBQUFyM3NRXZ2NlJSUuDxeKL8JO2rfKxR/1gRbn/L50hgFzQTibyx9993HdWhQHWYI/TWIiCmJZnxMe97BXIhDkvMgrVABRlCFVlOyGGMngrdJgQSIKBKp82KtYiE2YkgMoRGihEFhRR7YIqXqmH9FyZogSAC7R0ItrfB39aOQMCPYCiIsG5MMxUuB5xeNzy+JHhTfPD6kuFK8kB1uqCTjrCuIawZU3SNhTR0c/EOoxnvUARUhwMQAsGODrS2tKCpuRnNLS1o7+hAyPR76HK64PF44PUmI8mbjCRvErzeJLjdHqiqw2hlmVMEjdWYYQhnQjGn1ToMwVM1rBJJCGhE0MJhhENhY7VoIqhQ4FBUOBQVqtMBYwEQ02egtQCHZm+4U6SPJgAoZqfJMPqDNZIp6zVdQ1jToAWDCAeD0EJBhAMhhIMBhP0BhAJ+hEMhw2pRKHA43HC7k+Hx+uD2+OD0JEF1Ogz/gqqRN2FO37amcFu9tohIaZ5f1q8REdhahdrycWk12HV7PQMBIUj2IwVg9jYgpyIbxRDplEaEQbOjYLWzZEchSkY1Og5kXxnaiFaHDsX8Nk5D0IPH97Ri613X3t4uXUjsDbu4VV5ejrq6OowbNw5JSUkIBAIoLy+X7i5cLhfGjBmDpUuXYsmSJVi+fDkGDBiAlpYWrFmzRk5HXrNmDbZs2YKSkhI0Nzdj5MiRmDBhAl588UXk5eVh0KBBUtizpztRuuyCTmcDekIIeL1elJSUIC8vD5WVlaioqEBbW1tCa8SKigp89tlnWLhwIbxeL37wgx/gpJNOQlFRUZSVoV0EjBWWErVrYq0z7WHr6+sxZ84cFBYWYuTIkXC5XFFtESue/X1vJRIXY9NvWW2Wl5cjKSkJPXr0kKKdZbGYmZmJc889F16vFx999BHWrl2L6upqAEBpaak8l6IoqK2txfvvv4+ioiKcdtpp8Hq92LlzJzwej1zlWgiBPXv2ID8/H9u3b8eSJUuwceNGOa2ZiNDW1gZFUXDaaafhggsuQENDA77++mts27YNNTU1WLRoEb755htkZ2fj1FNPxdlnn42ioiLk5+cjPT0dDQ0NKCsrw5IlS7By5UpcdNFFOOuss6ToCRiWh3v27MGOHTuk+GgJhlb5OBwO9O7dG4WFhVFTwI8frHqRQKaLidaWEMo2V2LJ4rX4ZvG3SPElY9y4YRCK4X7KaCcY735DjFOiBpWi0FWYjmch5RtBIGjWiBaMachGfawI410m5LKURouCoEodQdqFU0R0FHLgzVrwBIAwFuYbPHgAzjh9BBSVEAyFUV3ZgOLiInz04Rzs3L4Lny/4En37FyM1NdPsx9nzIqL/pJi/7QurwO7f1kwrmT7zyJrlJxAOA9u2lmPu3C/Q1NKG0049ERdePB4DB/dEcrJqvnN0BPwaHKoKp8s4mcuporDIWFhw165y7N5ZgfCoXnBa1bTpoqWp2Y/q6ho4nSp69SqG1ytkenTSkZKSgjPPPBXDTuhhDLTCsLATEPAmu+FNcsDvV4y2l/kelqqxFHsFLOvNJK9AXk4eVFVBY0Mz2loDZuGEoWkqamua0dxsWAJ3dPhRUVENf4cGl9voG4RDOqqqahAOhZGbkweP1zRRFdZq8YCxzKlR1rLOlBfBEC4NQdB0dWK/WEKJ5AFm04fMdpg1/dssPyHMWY2kyeMVoch2lCFEm/2FqHPJW67LHMPioEFEGDQzKIVBeyBDdJGz/a3ReduTosNYYUiHMd1GEZYAGDEIJXMb6QIajJeRAjKmJBnL4EEXBFXToZADcixXN8IoujBXrtHNBrYwVhM041cIcOgawoqApihw6CQ7MWbzDdBV+AMC9WYllxQCkgE4VAHFFBiNZ97uVc+oesIwVuALhQS0DiCoCrhVwO0mOFSCIjToUIwVcDUgFCY0BQiNugonBDIUDRlCh+oxLBki1YoCIqNToynCyKdxFSKNe3txW38Kw7E4EaCbZaeYI+A6EXQF5qqLAn5NQUOQsKupBcs2bsKqtRuxc88uNAdaEQ4H4dGdaNdV1DY2IKjq6NmrGCXJXlA4jI72VtQ1NaLJ3w6dMoypRWQo9qquI6QJVLcFUV3XBD0skJWSgaL0dPhUBS1BDQ0dAYRJQ1ZWBgYPHYL+vXog3eWCV3jgUAgun44cXzLSnQocwhAGAcANw+S4PSAQDDjRqABOEJIBtOtAa9CPgBYAHAqSvV4kC2PFpgAJBEMBhANBOBQH3E4XQpqGHQ1N2FlRh+qmNviSvehXmIW+OWlIhgKXW4fQw1DJYVoIGJW6rgcRCAcRIoKmG+JgRziExpY26JqAz5MMr9sFl9o9BAWLzhrkewuv6zrC4TBCoZD8tkZmHQ6HnLpqORjvSryHGquBrGma9JlkfTRNkw1ip9MJt9sNt9stfeMkisueB3vcfr8fbW1taGxsRF1dHaqrq1FZWYnKykqUl5fL1YNbW1sRCASk5YPH45GrAhMROjo60NbWJsvTEgMdDgcyMjKQmpqK1NTUqEVF0tLS5OIiltWhlY9E1gz2jotdLLWsHf1+P4LBoLyWqqrC5XJF+SY8mtfUnm5N0xAOhxE2V761OkPWfWelN9H1/K5hLMIRjgh1sBr+1n8RqzK52RRVdGG+V4UCa4iLTFHR8BdnNqwgzFmZAoq53DxpxsrBRHpEILKlSyiKISA6zNWAyVqwTkCEwwi3tqKhugZV5eWo2GM4yq+rr0VzqAUBCkEIFR5nMtKyMpFdkIPcogLkFRYgOz8PvvRUOFxOY0BONe93AXOVYGPKLgBjERQBIByGv7kRlTt3Yfv27dixcxcqKqvQHGiBBg0uxYM0bxqysnOQn1+AgoJCQ3DPyUNSWjoUpwtQBFQBcwVjMvwUamHomoBwaFAVwOlyGisoOxyGL0Xz/tOIjEVSRMT3ozExgyLlrRhh5DxZqzTJNslFt9ptkTkVpGkIh4IIh4PG4EJHB1pbmtHW1IS25ha0tbSgpakJTY0NaG5qQFt7C0JaEE7FhdSUTOTmFCA/txh5ecXIyMqFJynJnJoNKE4HHB4XhNPwLSgcqvG3OS07SvSzpiHL59ESCKNuSEM8tEQ/mA18YQqB1pRmnSDMKeim60rIboRlPWhZJAphWsGYdZx85Mn2TWY4yHRZS7LpINMPsiEiOo7DOiPRe9yqH+2DeXurD1taWvD1118DAAYNGgS32y3fYaWlpdL3Xs+ePXHiiSeivr4en3zyCRYuXIi+ffti2LBh0lK9qKgIzc3NuPDCCzFgwABomoaFCxeivr4e559/fpxguTdxbF8W/tZ2a8DNsnhMZAEmhEBdXR2WL1+OVatWweVy4eSTT8a4ceOQkZERNSU3UVq60j7qjLVr16KsrAxXXXUVcnJyEuZ7f96pXZn5YE2jbmlpQXl5OZqampCVlYWCggI5eGihqiqys7MxcuRINDY24quvvsKKFSuQl5eHcePGSV+Cfr8f7733Hvx+P6644gpkZ2dDCIGamhpkZmbC5XLJqeW7d++GruuYPn06UlNTceaZZ6JXr15ITU2FpmmoqKjAl19+iTfeeAMLFizAtm3bsGrVKulHuV+/fpg+fTrS09MxZMgQFBYWynRYQt+IESMwatQozJ49Gx988AFSUlJw+umnS2tZXddRVlaGOXPmoKOjI6q8gsEgdu/ejd69e+PGG2+MGmw8nrDEMCKBcIjQUO/HipUbMX/BV1i1aiMqK2sxoH9fyCEWUwsAYOpwAhBO2FcRNmKEHFiRptXC6vES5IgOAbquQNfJGHRUzYFlkrW+TXyz4hSmJZixTbX1vSI6lgCRDlVV4fE44UtRoDoBIhXpaXlI9nnR2NSIf8/+EMtXrsbmzaPQo0cmXFJH60wgjLwbZLqs/ro1yCz/F5G8m/sFAL8/jJUrN2DDxs0oLMzH+LPHYPDQHkhKdsDpMNoHAjqcTnNISjEs7RVFIC8vC/n5eSgr24ptW3ehowNwui0xPwxdF6iubUBdXT0yM9PRszQPDhcQChiCrFA0uNxu5Odno6Qk3Vi51xyoE8LQZlQHQKQAcEoBENJtDACyfA0DQlHhcevIzcmCy+lCc0sLWlo6DGtDVYMWFqisaEAgGERSUhIIGioqqtHeHkJqugtCAO1tYVRW1pgLIWbB7XQCEEb7CIZxmbBWkyYVckaLWcwicjNG7k0y1xSQ95sOYVn9A5CrUlsit9CkJZghXEfEa2ORHstCVZjX2RR7rXIQtjR1kWNYHDRs9HQR/ZLQAVijygqMUX/dnOdprFokAHOahm6NvhJMIc+cSqIIhABoUBBWDAFPtVbYEwDpBM0BQNfhEKalgUYgVSAsFCgwRsY11bAecOoCfrMkVc286QRB6AIqGelwa4CDBFQdCMIcqNYBoQpoprCsQEUgJNDYQaho9yMY0pHpcCBPcSLVqRpTRiDkjaALc8RYWj84EAoLtISAZg3QNAGv0JEhgFTVYTpBV6BBIERAY1DHrsZ27Gk0nOv2yvAgyeWAjxRopsNtp7nabxjGtCfF7JgZ5qoUMV2EkVeAIgv0WH0Aa1oQweiA6QqsVd81MlbgbQ4QqhvbsWLdJnyzYiX2VFTD39EBb7IXvrR0eIUbfn8YzXoYmqZDhQqnKuByOKDrxkhdR3s7dI1AhrtAkCagQ4E/rKOhthGNdXVwOhQU5mYjJz0dUIH2cBAt7W3QdIG8nHyc1K8vhvbIg88Jw6qRAN2pww2BFNW4n1QIIAjo5EBTSKCinVDd0IC6UAhOQcjx+UDuJLQHOxAMh+FwuOBNSobTaawKqWuEtmAAwXAIqmo4Xa2ua0JlVTXWb9yM+sYWJLvdaOnfG+4Rw5DiSIfDqcCjqIAOuEiBx5sE1esFNQs0NXWgOhBCluZCiIA9NY2orqiFBiA7JwvZScnwOg/jo3oc0JWGkaZpCAQCaG9vR0dHBwKBQJT/O8MCxwuv1yvFKovORrk7278/aY0dybes8Nrb26UPJEvItES6pKQkKcLZnbV3Fq/laN0S8+rr61FbW4uKigrs2bMHe/bskdYX9fX1aGtrk1OBVVWVzscti8P29vYonztCRPwPpqenS5+BeXl5UaJgeno6kpKS4PV6pWAXK9rZOzeJ8qTrOgKBwP+z919BlmVnfh/6W2u74016X76r2hs02gFoAIO5HHII3JlLipehB0khMfSgNymkFwb1qHc9KRQjQ8WVrl4UlxpMkBgQDTtAA2hvq6uqu7pcVrqT55w83my31n1Ye+88lV3daHBmSPRwVkd2ZmUes93Z61v/72+ywJR+v894PM4kOem5LJfLFItF8vk8hULhE4uKz3N+/rJAYvr8FBhMwczZc5oe3/T6S83w/6YzCGMUcSZ2lUb4kgInzBS5aX2rIVYqazzFwjTtVFLAJVNnAmRJpDbBD2KGhSjSdGKdBopw/Gbi2G9POI7xtAN0EBH7PmriEwyGDFptGju77O3cZXdvl/2Dfdq9NgM9JCTEwqHszCEsQW2xjuflqdTnqC8tYZeLEIX44xHT8RilYoSU2JaNbUljzJ2CSEpDGME0hImPHvvEwwl+d8Cg32KoR4CmLQr0m4uEgyFOrKjmcsSVKgIFFokJu2mbSimxxHFbUJEEYQUTQn+SFK/mQKZSZSkNiGn4lmbZlao1dGbQa465SAFbpVCxkUOrMEBFIVopHClxXMeEg0Qh4XBAr9PhqNWi1Tyk2Whw1G4xGPQYj8ZMpmN8f0wQT1Eqxsai5FSwY5uhladr5XFsD2lZxMpIlpycgy0sHAwjUWsDhOpQmsLBkhkwp9OiO2HgGfmvQGqFpRL2oEik59JKQmfSBUBybanEj5CEhZguJIQw3ojCMj+nYTBhaL4nYCQikXWnX8l50cJsq3BsAygnnpNIidLKhMpEkQF6lSYKg7+Oj+m/tZGyuwqFAjdu3KDT6dzjC3i/OT4IAl5//XV+8pOf8OSTT3LmzBkAGo0G3W6Xubk5PvzwQ/b29njttde4fv067XabXq/HH//xH/Od73yHs2fPYts20+k0k6WWy2WEEARBwJ07dyiXy6yvr3+ClTe77Sd/PzuHfVqzC8jm5clkguM4rKysZBLX2Tn38PCQy5cv0263efTRR3n22WepVqufAAR/G6b8SZnxye2cTqdcv36dQqHA+fPnM8beSbb7XxaYOrkN6fe9vT2uX7+O7/usrKywvLx8322XUmbS8aOjI8bjMbdv32Z3d5cLFy6gtebXv/41b775Jv/4H/9jzp07l+3D9vY2586dy6S8d+7c4e7du9y6dYtvfOMb/IN/8A/Y3NzEdd0MvA7DkLW1Nd5//32+//3vE0URFy5c4J/8k3/CuXPneOGFF3jggQeyfZs9Pmlwi+d5XLx4kX/4D/8h//P//D/z5ptv8vjjj7OwsAAYv8OnnnqK8+fPZ/UDmFri3Xff5c/+7M944YUX2Nra+tQa8Hd9GLa2QgqLdnPKj378Kn/xs5e5efsW4+mUIBiTAiEiqwMEcazpdYyVQ74oyBdkAswps95GEvqa/iAGBeWyjesJRiMYTyI8zyGfF0zGml7XZzoNKBRtqrUchYJtbvEWHDceBUoLplPo94YMBhO0kjiOTT6fo1TyyOcF9kwPQ0qBUoYBJoRGWgZksyzJ2nqF5194gtdfe4ubdz7m6tWbvPD847gVO8E00oCfE1ZjM80qISDwYThQaBTFoiSXlyDMXBYFkuFQE0UhhaJDLm+gp057yAdXPmY0GfHiww/w8EPnKBRspDQlhyWPm18ks5HQFkio1QpsbK4gJNzZvsvRUZ9KrZrgVZowgp3dPUbjEQ8/dJHllToGEbE5BsnAlhrb1gg7CXcTGhUJhO3MYIFWAhKa52kBWklCHwYDo7Iol00o2sLCHLm8x3g0otsdJ/shmEwiDg6buK5DfWODZuuAZuuIwWDCMsbmYTA04UT5Qp75eWM1MR4ohqMIz7MplUzNohWoCKZ+cg05FvmCxHNTma9gPBZMhhrHhWLRMFp12jAVcVLLGgR5MoLpRBOrmEpV4nrC7LNKcS5zXlNinAATTIdKwMD0PiwS0HymMfs5xu8uODiT+pNi4Gldmi0LtOkXWJpEHpx0D2YSh2afIwyyYxhC6UohodOmkqHMd1oCsU4uPoGtTbCFtgRSWMTKWNLYMYjYMosRDbYCKQ19VioJygBxWpv0WisxHZdJV0PHZhFjJYy8aag4HIdcub3DYbvHhbVV8t4KxSLMnlgDChtgEQ22MsyHaQAHk4hbnT5RBCvFPI6Vo+gIbMtGWka2HCrNka/4YPeQdy7foFCt4DxxifVqjZI2CcGOANI0KMsAZYY9O9szSZDptF+dALSGcXlvYyJdJxzfvwSBFgQKjiYhH966w6tvvs+t3QOwLNbXNzm3tcb6/Dx5y6UzmrA36FGpFlmuVCg6gkLOQwrBeDphMvXJTGuFYVH6CPoTn+Zhk0lvQDHvcXppgfm8uckOggn9/gChbear85ytVTnjWHg5sERybTkSGYGHILQUWgkIBf0A7k4Dru73+OCjyxx0++QcyfmtLVaWT9Mb9IiiCM/yyLk5LNvIkJTWTIKAIPIBGE18rt/Z4c7ONts7dxl2+1gx+NMh5WqRhfLDVAoetm2hgJwtmK+XqS7M0Wgc0Ggc8dHhEUXPZeIHvHv1JkeNDpVKhbOn1lktFyg5k7/az+fv+Pi0Lv3s32dlKrOsuSAI8H2fyWSSJQPOFr2O42T+QJ8XKPos2fFveo1ZVmMQBBl4OR6P8X2fKIoyECktYFPJbAqufdq2pfudegAeHh5yeHjI9vZ2Bgru7u7SbDZptVoGhJ9M7kkdtG2b8XicgXnpd8/zKBQKVKvVjA24vLzM8vIyq6urLC4usry8nCUNp8zMT2OB3O8Y3u93syDvYDCg2+0yGAyyY2W6tTkGg0H23pVKJQMKT5qtf9Z7/VWM2WsviqJ7rr30vM6yHtNj9DedPehZFq5tZbzBe/12SXnrZNViyiRMu+cZ4y/5txBJd1xk6gGpTdqcUBohzfOtWQuihEEYqzgJ8QiRkcSJI7AsiDVqPGHU7TM8Mg2oVqNJc/+AdvOQXqdLNPYpSo+Snccr5CnXaswvLrK4vsri2goLy0vUch5eHMF0ilYxVqxwhEDZNpZlYzsOjmVjpdeklKYStUIsYeNg4WiJq0wj0tUa1+glsLRChgoZmjATEcUQJ7IUywBTwraOATFtQCwVm7RjpdIAk+RQJyCpAbYkMvE1NGQLU5AYdlfKaI7MYsaSOLaD69jYMpH0ejaoHIQR8XRCOJkyOeoyGQ0ZdDq0Gg3z1WrS7xwxHU+wpaRcLLKxvkjOzRFFAb1+l06nTb/fJ45i/OGQoZ0j5+TJ54rkvQKOtHGEMNeVJ0BYGY4n051L0qexE32zZWWWVCop5FVsWIRBdCyVlsKAqlIm91ohZss1hEqSjdNjJDDH0DayNh1GTAZ92o1DmgcNjlpt/KlPLl9gbmGBpdVVFpaX8AoltIDQ95n6E6IgQsQ2Cg/HAkdKpCOwsJCW2XxlS7RShOrY0+6LOlzX5cyZM7z66qv84he/YHFxkWKxmIV5zDLIJ5MJr732Gv/8n/9zgiDgq1/9Ko7jsLOzw3e/+11+8YtfEIYhR0dH1Ot1/pP/5D8hl8sRRRH/y//yv2RJxqlPXxAEdLtdarVaxhAMgoBWq0WtVstCI+DTa4GTc/5s7ZH+Pq0z0v0ZjUbcuXOHg4ODLGQjZQPONpUajQY7OzsIIThz5gynT5/Otn12ez6txvi0v5187uw8mL7v/Pw8c3Nzn/o+vw0o9XlZjEEQsL29za1btyiVSmxubmZgcfq4WeZiLpfj1KlTPP/889Trdd58800uX77MuXPn+Pjjj3nppZd4+umneeKJJ7JtmEwmNJtNnnjiiWy+3dvbIwxDnnjiCf6z/+w/o16vZ+Bxv9/nf/qf/ideeukl3n77bbTWVKtVvvrVr/Jf/pf/Jc8++2xWQ87u6yzoOXvuU0brl7/8Zd566y1arVbGaBRCMDc3R71ez54bxzE3b97kvffe46tf/Srf+ta37klZ/sKNlFGl4PCwx09+9Eu27+6wdeo0QTDhyofXQKTNP20sG0gSaF++TKPR4vHHL/DY46fxPImQqUWEZGenw1/8xZvkPI8Xv/44Swslrn14yNtvv8/ZM6c5f/YUH364zXvvXWE8GlOpFnnk8Ys8/sRZ5mo2UgSmaaMkYQjNwxGXL1/n+kc36BwNiKII17OpVEpcuHCeZ555hPpCeh5SGekxkCdlbNaWgJvTnD27zgMPnOejj69z5/YO3e6ISrmSHph7GWqkr5UgJsk83WyOefkX76BUzHPPP8ypU3PJMRC0WiNefeUavX6HL33pES49tIxGcNDocHd7l1zO5sLFM8wtlMxcckyXNK+fTIxKxYYJb2nyeYf1tWWKxRyNZpNWs8up0xWTy6FhOIzZ3d1HKcX6+jpz9RzHfs9JBxeJViZERuokSEdi5mUdJTWHNscQw8ATwqgQ4hhu3jjitdcuU8h5PPPMg6ysV5hfqFMplekNj+j3xxmrbjCY0mweUa5UeODCBUZv9ul0evR7Q7SuA9Bu9+j1hpRKRaq1InEMH320y5tvXmF5ZYXnnrvE4pIJ/IhjzQeX93j//assLy3x/POXWFhyULHC9wVXLu9y+f1bbG2u8uxz55OmKQlIaMB9rQSBr/jw2h7vvvshxVKBF154iOXVCkoJpHTRWhAradiLwjYEOGGOcUbcStmyxv8mu0I+7/idBQdngT2BTpmrSdqKJvuWfGmZOQ2aF1CYhLmUvKlNZ1slBT+xxkEab21ASE2oY1QscJUgjiQKixBzslyD/RKpBAxLaKyxFoQBDLXA0ZAXAjs23VtbSoIARtp8haEmLwWeANcB4ZgPhJJJyEUMk1hw0BvyztWP2d5vIKXNxc0V80GBVHkDCSvCoMIiu89MI83t5hE/efc9VKh59sEHWS1tYD5KhqIqNUQx9KeKG7sHXP7wCvPLqzx+6Qy+FighjPxmlhoNSB2jtWFbppJmTbK4yoDB4/OXbmtq12nOlchuAVob+fYgFhwMhlz5+Bb7+01UrNlYW+W5xx7hkdObbM7P4QqLI99nZ9BFolgrFZBCks95WLbNNJwSBKEx5tTmJqalYKygMxzTPGwS+FMWF2pszM1RFIbAOPV9xoMRAotyoUTNcZiXGpEU1mhNZEVIaUGkkXYSNKJsDkPFlf0mv37nAz66dpX+eIKbc+j2xpztBrSaB0RBSLFcwbHc9CASa80kDImCAB3GdHpDfLXPaOpTr1exY02ndcTd/X2u3bnNg2dPc7ruJUwGTV7CUr3IxsYqt2/coHnY5P0PP8KJAwbdPlc/uo4WgvNnTnF+fZVazsL7ItqN/FseKQiXFtxhGGapuyl4k/79NwFFn8UkPMkETL+fXFikzzkJCqYBHqlMNwUFUwZcoVDIpL0npbgn2YIpiNZsNjNQcGdnh9u3b7Ozs5OlAKYhIqnUNR1SykzqmrLbPM+jWCwyNzfHwsICq6urWcrw6uoqc3NzWdJwuVz+TEDwfufofsf3fiM9T+k5OynXTR+T/i6Vk6dy7H/b8t37bWv6b8uysu1OgcK/6UMplYUoZJ+Nex6gk761ThQYxllQiaQxJSGjFGBqJJl6Aou0FDVzmZTp3KQzbBHM80VyuKU2xbtQCkGMUAoVRkyHfXrtJod7BzT29jjcP6DZOKTbO2ISjNFo8laBerXG6voq61tbrG9tUF9ZJl8uYbs2wpaEkykyCtHSSJ09xwMrDTkxoSLZhKyPC3UhBJa08CyHvONRdDzGwkPpgIgIF4FNkhysFFIphDKBJgRT8zIqkaZYVgL6JSEbMhV1C8N+0zqpOWPDzJcSpIWwHSPHtWRWl6koJlIhYRiAig1LXitzbiyNsCwQhm2ndMRkNKTdOKCxu8fB7i7NvT3azSaDbpfAn2JZkkqhzNL6GufOnePMmTMsLMwTBQH7u7vcuH6dmzdu0Gq1UdOIsD9iaveZekUmbo6cZeHZAuXZoD0D1NkJY0FyzBpMGrimToxMYnFyvFUCEsfJPQNlwsKsJB1ZWqYm07HxSIzCMLmGBbbtYCX3Sh3FhH5A5PtMR2P6nQ77u7ts37zJnVu3OTw8JIxi5leWOXvpQeK8S2ltGa9WRjo27mQMAwj8KQiQWkEUoAIN8XGKtFA6AT4zy/kv7EgtKS5dusTa2hp//ud/zubmJt/85jfvAYLS+fvVV1/ln//zf86VK1f4zne+w8svv8w/+Sf/hK2tLVZXV3n88cf5j//j/5jnn38+AwXTUKzHHnuMl156iZ2dHVZXV7Esi36/z2AwYHNzk6Lp1hMERvJerVYzQOd+DK3Z7Tv5+3TMsuzS/QiCgGazyUcffcRwOOSBBx7g0qVLVKtV4JhxngKEo9GIfD5PpVLJAMx/U5Du84wwDLOU4EKhkO3n7LH4qxzp8UobgPv7+7Tbbc6ePcvi4iKlUukTxz89lkopSqUSDz74IEtLSxwcHPDuu+/y5S9/mZdffhnXdfn6179OqVQCTG2zs7NDEATMzc1lDeLt7W0sy+Lb3/52BgwqpfijP/ojbty4wd27dwnDkFqtxv/1f/1f/OhHP0JKmfkxpvvxaVLv2Wsobb4uLCwQhiH9fv8TxzV9XHoN/PjHP0ZKyR/8wR9Qq9X+ytib/26GNGtMqSnkXVZXFjh79hRfeuYJrl67xs1btxD3NAPN+jIMQ95+531ee/VtJtNvcfbcOq7rZc2gMNB88MF1/vRPv8/W5gZPPnmeuXqRq1c+4s/+7Hs88sij3DhzljfeeIvbt+8w9X0sS/Dhx9eQ1h/x/LMX8PLGSzCMYOdun5/+5DV+/he/5GC/gR9EZoqWIY4leOzRxzl9ap3aQj3tUXLc1CTbfpPOa2qaWj3PqVNbuG6OZrNLvzdGr1cMJiJn6vl7TmvKIDM72mz1eOkHPyOMQja3FtnYqhu3RA3NZp+f/fRV9vbvUK/XuHBxGU1M52hIrzugXCmztbVCoWCZY6xFwgA054UMiDJrDIHCdTVrG4vUajV63S57ew0eizbJ5QRoi15nyt3tXRzHZXNrnVzOQetkjk2AQTRobaGVQGnHHMcURJCxOTpaGTxDmQowsX+m34/4yU9+xY9e+jmPP/4Ijz1+DiFhYb7C/HyNg8Mdjo46+EGMm3Po99u0200qlQLnz5/i+vWrjIYTut0hUSiwbThqdxkOhmyd3qBWLyKEZnt7l3/15z9ia2uLU1uLzC+sYFkwHkf88tdv8YMf/IDzZ85y5vQKC4uLIASjsc+bb73HSz/4Fd/65lf58pfPJfumEVIxu9Q4PBzyox/9kp///Fd85SvP8ewzF++p9xCG5BUE4E8TOXLSDA/8OGMRp8rSf5PxuwsOziBNqaePTkDBdGmUMtTu+XAkiLDAhF9oYRh9UhlJq1JJeIgWGOsXnQBtCmWBrU02jgq0CY5QBkyzLLBdTKCIEuZEas04EkwiwSBS6FhQsqCWlziWpBtBf6w4CjVHyqTGlogpCYtyKUdVQFGYwBARg44FU6XY7fW5eWeHxlGXznhCJI7N06VO7KiTD78hICYBKArGgWK3ecTlD69BLDizukao1xDasM40ieRWCaZBxGH7iE6nSaFczBZSShu5ldYiA/YMizI2/1JG5iIxPkVCHLM60l5GchoAA2hlC7FUepycRD8WtKcxH+81uHbzNqPBgOXVJZ55+EGef/gim9UiczmJpQW1Up5axQGlWHFsBmgKnottW4STiMl0ShCa7ZZJKMowhMPekP1Gg0jFLCzNszJfJSegrzS90YjxaICUkmKljOfaWEKjEuaqRJuFVELNlVoRaUEv1tzsDnjjyoe8+/77dI+65FyP2LbYa7QIRiGTUZdwMsGby+G6HpYtQGhCFTMNfOLEWL3TG2DlcpzZ3GS+VOBwv8Fb777PUfeIu/sH7HWH+It1LEciLEM2mC/mOX92i4+uLnJ4t8G1Kx8w6TUJemOOukOW15Z5/NIFTi/NUSkIrOjfD0Dhtxn3k6R+XqnNyZ8/j6fLpxXps8+bBa1SFmMqKRoOh1mQR1pcep6XSZ2LxeI98tiT+zPLNEjBxqOjI9rtNnfv3mVvb487d+6ws7PD7u4ujUYjSxNOJbmz259696WAZCoLXlpayiTDsyzB2aTh3wS+fVoxe9I8/X6PnZUSpduYy+WyRcIsq1JrY2oOZHLtXC5HsVjMgM5UPv7X2X3/LCn57EJhljH4Vylv/l0cThJwQTq/zOyikVsmjUNMvZDarYjkoUIknsFA2pHKoK7ZmhzTWBQkMuOkTDXNVwUqKbKEPE4bTguRKCaa+Iz6AzrtNo2DBgd7+xx1W4zUAEVMDo9czqNer7O8usbGqdOsnzlFYWHB3MxDn2A6IZwGyMjG8hyk62K5DliWkUmrmCCM0VGIpTW2ZRk7OgVCyIxd6DkOnuuSky5h7BIicLFxtMRWICKNDiNUEKKngWGvaW2CUqRA2LYB7aRhzsn0uCXNNJ0d//TIGUZhrECHMSI+ZhNIrXGkMFJXLXFsI3+1pIQ4wh8OGA9GDPs9ukdHtBqHNA8btA8P6XW7TEdjdByTLxVYXl5irl5jcXGJldVVFlbXqC0sYLkuQX9A7Lhoy0ZIyygcVIzwjdxajabmq+Cj/BAVRqRyNUGWTINOah8dH3NS089cmnYshTS+00IQC5EtwoQUCGnCcURyHF1sHOVCrEyqtNboMCQYDRl0urQPmxwmzMjm4SFH7TaDfh/fDxCOZK5SZWm+Tr3gkYtDdL+LLnhQyCGUwnEspJUz/o9SGk8sDURpeI7KwlTQmji5z32Rxsn5K53zlpaWuHr1KlevXuWBBx5gZWXlnvntzp07XLt2LWOMX716lYceeog//MM/pFKp0O/3mU6nGYiWzmcpY7xYLKK1ZjAYoJS6x+9vVkWQbt/JcKvPu18nQc2T9/0wDBmPxwyHQzzPY35+nnw+nz3XsqwM1ASyZmH693RunJ0z/rJzxckG40kw67PGpzX3fpumXwqE+b6fKRlmvaA/jf2YXh+u61IsFimVShweHtJutxkMBpm/8exxS2utVDKcqizS52utabfbvPPOOxwcHDAejxFC8Mgjj/Dkk0+ysLBAsVjM1BafBh5/WgMXyK55MCEk6ePvV/MMh0M6nQ61Wo1cLvfXAtD+Wx0zgQqr6zX+n3/8/6BcKbO0PEe73UQKO1MWIo61Ba7nUi6X6fb63Lx5l17XZ27OI02JHY0jbtzY4eCgxdmzZ/HyLlpL+sMxBwcNlFLs7GwDcOnBs/i+z7Vr13j3vfc4f+Ecjz+yhZc3stZ+1+dXv3yPP//zH9NuHrG6ampeISV37t7k1s0bHBy0mE6DbG2cAjY6K07SkayPAceG+fk5cp7HeDRhMBh9EkT+xPE6fhWEIAwUzXaXOAqZTgO0Nn7FCoUfRHQ6fVrtHuOxn+WFdbt9A4jXKtRqFRPUloCDGoUQEWiXOBamp5hgASagS7O0NMfy8hJH7Y/Y22swGYV4notA0m6OaR4eUSmXWV2ew7IkEuPhp5VhAk79KXt7bRZulzKSkZSC+lyJSs0Cqcx7iUSxkNQwcSS48fEur73yNv1+n43NFebmywgZU67kmJurEauYTreH74cUtU2nPWQ0HrF5aoVTpzeZq9f5+MNbNJtHxLFGCkG32yf0Q+bqVUplF9uDfMFjOp2ws7NLs9UhVgYc7PVCbtz4mL2DfdCCvf0mDz+6iBCC0WjK3Z1dur0u5UrZeDFKfXzihLkefF/x0Yd3ePON9wjDiAceOMvcXBlpiUyKHquYvd1DXn/9Bvl8kjpvClLa7SGHh4dEcXCM2RxfeZ97/M6CgyklUCR+gLY2H5kwRZ+AtKRPTG2yp0pmUnwTYNHCgGt2bOEDE2VkwmHyYpa0jNFlLFAR9MKYdgxBZJF3BMJT1GyNKywijN9fFCq6gaQxCml1R0jHZqniYQnToW5EMQeTkBt3m+wc9fGDCRUZs7Iwz+mzG5wRDq6wEtaCQX+nWtMZj408JgwQtsRyZEI6S5kDOgFMVVKcpgU5jCNFq9Old3CIZTsEgY+0QFqmcI2N5YBJRY4V48GAMJxiC0HOlrh2clFEilhLAm1uACY0yEILA9RZ0iy0TG6yAQjTFD0wASQkZ0clki8rTZyc+f80gsPBmA9u3uHgsIHnCh69cIYvXzrHucUSCzlJyTLnr6QFJRx0DGWtiUNBzjXd+DiKGI0mBKFCK4nQ5loZhoqDVpdW+wiZc1ndWKVeyWNbgmkUcdTvMxn3sR2bXKVM7EmOVISIJLYWFBDYlkNqSOkohR9L2pOYK7d3uHL1Gt3mIV59gYtbWxSqRVrdEa1Gk1Frn8gP8dwcruNiJ1ZGYaxMnHoYEQUhcaxZW13lmUceYKVaZHd1lb12h3a/S7/bp9UfMglMWI2QhuWSsyXLczXmalX2b+7Q2t1h2DvECaA0t8Dp86d4+PwpVsoeec/IxP99Hycn1nT8uyiePq1IBDLGYgoKznoLpsVhGqhRKBTuAbJSFt/J/UzZaCnImHoK7u3t0Wg02N7eptFo3BM2MhgM7gnygGNQMPXsq1ar94CBCwsLrKyssLCwwOLiIvPz89RqNcrlcsbI+8v63/ym580CaSmrMpfLZSzKk16G6fFJ2Zjp8U4BV8/zcF33nsXjX/U1M8sa/azX/m0WUV/0IZRhPmXzvUH8UrXvDHc9nf1nHzjz+ebY6DklEqbhDyrjGpiR+fiaR5vCMwMEMWzFKDIAm1IEkwmjwZBhf8CwP2A8HOJPp2ilyZHHc1wqhQoLi0ssraxSm1sgVygirMRMO5mLhU7meGlhWS7SyYFjrC/CMCQIQoLpFBUE2GgKrotn26ZMkhaW7WA7Lrbr4nguruPixR4WEke4eLaLa9kGcEUaj2WlIUo8nZTxZxLZAitZeEjjLYgl0ZnUjYxJp02bH1SE1sYmJa1ILClwE2/GNEhFh4ooHDHp9WkeHHB3e5udu3c52N+n2z3C930sKSkWC9SX5llYWGBpaYml5N5Sq9bJF4tYtgNxjBoMCfp9osEIK1IUbY8wVyT0QyxhQaiIpj7BeEwwHhFN8qiwgI4is/9ZOzP50sYSJlvIk3orGuZmum9CCKRt0p5FcnxEIknOriYBxJo4DJiOR0yGI0b9If1Oh9ZBg/3dXQ7292i1DhmNh0ghqZYqrK2eYm11jdXVNeYWFiiWS3iFPBaKaNBHhr4BXC2JnbI1ZWpArlBxTBzFhFFIHB4zkIeT4b/pR/Hf2TjZNLFtm0qlwre+9S0ODg74/ve/z/b2Ns899xy1Wg3f9zk8POTtt9/m5s2bDIdDTp8+zebmJl//+td57rnnaLVa/K//6//KeDzO/NhSAC2d686cOYPnedy8eZNnnnkGz/MyH+JSqZSBhemYnSd/0/37s9iDs8+P45jDw0PefPNNbt++zdmzZ/nqV7/K/Pz8fZtHYICklAmf/n4WlPqrHul8eJKRP7sffxVjFgxLGZUHBwc0Gg18388aj5+VYJ1ua+ppfPHiRa5evcpLL71Ev9/nD//wD5mbm8tY+kII9vb2iKLoHqbo0dERp06dYmtri+3tbf77//6/51//63/NnTt3KBQK/Of/+X/OH//xH/Pcc8+hlGJpaYnr168TBEHGSvw8+zk70poubdKefEwKZL788su0Wi3+8T/+xywtLWV/+6LWCynxRGsoFgWPP3kKkaSzmuaYTJp9x50rjSaXszlz5hSlUpGDw0Pa7SFnz1VMo1ALBn2fvb0mlm2ztrZCpVoCIRFYSGFz2GgyN1fj97/1dR555AEmk5D/37/4M371q9e5cX2b7tGI6twcAtjdOeLll1/loNHg6aee5JvffIFTp9YByY9/+rJhkgZRRkRKAc/jmkUcr5zTxqMwzc1ypYDr2QS+z2RsPH9nPvn3OWDMMMXSukfcWzcpQJtjqCUgNWk0WBQqxmOTzO44LjmvkGWzmPOhMcEiDkdtn6POkHzBZW2pjGsZHKBer7K6usLly1c4ODhkOPSp1l2Uhr29Jp1On3PnTrO4VDFhLVoYglMCb/T6R/zoJz/n8pV5855a4Dg2X//6Czz93JppgiGJY+NPqJVGK0mv5/PWG1e4vX2XBy6e5YknL1KtewgRkc9bLCwugIB+v0fgh8RhjsPDDpPphIXFeTY2lllbXeHyex/SarUJ/AitHFqHLeJYsbAwR77gYNuwuLxAfb5O56hLp9sljhQ4Fp2jAY1mE0VMv99lb/+AKHwI2xEMhhMOmy2K5SKnz25gck1S6a8gVqamajeHvPn6ZRqHTZ7+8mM8+aUHjc9lBoLHhFHA+5cv02q2sCyNlDZKKywRMZ6G7Oze5Z6P/L8Be/B3FxxMR9rtT+pzkX06jKlzWt6lGPpJDF6gk2RiwxSMfejHio4CH0kIoASeBAeoSMMObGnNrc6YyVCxUPFw5hyKNjjCcBGUkERK0p6GvH+3wd3buzhlj+cefoC6W2SiNNvDIW/d2eXa5VscHrQJpxPyMmZxc4Wupaic2qBsF8gngFyoFYFSTEKfMJhg6Zhi3iFnS8OQVDK7iQhtQFOsNMLeMAN9FdMfj2AyxS275BwL2zruamtBkqgniKKYwPcRWlDI5SjYdnIcTGphqBWjUDIJNcQRkWUMsSsCclokQOLx4ipd66Q/w+wSLTV4NwEtIjmhoxB22wNu7ezi+z6b68s8eP40pxZrzOUlZQ9cEsWPMiwRLE0Ogach57k4rotWmvHEx48MOKi1YhJL+tOIvcMWw+mE6kKN5aUlcq6FsGASxPTGQ/xwgpOrEEnoxQorYZrmLEAIKo4FjiBG4QqLINQ0+yNu3b5L57CFa0nOXjjHs48/SqVa4aOdA17v9xhNhoDEcT3chJEotCAINcE0QMUxCMFcvcrD587wwMoitZyF7Tgsr63x4Y2PCSc+k7HPJI4NYzUWhLEmSkBvWxrfJBUGjPtTcrFDsa4pV8vUynkKDggdIfTfMgd/mwLps5iA9/v95+2Yf9p23Y8pOBqN8H2fIAgymvhsMEXqkZcCXyeZC6mUJggCRqMRvV6PVqvF0dEROzs77O/v3wMKdrvdTD6cSpbT7UuTcguFQubRt7CwwMLCApubmywtLbG2tsbi4iJLS0sZIJh6Nn2W7+H9js/sgud+hfBvGicZJ7OAoOu696Qfn0wIDsMwS2FOQcL0OLuue18fp7+K8WkAYXotfha78G/iEFonYSEk/a+Z/TVV0jEwOPPv7AFpQ0TPPEeQhJwlM+kMapi+n2ku6kx9IIRAuDZoB619goQpOOh06bTaNA8OaOzv0Ww06HY7+NMpru1RKZWMz+bKKsvLy8wvLlKuVigUSzixhsnU0APQRnIqTGgHMeipjw5CEGYR5EgLyyuA42FphWOJ40o/jtCpsbmUSMtB2i4SGwswcKCZpXUidY38ADXxsZRGaU2kY5SUSKVMIrFlIWxtvAhT7xVp6iilEyljkqAMprkqLdvIa9NVSGyA1HAyZTwYZl+Dfp+jdpvm4SGHjYYJCJiOEVJSr1VZWl5mdWONtbU1FpaXKFdr5AsFHNc18x0C4hjth0TTKdF0ClGEJy1KXp64UMYXfubfFIaGEZw1WPyAOAiRfmDANGEamNqWSRplGlojTJJxcl4MUJzYoqTXpU7BUQ3KpBqn9xGlYqLA3EvazSbNgwaHByZUpds+YjwcEgUBlhAszS0xX6uzsrScAIOrLC0v41QqiBSIEoBt0oeNmkGlqzvAAJOmWZwAhTFJMIyRYWn1xa4BUpDDcRzOnDnDf/gf/ocsLy/z2muv8X/+n/9n1ghyXZeNjQ2eeeYZPv74Y772ta/xR3/0R1Sr1cyTdzQaUavVMtBn9j2UUiwsLLC1tcXu7i69Xo9qtcrR0RHAPeBcOq8MBoN72PX3Y4Z92rx1kkUopcyAwddee4233nqLcrnM448/zsWLFzMPufQ103kt3fder0ev12M0GpHL5T6xDfdrkt5vLvksoC/9m+M4VKtVut0u4/E48/z7NBn1pykmftNcNutxnLL37ty5Q6/Xy8Jg0vCVVB1wvxoirWVSdt93v/tdfvazn/Htb3+bixcvZv6+6fMbjQaO41AsFpFSZk3bXC7Hf/Vf/VccHBzwi1/8giAImJ+f50/+5E/4yle+koGMqRVLWj/N7vvsNfFpxz/9mk6n2XacBIbT1/r444/5+c9/zpe//GUuXbqUNXI/D2j9OzuSZpTAnEsvZ3wDAx8yIzGRNnfSVo/GsmFjc5nF5XkOmy329hvEahXLkkQxtFp9GoctvJzH+tYquYKLiNP30ziOzeOPPcTXXnyKtbU6Sim27z7Ju+9+QPOww9HRmC01jx9EXL16g49v3mR5ZZG/8wdf5ytffZB83iGM4PLVeRzHTs7TPTtmQLFM0pAAhwpDisL82rIElqWJVEAUpfcXMbPfnxwirYNSnASFMikWCWBkmqdaKLSOQBt/P5GUTFFk7JNsy8G2XVMJpZYsyXsHgeaDy9u88tqbnDl7mu/8vWdxXQFCUSi5bGxu4tg2h4dNet0h65sVAl9zd3uXMAxYW12kVi+SvuLxl2TqD3j3/be5dt1BJLWL53qcOXuKJ59ZRQpjgZLYHoMQqNjixvV93nrzAyzb4bnnn+Ls+VVsx+y7Y0tWV5ZxbIdut8d4FBIG0Gi0iaKIxYUFFuaLbG2tI5E0D5v4U584hla7jZSCxYV5inkPKWF+YY7l5RV2dxu0Wj3CICbnWuwftOj3R1RrNVSg2L6zz3ikKVclvc6Yo26fxaVF1tYXEZZpROoklVhgEQSKD6/t8N57VymXSjzz3FOsrJez0lfrGCE0sQrpdNr40ylCKoSWxl8aizCKGI6HHKchzzbNP//4nQYHdSLtjJNuvjak1uOdTuqzWMyAUIIMQNMzX6HWTEKYBnA4jbg7mNAe+kzCEBlDybOp5F1OL9RwLNgNQt6/s0Nr94jT6wuUc5ss5PLmA24a0gxDzW6nx1tXr7H98V0Wzizy8IUtfFGkP/G5cucuv3rrHfZvHxL3p4gwJI6n7A86hBZs5XLMF9Zx3MQEWylipRPkPiDvupQ8G1coBDLxVrJQIlnAJGicJkZnKcSK6XQMYUTOsim4Ho4lECayBUMjVMQapoGPHwZIBKVCgaLr4GoQShAi6fuKXgjdScRkMiKwbCzPZtkRFJWmqiHvgGNQ2yRBb+ZEZFc0yJkzl/I9YiUY+xG7hy3azTZawvLGMlsby8wVbQouSFsRJdRYAeSERFlmAnBDQcGzDTgYK8aTCZMoRmOjNEwV9P2I/UaTKI5YmJtnY36egiVAGnBwMJwQBQG2G9M+6nB9Z5+CJSi4HvPlCrZr4yqBY0NsCYIYhhHsdfrs7Ozjjyasbi7z9COP8PiFM3iuhePluH39BnvC3Pwdz4CDEk0cC/xpyGQ8wY8jvFyO0xvrPLC2ykrBIufABCMf8ZwcOvAJJhOmcUisHURkfCWPfJ+dvQaj4YRcvoDnFol1TNz38acBg36f0cQn9tyEev0FLAz+EuMv66/yeY/XbwIKP2s7Zv1zZhOI06CRWVBwNi25VCrdI3lN5bGzxfMsKNjtdmk2mxwcHLC9vc3+/n5mcL6/v0+v16Pf72fpzOlr2badyZZTf8BKpcLc3By1Wi2TCq+trWUMn/n5eer1+j2g4G9z7NLjkX6lAGc6UvnQbKH9aa99cvGR+iPmcrnMl9G27ey90nOQMghTBmcKKqSMg1wuh+M4n0ir/rzX3P0WWr8t4PzvA1ColPkyVSszFaRIKQVm0SC5d7oRCZaFNDJRfS+r3Txutm2V+PQk4GCK+ZjOexLWIZNzLUKCIKLf7XO4d8DB3h6N3V0ODw/odo+YqAm2sKjnayysLHL2zFnOnjnHyto6bq1mZLsJoKSFTPYrAZ0SvE+FESpM5lPLhFYI2zKLDOlgm50zKbgotOuAYyNsK5EFJ/WEwAB52gB5cXzMhsvuFUIkibrJMUmkqMb8O0VSzUFLw77S42UYhSbIxLZtw+aTEmJF7IeoICScTBh1ehw1Ghzs7NLYP6B52KB71GE8HqO0wvU8FucXmF9aZHl9ldXNdZbX15hbXCRXLiEExL5PMJniByG2kLjS7K9dLlGKYtO5VyCVwMGiL4aMJ4ZpPRqPEa6Hk89TrJRRUWyUENqwDgQaSyTHUlgmEVgcnxedHMs4a3BiWIdaoaPkIk1SruMwwp9O8f0pfuAzGY/pdrscNA7Y3dlhf2+fdrtFMPXJex7z9XnWllfYWF1jZXGRWqlCMZ8nn8vjSAuZsAmEbRv2piVMRmEco6LYSIksiXRspJNKwo1ntCPAsiXatU1asfXFBgdThl/KXL948SIbGxv8wR/8Ae12myAIcByHWq3GdDrlX/yLf8Hm5ibf+ta37gH0xoky58KFC3iedw+QlcqDU2+6H/zgBxwcHLC6ukq/389eP212eZ5HpVLh+vXrDAaD7G+/ad6fBYVO3ruVUrRaLX7yk5/w4x//mDiO+drXvsaXvvQlqtVqNr/PHpdcLpex5w4PD7l+/XqWIpxKYmebfSe3YXbMzmUnQayTw3EcFhcXuXbtGo1Gg7W1tc/Fbr/f/PxZddMsyKeUot1uc/36dUajURZslvoNnnyN9Lye3Jf19XXW1taYTCY8//zzmY/jbLM29VNMGX9pOMxPf/pTms0mWmseffRR/tk/+2c88MADPPjggxkDVWtNGIY0Go0sOGcWePw07+B0H9NtjqKIo6Mj8vl8Fvoyy6JMt+vHP/4xq6urvPjii5TL5U8cuy/kECCENF7ymLAwJUwxICWm6aGz7mEKe4EUzC9VWVtf5c72Hfb39gmCx8nbEAWaZrNLp9OjVCqyubWK6wriqQm2iFXAYn2Oi5e2WF6u4LggLcHGxhLVSpHJdMRo5IPW9PtTrl67zmg45Pnnv8SXnr5AqeIgZIhCYiWsbjNmEAmdXO+pjx9Joy/9MQHrpFQgFCpOVs0nLpljqPD4F8oEKBvQKTl+MmOWZ29g/i2MLFAIw/o3m3f8JipSCTHL2JYhjVdwGChu3dzjZz97heEw4O/+/pdJ9Jl4nmRzc5N8IU/7qMPRUZ84XmU8CtjdvYsQkuWVRcoVz5QPAMRGFScEuZzF+QdPs7K4jNZGx+FYDqtri0mtlwTEaY3SEVop+n2ft9++wvXrt7j40EWefuYpKlUXRIglAFuwuLhAzsvR7w8YjaYEU03zsI1tWywuzlEs2qyvr+M4Ds1mi+FojOMoOp0OnpdjYXEOzzP7WK/mWVtd4/X4HdrtLpNJQD7nctg4QmvB6dNnaDeO2Ns9ZNAPyBdydDojJuOAiw+sUK/lMkZmWvcJJN2Oz7vvXqV5eMRjjz/K408+iu2SZYooTQZ2bm6tc+HcBRzXJCELKRCxx3A05Mq1dzlsNhBC3uuh/VuM311wUB/TbmNB4qYsUNJ4w6TSH4020eRZgq4RCukEUFRaEAG9ADqTkP32hOsHDW7s7tM47OJPfFAxhbzD/HyV3gOXOLWxQiuM+OjODjc/+Ih2f5Wza3Ns1krkMCcyVNCcKm7sH3L144/oHfZYfmCZXC7PIFJc293nnTcvs/PRbbSwWF6okZOC/W6L/lGPO5c/5oP5BTaXFigU8sTalNxxEOOPxsRxSL5UplrMY2ESfX1twoItW5AXhk0nlMAYFho2mR/HTH0fHWtcJ0chl8MRhmWWeTUKiLRm6AeMwwAJVAp58p6Rvk5jaMSCg5Fmt3nEbqPJUb+FL2zyhTk26wXOLM2jqwZ4tAUJ5fUYqZbaFOomsFknXoPHYK/WEMYwnPrsNg4YD4eUikXOnD3NUr1KyRE4EmKpUURobeTMaRERobEtgefY5HN5pIbJ1GcURETaI9aCUahoHHU5PGxjWzZbCyus54tULIi1ZhooxiOfOIiZDibcuPYRR4f7SNuhXMhxan2d8eomzBWpewLHgZGCRqC4cdjk4LCNZXucvvQAz545zdmiSZOU9SpbS0tc8zymgSKfy5FzLFwgiAUTP2Q8GREDc3M1Lp7aYKNsMedopA1uKKiWKniOS+BP0GFIhCbSAiJNexLwwe1tLl/9mMHQZ2PzDMtrC4zDgDsf32EwHHLj41t8vLrKUmGTsisThsHfjnT8tizC9Lqb/Zr9++d9zdnCPAWkUv+/VM46mUyyQn6W6ZYCU/l8/p5k39lCXilFGIZMJhM6nQ6tVouDgwPu3r3L3bt3uXXrFo1Gg4ODg3tSfFMZTRosknrqVKtV5ueNvK9er2dS4hQsLJVK1Ov1jE2YLkY+Td78acc3LcZ938+A0Vn24iwomHrppAyAk+fipLfPLItglgU5GzySynJOJkGnJt+p3Dj1V0x9E2fB2ZP79NtcE+lzZhdNJxeQX+gi/99gjOwYyzbnnwSUQZummJQWlpBZUEdWX+ukiE4WDcauQx2z7FKdQUKtMt9N40podSzdSIvkKH2uQEchfm9Ar3HI4c4uO7u77O8f0Gy1GYxGhDrClTnKhSpzi0tUF1bJ1xeQlSq6XMaqVMDLGbApbWwqRRQExGGIjpVJvbUsLMfBTZnAWqN9IxdVKia0FNIVCBsiSzIt5dHLc+RdmKvk0XMlxF4ZvX9At33EZDxFhRPsUZ9Cr0ep16dYqeN6FXLkEE4e17XAskGaIDIVxkRaG9DSspC2hbRMUIlQCh1HiDhCRaFh8YkQJYOM5TIYDuj3+3R7XdqdI5rtQw6bhxx1OwzHIxSK3FyZufk5lldXWFtdY2Vllbn6AuVShZyXx3NyyMABpbECFy/w0JFGWhbCcsGyEG6IzuVQBYu4CEFJMRlFjKYBI39M4E+QaoRyA7ypohw6TMkTyDx5KdDCIlIxYawAB2m5RtZtOVjSNgBpoE2CWxib70qZa0MnnoVCgOsgHAshIfTHHG3f4eZN4ze1s7NHd9gjQGOLHKXyHBtnz7G8ts7q+gara+usrK1SX1jAzufMYlJHoCJiFRGEPkEYEMXGUsJyXNy8h5PL4zieOW8YoFkrTRxp4lgRS0WsDXNCCY0vP7uh8rs4Pot55jgO5XKZcrnMuXPnsntnr9fjf//f/3cODg74T//T/5T19fV77rGj0QjLsjLAcJbhln53HIcLFy7wox/9iO3tbS5evMhkMsl8fdPHWpbF1tYWr7/+Ojs7O6yvr5uUUtfNWICzIwV7UouKWaAvne9u3brFz372M37605/i+z5/7+/9PV588cUsfXh2e9OQFs/zWFxc5OLFi2xvb/Phhx+ytLTE+fPncRznnvdKt+t+23byGKfNudRnMf176m2Yz+dZX19nMBhw584dHnnkkc9UCZxkLaZ1h+M494S9nWwqpszBtGnX7/cz2fjKygpzc3PkcrnPfO/Zc5y+x9NPP81DDz3EqVOnPlGrpO+zuLjIdDrlu9/9Lv/1f/1fs7e3l8mFn3vuOf7H//F/pFar3XOMUmnyaDSi2WzyyCOPZMctPXbpdXBybj95bofDIdvb21Sr1cwLM32t9Lnvv/8+d+7c4Y//+I9ZX1+/59qbbRp/0UaS/3nszaaFYZMlgRzYExBTM+cLkTClJUIr5mouWxvr/ErZ3Lx5wHSsyBUMO+ugcUCvf8ClBx5nfWkRx46IEChhmFjF3DzrS6co5MCyIlRsUylVyedK9Ic9/CgCC5pHXe7cvY2Xs7lw4SFqdQ/LVog4aeJhQktU0ohDORjiW3Rs4qsVUkvARkhQSiCETRzDdKoJQwfPS5uDx73R4/NpINEkms2oBBMqTqwdk6cgQoQwa2khjFeiRIKyku1IQsgkWLYFQhPFEUEUGTBWx0hhE8cWUlhoQibBmF6/xWjaJ1AxyiAVuLbN6Y1FFhcXaDQOaLSP8ENFq9Vjv3mLXK7I+uoa+ZyDELE5BEKitEApwXz9FP+vv/sPeOTxTaQVI5RECpdyJW+OaeyYeRcJIibSI27dvMvrr76PtCTPPPM4p09XsewplnIAC+HB0lKVWmWB4ahLtz+iNoxodhqUChVWFuu4OVhf36JWr9PptDlqDcnnNZ1um2KxzPzcIpYtsCzI5wQXzqyQsy3a7S79cYCdg92DXXKOzeOXnuCD6AMO2wcc9tpUl1Y4bHYhFJzdWqVYFOjYHP+0URnGihu3Dnjr7ffJFRUvfOUh1lcKWCJEWhFK5QwrVLvYVpnHH3uE//d/8B9QyOfQOsKyNeiI/f0B/5//74h2u4nGR4sIjW38tH+LW8DvLjiYgEwpqpqyAzMLzgT5FvI48AKdcAvTQAltESMYhtCaKLbbPd65vs17H3/Mwf4h0/4IHcbEOgRbka+U0GjmFmpISxL6Ee2jNk5e0O6PmcSCEmArjR/B4Sjg1u4BnXaLfC7HxtIStXyBo+GEKzfvcOf6NrlAsnZ+g4fPn6Hgunxwd5sP3rnKpNXnxt1dDvoPsTSXN/snBHGoCX1TFNqeQyGXByUY+MYnMdIazwFtC6QtTZhJysTTAj8MmAYBMRIvVyCfy2PLxEg7OZBKG7BxFEZMgwjLcsgX8riu8dAZRYIDX3Flv8flyx+yvbNNb9wh1Ba2W2FzuYZ67BGquVXqOQttz3RshAZtLngrPUcJj0OnN7HE/DuIYTgKODrqEMcxi7UFtlZXqXguOWl6QUY8I4mTRX7WeEnM0l3LJl/II4UkCEOmcUikBaFSDIOAnb0DhoMhhUKBtYVF6raDJzXDSBPGijBSaOHgTyP27u5ycACxdHEd2N0/YPqQT7FwCauYox4JAqVp+j63W4cMJ2PqlSobp06xkXeZEwJXwNgSzJWK2LaDjGJyOQ/HkjhIpjFMw5jJdIKyLWpzNTYW5ilbULA0UcKScYVjAPCUFYMgUjAONDvtHu9evc72XgMvX+Lhhx/m4plNBv4E1/J4/9332d3e48PtO5xbnWclVzIs03+PxqfJYP4yrzUL3txPEnO/ovQkcJV+pYy0FBRMgcF0gZCCWKlcKAXCUm+8IAjuMRlPFx2zEuJGo8H+/j77+/tZ4Mju7m4mH541205Bx0qlkgGCKRMhZQRWq9XM1zD187Ntm3w+f8/vPyvh9yQ4miYEp4Bg+j31yUrf52QS5Oz7fF6m5uxIpcYpyArGxzH1cszlcpm8O90e4/12LPueTYZOz9XnGb+NnOqzxt90sFDIBBTlZIc8SQ9XKmP63fsZTCYelcgpUyAnJRwKkQCKIgEdE/ZXklZMelxjjZaRCZOIYiLfML4H/QFH3SOarUOa7SbdUR+FJucUqFfnWVxaZmlllcWVFeaXFimUS9iuY2Sn00kmyUVaCMvCFhInl0ukqzP7rDGBErFCRQYYVDrGkgIpEsAOifJCAi/P1MnhWo4BTbVGqxilImIdEmmIdEhMbBYLUtzDSsyAQQQxMZGKiBN/UykE0hLYMgEILQuZAJha51CRYQkGgfHW63Y6HBzss7e/z8HhAa1OOwMEvbzH2voK9fl5FhcXWVhaZH5xkbn5eSqVGjkvb4LjwhgVx4bNICyk7SAtL7PoMecnRochMjJ2H8VckahSJ/ZN0FcwnTL1p4RRgDWdMA19IhUZMMK2wfOQjo2jFZYyVjFaSIgi4jAm1oJZ4/PU58+wBmOIInQQEU0nRB2fYDplOBrQbDXZ3dtlZ2+XxuEhY3+C5XjMFcvMzS+xvLrOytoGi8sr1OfmqVRrlCpl7JyLsI1/to6TUicBpgUSiQVaYGmJUAIRa5AxgmTFmNxWpDBLJ5Q2YShxbEJWoviv78P61zg+6z43KyMF6Pf7/OAHP+CNN97g7//9v89TTz11D6AWx3HCBPFYW1v7xHw1C4AtLCywtrbG9evX+frXv87+/j6VSiWT9YIBEU+fPo3nefz617/m0UcfpVwu38P8Ogn8pKz3WSbfeDzO5uef/OQnvP/++ywvL/PNb36T559/nqWlpU/IUoGsLgBYXFzkqaee4ubNm7z++uv86le/ol6v88ILL2SMmNmwks/DPk+PT/r4kwm7UkoeeeQRlpaWeOWVV3j66adZX1/Pnj8rB559j9ntTx83C6ydBPLSn6WUTKdTGo0G7XYbx3Ey5cKshHqWDTr7vrPvL4TghRdeyFKMT4Kjvu/T6XQoFAr8N//Nf8MPf/hD+v0+tm3zrW99i//tf/vfqFarWdjZ7HPTZuf169eZTCY89NBD2fFM33v2fJ5ka84+9tq1a2xvb/Piiy9Sq9Xu8cgE2N/f53vf+x5nz57l0qVLn6i/Zrfti1YzGDDjZAVwvL5H2Qht2FyZGEAbtpzjuKyuLVHIe+zcvcths0d9cYHJdMruToMojNjYWKNSzSXPF6AtBBb5QhEv5yKSlzZ1g4UUDlpZqFgRRZpBf0K/NyLn5anX6ti22da0DLl3pLUKKbyR/C7dt+O/G+agYDQaEgQTKpU58nnvxOfnmDGZHK3kbwKdsAEtIRLTCStZi1uZqkCQXHck9wIBtiPJ5V2kBaPxiOlkCqpkLEWEEQpoIrOtSmFShW20ltl+WFIwv1hiZXmF7e0d9vYOmYxCjo6GdLtdKuV5lpbqOG7i58ws+ULhOJK1tUU2T1WxbVPLaZ0sha04OTbGe18ri8CHGzc/5u7ONrXaApcevEAh7yTXhQkQE1IzP19kfmGOm7fb9LojjtoDut0u1VqFuYUylq2pVQssLi1w0LhNuz0kn1cMBkMqlQXqc2WkZQJpXQ/WNpYol0uJP/sE1/FpNBpUa2UuPHCaVqtB4/1dGo0Oa2vzHB428XI2a2uL2LYJF5EitWyBMITr1z9mb3+H06fOcObMObycwTm0SqxOhEIQIaWmPldifdOlUrFB28k1J7BsQaVcRAgbA/HJ48vjt/j4/86Cg4YsmLIBjWRDJAX9J+Qtx3xLpMCg7wm2HETQG8N+Z8y71+/w6vsfcGd3lzhUuAgc10KjmQQjhr0O3fEQFSsqOY9KIY9GMRwMaffGjCOVIO6CwVjT6A25s7NHNJmwuLrG+bV1nBiOjgbcvLtPrzdic2WdJx9+iKcuncWzbbzFOu1mj70rNzlsttk/6nJhvY6yLUKtCWLw/RANOLkctptjGmnao5DO1CcWioIjiUt5RN6mmIBkGgNcTf2Qqe+jBHiFIoV8LgnCMKATErSShEox8kPCIDLMgXwR27HwI80ghN2jMW9c/pCrl68y7HeJRACWhx9PmUyHnF5Z4dGt1UT2lUzGMr09GKZgaqOQzkdp8JQpeiGINd3hgMFwiJCahXqN5Uqdkm38HyUQK42UFuYUywzkElpgA55jUcznsS2TcjSNIkINOtL0xj67+wf4fsDywhwLc1VKrgVEhBKUFNiOh1eqoUONIy1iTJLwsDdk3O8jsFleXWCuvEJdWEQx9CY+rXabKPKpVVdZX1gmZ4NnK1wNDhLLdRCui4wDvJyD60ikqdWZRhGTYAq2Ra1Wp14pkrc0loxQ0jKdpsikQCKTdk4siYFWEPPh7gG3bu8wmYacf3iLxx98gDMLJSZxzDQM2d/Z5e7ODrfu7nLwwDkeqBTJiU8HbP59GScL9d80Pg/odBI4/LS/ARkYlrLQRqMRo9EoY6mlYSMnPfJSeUrKYktfM/XKm2UfpjLilDG4v79Pq9Wi2Wxm8uEwDBFCZDLhcrnM4uIi9Xo9CxFZWlpibm6OarVKtVrNZMLptqSgHpAtOlKG3qfJZNNjMLvdqWQ33f+TsuaU4ZeyJVNW4v2Awd90DmfHSVnVbIJxytRMPQZTJmF6nFOQMJUgpwBhPp//zMTE2ff+2/Gbh+vYOI6dMQKTSR9IG06JtJWUMQhohVZpGzGVv8p7TLXTyl1nP4Ow0sVBOmEJUBEqigjGE4LxhFF/wFGrxcHBPo3DQzrdLpPpBImkWCiyOL/I2voma+ubLC2vUZufo1AukysWcbwcCkkUmus+jCOQEssxASKOtJGOYzwHU5ZjnPgEJYm/QgksLIRlmJPmKGhsbPK2S5wroEoVwsqIaaXPsNdlODRBaKGOmEQ+w2BCfzphMB2R98fgOjhoLO0gHQekjbTA1tIUl+mx1KDjyPj4pamqQkAcEQyHdI6OOGq2aDYbHDYahiXY6TAYj4hUjOO51Ot1llYWWV1bZXV9jYWVZcr1OrlSCdfLYzuuYWj6AVEQE4chxCESCylt42uY1hUAcZzEJGusxDLATQJZpG2hpSaMfabhGCVD8qM8/WGfwWBAeTSiks8hZB4hTdqzlJJYacIoIgojVKwR0sJ2PRzXM3JtpYmjmDgBBafdDt1mk1azSavVpNVu0+11GY5GBFEI0mZlZYPq3DyLKyusrK6xsrbOwtIyuUoVy3ENAJnsj1IxJIEoSiX/VpgQGSkRlkTaDpbtIKUDwjGAZgKYGyBZocLIhJGEkfGQihXhFzCt+H5jFkRJ2VVg5MI///nP+eEPf8jv//7v853vfIdCoXDP/TYFB1M57EnwabZGqFQqXLp0if/j//g/Mu/B1dVV8vn8PQDN5uYmjz76KD/72c945plnePHFF4Fjyeds02hW2poCm0EQ8Morr/Av/+W/zPx+X3jhBV588UUeeuihzO9udttmwcf0fXK5HOfOneP3f//3mU6nXL58mf/7//6/GY/HfPWrX+X06dMZsHmSwZeO2Xn1ZJBJ+l6zTHatNadOneIrX/kK3/ve93jllVf49re//ZnBICdBuM/69/388nq9HgcHB4xGIzY2Njh37lwmKZ49vum4X6M4/V2tVsuuoVkVRhAE/OIXv+C9997jjTfeyBKRz549i2VZPPvss1mz9H7HU2tNo9HgX/7Lf8mlS5c4d+7cPX+bTqeZ3Pt+25dKk7vdLi+//DK2bXPp0iVc173nmIxGI773ve8xmUz46le/Sq1Wy15HKfW5G5a/y0NkxAaTUqvS9SUWQrsIkmCuDI0zpCLHFqyvLlCrlWk2D9nbbXD+gQV6vSF7+w0sy+HcuS1KZRt0nJwHI9G07RRIPw49y+Y8DKgjtCD0Y+IQbDtH3rMTAM549h9nCadAHhyjFkYunJJljtlOCVCoIQo1rXYbf+pTKhWpVstJGMfMsTnxkwkHVYYhiIMQaVq9TOylEiAeeS9YlEyqtiWp10vkcg6DQZ9Op0cULuJ6yX4IlQBUpvpIrnjzvhJ0EmxQqbicOXOGV19/m8PGEb1eyN5um0F/xKkHH2BpuTrjYZhN6CBijEVZgJRJSjIRJpFYHh+v7JA5oB2UitHERHHIdDo1JZQ21745Bopi2WFleYWPrn9Eq9nDtlv0+0POnjlNpZYHNMWyxdraMjdvf8jd3SaVSpnReMrZM3Wq1aIBbhP63dLqPCurSxw2m3S7Y9B9Op0uq6tLnDm7zu1b87z5dsze3SanNjdpNBqUywVW1+aQVnIf16ATTaclHWOlpDWhLwgDkeyjaQ6afYmAyNS5cWzCSKzI1E3aXJ+pihZtmfPMcfieZra7+tnjdxYclEIjlZEEiaT7L6SF0MfGy6YxmsCASiKQWEISJ/ILpQVjHzqDiPc/us0r77zPze1tFLC0uMjqwhKlagU/Cmh32wwGPRZq85Qdl5zrsDI/h+t5TEcTWr0+ozA2cb8Khn7ETqNF87BNznU5t7nFqYUFbK3otI442DtA2RabZ7Z49IFznJ0r4wqBym3x4Zkt9m7dpTsYctQbEgUalYepNq87mgYoIfG8IjE2+90ht/Ya3Ng/wFcxq/NVnjxzGnuhimVDIZFPh0rj+xH+xEdYgnyxRDGXQwpzYZDIfQ2zDiM3CkJ0roCdK2BLSaQV/UnE9Ru3uXr1A5qtJvVqhbn6ApZboDOOsC2VdSQgvZ+ltwnMukomCcfJ32cDSrRZX+DHmu5gyGgwwLVslufnWCmUKIgU7zbXgCVsw3pMF4SJ16KFxrXtGXDQZxxEjGOjQm92B+zt7aNVzNLSPHMLFbwcSAdUpHFdm83VVYYP+DhaUMpJIjvmoDeksX2X/mGTmzdv8/75DS4sFNmkQhRKhr0hw3YbqSPmaxXWiwVkDmJXEYYQCEFkCUJLIl2HfCEJhhEQxZpRGDLypziWy1ytTqnoYNkmhlwpAVoaICKOjJ+Q7WALGz+C/cGED+/cpdluMze/zMMXz3F+ucxKXuBrSXdjmSvLC9zevsnBQYNG64jh2jL27+wn/d/e+Ovqmn4esCdlx41GIyaTCYPBIPs5ZfDJ2QXuzPe0YE9lNymwNgsGpmEjnU6HdrudfXU6HUajEdPpNCsWS6UStVqN+fl5VldXWVxcZH19ncXFxQwcTKXCKSMQzMIqZTumoN5JZkB6PGbBt3SRkW73rGx4liUIx/LhNCE4PQYpe/K3SQv+LHB3doFzv9/NMgtT8G+WSZj6Qaa+hPl8njAMMy/IdLHxWazSvx2fPVRkWHNph1tmxXnWdM/ah4hjloGQmAQ7nUqKTRFugEKyIlkIkqCmBIzTxp7DBHAIiGOiIGDY79M9OuKo1abZaHCwb1IyO90ufujjOjkq5SrLK6ucOnWazdNnmF9ZxSlXka6DEMZYJ4pi/FgxDQy4jhS4GrAtLDSW2bjMv06lcmgwwJQlkwWQSoCxGK0C8H0cBSUvh1WtIqII5QcG1JxM0YGR6wd+RK8/oNluYedyxFJSj0NKlSrFYhnX9pCeZ5iJSmNFBnwTSkEUQWQ8BEPfz6770XBAq9lk72CPvYN9mkct+qMRSEGhVGJtc42FxQXmFuZNGEupQL6Qp1gqUSjksaVERBFa+CilkcJCCImbz4HjoSOFijQ6UsRRSBxrLGlh2TbCNR6HFhoLsLXG8X0cL4ftuliObdQVkSmK4zgkigKCwCfwfcKpjyNk5ueHZSOFwBUS27IN+8KyjJ+fbaRqoT9hPBgwODqi227TOjzkcH+fw8ahCVYZj9FCUCyVWFheY2VtjeX1dRaXl6nW5yiUSuQKedx8AeG6QALCqGQJqk13W9gSCxtLJQwNlVybwrA/ZCwRKERsGslKa1SsULHxrVZpsxxwLAttWbjR37wiIG3oKKWYTCZ88MEH+L7PU089RbVavYdVCGYu8n0/8y08OWbv05ZlUavVGI/HHB0dZSz72deTUlIsFllfX6fT6XDt2jW+8pWvZNs0azlxcr5J58XJZMKVK1d49dVXKZVKPP744zz33HM8+OCDlEqlT7D1Zhn06bwqhMiY/GfOnGF9fZ3Lly9z9+5dPvzwQ06fPs36+nq2z7PstHRb7gdSfVpDdfb3aUDMZDLh+vXrGfA1+z6fBoCl31NWZwpAzqoFTp6btI5KGX+VSuUT7M/7sRXvt/3pcTt5jMfjMb/85S956623GI1GCCFwXZcLFy4wGo1otVqZwmN2pDVaCkLfvHmTxx57jHw+f0+TeDqdZo3IT1OiWJZFr9fj5s2bbGxs3OM3mD5mNBpx9erVzPs5ZWLeT5r9RRwZwQQSzMwEbBiWi8i+z4IeAkBpbEuyMF9mdWWJ/Z0m2zsHTP2HaB/1aRw0qVbrnD27husm02zCONQalI7TggK4t84w5Jbk8yPsZH0aJfdv8zgh0gfO7o3OXtM0MxU6ocJrbZhk6RygNfR7E+7e3iUMIpYWl6iUy4b1l73wfWpKAWijqBACBMaqJFIKFWGaeyKVHie1RLJtApBSMD9fpVarcGt7h5s37/Dlp0/huI4hXglQ2jJ1FQKIEQQk4QfmfAiBl4PzF86Qz+U4ODjksDHh7t19wlCxubVKpVZI9nvmvobCaAWTbU/BAo4DXbSyEZZO3tdc67mcy6nTZ1lfX+Hjm9u8995VHn10i7k524SwahNe6+VsVlaXEEj29w+JY40/DVlZXaJQcBBoPE+wtLKIFpLdvV1G4xphFLG8skihmM6fBk2p13Nsbq5zZ/sujUab6SRmNJywubXK0nKZ5ZU5HMtld6/J7m6bdrvD/EKdWr2UnJv0yJtrWFpw/vwZNtY3ODxocfn9m5y7sEhtzsLSMgvlE4DQNkJ7oC1QColRfWqZXIcJq1TrpHE4cxV/3vE7Wy1orZFamy41CaAUx2gVI23b8FstTDddSWIp08A4JKb4jyIY+7DXHPDuB9e5fWcXKTTrqys8evESZ7dOUa7VUELTOmrR7RzxwPIa8/kctgWLczWKxTLDdpvuaMw4jCB2CKKYgT/lzp0dxsMxy3PzXDhzmoojCaYx7VabSb9HoVJi7cwqq3NllnICTwh8x2VtcR6n4uEHAcPJlDjWKAUhMIoipn4Ewmj7W+0BB8MuV65/xMf7DcZhxMZiDScWVPIXyec8PCEQWhBrCAKzoMESFAt5co6NFNqk8QGWFsRKEMeacDJGhCEUKjiOh6WMf2N3OubOjVscNfbJ53NcvHCWB7c2sR2P9iRg4o/ZXFog7wpc01wBqRNmYLJ8EUYKnt4M0wQlnbAQYgWhhuF4ij+d4jk29UqFkmWMtIU0aUpCY64DndCfExp0utBzLEnO85C2TRiZrsE40kghabR6dLs9PM9heWmBcimHbZvXdixBPW/z8Okt5stzlDyPStEmsEJ2Gm3edl0+HI4ZdPrcurtD8/wp/HwZPwS/N0QNRzi2ZK5SoiQtpAuxpYliTSAspkoRovA8m0LOw7XMh9SPNaMgwo8iXMuhnM8jLIG2FNoQMYhiGE7HhHGA61p4rodtS8YhtIYjGodNk45Wr3B2eYF5DyqOJlSatXKBlcU6tmczGRjfp7GKKf0tWem3HidlHp/1mNlxsoMcRRGTyYThcJilCKZef2EYAseS1lSqmoJjs3LV1KNwOByilGI4HNJsNtnd3aXRaLC7u0uz2eTo6Iher8dkMmE6nQJkSXe1Wi0rJNfW1tja2mJlZYW1tTXm5uYyX8FUKpuOFAxImQ6zLMG0IE6L4vT77P6nQOCsl2D697RInvUBnJUpfx4w8LNYm7N/O7lQm33tk0zC9PingF+aID0rAZ9MJvi+n3kVFgoFisVi9pyURfjbslb/dhw3ttP+tEj0PSlYaBYMArQBUJQ24EjGMkQnqbNW0lGfaZan7LzjFjQ6TgoIYWTG8WTKsNOldXjIwd4e+wcHNBuHdJIwDa0FpWKNarXOyvIKS0tGLluulPGKBUTeS3Q4SVNLCGztkcN8HoWUWI6N7biGCZjMbelGCiFmVEOphYABDFUcgQpRcYCOY2wpcfN5craDBILplF6vS+GoTdfuEU0nxNMJ9qCP183j5vM4roeUFlJauLaDm8ubt0kSXQljw+KLItRkit/vM2i36bRadDsdOt0OnW6XVueIo16HwXRIGMd4uTyLayucOnOGM+fPcerMaWorS1iuiw4DptNJxl6Ow9BIoCOFtuOEwZcAqonsGm0MyNP1iJIWluWgbRushDmoNE4c406neIU8Xs7D9Rxsx0aGRr6kVEQUBAT+lGA6JfADhG2OvbQthGMYhwiBpZSRk6sY4oDYH+NPxvQ7XY5aTZqHTVrNFu2jI3qdLsPRmCiOcUslyhWTuLy2scHG5iYr6+uU5+aQnodAo+OYWMckkZszF3ySiEwSGpPq2aTFPdTXNIFHGxN5rYwfZXrv1dqkVtuWObdp0rIS4V/p5/Pf1Zhlhkkps7nl+vXrHBwc8PDDD7O6ugp8EuBKme+5XO4T4OD95pBqtUq5XOajjz5iOBySz+ez+ThltqW+g0tLS7z11lu8+OKLPPDAA/f8/eRI50vf93nvvfe4cuUKS0tLrK6u8uyzz7K1tZX58M3Keu8n702bZkBm8/HII4/Qbrf5+c9/zs2bN3n77bepVCpcvHiRSqWS7W96XGbn83Sk75t65929exfLsjh//nwGes6yJ7e2trh58yYfffQRjz32WNYkOwl8zTYN0+PT7/dptVrs7+/T6XQ4d+5c5pc4u60p6240GmXejuVy+RNs/fs1Bj8NJDz582g04k/+5E946aWXmEwmCCH4zne+w9e+9jWiKOLHP/4x7Xabw8NDzpw584n9EkJkQLVt21y4cCGrkyaTCa1Wi48++oinnnqK+fn5T60NgiDg3XffZTqd8sADD2TS59ltvnPnDpPJhHPnzlEoFO6pNX4Tg/KLMLL5WqRQlmGvGcTQAIU6YZshzJQuMaENliWoVousrazwtrzG7u4BvV5AY79Nt9vn9Jl11tYXsFOCvDLAmwGfDLMvvRMDKBRaxxiGW4iUmnzO+E6PxyNGI6OAUyYj6hgASgBDPQvOiKSBmayLzamxULFGWhD5cOPmDjdu3sWxXLa2NqlUS8cHhZnzOXvb0gYLSOcISwosmSoWInMdZtuiSSKazX/abMfCYp31tXU+/vguVz64zu7OwxRKy9i2kbUe78PxPolj9NbstwWbp5aZm6/Qare4e/eA7Z1tHCvH6dNr5AtGBmuyT7LObrY7Om2EJa+bQEFAmu+SXOcyxrLh7NmzPP3lp7h55xavv/YmTz/9CF9+5hRWEswiJNi2ZHl5Add1aTT2mUyNCmt5aQnHNf7Cji1YXKzj2A53d+4yHA0Bwdr6MoW8TGxOQAhNLmezvr6GEJL93QM67T5xrNna2qBcdlhZWcDLeezvG8/34XDEpQsXKJZyBghNmZDaCL8RIecvbPDYY4/yr3d+zOuvvcETX7pAdW4RlVzXpKAgDigXlPHgFCQscq3QQidBfMcNn2Me6+dXEP7OgoPoKHGpM3LKWBkqr7RM0EikFNoyt44oFkzixGdFa3KWhSUhjGDkw0e3trl5+y5BELKxtcyXHnuYL1+8yEa9hmUZz8Jp1WO4tkDFcannBVJo5mslqtUKw2abwWjI2PfxgzxRrGj1+hzs7aFUzOrqKqdXlyk4klZ/wGG3SRRMmV9eYG1ljjlPUnI0toTiCBYLeXKuTW8yYTKeEgSKKNaEGiZRhB/4CKWI/JCbd3doHexw584tWqMpURji97rM5Uuc2lxnsepRs8zFH2mN74dEQYSUgmIuR842ScXmhmAQ6lhDqBVBMIUoxHUkFcfG1caHrz2acNjqEAchc1trPHjpAZ7e2sKVip5ShBHUXAsv9XqEpKiFVDusMSRLgcoosYbYoRM2tSCINcPxhMAPKOQMeOFaiR+30EkqFRAnfjGSTComko6DZ0kKroewLaIoZDyZMIo1WkUcHrbxJ1MqlRJrS0vUc8bLkAjyQrDoSKzFKhvVillc2RBaMSuFEoPJlL2b2/R39um0OrRHY/pKM0UxHA5Q/hTbsShWi+QsgSfMdRkondCCQ1Ss8AoFSp6LJ80x8SPNyJ8QRRGebVP0TGqRsCVK24TKIog1vfGAMI4o2TnynoNlCXwFg9GUfm+IQDNXKzNfcKjakHM0chpTti2KRQ9pCbQfEU5DAqWJ1d+ig/8mY7bQ+jwS1tniLQXzRqMR/X6f4XBIv9+/hy2YBmykiXhpIm4KlqXvm3abw9AA4J1Oh/39fXZ3d7l9+zYHB4bN1O12mUwmmdl1rVYjl8tlXoIpM3BtbY3l5eWMMbi0tJQZXqfvOztOshdnFyqzUuGUITnLAkh/fz/ZcCodnmUIpnLqv45idlaWNbsvn/Ze95MbFwqFT6RKp7Lo1Esyn89nIG8aXPK347cbKooNc1AaSYwB+o59NpVSpghSKcPuGDwEbZriKgGhk26+keQmLDydVKdxDJFCB6EJ2gCUipmOxwz6fVrNJjs7O+zs7NBumVRUz8sxN79g2LZLK8zNL1Cr13ELBcPgn0xwNSY92Lh8Y1k2luuA68yIjJKmWayIpkHCDEsSDJPPvlH2pvcVA/xIywBoUjsQu6QBGcgAx3Wxbcd8OS6WbSNFutCPiAKfcDoh9CdEoY+KQ8OajCPwg+PgjfGYsD9k1O8z7PXoHh3RPGzQaBxw2Gxw1O8wmo7BsihWypxdP8vS6hrLa2vMLy9RmatRLJfIlwu4nm2Sc20P27ON9Ds5r0IaRz2QGdgVx8r45MWmuNdaQNooQGSBKMQxVhiSsyRuqYgnBYII3x8wGDbpdiVah8ShgqiIhSZn2+Qdj3ziz0iszX7HClIWoYrRvm9YgoM+vV6X9lGbVqvFYbPJUbvDcDQijmNcN099wVwHK8urLC6vUJubo1Askst7uPmc8WrEyMRN3ZowR7QmW79r46NkvDZTQDBhoCRMQBI1TXpNp99JSKeWLQ3zlWSBmMjPmVnk/k0Zs5LaTqfDW2+9hVKKb3zjGywtLQF8Yt5OG1fFYvE33pO11pn37jvvvJMFcJxkxgOcPn2aJ554gh/+8If8+Mc/plKpsLKy8okG4yx4M51OuXLlCj/84Q/xfZ+/+3f/Luvr6zz22GMsLy/fwwI7yYab3ffZGkFKSblc5sknn0QIwWAw4NatW7zxxhuEYUiv1+PcuXMsLy+Ty+XuAe9mme7piOOYfr/PtWvX+NWvfsW5c+c4e/ZsBlymz11bW+PZZ5/lz//8z/mLv/gL5ubm2NrauicNOh3pMUgbpMPh0IT33LrF7u5uxjzc2toC7vUgjKKIfr+fMTkXFhZYWlrCtu3seJxs8t1vzLLz0v1QSvGLX/yCGzdu8Cd/8ifcvXsXrTW/93u/x3/xX/wXfPWrX838IPf397ly5QobGxsZ+y99zel0yo0bN3jjjTe4dOkSDz74YFYfHR0dcffuXV566SUsy+IrX/nKJ7wS07rx2rVr/MVf/AXLy8s8/vjjmYQ53ader8dbb71FuVzmscceyyT06fUQRVEWknISKPwijYxNJwAtj2+HRKgUGEQlPoSGlKK0Yczliznjt2k77O4csn/QZXtnjyAIObV1imotz7EZlnk3iJHWLFiVfuaMdBVi87OASi1Pfa7C3v4Od+7cYTh8iErVJY7SeTspTUjXBsnvkChSlmISnBqbJkIwhTt3Orz8i7fY2d5jaXmFi5fOUSxK7sUDE0Dvnvu6wOjmLJSCfN6jWilxdNSj2ezjBzGu55h1eErcEcYqTWOmvoX5Gg8/8hBvvnWVKx9c45VX3mduvszqeiHBOYXBE7RhrCFcjkGnYzCqVnHZ2FzmvfeucvmD99g72GG+vsipU+s4bno9inu228iSU2alAWQNmxCkZRsiTTIHKqZIqdAK6jWPZ597jPcvX+H99z/il798jfPnl1hYzBnvQWGO1dx8iVK5wM7uNvZBg2KxzOLigqkDjA00y8uLlEoVtnd26HS65PJFNjZXsazMzAZNiGU5rK2tUCwVuX37Dq6TNwFNa0t4nmR5eYmF+Xn293a5etVFK83q+ga5nAvoY7apMOdAyJj6XIFnn3uMy5ff48OPrvH6q+9w7sK3KBUkCtDaRkvLgLRpA1noxDI7MPhL8qWTa9mwPH97FvHv7IrF1MaSQAmmWuNrUyTlBHh22k0wqbXjUNANNUGscYSg6oBnwTQW7HV6vPfxx7S7ber1Mo8++ABffvhBLs7VWC1YWDJJ+sVjpD1QUHFMEbFYLrA8N8euuG28asY+/YpmGsP17R2OjtoU8nlOnzrFaqVEzhL0gzHNYQetYyrFHEu1KgUB0lIoS2ILQdV2cRMVUxBEBEFMnKxRgiAimBrQrt9pc4vbRP6YeqWMUyzTaHaYDvvc3t1lu9ni3GqdJcdM6qGCccLMsW2LQi6PKzSWiIlnisMYmEaK8WSCiiIKNlQciaMVoYLeNKI79ok0lGs11taXWK15lC3NWGimocDWmqJrPkypZFioRK6V3iBEsvRRyc03aRDI5IbpRyYxOVYK23Fx8jksS4OVqLeFMj5DoTBNHYxcOflcoCS4tkUpn8N2HSaTKdPxhCmK/nDMYeOIOIpYXKizsbjIvCvJWQKpLTwlmHME+aIgyhtwVUqIhCSQFndOn+K9xXn2d/eYDib0RyF9BVOpGU7HxFGI5XkUymVcR1KINTaSaSwIApj2JlihJu+6lF0PV5jU7Qkx48kYHcY4tkvec3GkiSGPlSDQgqEfMBgMUHFEzvOo5F1sCyKlGY0nTMcTLCkp5nN4UpjuiFQgBdJJ/KlIGDXJ4f9bx8HfbnyaFCgdnwUqpQVeGIYZS7DX6zEcDrPkWyEEnudloGC5XKZYLGZA0myB5/s+k8mEXq9Ht9tld3c3SyDe39/PkoeDILhHBpumDZfLZWq1WvY9TRiuVCrU63UDyrvuZwJyJ2Wys/s4+3Na2J/0WUpfIwUEZ5mC6e/ul258suv/adv3aayB+z3u8wC999v/lAmYAn65XC6TdqfAbXoMRqNRBvSm52OWSfhZpuF/O8zQOkKrCEXaWbVM1zi5WUvLSrqpSQpnEt5hmIOATLqqSfteaMMIVHGYhEqkISVJ8IRlGQZWFBL6AePhiOFgaL6GIyaTKUEcg7Tx8gWq9Trzy8ssraxQr89TLJcNsJ/zsGx7Bqg07596JgGmJa4TOagmKXaTBa1lgNCMHUQKkKlkLjUkh5Q9qUXSNNOaGEWkNKGKCeOQIDLeoLGKsYVFzrYpeXmq+QIVL0/J9sgLGysCpoGxs9GgfJ+wP2Bw1DZ+es0mh61DWkctOr0uQ39EaEXkannqtQU2Tp3i9PlznDp7lqX1NaxikTiKGI1HjKZj+v4Uy3Pwch6el8PNuwY4TQkgsUmGjuOYOIyJwoQpiI3lONiOh2U5WNIU8TqOIQrNObQEQhrPREtKgmBMsVTEzXsIF2IREquQIJoQBGPC6ZhoPCbOFxFIhOMYhmdM1ojUUch0NOCo3eKgsc9+Y59Gs0mn22E8nhDHCtf2mJtbZGFphdWNTdY3T7Gyvk51YQmZzxvQ2p+awBa0ueYsEyRnUMD0Ok8WomlhT7IQjZUBRVPsO5EL68SP0LArErDYlqZWcmzDtpTm86JFRkNF6k/KaL/II72Pp0DKtWvXeOyxx3jkkUfu8eibnadTFnvKNrvf/DI799TrddbW1vj+97/PysrKPen2s42mSqXCiy++yLvvvstPf/pTFhYW+NrXvsbS0tI9kt20WTYcDrly5QovvfQSt2/f5vd+7/f49re/jeu69zD70nvA/eaLk6zINCE3nXOeeOIJhBD88Ic/5P333+fll19mZ2eHJ598kscee4yNjQ3q9XrGzkulwOnrxXFMt9vl6tWr/OhHP2JnZ4eLFy9mTbXZQLRCocDTTz/N22+/za9//WvW1tbI5XIsLi5mr5uOKIoYDAZcu3aNVqvF9vY2165d4/DwkHw+z8bGBvl8Ptvv2ZpgMpnQ7/fp9/sIIbIaZ9YzcDYFeHZ8GjgmhGA4HHLjxg3+u//uv+OnP/0ptm1TqVRwHIf/9r/9b/nGN76R+QyfP3+eXq/Hyy+/zBNPPJGFxWhtguZarRavvvoqvV6PP/qjP6JcLmfbl9rBfPjhhziOw6lTpzh16tQ9NV8QBHz88cd897vfZXt7m//oP/qPssekQylFo9Hg9u3bPPLII5w+fTpjqs7Ksmelz1/I2iLFOgCtBFFkiELTaUwYGeBIIZgGEf5UoWOB44gkdEPjuRbra6uUyiXaR0fcunmXO7e3sSyLzY01cjlpgMS0AZWtk1Nm3XGYg2naJSGpCWRYrxfZOrPOO++/yzvvXebLVx7jsUe3sG2LwNdEUZw19kTyHiJhKQos04SchoxGIdJXBH7M3m6Xl3/xBi+//AZBHPPo4w9x4eJpE44ysy33PVhkREU0UEkCNq5+eJNrH11nb/cRTp+ZQ2tNGCji2BCw0r1WSpAvWjzx+EP8+sLbvPP2NX78k5/g5W2eefYxFpZLOLak3/cZTaZJ/aKNDBsXS5jFpkJTqTpsbKzw5hvv8c47b9HrHfLYIy+wvLyAZSd0JWHPNMcEaMtkfcURvp8AYNjGbUWBEArHxSgVCYlVjCVtbFdw7uw6Lzz/DB9+eJNXX3mNJ5+4xAtfeZicK9BIhNRUKjnK5SKXP7iNVvDIQ08yX69h2ZaBJyXMzRkixfbuHfq9AWe2zrAwVzPHSCdgtRBYlmB+vky5VOL27W0s6bKxvs7CfB0pBbV6hdWVRT68/iFRPMFzyywvz+E4MknfFkn9SQLy2jiO4IGLqzz55KNs33yJ1157nWeev8RDD21gO2adL0QEIgARGf9DYYBDYYGIHVBTo0qR0jAUU2/LTIr/+cbvLjgoJEpLxkrTiQS9wFztVUtQ8wQF1xzRSRBzOBbsDUI6o4CyZ3OmlqPoSnpBzMc7O9w52ENamq2NFZ44d4Ez83Xmc4KyC9LSWAhiBa42keMeBrgq52yW52tI12I0GtIfjugqTWsc8dGdXSbTKctrq2ytr1BzLRwFQRTT96coKcjl83i2hyUBKfC1kdJGselGCGV8YkJMsa9jRez7xIGPCid0ey2kV+T0+jpnVxcYa8E7lz/i9vUP6fW7NLpHjKMIpR1z41SaaeATqhArSSC1hcG5lRbJDdCATIMgoD8ZE2pNznbI21YS9iGIsYiyhYuRq4axxrXBcQQ5Ybxs8l4q7TIXt0RwnDif/CCUucGm/0y+lAI/giBUaCGQto2wE48ASSKDFkDCFshMC48neIXGFoJiPoebzzMaDZlOxoyimEZnSPdogGNLlpYWqJcLlKQmvQOICDxHYVsQJ6AmNsRaEAawWK5QrZZMOlEYEE9jIi3wBQRaEQmB7eZw3DyWkDiYBVyoBb3xlH5vhIgh77kUPRdbCCLA1xH+eAR+DLaZbBwNIjTPncSao/6AQa+LAMrlCtViDs8WqMCAMIYha3wTI4wcXWjJVAsGCqaRaZ8J20E45r2tL2Jh8Fc0fhtpxf3kKPcDqu7XZU//loJlqbfgLCgIZMBSsVikUqlkMtS0G5+y0VIpcqfTodPp0Gq1aLfbWcjI0dERw+GQMAzJ5/PMz89TLpep1+vUajVqtVoG/qWMwLRoTlOQhRAZoJUCdClT7uRCKf0+C1jeL0glfZ/09VIPwXQf8/l8xo48Kbk6KfM5KaH6bcenyYc/6xze773S7Ur3Z1YCnfoRpqEl6fGJoigLLTkJEs5u2/3GyYXMF7Xr/5cZtrSxZdIJTHyF4sigSaZ5eHw+dcoCTcFBIbAs40uXJXRGIfF0SuSHqMBHxDGOY2N7nmGMCcXED+i22xw1D2k2GjT29zlsNGgftRmNx0gpKRXLLC4tsbq+bmSjq2tUa3W8XA5pGTDLclyEZaU892P2lzTbBmTymVglctCEFailBdj3pjUbHChZKBkLCiEMO1JLkDoB77VCeg5WzsHyXLMttoUtJVYyP4tYG3bgNEROfKQ7QWiJGvmEscIfTxn0+xy1jzhsHXJweMBhu0Fv0CPSMflykc1TW6yurbO2scni2moSLFLAzucRjmO2z3Uo2BXcUhFFInnRmjiKmERhogRLlyYSqSUCC9txsZ3UhNtCJD6EAiCO0EknVccRKg7RcZgk+QnipGC2LEnO8qhYJWJZRsU+Od+GYcT0aEjfO8JSgnypjO15CMeAuUorgjBgNB5x1Ouw19hne/cuuwd7HPU6RFpTKldYXVljc/MUGxunWFpdo1KbJ1cq4+Ty5rW0gjgi1gm7VSem7Uk6oWERiqxOStklxidegJZGDkzKpDDXkNTM1ECm6J/1ulJJsrZZ2oq0i44GgvHwr/Xz+m9zzEpT9/b2ePXVV6nVajz77LMUi8XsMSfBwdQeo16vf2YzLJ178vk858+fz+bllDmYAjHpHGJZFhcvXuQP//AP+e53v8u/+lf/itFoxJe+9CUWFxfxPC+z5Oh2u7z//vv8+te/ZjAY8LWvfY1vfOMb1Ov1bE5I572TstzZkc5hKSCUbke67ZVKhUcffRSAer3Oe++9x61bt2i1Wly+fDljAa6treF53j1Anu/7dLtd3n77bV555RVGoxHPP/88TzzxxKcGgp0+fZrf+73f40//9E/5/ve/T7fb5dlnn81eP601jo6O+OCDD3jttddoNpv4vk+lUuHhhx/m0qVLXLx4kY2NDXK53D31QQqqdrvd7DmLi4tUq9V7apVZD8HZc38/9iaYIJvvfe97/A//w//Au+++i23bPProo5w5c4bl5WU2NzeBY6/ACxcukMvleOWVV/izP/szvvnNb2YgcKPR4Je//CXvvPMOTz31FA899NA94Nz8/DxCCB577DHeeOMN5ubm+L3f+z1WV1cz65IbN27wk5/8hKtXr/K1r32NL3/5y59gF/q+zzvvvMN0OmVhYYHDw8P7+lumKc5fVPbgsRRXEIaaGx+3OWg0mPgxt27tEUWKfm/Mm29eY2enSrlQ5uKlNco103ATUrC8usji0jy3t+9y5YOP2Lm7R6lUZH19xaTGimP2ttCOAayUTvz9ZoC4ZH7SSTqyUlAsezzy6CVeeeV1rn90k+9972d0O19ifr7OZBxw8+Y2QRiSehmm93KdLEVHwxFvvXWZOIpQekqv1+fmjR0++OA67dYR58+f5Wtff5bFpeIxyS7ZKkg+f7MEPJ3BmgCUKzbnLpzmtdff4fL7l/nJj9d5/MkHsS3Bh1du0+8O0Tqt9c0TbUtw9twqX//Gc+zu7nDj1g3+9E+/z42bu5w9u0U+n6Pd7vHB5Q/xwwClIqRU2XaYa0xi2ZL1tVU8N8/d7W0sS3Dm1Cb1WvGYRa/SfUjAMiwmk4D3L3/MxDdMOEHCflewuFzm9Nl5TMCKnQgmFAJNqeLypS89wq9fucj7713hzTc+4ML5LdbXqwaD0VAq5alWK/j+FK0EiwtzVGsFZAJiCAGlUo75uQWiUBNFUxbmF6nVSqRhMToBKQSaarXIwvwc165dQyB5/tkvU6kWkBIqlRxbW2sEkyn7kxGPPLLE0mIF2zLnzPSsBegYKQQ6lDgWzM0VefaZJ3jv7Y+4efMmr/zqPdbX69QXColsOAKU8eDW7YtVCQABAABJREFUBvgEnaRGJ9eXSq/cGXRdzF4Zv3n8zoKDKGFktlrQmMTcbPYRSnGqUsKtuMbrDs146rPbCXnnziF77SHn1peYL60ibTgajvh49y7dYRen5HJqa41zC/PMu5JiTqAcTSQllgY7lrgKkAJLg7A1BVcwXy9h5xym0wm9Xp9OGPNxs89Os4OSmtX1FZYX6pRdgYhAB5IoEsRIsNyECipQWhpmoIbW1GesTNiG0oJYmiJRBQFq4qPCAB0HhNGEcqXIgw8+wIMby/hCMh0HtHe2mYRTRv6EUMdo7aC0JoqVAQejENtzcTwDXFkYcS8ASXDJIAjoTSfEQpNzCthODp34E3i2i+e5aB3R6xxxcNBhUKgwZ2lytqbsykQ9HKNEktykTCmfBeUka6IoZQ/O3L1EsliKYk0QxYYMIRMJTNr2wADExBqpDOtQpoSQtBYWYAnIOS5Ozks8PcZ0BmMOWl36vSGFXI6llSWKeRdXCiKhTSy7BVKGSKGxYw+tjKRYa+PRWJYWFc9FWzFCaaxIYMUCbWmUsIiExLFy2NLD0oJIGuLBGE1rPKE7GBHFMfmcR8F1DQCNJlQRwXgKfoTKmy6yiIDAHKtxoGkddRh0utjSYm5+nkqlQMGCQMfG4N5yiEcRg/6IQRAzjCxyaCaRYH88pd3ro32BPVfCLZXJWSYM5W/Hp49UVjIry/g0ScqngY2zMttZj700vALIpKmzMuK0cJ5Op5kvYbttJGxp6vDR0RGtVivrmqfsw1wux8LCArVajZWVFVZXV1ldXWVhYSEDHlNPotkAjdkgkLQjnoJesz6HJ8csAyLdR9/3PwGczgKFuVwu62CnaXsni9iTRevJbvfJx/wmoPCziuCTi4XPM05uR2po77ou+Xz+nrCZ2fTpk6nMs56SKYiabstJqfPs+Cwg82/qEJaDkHbCBEzkw4mBtk7Zful5wbDtSE29wZhyByFKRMbXLo4RUYyNMNIMBLY0HWOiCD2ZMO10ae/vs3P3Lnu7ezSbhwxGfaIwwrUdCsUitbk5FheXqNXrFMsVvEIRN5/Hdl1E6l9nJ555pHWvuPeLGaJY+oUw0tlU9mxJhDRhJlJrtEo64KhEfqrR2kJHElSUeM9BlIhxhCWxXRs35+JOHGRsGOQ6DAlGEybOgLFwcGJQQ98ErfUHNFstGo0G7fYRw8mYSEVI22J1cY3yXI360gLzy4vMLy9TW16gND9nQMGEDadFIv1JvI4NgzMJlNFk51PFqXw4sRrQEktYWNLBsmzsREpujow6ltamATMCkzI9Y1uiLMASWEkTolwsoYplwrGFi0RPAibdPgM3j2vZuI5LrlDAcl38wOfwsMH2zjZ3t+9wcNigPx4Qxwrbddlc2aQ2P8/80hJLyyssLi0zt7hMsVbH8fIJK1RCFCb7ZGoYy3ayc5wqhbOhM3iP9CeR1UBpoE6ymMy6/jN+mwnLxVxnKSSYUTHSvyRv/8UCBu43ZiWqWmtGoxFvvPEGH3zwAf/oH/0jzp07l80x92sI+b6P7/ufSACeZeLBvY2bBx98kFqtRrFYzBhtJ+cDrTXVapWvfe1rdDodXnrpJb773e/yzjvvcO7cOVZXV/F9n2azye3bt2k0GmitefHFF/k7f+fvsLm5mUlcZ5l5J4GsT5srT86NKXtsbm6Op59+mrW1Nc6cOcMrr7zCrVu3uHbtGrdv3+bXv/411WqVQqHAxYsXqdfrSClpNpvcvHmTmzdvks/n+eY3v8nv//7vZxLe+6kmyuUyzz//PM1mk+9///v8+Z//OVevXuXcuXOsrKwghKDT6XDnzh1u3bqVNSgvXrzIY489lj2uXC5nfr+zNVXabDPKKJv5+Xmq1Wr2uNnU4fQYnNzG2eMYhiGDwYA33niDP/mTP+H1119Ha83y8jL/9J/+UzqdDt1uN/P6Sz09q9Uq3/jGN7h69So/+MEPODw85OLFiwRBwM2bN7ly5QqnT5/mhRdeoFarZQCulJJSqYTrunzrW9/i5s2b/PCHP2R3d5dLly5RrVbZ3d3l+vXrHB4e8vTTT/Od73wnO3az+9DpdHj//fe5c+cOP/rRj3jllVfuYZIKIVhdXeXb3/426+vrwHF69hdqCJLQDoupr/nVy+/x8q9+RRhFHB4e/f/ZO+9AzYry/n/mlLfX2/vdXmhLh6WKIEVQMEaNsaASiQb8WaIxRCPYApaIJUhIgqya2IhiQcXQQWmKrMCyLMuyy7Zbdvf29pZz5vfHOXPe8757t3K3ufPRy937vqfMzDnTvvPM81AqufT2DPDTO+4iFjWZ3d1NQ8NlpDIZpOkiTEl9fYqu7lZWrHyOZ55+hoGBbczunkdjk+9WzBdqDFMisJGOiRG4ySJY2xNCeLvjXMsTphDYEcHixbNZuvQUHnrwcX738O9Zt3Y9uWyKYrHApk2bmJz0oueqa6q2WLou42PDPPLb37Hi6RU4bomJyVGKBZeIHWPBgrlccOGrOO64ucTiEs/XYch8UPUaoqZLUQKdgGjcYsmShfzxj3N49pmV/OpX9/D00ysxLcnglkG29m8ll89gmkYwBBFAJhvhtNOOobdvM7/77R/p2TxAb+8DZDIJbDvi7WQaGcEQJsl4BsP0+zDh7WCQCCzTpLm5hXyuno0bNpKIZZg1q514QgQFGzLMxNus7DA0MMxdv3qAbC7hWVoKE6fsYhgmxx+/mL/InoNpRRBEMfwtvp6oCZ3dDZx68omse3EDzz6zkheOW0JTYxrTNDBNQSIRo76uDlMYSAOaW+pIpizUFgbXhWQqQn1dHgMTA0lrSxPJVAQh/J0fEvCjAGeyUVpaGpCyjCEs2tsbicctQBKLCmbN6iCVSjAwOEBjY476hoTn6QOQrtePm0IgpMQwTKT01qnnzetg6dITePnltTzx+J845piFHJ+Zh0D4QWUsfyzpWW2qsYe3aA5Iz19yIA4GL/HuV72DVhz0x49MubB5YJLlz71AYXyUqfnzycztIBk1KJVg2zisfrmXPzy1nP5CmWwmginaKLqweXiMl3v7KRamaGlsZnZHO83pGJkoWJakLPCjA3rmnYYlAysFwxDETYP6bJ5EKsHE2DD92wZ5eWCSNRs2MDQwSCadZXZHB62ZGMkYTE0AGEjfzLMoJUXX2zFjFv0IRGVJ3/AoE1MTGMJzfmogkS5Mlh1GJ8cplyZBSqLxNPNmzWJJdztd9QkmEKxvbiGRiDI2VqBQdgNjBOlCoVxifGoct+wQTcSJRSO+/z4TV00wgJIrmZwsUJycAAwi0TgxO+pZlwlIJiNkcykwDbb1b2HVypW0xCJYbXU0YJOMS6KW/0K7AqlWuwHlOFb69d/09747/jtquJVBruO6lB0H13G9tQHp4voTCCENpJA4/rneqnllpd0VXmQlw4JILEIsEgMXxsem6OsbYPPmXkbHx2hoztDW1EAuZiJsSdnwfEFEBH4j5mAYjm9063WurgBciRAmSAMLgeVvnzYl2NJACtPbIu16kYtcFyaB4ZJky9AAg8NbcNwS0XicRNQiYnmujUquS2GqAOUyxfIUw1OjTErJhANlYOtEkXW9fQyMDRONxWhtbKIpEcf2/UqmklFiUYvhQon+vi1s6BkgG20mEZGMlcqs3rSFdRv7cV2oz2VoqcsSi5h70ib82TOdyKQGVuFgGlARZabbVruja4cDc4SFHjUYDluRqYGtsjJUAUbWr1/Pxo0b6enpoa+vL4hu7DgOpmmSSCSor6+nqamJzs5OWlpa6OjoCKIP5/N54vF4sN1FiYITExPBCnNtIBH1M93kJFxGqtyU+BcecE9ncVcsFquiLCuLQ1UOSpCczmpzT55hbRpfCTsSK8P/VvlV5ayEwnDwklKpVCUSqojH8Xi8aqtxePJRe79weg4ngdAW3pqx41ublUPlYxgGhmX6ASxU0BqJH6oYfCtCtd0Y1/Est3yRSli2Jx4avrhULlOcLDI2PMq2vq30bPb8eQ6ODOC4DrFIjFQ2Q0NDI/VNjd7vhkYymQzxRNzz82fbSMNXgALrQFER/0IOvEG9q76/K/8bIV2EFAjp+P2gtxLmSn9yJ71VcsMFAxeB4wVtEwbCMrGBeCLpRcSNRTFtz/Ky7JSRJQdr0mDMGsPGxJ0sMT44QtyOYhkWruMyNjrOwMAgQ8PDTJYKROIxcvV5Glubae5oo6mzjWxjPbFMGisRx4zFMGKeKOpt63Y8f4KOFzxMGIbn7SawKJD+QrbEMAWuYSLNsN8934WIdHEpeRaR6n/+M/YmFGoiLNU4PRBYRURgxWxi8RipRBInlmKy6CBcl9JkgbGhYc+ye3yM4YFtxFMpDNtiojjFpv5e1m16mU19PYxOTmDHYzQ0NdPZNYuu7tm0dnaRb2gklk5jReNY0SiGFcGVEqdYximVPEsGlXfD8PwNBu+DWtn08RdXpVp0QU3uvKO918fzyehtaxLB2NjztUmQ+ZDuHJQPoTfuz2UUELYCXLFiBXfffTcLFizg2GOPrYoKO912ylKpRMTfVbMzy+3wd3PnzqWzsxPbtkkkEoHYEz5W3bOtrY0LL7wQgEceeYQXXniBtWvXYlkWpVKJiYkJLMti7ty5vOpVr+LUU08NosyGoxuHxyG7WqibjrAlYSaTIZFI0NDQwJw5c1i5ciWrV69m8+bNQRAQgLVr11ZZKwoh6Ojo4IwzzmDp0qW0t7dXBWOpzTtAY2Mj559/PoZh8PDDD/Pyyy+zfv36YCFM5am5uZkzzjiD9vZ2WlpaAqFP7Z6ozZs6Vy3CRSIROjo6yOVyVceovE+3mBYWWoUQrFy5kq9+9av86U9/4vnnn6dYLHLkkUfyD//wD7zmNa/hvvvuC8Y54XxGIhEWLFjAxRdfzM9+9jOefPJJnn322SDds2bN4qKLLmLu3LnbvYPKd/Fxxx3Hm9/8Zu68805Wr17Niy++GOQ9Ho9zxhlncPHFFzNr1qyq5wFeO7pu3TrWr1/P8PAwK1eurNq6rcYSs2fP5txzz53WevLQQVaWOFyYnCoyNuItWMViUTo7OxAyQrFQpDTlMDEx5e9kEXiBHiCVsVh0xFyefmYFgwODTE1O0dJcTz4f963lfPMVU1KfzzNvrhf5NhqxfOsub9wQi9p0dLSRyWZIppKq1aWlOce5555BxIqx/KkVDA8PMbC1HwRMTE1Uj5v9PCUSMbq6W3HEJI4LY35E7Hg8QUdHAwvmL2DJsYs49rj51NXFMETBF4CUD9mK0lMtDEq8YCqGZzkpYO68Ni44/2witsG6dX1s2LCZcrlI1DZo72hh3txZtLU14VUf7xxDCFrb81x40auoy7fz1JPP8/L6NUxMDlMoTmIYBi0t9TTUN3P0UUd571+wW9D7pyEELc0NLF64gMLkGE2NLXTPavY2aai+zF/kk0AyHWFWdwuRiIHrOoyMjgTvAFJiCouJiRFcHKKWQUNDI3Nnz6a5qRHL8qznEnGDk046hpfWvMzGjesZ2DpOqVQgFo9jGpCIR5g9u5MF8+fiuJI5s9s9MU9KJU4Qj1vMntXO/LmzKZcd5s+fRSxmeNaRuAi1vVFAPGExe04LCxfMJhKJMmt2M5bpvaymKejubuWoIxfT29/HooWzyeTiQR8tpcC2TJqa65k9q4vm5mzwTuVyMU466RheXL2ObdsG6O8dpjjlErFs2tvaGBkaoaEh77kXpowU/vxJukRsk9aWeubM66KxsQ7LMpVhJn8WloMCgSUkUgomp0psfOkl+vs2YJnQ1dxIfTzOREmwYchg5aoNbHr5RZymHKmkQV7AaLHMy4PjbNk2hnAN2utb6G5oJhkXGLZXiSwpMcp+w21IXFxc5czZMYm60JCqJ5fJMDrQw/reLZQS69m07kXkxBAd3SewoLmF5oiDbbmMWgaWLYjYBlI4TE2OMTY5RbEcxZGSMRfWDRTo6etBjg3hRuJYNkSFQDqCCSy2FiYolCfAiNDQ2M2Rs+YxP2GRt0r0OxES8QjS9gbVLjaGKzBdzwnreLnM6MQYsuSQNOKkorYfrccffIoSGBYFV1CcmMIdHwfXwI5ZJGxBTMCkAZlMlPbOJl5cV8f48CDPP/8skhJj5WNY1N5Os7BpjELatLwVED+CjwRcwxcC8cS8qCsoGlA0wZQS04+m5AVUkpjK6tBxEMUpf8us1/hJPKtKEzBdGbzbrhA4gCUlwoJoMkIqEsFwDIbHimzZPEh/bx+TlMg1NdOeyZEzJa4lQZiIMtgSTCcKpotjOQgBUSeC48AkLiOlSbZNFnFljHgkgp0wceJgT0FCGFjYyGKBwtQIE8KBKZNRA7aNFNm8cSPDQxsRhiQSixOzBZbpCYAF12CiWMSVksniOJsG+9k0OYFjpigXYXXvICs3bGC8NEFrcyvdjU202KYXnDtu05CK0JRP0r9J0N+3hadXrESaJrFUhMHhrTzz3Ho2btqGnY4yr62BufVJEhGQ5UNtUPDK2Jm4s6Njw4KZEsrCg8nwVtRdiTS1x4e3HymLRLVNxXEchoeH2bp1K5s2bWLt2rXBoHrr1q0MDw8HE4dEIkFdXR319fV0dHTQ3t7OrFmzaGlpobm5mXw+TyqVCpyNq3yFV69rxa3aPE0nsIW34iqfgWFhS/kNVFaHqiyVMKYi+yoruomJCeLxOKlUKhDKlLXAjiw29zW7847sSMBU+VYiocqPEgOVxYqytpyamgoiZoYnTmFhWt0jLOKGxeY9saQ8FJGlMtIqByuF3lqep4B4W24r77f/D98qzbMy83QjL1KrMC0/YoMv3EkHWSxQLhRxihNMjY4xtG0rvZt62Nrfz8jgEMXJSSzXIBGLka+ro7m1hZa2dhqbm8jm86QyWZLJFPFUCjMa86z+/FGY9DsrTwhTAqH3W/ifSbVUj+/yg4quGGhdVBZ+Eb7RnC/CuY6D4ToY0gXb8gTPqEks4W3btyMRMATFcplxZ5KyLFIulDGkwC2WGWEYWXJwimUk3jbuaCRGNBanvqWJbF2efHMj+eYGso31ZOrzpOpzGKmkt0zvl7nnx9EPkuGqSZC/XVga/kQFpPQiSkvXc5Lt+BM/T9/yn6v/vAxh+kFoTASmv2IvILA0dPzokWXA8SIO217U5XLc2/lg2V7QFsfxAoRJx/Gc1huCyVKBLdu2UCqXKJbLlFwHxxDe4qQpaMw3Mmt2jvqWFpo62mhub6ehtZVUfSNGMumlt+wgSy6lwhTlsuMvBDjBljTL9BZPbBESsL0RUyXIDKC2iVeetf+whW/rJ11/Egv4QqkncvttufpOKuta/7n476B6j8SfQVCysKWect3R0NDAWWedRWtr63a+BtU54LUT8XicI444go6OjmkDfijC25YTiQQXXHABruuSy+W2s+aDinhl2zadnZ1ceOGFdHV1sWbNGjZv3szvf/97+vv7sSyL9vZ2TjjhBF796lfT2NgYtOvgiZdDQ0P09/dTLBZpaGigra2tqi8P50kRjmgcHq+otBqGQS6XI5FIBEFPenp62LJlSxD5d8uWLUz4rhPy+TyNjY3MmzePI444gmw2O+19a/sg0zRpb2/noosuoq2tjZdeeonBwUFGR0cRQpBMJmlpaWHOnDksWrSIXC5HPB6vSu+OnosSOpWFoxrz1BK2xlfPUJXf4OBgYNH44osv8n//93+MjIwwb948Lr30Uk444QTOP/98kskk3d3dtLS0kEwmcV0Xy7KYM2cOdXV1xONxli5dim3brFy5koGBARKJBM3NzYHfSyXY1b6PKmjMGWecQTKZZMWKFWzdupVSqURDQwPd3d0cffTRdHd3V20rD7/H6XSak08+maOPPjoYb9VuQVfuZWrrz6GG8p8ejQrOOP0kZs9uw3HLSOlFlxTCRgiJ6zjkczlPZBFqwcQlFoNTTjqGUhF+8+t72fDyOlrbmkilvEAyBgYIiWXBcccvIpV5I3V1WerrMxiGp0FIF1paslx66QUUi0XmzmnztiQbknjc4MgjO6ivy3L8cUezuaeHsbFhhGGy+sW1PPTQ7yoW8MLrG9ra63jTmy6md8tmJidLlIsWtmWTzUVpbGqmra2VpuYkyaRBJApVXuP9BSHPmhG8JSUR+tJFdSiGkOSyUc44YwkdHU28vK6fbVtHcGWZZDxKQ1Mdbe0tdHU3YhjeApKUZTAMYlGDBQvaaKxv4pijjmTTpvX0b9lMuWgQT8Soq8/Q2NjA7NkdxGKVYCkqAKkhoKU5y2svfhUnnLCYdCrDnLnNmIbaKhyu24LZc5p501suZmLcs7T0PHAYlXxKk+bmPPm8Z1DwqrOPY87sNtpbm0gkLF+QM5g9J8cb/vI19G7eRltLK9FYxUIxmbI55ZRjqKvPgBQsXjyHaNQPgoqBEC7xmMkppx5FLp/GcVyOOGI2tu31x34cNRzft1c0ZnH8CUeQTqexTJMFC7uwLL++C2jvrOeNf/l6Jicnmbewg3Q6BsIF19O3crk455xzOkcsWsTsOS3Ylvf4LAvmL2jhLX/1BrZt7aO9vQnbEmRyEV570dmcfNLRzJvbjR0xvG3xqswNQSYb51WvPpUFi+bS3d1FPGF6751QovLucdCKg9LwCtc2IJuMIUyTgZFhNvX00D80Sns2ThmXvi19bOjZRMlxaa9vZH5HO450KTmSsaERpsbHsKI29Q150okYtikw/dXYyuo+BOuzrvS3sArv3qkk6UwaKQT9fT0UXJutvZuJxOK0NjbSnM8Ri5i4EixDEjMEmWgMs+wwPjDI1i0DDNSnKbmCrQWH9b099PasxykViMZT2LaFaXqD52LJZWpyEtdxiCUStDY301SfJ5qIYFhelF9vECEwDRPbNL296kJ4vvLKDoWCJzwRs4hEbWwhsATBANyzaITxconJUgEhwIxbyLiBsCEqoM6KcFTnHDZ197Jy1STbBod5duVKb0XGKZOY203GtEmaKmy8xDBUxwVqLqS2/3r+hNR6h7esYAiBZRrYtudbabJQoFR2EH6gFtMA4bhYwgvULaDil0n4woYrsFyIGgaRmI1jOIyND9G/pYfBkQHsqOFFKU6msCTYrh9FGd/ln+8Atex4doOOgIIQjCMYHBllcHgQDEkmnSafSBIHCkJ6Ew/hORceGBljvOiyVUiGsendNsL6jT2MjRcRkSixaBzLshHeHIpS0WGyUKLsSkRJMti3jXXrNiDauxgbK7DyhdX0b+rBdE26m1pobqwnEjWxTUgIyCXTdDS3sHbtRobHx3l29SrGSlNEEjbDI4Ns3DzA1OQYc9obmTe7m2wqRcTytrwfzuzM0q92K7AKLKHEmrAopnzO7SwKXq2YqM5T11PRfNXWlqmpKbZt20Zvb28QFVUFGSmXyySTyUAUbGhooKuri+bmZjo6OmhqaqKpqSkINLIjP35hYSkcbVilU/lfCv/U5iv8b7UCriwNotFo4EdQiYZKHFQCmRIH1bZmFcwjFotVBe+IRCLBtXe14r23g12V/1ohLvwMd3bfHaVFWUGGfREqn5NTU1OBBaESS1V5KafwYUE1/JzC99gdcfrPAdeVuI56d50gOjGAEAbSkLiGJ7Yr/3wqYIkwvO0tnkioTK18P3aGiXQEpeIEY0MjjAxsY3BLP1t7e+jr2Ux/fx+DQ0OUimVsO0omk6WxsYmW1jba29uob2oilckQicW9aMCRKEKtzqLeq4qvXc85ugii7QZRd5XlouM5Anelv21F+CIV3vWUZznfRt2zLnRcDMdFlP0ttpYAYXoBL+woViSCGYlg2LaXNiEo41LE6/cNTCxMZNkT2UzDJBJJkGtsoLmlheb2Vpra28k1NxLNpBGxCERMsL1ovg6+dbTjePfH92koDH+y5affkVQi63nvr2FaSCQm/s4AlPc8XzRF4ApvR4Xhut5v6YmNhh8CUhgGpmWCEfHOtk3vxyljT9nYUeUiwfMh5bqCsnRwCgXK0gVTUHAKTBanKFAE0yCRyNLQ1ERzWxst7Z00dbSTbWwmkvbFX9v2fhzvfXKlxJGSspSUpUsJ199G7U12hOVtMTdM09se7ltA4EjU5nfhi4EC4Vud4i+0VoRkfKHVe3+Ft9NF+RFyCXZtCP9/6r2pKIpendnzeIUHL6pvNU2T+vp6ksnkdoteUL3QJYQIAnXVClC1fU1tv5DL5YJgW2HBLUxYnInH40HAr23btgWilxAiaNfDC0FqLKAWDAcGBnBdl1QqRbFY3C6y8u5sNVb3qvW/Fw5W5rpuYLHmOE6wmyGbzVJXV0c6nQ76+7A/w9q815aXbdvk83nq6uoAgnJLJpOBP+TwAmY4H9MtfqnPI5EIqVSKqampwI9yeCxTK8SpoHDK3/PWrVvZuHEjGzZsYGBgIIjo29TURFdXFw0NDYGopxbtwuWn/Ayr55lOp6mvrw/yqMZh4XFi+FmFrSJV8BlVRqVSiVwuF2zzDge+qX2GpmmSz+erIhSHx32u61JXV1cV6ORQHDNIqVwoQDQGRxxVx6IjvfKSIU1M6R5CQDTqfS4lvoU6dHalWDJ2FI/+9nGSyRQd7S3EE3bg6gI8QWb2vCjtXUuwTO9v6d/EMCCbtznx5C4kXldjmiApY1heIIk5czN0dmSYKsz15xMGv77rIR599Am/TZf+3FdSV2dz9quOoVA6glKpjFuyQBhE4oJoVGCbXnfuBRoTCGn6wScqZVMj0/v9QyXvhpqIm9DQECNfN5ujjprNxLiLIx2iEZtIDOyI554riHCrFhUch4gtaG42aaxv5KijGxmfOArcCJYpiMbAioBluSrmaOV5+c8knTFYclwbrtOGYUDEpuJXV1kUeUMiWttyNDbllOeYYH0rsHqT3v1My1vwWnxEE3PmNXldvy0xDG/RLRYXHH1MK0csbgUgYhf9HZQS24buWTnaO48F/OGM5Yup0hM4LdulqztFa+uRSOm9d56fa8Mbf/r+Cw3/vl1deVpb8t65kUqfjYRUCk49bUGQdsP0/A5LvOcbSxocdXQrRxzR6omzFn6kbEEqLThmSROO24RlgGWDi+C447spl7uxLC/9AovwhoR4QnDU0d0sOqIb2wLLlH76TfYkNOkeiYPXXXcdn/70p6s+W7hwIc8//zzghXD/+7//e37wgx9QKBS44IIL+OY3vznt6s6u8PzxCGIG1KeiZHN5XMOkr7+PzVu30NFa7/l4WL+ObcMDJFIZjpm3gOZkkkjEZGJyitHhYUpTY8QyCZqbm8gnokRMbwKhnGGriiR8FdvbauoJUBEBqbggm8sihcW2/n5GR4uMTwzQ1d7KrI4WGtIRYha+DztIxaLUZbJELJPxoUFeWvMS9bkMyVSETQPbWLH6ObZt6cF1HYRheBNh781lquQwMTmJUyoRTyVpaW6kLh0hEvFeWteVlBxv0mgZBgnLJuLvpZ8oSQqlElMTU7iuRMQtolEbC+lvP/J250u8qMbjJW+SYAmIxCxEROCakqgB9RYsaGqkb+FCJibH2bBxPQODQ6xYtQoDQX0ySTbSQsoWRC2oOLr0Byuy+jmC90oaUg36vUOjtkEyHsGOWhRKZcYnpyiWHS9AiJSIsuP5QnArPoUEnlN1KcB0wXYhZlskkjGELRgbHcTEYWx8mFQ6RVdLI/m4TdKCmAsFKZgsSyamXASezwjD9iJaOlIwXpT0jhV4eeNmBgcHMWyTuvoc9ZkUCdNAGi6JeAw7FmV8eIRNPf1s3jZIvDFP//g4L67fRP/AEK4LFjYRO45lWL43AEm54FAslsG2iMaijAyP86dnV9HbP8TI6ASrX1rL6NAozZkci7q7aKvLEIuYWAbEBTSmEiyeO4eNvf2sXr+RnsEBRpwStmXglIo4JYfW+gxHzutmQWcb+YTva7GmK9lb9mcb8ErYkYVX+Hs1qFS+bCYmJoIf5SfQ8OtoNBoNRKvaAWPtPcMWZJFIJPDJp6zHHMcJRLKxsTHGxsYYGBigv7+fbdu2MTw8TLFYJBaLkc/ng1X81tbWYBtxY2NjEIBECWo7EgWVAFnrD0+lVeVP5VENasOD7LCYVpvnsDVhONiIOl9Zyqn7T01NBVuN1b+VUKasCKezJqwVKHf03Hc1EN5TwW93CFsFCCGCdKtyVe+XClCifFGqZxMu7/CWMsMwAuFQ3WdHE7T9wX4dA/jWNKZpYtqW59MOZSTlR26Vftkr40FR6d/9NxdXer49TC/cnTerKBQoDQ2xbeNGNq5/mfXrX6Zn8yYGhrYyWZpAAlEjSjqZIJ+vo76+gYa6eurq6sjl8kRSSQzLj3Jrmv51VeRhX5gRIhhIeuIlXh4Mo2It53i9mlS+FP1txp6g6VnLuTIk8UjPIlL6g1mvAFwoOsCU5+dvfAJRckjYNnXZLBPNTeA4jAwNUS4WKbhlRKlAIhInlU6TTWaoy9XT0NhEQ2MTufp6MnU5kvkcdiYFURtpgitcpFvClX5gX9ezaBPSs4fDH0dJf7wR1BzhC6SGQJiGv3IITjBu8MLxOlJFPpS+WuhgSIEpPeHRlJXhra8B+wuRwo/U4SBlGVe4GJZJPJkgm8vhjk0gSiVGRoeYLE8wMTWJBCJRm1wuSyabId9QT765mbrmZtINDSTr6ojn8hjJJFIYXrC4YglZcsAqY9gWhmVhRm2EtBBlC1E2cctlpATTMDxh0rTB9Lcl+lGWXdSkM1xAlXGTsidUi9bBrBf1vH2/Q34kY+F6FpqV7cf4MyqvXNUS+ExZDh7oMYBqJ03TZNGiRcyaNSvwhTcdYXEmlUoFVl21Wz53dC/XdTnxxBMBAiu38LXV7/C207a2Nurq6mhubqa3t5doNMrxxx9PLBZj69atPPXUU7S2tnLyySeTzWZxHCcYB/z2t79lxYoVtLW1ceaZZ9LZ2blXi1XhtCnxSFmrZzIZOjo6goUoKT3XJirSrxq7qEWusKuRnfU7aoGssbGRXC7HwoULg8VAJUyqfj28RXm6Mg1/ru6pxjzlcjnwZ6yEVjUWKRaLbN68OYhAfNddd9HX14dpmoyNjfHss8/S09NDLBajra2NRYsWceWVV3LuuecSj8cD8VZtC1bvVTQa5YgjjgjGOw0NDSxdupSjjz466MOVH2nVZ0/3bqn8JZNJlixZwoIFC4KyVwuk0Wi0yudiuDyklHR2dtLQ0BCUjdq9Ed7uHt4GP5Psz/pvSMMPxOWJqtG4QOK5CJHSc5Tg4mIIz8AD6bmekK4vPgECBxeD8fFRhgYHyeWytLY2YEeUX0ElCEgs23MvZkgjEKc8JcgTeyIxAAfDNRDCwZFlhDBBuBiGSyxu+ZZqFlNTgkjg0klU2mEklmliWGDFLAxh+oKYCLQbr3soe34KHYEhTL/fqCmgyrTbRwT38oKgOEFfKQzPsi6eMJDK4EadIqW3rdhR5wkvgq/wXFcIE2K2QyLtRRNW4y1vTONHRatKk2fND155SheEUv18xdJ7rjI4xbK98nelF/dB+ukShtqR4PV/wiwjXQPTtohbvqsYPzeG4eJKz5rOiDmA6fWJvgcOKcqYtolli2CIJoSLkFawMCmEg2FCNObnyfAslqT0Z/HSd20iJEJ47l/siIlhSL8spCfm4uUvGhMh4dVLr9csuBjCRdgm2P7inpAIHBw/SIwdk9h4uy7xFwbNCNgRb4xpCQPH88OCEJV2wo5KbOEZJCk/kARPfffYY8vBI488knvuuadygVCH/OEPf5hf/vKX3H777WSzWa6++mr+4i/+gt/97nd7ehuvIhieJVsuKujoaCX+XIbhkVHW9fTQ0tnJ6PAAa15+iZJbortzPos7u8mbkkjEYKLoMDE2husUiSUbqM/nSNsGluH5lguC6HrjK2+jhiv9FVo88cqEhC2oy9dhWVFGRrcwOT6FEbdoammlu7WBjA22kJ4TbAsyqTitzc2kc1lGtm3lheefoywhlouzdWArPRs24ZRdXN9RdSIaJ2p4M4iC61CYmkIKL4peS0MjKcvzd+d6AfqYKpVwXYeoaZKKRomaAmFCqQhTpTJTU0WkFESiEeIRC9twMf3VCtM1vFDwJclkoUjRKWLaBtl4nKhlYBreikjKgua0zbELZyNNSSISYdWalxgcHGHVS+uY09pGd1Md+UQUW1QG6crcGYIYjYGabarVAOFFGTaEIGEbpFMJIhGbyYlxercNMDhZIBezibqes3jXhVLZxTVMHOmZPdt4/hORnjPPmGUQj0eRQjI6tA1nYowSDg0NnXQ2NZCwPKMH4XrPeqQg2TJewpGCaMQi4luTFqVktFjm+Y29rF69hvHhUeLpJO3tzeTTCeIWlKImqWycVDrJ1i3beHn9Jp569nn625sZGi/y4vqNOBKsWBIzEicVSxE1LW/g70ickjdxytbVUddUhxCwfnMvG3u2MDFVZHhsjEgixuKF81nc3UVjIkLEBktAVAoaEhaLOtsZOPooRDRKz+AgZcer/OlEmrp0nHld7Zy4eBFdTd47b+P5M5wp9lcbULutZLrV8b0lvO1ViVZjY2PTCoNK8FL+5MJ+9mqvCQSCTjQaDXz9CSE8S9OBgWALsYpCPDw8HIiEjuMEK9JqctHZ2UlbW1sw4WhoaAi2Doct/mrLLeznTglTynpPDeKj0SjJZDK43s4iCO9MeAsfo1bN1ap1NBolkUgE1nLKik6JhqqMVATkcETjcITfcLTlHd1/V59PZ5Wws7zs7J3bHatGy7KCwX4sFqsKXBLeZq0sBVXgGqgIt0KIwB/hjiwr9qdVwP6q/0Y+gfDrUKlQoDRZxCmXvXbfF19s2/Yss3yRzC159Vq4lW3IhpTBCjxOGRwoTxWYmJhkZHScgcFRtg2MMDA4zki5hItBzIiRSGbJ1jVS19hGfVM7+YZ2MvkWYtk6DBU9MngWShR01Woj3qjC39aM56dGugJcqXaBeoNm17O7U0vkQhre5MMfDIaFQSn974XEsFzP159TxpEO7lQRp1xiarJASVrE0/W0dloks020dY0wMT5OaaqIdCSWYRKLxEknkmTTWXLZPNlcjmQqTTQex4pFIBLBjdhBkBdHZU+o4b0/uffHTEqQdfG2fAvhCaFC+dxT5h1uRUg0/QGrGbKQ9P7v3cQQwtcSKwHPKtM+wDVU6fizCRMRSRDJ15PEhkQGu7GFxPAw4xPjFEpTODgIQ3g+CVMpMtks2XyOVDZHLJXEjMUwIxHPzMH0V+VNf/AthBd0Rpj+M/OdgBsmhmngCruytdfxrcTKXvAob/AvMAwTIfwo3JXpZ9Vv73F724SDOi8rPgYDH4RCgCn8wT8gXW8iJSrnqgAuJddhpthfbcCOUG1ra2vrdu1guN0O/60ERRVgImxpNp2lfNhqKx6PV/kdDl+zNnKvGju4rsuaNWtYs2YNl1xyCaeddhqRSITnn3+eBx98kJ/97Ge8/PLLnHDCCZRKJdauXUtfXx8vvPACsViMWbNm0dnZOW0AkF2197XCZ61QqHYzRKPR4BwV9bf2+FrrtenuE0aJVWqxUVFr1Rd+RuHvay04w3mJRCJV4y91jWKxyNq1axkaGmLr1q38+Mc/5uWXX2ZkZIQXX3yRiYkJwBN3u7u76erqYsGCBbzhDW9gzpw5zJ8/n0gkUvU8VfCZcBoSiQRAlZsXJVCqNNaWVTj94bGVKqNYLEZdXd12QXTUOdONL9RuknA51F5bCdv7Ymyw3+q/EFQcI4CaW0p8YQcXIcpe3yr9Ph5Z6SCEwMWk7MCGjf1sGxxm4fy5XjASA/Cjxntre8KXh6rPV9Fe1ecS6WthhteOhw5VaQzadeF4wqIoe/8Whid0Gl5aTV+UlCoNau5sqCi0nmCoLOt3UEhVv7ztscqK0AjKyzB8sSiUVkPlSfoCnmGg1pAE4Dr+YqsBQgU3QPXn/i2VRbuP6/drSnwjqNeqjL3y9MYRIsizyqDq0Suh5aR/bzU+UKMBfLHNuy6Et+Cr8pDgC3Xe5/4XgTDo3zFIvj/aEN61g6rnu0YRQol83qUNYfq+lQk+k8oiSo13/MuqkYz6W4rQ36r7ViZQwcvkl4R6D8OPWlCRWw11rFGlFxv4mpYv+O4JeywOWpZFS0vLdp8PDw9z66238r3vfY9Xv/rVANx2220sXryYxx57jFNPPXWP7uOprp6okzSgo7mJTDbPpqEhNvZs5vkNGxkd6Kd/21biyRizZ8+iNZWiLmpSllAoOUxNTiFxiSViZOJxoob0tqsigkGm0rOkf9NKRDhJxISoIWjI5YnHEgxLB1kukU620NHWTnM+Q8oEy4Cy8LaSpOM27S2tNLe0MTQ4QG9fL1Nlz1+ckA42gnQqz2SxRCTqWchEDa8ilVyXYqmAYZikslka8lkShsA0/DmNhGKphOO4RKwoyWgU2/D8JZSQlMoOpUIZKQVR0yRiGp7DSl85NhAYZZAFl8L4FLLsEI0nqE+kSWBiCwBPWU/HBB35JGL+HGLCpFx2eWbVKgYHRljX08/YVJGSGwkaafU7jPA/VD7DpQDXr8ymgJglqMumiMdjDI8Msal/KxuGx6jPprAcQQwTw5UUHclUCcqOt7U2bQnsiOffUEiImgbxWAyEoDgxAYUCIp2gqbGBhlyKiDeGx3ElJSkYLTmsHxqhf3CMeCROPpEgHrEYmRinb2iIZ9esZt369ZTLRdqb2ujubCOZiBCxBREkuVya+voc69dtZOu2AZ58diVrtvQhXBPDkTTWN1J0JBg22USKqGUG1iSWEKQTcZLtLXTOnUXJKbPupXUMDwxRKksSqQQdbc0cedQi2pvqSdvednXDEEQlpCxBUybBkgVziaYSrN+yhYmJKSxMcokUbY1p2pvydDbUk4laxPz3s7Jq88rZX23AnrAj68DwbzXYVKJgOEiHEs/U9pOwJZxaDa610NuZdaIaCKrJRLFYZHR0lP7+/mD78NatWxkYGGB8fLwqml0mk6G1tZWOjg46OjqCbcSNjY1BBOLpRDIlHilrgEKhEAiCKm8qoInKn8qXylttYJDaMq4Vp2r/VoNbtQ0pXBZhMVJZzoVFS5U+FUlZBfVQ246VSBhOZ21ap7Ns3F1qB+I7msTs6NzpUBNK27aD/KvfkUgk2FodFkiV1aBlWUGkZ/Xv6SIZ72/2V/0vGw5lUaZEiaIsUnQKuL6FiDAiCNvAilm+2wZvG4wsl5Fl/HGS6a9eCygWKUxOURgZZWJsnJHBAXp7etm0YRObezazZWiEScfFMlMkE0nqcnmam5ppbm2lqbmZ+vp6cnV1xFJZDDuJZ/rmIh3P6kaNRoXwnZgLUdlGrAbDEqTvPy54hsKTeiwhqnd8OCAdXxZ08cVN/3jTQJgCYRm+xZzEcB1v9bBUJmpGMKNJEpl6Glq8QC6O7xNQoIIrmcG7afrbMys/RnCMlwdllRaakKt65rqVz0JIIYJBalB/lPgZjAkECOl5H/JXtiWqDgNVq+GhAX9Q14S3Rdw/x5We7x0ZiWFnLRKJDNGmFrJlx9ue7ou2QhheMDM/v0ZN/g1TBJaOFd+QEozKxNRx8PwshvrVwG5PmEH5qHx4u1F80UD4IkLgTJLQbotQn4Lv7ypc3uooAZ4fIf+dqFzKf79ArXxLf+IszZmzIDoYxgA7s/zbm7Z6R9/vSBhT39WOA0zTpFgs0tvbyyOPPMKiRYv4y7/8S+rr6zEMI+jX7777bp544gmee+45IpEIpVIJ0zSD4CpHHHEEzc3NVaLP7uYrnN5a0S38u1ZIDR+vrrM7i7M76//C6dhR2dUuAofTGF50VWzZsoVnnnmGiQkv4MPWrVv5v//7P5577jkmJyfZvHkzk5OTgGfJefzxx9PZ2Uk+n+eCCy5g8eLFZLPZIBhMbT6my9uOyrdWHN5ZeUyXR8WeBJ7ZlVCr/l17zZkSCvefDiCU8hGaX1as0v29BSDNUA/liSiuKylMSaaKLiOjZVaseJHJyQLdszvI55MhcQhfcPL7J3UVUbkW6rp47XygGQTOGsJicOhwAUGEKT+GgjQ8oUYI5XorlMdQ++8tmRG6f1XBbJeuyl8ilL5Q7HpphsowlEilhapzqt7z0LWlsoatTgZY0yTFDN1B+Sc2tjtOpTEo66rv/c9luGyNqvODa6vjwxeQlZ0mFU3Oqkmnl9ZAz/PUidD9QodNV3aVW/v/MavO8RaFpzlXTHe+n5aqW5qVPKj3VVZe3Ere/HSL0FVlbZtQm++ds8fi4OrVq2lrayMWi7F06VKuv/56urq6ePLJJymVSpx33nnBsYsWLaKrq4tHH310h42CmhApRkZGgoxI6W1zjRsurfk07S3t9G7cSE9vD6xYwcTIMBOFAnM6O5nX2UlTIkI2Cn2TkqlSmcmpKVzpEItGScViRITEUltRDKXUBwsDvv8Bb5Dq+lF7TCFpzOdIpzL0+yJeQ309szs6yMdN4rZ3zbLrWRCmbEF3Yz0LZy9kaHCUocFhhsfHSLpRmvI5cuks0rAYGBshkUiQTiSImMIT/hyHYqGEEAbpTI5sIk7CrFRvx4GpQoGyUyYRTZGIRrH86Lsl16VULlMslRHSIGFY2IZS6b3BOK43WHSLZaZGJ3EdSSwbpz5dRxTLM10VEtN0yURNDATRfAp73hwmSg49Wwbo79tK7+AwwxOTlN2kNwmQahBfqTTCX2lRQ2dDViLxKb8LUVPQlM+SzabZvHkTG/u2sHLtBlrr6iFpETW8RZcSgtESFAouDbZB1PDERdefXEQNQSqewDIjjBcdMF3SkRitDQ1kYyZR29syXTIERQcmXMn6bYP88bkXsYRNfTxF3DYZHh+hb2gb6zdvZmhokHQ2yeIFc+luaSIdM4laEJeChkyKOZ0dvLx+M1v6t7B+80a2FcZozjawePZs6rI5UskEE4Uyjbk0EUNgGC6GCalElHmzO4hFTebMm4PjQsqK0NPTR9FxyOQzLJzbzYJZ7dSlbaKWxDS9SYltQMwU5OIG3Y1ZYvEonc1NlB2HCCZJM0omY5JKmOTink9ISzl+nEH2Xxsw/aBUsaNADeFzFUoUdBynShgMB4pQq8FKfFKWa0o4s227alAWXumtXRFX4tbY2Bijo6MMDg7S39/Ppk2b2Lx5M5s2bWJoaCgY3CofRU1NTbS2ttLe3h5E8mtpaSGXywWioPJdqO6lflTeVH6UD8VyuRwcr8Qptb1nR3nb2eA2vDquJkPq79oBf+25yqJQiV7JZDKwGAxbNoZ/1HfKr2FtpN/aydl0AmHtiv6eioa7y3RbohRhISK8dTrsw1K9m+qZqTILRzJW9zlQgVv2V/0vjxVwExEsDKxIgmRERQgM/TggXce3ULMQdtQbbPu+eXElFIqMj46zpbePnk2b2bx5Ez2bNtPb18fgyACTziTSlcREjPpcPe0dHXR1dtLV1U1LayvZXNbzK2gYGKYJ0ouE7AXGcCsLi4a/4hz4jgsLXiEBTIZjFntWdt5MxW+nHM9noev718MX1JRTcxxvlZ+iC0K9EzIYhJqWhWnbxPzzCN5FURlc++UXiE7BT6W7kPir//jjJcMIXUtlzz/Bt5j0IuhWi+r+H/65/p/eKBdlDeDK6sWrqnSrsXBQnXwh0K0NnORNuD0hPkpcGFQ2IeNZ0qno1d5NfH+ABiKYREs/L25I4AvCplSeW81kJEiHOkAIhFVtUSGCxyQrFsJqAFqb93Cupun/wlZVQojQbWuv5adTeP4gZ4r91QbMFHsjiky3+Ler64SFLNd1mTNnDqeffjrNzc3BM0skEhx77LE0NjayfPlyVq1aRTqdZvbs2eRyOdrb22loaAh88u1O2ndHNJyuz9jZomr4mOn6sz1Njxoj7UrMnU7ElNJzy/Lwww/T09PDmjVr+N///V+2bNkCEIy3isUi6XSas846i5aWForFIqlUissuu4yTTz4ZwzCCMU9temqf8Y4+39E4c0f1dk/F611Ru4i5LywDd8XBU/8FSBXBF1QDLF0oFlxWr+phzUs99G8Z5o9P/p5kOsaCBbNIpKLeKYHwJFF7CGcGf+eCtBFYSOlbmldUO/+ovZyczfQj3/+v0OHDIfqs9kgcPOWUU1i2bBkLFy6kp6eHT3/605x55pk8++yz9Pb2Bg5ZwyifGzvi+uuv385/AYAQnqtqYZgkDEl91GZuZxcvrFzFwLYeJgqrcIsu9fkk82Z3M6sxQ13cF0OAsuNSLJdwpUPEihK3bCzhBs7BpfCMWQMTUfyF1tC/MSW2BXWJKPl0HsM0MSyDjtZWupoaSVoS25DevnkpiOCQsUy6MglOWLAIaURYs2kDrlOkPpmiq7kFy7YYfG7Sj7yVJpdMEjEFpbLLVLFMsVTCsEwy2TwJ2yJmyEBkKzmC8akpSo5DNBohGY9iCbXtyIvW5LiedYAljIqfH0wMF8quYMIVjE8WGR0exZWCbCZLXT5HxLflVSbcUSBie8FMSvVx5s7tpnVFK9u2DDE+WWSsUMCBQKkO6dg+MihH33I6JJFLTF/Ua8ykaG9u4qU1LzG4bYCnn11JfTxLV3MT6biFdF1GSyX6x8cxMDiiuZ50LIYtQAqJ4QoiAtKxFJFIgjEMSggy+XpaG5tJmQYxU3q6qKiYVU9OFdjQ08fE2BS2BOG6FMpTTJWncB2HVF2WxQvmcMKRi2nPpMhYggiQMqAlEeOYubMYGB7hmTUW44VJ8ukU87vbOW7hfPKZNG2NOUbHJulqzBG3wY5426Hr0zFOOHIhiahBU10WUwqa7Ah9XZ2UcEgnE3Q05GlKWGRjXlBIz/jTc15vmpAyPMuGuB2jLRPHFJ74arpgWA52RJCKCQxXdXUzpw7uzzZgR9SKfOEADrWoQVQ4GIcS15TgIoQIhKawVZfaZlu7jVgIsZ1Qo+6hts6OjIwwMDBAb28vfX19rF+/nr6+Pvr6+hgcHKRUKhGPx4Noffl8nvr6ehoaGgJ/gvl83ouCZVmUy2XGx8cD3zbh+4bvH/YhpIQ79aOsBZU/ROXXZlciU1hYU9dwQxZDanvSrqIN1w5i1bFK9FOCba21oypXJQKr5+44jheVNeTfR6VTiXAqr+o79XzVtqrprESme39mAnVtZUWoRNpEIkEqlWJkZIR4PB74hVTprd1WvbsTxn3B/qz/MStK1Kps35X+b+9v/z++38FA3BJlZLHE2Ogoo8MjDA0NMbB1gN7eHnp6N9O/pY+BwQFGx8dwnDK2aZNKZKnP1dPc2Exri2cp2OTXwWw+hxnzt965rhcp2HUr4l9lPcxbUASCbTaiIqYFFoTUTAgEVJswqDh+1dZC4Ymp6zo4TpmyW8Z1HKQkZP1mVXyi1i4Vy/BWU9+STilvwgjaR9f1jgsLdgJPnAyiRdekLUijv92KkHjn+vdTFnvC8H774Qi9RVhlHYfnS9KVKvqxH3DFFxar7mcagWCqfDUqrVIJYt74xwieiRT+j8qb2rbrb7mVfhkHwuB2z8pPA5Vnsl1dVOVTK6io8nc9AbLStFSZFgR/Btc3DGruMC3bLYoEafD+rrICeQUcDGOAg5Vw+c+dO5dZs2ZhGEYQ+EL1TYZhMHv2bLq6uqoEKrWDQAhRFQBkZ8La7jKd2LmzY3Z23CthR5aK4V0dUko2b97M7373O4aGhhBCMDo6yne/+11efPHFoHzUYmkmk+GMM86go6ODlpYW3v72t9PV1RXcZ7o+c0fWirXsqswPRF98oPp/OAjrf2CBLf15vQQMJieK/P6JFfzmrscYHNnKxOQQZ511GvPnd3hRYavM8vx5PHvml22nyZIgsLBEBNtQlo0176BaMToUqem2DgsO1TzvRbr3SBy86KKLgn8fc8wxnHLKKXR3d/OjH/0o8M+wp1xzzTV85CMfCf4eGRnxHPBKF4HnXDJmGaRNl7aGeury9Wzt3cDE4ACWFaexcQ7d7W00xCMkbH91TBi4rkMJzz9RRNjYwqSykq/8GHgNghKuXLzBrfBNfw1cohGTmHBIxVMYlkkkYdHS1EguESXmTxBcie8o2yFqQi5mMKelDhmP0djegHSmyMdS5LI5to6M4jznYJkG+UyWukQc28QLkjE5RbFUxLRtMukMMUtZz3kOVovlMlPFAmXHJRKzicdtbNML9m0Kb13CFAJpQMEpUZSSsnJYYMCklGwru/SNTTA4PIwlLOqzdaQSEeyowAGmStLbzuSaXpQb08tbLGYRi5qhbdn+AJ2wODg9XnAZCFZNhGelGbUgG7eZ297GM/kcvZt72PjyyzwhLPra28llUhTLJfpHRukZHaE+m6Mpfgzd9VFcwwu0YmARkZCNJ4kn05CIY0csGptbac7nSZreVuCilEjDE+hiwiAfj9OQTtMzWaQ0WcBxi5RkkUjMpiHbSMesFo5bvID5LU3UWQZxwzP4jZtQHzWZ11jPxNGLydRlGC1O0hCLsbC9m7nNTcSjNnXpKKWyQ2MqRizi+UyI2JJ80iQRz2MjSRleJOZUQ4aWfArXFEQMSBuCjAVxC2VQ4lkbAMLwpo0pIGEZlMrBa40h8Bylm8pvgwzcKczUWGJ/tgHTrbyGBbFagVCJR9MNnMKDbDWRDg/Uw37yVMTZnfm3C1sLKvFqfHycwcFBtm3bRk9PD729vWzatIktW7awZcuWYPuoEIKmpiay2SwNDQ2BKJjL5Uin06TT6cCyT6VFWempLae1E0GFykdtPpVwVztB2ZV1Znh7ivLJAwR+AcP3VAKhskLcHWsGte1FCYxhkVAFbQlH7g3nSaVbTajUc1FpAYKt0yoAixI3VaCQnW2j3l321qIivNU4Ho+TTCbJZrOBP0aVX1XWSiSsDRazN+nYW/brGMDF217rC1Wu63pioBJ0qAgglmVhRW2EaYFlIMUEE4Ui2waH2dzXS29vL9u2DTI+UUAYEepyjWQyWZpbWujs7KSjs4vW1lay2QyWaSFdB+k4lIWDU5pEhBtSv00OW9l5Wzj8fk7ijytkZaqhjg1EJx8BiJDFYYiwNZgSxkAgTLAMC9Ou2Q4XFulCCfO2/1aEOhkSpjz9zNs6bAh/E0ttW6Cu6ff3lUuHFie2az8Ehr+N1QoLmxI/6IhbdU6QP4En+lGx6AjaOukiVX6qrC+CIysfSBdX+YoKLPP89FfpcNITfdW9hW8dGuTZP0YJhbV1rioN3tOuWBFK30IyVF5BufvPvGrRNHSx6arydPW7ZoFoOouiHYqYe8n+bAMOFvbUely13cpfoAoWoepnrVX4jsTAcATkA5Gfme5Tascb6vfIyEgQSOTuu+9mdHSUNWvW8Jvf/IatW7cG52azWfL5PO3t7bz61a8O/CTm83le9apXsXjx4qqxwHSiX7g8a60iX6mV5t4cd6hxUNX/cGNe0ykLhGdBHovhyBTHHjef15x3Jq1t9cygEfUOMQS0Ntdx0knHUFeXI59L7WCePEPvyf4Wrv48X++dM1N5PgSe1R5vKw6Ty+VYsGABL774Iq95zWsoFosMDQ1VrRr09fVN65tAoSZp2+MFrSi7XsTitGVQl0lRX19HxDRwClNEYylaW1roaKonHzGIWn4EQySuW6YkHSQGlh/JrdKOyECsMvC2xErpWeC5waq456VNmJ51mm3aGJZNNJGgLl9P0hDEba8D8O4CjjDBlESjUA8QTdBU14rhloiIGGXLom94hNGxcUzTIpdJk4lbmCY4AgqFIqViEcMwSMYTxKyKg1SJLw5OFbxoxZEIEV+sM4TAMgS2YWDaJq5wGZ0cZ2RqinEnTrIEJQPGgP5SgXUD/QyMDGOaNvW5BlK2ScSCCddlqOCAazElJLiCKVMy4UCxMEm5OIFwS0Qsm2gkgulPJoLtKmpMHJok4efA9TtKz2+mZ8IdNUwyEYs5rS3M7exkdHiYsZERVq9Zw9ZtA8RiUcpOmdFCkTHXwe1wKTsOhiGQlBC+lUXUEOTiKVoaGxmfGCGbSjK7u4v6VIy44QXzKOMiXYOYEGRNk7mNjQwtnM/6bJaJ8XHKbgnXkmTTKdry9XR0NjCvpYXWqEXWDwiC8KYfqYigMRnl6K52WpvqmCwVSUct6iIJshEL24SYaYBhkbIEEVMicbFtg1xc4EqB7XrRhw0XkpYgLU3KwouQHRMQs/2JiNoWLAQuEtcQSNfFNDxLxhh+IC3hRZA0/F1UKqCPK9192gbt2zbAo3arphp0K+FEWQHuSDCrpda6LLyyXPtTe71wWtT9wv4EN2/ezObNm1m/fn0gEI6OjlIsFrFtm1QqFQxuW1paaG1tpaGhgbq6OlKpVCCwTef8vFYkDactfKz6txLQwnkNpz2cn3DZ1OZVfR52Yq7KO3z92vvu7FnW3i9c5kqIVFaetdvG1fPfkRWdeqbhaH9qG1/42ddug95VeewsL7t7jenOUduM1ftRu4U4LIiGhdHw9Q7URGRf1v/yVJmSLPiWco4fHdezQAvEfNvCtCxfFLR8gU0QTSbJNTQgbJt0LkNHd6cnuLoulmkRiUZJpJKkMllSuRypTIZ4IomwTGS5hCwUcIoFZNnxhSv/fQmsuKp9ynmCob+4uIMFBf/IqvZYGH59VVuR8QJ2VVmv+Ys/0hfQBIbnT1EF/cDXnaTr+cHzrdPC6VM+jqD2fQQvfq5bVRfVb7UAWBHg/N9+naRWGFQLhmGhMhBUhecikWm26dZssKpqn3xhzn/TQ4tdarts5QrCz5MnEIrKb/9MJfiF7xgWa6X6PnAC6L1PKl/qWVdJkrLyvMIW6koMVhi+ABu0O/77Eiya+pcNBNDwQxIC9sZybD+0C/tjDHAwUit0hftV1dcqgU8tTu3Iei1c52qvt68txffnFtXahU0hPH/MK1asYNu2baxYsYKbbrqJjRs3bnduJBLhiCOOoLW1laOPPporr7ySlpaWaS0Rp8tP7aJu7fczlb/p7v3nzIGs/4FDhaCsK2UeT0Q59dSjaW5uoVyeoqWtjtmzW4jHLYQf/bjaaE9Unf9KkBJMExYu6iCTvphI1KapOeMF1sALSukdKGbqlvtGbNrfItbhwiHwrF6ROKhCxb/jHe/ghBNOwLZt7r33Xt74xjcCsGrVKtavX8/SpUv3+NoCA0MKXG9MRMQSxKMWqVQC0xSYUhKPRT3Lm1SSlAXgOV32VoddXPww3I6g7EikchSNdyxCYkovcrErvK2nypG2NxgX3jZUV+KUHVxM7FiCbDrlBXrwRRjXX+cuYeIYLlZEkjUFMcel7BhQjlByTPoKksFtQ4wMjxONxmjK50jaNggvmuzU1BSlchkrEiEdixM3Babpx/ATgslSibGJCa88YhEs20L4fvlsAYmIRTxmI6TLwMgwG/q2MCefQdgmBQOGZZk1W7ay4qXVDE+MU5fJ0tbeTl3MxBaSwbJLz5TL1ESBqLCQESibZSYmCrz00jq2bu0DwyWfTpFJxIgYfuOsBq+VhxeMyYXffDtCYkh/ciA8udM0IRM16G6s46SjjmRsfJz1GzcxNVmid3CbNxkWAmFZJFMZmvJ50pEIUcB0/UiNQmLbgrpkhOMXLaKlMUs6meCoubOpj9shH5P+5MSFjAVduTT2EfNZ0NnG5NQkZRyMiEE6kaA+liAbN8nHotTbEDO84CflwBQdcglvy19DzPImrRFJHJO4ITBMSPhVK2L4IeKFwDAk6Yin4lmu5zdRABEkMf/SpvRdVhkSaXjvqFDCNXgWKYYfYMYVaucaTtCvhRzH+1GwlEi7L9iXbUAttWJYeGVefb+74k7tBLj2+tOdt6NrqSAaKoDG2NhYsAVYSkksFiOTyZDNZmlubqalpYWuri5aWlqqgowoUXBvB5U7Wv2uFTn31hIhLKwpJ961k5qw5cPe3kPdR0qJbds7fabTCbhQeT92h31hmbGnKDEz7Bx9ugnMdBPSA8m+rP+F8Qli0otGbFkRopaFCFvzSs/qq1wo4jiTOL6IKHGRQhCJ2DS1ttDS2V6xBsNrCQ1f2HJcF8d1KU9NMjI1gRCeiGOaBqYwMKK2bynv39LviwUCTKMyOQnefTcIISfA90MYFtk8lybBU/OVNxmECPS27qpovcofX3WkaoEwHAxheqKlvz03eI2rfNj5x4tKWoxwhHNVfwIRLpwXz1XJdLWjahGlxs2Byoc3JgiUOP8/oXtJ3woUGaS9cs2wj1Bf2AyETmX9WDm/kh7PIk/66akIrcEam/fsBFXpF1T6j7AQPV1+DcO/j+/TOdjaHGxpq44cGn4/8NPsQNX1UGlwgxdtWgunKjEpJHSo4lH5CN7V0DUcub3bjZlgf44BDnaEEEHQL2CHC2ZV4nmIWit4xSvpUw9GtmzZwoYNG3Bdl4mJCW6//XZefPFFBgcHGRwcDI6LxWJ0dHSQy+XIZrO86U1vYv78+eRyOTKZzLTlsqMxAUwvEE73vWb3OaD1X0CwNS60vVgYYEcFs+bW096ZR0qwLAPb9uZhahFGVC4C0pjRaZIwJA2NcerqOhACLFv6Jkdq9WovxMg9FYBeqWCkq8Lec4g/qz0SBz/60Y/yute9ju7ubjZv3sy1116LaZq89a1vJZvNcsUVV/CRj3yEuro6MpkMH/jAB1i6dOleRSiTUoA0EIZnEVVywXEdym4xCO2NJbAjFjFhEvVXe6UwwJVYpsC0TXCgXChRKJcpEyEYnAoQ/kBeuALD8NqGyrjaG2G6LpRdl0JxEkdCJBInFrGxTTUQU3E+/EG4NDDxfBEm8K5XwmLQEQwPj7FpwwYmxyZoaG2kOZchZQswBGUJUxPeFrpY3LtHxPBFIrxIxVOlEuOTEyAlkUgU2zYx/VFhxIJMIkYuk8IQMDI4yJp1L9ORyzNVl6NoSDYNbuFPK5/n5Q0bcNwyra0ttLbUk7UkpoQigg1DY7ywuhdDmiSyEVymmBga4cUXXmLL0DB2MkpHUz2ZaISoCa4jsaxKIxd0t7IyH3B9kUr9LaT3/ASSuC1oTEVYPLuLyXKJWCbLwLYhJgqTmIYgaUdIJ1M0NrWyeO4cmjJpIhIsV+AISRlPTatPRzh+3myOmNWKbRvUJROkbANhScpCIg3D89snBHFbkEuamJEEDakIrpvDxQs5H7NMEsIiaUPCj1atJhuubzVgmIKY5Vn5SdNTHqcssKS3BVsIsNUKkfQmI67w8m1LX1A1ZWUCKPyg9a70LSt8YVoQTLICfc/fAy+lvyUebzu4I8Ax/fINJqfK99EeV78dsj/bgB0Jd+Hvw7+nO25fDvTUAFMFL8nn85RKpWAbb0NDA+Pj4wAkEgmy2SxNTU3U19fT3NxMJpMhlUoRi8UCa7ddWZntrii0K8FrZ2U23TE7+25H/36l7IlAu6fXUbwSYXAm07Kn1zpQE5j9Wf/jsSixWKTSfDkOwvcNpxaYwF9MsQwvPp60KnOEkIACSkjyJgVOyCJNGNLf+iqqxTzlt08EQwb8Jts7VgQtrDeplBLlb88/hEoUQsLqTaWjlOpZhkQ0dS//BBMjsAivUC0ASldWWdcCgQgYLDiIioIYCGshIbDKQtsv4+Df4Tv71zJCIpUSFqcVCINjXN/pr1f2gXhac2zwboffcWUO6I8fwECIGvtDie/fUJ0i/UjPIA1RbbWn7lclunr3NEzTE5ND+QmXTa2VOXj+JqXremMEX4SriJWiItq5MqTi+n2ICC0ImYY3ZjAICaiyWuiTvkBdU77Cf0FF5SUlPAAIb0N/JezPNuBQYzprdNhxJNpawtb9+4u9vdeuBDh17fCCYalU4rHHHuPOO+/kF7/4RRCEoq+vj4mJCXK5HMcdd1zg8qOuro7LLruMY489lmg0SlNTE/F4fJfjvF0t+O6r8j0chMWDs/5vr6wIw8WOSOwIIA2k7z3Cb8lR3vq9H2NHl3lFaTKtcsU9kfAnZ1WLd2LP7rmnafvzfx0PXg7xZ7VHo4WNGzfy1re+lW3bttHY2MgZZ5zBY489RmNjIwA33ngjhmHwxje+kUKhwAUXXMA3v/nNvUqY6234BQQlKZkow/D4JNsGt1IoF3GFpOCUmCpOecoZMgg85Kn0BpZtI6TJ1OQUE4UCBZnAcVXH7UczlMITIpWPcT9QiZDeKr/jQqnsMjE1geu6xKIJopEIdhAgyRcRkRiuRLi+M2HpiY5FVzDuCgYcybq+Pta/vBa3MEldLkNTLkPC8nwIOUJSKhRwnbLnY8qysL1IFCC8dBSKXrADISWxaAzbMjH9VZCoCbl4jNaGeuxYlKnhYV5Y9QIJYbOpuZEpo0zP1j7WrFrN8LZtZFMZ5s2ZRWt9lqTl+dMruZK+oRGeWrUGZ9LBikkMUaA8PsHWbQM4pklrexvzO9tIx7wyUC5WXV8EU42tanLDqE8F3nkSiApBKgJtdUmcxfNJN7SwddtWxibGMQ3IRaPUp7LU19WRTyfJxU1sAywsHMA1vWeVjRmQjeJKm6gtiJiCdAQMC4r+GpEBGIbEjEDSgogNZddCuHjb0gTYwtvya5u+YIwnvAm8gB+u2sNkSCzpT0wFCMt/pXwF1BRuxapEeO+yQGJJF1dAybd+lULgGAS+L23H20ksAEcIHENghRVXKtu2JEEA6tDcUuAI/xr+F94275lpefZnGxBmdwddr2RwtiMxakdbcNX3kUgk2AqbTqdpbW1ldHQ0CKghhBfwJBaLkU6nA/9y01kK7kwE3ZP87WiwvDvH7um19+Q6My3u7e01Z+LcfX3Ng3GisT/rv4nEDPzj1fQpShRRPnDDCwkhq7vAygyC/toQeP4XhN+aqtgdIaQSozz1zgtsIUAdrA4P2QBW5hmB8FdRAGXooEC8UaLgNGKCsjITfh6ErM67sqxTe2qlb70fDjgifV96jvLDWiP07UwYrN5CHS6TSvFXOp3a63iTLeHKSvBH6QVScR2nsiU5ZPFn+IFDvMlbxcKzqjWcrm3cqbjvL+yJinVfkB9fnKTqvaHGQpMgfaLGEjkQ7aS/s8O/lvc4zOp7hY5HuhXrQDxx1AgJk0Ipw0IJ0gJhqvtOI5YGFwoJhZWDaotjRjhQY4CDldr++WBst/cV022pBgLrSbXFvr+/n0ceeYSRkRE++9nPsnnz5qCu2bbNGWecQXt7O7NmzeLtb397sAVVuY6p9f88E+PBw+k5zSQHXf0PVgM9BCFrauHg9SgWGKbf7od6FqEWq0DMsOVg4Aw+1KZvNyk+GJlRgVSzT9mHz2qPxMEf/OAHO/0+Fotx0003cdNNN72iRAEgRbDIOuHAQMFh7aZNbNq8nlK5BJbNVGGK/q39jI1PUUxGsKVECIjaEItFSMTiGKbJ6NgI20ZHGS/nyZieDzg1MHekCMZZhgAjtLVGIHBcyaTjMDY5gZSSZDRBwrb9raIE9d4VEsspM1UwKZYtL+0mjLuCfkfyQv8Af3j+OXp6N5NMROnqaqc5myJuez4LS65kcmqKsuMQsaPEbdsL/mF4PurKLowXJhmfmMAUgmQ0hm34bruFF8k2m4wyv6udpzvaWLtqlE0bNlAeL5HJpSlaLqNjIxQGR0hHYiyaO5tj5s+hOWkRiUhMBLaECCZuuczAtm04cgpBCdMF04wzZ1Y3Ry6ax/yuJrIJA0sIf2t19eSn0gB7g93tB/nehAxXYhmSmCXIxQRYCdLJBOONeYpOEcOQpCyLrB0jGhVEbEibnpUkwkQtBRkGJCIQNUC4Bqbw/D1Yph/10E+J8G+NKbEMgWVWRGFL4FmVSzB8h4llA8qGJ7R51or4VnreQ5eGF0UaQ/jvjeH7hcKP6uhNklxVFn70YNeQuKbnbxAkjgFl0484jMByVIF51oOuny580TroCv0JhGocTH9RSvqfB8Jtbfm/AvZrG3CQMN0WlNqBqmVZpFIpkslksDUtHCBFWZxMZyGo0Rwq7Nf6b/l+BH2mrzGhnicQESviTuCtLmTJElhcqbmAqPRQFUHR/1HnGALpi1c1Ml7FqE3KaTSbsPXdNNYNoUWdIBPBnCKkCFZZ5EkCX0VuRfQy/eurxaBAkBJqA5VRHSkYQPrRiZUYKVSaKxOlQGB1Q9t5/YzKmrxW8uziGgLhhLbjghekxPTduyhxTUqkI3FluSLCGYbvEsOPoOyLip4GWhHrRI1VpPDLSvrl54pq8XP7dFaLs0FbL0SlzMPvTNWzqHVjYVRpc6Ly8MDwrT8JVpUrhMTvqpdCqLx4+Q6Liqg0qjMl077nVVajM9TnHI5jAM32TLcAqSwETdPEdV1GRkZYsWIFt99+Oz/60Y/o6+sjm81y6qmnctppp2GaJtlslksuuYT58+cjpQxExfA99Hjp4OGgqv+hYFNhvLme8ERBv10UyiAomJvWnjBzyRLCn1Ci2l3hLWQJM5jb7TNVZ0eC0e4KSbqq7T8O4mc1M/sM9gGuFLiuZzE35sDmoVFWr13D6Ngo8VQWKU0KxQn6evvZMjjMRF0DSWlg4Vl9JSJR0vG0t8V2bJDeLf0MjreRETbS91suAUcKSo5XxomI9KIDI3H8Ab3jwkSpxFRhEkNAIhYnZlpY/hhP+BZpZSGYcMoMFQQjk5KyMCibkqGiw8bREZaveoHnX1xNsVRm1tzZzJk7m3wiSsSEcRdKZcnkVAEpJbFolFjERghf2PHTOD41RckpY0dipONxYqa3rVgIb/CZjnvBPY5ZuJCJ0VEGtwwzPDDEyNgYMiqQhks2lWZ2azsnHLmY2Y156i3PF4PhQAqDrlyOI2d3s9GymCpPImWZmBUjl83T2dnJolktNOfjpKOeIIa3izs0OPcCvOD7yQsHb1eilRr0e/6bwDIhIQTCgKQE147gCM8XYwRIIBCmQEQgYnqTGVdd23fxZJiSiOkJZEJKhFlx7G4aBsL1Wv/KhM9vnv3IvoafNteAMt4WMU+08/wkWg5YvoNzaUikKYPI1t6L4s23Kv5l/cZf+PKorAh6XkflD+yFWrXyguNAyGJAegKi6rOU3ytDdS7qFr6BhpBQNmTFUjA0N9HsOXuzRVlNyKbzd7enW3nDFot6cKw53AiEvV0RaupU21oxyhOh38JvKL0vgzE6qq5VhEWpxJbgsjUWZn7/FYiChEQ91D3V4l3lnkoICsQ/fzEN6QafKR95KleqrzCUyBi+VMgqQQQ9j6jkQYbv5XoTFNfw3ZVURMGK9V9N0VYJZ2AYZlW7NN222+A8aiw6pQyiJof9Pak2M4x0Kv7xBGAaVtXOL1XW0pn+HZFUnkvVuxGUoXf3cOAfoOKXMbTdWc0bpR/UKMhfja9FLxBM5ZmExxls945Uynq6lj1IYyBMElgQyqp3hGDhMzi+coHgdmJ365JGs5tM5xNTCEGhUKC/v5+xsTG+//3vc8899/DUU08Ri8VYsGABf/M3f8PZZ5/Nscceu9Nt1Mr34u66UtH8+bJzrSS8IqP6IxGKUu9fQVlWhC0qAvMJde7uv2O7OjoIOhIcLypxrmrSO5P33eGXu7jFnuV+5q4zU/edyXvst7I4wM9qZxzE4qBXhx0HxgqSdT19rN+4Acu0aWlrwym7rN/wMgODQ/RsG2CsK09MmljCW5tNR6JkU2lMSzAxMcqGjRvpGZhDzqrDtcESLo6EgjSYKElsf/tu1JD+lh1ASFwJE8USxVIR04BEPE7E9PwKegZmvnWchBHHZPOEw8sDY0yVS5RwGBwrsH7TRl544TmGtw6SSGWYPW8Bba0tpGyBKbwIy2UHyo6DaVkkEkliEc9yUAVFKTtepN5ILEoymiSbTBO3vPx6i9GSeMSgNZfmmPnzGS8U2bh2AxOjk5SlRMQN4ukk7fWNLO7uZvGcLuqTNjkTL+KxCynDoCubprh4Hl3NDUw4U0ghSZoxsvE0rdksLXmbbEwQ9UU1Fy/Cs1H7pvrWCpUBsDc0dX0VTvjRE11PCSNqgWUI35rOs9hzBNhSEAWk5VL099u6huv5D5JeY+v4izRqEO89Fm8gbwnTnyx57bAD3hYx6YmYKt2uP6GT4G3ldf2dZ37j7QpwfKsMV6h7+du9XH8g480CvB/PpDCI0uy/KsHalRWIft4WdLNcEfh8Y5BAlHTVdnlU/ya2G+Z7Fo8ERiXVlgjoicE+Ym+32E73fa2Fi0ZzOFNyXUo14o2iItOF/eOFBDIlxkFokiCCeYBqp5VkEpaRVJDbMC5S+c6oXEuJfoH4pa5bfZ6oGspJXztSrX/oUuG8qQ6jksMgbeoa0p/oyECFkpWLUXNBSWXiRMXvkZhWdAoJWaqMfevJoJP0O9RgW2/Ikk2Vf1iEU89HubcQsiIOBqWmiq5GdIDwl9XsatugrP4g/Kvm3+F0hkS2SkKo/nOa9AhRedYy9D6F7+UvgoLhPw4ZCMyVVIjgrMo2bSqGpLK2Nxfhxxt6sypHueD52dRo9hFSSgYGBnjooYf4+c9/zubNm/nDH/5ALBZjyZIlLF26lFe/+tWce+65JBKJqvNqCe/W0KKgZvfeALViVFnQCfVI/gduddMoBb6D192+y56laWfHV9r2PbnavqoNM3XdvSmXfS12vfJntX/ue6CvG+agFQeVw+xiWTA86bJ2Uw/btm0jlUwzp3su5cIUW/v6GRmdYPPgIKMFlzyemGMgSdkW2VQGO2YxNjTKpo2beLl3K83ZLEIaRKRDSQpGXBgpSqKmS8QyyNoyEOWQElcKpgoOZaeEaXpO0iOmiRf7wR+Q+4PqSTfKhtFhHl/9AoOj23DdMqOjRbZt3sxQ7yZcV5DvmM38eXNpSkWJmyCEg4vAcTwn6dFolHQiRTQS8beheJZnLhJhWeRyOeqtBPlUirhhYOFvnTFcopZJPmoxv72FomWRz+QY2DZIsVDEittkGurobm5lYUsjLZkouZggZriU/Gh5cRsakxa2laezMcOEkLgGJDCIu4KMaZCMQjzi+dQzhKAMIDyDbRM1TK1Udc+Szgu04Rr+JEsKTMA0BCV/m5KBt0XZtABXUjZcygZYmN52XumXgiExhInhGEjpbdm08CJAOn7EabUVxxSek/qy9L63wpYDeBaiwSQL5eHSOxa8yMG2680J3dDszXPzKLxOSHr9DYZq5tXs0y+JYILnobYpmy44yvIQMF1v5dXF+1zdx6z0d9vXkfB/fQEwPEEOT3L18GrP2ZGAN91xexIARKPR7BrDimDYEUCJOKGhvi+sVAtyNaKJVJ5elWDjbnekauvDQUyCbbdKB8PrT1wZDvjhO87wBTPpJ2o7i8NgcSxIVPC3IbzIyJ6FXcjG3hffPCs/UJZ9XpZ8EU6AMFU6RXUD758vgzKqiH0iyGw1QYqlOqhyjCsd7wBlYBG0ZdW7AggJWRDy8xf0uUrAVeODirAK+NuMZeCOwfXzLdQ1lCWmL4AGczzVr4cs7Sr5qW2za9ppUb0VOOyvsVaWrhI7a79TaVAWkGo7MJVnF+Q3EEwJdh6I4Pl6aZR+Wlzpb79W5REkhKr8qgmu57exYj0YtuTc3ejtGs3uIIQILG/Vvzdt2sTTTz8NQF1dHRdccAEnnHAC5557Lq2trTQ2Nk4buTmMFgU1e46sdLY+0789XkcmfenD97CLmv/tm+WTcE8SOOHdLr2HM7qmH3wcdOKg6hgmxoaRZZfRosHQiEv/tj5KE6PYyRTpSAQHhxiSofExBkcHGBoZIZ8oes7hJh3KEyamW8Iwy0hngtHBrfRt6WFrax1G1CbqlihIg0HHZrjkEjMlSQkpKYnYUDIMpCsZmzCYHB3BLU6CU8AtT1EYH2Fq3KJQ9CYXputSdmF4xGTr0BCbejcyNNSDdB3GxkqMb9lKaWwIEUtg24KsLbAnRim6Lm6pxHjRZHS8TKkwhiHLGG6RYmGUiYkilgOlMkyMu5RLk0Rtg4RtYpQLFMZGGJcu0nIpmGA5FuUJsEuQjZlk83EKziTRKYNYNEI6HSOdjBIRRdzJEiUB49Yk41MWNhaGI3CKYExBxIGSJXEEWGXhbdeNelZ7hSlJ2XGxDIuS8CztcMHCxcDxrQkNkGbI2ba3TddbvBGYjud6qIT0mmrXExcdwHS8+zq2gSEFVtk7r2i7lCljuRaRsoFj+uNsR+AaDo4JBoa/RbiMIcEoW5QNgbTAcr3rSpTwVm3NaPjm5iUDDNe3KvRX6101+Jfe5Mb1RThDelaXjvD8TgpcTARCGpSFb5GIL/IhcQxPwDMdfyhfJR7K4Dp+oVW2GquJmKwcXTlO+sd56a/InASfjY+NVNWvgxmVxpGRkQOcEo/dEf5eqTi4N1uYNZo9QdWng70NUOnbOjZE0Qn57ETpd2qRR/oikQza6TA1Gpe6epVAKEVIylMCoS/4CX8bslRbkUXlGNUqy7LS7moEnHA6RGiDka+9Ba4gUHnx+5aw9Z6UXnRfJRAG+ZSBVieF8P3cilC5VJdjrb+9qsAaeOJTWHgKXyv8TMJCgBDhaMXKr12oIFU61TZbCI4JruuLmCqAcXWZbVeM4W9RlohVD9jvYwOd0kv4TiZ84eW1SnmEBcWK78pw2kJlrfKjnqGovVbludUGO8EXEw3fKrNqchraDq6EQnXN4An7Yraycqz4RVRLtH5e/MNHJker8nQwc7CNATTbU+v2RErJ8PAwU1NT5HK5YFtwS0sLLS0txGIxRkdHg8/BqxO1gX6mG/vo8dDMcKiNAcZG/fqv1pOCA6CqwQyCfxBa6fMOFL6lvNdXOngRgy2/Y5d+m+36Qb+miU62t3kI5mR+8C1pQDCKqRUH/4wWbnb0rA5mDsU07wWqPu1O/RfyIGslNm7cSGdn54FOhkbzZ8mGDRvo6Og40MnYKS+99BJz58490MnQaP4sOdjbAD0G0Gj2HQd7/Qc9BtBo9iUHexugxwAazb5jd+r/QScOuq7LqlWrOOKII9iwYQOZTOZAJ+mQZmRkhM7OTl2WM8ShWp5SSkZHR2lrazvotxcNDQ2Rz+dZv3492Wz2QCfnkOdQfWcPRg7lsjxU2gA9BphZDuV39mDkUC3PQ6X+gx4DzDSH6jt7MHIol+Wh0gboMcDMcii/swcjh2p57kn9P+i2FRuGQXt7OwCZTOaQKviDGV2WM8uhWJ6HyiBbNVrZbPaQK+ODmUPxnT1YOVTL8lBoA/QYYN+gy3JmORTL81Co/6DHAPuKQ/GdPVg5VMvyUGgD9Bhg36DLcmY5FMtzd+v/wbt0oNFoNBqNRqPRaDQajUaj0Wj2KVoc1Gg0Go1Go9FoNBqNRqPRaA5TDkpxMBqNcu211xKNRg90Ug55dFnOLLo89z26jGcWXZ4zhy7L/YMu55lDl+XMostz36PLeGbR5Tlz6LLcP+hynjl0Wc4sh0N5HnQBSTQajUaj0Wg0Go1Go9FoNBrN/uGgtBzUaDQajUaj0Wg0Go1Go9FoNPseLQ5qNBqNRqPRaDQajUaj0Wg0hylaHNRoNBqNRqPRaDQajUaj0WgOU7Q4qNFoNBqNRqPRaDQajUaj0RymaHFQo9FoNBqNRqPRaDQajUajOUw56MTBm266iVmzZhGLxTjllFN44oknDnSSDkoeeughXve619HW1oYQgp/+9KdV30sp+dSnPkVrayvxeJzzzjuP1atXVx0zMDDA2972NjKZDLlcjiuuuIKxsbH9mIuDg+uvv56TTjqJdDpNU1MTl112GatWrao6Zmpqiquuuor6+npSqRRvfOMb6evrqzpm/fr1XHzxxSQSCZqamvjYxz5GuVzen1n5s0C3AbtG1/+ZQ9f/gwtd/3cP3QbMHLoNOLjQbcCu0fV/5tD1/+BC1//dQ7cBM4duA6o5qMTBH/7wh3zkIx/h2muv5Y9//CNLlizhggsuoL+//0An7aBjfHycJUuWcNNNN037/Re/+EW+/vWv8+///u88/vjjJJNJLrjgAqampoJj3va2t7FixQruvvtu7rzzTh566CGuvPLK/ZWFg4YHH3yQq666iscee4y7776bUqnE+eefz/j4eHDMhz/8YX7xi19w++238+CDD7J582b+4i/+IvjecRwuvvhiisUijzzyCN/+9rdZtmwZn/rUpw5Elg5ZdBuwe+j6P3Po+n/woOv/7qPbgJlDtwEHD7oN2D10/Z85dP0/eND1f/fRbcDModuAGuRBxMknnyyvuuqq4G/HcWRbW5u8/vrrD2CqDn4AeccddwR/u64rW1pa5Je+9KXgs6GhIRmNRuX3v/99KaWUzz33nATk73//++CYX//611IIITdt2rTf0n4w0t/fLwH54IMPSim9srNtW95+++3BMStXrpSAfPTRR6WUUv7qV7+ShmHI3t7e4Jibb75ZZjIZWSgU9m8GDmF0G7Dn6Po/s+j6f+DQ9X/v0G3AzKLbgAOHbgP2HF3/ZxZd/w8cuv7vHboNmFkO9zbgoLEcLBaLPPnkk5x33nnBZ4ZhcN555/Hoo48ewJQdeqxdu5be3t6qssxms5xyyilBWT766KPkcjlOPPHE4JjzzjsPwzB4/PHH93uaDyaGh4cBqKurA+DJJ5+kVCpVleeiRYvo6uqqKs+jjz6a5ubm4JgLLriAkZERVqxYsR9Tf+ii24CZQdf/V4au/wcGXf9nDt0GvDJ0G3Bg0G3AzKDr/ytD1/8Dg67/M4duA14Zh3sbcNCIg1u3bsVxnKpCBWhubqa3t/cAperQRJXXzsqyt7eXpqamqu8ty6Kuru6wLm/XdfnQhz7E6aefzlFHHQV4ZRWJRMjlclXH1pbndOWtvtPsGt0GzAy6/u89uv4fOHT9nzl0G7D36DbgwKHbgJlB1/+9R9f/A4eu/zOHbgP2Ht0GgHWgE6DRHExcddVVPPvss/z2t7890EnRaDT7GV3/NZrDG90GaDSHL7r+azSHN7oNOIgsBxsaGjBNc7vIL319fbS0tBygVB2aqPLaWVm2tLRs5+C1XC4zMDBw2Jb31VdfzZ133sn9999PR0dH8HlLSwvFYpGhoaGq42vLc7ryVt9pdo1uA2YGXf/3Dl3/Dyy6/s8cug3YO3QbcGDRbcDMoOv/3qHr/4FF1/+ZQ7cBe4duAzwOGnEwEolwwgkncO+99wafua7Lvffey9KlSw9gyg49Zs+eTUtLS1VZjoyM8PjjjwdluXTpUoaGhnjyySeDY+677z5c1+WUU07Z72k+kEgpufrqq7njjju47777mD17dtX3J5xwArZtV5XnqlWrWL9+fVV5PvPMM1UN7d13300mk+GII47YPxk5xNFtwMyg6/+eoev/wYGu/zOHbgP2DN0GHBzoNmBm0PV/z9D1/+BA1/+ZQ7cBe4ZuA2o4oOFQavjBD34go9GoXLZsmXzuuefklVdeKXO5XFXkF43H6OiofOqpp+RTTz0lAfmVr3xFPvXUU/Lll1+WUkp5ww03yFwuJ3/2s5/Jp59+Wl566aVy9uzZcnJyMrjGhRdeKI877jj5+OOPy9/+9rdy/vz58q1vfeuBytIB4/3vf7/MZrPygQcekD09PcHPxMREcMz73vc+2dXVJe+77z75hz/8QS5dulQuXbo0+L5cLsujjjpKnn/++XL58uXyrrvuko2NjfKaa645EFk6ZNFtwO6h6//Moev/wYOu/7uPbgNmDt0GHDzoNmD30PV/5tD1/+BB1//dR7cBM4duA6o5qMRBKaX8xje+Ibu6umQkEpEnn3yyfOyxxw50kg5K7r//fgls93P55ZdLKb0w5v/8z/8sm5ubZTQaleeee65ctWpV1TW2bdsm3/rWt8pUKiUzmYx897vfLUdHRw9Abg4s05UjIG+77bbgmMnJSfl3f/d3Mp/Py0QiId/whjfInp6equusW7dOXnTRRTIej8uGhgb593//97JUKu3n3Bz66DZg1+j6P3Po+n9woev/7qHbgJlDtwEHF7oN2DW6/s8cuv4fXOj6v3voNmDm0G1ANUJKKWfGBlGj0Wg0Go1Go9FoNBqNRqPRHEocND4HNRqNRqPRaDQajUaj0Wg0Gs3+RYuDGo1Go9FoNBqNRqPRaDQazWGKFgc1Go1Go9FoNBqNRqPRaDSawxQtDmo0Go1Go9FoNBqNRqPRaDSHKVoc1Gg0Go1Go9FoNBqNRqPRaA5TtDio0Wg0Go1Go9FoNBqNRqPRHKZocVCj0Wg0Go1Go9FoNBqNRqM5TNHioEaj0Wg0Go1Go9FoNBqNRnOYosVBjUaj0Wg0Go1Go9FoNBqN5jBFi4MajUaj0Wg0Go1Go9FoNBrNYYoWBzUajUaj0Wg0Go1Go9FoNJrDFC0OajQajUaj0Wg0Go1Go9FoNIcpWhzUaDQajUaj0Wg0Go1Go9FoDlO0OKjRaDQajUaj0Wg0Go1Go9EcpmhxUKPRaDQajUaj0Wg0Go1GozlM0eKgRqPRaDQajUaj0Wg0Go1Gc5iixUGNRqPRaDQajUaj0Wg0Go3mMEWLgxqNRqPRaDQajUaj0Wg0Gs1hihYHNRqNRqPRaDQajUaj0Wg0msMULQ5qNBqNRqPRaDQajUaj0Wg0hylaHNRoNBqNRqPRaDQajUaj0WgOU7Q4qNFoNBqNRqPRaDQajUaj0RymaHFQo9FoNBqNRqPRaDQajUajOUzR4qBGo9FoNBqNRqPRaDQajUZzmKLFQY1Go9FoNBqNRqPRaDQajeYwRYuDGo1Go9FoNBqNRqPRaDQazWGKFgc1Go1Go9FoNBqNRqPRaDSawxQtDmo0Go1Go9FoNBqNRqPRaDSHKVoc1Gg0Go1Go9FoNBqNRqPRaA5TtDio0Wg0Go1Go9FoNBqNRqPRHKZocVCj0Wg0Go1Go9FoNBqNRqM5TNHioEaj0Wg0Go1Go9FoNBqNRnOYosVBjUaj0Wg0Go1Go9FoNBqN5jBFi4MajUaj0Wg0Go1Go9FoNBrNYYoWBzUajUaj0Wg0Go1Go9FoNJrDFC0OajQajUaj0Wg0Go1Go9FoNIcpWhzUaDQajUaj0Wg0Go1Go9FoDlO0OKjRaDQajUaj0Wg0Go1Go9EcpmhxUKPRaDQajUaj0Wg0Go1GozlM0eKgRqPRaDQajUaj0Wg0Go1Gc5iixUGNRqPRaDQajUaj0Wg0Go3mMEWLgxqNRqPRaDQajUaj0Wg0Gs1hihYHNRqNRqPRaDQajUaj0Wg0msMULQ5qNBqNRqPRaDQajUaj0Wg0hylaHNRoNBqNRqPRaDQajUaj0WgOU7Q4qNFoNBqNRqPRaDQajUaj0RymaHFQo9FoNBqNRqPRaDQajUajOUzR4qBGo9FoNBqNRqPRaDQajUZzmKLFQY1Go9FoNBqNRqPRaDQajeYwRYuDGo1Go9FoNBqNRqPRaDQazWGKFgc1Go1Go9FoNBqNRqPRaDSawxQtDmo0Go1Go9FoNBqNRqPRaDSHKVoc1Gg0Go1Go9FoNBqNRqPRaA5TtDio0Wg0Go1Go9FoNBqNRqPRHKZocVCj0Wg0Go1Go9FoNBqNRqM5TNHi4J8R1113He9617sOdDI0Gs1BwLJly3jVq1613+63bt06hBAsX758v91To9Hse2bNmsUDDzywT++xbNkycrncPr2HRqOBV73qVSxbtuxAJ+OA8KpXvYoPfehDBzoZGs2fLYdz+/LnghYH94CHHnqI173udbS1tSGE4Kc//el2x1x33XUsWrSIZDJJPp/nvPPO4/HHH6865oUXXuDSSy+loaGBTCbDGWecwf333191zL333stpp51GOp2mpaWFj3/845TL5VecBzXIf+CBB5g1a1bw+a4G5u9617sQQiCEIBKJMG/ePD7zmc9Upek3v/kNp556Kul0msbGRt74xjeybt263U6bEhdq7/O5z30OKeUe5XNn6Q1/N92PKpe+vj7e9a530dbWRiKR4MILL2T16tVV99lReWo0sHttBsDKlSt5/etfTzabJZlMctJJJ7F+/frg+1e96lXbvafve9/7XnH6VCeu6t7+5LrrrqvKTzab5cwzz+TBBx/c42sVi0W++MUvsmTJEhKJBA0NDZx++uncdtttlEoloNIm3HDDDVXn/vSnP63Ke7guv+td7+K6667b6zxqNHvKDTfcgBCiagJb2zeGf26//XYAtm3bxoUXXkhbWxvRaJTOzk6uvvpqRkZGguv89re/5fTTT6e+vp54PM6iRYu48cYbX3Gad1ZnVNv1gx/8oOqcr371q1V95lve8hZeeOGFaa+/bNmynfbZQgjWrVs37XGxWKzqWgeyzdMcHlx//fWcdNJJpNNpmpqauOyyy1i1alXVMbvbpy9btoxjjjmGWCxGU1MTV111VdX3Tz/9NGeeeSaxWIzOzk6++MUvvuL0h+tG2Ojgda97HRdeeOG05zz88MMIIXj66ad54IEHEEIwNDQUfO84Dqeddhp/8Rd/UXXe8PAwnZ2dfOITn5j2uuPj48ydO5ePfOQj26Uxk8nwn//5nwDBPdVPPB7nyCOP5D/+4z+qzvvJT37CZz/72d0uC6CqfdmfC64azXTszrxiR/3kl770pe2OLRQKHHvssdst7teO0dVPMpl8Remfrn2RUnLeeedxwQUXbHf8N7/5TXK5HBs3btyhVqH79ZlFi4N7wPj4OEuWLOGmm27a4TELFizg3/7t33jmmWf47W9/y6xZszj//PPZsmVLcMwll1xCuVzmvvvu48knn2TJkiVccskl9Pb2AvCnP/2J1772tVx44YU89dRT/PCHP+TnP/85//iP/7jP87gzLrzwQnp6eli9ejV///d/z3XXXRc0NGvXruXSSy/l1a9+NcuXL+c3v/kNW7du3W4gsDvcc889wX0+/elP8/nPf55vfetbM5ber33ta/T09AQ/ALfddlvw9+9//3uklFx22WW89NJL/OxnP+Opp56iu7ub8847j/Hx8T1Oi+bwZHfajDVr1nDGGWewaNEiHnjgAZ5++mn++Z//ebtJ7Xvf+96q93YmJgEHmiOPPDLIz6OPPsr8+fO55JJLGB4e3u1rFItFLrjgAm644QauvPJKHnnkEZ544gmuuuoqvvGNb7BixYrg2Fgsxhe+8AUGBwf3RXY0mlfE73//e2655RaOOeaYqs87Ozur6n5PTw+f/vSnSaVSXHTRRQAYhsGll17Kz3/+c1544QWWLVvGPffcUyU4JJNJrr76ah566CFWrlzJJz/5ST75yU9uN4GeaWKxGJ/85CcDoX464vE4TU1N0373lre8pSrvS5cu3a497OzsBCCTyVR9/vLLL++TPGk0O+LBBx/kqquu4rHHHuPuu++mVCpx/vnnbzd23FWf/pWvfIVPfOIT/OM//iMrVqzgnnvuqZo8j4yMcP7559Pd3c2TTz7Jl770Ja677rp9Vp+vuOIK7r77bjZu3Ljdd7fddhsnnnjidm2XwjRNli1bxl133cX//M//BJ9/4AMfoK6ujmuvvXba85LJJLfddhvf+MY3ePjhhwGQUvLud7+b008/nfe+971Vx69atYqenh6ee+45/vZv/5b3v//93HvvvcH3dXV1pNPpPc67RnOwsDvzitrxwre+9S2EELzxjW/c7th/+Id/oK2tbbvPP/rRj253nSOOOII3velNM5of8MTM2267jccff5xbbrkl+Hzt2rX8wz/8A9/4xjfo6OiY8ftqdoDU7BWAvOOOO3Z53PDwsATkPffcI6WUcsuWLRKQDz30UHDMyMiIBOTdd98tpZTymmuukSeeeGLVdX7+85/LWCwmR0ZGdniva6+9Vl5++eU7TU93d7e8//775f333y+7u7uDz2+77TaZzWZ3eN7ll18uL7300qrPXvOa18hTTz1VSinl7bffLi3Lko7jVKVZCCGLxaJcu3atFELI3//+91XXuPHGG2VXV5d0HEeuXbtWAvKpp56qOubcc8+Vf/d3f7ddWq677jrZ0NAg0+m0/Nu//VtZKBR2O71hpnuWq1atkoB89tlng88cx5GNjY3yP//zP4PPdlSeGk0tO2oz3vKWt8i3v/3tOz337LPPlh/84Af36H633XabPPvss3d53dtuuy2oe4p3v/vd8uijj5ZTU1NSSikLhYI89thj5Tve8Y7gmMcff1wee+yxMhqNyhNOOEH+5Cc/2a7+Pvvss/Liiy+W6XRaplIpecYZZ8gXX3xRSum1V0uWLKlKz4YNGyQgn3jiieCzwcFBecUVVwR1/ZxzzpHLly8Pvv/CF74gDcOQf/zjH7fLX7FYlGNjY1JKr0245JJL5KJFi+THPvax4Jg77rijKu/hunz55ZfLa6+9dqdlqNHMBKOjo3L+/Pny7rvv3q36fuyxx8r3vOc9Oz3ma1/7muzo6NjpMW94wxt22f6ofm5H7KzOnH322fLd7363rK+vlzfddFPw+Y033rhHY5AwOyqf3bnGjto8jWZf0d/fLwH54IMPBp/tqo4PDAzIeDwezB2m45vf/KbM5/NVY9+Pf/zjcuHChTtNj6oDOyJcN8LzilKpJJubm+VnP/vZquNHR0dlKpWSN998c3Bu+Cc8L/na174m8/m83Lx5s/zpT38qbduu6s93xIc//GE5d+5cOTY2Jm+88UaZy+Xkxo0bg+/vv/9+CcjBwcGq8+bOnSu/+MUvVuU9XO7d3d3y85//vHz3u98tU6mU7OzslLfcckvVNQC5du3a3RpTaTT7k93VIi699FL56le/ervPf/WrX8lFixbJFStWTDv/DrN8+fLt9Ivp2Nv2RUoply1bJlOplHzppZek67rynHPOkW94wxuklJU6Hv5RYw3dr88s2nJwH1IsFvmP//gPstksS5YsAaC+vp6FCxfyne98h/HxccrlMrfccgtNTU2ccMIJgGfiW2s1FI/HmZqa4sknn9zv+dgR8XicYrEIwAknnIBhGNx22204jsPw8DDf/e53Oe+887Btm1mzZnHeeedx2223VV3jtttu413veheGMf2r+Ic//IEnn3ySU045perze++9l5UrV/LAAw/w/e9/n5/85Cd8+tOf3u307opCoQBQ9RwMwyAajfLb3/52t66h0ewK13X55S9/yYIFC7jgggtoamrilFNOmXabwP/8z//Q0NDAUUcdxTXXXMPExMQ+S9fXv/51xsfHA2vlT3ziEwwNDfFv//ZvAIyNjXHJJZdwxBFH8OSTT3Ldddfx0Y9+tOoamzZt4qyzziIajQZW0u95z3t26B6hUChw2223kcvlWLhwYfD5m970Jvr7+/n1r3/Nk08+yfHHH8+5557LwMAA4JXLeeedx3HHHbfdNW3brtoCYZom//Iv/8I3vvGNaa0fNJoDxVVXXcXFF1/Meeedt8tjn3zySZYvX84VV1yxw2M2b97MT37yE84+++wdHvPUU0/xyCOP7PSYmSCTyfCJT3yCz3zmM/vc8n5sbIzu7m46Ozu59NJLqyyHNZoDgbKEr6urq/p8Z3363Xffjeu6bNq0icWLF9PR0cGb3/xmNmzYEBzz6KOPctZZZxGJRILPLrjgAlatWrVPrOMty+Kd73wny5Ytq3L1c/vtt+M4Dm9961vp7Ozkxz/+MVCx4vva174WHPuBD3yAJUuW8I53vIMrr7yST33qU8H8aGd8/vOfx7Is3v72t/NP//RPfOMb36C9vX2Hx0spueuuu1i/fv1284da/vVf/5UTTzyRp556ir/7u7/j/e9//3bbwDWaQ5W+vj5++ctfbjde6Ovr473vfS/f/e53SSQSu7zOf/3Xf7FgwQLOPPPMfZVULr/8cs4991ze85738G//9m88++yzgSXhaaedxle/+tWq3QG18w7NDHGg1clDFXai1v/iF7+QyWRSCiFkW1tblRWMlJ51zAknnCCFENI0Tdna2lpl9fKb3/xGGoYhv/e978lyuSw3btwozzzzTAnI733veztM0+5YDu6IPbEcdF1X3n333TIajcqPfvSjwTEPPPCAbGpqkqZpSkAuXbq0ahXvhz/8oczn84E10pNPPimFEHLt2rVSyspqQjwel8lkUtq2LQF55ZVXbpeWuro6OT4+Hnx28803y1QqFVgu7k56FdM9y2KxKLu6uuSb3vQmOTAwIAuFgrzhhhskIM8///ydFaVGMy3TvWc9PT0SkIlEQn7lK1+RTz31lLz++uulEEI+8MADwXG33HKLvOuuu+TTTz8t//u//1u2t7cHq2k74pWucj/yyCPStm35z//8z9KyLPnwww9Xpae+vl5OTk4Gn918881VK4/XXHONnD17tiwWi9Ne/9prr5WGYchkMhm0l5lMRv76178Ojnn44YdlJpMJ2gzF3Llzg9X9eDwu/9//+3+7zE+4TTj11FMDq6tay0GNZn/z/e9/Xx511FFBfdqVVdH73/9+uXjx4mm/+6u/+isZj8clIF/3utdV1VFFe3u7jEQi0jAM+ZnPfGaX6duV5eDOUHmZmpqS3d3dwf32heXgI488Ir/97W/Lp556Sj7wwAPykksukZlMRm7YsGGv0q7RvFIcx5EXX3yxPP3006s+31Wffv3110vbtuXChQvlXXfdJR999FF57rnnyoULFwaWgq95zWu2Gx8rC6Dnnntuh2nalWXPzli5cqUEqtqDM888s8r6eEdWfLXXOProo2WpVNrte991110SkBdddNF236l7qvGEZVnSMAz5uc99ruq46SwHw2l3XVc2NTXJm2++ebfTpdEcKHamRSi+8IUvyHw+XzUWcF1XXnjhhYEV8I527ikmJydlPp+XX/jCF3aZplfSvkgpZV9fn2xoaJCGYWyXtz0ZJ2j2Hm05uA8455xzWL58OY888ggXXnghb37zm+nv7we81ayrrrqKpqYmHn74YZ544gkuu+wyXve61wX+784//3y+9KUv8b73vY9oNMqCBQt47WtfC7BDC7v9wZ133kkqlSIWi3HRRRfxlre8JXA83tvby3vf+14uv/xyfv/73/Pggw8SiUT4y7/8y2CF8bLLLsM0Te644w7Ac7R8zjnnbBfI44c//CHLly/nT3/6Ez/60Y/42c9+tp2/RRV4QLF06VLGxsaqVlV3lt5dYds2P/nJT3jhhReoq6sjkUhw//33c9FFFx3QZ6D588J1XQAuvfRSPvzhD3Psscfyj//4j1xyySX8+7//e3DclVdeyQUXXMDRRx/N2972Nr7zne9wxx13sGbNmn2WtqVLl/LRj36Uz372s/z93/89Z5xxRvDdypUrAyfp4ePDLF++nDPPPBPbtnd4j4ULF7J8+XKWL1/Ok08+yfvf/37e9KY38Yc//AHw/K+OjY1RX19PKpUKftauXRvkXe5hsCKAL3zhC3z7299m5cqVe3yuRjOTbNiwgQ9+8IP8z//8z3Y7BqZjcnKS733vezu0Grzxxhv54x//yM9+9jPWrFmznSN/8IIH/OEPf+Df//3f+epXv8r3v//9V5yPXRGNRvnMZz7Dl7/8ZbZu3bpP7rF06VLe+c53cuyxx3L22Wfzk5/8hMbGxiofRhrN/uSqq67i2Wef3S4gz676dNd1KZVKfP3rX+eCCy7g1FNP5fvf/z6rV6/eLoDh/mTRokWcdtppgR/wF198kYcffninVsy1fOtb3yKRSLB27do9suC/9dZbSSQSPPPMMzv0S/zwww8HY4r/+q//4l/+5V+4+eabd3rdsJ9EIQQtLS3BnE2jOdT51re+xdve9raq8cU3vvENRkdHueaaa3brGnfccQejo6Ncfvnl+yqZAU1NTfzt3/4tixcv5rLLLtvn99Nsj1Y59gHJZJJ58+Zx6qmncuutt2JZFrfeeisA9913H3feeSc/+MEPOP300zn++OP55je/STwe59vf/nZwjY985CMMDQ2xfv16tm7dyqWXXgrAnDlzDkieoCJ6rl69msnJSb797W8HW/ZuuukmstksX/ziFznuuOM466yz+O///m/uvffeIFpzJBLhne98J7fddhvFYpHvfe97vOc979nuPp2dncybN4/Fixfzpje9iQ996EP867/+K1NTUzOW3t3hhBNOYPny5QwNDdHT08Ndd93Ftm3bDugz0Px50dDQgGVZHHHEEVWfL168uCpacS1qm8yLL764z9Lmui6/+93vME1zr+4Tj8d3eYyKJD5v3jyOO+44brjhBtrb2/nqV78KeFsEW1tbg8G++lm1ahUf+9jHAC8I1PPPP79HaTvrrLO44IILdntgpNHsK5588kn6+/s5/vjjsSwLy7J48MEH+frXv45lWTiOU3X8//7v/zIxMcE73/nOaa/X0tLCokWLeP3rX88tt9zCzTffHCw8KmbPns3RRx/Ne9/7Xj784Q/vt4jcb3/72+nu7uZzn/vcfrmfbdscd9xx+7Sd1Gh2xNVXX82dd97J/fffv0tn+rV9emtrK0DV2KCxsZGGhoZgbNDS0kJfX1/VddTfLS0tM5OJabjiiiv48Y9/zOjoKLfddhtz587dbdcEjzzyCDfeeCN33nknJ598MldcccVuLfD98Ic/5M477+SRRx4hnU7z4Q9/eNrjZs+ezbx58zjyyCN597vfzTve8Q4+//nP7/TatQuYQohg4VajOZR5+OGHWbVqFX/zN39T9fl9993Ho48+SjQaxbIs5s2bB8CJJ544rQD4X//1X1xyySU0Nzfvl3SrsZDmwKDFwf2A67qBDzvlU6TW+swwjO06IyEEbW1txONxvv/979PZ2cnxxx+/fxI9DUr07Orq2q7STkxMbJcn0zQBqvL1N3/zN9xzzz1885vfpFwu71Y0Y9M0KZfLVf4C//SnPzE5ORn8/dhjj5FKpYKIhbtK756QzWZpbGxk9erV/OEPfwiEWo3mlRKJRDjppJO282/zwgsv0N3dvcPzli9fDlQmEPuCL33pSzz//PM8+OCD3HXXXVX+QhcvXszTTz9dJdg/9thjVecfc8wxPPzwwzuNUDodpmkGdfv444+nt7c3GLyEfxoaGgD467/+a+655x6eeuqp7a5VKpV26OPshhtu4Be/+AWPPvroHqVPo5lJzj33XJ555pkq8fvEE0/kbW97G8uXLw/6UcWtt97K61//ehobG3d5bdX3qvHHjo7Z2fcziWEYXH/99dx8882sW7dun9/PcRyeeeaZfdpOajS1SCm5+uqrueOOO7jvvvuYPXv2Ls+p7dNPP/10gKqxwcDAAFu3bg3GBkuXLuWhhx6q6mPvvvtuFi5cSD6fn6nsbMeb3/xmDMPge9/7Ht/5znd4z3vegxAi+F75QKxd2JiYmOBd73oX73//+znnnHO49dZbeeKJJ6p2SUxHX18fV111FZ/73OdYsmQJy5Yt4zvf+Q6//vWvd5nW8HhCozncuPXWWznhhBO28+v59a9/nT/96U/BmONXv/oV4InwtWL62rVruf/++/fIOnhfEYlEtmtXNDOPlmX3gLGxsaoV6LVr17J8+XLq6uro6upifHycz3/+87z+9a+ntbWVrVu3ctNNN7Fp06Yg9PfSpUvJ5/NcfvnlfOpTnyIej/Of//mfrF27losvvji49pe+9CUuvPBCDMPgJz/5CTfccAM/+tGPtpsozCSO4wQDFEU0GmXx4sW7PPfiiy/mxhtv5DOf+QxvfetbGR0d5Z/+6Z/o7u6uChSwePFiTj31VD7+8Y/znve8Z1rrom3bttHb20u5XOaZZ57ha1/7Gueccw6ZTCY4plgscsUVV/DJT36SdevWce2113L11VfP6Jbf22+/ncbGRrq6unjmmWf44Ac/yGWXXcb5558/Y/fQ/HmzqzYD4GMf+xhvectbOOusszjnnHO46667+MUvfsEDDzwAwJo1a/je977Ha1/7Wurr63n66af58Ic/zFlnnVW1HWYmeeqpp/jUpz7F//7v/3L66afzla98hQ9+8IOcffbZzJkzh7/+67/mE5/4BO9973u55pprWLduHV/+8perrnH11VfzjW98g7/6q7/immuuIZvN8thjj3HyyScHAUfK5TK9vb0AjI6O8sMf/pDnnnuOj3/84wCcd955LF26lMsuu4wvfvGLLFiwgM2bN/PLX/6SN7zhDZx44ol86EMf4pe//CXnnnsun/3sZznjjDNIp9P84Q9/4Atf+AK33norxx577HZ5VNu5vv71r++TMtRodod0Os1RRx1V9VkymaS+vn67z1988UUeeuihYCAf5le/+hV9fX2cdNJJpFIpVqxYwcc+9jFOP/30wHXHTTfdRFdXF4sWLQLgoYce4stf/jL/7//9v32TuWm4+OKLOeWUU7jllltm3ArhM5/5DKeeeirz5s1jaGiIL33pS7z88svbWU1oNPuSq666iu9973v87Gc/I51OB31cNpslHo/vVp++YMECLr30Uj74wQ/yH//xH2QyGa655hoWLVrEOeecA3gLY5/+9Ke54oor+PjHP86zzz7L1772NW688cZ9mr9UKsVb3vIWrrnmGkZGRnjXu95V9X13dzdCCO68805e+9rXEo/HSaVSXHPNNUgpueGGGwCYNWsWX/7yl/noRz/KRRddtJ2LIcWVV17J4sWL+dCHPgTAySefzMc+9jGuvPJKnn32WbLZbHBsf38/U1NTFAoFnnjiCb773e/yl3/5l/uiGDSaA8LuzCsARkZGuP322/nXf/3X7a4RPg68Og0wd+7c7aycv/Wtb9Ha2spFF100k9nYK2bNmsXY2Bj33ntv4F5sd4KpaPaQA+nw8FBjujDaQBAEZHJyUr7hDW+QbW1tMhKJyNbWVvn6179+u4Akv//97+X5558v6+rqZDqdlqeeeqr81a9+VXXMOeecI7PZrIzFYvKUU07Z7vvpeKUBSabL29y5c6WU1c78d8T3v/99edxxx8lkMikbGxvl61//erly5crtjrv11lslsF25KIeo6sc0TdnR0SHf+973yv7+/uA4lZZPfepTsr6+XqZSKfne9763KmjB7qRXwQ4cun7ta1+THR0d0rZt2dXVJT/5yU8GjqA1mt1hV22G4tZbb5Xz5s2TsVhMLlmyRP70pz8Nvlu/fr0866yzZF1dnYxGo3LevHnyYx/7mBweHt7pvfc2IMnk5KQ84ogjtnN0/vrXv16edtppslwuSymlfPTRR+WSJUtkJBKRxx57rPzxj3+8nUPjP/3pT/L888+XiURCptNpeeaZZ8o1a9ZIKb32KlwmiURCHn300ds5Ah8ZGZEf+MAHZFtbm7RtW3Z2dsq3ve1tcv369cExU1NT8vrrr5dHH320jMVisq6uTp5++uly2bJlgcPz6dqEtWvXykgkogOSaA4qdhRw45prrpGdnZ1B4K0w9913n1y6dGkwbpg/f778+Mc/XhUU4Otf/7o88sgjZSKRkJlMRh533HHym9/85rTXCzMTAUnCPPLIIxKY8YAkH/rQh2RXV5eMRCKyublZvva1r60K9qbR7A+m6/OBwEn/7vbpw8PD8j3veY/M5XKyrq5OvuENb6jq96T0+tgzzjhDRqNR2d7eLm+44YZdpu+VBgyQslKHX/va1077/Wc+8xnZ0tIihRDy8ssvlw888IA0TbMqsJni/PPPl69+9aul67rbffftb39bJhIJuXr16qrPC4WCPOqoo+S73/1uKeX2Yy3LsuTs2bPlRz/6UTk2NhacN11AkhtvvLHq2kuWLJHXXnvtbpaERrN/2d15xS233CLj8bgcGhra5TV3FJDEcRzZ0dEh/+mf/mm30zcT7cu1114rlyxZMu1373vf+2R9fb0EdD3dRwgp98Kbu+ag5LrrrmPdunUsW7bsQCdlp3z2s5/l9ttv5+mnn96r89/1rncxNDTET3/605lNmEbzZ8SyZctYtmxZYIGo0Wg0e8OsWbP+P3t/EmtJlp3ngt9uzOyc23vfhDcR4R59mxmZGUkm+ZjSU0Gv6gFVRA1KbyZqTgICgQLEiQRBA0EzDqiBgBpwVtCkBvXqCYL0CPFJbJTM6PvOIzy8729/zzGz3dRg7W3H7rnnekaSkZkR5F0Bj+t+rh2zbdu27b32v/71L/74j/+YH//4x7+wa/y7f/fv+Ff/6l/9XAUKDuzADuzntx//+Mf8zu/8zh7G34Ed2IEd2N/UDuaXb78daA4e2C/Ntra2eO+99/ijP/ojfu/3fu9X3ZwDO7ADO7ADO7AD+xXb1atX+Q//4T/w3HPP/aqbcmAHdmAHdmAHdmAH9nfWDsDBA/ul2e/+7u/yyiuv8OMf/3hmleIDO7ADO7ADO7AD+7tl3/3ud/nyyy/5N//m3/yqm3JgB3ZgB3ZgB3ZgB/Z31g7Siv8W2Z/+6Z+ytrbGb//2b/+qm3JgB3Zgv2LLVcgOqP0HdmAH9jexP/zDP+S3f/u39y0YcGAHdmDfHvvjP/5jXn755ZmFug7swA7swP4mdjC/fPvtF8Yc/Lf/9t/y6KOPMhgMePXVV/mrv/qrX9SlDizZj3/84wNg8MC+EXbw/v/q7eWXXz4ABg/sV2YHc8DfHvun//SfHgCDB/Zz2cH7/8213/md3znYuB/YL9wO5oC/m3Ywv3z77RcCDv77f//v+f3f/33+xb/4F7zxxhu89NJL/MN/+A+5c+fOL+JyB3ZgB/YNsoP3/8AO7O+2HcwBB3Zgf3ft4P0/sAP7u20Hc8CBHdi3134hacWvvvoq3//+9/mjP/ojAEIInD17lt/7vd/jn/2zf/bQ74YQuHHjBouLiyilvu6mHdiB/Z20GCObm5ucPn0arX+xUqN/k/c/H38wBxzYgX299m2ZAw7e/wM7sK/fvi3vfz7+YA44sAP7eu3bMgccvP8HdmBfv/0877/9ui/eNA2vv/46f/AHf9B9prXmH/yDf8Bf/uVf7jm+rmvquu7+ff36dZ599tmvu1kHdmAHhlSFPHPmzC/s/D/v+w8Hc8CBHdgv075pc8DB+39gB/bLs2/a+w8Hc8CBHdgv075pc8DB+39gB/bLs6/y/n/t4OC9e/fw3nPixIldn584cYKPPvpoz/H/+l//a/7lv/yXez7//PKXrCwtQwxopYjOEYIHq1Fa47xDGUsEvAsQIlVZoqIi6ghKQYyEGDBao2IEJREJgBAiWhuUUoQQUUrhnCeisDagNeDlPFErIpoYItoDAYKOKKNBSW62CoEYAy0ehcEqS4zp++naxhi894zrGhRYa1FKY608hsY5QohYa4gEDBqlQKEI3hNDgKio65ZqUGK0IRIxVhMjoBQhBGIIGJM6Mkac8xAVppDrKKVonIMIdOeOlEUh1w4BR8AaAwFiBGUUIYJWEUIAJffmgsco6RsCRGVQRhG19HUIAWssOrUtBI/WGoXCaE0MgaZ1GG1QSqNUpG1ajFUYa/AqEn1AozBKE3wkAEorlDxQlFIoo6nbVs6DwnsPSmGMQmuVhkMAFEopYpT7kn/Lzxg9ENFadWNETOO9R2mFMYYQBIFP3YsxGu/lXo3R1E2DRlGVlVxHBbQBYsCHAErarlCgNEQIXp6bNRZiJALRKiDinSPGiDEyXjUKrTXOOelfK2Mtt0lrjdYaHyNyC5HtrS0ePXeOxcXFr/4y/zXs533/Yf854LX/+F9ZXFhM76i8t0qpLpIYY9wTVZwVZez3Tf8cIQRijF0EJX/uve/O3b/W7uvomZ/3rzmrXbOCoLPOEULEGN21s39fk8Pjvu3L7bfWdu8hyNjof2fSN7Pbl6/djzL1+266L/Pv8/Exxl3PTmuNiooQU5sUMkbzq5DGq9FyXgVoFNGH3oGKmObVECNRAUahtSV6T2w9SinpP53aBqDluyEGQowyx0fpUINCR3BNy9b2Fu+9/x6vvfk6X1z5kg8//YSb927jVMTEyAuPP8//8v/4X/iN3/gRR48e7d5F57zM17ltIffP7nEwayxOP5P8rPK/+89/um+n+z1fo/85wOb2Ft/9P/3oGzcH7Pf+X716laWlpV9YOw/swP4u2cbGBmfPnv3Gvf+w/xzwv376JfPLSxgDIc333jm0tmhtZI7Lc6RWaKNwbY0tLCrK+iF+pfhSTePE/zKGGCJGQwwhufo6rUOK4CPEgNIKn35arTFxcrxH9hC04p9iFA6PthaiRwVQXuO9Q2lN2zYUVYE2ltFoDEphraFpWoq0B7DGYK1Bi2tLDA5F9qUjKvmAGE2M4rur5CfotL/xLogPKw47FAbf+InjEKPsBaL4q0TxjbMv61qP86FbS7RSKKtwEbRWROfFd/cBBeLTJt+4UIrgwHlPtJpIRPmIQqGNxkdZixVpfQsBazXOB7wPaGMwVuFa3/nI0bcUhQGlCTH7H/J8YlDEEFAqogtDSD5DiBGjFFbLWuh9JPjQ7cNA7q9u5dnEIL55URa0TYsti259bduWuTKgTYEPBu8VTRMoSkNhFc41aAXWWLyLEJOfbsABPjiU0mg98eWikv1UCAGjFCaNT6OANG69dwTvMNaijMGjQMuea9w6CmvRMVJam/Zp0rfOR9om0Iwbbl29zeefXOKjd9/ls/fe5M7166x+9sY3bg7Y7/1//aevsbCwsOuzvr+UTfa9st9H5WPE/8v2VXz1/rmnr/Ow7/d/l9+biR8m+96JX6cmc1LCKLIPrrURXCJhE3nsxuQvh5jPk86lFFrpXdcEiERikHYFL9hE3leKj7rb9+zf8y5/M+EPch/pXkPXWbIP7/mbfX8/X4v0LHR+JkqzuytjwhMAFaXtce+ffv/q9Gx1Pi/y/pDWiLznkT18nnHyniLfM93ff+a4yFeIk2tMt2vW8++fJ393r6n0NPPPvBvbdciu7tp7CtUdsmvMTl13a2uLV77/3a/0/n/t4ODPa3/wB3/A7//+73f/zg7MyuISy0uLBO9lQSbgnEMZhSkKmQQApdJimSZUAngli2J+oUpbpAEbe0BDBoASgJWOUUqDlZfWjxuMUmhbEBO4pCMorQlartP6FhMCA2MJweGCR6sCY0p5mZCXX6E6ENB5T+sdVpsO8IkRfEgvCDL4ZLHQGK1xbYtrW5TSLC5qiqKY7OQVeC8Lg06LoVZ5BEWCk/vVxnQA6Vz6anaw9ASugggtHh3BKC3t0gKS6hgIzslCp8AlJ8gqjcEQtcERUHnjDdJ33ssckK4bQ0zgqKJtXXJCNN557JIFFaTflIKYN8rgvccohWvFydNGy31FGLi2m1SnJ7wQMvCXHUVF28pmXkDimJ5/nuylzwSkMQlgSH+P6aaQCVNrAQ+995RlgcqAR5L0NEYRgiNEjzZGAGslzqlCoSI0TYvWunO6IhFVFhitusWjW0x8np2lP6qq6pyODG4ZrQm+RRtN8J4C3/XFN832mwMWFxZZmJ84BtOL2X6T889j0wBKf2GcBmn67cj/nAZ7+oDZrLZNxtdehyR/1gctp4HR9I2ptsY97d7v+/13on9sbo4Ay/KdDJJqrZNDPTk+hNB9Pr2ITztX04ts30KUsd6B9smpkf2P7sa7AnEIsmcDhDRPRiRgAMlZQuaMQCSqKEEOleZXuQvZ+EUw2tDWNbdv3GT1/gOuXLnCG2+9yWtvvsYX175k5Bo8ELWmqkounD7H//Drv8nTTz3FieMnmJubI4S0NvXAuT4gm20/Gv8scLAPuua+3uO4sf9Yyr/rH+f9N3MO2O/9X1paOgAHD+zAvmb7pr3/sP8csLCyzNzSYrfBzj607wFObeMwBrQxxBhQzMsSGeg2pCA+li0V2hp8kOB3F7jXAtYowOdNdNoM+yD+bGEMOkYUKfBKRCsDQQgMLgSiAWsNzjsMCoumaRwhRuaNwVpNAKq5OQCKwjCu2xQoVhTWYkzaiIYIXnztGASkBBLAptPeQfYjkDaCIQeZzWRPYA3OeXQCQkMIVGVBjBC8l/UlkRS898SBBLZcCjxrJaBeqWUP0dYNhTEYLcCh8146LioKIwF8HyPayrobG7mGKSwh+RbEiFUS+CN5AG0MRIQUIGSDCD5glPRpVEr2EkCbCCEmyjNGSf8ETQIj5LuVTf44eR8x2fe5AJWerLFKa2IMLC4ZAeF86I41cYwxBYGCplUMo8LoiNLgWoe1GqMUCp3GHbLXUhGPJ6gJKCrjUQ7QSkPaBzTOoxBySNt6qkLIH957rDEEBPjSKJZleCeA29K6wObWiO3tHbbWdnhw+z6fvPsB7/zVa1z95BL3r19lXN9P3/rmzQH7vv8LCywuLu7xcfJP8RmnA90kUIs90e7+MdO+Vuc7JZwpAy7TXnz/jPuTEei+qdTk73nPONl3yBnlZ96b5vGRvpXvjQzy7O6LPP6n73E/31Ap1QXfu36CCeDV91sTmCZzSx8UmwCM+/u1/d7q3U/6S9dFKpJuvwMIp/u967Nd9zPZT+x+Dkrwk5j7Ox3VP35mi3PTYsIZp8DBPB7SuWP3fBX7ky5m7Lvy+MvH5vvr3fPD2vc3enf1rP6abV87OHj06FGMMdy+fXvX57dv3+bkyZN7jq+qiqqq9p5Ixy4CgIYYwBYyQTrfyqYUyAw2iLJIAcErfOsxxqCNlUUyhjSIFd6HDpTLC4P3jhgVxoAPaeI2xWSSUIgjEPsIdwL/0h9Bx6MsMshxMQgopo3exbYpiiI1XeGck6iVLSAK6IaSRUEWBCtAmLUoSEAmaE23oUalKKIS5p8ndowyrVUHNiql00KousVQIgMCjMYgL6DRita3RGO6yJrRBpSAs8JsBOWjPB8gJoZegSYQCPnliXQbXBDGoI++639jdALo5NE779FWEaNCJ/chpM2+0hp8wGqDsoZgZMPsmobCFkQkomuUEafRChtxwhDbPYkijxfvM5gC3rdynQTkhAQq5uhUB+iGySKjEuDg2paiENDTBflcRYn2RTyExPrzDhUVRhsBLSKUtsA7B0RsYSU67YXFGqOwyQprukjO9AueJ6HcVkgRKe2JuK/w9v7N7ed9/2H/OUAp1YFSsHvSnQWEPQwo6X/WOYO9ha0PnPS/57Pz3LELJ23JIPOs889ugzjd04BkPl//O9PA4m7QRz7TXdSOPQBStmmGX25f/7PctrwAe5/nikn/T/dP7o9p4HE/pyQ3PBAJ2akAVFAknxedvzfx74hp04TWxBSQCDGm7wiIqFGYngPlrbzHMeTNnUcjSwpBNgx103LlyhUuf/kln31+iZ++8TpXb95gfXOTB2sPaNoGjcaYgpOHjvDo2XM88cQT/PoPf8Qr3/s+CwsLk81UD4jtj69poHT62U7/zL/PzN8+23PW2Jgeq32b9R78ojWGsn1tPsCBHdiBfevs6/QBOh9SQVUVNK0AbUoJsNckoCqKG5qYY5rWjVFBY4qS7PNnto5WWjJhgszbbetwBIqiSOeW+dOl71htEvAj0IoiYo3CB9Vt6gLio6qgiD5SaUPjPW3wGGtp6jGKgDIlAEUOIodIWZY0TUOR/HXneuuCUpRGCAs6iH9uPCg0OqasGBRRRfE3jQJjcFERrAbvCW1DjMIoM0ZTFpbgBRBUKAqTAVcvIGkANCgHBgHkCGCVAGyFLYgxyOdaUWqL91H2MQioFgAbxfdve2CgiaCCpJ3q0hK1ALXGanRQXXDPp4CfKQ3BO9oEkOUddKENQYUUHCSNEU2hgRiT36wl80hc4RSkj6mPPS7KM1dECqsJUfwM5ySIb5Tci1aG4Ia0LWAVLiqqEggaayJGG7SRoHyIjkJorpDA6xABndhbAUpVon1MW9xI3XrQGms0UYMHghEyhFZKgEHvGBRggiImdmJQipbI2uaY6zdu8cG7H/Dp+x/w4Npt7l2/yc3Ll9ncWCVYw9zhJR575GmWV5Z48//z//q53+mf174uH2A642W/4CfIHBH3gVWmfaS+7yWAV2aZgRCIxYekDxYmeLcDeWcAU7MC5RJEt13QPQQvWYo9kK2fDRKj62WtTVhuWqkuENC/7vQ1+9kk/WN3+YFqAvhN/PUZ0NTEHQelMfrhfbn7mrsBswmbr79nyIzCfF25oJqNDnbPQI6eEH2UmpCb5IiQni2o2Av29E+6z/5rv35Taf5T6V76AKJgAIp9hl93LqBjNnb9rtIeJ83H/XNkgLt/2gnAurffH3YffVD6q9jXDg6WZckrr7zCn/zJn/Dbv/3bgLzgf/Inf8Lv/u7vfuXzJGgDZRQ+eJq2RamIj56yHCR2Woo7Rd9FEUNaaPCqS8vrd4z3vmN6GWMoy7L7fDweU1Ul1sokZUqJvgUS602rhKpHYpBhWGiLUhHQhOhBF4gzkpkkMiE0TYO1xQTsUAofvVDHE0POJFTXp2tUtsQFj/OewhhJEfSeuq4pCgsI8JlOlz4DtKQM1HWNsYbCWHRUAthFiej1X/CONkwkBD/ZoFoDCRDUMaaXC7yStGITwEQBJ1sio/GIQTGgQBNV7MALpRTaqm4sdLTj3uQpv0NSpL20ShPAB5TRMqHGQGmE7k+IRA9RG7TSlGUpwGcMmBwlTA6kXEOiysIIzNfz3cQrYyWDIKqXct6KI6M11kj/O+e6xSpHb7VWDAYVzjkBok1B9J6mbQT8NDIRZiYpTBhpxmhUNNKnVtJFvPdEbQjBE0KKfqfFJITAeDymKAqKoujAicz2stbSOodVMpFpbQjtbhbTL8q+rvcfdi9C3cTaY9Vl1lp/PM0C3vLv8mezQJJZjscsABZUWtDzsbG/xohDp6ePmfxu94q3t22zQKTpdk7ucULPne6rfNyexW3qHJOf+Z53g30PAyqnI7DZplNb9zDWugVxAriq1K9kJymE1JeaIstHRJ/YtvlaKQUhn0MJe8A7SbkxWpjITV0zqAZ45/jwgw/47LPP+PiTj3njzTe58+AebQisrq1Ru1ZSylTk5PGTPPvkUzzz5BP86Pu/xtMXn2BYDTBVhZ0bYI2VzVBaT6b7PI/NDPTt7uvd/TX991kR7f6/++DzrLTvWeD5LADxF2Vf5xxwYAd2YN8u+zrf/xglzKy1ovUy1xXWEgNdxgmIr986h/OSDWJtIf4VdGytwUDT1I66buTkSlAvraEoJEsjRsWoaSkUFFYzalMgWoFznqAkm8aisAp8AK9g3LZoLWm1WkPjAtGYxNQTiRsJCkt2StM6BoOSpnGUhen93RJCpG1TpovRRATUCun+jZWUaZELithCmIF1I36pZNNorNZgLOjemp4AOx+F7ZfTmQHwAlqURQEIU7JxWR5D4+oWD5RVReMCKE0hGbrpjyIaBclfDyEICGl1knaS6xdGQZGAQSJYLUAj0rfESPQeZST4r7TFKiF8qBCpCiEBtEEJE0YrggsC8mmDBqJRNCF2bMOM8/ggbL+olWQ6JdJI07QEIlVV4kMUGaA0boN3DKmoKmgBtEhZVVbjXEOIkprsdUhMQIV3sj/VWrPTeopoGNiSkMDfUgto6J2X9qmccpwZqsm3jBL8VKZIQKsAYJubO1z+8jobWzt8/PFnvPHa61z68EM2b9zEbW8RrGFw5BBPvfhrPP/KS5w+/xgrKycYFvaXAg5+XXNAB4soNUlhhQTyhg6kmSBKDzlX9n/T+SbXyP9PfliEmDe7u1qh+l/o/PmQCDXTQdu+T+a9E9A9fXlaCiqnv2aIyyYAL4OQmWyUwbqcejt9f/3r7tkLJQAuZiJAPkf2/af2JhmomvRUICkB7f79DJBS7tnv9jujzOeTpMY4OWciFimlhGwU873m55D3L7pj8SHsHTlVCLtAt+n7VwlYnZXy2wcup/u0zwjMzMPQEb92Hxvz85vaZ03vA1XvmcSunf38p8l4073junvun4gJfrMLyc33kX90ffLVcYBfSFrx7//+7/OP//E/5nvf+x4/+MEP+MM//EO2t7f5J//kn3zlczStZ1TXVGWJMQXlUIv+gq7SYtCmfWSk0/9C0QaP1RprZUEPIW8cBYixVtM0TffgnBNGlbWW4XAAgI6SIupAQDwCLgQ0Wuj0SstCHRXGWAENIwRlkq6VLFQyoRkBlrREs8ajmsIWaASsq8oKo3cPTt+2qMLS+JbgPcPBQF6o9IC1VinVztM62ZwWhSUSca1PC56iqiq5R+8JPuCT7oEp7ARUSgBDJFPrVdenJoFXTV2jkA2vtbJwaSXRyp1mxGA4pFQaawq00hKRVQaFODR16u+yLKUNIVJVVZeKB3nwatpWAC5jTQIBYnffVhtJCzAGVWjQKcIYAypEom/wMaIKg9WaolR0XoeCGEVr0RgwxmKMTZoiPjlAsQP6cppIXdfS9qKUe+6lmGYwzhjTgYQSnfQQJYUkBoM2hsLmfpYXVKdJXCUg01grv1eKtmmIKuvFpdQD8kQCWlsGgyExhgRGxm48Zw3CwhYop1ApD8PVvzwFga/j/YdJtAkmgF4GVDtdxQQ8TS+EsxhVsxhXeXGYpCv5XZ9nkGca4NoPvOvenR7jMZtSEONuxt3DbLqNk+fc7x/ftbN/7KxzTKcr7z52EoEzph/F3Jui3LbtLsdnOu26f+09DgxQ5EVVBWEbW0NEAi9ROokgnrwwAILughNGkTYEZFQxAYfCVNYobIDQtvgYWV9f58OPPuLNt97kg48/4u1332N9ewtjDKO6xvkWZRQDW3Dx1HleefFlXnzhBb73nVd4/LHHKKqSqDQuRoKKaZMD4/G4AwGn+7ff79572rbd0y/9Y6aB4dz3/b9PR6Jh9xjqg+fT/T/ttP0y7OuaAw7swA7s22df1/uvjEp+fEpxJdK6kNjtMseJDyR+lklwoHMBlXS2jBEZHuck9bhUiR2XgrUSzNM430vhjALQVaWlUBodJfheeyEtjOsWEwPVXIV3WtaJmFKdIaW/hhTsjgyHA7wXXTutDSDa4YNKskwUsgfJ7L7BMK2vLmBjSlmOEDVglGSVxHwPiiYEqoHFakvbemItmuwYaFzb7RFc0i43aT/kg8e1rvPbSUAkQNM4tDXYwuBbCZqXRlNYUMZQt56dcaBQGoPoe6MFfAg+aUAG8UFjkBRbYxWNjwSlhaXoI/hATIBAGwQsizr50j6IzI61GKVxBLabFq00xhpMwges1bStAKTlwBIjac+WAp9K0Qbx76KLnRZzzliyCXAERTUoCF4YPmVZ4J0nNFsoLLYoIKR9U9uAT/qEWvx7gwWtsFXAuUDtHEGDchrlDT44yYIqFLZQOO2xKJTyEDwagwoBmxmYUcamJzBykRu3V/n00ie8+9YbfPruB9z88gpbt+/RPNgAW2APHWLp/BnOP3WRJ59+mkNLyyxUFYeXlgmhZmt99W/4Zn91+zrmgKjpJL1iUHv8VpV8wEzmmA6S7jnflD/UP49O2WKdT/azAqoJbBNgkIRPTgA6pfLvQmLoAcQZAFXo0nVFHi1z4JgAZCRd+lm+XEK+u/P2QLsMO/V6oGtH//vd9/q3N3X/IaTMnLwnUxqjdjM6u/aF0LH18rkEADS9+97LJswgWN7fGaM7OaFZwfXYP//U89/Ppgkl+bt5Dzjdx90xyD3oqMnCdDEKzhMzVpn7VeXfiXTS1CPojsnaiV30Qk0d81Us4ca7sMHu5zQR4VcMDv6jf/SPuHv3Lv/8n/9zbt26xcsvv8x//I//cY846cOs1IbKVAQX8LFOlH+FDrIBNKaESEoDSOg3QaJKcbJZFb0OaNsWaw2gKcsqRQJdt/kfj8ciqFsUovPhPaowEkFAoYykFGdScYwRPEJZVQJMZj0L7ydsDh92o+eDwaCL4HVFS5J1DLVCmDKFLYi2mGhuJTBpUFYpehKk0EqKOMWgEihq00aVDjjQSvjq/XRZAB88RE/btFRVhVaSaiypubJil8biYoTkNCnnwSiU0dhK0iQIgdgGKAvRGwkCUGpjqKpKXm4FygnwFhKo1o8yGCMaLCD7f6MtHkfUGpsAMqL8srs/EDAhRmxRiEMIBOfJGITPui2EDvxQSq7lXN5ESx9aK9FEHxwKzeL8wiT1HDr9wRAkJaFpmpQaYnsAkqRhayUgpVZKNBeJKX1d2KHWFlhjyRT2/EyjSetSJEWSQ5cmobVEG4MXoKJp625M0TuHyRotSSfCDn95aXtfx/sPk0k5LxQZpOuDddNpndn6gMt0imcf3O3e014Rknzuvs4e7Kb+98+1+++Suj4dhZIFaPd9PQys6TsYPws06t9v/5jpz/oAZx/sm/TzboBpekHufy8/j2k9xFnOWz9KqgBdSBpYSCLhKsgcmjVfxalK50VinTmdIuSAgY9EHdHGyOLqA1tbW9TbI9ZXV3nr7bd55733+OzSZ1y5dpWNzQ2iVtRtg4uRYTXH8SNHufDoozzz5NO8+NzzvPzCi5w/e7ZbV6Jwl2lDwJP0aL0s9PuBxtPg4LQWSR5H08+mD8JOj6uHAcn7RW37zObp8fvLsK9rDjiwr9/2APY/axN0YAf2c9rX5gNMrdFj51AxbxzT3KbzmiNgnnOBwojfLLI1kmEjfzxFIZtOH2LHQrJ2UswgFwwQSRpJEw6AcwGMAIVYAy24OmLKxGoMEW01zkWUEe1Ck161uq4pqxJjrfilKaXZ+YjzDmsSiaBQwiaL2d+V4HhEIapGiuDpMnNiFF+3TGmLQhZQ6KogyWZLphCTfUmZ2HHBRSn0pYwUOgmOspLUau8jKCm0p1NguyrkGlvbY1RhUoBb0oCtTjqMWpgsyigKA1FrQis6iNEaRk5YdtpIkG2gDc4FeRYqEqwVvysKe9BqTWULmnFLq8R3wIeOTUlmjhlFWRhqHxj5gNGy3llE0gcjxIKmyTIxGUhIG3iEEKKjltTwGNFK4b3sG4o5SxvbJNmkIWiqosQUBeMmscKSXFKpFKVWRKNpoujEo4VNqJGiOcbIeYmRFukfpQ0Yi4vgXWTcRppxg/ctd26t895bH/DGa/+dd9/6Cfe+/Ay9uU4c7xCjQtkBCycf4fGnH2P5kbMsHj7MvSs3eOPD/8LGzduEtqZWY2L85cgLwdczB+zn++4FrpIep/d7/E+YFGnMnz2MTND5VGkD2aUdJ/+1Y6GpKSYXE+Bp4hdmf3uC+rjEqu1fd1egONAx5vpMtH6mVOfvTV1bTooA8moCBPaPmxWMntXHe/pF5+y15E/mNqeNZwaiunbF2efufia2H4j2dzcvTD1z593PTJWedR/T42CWz51tuijl9BjZDebGPc+h//3+HmlWeyJTklQJGOz34+Rn3NOPM59P+pMBy/18Omu/OuSn4i+TTvAVbGNjg+XlZe7cusehlRWUEr0+AUdUKu5Bt9FU1oiuH9CmdDKlJa3S+0BViW6gc77TKTSJHQeTTXOfARZbEQhWRRIBzptoItYUGGXwrcO3TqKASssCqjQxgDICNIWQIoUJMMiVk/pgX18rbcICEhZg1v9DiTZdt0FXfeH+yQZScEJpr05Mtq6flMCaAk7FTpgyRqlSHLwTkC2IHqMjUOiiSyVug8faQhbjIOkOqMlLInR6idChFMHJ+UwCFHOKR7ooSika1woYCx1DryjLxMpMxWOQCKRJfdg60QPsPouChjdtK4xIY5PGYWbaIBXnvGj50b3kCqEfTe5Bmi4sSqMLAQd8Tj3WaL0b+NhNm96dXgoKo21aUBQkFZWs+ZgjwSZVp5KJNY0bRJvE6rI3TieAoU9VUQVs9BRFkYDokCLhOlVxlXt1bWBzc4sTxw6xvr7+jRf5z3PAJ3/+FkuLS3smu1kA2TTw0Z/Y+4y56WPyJN4HyfqgYV7Ep5l5Hdg1BfxABmb2FjGBSaQsf7YfYJPTVfP8MH2dGCdzWB90zOftzwvT7MvZi57ct7B5dztTs8DG6X7s98c0+LXrmPQ+E8X50omRrKCrmg6kd1zSjUIU1l5XZTiBh1Lp0OCahqtffslf/Nmf85dv/BVXrl/n1u3bbO1s47wDDXPFgLnBHIOqZOXQCi888Tz/44//Hq+88gorhw8RtcLFgMh/KkgpLDqKE0Nqa04pyPNxHld5/GRGQg7K5GcwPUZ+lrOy3wI/PQanHctZDlH+98bmBk/9xne+8XNAfv+/6e38ttoBOPh3075N71Vu65/cv8/C0nJal8UZzcw2raWYnVZ5rsvFtESbOQap3AuyRhaFIQQB+UJIchDaoLRsZqXavATYsx8dQ8TGQGktTfCEpK9tosbG5HMVWsq9xSjFJYInWtE/NFEyP5qmkeB1r2ItCGkheE9ZiSwOTNYLCfLaDpTQicHogzBziLHLKhF/r1dQbFdAKK0HZJ8gdkXrSGygojDkLJsMMCoUTetQhUaFSJHW9TZ6SJWHLekeY6Rxjmg0WEPbOgmMS+hbCsc4T0zFBrwPFIkZRIy0zotPXxhaL89HIXp+hTYE55OmYvoOAtrGtHlWSiUJKvERrDVI0bEk7aRkvxTJhJFIXTdS1Vrr5Ptn3fOUSh0jbdoXig65onatSBiFKNqB6ViMaIdrBbQOnTLYlNW03tFqTe2DZLVhJCsrg9MoglYoC00Lo9GI1fsP+PLSFT7/5DNu37jJ7atX+eLdd7l//Rpha5OiHlPoSONbnFFQDqCao1xcxpRzRAftuKHd3KYsS2yhUZUQP3auf/CNnwO6PcAnn+xbWfVn7Qumf87yv6b91f2Crf1r7QGlkiveBxG7NOHeOzntk+8C89K7mQGi7s+em94N9cX8//79pKrrEdjFSsz317/eDD+930fTkjl7/nRp3TOAztzeqWcw0/9QQqqZ/H1vocf92jZ9zPSf6bZNt2eWDz19zZng8T7Q2SzffjZZZPbY3dM3U8fvd197+ngyvDrgcHNzkyeeevIrvf+/8mrF+1lOIQ1RRCUFjAK8VMcqrIjqEmRSByiLjKz7yeQbJOpmrFD5BVjMDyN24KBJkTufinqQym2raBKMlEDJoAhamHUqCd/nxUdFiQwFHwhm98PWvVQ9YQDuHpzZlOxLiVF0+0LwiaKrOo1Fl9JO86bUGINzrvs79FhKfqIxqKKw30KMWCX0NJ9Qea0F8FQo8BHR1PW0PmCNBS8TncsagFEKkuASI06wQQwalVIXgvcSCej6lY5CKw7chDmZ04wFjJPJNLGjU8fEVJ5L2ENGG7yPUhQlQlGURA0ueIyXZ46SlBNjdadHmZ1IiaJOCk0Yo7sxoRKQGZMTJRORPBOlYvruXtBEfuS/a3FM0/gQZmlmHUZKWwpYGz0heoyxKY1A9ByVVrRtK2kNuUAEqiuIos1uPYNcOENp3TFigxMmamEVWu9Obfy22KzFZNbE2E9t3W8BmrXI5eOnF4b8nVxRO88TfQBsAiqrHpPMpeI2s++nDwjma06no/Z/zmprjLMXjenj++fspxJPf6fftgxoTYqd7AWiZt1P7ov+85n13GKMXRXIHDCJMabKwnRpJIqIUdn1EZkG3c0HgfWNda5+eYUbN67z8ccf8e777/LZx59yb3MVZaWSu7GG4WDAkUOHefzsOS4+dpEXn3+BR88/yvFjx1leWaGoSoHtk5ZPBHlnyZG80BWO6iQYvuL46W8CZz3Tfr9M5qa90dDpY/ug9X7jultnemNsInJ9YH+X7QAMPLBvjcWkAx2FJVeWFqUkrThGSfvUSioRi4a0ScFR+a5OWlY2FYYQwAmRa9EKayXFOCB+pHetpHdqjbFWNPQCKchPV6FYo3De0bReQDtjUEp8drTopEcF0UNVlqJtDikIJkHcsrAURtOye73s7wm0UgIsGj2poKsk+K+1SmnCIpckm+vY7YtM2i8Esqa43EdwIbnTksIcfGQ0dhSJ0a/0JB3RFAZlJDUuM1600riQhAZTppHSkywLHSOFyXrahjYEQttitaa0FhXAEdBGUzsHMadfB2g9JggrUluDQ5h11hqsj8LiTOzDqERWyFhJiQ6taM9XNj0flFSeVuBc2+1ztLYoo6kGwqDM0lI6aQbqxArzPlBYYZ0WqhJ/flyjCGgiGMfOuCEqTVFVskdA4bSRatFR4Rr5TCuNNRJk9MD9+5usrW8mEoPsHYyKbG1s8MUnn/H+22/yyTtvc/Py5+xsbdLujIjjGnxAB0OMBU2AUMwTqxK9OE81HAqLNgjBYLiywJknHuPC88+wcvgwg2KAbxr+3//6//nLe39/gTbLF53++yzAcNqmMzP6fvJXsnzaDMjEKMHrSGLvRWLc7aPt8t/E4UQhBTgz2Dg5bw8QVJPq3P1L99ve7Q0ixE6XPCYCSj7lXrBz1v4pFzrs+k7Aky4Qsqsbpvo674cn3Zj2ajPaGqNkuGXpsz1A4z57llnPtH9fe/GVvefZb4zsB8hN/25XcREme6IcmJlgTQJgyPcmf/YZlrtsei/Rb28kinxYPmNMSFfGrme8F1/FvrHgYFRRqPNGE5Qw5URbhI4BqDLghgBZWhuCQoRrEcfAOUfTNlSDYUeD9Sl9zaSNaT/1yhiTaPvy4NqmxYRIaQ0Y0SjJUS5FSkHM/a0UyTfoxJOtsT0wUl5/pei04kguQ65oRKqyoxK4tWuTmPL4Qx7wglB1VZqLqpxQmr2IDUdBGiUSJlfCWp2ikXkwpypoxjKZcjyNFy0SFcXRiDnaqHViwSF0/SjpBDom0BOpSKwT+0ehiDrpueiksaJTJViE6rq7GpU4cTHKM3ZOxJ4Vki4QMjPOO0htk5fOELyk3GpriUqlyKsjtJMKtTalLvQnSu/lmeruXKqbQPsTgQB1k4iRsQbXOnwMVKZME4UneIdVJSH9XRud2tlL74vppVbQtk3XJqMnKS+d82ckjcMrcdLG45ayKNApzbmbnEKqRA3YqKDxKGuwv5x6JF+75YV0lk5e/92YtcBPH7P7M4W13TIFTKI702Bavy3T59n9B0JILOGp7/bbMD1BzypY0f85/b3JfDIB8fIx09fsa3rMYk5OWJWGrPEhQPOkAvQuh2O/BWrGvU5rEcYorD+rTOrv5CRlUXHASTUiCUgkdiDI+L935y6XPv2US5cu8d577/PuB+9yb3OVre0dEZmPgIoM0Tx2/lGeuHCRZ59+hhdeeIEzj5ylLAoGc3OUwwGmsIQYqH0gBuEQmwhFnqOR4IDzARdjqsQeUoXBvY7DdH/2fzcrhXsC2IXOkZhO554FEP4sx3W/Z3Fg31776z7Pr/K9/ZzuAzuwb4IZQVxw7cT3z5q4ohEtGs3CBMxMbUnLVUGyV4qioHWSY2uMBhV2aZIDqBiwJulmJyZZyJt72Z0LQKbBGiUF/lTOBhL9wK4IVoxd8QRrc6E4uVBRWMrC0rZOmPPKMCikYm+bAvX9InO+dsxZS9SauvWiwwd4gkjLKEm1rZsWjaIqrEjwKKQqsHd4I+BU8E72PUYnUoXCp6C/MVKltywl7TkEAd2sFuBVKSX7rewHBCkeotK9+iAZLD7vNZTsdpxPbEEtxQaDEwDPaNkDVKWhdVqKiBmddNVkT9I6L8UJlOkATp/ICDb1vQC86XteAohay9hwTu7BKMDabm8UY+z021S39pI05TU+KIiTYi0hgjIKqzTDqkIrAXzHrSeagrKwRDStg7IEHxQN4B3cv7vGxuoGsR5TWgEr19bW+Onrb/Dhhx/hmlb0lH2gMop2e5vbV79k7d4dxjtbhNEO+BZ0gZlbZv7wUezcHLUHtEGbgvOPPc4rP/g+J08ep25rggJVaryCpcMrXHjyAkcPLzHvNaOtzW81OPhVwL5s0z7rw4Lofb9plpwPzNZ4nnldJNNPjkv/UzImY8wSVmaXT5fBnCiI4qSdHTewtxfIOKHa6/tnEkP+TMghtvM3fZCCfVIEVSfJMZkfoiKl+naFGnoQ1gQZyHvjqCfZQLP6Je+UI3v3NAoyC2ACZCm6fptls8gG03uxWSSRvaDl7u/sd+79rpttOk09s0U7MDZO9PAzWJrZkZM//bG2d3zC3syjWeSBCXisuv1/QlF6epZ0epFfxb6x4CAGRk1DUSYAJEai1hglabUKGI8byrIgRKlmbEvSZJ+rvIi2g49eNOyMRJhy8QiXFtucMkhI1WaMommlMpmyhliLiKzW0vG+9bhxw6AsRMhWpZQz10rhDxTKSrpofjBN3RKDaA5aMxG/zM9YNo4CuHnnBcQrik7jLr/w1ooorg/CSjOFVM2cpBRorJXUiXoszDEfIzY5JDKQU5pkeg99ipyF1kMMFGUBJmK1RBWj8mhjcd7hGk9pC9Hxq4pEc1QJqJNnpAsrWoyZuZmcuCKJ/iqlUsVehU1975zr+mQ0GmEMVGWBjw5FpHUNJjXYuwZSCXRt5Du5qo93UDctsXWYYtLHJkV2ZQLJi35OuTZJX0ZAOudayrLq0haKohAntJVKxUVh0cYgAiviNOlAb0K1lKUwT3W0iXXYr9IcCEHGqUkTizaiWdi6BqzB2oKGpPuoQwKUhf1njKFMbVLQOaS5/1zwREDbUiJSSqEov97385dg0+ys6d/1Aa9p4G4aRNy9iAK9KFqO7sQUEFNqL9Cj1IRVN73g7NYYyfoiqjvv7vZN7uFhTkv/77PAuYkjsHeyn17w8vzWT2fITGnbY+/2Qeb9ok25Lf3j+s9gGhibvq+Q/uxaHNO8ahCdTu8dvq3xwL17d3n77bd5/733efvtt/ny6pesb63JnOdlsdXKcGhhmbNnz/Hdl17iey9+hxdefIFDR46gjGYwN0RpSe9RRlgPTdsIs0LlYASAQmTX48QB05oCEbwWIN53Gij9e+skKfYZs31mYB8U7KchT4/l/Z7nrN9NO67955RtontzYN8G+1mbn7/u7/eLnB+AhAf2zTNFYQ3Bi6RPcLJGxBiTrhwEM1nHMqPQGjCmIATfpfuJ5nigbRuKwiZwLPvEofMRhVMXEjHG4tLcXdqCGDzNqMFYS5OIAVUqRKi1Fq1BL5I8xkjQ3beOQWlxQYJjIcomuGmaVOTPdgXyxuOxyB4pyQZSRtNGASOrspCUYOcpSyPSSW3EloaqKLFaglzOTZhJxlp8cDRNTVmWCRwVvV+Xi4yUBq0iO7VPBfs0o3qMbmFYDTBKJDcaPwl06aiwRqOCAIki9xTFn20dthRGvidglAT5A0FSkiNE5ymUIbi039CG1rVoa/EhYJSi1AXeOSnQaCK6sFBaYXCqKJWLtcU3ToDNqsRFz3bbJkmfgPawM2rQlZaiglrjXOh85aaWfUcUQXbaViWpHpPYpRCiolapUGEs0Soy9oqoDcrCvQcNt2/cZePBOq0bEXWgHBbcv3uPN3/yGh+++x6jzU20Aqs1bjxm9d49du7dh65Ymfgcylrs0grLR05y+Nw8Loo+u9aWJ596hh/85m+wfPIwdWwpqwrfNJxcOcoTj55naXHIOERUCTWR2geqgZBdBqWlUkDx7QocZskv+Grr076gTuxDL5MAr/xd9m3TAFy/Gm0OEOQvxxgnwFb+uOfT6hw4UJMziO/rIQjbNrcx70Nzu0B1RCajEsFG9eXHdhfxmCawTO9TmqbZtY+YZEPJu+tc6ICsPtEhbdbZxVzctW+a3PfD/t3/rO+TSp9OGI3deZXqNB0zCUv+k2fQB/0elq473S+zjun3037n6vvz/b3PxOfOgGDX/HT85N/T4F//Wr1vJvxAdXv7qYZPiAmJFZ7blYue5HHa9XAGDmPvuK9o31hwMHhHWRhc8LgUlbJKGGOtc0TvqKpKALJoKAvF9s4Oc8O5pCnhUzVaGXUhBnTMLxjdhKPj5KELldwn8MbhAIXG6IiP0NSe2nuU1YAmeoTqHz0hBqlkrFNeXNKAE4aiYTgwZB281kVcWhRE3yQLlCYHBUmnjr3Nulai8eFj6ACrHG20VmjydZsKmmiLBoqBVFBzrcO1rSyerZeCHFrSKRSiHagANASnaBuHUw0mKgpT0PqGcmhBG8pSNBmDc8TSMm5bjFYUxqKjIipF7VtKJWxAYsC5tmMkZT08771osKA7TcJsw+GQiEQcDRp0xKOIGqmC3AasUkQ0LrgUBQUVFDpANRiA1klnUliO0tcCpMpkmLT9kvBzUaRqY9qiC2EgGm26SIZzE3BWnKFUCEPJ82ralrptKWyBjx5rLDoalE4b9xiFQZgmepWpwFpA6RiFFams7dhgVWnxbUuI4nSFEESTMQRc24oTbG032eucEpoXkMTgjETcHgL6N98exmqZBqX64MssJl5/Ms/Heb+bKTipArs78pajcfstNP2/57T+vm7hBDCa/QzyQj8ropU/74M/RVFgTJHa77vPp6Ni0yDmtLbKbgB0EgWjYzKbXX02/fcMcOVzTBcnmQYdcn8oUwAxzXuRULdE7wmhxXvPlSuXefPtN3njrTf56NNPuHHrhigKxEjTOrRRVMM5ji4f5cmLT/Liiy/y4nPP89yzz3H00GHappa2K0WLVAzschkaCbxUWKmkKA0Th4+kDJrbHUV3SHnABZRywsTWk0V62hmdfo6zwMLpcTQNuE4/x1l9mMdGPu+0U9O/3oH97bCv8jx/1jEP22BNBwUO7MB+1RZ9oG0DWknw1FqTCo1EGh8oSwtElAodY60spRhH07bYpC+eA2Ty+7LHuM/ztZY4NwGXpWSUBF2NLYgxsL0zZq4smBtUwmjTmnbc4lpHWRT4KEF5pYxoaIMAUkYqCnvvGO2M0EZT2ZJBWdKmavY5uF0U0nbvZS3UZQlamHYhRJq2pbQG5aFSlmij+L9IBWXpI4stLMZKcZNCKQbDgawTWac8RjQRaxUxOEbeM6hKWtdijGJxYY7WtSJ5g8VoC1qYJyoGrNLi76eMLoxGJZ3GwpYd+0lhIIpcUFRgStk7KW8YGuk/AxSlwUTNuBVJnCo95xgF4CQF9q3VTLbUspfT2mCNPO9oNGVV0jaOZlyjbEFZlEQtLEmT5KoIUBgwg4KmzeNIzqq1ZjRqaFuP0UIwGXnYfLDNlU8ucffmdUIIlHPzNC1cv3yDD994m6uff0Fdb0HhRXc+OrYfrNLeeQCEnFImZaZj2nsRidpg5+eZP36Mx599nhe//32eePZZDh07ji4GtM6hY+TQ0gJHjx/m8JEB2mRddYXwFqXxJogMV5UYpjGRFpSHFkfjm1/Sm/v1WA66Zpv2pWaud7H7HzMgFrFdwGD+aAq8mRFwTf/ahTTK5frBcgikwkUdESHsqlqrlUrZidPN2v1ZKr0jDzLu9SGn9zj9c3TkkV7/SeqhAFcZNFK9flLJEe76rYeJQkyvdQ/cm2G72pFBrt73+m2RQwUQ0wlY3XVI2B/Qil3juwfY/cx307v4nuv3+6nvt+8FmPvkkcwAzN/tjw019b3ZNu2r6wQA97WoYkJL94x3+QdqOqW7d/u5v7pxmX5CLuj41ewbCw6aiOjJqVQfOAMoSlEYgzKW4IXJ5RNzbmEwlOeTwKYMRvkQKOgXJjAUhWgWNk2DtaarkNU2DW29Q+0b6oTqh9YTnQgBYy3VYIDx0KbJ3atIuTBADy0hKEJwGBs7hlqXQpCEdLWWaNC4rokxdFEEa6VdWhnKsuy0MIw1uzaCKGGHAaAEnIwRqaicWWRJc9GlyrZ58TOJOWO0wbUtOzs7ECNN3Ui/RaH7YxxFWdK4lqZxmFGDD54QFUUhDlkYR6qyRMWsc5euIfxk0QRJuoOdHqKSNJA8+FvfdqBK2wO8vPLoGDExMXuM7iZK06XgReq2lQiPC+CjnEMptC26CqdKKYrSEKNctyhLisJiMLStiC+HAONxTdPUoFKaYXrpXfAJaLQd+9F7T9s0aGMwhe0Kr2xubXWOZ1FU4ojEQFUWEiGNSNWylNIanMe1rbCYtKQ2EDyoQIyiuxK9hzhJf2/quivkkie2DhBLi5qPAaU9iqRzqL6dmoPTAMx+IMl+0aI+6KLURMw8VxVWamrxZNbiwC6Qr18oZBpwlGNCL2rUXzj2VtzKx/Qr+k5HqDpQTfWZZ34X4Di9sM1ynvqfTQsNg9p1f7NYkvkd7vfJNAA2Kyo3uU8AAfAVmrZuWFtfZX19javXrvDW22/y4ccfcOnSZ6ytrTJqxqCFGdt4z8rSEs8+8zTPPvUsTz71FBcvPMGTF5/i0KFDOOdx3rPtW3RhJBU4Fa+ySRpBIbqfWUs0kvYwPSFk3etTrSTII0VRki5VwvNnRR77f++Du/3nM/2spgGZ/Spi9/txmuF5AOgc2FexrxLhP7AD+yZZDB5D2gMYi3eiT1cUwuhqW4dzjbDiUrXeGEUOwiS9wZwx0rZtt/73C4wpk1dn8UNt8ltNyopxKJQxDAYVBGjbQEwyGLqwWDSGVJ3YKqy2+FbJeaLo3MUIlZWUXwmoif9bpMJWxshaM0p++ATMVHJuF3DOY42hSfemkzZgztIRP8IIo8+nasREAqIB3vktRAnoD0va1uN9wGojwKIx4r8gbbLKMt5uiEZhqkKyqdoIRnUSOzGtqSqQKhiLHI4pJV06KJEFCT5I8RJkL+ViwGtJz9ZRin8NtGQo+YgstEkv3fsomV0KQtIRjwpcDGilcEiKsEERWk+hDYOlRanKTCJa9EDire0ROzs7EqTHJpmjgG/gwYNV3n//fe7cuYO1BVU1YLztuHvtGpfee5vrX3wqRIXCElVBPXL49R1MiCjtiRW4UBNipBouEBeOEtbuotyYoC2g0dUAMzdPMTfPodOnOf/0U7z0vVd4+ZXvcOrsKVZWFilLnfaOHl1IQRxhkkFoBCjWWhMMODzayPgrtaFuAt5FhsOKUa0gCPmg0t/YLf9Mm+Vb7TE1CdbCBBSDKXAwA2L8bPBmuhBgf78h4LqcKyLppAlC6jVp2i9TqChEnPzv/cgC+fuz7js3O1Uh6AIeKt/p9Joe46RoyC6gr/fdKUDuYW1Suz/Ydd/Tfdox1nZjqbuO6J+7I86o3cSF6T3W9N8nt9rrr3z+uPvzdOfd93XvHPv50jHmfVsGKVWvvXszdPK5us+mf5f6rgMDtQYlGqoxtz9O9ef0nqo3NnMNi94Bk+9OvRv656hW/M2dKYzQ5ouyhBhxTU1hi6RvkSi1TUtb14xci6kKmrZhvpqDQoAkogz8stchEl2URc1YjdYVrm1p64bCWMY7I1bX1qldS4OTHP3GY4W2hjeBuOahjdioGVQDdGVRY8PS4jIL1QJWZ20OSSMolSZET70zFoHdGNjc3qapG7x3ONeikuDxQBuKcoAeDKjmSoaDigEGhRY2nQajBDgFjVeKgHzXJ1ZcTp/wLumwJMakd00qXtIABTE6tkcPaBpHaDX12Mn3QoMtoByURCLNqMXEksJKBC4oESJeWlpmtOMlrWGulIkmxiQ47KQIjAGllWhraEWu7Gy0EQHo0KK1uFfWWEJAwD1lUTGASsVSfCp7rjzRe8ZbNXXr2WnGtO0Y1QaUTy+qjfKyBY1V4lqaUoFVRGWoBkPmhxVVUUgaRhPxIdA0I7Y3NglOgTHUoaWwEr1o6jYtDo4YHVpZoheU3pYWmXIMWlmMUSgbUdYyN5insAXOyH1FnyKHSqF0GotWNGS0sknkVTRQbEoD7IpEKEPbOIwthSUonmHqG4+xwrJUVgARnYAk1CTl+NtkmUyeK/J1y2oC22LMc2yqXhfTQt1N5hMKvEJJ5TolC4cLkhIkwYcJKDcB3NQuuj/sBiH7C1d/UYnQtSEXoIGY9JA0Me4W3AW6YjI2Ve3NaQldpeu0WEglbUWrxOHWSnQ+jepcgx7gNYkchSDVv+WeUhXGfiRPgQ6pCIdSxCiMvqilMqFCYbVJs5BsmCaLbuyKdwSUgHJKJANUkltQMRB80o00ER/GbGxu8Pobr/Mf//N/4qNLn7F27x7rWxvUTY2PHhUjhbHMD+c4cvgIx0+e5Dde/TX+3m/9mMcee5yirMRxBgmyKA1G3vWsU5gtp3l7H3B4Ee1OIuaiDSVM3nz/UlDJy7YhFV8KMR+bpA1SOncXL0xBTJNB4ymAV2spitR3fFRiaMbQc/66IiyTW5Bf7QW9RcMm3+Pe1O7YjZv051ueVjwrSPBVfv+w6Hof6O7b/gD3V+vDWc5ivw275ox9gOVZ58xjafqzPB8JMz4XGdOJZbw75X2WE/w3va+vy3bPw7PtYc9mFntieoP5sI3FLPbAw67bD0bNCsj8POD9rHH21+3vv86Y/SZaiGCsSltpYZurqAhe9J+1MpLCi8G7iFGF7OFCBINUEQ6RohCZnjbp53VZQkTRt01fIQpI6FCpsJgiOIc2UBgrvkVKxTPWklPiPOIn+iZI8DxG2lTd2CqDjtC4IPsS74X9ZzR1gNo5jA/MGTAmQDCoVlEpg7dQ+xaUpqwK0VMPEW0EgJOVVtYdow2aFNTygVJp0AYXArEVLeqgA7EUcM8F2U9obWiitK0yChvkXoLWeBWxNhJUBLzsPUoNKcMqF/4zRvQFcxC/C7AbhYtSOKS0BbGN2Aglltq1eBXQGpoQqXQEWpSONFETvGhEah+xQdEouYfCaGxUtG2gUQEzKGiNRqd71kYAxzYGtnbGbK9t0uzUOGsk3bj23Ll2nbfefp3bd29Q2QLtFHiD0SU3b13ls/ffYf3uHQGMq4pYK1zb4E3AWFAhUNUWF0bMHzrCuVe+x+Fjx9nZ2aZpRjy4d5d7N29D3eC3t1B6gCo0DAbMnzjBY888zdkLFzh64gSPXbjAxSef5PjJYywtDTAKoo/YEBmUMtePXYstxS8kepQVkFVpjTKaQqfU6Ai1l4w1baBppDiepLd7KfryrTKNwnQanh0wl5h4XaAU+WyWTa10PZyll0LbZwOGCZmgD8rFkHT244QNF6FLfe1fQ9oFMNlTxLRfyzadVgsJJFPCNM57mrw/gJ50mLGTNS61r98m6ZBcqVh0tVMDyIHwfL3Oid0FSvXblNdRlYgvIsEltxO7uiSzAuaZxZbP0X0fBcp0YBikOSe6rr+zA6yndPq63ouTnxnkzL/uvh/zxSf7xtwe0t6q397uCe7ytbNvPfmuXEt319oF5k25DtKdk/TeDObmfpcsv5D2bek+TS5O0wOR42RPF3tQdFD938eueFR3Lz2o3PHV3/9vLGLgnE/aIjIBWmu6jTIqEoJDE3FNw/Zoi2YHBmXF0JTYoiIqnapYBYyxSLUgSXPV6aVvG9ehv1op6vGY8WjE9nbNqG3BBGFzRdEP1FoAm9a36EJo9Rvb68SRPNidzS2OrZxgaXGZQVFBVFIZzEeanZpxPWa7bdjYEWAwekBFzKBAm4LGtcS2ZXOrxukNFg4vcPjwCiqBXA5xBuaKQgAmQFuIUUNwGJV09QgoPyIoqcwlAFlIToxCaYurHSjHznib9Y0tYq0pVEnUHjtvCEZRty0qSqGS6GFjaysNXk1QmlHtKMuShfk5quFARJq9MOxUhJhSCZSyVIMhPgZxZrTGRS+FTgqL1jaBN0j6AWai/+LbVCnOomjx3hGdZ31jk83tHZrgIDhUCJhoUCpSDAqqYSXakG0khoZ6vIOIslSUzZgYhjirMbqkKObxQN2MaNsxfhTxytLayM54TPSB6KGuR8TQoKKjqR1lMWAwGGDGEaMLjBnQ1B6tI9Eq7GAALjIcDATUjpZSaaxVeNfSti12rkLZstOmlGp3Ui07pw6LWwaDqkIXhugjTeOwhUlFExwQRWOQgDJKdB6jVPYT8OGrRYe+UZac9W5y6yb+vHjtvxGcAIixA2+6CbOH6EQifX8pg0VMDvmZG/m9uofybaUmIOIs8GHXZjYHFNJCEnyWOsgbWpn6QvAi7t1pcdA5SzGtkhEk9TUvNNbSBSpDYhswubZODpIKqU9UTPRziVKbCCYgVPYY8TpKVN+IrqZzTkAxrfG+RSlNYY2kGTlJQcJqbty6wYeffczHlz/hvQ/e54P33ufGjZu03lEkh8HEwKGFFc6ePcvFxy/y7LPP8txzz3P0yFFWVlZYmF8Q1ngEU6QCQOkeiOKsmAhKG2H8ZRHyBIgKmzDNkzompsME8ATZLBlr2Nra4JPLX/D222+xs73FU089xVPPPM+x46eRipm+A2EUk8pu+Rn6nkMnz1oGVU7/n4zv3UOe/Dx6wtTTY3ACcuR/7652PP376Sjp3zZ7GPAXgmQIjMdjRqMRTSOpVWVZsrCwIDIWPUB11vu+f1R5f9bs9HH9nyBBgaZpqOuapml6VTNFQ61MVU6zbET+Xf8a+d7W19d58OABd+/eZX19Heccc3NzHD58mCNHjnDo0CHm5uZ2BYmm++sXbbMAt34b8kaoruuuT3IBgf0YBP1z9CUOpo/bbx7u2zSQOGscZDPGUBQFg8GAqqo6XeLptvXlIB527f36ZfqzhwHI/XXwb4sVxUSzWStNWYg+oMj9KVyjsbZkvCPMOm2gGlgpIGgVLsha2noJkOXgTSdxEyJNI1p3xkgROyn4kYLKSmONBHFjjAQF6Igbe1K9E4xRUrBKK0xUWI0ADEqkh0TmKKRUZENwke1xxBaKVke8CpRGfEKtDc7L3G+Mom7GEswiZ05lTXVNkLoiopuuxPfO+SHGiLah1aBCAU6kiWIZBWwMjoExwkokkViU6HmbAIUuaRGWYgyRaiASQM55Wfe1korBMWnlKSV6vgq8iHOgWk9RFhQAwafiiALsxlTwLDiPC4HCiJZ7aTWmkEq/MRVNwQhDUNwTCbIFFEFrtIr4Bra3xty7fRs3rtHW0AbRpP/isy/46M23eXDjJnFugHMw3hyzdW+Veze+YLx5CxUDOlhUHII2+EGBLmV9CB6sGRBt4PjZR3jsuy9w+vFHwUHpZZ62c0OWDh8ihsB7b7zO5Y/v0Gzu4Lc2GK+voYdzDM+fZXF5iceeeYJnXn6JZ156gccfO8fiwhCjK8qqwmgokMyrECXDImpwyP6TpqH1Y0xRpGKLUh1ba6neTcxzjDyX0mhiAGPAR4WnpI3f2C3/bIspqJ606/uA1ySDYroY4VTQpn+6Xmqv/HuaGMCu+fVha2T/GtNZNDkwK9miUgRoovmc17M4AY7yPSgpwKpUhLQP0TproeY2T4gKueinTtcOKRDfyQUh+xltd8OX3R6KXEhjck8ZSFPsXWv7Qee+9uF+Qb2H+UyzAlgZ/Jzu2/4x3TPp/j8pMNT336aZfTFM+nnaz+tfd3pMTOuLi/n0ZzawmKuey1ZzsufqP4QOS4wZxExH9QDYPFby/m7y3CaM0W6/oFT37zx2OrQ0/SjNV/dBvrEzhTFS9KGpG6rhAKVNt5nKUb9x21AHJww5pZlbmqMNHlfX2LIAFRPKbtJgjp2jnZ0DQbItPhWikOqZnmqgmV9YoCorCApjCqwtCTFQFlbAnaZma2eT0WiHtm0Y74y4H+5Kqq0WhyHGgKtbRuMRq2trtM4xXw2ZKwtC7XDRURZz6IUBO/UOvm0xtsU3DaPtmnHVogqoSktRlVRFlYCOQMTTOonemaiFLWYVEQcmYJkjYsA5fNsQbEmIKZ3SOep2jNEVWjtsBQuFBVsyf3SFiCN6haujVBKzBltoNAVb2y31eERsRuilOXZGga3NiqX5BazVKBwaifwprVDR0HpHNHTRHnTqU1RXARStsIWB5JBImnSBUeJA4QMKy/bmdmIjNbStoyhKBsMSEx2FtUkMOVDNVbTjQNM4CJrGO4KPjOoxa2v3OLyyyNHDJ1Aq0EaH0oaiGlBaQ9Aah0PFCuclLbyqCrY3N6nHUVLMlWFx+RDWGsbjmqigtCVKRUwxxJZDtHYY5bF4rCnSBO4IymGqAtdC9JrCRqJv8KEhqgJjZFOY9RmLbgzLomBSWrKAqOnFyKBIdMlRLmjblEq7d6/xjbduwlX7N783VaZDd0/AveBQL36SND96x2fqfV5kIUWMeoBk/uOc27WQ7NKr6G1C+8dkjVOYLKo5fTdv2PPiLiBfTtFJvLxeu0yIGC/zS9AQFKJfElXSyaOjQagMiqnYOQ1GyVwhxygRUY9R2A9EYlREF1B4SmMxKFSIhABoqfLeRtFmilqjSytpDmlubNsW1woT+9qXV3jnvXf48KMPef2tN7l87Ut2XI33Htc4vAsMTMmRlUNceOxxnnrySX7wvR/w1FNPsbRySOa8wUAY3CHgtSYmSQWTqq1573G16DZJJXs10YwJsjkziT0YQ6BtRCJBKlMaKfiTWFZr6+t89NFHvPHm67zz7tt8/sUlVtceEAnMzc3xW7/x9/m//V//71y8eIHFxUVJ11Iiq9CP8PadE0js0PRcTU9cuh/91UpPnAolGlP9sZWBkr6pFFnMAHIesJP1LQMmivgtnAP69jDgbZZzn9+Z8XjM9evX+eKLL7h27Rqrq6s0TcORI0e4cOECFy5c6MCzrjgZ7AGa8s9pEGYaqHoYONOfM7a3t7l37x7Xrl3j5s2brK6uAnSg3pkzZzh9+jQrKyu9MbG7SJL3vru/999/nw8++IC7d+8SY+TEiRNcuHCBixcvShGrKaBxug+/Cqj01wWeZoGj031S1zXr6+vcuHGD69evc/v2bTY2Njq5kWyzUvX753kYwJs3Gvldzcf2ZRT6LI1Zz1ZrzcrKCidPnuTs2bOcPHmS5eXlVFjCdN+dvveHSQzs1zdf9Zj9QM1vO1CY523ZSIv/pnWBVloYXBHurW7y4P4qPjiWlxdZXlmkKi02GmwhbPfWSVVYYwsikbZ1XeXithHNNqUmsiM6bZIzCJFTeq21OK/YGY25f+82rfPMz8+xtLTA8vIcdetpg2M4KPAOqqiwEerocDGgTMmoiTy4s8bq3XsUpeLk8UMsH1khBo0DnNa0JtDgWbAlNJ6Ra7FzCskqCbS1I6QgcEChlcEaQ+tbGqAqChrvcWNF/cCx9WCNZjTGzhuWjs2zvJL2KCkt2yRwKsvpOO8k88EpTDXAu+Sne01QktbY+oDVklKtE5jZEnBExk3D4nCAUpEyZbfU4xHWlDRW4YNivOW4ffMe6+vrLC4tc+jIUeYGA8oCrBVNwMYFtpQUXYnbjjs3b/NgfY3aO8ajMSWaMKr59P0PeOedt7n/4AEKcGMHLrK+tsHGnVu4jbsSKLMFwZbowTymNARl0WEsWoGxhqJiePxRzr/4LMdPnaLScxhfULmGweICZ5+8yKFjx4lIFpBrGu7cuMZP/+RPuPLBB9z+7DPG9RaxUMS5ihPPX+D7P/oRzz73MkcPH+XM6RMcO3KIhZV5dFFwf63mwfoO1uywOLAcXhxiTIFzQAloGTtWRyFvqBJtlADNiAakRlFqRe1EfiiGIAHbsgQlDNMYoVAW2m/XfBCC7+oARCZ6b0pJgcsJALQb0MnzeNu2NE0j+/PxmK2tLTY2Ntjc3GJ7e4udnRFt0v/v++y5YB/IWiFs/Mn8b4xlMBiwtLTI0tJS93N+fo4iFb6ZgILZ3wtpLzCRBcrXKoxkRUYEFA8xFx7ZndE07YdMA1N7gkcJhCTu9WP635n1u1nBtRyMHI1GbG9vs729zdbWFltbW9R1Lb6/c0nCYeI/5b1O7tcYY3esMYa5uTnm5+dZWlpieXmZpaUlhsPhrgBpbkdu86zzT/fLrCKL/ec73Q/9c84GBfda36/Y029TYzL/Lgd5FAobM6swXcMjcOIuIDHpk075uh3214GpGeBVHSGkAxQjmPZvAXNQKYVBU6YqrpEoWoOJHTI3nGO1bVjf3iK0AaNFpFENbZdKI5NkS1C6q3qktaaqKtEFNCkikzZh9+8/wDtHNZRiH0dWDlEUltZ7bFGhKVDeEgM4JEJVzVeMt3ZYu7+GV5KGsLV6H+MawqDElYo6jljdesCoGTE/t4AZGkplWTqyLAtuYQgWlhdKXHSsP1gTQeIQWF/fpDy0LJWLrcLHCEFRKENKfsDqEoMhehkIPnoaF9AEisIQjbB6dAwYoI2BURyxMVqlHdUslUMGgwHDQYm1BQvzy7iixjeeMCcgSaEN43FLiIrh3JitnYq6qTFa045rRjs7zA+HFBjqpqas5tBFKYUGfGRU11RFQYFCm1IqsKFQXsCMqIJEHV0NTStUeTtAa0vdjlEVSOEUjTEFmxsbOD9mcekQRTFkripZWawgBGIw6KrAhUhTO1ALhNiytrlOVBofIpvrq2yNdjBbGwwKT1lWLC4uwsIiLlHxtVEp1VrSn0c7I1Qw+HaDqrIsLM4xmFvA2pKFFYMpFD442tYxnF/A+4BuPIPConzE6pBSpku8tzgXcKEWxmcsiEGjkIprbbuD8iklrLCglKQOG0mxtjalL7o2Va+Wd8Q7EaQujaGpW8rSopRlPPIPfd++iTZd7SvGHBVMnyQm1p6FLv9iD6Q4ARAlSNNjeNA/aXfFme2ajmx11yXNW4k91tZNB+7kNFKlxLFjqs27Ik96cs6uCDZAKshj24hJv0tClbIIyYuUGH7pOzHSydCGIGy+GIhknT1x9l3wuBTlLKIW1lpqUx09TUgV0ZWVyLZzmAhaR3xsCUG0O+u25YtLX/Bnf/lnvPne23zw8UfcfnCXum1Eg0dbFsp55sshh48LOPPiiy/y0ssv8cwzzzCcm0tArTxsYTgqClNidSoMkwqCyPiXtOeqqjrxYqeELWK1sHRD6/BJ1kAphQ0SXXWh4fMrX/LTN17njXfeZn1jk/F4zJdXLnNv9S5taDExnacosEWJa1sCsQMBmuTgeOeE+ZidSiWIdn9s6t542TUqs0ODMKf7QLIw1nUHOOdocD4uMwYlZdt0lZSz4/wwptG3zWZFmqf/nYH47Jw751hPgO9f/MVf8NFHH7G6usp4PObIkSM8/vjjfPe73+Wll17i8ccfZzgc9qr5Td7LWWDPdFR9VvtmOZU+FSFYXV3l888/5+233+aDDz7g+vXrGGN45JFHeO6551hYWODo0aMPfX7OOba3t7l16xZffPEFly5dYm1tjfn5eQ4fPoy1sonJDva0ltJ+/fmLsD5AOA3AxShVFdfW1rhy5Qoff/wxX3zxBffu3aNpmq59fYd+VsQ+nztvUOq67t4na8U37IOk/ec7/Tyz9TcYmdH5yCOP0LYti4uLHD58WOaVdM4+6LiXVf5w4HiWTVcin/W9/r1M9/m3+d13TtY0o6Vvx65mPBphiwqlCurWc/3aTf7qr37Krds3eeKJC/zwh69y+pGTHQAsTA5xHIISXeeiLGVzGgJFVRIjjMY1SmmqQUFUAiwYa7CFkaC6VtSt59bNVT79+BLvvf8+zjuefvpJvvOdl5lbEDYdMabjoVWeze2a4dyQ0sCDjTG3b97ng7c/5KN3P8I3jmeeusirr36HU6eOUCwU6AJKbXAotrY8w6GlKAscUFhQPjKwUnCkHdfYoCi1ZrQzEqagNbR1Td00fPn5Ld5+7QOufH6ZwhQ8++LTPPOdp7HzFdoWmKLAK48LskGtrCXRMvFe/MfQJH9TgSMQWpHtKI3GJN8jqMh4NBIWLYb54QKFUTTe0WrQtoIQcYVhJzi8Uly/t8b7b3zMWz/5KaY0vPDd7/HExacYWLh/+wu2dzaxZZXYcbCzvsW7b77D22+/w9bWFspoYtPiRiNGG2v4jU3x/5VOed6KanGJxeUVqApG401GbofB0oDHX/4+Tz7xHBur9/n4k/e5t34HbTUKzWBuiK9rVldXsaVDBUs72sbevcuVS5dpxzU+OtrouXP/Nqu3b+Bu3yOOavANWM38yVO88vd+k7//D/8hzzz3PIePHsNaRWUUhVE4r7j3oOGzz2/w0QcfMrCR7734NMuPnsUPIBioA7TjFm2bVMW5EIZn38UNinHTYAtNaURHvigKClsm/06yhoKPokNovmX7ACXSUjCR+OkDP5OAaJ77JvPsLp/cSCGapqm5d+8uV69e5dq169y8eZPNzc10rglOsHtd6QdsoW0byfqylkOHDnHs2NEuUHTu3FlOnDjB4cOHWVpakqKpRJpmsg7lzIDdPkucyE2lP9pIdku/MGnf8tzegU7S2D1rwfROqL936a8NOcumT17IWuh1XTMajdja2uLBgwfcvHmT27dvc+fOHe7du8f9+/fZ2dnp+m4XszGtiW0r2XJ5rSzLkuFwyPHjxzl79iyPPPIIg8GgY+Tna2eZlNzGftun92J9AHAaEJy+137F53zMrqG3D5DaZSOlZ9IHlGftCact78hUTEzW9IT6z6mjruT7ys9WTix7uAT89Xes8vvemfrHxEgbZrdpln1jwUHSZkkpjTVSqdc5L1p7XjS3dnbGjJuW2DqW5hZF/y+laBpSJEBp2jRhlmXZPUypOiuDwztH3TQMBxUP7m8TK8Xi0hJWW4bDeYrYglIYVRDGokVSFhVlaVAqMF/OMbTz3L5zl1E7wmuN8w3lcMBOO2Zjex3fjpkvDStLQ+YPLYvQrSooo8aPx8IE1JqRcwzLEjeM7Ixdt6ENqbgIRlMoi3cetEcbI+kCaT8dkphvUR7ChEBwAacCQWm0dxQqUhQGryqGcZF6e4QJLVW5xGDhEDqCQaN0RTRj0WoxJcEZ5uYGUs3MarCRgRsw2hnhfItSDue2GMcCoy3eTxCNzLYsjEW7SPQphdh52dArZCQqsJXFVDktWXRRbFkQtOiQNU4qL1dVSXSiF7OwsMB8NcBasEahTNmlHy/Mz+OVJ9JSDSrG44bRqCbMzeF8S9O0FNon3TZAa4YLA4z2qBgYDoaQiMH1fIOOG2xvCahni5LBcA5jCnRZMJzThNgyalqUhrlSY8oS5UQkOqYiLU0TcK2jqDTRjdnc3iG0UJghmIJGOQIepVJFZ60w1kg6RfRoLWn3MQFOufBCCIgTjSIQKQuV0jwVUzU3vhXWV1aYTLT9CTulF2QQphdsURNsa/I1tesU0mdJjyNHXGKMHYjTRZGSAxIS6GBM1pVLbEM9KYyilcKHiG9bxuMxO6MR2zs7jMdjjNYsLiyycmiF4ZxUVWd6IZ+xuEyzQpwFFzOzIRL9pKdyc4X0qDogiRAEk4yiZdgoT5duYDQhSOqSVM/OG9q0cBqNKUqiEaAtOM/QWPy4Zn39Phvbm7z30Ye8/c7bfPrpJ3zxxRfcWb1P0KIThNEsLK+wvLDIxUfO850nX+CJCxd58pmneezCRaq5AY1v8THQplSLmG5GK7BE8CJDoBOw2y2nOaKafgrwCYW1KAWNaxiNdtjcWKOpayDyxZdf8levv8bla1f4+NPPuHnnDspkfQ+oyoq5hQWs0RxdXOGZi0/y4vPP89STT3Hhyac4cfoRYaM0Av5m0KEDPXrPr79xn45qZiCr7+Rk0HECEMoY917mSq3SBjRF0XUStA+Z+aoVOjmeeRz12XB/G63vxOX+BHkfd3Z2uHv3LteuXePGjRvcu3evi3JnJkGOgo9GI86fP8/Ro0d3sXlnOYn7OYCz+nkWgFXXNQ8ePOD69etcvnyZ69evc//+febn57HWcvjwYQ4fPsxwOOzuqz9G8vhxztE0DVprlpaWOibbysoK58+f57HHHuP48eMsLi6mKq2zwcH92v6LsOlIez/ld35+nkceeQRrLadOnWI0GnUbgmmgexZ465xjc3OTu3fvcvv2bW7fvs3Ozg4hBFZWVjh16hRnzpzh8OHDzM3N7WnbdCrSrkJw0G1qZFN4rGMN5gJh+f6mWSz58/xzPyByls3SmOzPJ32b3uz8PKnM30Rrm1aqxhpNCI6qKrG2IkQBDrXWtK7l88uX+ezSp7Tece7Rxzh6/DjLcxbRz5WNbg6mYKUYobIW5RxN02ILS1kVHbCstaYsbJK5EWbeeByo68CNG/f5b3/+Ey59/jlPPnGBpeVDDNJ7aq0lhsh41EoBPx1RVckoRAZKszQY0i4sMqhKNtY3ufTJZe7cWiPqgld/9DJHzSLzWnTWm6aVSrtKiVacArz4ck07xvikQecV3gVsLFDB0DrYXN/ms0+/4M/+/M945913GZRzPP3MMxw+fpjDhw9RlgMaD4XV6FKTR68iCAGBIAFUFxgUERdb2hBQ1lAVGt+02MyYVwqPohrMCY7jRe+c0lI7TdN4XLsjRb20kNfW1rZ4+ydv8t//9z/l0ltvsLm9xuX33+D8oxdYv3eHLy59SN022HKI8WBiZNzW7NQ1oW7QLqRCLA12ULJ88iTHvvsi8/MLhNZJ8FNbjp0+zeL8Mlc+u8zn1z9leWj5zvdf5bvf/RGuhj/7s7+gmVtiaXmRY8ePcGz5MNSeELykMreOtY1VdupN7l66TH31FkXjBDyODdpqqsUFFk+foiyHjEYN42ZMcegQTSipa3At4CPVXIFSgR3vMEXBdjPigw8/5Cd//hecOrLMsxfOo4qCVkEskD1nMJTaQGKTKU1iLYa0P1ZCutDQNGntCxGUaMG1KViojYEK1Ny3THMwuXV7MoLyL7q/QwZTYOLPl6VlMCgT0HSYlZUVDh8+zKlTpzh37hZXr17lxo0b3L//gLW1NdbXNxiPx4AU75RzZnBwsjZkcG9zc5PNzU2uXLnKxx9/wrlzZ7lw4QKPP/4Y58+f59ixoxRFibhzwhaLCRTqz+HdXJ7XtpQLpbVBJS3ynEWWmYd5v6ONQZNTZ8OuoIi1VvaOvT3KNGt+2pfpf5bnw83NTe7cucPt27e5fv06169f5+7du2xubnYMwn5G1bRlxmEIgeFwyKFDhzhx4gSPPPII586d45FHHukA1eyrxO5+U6ZQyn7Ie7M+SAcT5ue+Q2kGWDhdCTuv+f2AYP/ceU2d5UdNr/v5sz6rEZBn1AcmNZ2sVIb1MqCn8ljWk6IjMn60ZCLF3cen3u4dJ5upmF6TZh9dzln2jQUHfQi0BLxrqVSBNZo6yoZWacNoa5Px1jZlURKUwRYlPkQBt2ymYNKxOaadyAnSKy9qyIVBNPIyaoPSGt8Gmij6bkZ7bCkFANoY8MGjFJRFxXCgKYp1tpttGmsZFQXjUcPm5hbjB9sUARYW5jg0t0JRztM6hzIarw2hGgiIE2FoNbXxKBzWBqxR1E0tYJh3OD9mfjiXUqW1LMJG0k6VVoRo0VFD9LSuQWuDURbfBkLUeC36ea4GNwZlbKJVR3SMFIUiMCLGAUmkK4nva2wheigxBkprGY+2ca2k8wUnoIG2JWVRSlGS1uGCI6qIDx6vpIBAiArvInXdiIiyhrIyaB0xOqIrqQKmtMIaAcK6ycq3jOptGucRhQ6BwpSKaFUIgKMChbUYbdipG9CiXVNqQ6ULCjRtMxINKr9DSUkoKrSxFEUJSuG9SzouAkpDoKlbnBdAtrIV2hhsYZmbn6P1TrT/VJTiDdqgQsQaJQLJgA9GdBCbMSp6tuqWzZ0dSdFsGly9hvMRZQtQhm0CtigYDAcsLMxTDAqskWiKMZaopQiN6I306euSaxqC6MzolJL8bbNZm+p+tEwOIk1+sVtcpzdf0xN2ByIqlXTdYgJZU8QrCwwrCU5ATMw8oAfoxRD3nF/eFHlv1lZXee211/mL//4X3Lp7mxPHTvDqq6/yg+//gDNnzgDybPoL8SzLi2FeOGoV8Uomb52ul5eOqLvXFo9EoLRJFXe9VFl0MTJ2jp3RGB9EkiEDiKDBWDQKGyI2XTWoVA3RGDSR++tr/PS11/iTv/ivXLl+lcvXr7G2tY6OEZtboy0Xzj7Oyy+/xLNPP8OF849y/vRZHjlxhsFgIO1V0I4bYhR2go9R2LVGKh1GJHjQplRimysLB4m8Ga1RIRCdRyHMnnHw3Lh1kzt373D1+lXe++A93vv4AzZWVwkxsrW1yb3799J7HSFEbDAcXjnMM08+w3PPPcfK0jKD4ZCz585y8YknOHrsiIy7oPCtwyUwo+g2nblapASdsr5dCFIZ3haWqhRmdh6E+TtdqgWJAdpz7KRgSUgMz4l2XpsqFWZg0hhDVBGrLMpI8ZU2iBbkw1hRf5usH8WNUdJW1tbWuH5dGAIbG+L4Z20/7z2rq6t88sknjEZSvXJnZ4dnnnmG5eVlBoNB12/T6eL57/tFhx/WxrZt2dra4v79+9y5c4cHDx4wGo060On06dOcOnWKo0ePdkzG/nX680RVVRw+fJinn36aEydOsLOzA8BwOEzpTkvMz8939zLd7l/VmJiOxgPd/c/Pz3Pu3Lk9G5iHAbFKKZxzbG1tcfPmTT766CO8990zN8Zw7ty5jiV6/PhxlpaWdo2X3Jbpts3qo74mZPf+xd1pSf1zTIN2swDn/Wx63ev/e5ZWEvzsjdK3xYy1CRjMmT9STdc5iFFhrGJ5ZYWjR4/x8acfc/P2bW7cvMkTTz/BES1ZPk0WH4kJNwmiBxtj2lgb3QXacpBxl8MUJRCzvd3w5ZfX+clP3+DLq9c5cvQo3/ne93jswuPMz1egInUdqEdj1tbW8D6wePgw1XxkbiAyHsoFluaHXLxwgXt3H3Drzh0+u/IJ5nXN8Og8ry59R3T3bED7SBEdKnq0lWJiBkUMnqLQeGPxSlM3kehEXG5rJ3Dn/hqfX/qCn/7la3z08XssrQz5/ve+zyuvvMKFx84yN1cSmpbCaoqudpf4CSFA0ypCNFgjGSl18inLohCgTytMOaD1wkQpS413kbtrG4xGYyIRY0U+4/7ddT5//1OufXmFGJU4LBFu3bjOp++/w/VLn9E+uAPKc3ntBtfe/u80o4aoLMX8Et44fCqeMl8NufD0sxw/d5ZyUEmw0zkWFuY5/+RFzj15gYWlRUo0Jhru3F3jg8tf8N4HH3GnrTn79LO88OIz/PDVH3L40DHefft9Vlevs1hpXnr5JV799V/nyImTPFjbYXtrh3q0w92b1/nwg3epN68TVm8Stx7QuIAaVhw+fYJzLzzHhWee58yZ8wznFrh56y6XL3/JjRvXuXz5Cv/f/+0/cPXebf7+b/w6Fx47i6lkX9kGuL+6xq1b1xk325RzJzDDIT75agSwuYih6MJICrmL4qIl/XvvBWhQUQAIYtaDSynHxoJJWtVoVPh2+QBt09Am5ngG/FRCTFQK2ie6FDApSJhTcklZHjl9tSxLTpw4wdGjR3nssce4ePEi16/f4Nq16528x9raOm3bdIE351yaw/0u4ChbDkiOx+Mu6Hf58uUEfJ3lxImTHDt2lEOHDjEYDOW+WicAX7Ldc7ykSYv37nvTkQA9GgENIfUHexnw0+2bpQs4i3WXfZ3xeNz5Q2tra9y4cYOrV69y/fr1BKbeZzwed/5rv/r79J/c7zmD4ejRozz66KMJRH2cc+fOsby8TIyxAxDH43G3huV9bZbu6a97uySZpp7NtM+7aw/4M6zP+O8HYvN5+2nn/UD/9Njor8P9/s1/lBK5BhPzs0ykmEjvPFGk1nrtU6SpNMYuiyq/Bfn38u8eK0ZB8RUrU8M3GByMRILRmKKQjbqXKrxRKdpRjW8dOkik2NqCYlDJYDGaGFyq5ikpydbaXQ8uD7YQfCfGj5LCDm3ToK0hognaoKxhoIdEHYjRg47oSjbOwaVrhMjYNZjCMBiUtCqyHQODVlM6jdYDIgFlCtoYMW1grhikZx5wWtNgUK2jrAPKCbCjosda0QZpGk8g4twIhWdhfgGjSymPHgMhtLKhdqKbYoqID1LAo25GNLUjhsBwWBEjjEYtTe1pW6n4pq0GHbCF6CrqlMIboyEG0NrTOi9FMOIA1wZicBQFKEwqyFHhW0fDDm4kAITHMRiUrK+uSvqiMZIq0kZc4zGFJahIZRVDo7EFLKwsoqxOOhsyRQZvcKGV1EkrhVVC0BitKYxiWFXooKX4QgFu3GC0papKQvBYrdFAIDAsA/PVgHo8pmlFj1F7KZyQ4zbWWAgB7xpxIjv9iZYYa6pBRWGFwakUWKtxvsUUCVgKBtVCMAFVCLvNxchotIPb2UYFz8bWDpu1R5UlAU+hFbFtaUYtTeMYEyWtZcuyvTPH4tKigITWgsRGd2sc7XrxhWHkvZOow7cQGOhvxKc3Xnmi3S91cj/WXV5M+xMqSqXiEbFjLEOfETihj0Of1bW7rVn/LhLxwTEabXP9+lXee+8drt6+ziMnz3Dq5CmefebZNKmrXTT5fhun7zfGHmss3WYA2XAkcFMAzXRvOSU7ij5mTJXCUYoH91f59NJnfPDBB9y7exeDotQWfBCmhpLNb2UM0Qmr1hQGD5hCs1OPuPTlF3z46SdcvXtTgEcgKMXAFiwvLPHY2XM8cfFJ/odf+w1e+e73OLqyIhIRMeKUpkZYlp1/FxU4YTfS3aIipuc1qQwZCUihKILc5+raGpc//5wvL19mYzRmx7e88967XPriM1ZXH7C1tUnd1IRUuGeuqpizBdttg45waG6Z08dPceTQYY4tH2YOy3xRsTCcQ3kBeVGwuLTEoBh0C3x+NiGxFW1i8d2/f5/PL33OZ599xq2bNxkOh53226lTp7roZ773POYkNdt073RmV+eq2U3TcO3aNT75+GOuXLkCwKOPPsoTTzwh552b68ZoUYo0RugVTfl5gaxvmu03h/XfkWwhhF3svFu3brG5uYn3nrIsmZ+fpyzLTi/niy++wHvPaCRBowsXLnDq1Cnm5ua6KHYf5Mlg0FeZV6ff5/FYwIO7d+9y584d1tfX8d6ztLTEmTNnOHv2LMeOHesKiMya1/J5MzA1HA45efLkLse/78DmPpkGjL7qPfyirO8wa607wG06HRf2agBmy8+mrmtilABB27aMRiNGoxFaaw4fPsy5c+d4/PHHeeyxxzpWZr8d2cHvt+thG4xZ7Md8fNaCzJpMfVB6FlD/sHezDwTmTUrur8FgwPz8PIuLi51GUz/Y9G0PChgtG2LZgIpIewgQoksaj4qVQ4scO3GUufl5Nre2uXn7DhtbOzRH5jBKgmpaTZhAWYMtFxlUSiofZ4Chz1SxuiCiGNeRtQdrvP32O7z11luUZckrr3yX5557iuWVOawUKGY8qvnk48947533MMry4kuvcOGZxzADUuA6Us0XnHrsJM+757l97wYbf/mAS19+zsJrh1haOMTzT17kyJEBxmqUUQTlRFIkamLrxe8E2gBBKxHnMzCuA1/evs3rb7zF22+8xe1rtzl16gS//pvf46UXX+L0qWPMD0pwHkMu0GLACwFAKY0WKpIUblFSyCLEAuWjBPVrxe2799gabRFS1daB1Vy/coO3336Hm7dvslOP0EqDj2yvr3Pn0hXWb92Q3WwwxEbTBIceRGxhMSceQflAu7nJeGsM1Rznn32JF7//Qw4fPUxdRho8y+WQZ596inOPn0MNDMYodBOhhcFwQDE/xA4LXBO5c+Mu1259ynvvfMCD1VWeOv8Y3//eSzz/wpOcOHWce2urrK/dpBlvsTAoefKxRzn3yClcdOxs3eH1N9/mxtXrbNy4y+1PP2e7vUsMkcEjpzl1+jSPPfcMF198lqdffI7zj56nqgYooxltj7j95XU+fOt9fvr6m3x05Uu2fgonjh3mxJEVlo4cxpYa2oCva4oicvTUYU5fPMvgyAqthkojzxlJg2+ipLanxAhSeRrx62LEGKlULUSNXMQzkV+MZD2FADYalPvGbvlnmrUGa02XQZdzRvJcHaNE+sU3VrvH79S5phlow6HIaR06dIhz585x7949rl+f6N3mwF3buj3Boz5wNdEXNNR1zZUrVzsm4enTpzh79iyPPfYY58+f4/jx4926XhSFVDaHKVApA1Lyr8n03QdIVe/Yabb4BBCagFtdFIC+C5D4FB1QqZT4maurq9y+fZsbNwQ0vXr1Krdv32FjY4Pt7e1urRXGfJHuP2vDCjvSOZ+OqTh+/BinT5/m7NlznD9/ntOnT6dA4ByDwTAFgATj8T6vu7r33HdbH4zL9y33Nlv+Jf9uGpzrpz/n9bVpmq5QXPYH67ruAObhcMji4mKni5gJAfuttdOBu117UiRYpQjoENNeSPAvIt2eZ9f5OkB88i4QJ+zA2B0j+0WdikcppXBFuad9+9k3dqbIQ1kbI1R113QVKJXWFLZgPBpTe8fg0BzamrSYa1xM0RYmg0VrTdM0gjRrYYRpk6pMeunOuhVth8LaNNlbvFJYtACBOuKVbDK1LiltQVNHjFbUvmZzZ5UQW0oK5pSmiIGxawmxZcfVuKAZGE9lpR6ad46QxP3HbcNAWoNL+lzWWrSCqhowHsng1CawtbVJBOaHixS2SsCFwjuPdwGlC3a2G3Srca5lq9mmCQ1VtIQYKAYVZuAFFENjosaFiDPgosF4BdpT2ArvFdoghTLwaFXiQlBb1VwAAQAASURBVKBthXqP8tTjhqKokKrDDu8dI9+y3Y5Z21jFAJW2GGsZjRyujbidltJW7IxGBB3YVpG50qJMYFs55ucV82WJsUlvJkrF5jp4TGkJSoCDQVlRKAWNPJPauwTWSXqH1RqfQDPXOAyKqrTMDedY29gkhpbCFsK+UgYfI6FtsdbgWoe2UBUDdrZ3GNdjoEUbSVuQlN2Ad7VU09YW34gjV2iknS4K2yjW7Iy3GI93aLZHaK/ZXBsxwjNfFZTFABOhHA4oQou1Y/xYmIp1M2ZntJP0DGsOraxQFAXWFuQq3K71mJRy0EZHUVicE80c8Cj1LUsnSDYL9MtFPKYFafO/p6NY0+eLscc0zBNxYglm8DDrAoYQ6ArDq8Qy7kXEZH5Rk0IkqQKgSdV3c7TPoNCJgVAUBcamIh5MNnKZlp8ZY/nz3G4fRWvQBhE5VyoxzVBSQTCElH40AdNaH/BMWI9VAkQ+eud9/vQ//Wc+v/YZKgTm9RwFRhZorTHW0ODZcMJs1cYSjOiVuuDwwYvenhetwRPLh3nmiaf4/ivf5zsvv8zjj15gWA1YGC5QFiW+bXExoEtJ941R0pe0VigrkfEswqwUGCLRC2PXaIP2StK0YqSoCu49uM9b77zJhx99xPsffMhnX1zi/uoDnI9gCrZ3NnHtmBLDfFGxaIcoI0WNSgw2GoZmTqLCdcuD+/d58GCVjz75JBWfslhjKIqSM6dP8+ILL/DKd1/hsaeeZOno0W5MTjsgohO7zhtvvsH/9r/+/7ixeoPlapGLj13kt37rt/jRb/wGZ8+eTcL2vgMFOw8wLfL5fCZXlExpGTeuX+f/+NM/5a9e+ytMYfi17/8aS4uLnDp5UlaP7KSQRPUzyMIkRf/bYtPv788COfrvfF3XbG5ucu/ePW7fvs29e/fY2dnBWsuJEyd4+umnOXz4MJ9//jmffvopOzs7XLt2ratmPBqN8N5z6tQplpeX96R99wvF7DcWptuulKJtW7a3t7l79y63bt3i/v37uwCsDA4ePny4Y/s9bB7LaTf9ytl94e/92jILjPpFA4UPA8T6gaBZx+73eR+oz/qLa2trrK6usrGxgXOO4XDIiRMnOHPmDCdOnGBhYWEXAJnbktm6/X/PesYPe84gAeudnR1u3LjBJ598wmeffdbpXD7sXmb9btb1cjqV1ppjx45x8eJFnnvuOc6cOUNVVbue77cZGARhBzrvMci4btsWlMY7l9gVJQsLc5w5c5rllWW+/PIKd+/dZ2NzhPckCRApGiWFt/KYEQZvn/FZFBaFRmvw3knBLK8Aw4MHm7zzzju8/tPXCK7hhe++yHe++wKnTh1CoXAu4FvP2uoa7737Pn/+3/47hw4d5tzjj+HiOZH1MZqmHRNpGc4POf/Yab7/6g9YXx/z2ltv887b73Di0GFOHVpmZfE0prLUOoItiSFiIkQf8LUEOEwKKqkI452azz65xH/7y7/gzTffYrS9w3eefZ5f+81f4/FnLnL48CFsYWg7EL4ixMjqyBG9RwEFEbRiY2eLO3fvsLb2gFKXqFpTVSIpdOnzL3j9Jz/l1o0buNZRFgXaaO7cusn63bs0G5uE8QhlCinIaDR2bshgpcKFgIkVxlecPX6CF3/4Pc48/ji2XOTW9dt8/PYbfPLhu7Qazr38Kr/5P//PXHziPMM5hbGR4GBQFgzLEqUjKmVBAKg24OsATeTTLy7zH/73P+Gzjz8j1p4Xn3iS/+EHr/L8Mxc5cnyOHR1Yv7XD3dV1xjXY4SJfrG2x/tOf8MFf/Ve+eO8t7t68Rb02QsU5FpaOc+7pl3jhle/w6PnznDh9gsefvsiRY0tUhWGuLIgqsu3GlHMDDi9d4OSRQyzML7D1nxou37rHl5evsPXiiywfOYIOopW8srzId195kTZ4Hjl3jkPHVlBGAECNJjSeaBWmsLhEFjF5k+9EziSoKAUsUvZQ5zvEpAWZ/igyWPbt8gEgF1rrg2KTvf0udlUCuiYJmbu/159T++mqCwsLzM8vcOTIUY4fl1TXW7ducePGjS7leGtrKzHpRh17La89fbJAH4gaj8fcvn2bzc1Nrl+/zqefHu+KjJ08eZLjx49jzEK3hxC/OIN1/cIYe4OffdsdyJpmhmVG5UQjL5/HGNNpUzsnfsnGxkZXJO3atWsdUJr9p/w9a013fufari9A9jeLi4ssLi52hbseeeQRTp8+3bE2FxcXMUaqn2em4KR9GcibPMevslZO237+RJ/N109Nzj7jnTt3uHXrFrdv3+bBA3n2MUbKsuzu5/Tp0+T6FX225n7BxOnCKLvGYoxdFmr2g5TSaJP2oolF2Hnw3TCYjIc41QUTX19kMUjPpvUtX9W+seCgQgljRXY8BCOCwNEHxjs7bG9u4ohSydIJA7CsCkZ1AypQlgUGzc54RIxxV5RYo6R6rpaO39rcZDQaUVUDrJKKtVVVYCpFLvRq0sZZWU3UkXFdU2qDQrMz3sGpBlUFyghHhgPmiiGqlLTlcWxRqiUGx717d9isBqzMLaBTVpsuSgyR7fGY1Z0dtrZGRGWYX15gOKjQWlEOCrbubeB8zdzcgLpuWJyXyqExwHjcQJRquShNLEvq7W2i9zT1iLGvscUQa+bxoWFj5wGbWzuEbcWRpUNUgzlMaWhdoBl5jBedPm0MwWuUsahYMNoZMR7vMK5HNI3Dt47l5RWqqsTYSGEHbG5uszHe5MH6KutraywMh8TBEBPFgVJRc+ToEYKPlMGjC8vOeEf0GmtHo8EFg1laRreaqtBoK/qOo9GY9Y0tWtdSFAN8DAQHykawiqoo8QK9o41UOZZUEnEIUQHvHTvjMTEqSUcnCPNzPKYYDGScRY02FVp7YvBSPVsrUI7hUFMOCpaXF1hcmMMYYWmWtgJTEvF41+JCRGvLxuoWQXuiitSjhroO0HqquQHLSwOKuQqjS+aKeaJXYMCFGu1b7t2/x2g8om5qNjY3JdrNJocOHYLColSUiLSRdIUYIxaLVorCSpTA+4D7OYRIvymWJ9NcrbK/GHvvd+lFwO7NU//7sJsmno/dJVje05AQfYcJ4JerULat6AiZxO7Ken45cqeU/NumAENhJNqb01dFYHgCBKImenD9jWmXghZjAnmEEU1Kdy6iJnjH2In4tUqarErlircqiYqnNGAlBUd8CLJIOEdoxrjtbRjVLA2XefzRx3jy6acYDgZ89vHHvPfxB9zaXkUPKuoQ2B5vpsVLhNZjjBAic0pzZLjM//Sjv8//5X/6P/PkU08zXFomamF56CgR3eHyCnVwjJoaFcW5igoEy8xsSanAHp2nTecvi4JmNOLDDz7iv//kL/nyymVGTc2D9TW++PIyD9bXaINHGUNA9COXq0WefepFjqysYJVieX4O5Vru3rrF5198zsZog1ItcObEaR45f55jp04yt7iIMlbYPptbrK+ucf/2He5cv8nbt37KpXff4/X/+ue88pu/yav/429x5sxZFhcXBDDKKR5aY5Fxtb29zfr6OqPRDn7U8v4n7zE3GLK8uERpLMdOHMdYEVqNIUjQSymwvTTzGAmJbQTJTYqRtm2oxyNMa9jZ2aJpxgm0TtXtAB0SuzIxiMVF/HYDBdlmgW79z2Xz5Lp0mGvXrnH37l2cc6ysrPDEE0/wwx/+kDNnznDx4kWOHDnCRx99xK1bt7h16xZKqS563LYt58+f75iGfdsPHNrvs6y7s7Gx0WniCTOhZTAYdMLcJ0+eZHFxcSZQlR3NnZ2dThx8bW2N7e1ttNYsLCywsrLSpedmzcI+w/rnAVy/LpsFDPY/69/fz9O23B91XXep2rdu3eLOnTtsbm4SY+wKuxw7dozFxcXOoc/XmBWAmr72fsLlfTZp/nw8HnPlyhXeeustXnvtNT799FO2t7ex1jI/P8/8/PweraP9+msW2yD/O7Msx+PxLrH7/jG/ambo39SapmZheTGxcpquiODc/BzeBxrXMjdnOXv2FKdPneTatWtsbG6yuvqAze2jLMxZtDaMG/EXQvRdMEZrJQFgA1VV4l1K0VQk9osEpre2x3z00ce8+fobbG6uc/HiBV5+6XnOPnISRaQsFa5VeKXZ3NzixrWbbG5sceb8ORZOzFEsaryCceMYmJKgPfV4zLAa8PTTz7O9BWubDW+98wb/7b/9H5xcXuDQ0oATp4+gWkUICk+kdY5Bmaoto3BR0bjI9uYWX166zH/5L/+Fd957h4XFBX70g9/ih999hfNPPI5aqCTFVAVS/UXqNrC6tsWlS5+zvbHBoCohBtq65t133+GN137K3bu3KbSmcgUuBloizWjE1uWrxJDHFoBCLS2ycOw484vLDGyZJHYU5y8+zguvvsKp86cprEUr0UWcm18UPcBDyywsGtZWG37ylxfR/3mR9956k8+vXeLSlc848+hxThSHGFaa7eBSVoHH1F4CrCqy4x06GsajER+89yH/9Sc/4d1PP8UWJS+98AI//q3f4NELZzC6ZKQ0G63n5p11Pv3kC+7evM2du6t89sVnsHmPcONLom8YLMxz7PRZnnj6ZX74yo94/IfP8+QzFxgMK3SlKKyGEDA+oFrPOHgKUxCMQZWKo8cHXLiwxekT73Jn7T6jrRFbo4bWSXVpjOGRMyc5feqEpImmCsTKBVyUAjo2BZBdHTBWoYxNKaayIw0hjVEFSkWiEz35GCGqSGE0jZMArHzHg3YPe92+cTYYzFGWg15Kr9+1zislLCrhR+6dL2NC2xR07Cnx8RWFLiiKIs2PmsHAUxQFCwsL3Vp88+ZNrl+/kcCiO106bb9ABuzVqo1R9l1Zjy8HrB48eMCtW7c4ceIkjzxyupO3mJ+fY25uKHPUlN7dw5jm02tRZpX3fYZphmN/7+Oco65r7t27x5UrV7h8+TKXL1/m6tWrnW8C7NITnOX35AwHay2Li4ucPHmSM2fOdMHO7NP0ZTj6a6rWCq1tB4zldXW6+Ec/WLff/eW29dOM+75TTk9u27YDQ+/fv98Fkm/dutX5VDnzdH5+niNHjjA3N4dSKrE+iy5deloXefq6mScCdISQnPGbYb+oEpTbjekEFqqMeovkUAiB4Dw+9timM9Z4rbSwabXqmLWx+FuQVkwIaJdEeI0WAeEIoW0praWpSqIGbRWHV1YYFhWu8cJCwQgQpAUUzA/LGCNgFxFjC7SSCCFJN2q0s4P3LSvzAwork24bHHUDFkm99cGhdUVhDX6kCVExqsesbdzDuVECJQ2aEmcsfuCx84vYxrN+8wHKGOzckHW7wcJgHuUCdd3QRk+rRR9lfliyWFqssczPL9J4Rwg7mAJG2y21rrClYlSPKKykRCoKoZ4TiKGmrWsaRoybHUZbW4QQ0ctLNMBoe0ysNcZVjH3NWAeGrqaoNR7HyDUsqoEAadHjPGxujakGQ7xr2BltMBqNiNEyGMyjlFRTs4WlbhqaNjDa3mbz3n1hR1YVY+dYmltgYWmILUqq4RzGWILztOOawkDrSzY3N6hXRxhV0FTzLAwXUabAtSPqtmE4WKBtI/XOfcpCURYFxpQoU4COhODwWsZA9B5Hi1FWmFxlQT3eYTTalihmURDaREsvDLos0IVUqgsRrLag0yRsNK1vqd2Y1u9QxIIYHE09Ym6uoiwsMYpGpVIRpa1opY1HBD9me6Nm1LQEZRg3OywsVMwtDKmqIYtLSzSjmsJqVFXgMVgqtN/kyJHD7KQqUaurqzxo7+OXPYPBkBgCc3NzBA+2EOac8w5blCl2ZtJ8ZHDtN/dV38/6zBelddLZzDRqiZh3GzMtVQK7iZi9i2p/Mcp6gf9/7v6zTa7jXNcE7zDLpC3vC94RAEErkvJ2H9s95p/ND5hv83lmetrNOfvsLYqURCNSFEkQ3gNVKG/TLxMR8yHWykoUIW2d03N1k3vxqgusyqrMZSPeeN7HjPplUHTu/EB75AdXSsTK74UoDKFHOjrlwC89+ucXa6I0o5VooQl04AtkBUoJD+IXY9NxyjuUYBAYZ4bvLUThJSgEuhKBkuTFdVeFRspfe+9xZIvgGi0EkfbG46GUhDrAKc+qzQNBy6bcfPaIVrfN+tY6+4OW9zYcdKkEIYvNCRqVKpcuXmTp5EkGWcaTx095dPcevU6LL//8FypBBSE1Fy6/QqM5PgLu5iT0SIXnYIYKL4V23rdRKYXJMrqdLnmesfr8OV9f/5rPPvuM3b1dpFasr62xubWJKVggtbhKpRJTjSOElMxOzXDhwgXeuPwa1y5c4eLFSzgs169/zR//8CF//OQLtna3qNXrvHn1R/z4Jz/m6tVXWTpxgkqlipRq2HXN05xWq83a6gr3797l008+4fadW1x/epeVzgHrh3v85je/4crVq9Qb9aMOtj0qSCSCQGt0YbLU63b4/PM/kQ0ShBC898P3mJ6dxXHEZvEBWsc87sr72N+05HlKmibkJkcqbwhfyhU9U9CLjoQsOtEjRfPL5PD/2rby3HW73ReAom63SxiGzMzMcPr0ac6cOcPZs2dZXl4eevN9/fXXrK2tsb6+PvQg7Ha7ZFnGmTNnmJiY+FaB/PcAWuXrJbNtb2/vW2zGyclJlpaWWFpaYmpqijiOh2zo0fctgbDd3V2ePn06TPXd39+nWq2ytLQ09PKZn58fJvOO7svLFhvfle1fYgi8DIwzxpCmKb1ej52dnSEjM01Toihienp6yFpoNpsvMLOPA3OjC59/6TwdZwKUsvT19XVu3rzJF198wf379xkMBkOfpZK9WDI2RvfhxcXltxeGL9vXsbExFhYWWFhYoFarvfT8fJ83L5/1YX1+fnaALRZV3lvaGojjmOmpSaIoZv35GitPVrl2+SyiGmKNB7G8dE6gVTAEGbT2i1FPPBoWACgZYBwkqeHx4xU++fhTHjx8wNLyIu/84A1eeeUMY82APHekiWd99Ls9nj1bYX19C4Rifn6RsfGJoX1IHCq0ExgjvL+uEUyMxVy5eo791j6HrX2ePLzPP77/IXE94l39Bku1cSIlsbEmK+eZiiRD0MsNO3uH3Lh+i48/+Ii7N+8wPjHOa2+/w5tvv8ns/DztQcbqyhrPnz2mc3iAQlCLKwzaPW5+/TX3bt6g3doHwBnASgadHulhC+EMTlgIJC7Pkc4RTUyy/MYbRLUaKorIckNciZmfX+TC5Vc4d+kCOgh8CIKQ1Ko1ZhenaNRitARrILMpYeBf10J4qfWM4rW35ukm17C0eHLvPn/55EMWJ8aYeOtN5HQdVIBxjkRAHEsfzIBASsWz5zt8c/0GX3z6Zx49esLU1DTv/PA93njzbWZPT9GPe6TdnMPHXe7dfcjvf/dP3P7TRwxWVyGzqKhCvVZn6uJb1MfHOXHpPK+++wOuXX2Nxdl5JsbBkuGUwThwGcRKg5G4XBDLgE7i0JFAaOjj13NxNUCZQVFfaqwzRKHG5JZeLwcDtUgTOq8uSWxON8npZwIpoRaHhEX6cpp5oCtJ/Zwfas+KzbNCYQHUatHQL98a3zAUUvjzbTVKBn/lSftubqM+c0qVFhu+1TkKAJbWP2XdLlUJFomhNNPaI3DF5UfcqtE04iiKiKKYyckJZmdnh6FT6+sbrK4+HwaHlUEcpa90ydj371fOVZYsc8W80CNNBwwGPfb399ja2mRnZ5PFRQ8QTk9PMzU1RaVSeYGo8DL228uYaeXPR9cox39PSjkEQ7MsY3d3l+3tbdbX13n27BkrKyvs7Oywt7dXNLb7L7xf+T6jwBwwZNRNT08zOzs7ZNaVDMFGo0G1Vhuu38oANSFFkStQBOgVaFk5hw2DV4pjK0HFcj9GAc7jgSGjDdE8z8myjCRJODw8HNq5lAErx0Pqur0eaZJgrSWKIuqNul9TKYkKNCoMPCaFI7eGQZFEXfolludsWCuOXAP/L8X9C6WJlUD49ZArPDNdwX+VosgN8GsDD/IpZCCG4J2/DmLkmWC4Ji2bN+XcaV/SiPxr23cWMQi0xGaZTxRTDqcEmJx8MKA/GLCzv0/uLIGDKNCExQUrGWbO+sQsJ710uIzQlsUNKqUiyxPyLPNsjDwnyTJ0ITk2mUHIFGcgVAGqXGjlkgzfpTFZTr/f57C9R25zKpWYKAjQlRBdiTASbG4xaYZJc5yxdLpd6PcJwpBDe0AchKRZRncwIKxWiOo1BI5KLaZZa6KEJookKnTkSZ9uSzAYJFSbNXQgcVgkkiT1Hiw4cDlINIaMg+4+WZJRjZvE1Qo6lgQuIB0Yeq0OvaRHWAkAQ6/TR0ea3BpkkmCswUnIXWHefrhHmqUk/R5BEBKHkiCQjI3VCYIAk0OS5Ph0TS9trUQVKpU6Qa1GvT5Gs1pHKomKI5JsgAYqtSqVOKSf5TgD7eQQkxo67Q6R0dhqjgocKtC0Wz3yJEdLQZb0MXkDIomTgM1w0iIJsMJ3W5XSxUDjwHkJd+6sDxrJDBJJHIVE1RgVak/vVUVn0HnJph+sDGEcEicRppv4CUD5wc1Yg1Qak+VYK9DaSySzHNJBQpYOSAcekLRCUKmGVKoR1WqVIKwinPaFowRXyMOllMQyAlcuPCxpmhWAFBzsHzI+NkalUkeqI5ZbGIYgIDcZEu/XKaAMMPpebaPA2bArZuwwZGF0sTTs4JWTVjFIIhgyKoedp2JwFkLicH4MwP+eKpLBoEgHs571F+jAn+PckjvvKyjc0eeVk5vAFSCeN9G2BZjlimcoKyaq3ORofZQeOvQDKwoLJb2PDM55+am1Q/AzEX6xFCCQ1h+LFIUs15lSl4DEefa1BI3ApYb2QZvHjx5x99F9nh9uc+hSekmbJ/e+9sngRZhOJY5ZnJhjfmaWC6fOcuX8RU4tLfPKxUtMzczQ7nf55uZN/ss//hc++eMfWdle48/Xv2RsbpbKxAQXG03vRzJcrBoC4VlsyhraxSS9f3CItZaD/X1u3rrF3Qf3uHv/Lts7O6QmAySlsLsSV5gcazI7Mc2l8xe4fPESSgjGG2OcP3uWM6dPMzU2ST7IOTw85MatG/zuww/4+NOPebb9nKWFJf7hN/+WH//kJ5y/cJ6x5hihDn0RbQqWJoIoiIkrVSZnpzh/9RWWLp3lt++/z+8//gMPNp+Q/dGnoDcaDc6eO0elWhlO4j6AxEvDVTH3hFITCH//3Lt/F/m/+FCTd957l6nZGW+urpXvcA8bgWWpVICGlIyWAtSWikAHI4Wbw+El5ZKi+1qYvx9nHX1ftv8WEKssGkspT9kBT9OUZrPJwsICZ86cGRbi1WqVy5cvD7vAN27c4PHjx7RaLW7fvk27UBVkWca5c+cYHx8niqIXPq/c1+P7Pvp6CeqNFqf7+/vkeU61WmVmZoaFhYWhF165KBi1SAC/WOr3++zs7PDgwQOuX7/O06dP6ff7TE1NUa/Xj2qdYx59o4upv+bf97/X9l/z2aNskON/a4whz3MGgwHtdpu9vT12d3eHUqBms8nMzAxzc3NMTExQrVZfWGD8tf35W9+PMgNGmzqlNP3WrVt89dVXPH78mMFgwOzsLFeuXOGNN97g9OnTzM/PH4UNHduH0QbRy4DBcuFR3udaa6IoGi76SuZIuTj5voeSBEGIlApjLDoMPWPC+sZcydqXWjExPsbp06eZmrzB2vomO9vbdLt9JsZr3quwaJgAOOeJBqWnlXNH0j2pfEPVWZ/+urqyyV+++Av37t9nenqKn/zkx1y7do2xRoM8NXS6CWEYEAWCfr/H89U1dvZ3qY/XmZubY1I14dCiK4oidBYAm+UI6T3V5mfrvPH6JdrtFv1el0fPn/O7z/5MbX6S2tkq1TjG5oYcR7vTIckyLILn65t8+cXXXP/ia57df0SeZlQlPL13m7S9R6NW5fCgy41vbrF6/y5Jt10sxkMwjkF3gEv6qEDhtMImOUJGTE3Pc+L1HzI2M47QYJwPwAqDgBMnl3n1rbeYmJ0F7SXfYRgQBgGTczOEtQgrfBCfsw4sRNJhE4tzEq0BJdDCEViLNhBoiyBhaabOuz+4hul3aO+s8/TJY/740afIIODaG68yMdX0AX9SMMgNuXH0+gOePX3OV19f55vrN9nfO+DipYu8+eabnD93nkoc8fDrb3j45Gt219vsre5x67Mv2Hj2AEeCIGfixDLnz13mrXff48Lr12jMzVKfGGNmdhIVeHWWkB4cNfgmrUPQ6Q2oRr5Gz3NLqKVPY3aQSEc7S2l3BozFE0xOzqHrVaJIkfcHPH28ysrqJkpGLMzPs7wwxVgjJOn1WXm2wbP1XQyKM6eXObk8C9bS72Z0e10OW+2jFHaT4/AhFWEYMDHWZHZ2mompSap1r4JSWpELwDlS8/2qA3xt5n1DKWqiIwmlK9ZoLzbpfRIwGGGOtBIjw/nxWqhUIpU/Hg27mJiYoF6vs7i4xLlz51lbW+f589VheMn29vbQf88HJRmMyYcgDYUsWhTJ3t5/ts/h4SGHhwfs7e0yMzPD7OwcCwsLTE1NUavVi9qkUozrRSiiLeXQ+QtM8dKPtTzIo/VECex57/nBIKHd9vLo7e1tnj9fHXosrq09Z3d3j8GgXxyDGTYWtT5i+pWNaB/IFRBFMc1mk/n5eRYWFphfmGdhfoHZuVkajQZBGBIE/j0QxfV8SfPK4RnNlGw4d8QmPH6thpdUHNm8DEP9nJcHl9YwBwcHQyCwrLu2t7eHPsClQuTFZmCh8lKSIAwJo4i4EhPHMVEUoYs1Yll7lM3XUUCyVLuN7usL9WyxDhUlsaQEtoub1dtGFkwQZ7CZwZbnrFxrCob7O2SnjNzqJRg4ykTNen3+3u07Cw4ChYzTe1Ph/EJXa43xpgxUopBAabI8R1tDWPhZeaPWEU8CKQgjn0LrC22KJEx/StMsLVBfg8FTtfM0JxkMfAJwIR82FqyVOCdIk4ykPyDN+uRZRqA11ahKvVZFqciHZgz65J2WjwYWOaIiCKIQIRWVKEIjyVMfFKIjiU376L4giDRCSAKtQHg2XJZnCCGpxBH9JCuYDSHaSbQICAq5gbOW3EC3b2i1OkgpiKoVKtU61qbk2QBnMwZZj37SxeQZ7f19Bt2IKPasvjwb0BUGrWMyC045cpvSHfTotPsIFI2aQpIwOdEoQEqJMZIwqtDrd+nnGU4HRJUGYdygHjeIVYVABGghkdYRhhFIg8kydBCh4wp5akgTQ5oPSHoDkiBF5D6ZKy8YOTbNEJmj0qiig4AcQzcdUAl8F8IPNA6pFdIZBALjBGmWMkgGpGlCv5diBhm1ujfxVspLR50VCApw2XpwyBrDIOkPpcxRZItBy7PULP6eQFikLozNiwEOq3BOYYXB0ieIIhq1MSpxjWql4Zf0JieQAdaAySxKW5Q22NSilSIMI+LY0Ov16fX6aG0LGbEfGPPMA7G+U2VQgZezCwozbglh9P1DB8sF0DChSvgBsRyURyn9ozKx4wtfa8zQJxAKhoAtr3ERJqE1qrAZOOpWydGd8RMIfvAtu5DGHQXDlL/vAjEca7w3pPf6zAt6vNReGjUKHJT7q6SXx1KyIoefKYb3tQ8myrFZTqgCAuUBvfI18JJdnO88KSS9Tpfbd27z/u/e53ef/oFnz1dpDXoYCUk2wDqDEzDeaPLupVf50Q/e5eLVy8wuzDM1NU29UUcgPQAmBBE1Lpy/RGvvkO21Tf7yZYudnV1WV1bY2d7ixIklLDE6UOjIJwrvbm+z+uwZaysr3Lh5g1sP7rK3s0eSZp593T70Y3cx0U2OTxHFEVEYcmJpmTeuvc4rFy8yPzfP/NwC83NzhV9KIduWkkxCj5Sn28/5/PqXfPqXz1nb3WR+coEf/uBH/PLnv+TK5SvE1SpSCIx13jpCFgw76YsCbyShqVVjXnvrTayWHPY69D/qcnC4z8MH97l08RLz8/NUq1UPCOPHH600qgD6FIqp+iQL8/MYY9ja3uKb698MJ/UfvPceU7MzRJUiGXfEI3cojcg9G7m8T8v02tzkRwXJ8Kx5mFAIPJOxvH+FeNGJ+l/hVjYQer0eW1tbrKyssL6+Tq/XIwxDpqamOHnyJCdOnGBsbGxYUE5PTxeMgYh63Te6SlDxwYMHJEkyDJa4fPkyc3NzR2nbfwN0HR2DSlBvtFhttVoYY6jX68zPzw+lNyWrbJQtWBav5fHt7u6yvr7OxsYGrVaLIAiG0pfp6WnGx8eHZtl/7Vx915llo+f2ZYV2WfCWi65SFrS9vT2U8Y6Njb3gc+QN1L8dIHJ8+5fOzShoVwKD6+vrfPPNN/zlL3/hzp07dDodms0m586d4+rVq8N7p9Fo/FU2YPmz0X07DoqWAOIRo0a9MP8dP2/f9ev8tzYnAOHBvTTNkUKgRNFEwxCECiEUeQDzcwsszC2wvrbN/t4+uzsHzM9NEcTl7xed1WJtoFXJPvPrhTwvmBbSgz07e/vcuHWTr298AxLeePMN3nj9dSYmxtnf77K3t1v4WnoiwubWFnfu3uOwdUBcjXj+fIVv/lxjrNkkCBT1yTEmZpvUmwFS5oWUzBFVNAuzs7z9+jW2Np7z8Sfb3LjxDVEc0X0vZ/nEMmGsOdzf48GNm6w9fky/02FrfZPVx89ob+2RD1Kss7QfP2Llq899uKB0OKfJckngjGfuBQGpdERxnVOvnOHs+XOMTY+TK0itJVYxF06f59KlM0zMNjFKIUxGZgwykEMzfoVPT5ZaFZJXEB6xxeY5ykqfrosjKEy48zTHZRIdaKQRWFPMv8bH78Y6Zm465o033mVr+5APf/8xX9+/R1SvUK9H1OIrNBoVpPU+e91Oh7sPHvKnTz/n7vVbaCd589IrvPrGa8T1Kg/v3+Th7Tvc+vxznt+7T6c/8CBxmiLTHtQrzF19nXd++Rt+8atfce78SerjFWKt0CYntI5cGhKVMnAa610ZfV1lHSoIMM5gRIoNHSoMcMIHLu609njw+AkbG/s0K7MsL56g1qiBEHQOO9z6+iaff3GdqNbk3fd+yOTMBLET7B30+Ob6bb746gaNsYlhcvX+7j6P7jzl0ePHHBwc0B/0ffO6AIqMyRE4GvU6Y+NNzp8/x6uvXmH55DLNsSYAMnAY9f0CByUCOQKEDNnjFHXbEf1vGHB3nNnv/y1BRPtCc8cVTYKXMe08s1hTqVQYH1eFNcU0S0uLnD59mufPn/Ps2bPCHmSXg4P9wuKlDFAqGXwlg8v78+W5Z7FlWUqn02FjY4Pm2FPm5uZYXFxibna+YBPOUK1SBDEdeQpqLQuly6h6geH/j1qIGOMwJh0qKXZ2dtja2hqGtO3t7dFqtWi32x5sHjalyvBFB5hh80QISRiENMebTE5OMjU9zdzsHEvLS8O6Y2xsjHq9PgQUrfXpzOUxjO570fEerq8shVqmsFAqGzqj8+Vos7BUdWVZRpqmtNseOF9fXx9KhLe2tuh0OsPk6RLgHLL71JHqzBasvXK/cuPrNmAYcra7u8uTJ09oNBrDehFetLN62fdDlqvza8cjQolvOMRRTKPeoNH0YSf1RqOQmuvhfeSZleU97BDCDe9figaAHX4eIOQwyAsEYRj/3c/edxYcFEIUCbr+mFWxoM+dJTEZ1jmSbpfm9BxBFOK0j3pPOz1kFKC0xFnfLVRSkhuDcM77bklZLM4hy3P6gwGdToc8y6hWK/R6KXnaJtTgXIKOpTf1zzXZQGJSQWIynMzQGrQSNOsTNOvjPulYCHpJn/7Ah0g4a1GhohE3aQSCOKpSCWKk8clAnf6ALLeQZejcYdKcbqdHI6pQa9SRMsQCiUwKwNnQ7XWIAk1NV9ABKC3ITYbIva9dt9eh0+0zSDrUKlVU4Kg2amRZH0ROmngJtZSBB7xC7ScipVCijhscIgKQCgZZiim6IlEc0W51cdbQbCzQ7yeEYUKzUUFIRWZyrIVKXCMIKsRhjWa9SS2uEaiwWNQaIq0Qee7NcnUxmGU5laBCtZoh+g4lIbMJmgAVxKT9HoN+F5sOELklGxi6YZeUnCgISRM79N8wQYgMFNVI0W33SQcWhyXNfUS7yRz1uMZYvU4lDL1dr/MqYpcbUCC1xhifQmytIU0GDAYZ1kjPIqx5PwyJ9mCQ9pOPtUXQTTbAmMwzn4qCMxSCWqWCRBIIcIWsxVqHshJhvLcczpJZSxTHPlzCQifs0G53SdOMZJCRRjnZCJvQU4d9h9Y5gxO5ZxA5gfweBpKMLpBKVlan3R6axfZ7PeJKhcWFBRYXFmg0m1AsoEcne+vcML2t2+2yt7PLztYWB/v7CCmZmp5mYWGB8fFxv5gWpe9gsRAz1hugW0u/32d/z3uHtA9b5AWVPAwCms0m4+PjTM1OE8ThsAjJTY4VFh1o4jguvI88e8F7WcrhROelpV4ukqUp3SJN9WD/gHbLT+BJ4o3toyhibGyMqckpxsfGiCoVgiggCDU6DNjZ3eXeg/vcf/CAm7du8tXNr1h9/px2r4ssAETpIApC4mqd8xfO87Mf/YR//+NfceXcK55JiyNxhhRH7gxYSyAUWiqa9SZzM3PMzMwSxCHdtEendUgISGu4d+cWN+7dYnt3B2stjx494P7dexwctuh2exjrw0as8WCoUt6zr1apMjc7y6tXrrA4t0AlrrCwsMD5c+c9gNJsIrUid47MOpySOOHNyaVzdJM+K+trPHj8iM3dLXKbc2L5BNeuXuPE0gmqlZovfqQo8DIHxXzgk4c9E1MW12+yNsal5dNcO3OOJ7fu8mxlhZ3tHba3t+h2OkxPTflAmOLvKACL3BgykVGv1bly+QozU9Pcu3+fjz75iJv3bhJXKwRxxGtvvMnSieWisVUAwiWrxd/BgC+YPIitvJeqTchtISmWRecUcVQs4Bds7lih/K9tGwVPsizj8PCQjY0NVldX2dnZIc9zJiYmhh4409PTQy8+53zi3vj4OOfOnRuysBqNBnfv3vXJ048eDcHBbrfLlStXWF5eplar/VVw6fj+lV6Dpdn13t7ekDU4N+dN0MuE4lGD6/Lvy7FkMBgMgcGyA57nOc1mk6mpqSEQVq/XX+hoH5cDfZ/vhdHzMurjWC4GDg89G7le9+ytkpFRpkSOvsfLFoXHz81x5mL5d+XPSuP5u3fv8uWXX3Lr1i329vaYnJzkwoULvP7667zyyitHjYQRxuDfAiaPL4hGf/7X3uNli6jv87UGb5uhS4YfeIkVEEcheW4YZClSaMYadebmZpFC8nxljY31Tc6ePYHWAVL6BZkSoIpUU2u95FI6QZqZYiEqyTPY2+/w1dfX+cNHH7F7sM8P3n6LH/34h8wvzCKEZGtzh08//ZTHj58UTXjJYeuAlSeP6Q16pHlCYhLuPLxFJCNmpxe4cPEi7/zoLcbGqyipaHcHbOzv0m73STspvcNDZupV6tKx+vABnz59xt0/fcnE7CzO5fQOdjl48pjezo4HhLIcmzuwAmSAqDaImw2CaoTDYrKUaq3O5Vev8uqli8RxSB5obFRF6Zjl2XlOn1iiNlFFVr2/eiAUVRURKI2IHUaCzgWZMWQ29/WoAIz3+tbKN+3BEUiJzTMC69UYzlqCMEApX1OlpAgRECiNRZBahwr8wtjmEmegHmrOnT7LW2/9kNXNfe7eu8vN27eYnhhnYmKGM2cWkUqwvrHF7dt3+NOnn3Hr5m1cknPhzHmmxsZ4fPsOt27e4NHtWxw+X6Xf6+F0SG16jhMnlploNlnfWKMn4NpPf8FP/8O/49LVc9SrGkWGzHyNo/AAtFAGYyMMAiPAGYM0hjjU5JlfiyqtkSiy1NA6aHP79h3u3L+N05Zz509z7swSE7UILLR6KQ+ernL/4WNOnDiNUhpHQGIEu52cRyvrrKysspAb1ldXefzkPk8fP2X7+TZJllGr15mYmKRarRSokygsK3yduH7nEXfvPOT2nUf8/Oc/5/XXrzE920Bag/yvCCT4LmxhFPnwnGGghsU5Xy96S+WyEc9QdTPKkHfOFY2BI3ClbKgUIuDik44YiKP2QzCaciyZmBhncnKCc+fO0G53eP58lSdPnvD48ROePn3C1tZWITV2ha9dWqQdm+EYXrISfQrugL09i9pQbG5uDP0IFxeWWFpaZnp6hmazQbVaHbLejzeUXqYMKb0ES7uN3d3dgiHoQ1Y2Nzc5PDx8Ya0URdELLLNRBrvWmkocU6lWh6EcC4uLzM/PMTc/z8zsLLVajaDwZx9tVo024r4lky6vU2nJY148T14Fc1S/lE3Wsh4rU5W3trwfZPlV2sGUkmJrrYfhSradEJ5IMURVC0sojgfdMDyPZY1RAr+jqo5Rf8O/Vlt8G7D2a8sszTDGUqtWWVpa5szZM5w7d44zZ84wp+eIY89UVFINvR2P7m/vMz567soGBuLof47A6b8fB/gOg4Oe2mnwgQtaanKTMUhTukW09EStSTWMiOKITAuMc0RxBafw7ELnDY0D7ZNyPWsnGLnZJNZZzygbDBgUDINcWvrtNtVQIXWGMDk5BpNIRFbDZgonLLLiqNQiYh1RDepUoxoDk9Pp9ekO+vRSzyqUFqpxgyBQRLWYaqWKtBJpfcEzjSAxlsPDAzp7B8VCEzrdFghDUKsjdUAUVLHVDCstrV6PNM3BKpTUZNYDWDZ1pIM+1vZwsSIMa0w2mtSikEDHEFYYDHZpRg1ohKQqojnRZKwqCTD0c4uRIeN6ktQMSG1C1VZQ2k+OrfY+caRxxtHvJ9Rr40RRFanAkZMmA1qHPUhzojBAK00UxARoglAjwoLhYVIEBotFSIVCEBpHEIRkYYW030cryExC4CqQe9q31pIsSTjcbaMrCXUtUGR0OhZpFCECKXJcHJM7S08LXAb9Xk5mc3qJN19uVhsoFxApTSAVID3bRwic1BB4GZ9VCu0CpIzJsoR2Z0CaWoTOabVajI2pQtIJWjukKrwCjCRUEqMNvUGCr+GqWBsikdQijXApUsbkWAzl8Wnf7e1BGAVe31Ik60l8CEav28dZCHRAHEc0GnWUlighsc4nTyklSfuDI2+j7+H6oKS3KynRRVhEp9Ph7t27fPTHP3L/3j2UUrz55pv84he/4NprrzE9NYWT0qedFxOKVgqpJP3+gPv37/OHD3/PZ598wvb2DmfOnuHnP/85Y80m09PTyHKwzzIsZeq1pX3Y4v79+9z45htu37rF5uYmncPWsBMV6oDmWJPJiUkuXL7I2YvnieOYZJCAFBgMuc2Gv29N2aHzhUc5wSilyHPD7s4OK0+ecOObb3jw8AHPnq7QbrX9+UhyhDGgBHGtzuzCPGfOnuHK1auMjTXZ3d9l5fkqX9+8wd1HD9jttOhlAwZ5glReMqwQ5OmAzBrmmmP8X//P/xd+8w+/4eTJU4zVJ3BOkaQpSkhC6b2BXOCLB6xDOUEu/LMrw4BKtUG6t8f1L7+mvbtHrVHl2fpztlp79F2GEyVDO8cIWfip1qjHdbTz/j31uEraT+geHrK/usbnm3sEgWd0Tc/McPr8OU6fO8P5S5c4cfo0E1OTCFUke2l/3vIkZdDq0NrZpbN3gMgts2OzXLh4kTPnztIYH4fAA4tOUDD15JClKfGMP2EdwlqUdShrGY+rvHbxMoe7hzxaWPEy0GKxDxQp0d4/MM9zHyRSFJVaScabY7x69SoLCwv0Bn1u3LrBzRs3CSsxlVqNsYkxKgV44VmuBud8YpuQvogaNWcu2aRl8aQKeYkpf2ekED7q2H6/mIPHi96/B+QYDAZD1uDa2hqtVgutNbOzs5w+fZrFxUVqtdoLjLqy+C0lw0qpYQDJ7du3WVtbY2tri6+++op+v0+73SZJkqFfYdk5Pr6Po8y2Xq83LGTLwryUvc7OzjI7O8v4+Pgw9GQUDCq9B0sD7fX19WHISpIkhGHIxMTEC+9TAmF/65wdZ5l9n7bRc9vv99nf3x8uEAaDAUopGo3G0AdpbGxseG2PF+wvO0cvYy0eZxqWjMGtrS3u3bvHjRs3ePjwIQcHB1QqFU6dOsXrr7/OtWvXWFxcHALSQwuJv/GZo98fZ0qWPx9ll5pji6rvOwBcbqZoHGWZJQgUwoFJM2Tg5b9SKiqxoj+wKK2Zm5lnrNGkdXjI2sY6/UGfsbEqzoJAQmE55ApGSpokno0TRBjn87p6vQE3btzkk08+ZXNni9MnT/H2D37A8vISQaDIM1fsG0gZEIUVBsmAXm/AIM8JKxUazQZj0xMwHrO/32J/9YB23sYFgpUn82BgZeMZH3/1Zx4/fULa6lIxEtftsv/8CW5/jX7ap/fkGWtS4USOcxmYHJSkOjFOfX4OWWmgwhpRdYzXfvAel19/E1mJccYhjKMyVmHh5CwnpyeohoLEgVGCWAsiI9HGoUMwoSDNMlQuiZ0G48gzC9qh8BG6IRKXpMggwAJBqMmMRUuFSTP6Nid3oDxbgTBU2NygrYBAFGs6Tx5QSkBkSLEYKwhVgM4tWvmwv1fOnmf7B++S9Xvcf/SYT/5ynfGpOWRcIbEpX371JZ999AnP7jzADXIy6/jky6/40xdfke/tk+7uobSiPjnJ2PkzLL96njeuvsfpE5d49mSV7d/9MzrrcOLkEvPjEWMyQScDhAzJ8pDDFKKwkDZikNZ7/GXSYgDlHNY4AhH6tVDLkCUJz9fW+PLmDd7/9A/sHO5w+cI53v7lq5w+OUuMottLWdvZ49n2Nv3MMDU1xURzDK0U3QFsHbTYOjhka2/X+wsnPc98DzTLy4ucO3+BxeVlJieniKtVdBBirWPQ75MlGTs7u3z11Zd8/vmf+fqrG0gZMjU1w/xcjaYKECL6q8/ad3FLBglh4OfE0flQFsyyEgCxHDG/yu2v1TwFNFOocQq2mLUvqIvKvz/O3i6BvSiKCMOQKAqZnpnm3LlzrK2t8eTJE54+fToE4Hq9Hkr5VFutFaXlVp6npFlCMTAN7a96vT6bm1s8fbLC4uIiy8snhgnHMzNiOIeMymtH68JyfkvTlMPDQ3Z3d9nc3GRtzcuHt7e3OTg4oNVqkaY+4Mkr59QLye3+WD0YFcexJz0UqoQybGR2dpbxiQmaY01qtVqh4imZrGZ4vY7PuUMwzdmRYCPP/Dz+u2Xt1ClIEuU8X4a5jdqIpGk6VJUNAeAikbn0JxxNgRbOh8uW+3ScsT86h5Z/87Jk6uP/jv7+y7YSpMZ5P/Zut0eapNQqNeKoyuzMHDa3aBUQBhGBCvz7WeGbQbiR43DDtX0pPxcjKqLj9cBorfovbd9ZcNDkJePJszpSJ2inhtQYKlFIHFRxNqDnQkLnCITBCjBCeS2CAZdaKrriF23Gy5KlsZ6ZJSBLBmTtLkHiaMiYWi0iFFWkMsQTEqM1AytQqupTN51FBp5tEsU1wlBTCTX1aoXcGtqiTRpYBq09XLeLzhzaKaJqg2q9QaNZJ9QKm2U+ZVRrUjx7kTwlzjWRrNHr9hi020R6mtyGVFxEKAVxswq2R6edMq4DQpOS9A6Q1FGhRklL1xyQqIR8YJF9xdjYJLV6nSAMSDNvkIoLSLVA1SQz9Tr1aoVKJUArR1NoL52OBCqPCHPPygPBYesQVW8QCU1/kCAQ9JMeey3BhBpDBpDLAZVJxfaB9xUZq4bEsQSbFPHngiRL0EGAdRItFc74iVaF0i/adYrKc3qtDrXxCrKSEqsYk0W0BjmpqNFRbaTs4xJNlEUEzhcjXdvBygwxGKBFxG67hdIBldin28W6QagiZFSlVq8jg4CBzYgL0DizvssT2IAs9zKWUGkO2z16LQOpIBYBjahBI25iU4cOHVGgC88LHwqhAosRkKMJrca191H9lChs0u62EOE4gYhQxhAUn200pAakzQgigdMak6SkvQFukPp4EedIBn1smjBVqxMLiTMZTofkzpFbR6BCcFAJq8Xkozxq8T3bykV7OWkJJWmOj3Hq1CmePH7CjZs3ebr+gFa3RWpSnHS88fob1KtVQq3JjcPkBhUEDLo9nj19yoe/fZ//8rt/5unGcxr1JpOL8yydO0NzZhIVas8Wy3I8XCwwgz6rz57y2eef8/4Hv+P6nZu0Bx0qoe/ejk01qVX9+NDvdHj85BHPnjzmy08/ozEzyW6vTTsdUIkbBASY3oDIScIwIJOOFA9KaSfRSDq7+9y9dZs/fPghX3z2Z9bWV9EyQAWauFZnenqKhckxXJ6wurnByvYat9fv8tu/fEjwP0dYnE8ERoBUWCGRYYCKQxYrk7z1yjXmahPsrK7x5NFDDroHLMTTNOJxwto4utZEOoHMDE5IrCgdLRzOZNg8xyU53V6Ph/fv8Z//+R/53Ye/48HeOlZKbNbm5sMtZO6IkTR0TC2IqMYxZy+dY35uHpE7apUakQ452Nvjxo2bbKxvkFZ6qDBgfG6OqelpwiCgtX/I1sYGuw/ucvP2TXQYcvLcGX70k5/w01/8nJOnT1Gr1pA5xAgGODrJgP1uh9agR+YEKoqpj09Qn5hABcGwqSacw5VhHowutr3Hp5UFG80aqFY5e+01pk6dIEn6xHGVer1JtVbDKumZplIijEHhCJwjJPdCJDPAyZyxuSnOXLuMnmxi/t+azz7/hI8+/gMBMFGJeeXKZcLxCQwUqddHJtx5nmOdxKLIrGdMSiXIHSA0SI3JvUxGCVmwUD0D1uTeh/J7pigCXgRI/qWtTCh+9uwZz5494+DgAGstlYpnnp4+fZrZ2dmXhn0IIYZJemfOnKFarRLHMdVqlTAMWVtbGyYet9ttWq0Wb7/9NufPn6fZbA5BvVHWX1lIZlk2DCJZW/PJh91ul0ajweTkJHNzc4XXUO0FAGu0wCzDLkZlyQcHB2RZRq1WY3p6mqWlJebn5xkbGyMMw38RBPu+AoNwdD+Ui6CNjY2hWbwx5gVgsJRYl+d1VHYF3z4PLyvyjwOE5fXY2dnhyZMn3Lhxg5s3b7K5uUkcx1y4cIF33nmH1157jcXFxW8lGh5PYHwhfOslzMHy+1GQcHR/XpSSmf/DPSX//7UFOHRuEDanqryM02nIrSFzFh1FZFYhK4raeJ3qeJ2JmUk2t3dYW33O3u4e09PjxLHCmhSHJRMSgySUmtDFyByscVgNrTTl9sPH/OWLb1hbWWVufor3fvVTXnnzCpVKQNpPSTNozs3z3q9+wxutffK0z/2HD/jg9x9gVjuQOpqVWeYrEzRsxOrhAd98fZ37yed89j/9J2IdIQy0W4cMDvch74PMaWPAWVRYZWz+NMZJeq11v14IYtA1ZFRh+tRFXn3zJ1x99RonT88QVwRaamanF5ibnUBqA1qgg9Iby4MHQaCpODu8P5AOF4BRChxEQYzTjgxHlhqwApc5ssCiQo3NDIGQKOlZNqaQrSE9uBFpAThSk2EUpIHFhDAAhBNIWSFLMpQUaCeHDJcwULjAMVCQG4NWgrHFJpevXuJg/4Du9j7bT57w0cd/YnVzm87eLo+u32Dt9kNMq4U2fdLBAWmWIqIK4ewsC+9c5dU3f8BrV9/lxPwCC7M1atOTHA463F/5hgG71OoRtUgSGoHsB77WCQRG57ggwwhHhgUD8QAG1tDJrQ91kbC+2+Lh06fsd9v0BgParRaPHj3k3v379Pt9Tp04xbULb3P67DXkeA0wBIcZnUdbHG63oBkTzTUYnwyZqgm2O1229tfZPNyl3x2wsdPC9Xqcf/sSV9+4xmvnr7B8YolKpeK97TXkOE+wsGPYxGF7i5yemWKsWuXDT/9IYjsIOUAKR19C53s2JATSEZQAzggQ4r8/UgYNwZ3iNVEEXiCOAkmcYwQ2gYJG5pmHqoiOsyNgoS0YilIMAUkrvPLN5t4LUYaSqdkppmemWDqxyMnTJ1hdPcPKygpPnz5lfX2d1mGLwaBP0vcMNEQBvJUp0s6ChXSQkvQzDvY77O0esr/fYmtrl7W19QIoXB42uur1+pBJWEprPXmiR7/fY3fXpyKX9cbm5ib7+/tDf0QhFEp50KzX80qk8hwqpYa1T61WY2Jigvn5BZaXl1hcXGR+fp7p6Wmq1Uoxxzic8dJjiRjaXQ3B2sIqaAhSDecqiRX+PJbswdwZTG6GIGMySDhoHbC7s8v2zg47uzvs7u7QarVIkgRjvPrC+zR71cwo8zHPc9I0HbL/kiQ5SnTOR6XO3ppKHWPmlXEio4zPMAx9rRiGPmDyW0qP8surEV0BgsKRBVbpFSmgYFkbqpUKs7OzLM/P0KxGSJOR9TtIG3slk/L2duCd2IdPhXWjj0VxjsXRM4MpDB1B5Onf/ex9Z8FBvKsAzoExAqkFUSjptlM67QHOKRr1gEot8CmdzkvdLAZlpU8lrhRBAEnqu+hSYKXA2AwtFGEQY9Kc/W6bXEC1WqVZqxPXImQoEUHgpWo6QCIg913HoPQSwKGlZ5pEYYhwhn63TZ47MiROO6IwotaMqdYqBKEGJE6ALthmzmZU4wBnBIGpkWWOQZhD5OibhBpeFiaEQDg/kKkooj/ok+QJNulhqzE1HdFtd0gGGa1Ol24vpVYdK3wwJDLQKDS9QYd2v0uS+VRbqRXVRh2lHFIYQBKqCOMSdKBBhaRpRhRoZiYmMXlOt9Jlf/+AnZ09nHFelhFX0JnAmYyk0wFjqRXR5RKIKpUhy9Ub6RdgmnXDhZoQApt79F/HUJERUihkJhCRA21J6eFURlyJCENNVVeI4hClJCZP0SiwEilDBIrJqamicIYojIrOi6RS8SmnxhiCMEDqItxFgpABopCiA0RRTBAE5FlGkgyIK7E3ncVRiWN/UJQFk5cW5tYhZIiWDrIuoYoZiIzEOsajCtIIVOgHm9wZP2HkBiEkIvBAg7VeWhzEEf2Bl0P3Bz2SpI8IQ9I8odvvUA0aOKUQWvlUZuEpyM75Y3LGgQz/j3mM/zduo12oQGsmxsa5dOnSUK77T7/7L6yur/DxJx9Ri2LG6g3Onj1Ls9HwHiRakwwG3Llzl48+/ogPf/8hG+vPOTk+w1tv/YB/94tfce3yFZr1po+GVwKUZ8b2ej1WV1b44x//yB8+/IAHTx7iBFy98CpvvvEWb7/9FnPz81QLmXi/02VzY4MH9+5z7+5d7j96yMrOBp1sgAgUeSAxUcDA5tg0I5LK+10IQZIkbG5t89knn/C7377PV19/SZqnnFw6xfkLF3nttdc4eeIEcRhBnvD42UPMV1/yoL3Lft/65Nqsj7COEIF2gql6k9MnTnH5yhUuXLzIhQvnuXTpEvtbO/zTf/pHNva2aXc36SQ9NIKKEehBjquGZKEjHQxIkr73JOl2sQIePnrI119/zf17972M4mCT1Hjj50BIakGVQCmaYcz8+AyXzp3n4iuXOHX+HGevXaZZqbFz/xmff/wJH/7+9zx49BCrBJeuXuGtt97iwiuXWD55knrdS3/7vR4bGxs8uH+fzz//nDsP7vLNrW/Y3tlhb3ePX//611y+ctl3LpUadiKTJCFJE8AShiG1QpYRxdHwviq7yqMykm9JAaRfeMnCiqJWqyAUSKEQUnv/FKmwomDzCf97SqrCtRACVfgE4mg0Grx27TW67Q7khpvXr/PJnz4lCLwv5YVXr1ErE1ULlpEQR+l7zvpCQzpBgEQ6MCbHFs+IEIV3ovBfsgDYvezg+2UtcLzz/7fALOc8u/rg4ICVlRWeP39Or9ejWq2+0OluNBpDRt3LEmullNRqNRYWFggKq4BqtToMmDg4OBim0qWp9ww6d+4cc3NzLwSVlNfCF9/eALxkE3Q6HYAXZK/j4+PEcfxCku5okVrKWnZ2dobd/8FgQBiGQ2CwDN2I4/hb9/Hf7mR/z1aMHLEl2u32MKF4NP15YmJiuJCZmJgYhryMFvH/0nG/jEUCDK/p4eEhT5484ZtvvuHWrVtsbW2hlGJxcZGrV69y9epVZmZmhl5I3W63kJIlLwDT5aKjUqlQq9WGwHSZzjgaejK6jTIYR382Grjyfby2o5uMJC4EgaZjLVIqEIrcWoyE3HqJsURQr4QszUxxYmqCJ/mAjedPWd9Y4/TJRaqqRuAihHQkJvc+T6HDSkiEwwpBmsHmRotvvr7NN19/g3OOC2cvcH5miaA7YOfwgGdr6zx9+JzDjQOybo84FFibcvfOHVY/+wy7voILFY/Wtln94kuM8K21vHWIkpK+kPRlgJKaoNHgzOU3mJyf8jY2UuKsYHJilqmJBQ72Wlz/4rdsrK2SWUm1McaJM2d594c/4mc//yVnzp+mVgsYSsdw2Nwglb+nTGpRajTFU2AMOOcVS6KwajFZXoyJDCVq4EE7GWgGxkvyKkGAco5skKICjZBgMQxy/0xoqVB+cvRNKqOQAqTNUcKSpAmhDtCBIs0KxYQFbQQuBZdZlJBI7ddUF08vQ5bQ2d3mg3/+kOsf/J5nn/8JM2jR2tkibfcRKkKGEWJilvGFRZbPXuD1t9/g7fde4+TpBWYmJ6moCGd9gvCj5zusPl2le9hFjSmeP9/ky/AWT6rPPBNZWlQckGcp1uYIJcicIe0LOodtbGbIC5/i1u4B97+5xfOVVRKbkWlojje5dvlVXnvtGqfOnWX57CmqjSpSgEktrW6PVt+n3I4165xaWqJab2CVIM8zDnf26Owf4tKM5liDt957h1/8+59z+txpJupjRGEIwq+bstQrMoJI46QglP7cnzyzxJXWVR5vriKkQTiLcg6dGnTy/ZIVWxxWvIAJjnxThn4cG8uPMb9KhmDxF8P3cMN38QBO+QMppccUytfwAN5wnHWukKEWAXuFpUu9XicKIxYWFnj16qts72z7RuXTpzx98pTnz5+zv7/vVWDDusYhpS5CbnyDM0uzoc/xxsY6d+/6NOCTJ09w/vwFzp07x+nTp4eBIRR/V9YHm5ubPH/+fMgUPDw8HKbxluyxEpwabWKWm9Z6GN524sQJTpw4wcmTJ5mdnaXZbFKpVIiLOjrPs6F8F45AtuHmXmTlfWsTRUO1tMMBXFDO75ZKHFNv1JgvPLttEfL4MjZ/WW+V3oJJknBwcMD6+jorKytDD+qyaTy6r6ONNTjygS89vksG5fT09BCo9WzOGWq12gv7opQq6IGFXNoUyctF6E0JkMqy+VdI5qX01yYu/K/DKDryHnfeXzS3Ygh8lz705f17dH7d8BmQSo0wMiUq/ftxgO8sOJibzC968D5KWZqQ5QP6vQFZ5ogiTRAqtPagmbPeQ0rgkNKHNLgCJJFKeVS7iDXPsgyrLGl/QJKlSK1xNqcxMcH42ARRqEBYEBIdhGQmxwlBWA9wxiJyS54kKB0gikHGWi8ty3sp3XafLMupVEKqjSqVWowKvZG/QngGnfN+HSIAK7wxsXTCy4TRKJETKF3QSS1O+FRcrTRRFDMYpFgnkDJEEjDoZ/T7Ob1uRpL6jmpcq1BtVNFhgJCaLDcYZzwQJgUoWfiKWcLQB2I458hcjsL5DoCTVMKK7zI646UB0hJoyfT0FP1+ihKapJdiI0m72/JJbNYj4nma4nTo01aVT1+VUg0pxSbPvWzBOozyoG4QaHrCYQvPvCgUWDugn2VkLkUGgkatQq0aE8cRKgoRWmFNhMZRCUKy1KJ0hFSKJPXdkjiuvGD2bosQmyAIjgZ+gS8KpPZAgoM88wBVFEe+Oyl8VzbLUsJQE0XhCC3dd5esA5M7yCWRrtLTKVJmZBmkmSPQRZJ14ApPHemDXYwP2zHOeCYQjtTkdJIe7W6Hfq9HlqZUogjj7EgIcdGBctYzUXUAQhXAssLwkoH5O74NZQRCYq0hN9Yb71erXLp4kVBrsDkf/P4Ddvf2+Oyzz6hWa2iluXjhAnFcYTAY8Hx1jT998inv//a3PF9fZaY5xQ9ef4tf/+pXvP7a69Rqde9Haqx/poQgTVKer63z6aef8k//9E/cvXeH5niTH7/1Hr/5h3/g8tUrzM/PF+nnUNpXnLl4gQuXr3D+7l0++ugjzOef83DtCanLPSMs0ORC+PHIOZRzOAn7e3v8+cu/8M+/e58bN77GWcu1y6/yo5/9hBNnTqOjkMfrPgnz8eOHrK6vsdtu0U4ThNboMEJbi8wsVaEZrzb4xY9/yv/pP/5Hrl27Rr3Z9OOhVuyub4BwuJJtbTMGSZftzTW2dzfZH/RIbU7vsMXdu3e5f/8eW9s7ZNZw2Glz2D4ky3K0kigVojAszs9z9dJlXrt8lbmxKabqYyzOzLF8cpnG9CSJhq52rD56wjef/IkPfvs+dx8/ZHJmmrfffYcf//gnXL16lfHxiSGYhZQgJUtnT3P59Wucvnie33/4ez75+CPWNlf55Pd/oBqE1OKI8xcvUSkm6ZJyb6wltx54L4M+8jwfFgUvAwmOS0lMIaMuKfze28+zC6HoEFqHwTPSJUcL9ED7cKTc5H4ucw4K8On1198g6fXJkwF37t3m888/J4ojjFRcunyVRrMBSgy7rwK/eMjyDIErAk+K/S7CccqC1xRjEdYhRJHuLcQwCfn7sv3XAFplcbyxscGzZ8/Y2try1iMTEywsLLC8vMzU1BRxHL/A2DpeuJZgTaVSGXrExXE87NQ/evSIw8NDHj9+POxEDwYD8jxnZmZmGDZRstRGwcHV1VW2trZI0/SFQnN+fv4FSTO8CPiULLW9vb0XfPWcc4yNjb0Afo56Df41EOy7Bhj9NebecebcKNhV+i+WxX9Z9BtjhgnFCwsLw+L9X5JY/639Gf15Ke8+ODhgdXWVu3fvcvfuXdbX1zHGMDc3x8mTJ6nVakM5V7k4Ozg4oNPp0O/3h8zB8ji11kOWxtTUFDMzM0xOTjI5Ocn4+Lj3cwpGLXGO7rESOCxZH/+aNu/n5mN+hbOADxEx1hBEAbkbYQ8hqFYqhf9Vle39Nk9X97h0LiWmSjX23kvSSaTyYM3+YYd2b0CaZrQOuty/eZev3v8tazdvUG/WuPsnSefxCnE1pmsTnq4+Y+XOQ3pbh0gHUjiMyUi7PUySIMIAqTSBtcjEa1Onlxc58bOfMDM7g8HLUnUUMTE9zatvvsbc8qJn01hHv5dTqTSxmeDrL7/m+d4TtrtdTJozubjM62+/w49/9mNeuXqCSk1ijSPPHUJatLboWGBysLkjFN5exQ7ZUEdBjUr5L2MKgE75yUMoiRNFmIh1uKx4Dou5UAeKqBJinPdTc8rLBrXSCCfBQKACjC1EKxqclBjrPZa1cGAyVMHAiqOIbGBQTqJVSG4LSykJadIn7XVxSQ/RPSRZecZ22gcShBbUxqY4cfV1li9fIRwb49SFSz6EY3aKqUaIDjNkYBAyx2Z+jXKwf0Br74BBe0DaN3z80Wd89sfP0Ba0DkjxTbYwrnh5opb08hQpLEm3D8YhpCbJDSbJSQ47PgwGg2pWqVSqLJ1Y4vKlSyydWKLSiMlUwUjLHXudNms726SDhKUTS8yMTxFFEZl1bO/usrm2Tn//kOb4GG//8F1+9W9/w+WrF6jWIpT0AK4WApsWfpmBV1tZ6xvEaNCxIqyEfs2ZZ4VKAiQGrb5fDcKssOER8kWwD3hhRVMCLuXmWakjgNRoXVeAiqWjsygYhCXbavQ9hoxDISmTdAVHtZRwDuNy7yDjQAeaarXCeHOM8bExJsbGmZ+dY3FhkWfPnrG2tjaUwZZSWBBDxpqX8gYFKcIHmLTbfQaDHv1+l/39fVZWnhV1w8JQceCcZX/fz0mPHz/m6dOnbG9vMxgMvnVOjwN1UnrZc6PhgzCmp6dZXl7m5MmTw6bj5OQkURQOQbdOJ32B8V6mCo8234578L20WeUYSsEFRwCtwFsPKKUJhZ/3Rq+RB2xfBORGwc5ynt7f3x96zW9tbWGtLcJgsqGcelR2e7wmLJuQ5f5rrWk0GszMzAzPT7VaHTZwjxisbkhUGFKkXwCyjwHYnllAqZQv7z1rbVHPe6agFP5LlUolSmBQvcCcLU+ixX8Z4/8vKZRSf8/2nQUHhVBYqxHCYUVGmvZJBrlPFMMRxQohDFIolPb+I1mWEWhBXkSfa6m88X6oSbKcLEsJpCQQkjTPGNicVApUoGnGVaJqFReHoAShKIYgUUyW0qeYCnzHIK5Uiz11OCVI8wybg8scJjV4j16FkgFKBEihMNaQpAMCoQm0JneWNMtwEpSne5E5Q55m4DKsVciav9F88eBvrFAFVIMYmzvEIKed7BPEMc5AuzPACRhr1KlUIs90kQpnLYOk71OA04EHPsOASjVCaodxpqC5uuJG9ImqSIkxnhUjA4VNM5ySiFBhnTeDFkFATfvroHWEdX2Ec0Tap0mDnxx9Wog/j2meEQX+dWf9OUyShEGakOYZDkUYx4ShwOkMGWjyviHPHAKJ0DA+WSWKIoSMiaI6WZpj8h7VWGNjUQS5OCrVeDhgRFFQPIyyYKR55g04hFKo4nh9AqooCqsCaDDGp8+GCiccQaBRyoMMQgrvkZdbdBB4Bp+EXIGVCqUihO2S9FK6nT5OKBphiB3kBKHGZBki8Awk5RzCOg+IuZxev0c36ZNkA7LMp1w54TDCoUJF7owPN7HGJ7A6T8+WsjSUleQ2+d/9Gf7fuo0uDrU8esalEDTqdS5cuIAUUIli3n//fdbW1/jk448ZazQKc/IFNjc2+eLzz/n0k49ZX3vOZHOcH/3wJ/ybf//veeXyJZoTE77wkBJpPNU8VIqD3X3ufv0Nf/r9H3n45C6xDrl87hXeee89rrx2jamZaYhCLzl1HsCUQqC0ZHpxHlWJyZzjsNViY3eLPG9js5w8TX0xpxRWKTJj6Pf6PFl9xlfXv+L2gzv0sj7nlk/z6tUr2Dzjf/gf/p/ce/6U7cMDDns9sryEeh3COS4uneMn7/6Iahjx4M497ty+iTAGqSQqCsmEY2BStFRUVECsNAGCQCoCJAedA377xw/4/Zd/4qDbptfuYa3BWOsB6XSAsY4cV3RYHQpJrELOnDjNq69e5Z233+GVS5dYWlymFsWEThEWRuS5cJBldPcPefDNHT76+CPuPL5HvTHGez/+Mb/6za85f+ki9VoNgW+ClC1hhw9bGp8c59obr6OCgF6nS+/jNvt7ezy4f5/z584xOzuPDgKfPu08G1kqWXQmj1hio5I7Y8xQ4uFG/Ei+BRoJz7JQUhS/55CikAUo5eXXtvCvsQZTfjmLxC86tA6GC3cdaBaWFvjBu++QJX0GSZ97D27z0cd/9MEoSK6+epVa3acblsUGlF1tNSxyfTPsqEizZVc78A0oU0hjFMKncf8r2kYL3CRJ2NzcHEp5Op0OQoghODgqty3/drSQHQXlyvunZPKVwE2lUqFarXLv3r2iSF8ZAnf9fp+LFy9y+vTpF+Q+vpDuDINIWq0WUkrGx8eZm5sbduNLtt/oPpT7WTIUS/+g3d1d+v3+kCG3tOTlPpOTk0PJ9Ogxjp6v43Jl+O6BhX9rK4/BG/B32dnZYX19nZ2dHfr9PkEQMDY2xuzsLDMzMzSbzcLv6e8HB//WVn7u2toad+7c4datWzx9+pSDgwPC0DcJ2+02d+7c4ZtvviFNU7LsiK0zytLwhvUZg8FgCDRb65nOk5OTTE9Pc+rUKU6ePMmpU6dYXFxkfHz8BXYgfFtuPMqm+N5vRkEmPaiE8DYhArTA+8IKQWacZ6tJQVCrMb4wTzA5yfrzPZ6v7LO5uQ82I8+75HkfJQSB0HTbPf5y/To379xh0O6RtTt0trZYf/yI7u42/TBk/9F9vsSBlhAE5EiCMETFktyCVhEukaiKwkZV6vNTvPL6q5w7e5ZqXCUXAQuLi1y6cpGJmSYGg3U5cejvx0aj7sM/CjAtN9Du9njw8BErT++w188xtXEcHfq5Ic1N4YmR+ylSKlQgsS7zIEUuwAQI55nq0i+5wfn5Tkg/H5W3hn/dQdGLcw5McQ9JCUJYnDGoQJGanDw3aC1J0sQDt6UTtnEEQhTJzTlWSmQoSY3DFax7oSjsmQzOGZzJyHLIhMAEXqmzd9hmf2+f7kGb+9dv8eWnn/Hw+mfsP3sCicEphYtrTJ5Y5u2f/Zqf/vofuHLtIvWxCkKF1OOIihRIY3AoUgNGSFLn2No54MH9Bzx/9hyTGOJKkySxtJMBMrdIIcmdZXx8jLmxacbHxpFhgIxDKrZP4gwyjsgzg0gdeWo4aLU47HTY2d2h02nTOmzx9Y3raCX4Ee9w4eIZakGIsYJukrFzcMDzzQ3AMT81zWRjjDAKSS3s7x+yv7WNdHDm3Fne+dG7nH/lgmdpOYclJ5DeD1KLouaUEiEsA+cBBKTCCLDCK2skDqU8LyPRkP79lmPfia1UQEAxT40w+uBY4+glPzuq3woJ8cjvvMAMH/EwdAWYc/S6KFQhR03hghfm98SWn+nXiYk5SkRuNpvU63WWl5e5ePHi0Puv/Crn8tHgDCkVSmsCrQjjyDc0hFccbu9ss7O3w917dwrpb23oL5xlGe12m8PWIe12m3TggUet/VreFQSI0QZ5KSGemZnh7NmznDt3lrNnz3LihPdTBlHsW0Kel+CXP5XlMf61eea4XcboeT86/8U5dhT1bKm+Ofoqa91RX8jRxtookFeCg8c/p5SJl0q0co78l/Zv9BjLvz3e2CuJBrJQIgJYY4ehk6WaSI6wBUc/zzqLKaTXCDGUR8uigSNR32JglmuM8l48zpYtdm4ErCw/66WX6qXbdxcclKqYUCzGZgjpk1as8Q9oHAXUqhUCFWIyiwokelgwFTK7PPNdsSjEGuMZhM4NvTIGyYDMZKA1QRQRhKFnATov5ZXKgzZKSnJhcdIhnPASLmeRQnlU1npfs9wYwiCkEoZ0uj1CAlSucakEJdASdCSRBfvOOgEoBnmGyQxJt8Mg7ZG6DCEVURwTRgFaC4zJCJRC1eokSUpeMKkyOyCKaqT9PhYBMiQKFGO1Olop8iQhiqvkTqCE9OBplpDnDheGCOkItR8ApAqQErRSWOup/44MqSVZnqKtopcMMA4yC5k1yFCiQoHQjm6/x8Fhm/39FgZHIDRjcZUorhRMS+85WD5QWZ4R6hCLT2ZN0oROr0O/n2DT3LMahSIXilD4wI1KEGAkCB3gVICKqsS6ghKB74ZGIU7mKA1KBUVhLoqgj6MuQwkM+gCI9IUUqNJY1TlP8+11B77bb3PSPEGoiCjUxLH/zFLWoZRECr+4t7khSxMSYxCBolqrIo03MN/Z3SPo97BAs1rDpjlxPaY36HtqsXAk/R4Z0O31PPMIQ7ffoz/oY3OfrBdGIbYArWU5qTmH1grjLCYv0lOLVNjv26a1N8sVrqB54ynvFJOA93a6WHRPHB/87nesPHvGhx98QBxFXLxwkZWV5/zu/ff56t5X1IM6P/zBD/m3//bf8tobr3vwpZj4XZ6DtQjnsCbnYHeP589W2NjYoJf2mR+f5MyF85y5eJ7x2RmCSsV3Kq3C5rn31HGewRFoTXNsjIVTJ5g5uUTtRpP+XkYkA6o6pBKEHjgWFpSg0+/xfH2NJ8+fsdU9ZJAn3N9+zvb7/4jJUvbb+3TzDKsVQcUbUE80Jrly6RKvnLvAj956hzdevcbe1jZ/iD7E9Qdsbe0wGCT+ecWhw4Ber8ude3f453/8J37/+w94tP6UgcvoJRkHj+6RYclMTlhItYywWKSXPkuBNA4tFJFQhE4yGTU4N7PIG2cvc+nkWSbHp7yNQajJhfRNGuvQKAIDnWdb3P/qJrce32WA4fLZM1y8dInlkyeoFzJwrDtiwOU5QkrP9nUw2WjwyrmzPL1yhYcP7vPo6SN2DvfYOdyn3e8xJhga7qZpSpb6Z79M75XFe5VMG1k0ZHzxIUYYgi8uuMvvAVwBEOIYpoNZISjWp8iRYlQ435suTZKzLMNYSxiFSClZXFjg3ffeJRn06A86rKys8OGHH+CMII4izl04T63RAMpCRhUWDMYnbypVpEaaQmZvMLghY94VDQZnDU4WrOTv2fa3WFyjW7/f5/nz5zx69GjoDTg2NsbMzAyLi4tMT08P2VfAi9KXYhuVGpfXXko5BBXL7nqj0eD69evs7OywtrZGv98fMgiFECwtLTE+Po4xZghgbWxssL29Tb/fp1arvcBsazQaw/0qP3MUBCu9Bre3t4eS4jzPh16DJfuwWcjR/1WAQvx1RiHwQvpzaU6epim1Wo3JyUlmZ2eZmpoagoND39pjC4GXfc7LPtc5H35yeHjI5uYm9+7d4+bNmzx8+HCYPB2GIVmWDUHKcmHYaDSGcuGSrVAeQ7/fp9frDYNm1tfX2dzc5OHDh9y/f587d+6wuLjIK6+8wtWrV7l8+fIIW+Tl5+f4GPa93iSgwTpBnoJzJcPN+y9ZC3maYyzsbu/x9PEzNtdWsVkfc7DLsxtf8VmQM8i63LhznXa7RT2qUJUhg3aPjfUVWjvbuLQHmQEnsEKiGuPUxicJ4hCrIbOOKKhw7sIF3nj3bSZnp7DGkvZyWgctbt+9y50H95lfWOQX//6/54c//QHNsZg88fWmIyAKJVHocNYQaol0FuGED/sCcgvdJOPBjbt89PEfuP/gHpXqBD949zz7O2tsrq1y/8F9lpcXmJubZml5FofBiZzMJgQqQMkQ6zwTRUi/2HRGeKmxKpEh4W3OjPWNJUGRqHoUDOCMxRgQWmCVY2ByKmHgfdeAMKxgMm/7lCUGLRROF/ebs7g89b6OoWcUOgtaBuR5hlCKXAiclqBDjM1Zf77Bg7sP+OLzv/D43kPaO/vsPV2ltbFFLgdE42PEc2P0jYVY07hwgfnLl7h47SKnz3gDf4EnISRJRqfTYX1jk27iMErQM21Wnq7x5z/9ia17DxEyZOxEk3OvXOL02dOMN+q4PCeuxdRqNWYnZ5gYm8BIBYEiyvvYUGDDEGcsSatHIDTtbp/DXpeV1RVu37jJw/v3eHr/Ie3dXbI0wQjLmbOniOMKaWY5OGyxt79PGIbMTE/TqDfQygOjrYMWnVabRqPOhQvnOX3mFM2xKkHgyDPvG5ymGSI3VAONFIAz5Lnx/uhBiDGWbj9l92CfVqdNo+rVToPUYAJFwvcrlEyHISp8EdEswwaHIFEB5glePtaJkf9G34OS3YXDjShrhyy14nvn7DDgtHz9aGwt7veycQ64EYlGaQ3hpbjxcO5fXl5mfW3NN7Z2d9nb22N/f59ut0tuDFme4Vw2XK9KKRFGvBCsUYJWo1+jLLgwDoegm8MDY0mWYIzxtcPMFEuLi5w4eYLTp3xYW+lnWK/Xh/OUEHpYl4zOJ8cDPkbBPCjBQ/fC/vpz5NfL3sJLIov6vIBgi5N+VDePNseh+Jui+V+ua0sQrwx8LPfP778cMgtf8LAXxQcNr2nZPPW4TMnEP7Ij4YVjefG43AvnQggfFlgyAQt0zx95eb0QIPHgnyi9M20BLBqM856IsiAtlV6NZZiLteV9d3TvFhDA8Dwp6Y+7tCXKwr/fVuA7Cw5K5T0H/Un1st92u0WWJcRRhDXWp1PqBCl8Qay0wLgcJQTdbgcZBgQ6LKSr/mLl0pJZ6Hf7JN2EvJ+hKzGyEiKUJFYaLUGqotOgvL5bK40XNRSR18Z6qrHwcdR5liGEAqkBgRaSQbtLB43LHRVRJagoz57DkiQpBoEKK4RBRDvxprbOWWyg0WFMXK9hCzaI1gGOnKSfIAKFqldYX9vAOcWYEpgMTJoThhHN5hi1uIbSFqUVgRDY3LclbZYQSJ961KjViaTXpIc6ACeRwi96rfGdC2sNQuTIQNDtdsEKuq0B3U6CMSlaWCINadIhDqpEqoJNDsjJSLOEVqsFzhEFIVorL60OvKlnnnvfPiF89zKzOWme0+l3kSkEOkToGk5U6fYSbG4JJKRJRhjE9HqGQEG1rlECnHReThwGftI0OeqYYehoJ8A5N/RtcsVgVA6IYRgAEmsgCDTVapVOp138rfdaKAehMiVUCIXWiix3WOGIa4EPI7GCVCrSQQ878MxTm+bsbu/SiTvUazVqotgvLJ0kJQwUSTbgoHXIYadFp93BYKjVKpi08IjRaphsba31BreFyW2gAiQKZz2lWPE9axly5DdoC3BTCp/CpYvB0ocNxJw5c5qf/eyn5HnOH/7wBx49esT/+D/9jyzML9Dt9Hn48CHT1Wnee/c9/sN/+A+8+cabNGoNcF7S7UM3BChFZlJ63S6re9us7m2z1+8hqTI1O8fc4hKT0zOe5YPAZJlntglJaRUbBAFK+0aBMTloSaVRI+52iIOASGp07q0JjHD0+33u3b3LHz/+iM9vfMnOoAtS0OkesNHepyokdaWYjepMTc9y4cplrr36Gm+9/jbnzp2nVq97dl6eo6OAH//6Z5w8f4ZOu83U5BRz45Pc/vI6X934hj//5QsePn3MzuGeT4HHYaT2zZc8JVCamYlpTp04RbPWBMEwpaxaqWBzQ95PSbp9Dvf22Xj+nFtfX+frr77k4tVX+eHPfsYbP3iTpRMnaNTq3kIB6TuXztE9PGRra5NWOiB1jkxA5gybW1t0ul3vv5nnHuBWGmcMznj2nRLecqDVatFpH5LbjMwatg722Tncx+D9lQLtGYuFiwmq+D9wLxRUxhgPNDvPuD0uUTk+ZvifF4tTJDhx5AWLZwkLJZHO+4b6TCxH5iAzGbkxCOV9RpG+YAsrESdPneQ3/+bfYIXlP//n/8T66gZffP459XoNKQSXrlwmjOOhnKI8BokklCGBDn2gUdmVFN5XF+EXhFpILy92vNA5/z5s3+ru/xUWnHOOw8NDHjx4wP3794csrsnJSRYXF4eMq5cBZ6MAyih4NPrZZXrx6dOnqdVqNBoNKpUKN2/e5Pnz52xubg4ZgiWT8PTp02it2dvbG8qJ2u02zrkhqDczM8PY2NjQX24UsCyPLcuyF1iDOzs7dDodlFJMTU2xuLjI3NzcS0NIjm/fVaDo79mvUVZl6TW4tbXF+vo6W1tbQ6bo+Pj4C6zBOI7/m6W2o/demZq4ubnJgwcPuHPnDk+ePKHdblOpVFheXh5+LSwssLDgJV+NRoM4jof+UKOekuWxlADw7u7uUKp88+ZN7t+/P5Si7+7uDtOp33zzTSqVyvC8jN7D39Vr/N+6DdIB9CIUgjiUtDoZTx6vsLm5hc09a18Jwf72Dl99/jm3vv6ag91dklYb2x9w5/EdHnzygW/g9Hs4IRE6gDQFkxGM1wnGxkg7GhFLgrhOc2GJaz/+Ca+9/QbjzQqVakiAIk/x4QOLkzSbEZGUDNqGJ6sbtKRh5WCL2akpzswuMlWro6saVRc441BOEEiHcn58UGEAUpAjSaym2zXs7rW5cfMWH338R549e8TS8iJv/ugXnDp5mkf37/LhB//M+vMVrn91g/nZJeK4SXMiAm3RQYU0BVWAfUJ6NU6WZTgnUJQpoAWzxhrPGrRH456UvqmEE95TVzikxjcInWAwyHC5b6qFUVSwNnPCigckU/yCFGcJnCzq3ARhNUIoulmKjAKEEhy0EtbXttle22RzZYVv/vxn7t+8xdbKCv3tHVyWI6KI+uQkp1//IW/+/NfMnzjBrUd3+OIvn7Czt803X31GI1LcvTOF0oIgrGBEQKff52B/l4PtXeQAcmdoiS4H+y32Wi30xCSLs0v8/Je/4t0fv8eJU0tUK37NoCNJtaIQBjACY6GbO8JaAyHA+pwWgqUJbA+0cWSZ5drlC1y7eonb39zgD7/9gNt3b/PnL79kenGe6fk5wrhCp9Njd2ePZDBgfGyMyekpLxcWkv3DQ9afr/u6bXqa02dOMd6sY41FRQoVe1amVMoDrsaipCAxXkUUxz6hWhXspSRJSJIEJQwOh9YSLQP67vu1DnCiBIa+Pa4N52oKRtRIUrEPxpAjjL8Xx/OSoeZkCdqUDLai1ivocSUrSxWyWQpAsBxmfZ0gkM7hRBF4VQTUgSdu+DE+8x56BUg4PTXNwsICW9s+XGxjc5Pnz9fY2tqi3W7T6/UZDAbDevVFkMq9FKAq54ESCLPWkmbpkCkYxzHNsea3/ASXFnxzsdFoDIkzft/tC/PKKBA2yk5/WQhbear862JYe71YX5VWB0PU1QNq8OL1KEFY8eJ8J3hRBXG8KSZE6RmoUEoW9bvB2hxrc/JccBQ2Mwps+n3zQObROQ1DTRhGw7n8+DV54bOlGKW3HmNLfvseHp4bJ7zatTgfnmTAkDQhRSHhLjlJ5T8lCOxcYbExsj/lebSO/xrq4HcWHHQuB5GQZxJjFZ1OQpr2yU1Kv2/RSiOlT6uxFgYDg9KSSjVA4DxYl/piLO2nOAdRHBHGIbpIickKH6g4DBlvNKmEpR+RB1SEdEitsBQ3ihB+kVcuGoRnF0qniLTGGOcBQxUgZE6aZHS6bZx0WGWIiNChLoyBLWmSk3f6pNbQanVIej0ipalX6oSVClEYMVavkducLE+QUhBXYhwg2x3G6nU6nR7dziFKBoRBSL1RIQ4DAimHk32e5V7Wa71k2RnvxZUOEvraImUVSYDJBWGkEFhMUsglNeTpAGMyMI5eO6ff7jPo9lEaJqYbBEoQRSG9dp+02yfWFTpdL6UK8KBObW7Os1dwJFmKGXh5X1qw6fqDAZnJ2Ts8QGhJrTlGFNcIpKYaVcikops7Dtt9hNDkqaEWxQRKeq2/9onKBod0R6Exxljv03VMWng0cIz6M0kopMR+8PPIvLE5aTZAaUksI6IoJI59cV4G3Ug01vpUbC0FVkksGTiDdAIdCqJ6TGQyVKDpd3oMOl0yk3PQbRHuBcRSE4cB3aSPUxaTpx7gDkOqtSoiikm7fWQsiKLIyyDynCiuIITvgpnMkglLEEk/aliBloo8Nccfse/8JpRnrenivrHOM+AAT8N2jtxYKrUal69cQWv/2vvvv8/dR/e49+AeWoZUogrvvfce//AP/8Dly5eJ4whrsgLjEVjhQVWpFWSOFNg5OGR1fZ1Or0OkA8YaDSbqTao6RGYWhBv6y0nl75vMGFyeI4sOWaUSUwk0JhnQG7TodGp0DvbZ29hkY3WFL7/+mpv37nD3yUO29nchVERKkeY5tbDCVK3BKyfPcu2Vy7x+9VVeufQKJ0+dIo5jcmOx3kjGe1L227STLluHB9x4cJd7d+5ysLuHM5atzQ32WvvkzqICH9TjCrNtpST1eIyluQV+9O67/OynP+PKtWs0m2NkgwRlQRcgnx9Xc/r9Hnv7+6xtrPOXr7/mo08+4stv/sKTp09YffKE3/z6N7z91pvElQrOOZIsoT8YsHm4y3b3gJ7NGWQDrt++wdbmBpPjE1QiL6s0HBmiV4KQUCi/UCjmtF6asLKxxrPtNXIMMlIYYRlkA/+cFwWKFP6+H3bOhPShUsU1KxmEfnJW3+r8vZyx5lmIiKJoQICQnrHtnE9sK7rIxZv4gmbE49Dvmxq+HsUxZ86e4de//jVCwIf//HtWV7w8vlKvUR9rsri0RFSJcdZ4QNr5hELjPIPYFQ0dY21hf+GLFSXKRV7hl2O/v8zB48Ek5c+zzJt3r6+v8/DhQ549e8ZgMGBmZmbIGiw9/YIgOAb2HpNhcNRtPvLSOfpcKSXT09O8+uqrxHE8ZBA+e/aMw8NDbt68SZqmdLvdod/h5uYmKysrQ3ZZHMeMj48zPT3N9PT0kNk2WmCWx1imELbbbfb399nd3aXVapHn+TCNd35+nsnJyWEa7/FzdBw0+mtg6/8R219j6JX/f/z3Rht6JYNvc3Nz6DVYr9eZnJxkamqKsbExKpXKC4Dw6L9/69yM7sfoPpYLnzAMhwnEZTJy6WtZytdLluroffSyYyo/z1rL1NTUUGo+MTFBrVbj1q1bw5RrYwyTk5OcOHGCmZmZF96/fM/j7Mjv+/b//X/9zygdEcgA62Bne5cbX37Jo4ePyDOfOhkqTZokJO02Isu94ihN0b0UawW50cycPs348hI6DtGRt8SRSjI5NUUyyFl5/JxqpcYP3n2X13/4NgsXTjExWacZ+1lD5g5V1IaZyQmFI9CCgcI/n1s7BCgunLvI9NQ0VRUQYMlt4qcBJ7C5V3QQSPrOkCVgUaSp4dGTDW7eus8nn/6JdmefM69c5kc/foc3r7zKeKPBRBRxsLnJ/tYmd+/eI6o0iKsNrr12gaimPJnB+PWJDiwGg3OBH/PKpMyR9ar3E/c1FXjrjZJpPiqbk0YhbSFNFAoRBhjnG4tCeq+0NPMMxNTkSAFhYZnkjCUOIzInSHJL21pamwc8unOf+9/c5safv2Tt6VP2d7foHewhshQVReixJlme01xc4M0fvsfb7/yc85dep5sPWF1fpaEjdnf3ub72J1YfrnL6/BlmF+aJKnUsvmm+uDTLm2++ybiKkEqyS5/bt+9zuH1A2k648uoVfvXLn3Hh8gm/7hYWHWoym5MJ3zCUVhBqTV1LcgnGB82iNaTGElUF2oJIBFoEXHzlNNV6he3dXba2t+ntHrL68Bmda28wPj5BMsjZ2z1gMEhYXFxmfn6OOIpwzrFXNAZyYxgfH2NqcpzJiQZxpEiz3Cc8I7HOYa33ru8OBjjpyKXAmRxhNML6YLytjU1ahy2a9Tl0GPm1VwYu+6/QFX4HtiPhqSsapMWY7cp/i/nc2qF00v+2K8DCkbF8+NdFmEjxvRv5l5fMFS+rE8rPKs+mHakrbIEVlGNzEIQEQUjRz/ENXGuoNZvUx8aYmZ1nYXGPhYUl1tfX2d7eZmdnh93dXbrdLlmWDSXH8GLi7WhKPfj6JU1TypCrUbXD1NQUk1OTQ2Byfm6eyckJmo0mzUaTMAqH7z/6fsNjHgEEX9aQOpqHAI5AxJKl5/9mNCBJFzEEha/jiEefxwQFslifD1l1x87zkHU4UquVn2eMxdocYzKyLC0A2iNJcZk8PHp8ZZLxKEPzaJ51SOnvSGvNsTCWF+d0HzBT+FMeZc+8AOyWxyoQ/jikZ20LoV/wv3RuxL9QMAyZ8ssOL2UvVUxIURApXgxacbklLy3r/s7tOwsOSuEZJ1op+gPv5WYN3nPNpigl6fW7WJsPbwQdhATtECv8Aj3SEf3+gEqjAVKS2xwlIM1z8ixFB5p6s+4XobkjjKSnxhsf/WyF9WBrIdv0vk2KJE39gKK8xFHg14tSCGr1Gk4oWuKAAS1Sk+B6OWhDYhMv3RUSTE6ep/QHfXKb4wyEKBpRnUa1iVASZfyELYXEKX9DesNfRUVpunmGSPokSYaOYprTM1SqIZVaRFSNsS71f680yt+F5HlGr9/DmoQsHYCokWYpWsVIFL2uAeHo9zVIQxQ7krSLUpCmlkHf+56EUUilGlGp1ogCz+JyIvPdUJMRxRHO5vSTAVESsXdwQBAEBHGIUMoDesbHlve6XXqDPkjvgygDjQ6q1OpNKrFCk5M7g9IhTmgGaY84hEoAlcB77KXGy+zCKEDJHGsdGOnlFDosHnY3fJBLGReFp4IoOk2mkFqUBXuee/+zKIzoqz6HBUNhclJTMpAUCuty3AijSAox9BHQShEqSa1aQViHkgG9ao+9gwNSm+OMIclznFIMBs53AqsxYSX2ZiHKAx1Jt+elkSogjn0YS61WI1K+M+usKdhLQ+jCd5BdYTj9Pdvywh9DB4GXuthCOlB0k1QQ4JxF4AjjiKXlZa5cucLjx4/Zb+9z2D1E6YiFpSUuX73C6TOnaTSaPpkQUwA93mMHJ1C2AHkyg8gNEZKqCJEaGnGVeqXiffScKwAf3+Hxpt8eGFJao5TAGYOwGflgQJYMAMvK5nP+P//5f+GPn31Mr9NlZ2+PxBkSLBkGmTk0gqXaJG9ffYNf/eKX/PTnP2NybtZP3MUEunmwy9rWOgf7BzhgZ3eX699c5+bdOzxdWWH/4MAb0Do/0TfH6kzMzxDJgNnJGcZqTdqdNo+fPWa/tc/JuXn++3/33/Gbf/gHTpw8NQRZ4zgomGe+0BfO59yE1SrViXFmTi0zvbTA1Ow0//if/jP37t3hs9//ngqCqXqNs+cvENUr5M6SiJxUW1zgJ8Hc5QzSPt2kh2oret2eZzIWIJZn/XmptnQOLXyCnBFQqVU5UTmBlIql5RNMT88glfbeSUKgCi8VnzjnSNPEP+NCDH16gG8VVaNMseMLbudc0bUrFvMFf99ZPyGXxYmzdghCWhwa0IXvamk2bUVxfxRaZKklJ06e4Je//CU2dXzw/u95/vw5H/zudwRRyE9//nNOnTw5fB9rCw9UDInJCgZ2UZDIoqtd3NO2AC3VSKH1fdpeJgUdLdryPOfZs2fcuHGDZ8+e0e12UUoxPj4+ZHJ5M22frlcWki8HfzlWYH67+I3jmKmpKc/ULhLsKpUK9+/f5/DwkEePHjEYDNjd3WVhYYFWq8WDBw/Y2dnBGMP4+DgzMzPMz88P5aGj99soQy7LMnq9Hnt7e2xteYZBq9UCYGxsbMhQK4/vZVLp7ypYNPrcjV6TlzEBRkE7ay39fp+dnZ1hKnWr1UIIQb1eZ2pqiunp6aGk+Hjx/2028IvnZhRgG70XlFLU6/VhauPVq1fJMi/7CsNwyAgZBexexkB+2eeXzIQgCGg0Gpw8eRJrLd1ul93dXXq93gv+itvb25w8efJbMvLRRd2/lu3/8X/7v/t5PvdqiV6/h0m8bNs6h8HRc47a2ASnfvAW03PzxHHMzt4ea1/d53Bnn+lzS/ziP/4DP/r5D5maniC3ltQ59tpd7tx9xDd/ucH44hJvvn6NX/36p5w+v4QMBUpYQgxag3GWNLFEWhMBuUnJpKBvMvYP9+ntH9CMazRnpqgvzGC1QOQO6QoZpFKkTmCFQkYhgyRDakW33eP+vWf86ZMvuHPnLmGkee+d13nr7Vc5c26Z2UqMRnByfpp33n6Tvf1tPvnsU27e/pqZuWkmJpucOrVEFEq09IFjQheNbivIcWB9kqiTHtz0DBofVKUcRfpu4XVW3PNZnvvXhfdnxHnvQCN87UORwiydGaZFx2FIllsPFgaKxMLWXps0GbC3d8jtW/e4/fUN7n32JZt3HzE4bIPNsaGgsjhDNNEgz3KSJEU7SbSwwKDeYGNvG/v1n+mlGWqQcfXUJcI+PHu6SreTIlWVK5df4/TyMpWogtKKyZkxJseqRE4itGS122ZlZYPUGCr1Oosnl2g068U8bhA2x+QOI3OECJGBQDqvCFM6RCeAFNgCHIilB4mNksiKACtwuaPWrLN0+iTN8XEON3cRfYNLrE8qbnfY2d8DKZifn2FmZop6PaI3SNjY2mFvfx8lJZPj44yNNZHa1y8Si7Ci7DV6b0grfDEmrVd4IT2pIc9p7bfY3dyl2+5SqdQIohgnBCiLDL5fDcK/Cs4VYJGzR+Pq6OvFbFoAgKKkCg6ZhEcw44vBGS9rHI6+5lzJZDsC2kdTb4esMXHkk1cCTtb60Dg/J0jCMGR6anoYAHLixAk2NjZYW1tjdXV1mDbc6XQYDAYMBoNhg+plc7pzzoNE+FowDAKq1SrNwoN3aXGJhcUFFubnmZmZZXxsDB0EBTBaBGpYN/Sye9k1eNlnH59L/fgyysAbBQc5dq49NOs9vVVhDTfCjjTGA+LlvDZ6HSlSqN1LGHhHbZDh/Kq1Dx8t68ay7jped4yyL4MgGGH7C4a7cUyqPFqXjt5TR1L04d749y9CacsbqWT8iRJQ9DTJo3NcHPfwvhqpjSwOWyTE+1vdFWuoIzahK+iFo/Lsf2n7zq4WhBBgJblJETgqcZW8No6Wkn6vjSAjzxSgcSJFae+PlybaB2zYvPCckuRZgkMSiCLxN9AEzlCvVrDWoVXgHyh59ODjSvTXM4KEEwipEA6iIMRHWPhEXml96q8QgkoUIlWAyTLIE2wGDsOg3yfr90hzi5aKUGuEs6TZAKkEtWqDMKgSyZAoDtGV0PsiSLwJfulnUHQrUmcYmIwMA4EjrAZU6zFRJAlC7VlFwoNj1noj59xZL6/AkdsMO8jJdhPiOETJkDyzBWiqkEGd3KaItsHYdBiH7ZxPxArDgMZEk7gSeTQbIMjIRE5QU+DiIo3Y0Ol2sM4DOK4rhqOyyTJM5sE6KX2yWq1WQ0chFRX79F5rsMUNnuUD4kpAEMaEyhFFoe+YAjifA6eVZzjZcsAQL6aUViqxT7szXrIu1WiAjacZg8TkGVJCoH0aWDmZRKGXAQz6fawNh6au1hhvuFwkMmepTwmTKsSAD3AIYoKaxCmFDBVOA9bR7bXJ8sz7AmiFch4QDisRQitia0mCBGks0nhDab8YVB5gFZ4lqIT0xaEraPZCHMW+fw/DCJRWQ7aPxYPvDMfb0mPET2ZpmrJ/eMDG5iabO1v00wEOz/Zod9ve1+PggJnZWaKgghFll8bfL7IohI1xuCzH5cZ7Chm/AEydxWiJDRVG++LYlfeFA+UgLNhpB9s73L9/l08//4zP/vI5W519Os4nA/e6e2y0dwGohxWW508SxTG9bofD3T3sYMDp8Xl++e5P+NXPfsnyhXO00j6PN9dZWVnh6eMn3Lz5NXce3Obg4AAtNGmWsrm1xSBPUEJTqVSZnplhcXGZM6dP8+ZrrzE/NYN2ipnxSTr7h/z5s89J9zqk7S4VNMoUDQ7nO9TgQe5c+IUNuuhQ4mUUzgkiETC3sMBrV19l9cFjdtbW6LVaPLp/j/sP7zOzvEA4XgUkIhUgHMIaQuuYjhu88eob/ORnP+XUqdNeEok3THbOy2OGQHD5/ZB9V0hrpaRaqzMxNcn4xKRnlxjvzaOUQkjfoc3SjLzsvDovsS0Lt+PbKDgzLHo4KiglXp6AKGwlKHxgCkNr79Vkhvts8WnFtpjQ88yA9A0DKcEZS5YbgiBiafkkP/rxT0gGGb/73e94+OAB6p81Wmm0ENTqjWFDIrcGTeCB6SJQR5R+iKUEQfpCC+F9onK+XwsDOALrRkGkcnPO0el0hjLM3d1dtNbU6/Uha3B2dpZqtTo0ix4Fy0YXFS8Dol5WOALDIJAgCAjDkGq1SqVS4eHDh8NQlJ2dHer1OlmWcXh4OPTDK4NI5ufnmZiYGLIGy6/R4rIMIik9C0tfvWq1yszMDHNzc0OAsSxgv4tA4N/ajns8vmz/S9CrBMz29vbY2NhgY2NjCJ5Vq9VhcnMZzlLKrMux4mXA78sYgqNjQPmac+6FcJqXLSRH33/07/7WVh5X+T6jyZHj4+ND2XnJRi39LUv1w19jOf5r2aTCJ8ErQTcdMLEwy6Vr11g8sYxQkjTPQUrGJia48upVlpbncU7y6PETfvu//pavrn9N/cQsS9dOc+n1i0w16gz6loPugM2dOzx++IjW4Q6Xzp/ltbcuMLXYhMD6dGSBB4Qyv7iVgSRxnj0ipcYa6PUTdvZ2aXW7jI81mZgaw2mD0YJcCoSTWOOVTg7fVHIWXKZY397h5jd3+OLzL1ldWWF8fJy3f/AGb75xhZOn5oljRWS9fUmlCmfOLvP2u2/TTbt88dUXfP7lJ8zNzVCJY5YXJ4kD5edP6z3XSxDQ4Qpv7BJY8gmYQyN9IcAV91KxfJRSDecNG0JuBUKBM64IvvOsraA0uy69IBFkqeNge5dHD5/yzfUbbD96xO7WJs8ePWTn+TrZYRcGBh3XmFg+QV6PSauaLI4YMKBSG+f8ee/v3JyeJHKWIFS8tniW2elpcptz78FDfvvBR9y4c5/9VoudvT0uXrjA2dPL1GO/rFXaL7YHxtHZ67K7tUOvP2BmZoqTZ0/SnKgBPmvGr+8kBAqD8FZUBjQS58BkFlnxtlQCIM/QznpfeiQ5FhUoqkFAVXlrGRsFqFoVJQKyXs7W1ja7+/s4KRgbbzJWr2CNo9Xts767ze7BIZW4wvzMNI1Gzfs9CnDGUKZymJKx6buU+MBMf5/hDNY4DvcO2dzYJFABk5NTBIFfozlpcPLvTyv9LmyqAKxd0Rgvq3/f6FUI9RLwDnydV7yHO1o0+O+LOnB0Oz6GH58frPs2gPStBjLFJWEELGQksKJgk1nrQPjxu6whqBRe91lOMkjodbt02h2SwWD4XLmiJvDnwr6wL0MGoZDDWinQAfVancnxCWanZ5idmWF6copmo0ltxP/2hfMmXgT/jif5Ht+OzzkvgqoC58qG1YtNv3ItQQlaFUGHznrgdPj5SnmhsSh37th7HGsyDhv5pXJSaS/DLcDzPDekaebXBVkJEBZXauQ8WlveZ155I4pavwQyR1mQx2vU0fCT4RqxPC+U8uGj8+XEkYzYDfelfL089iKZWIApYFE4Ag1F+bPR+7y8A4u1S3k+/97tOwsOUjIzjPeeq8YKDNRrEblpYDJDlvrFfBjXkMqCCOh1DHEIQkM3GSCRVMIKkQqIKjEi1BjnkEpSD3yogAw0Tip/ovMcm6SoMCz8MxyhCpHOIf2VoMRa/IVVCF0sprMcqSTVWCPGa1SFBxqSLKUz6KKkoFYPybMMYzMqYYXGWNNLk5WiEscEUiOCABPoAuQyKCWQzg+QubX0s4RMQCodiTTUmt6Eu1KLCQOFVvhOkSiYI8LipMVKCOIKUvcIhA98EMJx2O4SBQasH7yyQUKepARaY03RKQtDcmuo1QIqlRglFVGgCcOqL9p7Xd9tDL3BcqQaVMLYL9bxLAhSyIvOi5aSpNfHWUegFdV6nahaBS0JKjE1HaCxKKXJ8gwEVCKFcAnOKnQQ4GSAK3z+tLOkeYpxcpj4WYJJPmFNI4QPOZDKh91kJifPzNA7oGQKaqUIQv8QmewoReqIbegLvEpcRSn/d1opnwqNwAk/OOEU5RhurC3YorlPjAskY+MNJFCp6KHnopSCWlzBZPnQbzLLvLmzzTw7VgpPia5EEVp6zzHAU6dtkTqtPFO2GFewfP9kxUoIn+pdpk9Rei74gjsZDJAFU3Vrc5PP/vQnPvz9h6w8W2GiOcHs7CzOwPraOh9/+gmVWpUgCDh95gxxteIZvIVUwRaAitYKGSiclGTC0SNFComVAoP3m7ECbxZrIZDSM+qkIun0ePbkCf/rf/pf+KePPmB1Z5PEGtJQklmJyXLfYUfy0x//lP/wb/4dFy5cIB0kfPbxp/z2H/+RlefP2Ggd8P7nn3Bvd4PaeJNuMuDeg3s8ePKI9mEbN+hBnnrAEpiYnOLyq69ijGVyfIIfvPk2b77+BqdOnPSS6HqDQAVgvDfNg3v30XFIjiXHU/VxnhmtlRoWnChB6nzqLoClYEkXylolBFEQMD4+wcL8PNMT06x2ehy0Dtnc2Wa3fUA81fTp3UpQUQFVoam7kLGxcS6dPccrF1/h4uVL1Ot1D3AgvLeh8WEkSOGfHekDiYQDcoOwoAvDXSuKoll54/OwSEHXUhUAYxF4NBj4578spIqADiHLVOMXgQpbAG1KKbIsY3d3l42N57QPDwijCkuLy8zMzHn/KCHBeQBTCFF0YAu/RBUMu4MlQ3nYvVbKJzgWvkGnzp7hR0nGIE353fvvc+feLUKliZTm4iuXfMNL/v/Y+/NgO478vhP9ZGZVne3uC/Z9IQFw38nultwttdStp9VS2J5+fpqRpsOOsaWJJ9uaP2YmJLUjJqI9coQ9MQ7J9kTMqCdezFi2wmGNLVmypV7FbpLdXJoLCIALSALEDtwd955zqjLz/fHLqlP34JJNdoMkIOSHcQngnnPqVGVVbt/fpiAIjzK+I9X2PFJUxZYLJdnhWudEOPyQ++8PyjpPgNritByrvZdcg6dOnRJv4fl58ZQdG2PLli1s376dmZmZqhLwsMfoNRuKoe98Nw+zNE2ZmJhAa/EASNO0Cu0tc8RduHCh8lgtKx1v2rTpmgIpwznogCpv1MLCAhcvXuTSpUtVpeOyAvOmTZsq8WhYmNronG9khs+7LniV/+73+ywuLnL27FlOnz7NxYsXq+Ifw6JrWcFxo01c+R31P4fPoX4e9c+80zNUP9fh57Z+/GGvxHqoGMhzVeYL6/clX1QpBDabTUZGRqrCJsMesBuJ58PncLPx//n//i1M1kKZBKeg1Rnh9kOH2bp1WsTBnkcrSIym1Wyg8WRZwmjL8NrJ4xw7d4yl3iIXr8yxuLDGiBlhZbHHm2+8zQtPP8eZk6+ze/tmPvHYfRw4uIuRsTZparA98fizieSdw4NNwjyDwjuFdrC6uMrlS3Os5jnbxsaYHh9hup1ggTVtSZQPRe8KlDckTrG0uMbp0+d57rkXeOa555lbXGDnrl18/BMf484jtzM7M0JiFKmW7zGZxaSKUd3i0JGDrBVdLs5f4PSpUzz55OOMtptMjN5PuzEe5s8U5RUmc1gkoqU0jGljqh2ndeDcwFPe+tJopVDOUxSglKfv++hE2t9oTZE7nJW9mcKTtRLyAlaW+ly5fIXjLx3n2ae+w/HnX+TcayfpzV2iKLrY1JC0mozt2IRSGQUGPTWNddDLLZ1mmyO33cb9d93FvffdyfZdW2mPNylUgUYzkrTJdEKv6JNOtllVnqXeGqdOvcUz3/0O49PjjE6Ns6s9SSNBQm6VJ3eKq8trzM8tkOc5E5PjzG6ZZmQsxXmFxpBqLYURrUOFHGXGQ2YU/ULhMyNWYOdBg0oN9B1JIfuj3HmcMfjC011aFeGh3aQ1OUZnvIPNCy6cOcfc/BVGx0eYnp6kkYnhe2llhcsLc6x219g8MsHU+DitRhD0kJtklAlFOsER1kRKQgw9sgZKjKbX77Mwv8Di/CKdzgi7du5icnISbQzWa7y9cbf8G+Gdq8LiVe3/+IFXlPw2eKWF9Z6kV3PrxmTRXWQdJPJCzbhDLWqAsK4qPQo3eG/pxSXv95V4qJBIl8qYqUMcSQjbFw+xQViptZYiGJPLsV687YKIX1j6vR7dtTXWVtcqJ5f63Fb9V5tXkuDRJj8pxsiP1smQ4KUZ5NYDcOvWweXYUIpe5br4nebR+hxX/n4wZ5atC6W2TWhPHwqXWCdl2zfy4CwrSvvavFw3rA17e15bnVhjjLRHnstT41x5K1VNAPR4H6IPKcV0VQmG9Tm3fh5l8RQX7nH5tKoQ9VTNz7VnqpJNtR6IhLJZKB/y2ro3fD781J0WBufhgzNZOAc/6DIAfffedYAbdqTwzqGUeKmsLHdpNVuMjjbJc4VWHRKTopQHJUk388KRJBlTkwnOdsn7fZqNJu3OCDa3GG3IslQqbyqPabdkQiwsmPDg40nShESXHmfyoEjjg9M6WNXkBjvrMYmIeD5U4fLKk/dXaTQMyUgH17W0W4r26Chrdg2XeLEUeCThrVWkWYPOSAeTgLM5yjsSDyi5wXlhSZME76WqmMshUxnjrTFGGi3SzDDW6ZAmCc1mC50YctvDWcjSVEJelQthLxlp2sDZgjwvpIJYJ4TcaUVvrYcHmp0UvBQ6wUMjy+h0mnjXZ2SkjUJhdIpGsdqzaG/w1uGKPt71aXbGGR0ZJ0tMCAVaxeEobEGvn9NdW8MoJXnZWi2SNCXNUrJOW7zldEKCwhsgUaQuY3Uxp6EbJI2UtJXgjKdn+xinSUhopE3JP+b6pEphkMWNUmGwDR0tL3Kc96RJSmIk0W85iGitSFIj6oeXZL6NUF1UKREV8jzHmCTkcQSTplib4/I+2hjWVldR2tBqj2DzAtvri/dCqlnurdLRTZrNJigpyNBpjqGRxaZ3Dq8UuclRXqpwYhUul/wKjVaTJEkZGRknSxr4wtJ3njRL0Ukqi7tgoSp8LwyooG4yiyGIt2e/n8tgFyYkrWWgLQdNZwvOnznDU099m69+5Su88sorjI+P84lPfIIjh48wP7/AV7/6NY6+8hJ/8sc9bF7wo1pz8OBBjEkkXwOy6HdKFhQmTWmNdGh12jTSjNW1FZauzNFdvorr9lB5ThYq+F69epVXXjnOc889xzPPPM2bJ9/g8uI8azj6WBHwcotxiiYJe7bs4NN/5VP85M/8NLffcQcez6m3TpG0Gqz4gq7RXMhXOP3Mtxg9/iJpkrB8VRa1RbDQj5mUHZu2s2v/Xm674zD33P8At91+iEaa4vKCpklpmpQkGDdEPQLTTCiUpedzrPZY7enS52pvFaccGMhtH4/Da5lInfKUSXtD5RaZhBB3f6tkoZw0Gpg0IfeOvnVY57GFQ6HJEgnTaSZNMpPgdMHC4hxXLl7G5jmNJCVLU6y1kl8nVHdzzlM4D6mI685DojTKgMIFi6oIxjKVyixYFpDotDugPQsLCxKicfEiW7dupdlskof0Ahtt3n3wvqiHCSwsLPD0M8/w5T/7U1575QTbt+/kx37sM3z8Ez/E5u1bUUkCSgXxWqx4yovHqy2ksrx3ImCWueFKEU+sjx7QjI2Pc9vhQ/SLnKXFRR5//C949dVX6LTbLK+sgFYkSUrWaIhHTSZendbVPBaVCp6WJtwyLwuPm0wjqItl9dw65d8XFhY4deoUp06d4vLly/R6vUok2rVrF9u3b2d8fLxa2MK1As2wp0D5njrDYk998VuGmjYajSqM9eWXX+bkyZOVh1ez2aw828pCJOV765WJ6x5rvV6PxcVFLl68yNmzZ6tiFHWvyNnZ2UpUr5/3RuLUzeRVtpGIV7bJ0tISly5dqioU53leeVKWgunY2Ng6Q155zO/Fu4lo9Y3I8Gc2EuU2EgzfTWwsn/Myh2bpMXr58mW63S7tdrvKazg9PU0j5Cor+0PZRsPfd7PzV//az9EaGwtClcIksvH1zkul31GF0VDkZcZoyPuO8dY4t++5jaMzr3DyjdMsnl1jbUnTHfOcn1/iiWef5ZnnnqPTbnLv/fdz4OAhJsemaJgEYz1aedCaroNCSVgxRS7TqTZ4DP1Vy/zlZS6+fQntUyanN7Np03ZxWsDRVQUmtTSzJoVzUDjWVvoce/EE33nyWY4fO4FSiofuvpcHHrqfg4f20e60SBo65LUDo4Mg6ftk7YStOzZh0vu5dOkCVxdXeOON13nyyTYjnQYPPXAvnZG2GO+UD5WBFYkZVEIHQkhaWeTAVP/WWtPvi1jRbKQYI23ZSBy57UGSSmJ/o+g7iUpZmr/KpYuXubq8zBsn3+CZ73ybYy+8yMKptynm59FJSnN2ks5Imx37dnPfIw+yY98+Vte6nHjlNY69/ApXL82zd/sOHn3gIR588AFuO7iH0fEWSVPjE8h9IalNcvEG7LRSkvYU9993J3PnzrNy+TwXTr/FC999mk2bZui0DzM51iLLNF1rWVpZY/7KEvNXlshMxqaZWUY6HRHfvMd6jyrChhoJBbeFJ0s01isKLzl9jVdkRvJVSlhRSuGM7AOVptf3nLpwgdfPvU3e77Fr02a2z07TaCXMXVjkyuU5ijxnenqSzZs30WxlKC05Ky9fvkxhLeOTk8zMbqLdEccDoxxplpEqQ47sPyWqxWKMeBGRQF5YVKFZ7XaZW5zHOsumLVvYtnkLzSTD9cAajbPfX3GmjwpXWCk8xJDxQ7bmAJUgs5E3d33+KF+7tgAFsp8PeQtFvAkBmOXXaYUUnrt2bNV+feqIgZjowa738FNKkahBKogyLNU5F8JUNYlJSI0h0aGcXhAKvRVjtTaqKtBXBdiW56MVTnkSnWJUWSnch725REPJuraM0lnfNoM2lHWs2OXFC1k+Z6t5sHSq2Sjv7UaGMmpirhy/VtBDe0nnhqtE2ep44Z7gBvcjNOg197O6JyGir9FoVGsB2U+uL9DSbrer56NeALMUAoevzVpLnud0u13W1tZYW1urhNrymhMjjkE+iA7rhMzB5YdjluNO2KbVvBG1Xr9uKNuQ4H1a3asglFfPmFayB5BkcpRemt571Pvo/jesOFj0ehR9EZ3arQ7gSLQmyzq4QpHnfbQpSBJNO2mhVCZWH21RNBltt1EO1vp9Gu023oi3mnbgnHj45d5SaEuqTMgRV1AoR2IU2ll06NcKJRswHzqUFQucVuJNZJ3U/kyVRuHEspUkNEdbOJOH9yc00w7doofzjkaa4XNPI2thUkPhHLYoJCmlBxNuprM5PohI1krBiatLV1lZXiZfW8MYz9jICJ2siSnDmb0nNQarlGzQEyVVPJMM76CZNsCLW613Eu5qXU6v38OMTlIUFp9IHr7EZDjrSbWhkRqMaWM0IhzK00yWpfT6azhfkGYG7VJG2h3arRZGiydQs9mk1+9ignXLFZZGkkgeRyXWzLTRIGu08FqjcotTBb3uKs1Ghk4ykrEJNIbcWkgsXucYnaDJsAUUVmFVX3IXJIlUlEZjkgTnyvBlqYjkkQWUtbaqLqVCrk7vJXQCX5CkoRyD0iRJRpFbGg0RDJ2zeA9F3hdrohJRoNNp48OiS6oow2p3lZWFFfLC0u+t0Wm1aLZamGZG30HDSN4CnMYpAE9R9CXXSL9gbWmZLEnJewVJkpE1pAp3s9EgyTLQEv4uIfBWcmEmUrhDku/eXIsCEENtISYeEaMJ4pTzwcsMzrx9nm9/+zt8+ctf5ujRo3TabT722GP8+Kd/jL1793LhwiVsbllbXeX02dN8/RtfRyFiwd59+2iPjaKUJwniiS0KslS87aZGxxlL27jVPhSWhYuXuHz2PCuLS7xy8jWeePopjp04xptvn2ZhaYFe0Zc8eVmDpNWmlbVpW0++ukrhexzctpvPfvLH+H/9xGc5cNvt6CSj5wrmFxd44+xpLq0ssuL7NJ3G2ZzF5ctMNDvsm9nGwYMHaU+OkTvH7bv38dhDj7Dv4AGanTbOO4q8YP7yHG+9dpI3Xz/J6vJVNm/dzOE7D7N553aMEs/FkU6brN0kSROMVqQoGqlBa4/HohIl4f+Ewj2hqmESijJJ6AKgxOutwDG3tMiFK5dYWlmmkWRMjo4zMTbBSGdEiubkFuVhpN1mbGSMJEm5urLK0tIiK4tLrK1crcLkjU7wDvq9olqI6VBlq+zXykNBTl4UFB40Zt1ia7TTYevWrWzevJn0tZSVtRXOnTnL+fPnOXjwIK12e10IgPe+WuiIZdlXAbjl4mB5eYVTb73FyZNvcP7iecZGx+n3+8FCqMRjDxfyT4qrSWKCaKm8VLE2hjJERCsNRqo4S+4cJcYgPCPjYxw6cpje2hr9bpcXnn+e55/7LlcuX2ZydpZzF86RW0vWbEgeQS3GAFQowsJgDSLXYCQXYXbDTvfvyLDAUS6WiqLg4sWLnDx5kosXL1bFPmZnZythcGJioqpWWy4cS+t8/Xfv13usFHXKvINlHpuRkRHSNJU8sI0Gp0+fZn5+niRJGB0drUS9zZs3Mzo6WoUC163x5TNZ5tU7e1YqGJa5FCcnJ9myZUvlNVjmGhy2Zl+7qLw5eCdvt16vVxVmuXz5MouLi3S73XVtu3Xr1kowreca3Oh47/Tdw+1Ybgb6/T69Xg/vPY1Go8ovWPesqH/X8PcNe1SUvyvfW3onlzkqn3vuOV588UXOnTtHv99n+/btHDp0iCNHjrB582apTjokQg4f/y8DRR98AaPNhH6vEINx3pciZc6K4RRNahKcF2+4tKlxOmVycitTY1t5213iytkrnDlznkIrnn7+uxx95ShJI+G++x/krnsfZGp6hizVqMLTSj1JmrPaz9E0UUahXE4r8RinyAtPrj1rLuf0ubNcmZsnTZpMTMzikoRCedpNQ2bbFBLtyVq3x1q3zwvPH+WJv3iSV469wvbN23jw/nt56P672b5tBp16RjtglWOtn5NkCQWSp1brhG63j0EzOznJxx58jLkLCzz9nad56egxxienmN60hZ07d5CmCSZxpKmkOSlT6JRigA6GP63FMF6G15nMkBlD4gxFIRE3yluKroQVrxU9rixd4uRrJ1lbXqVY6/HGidc49tJLvPHa61y9uoLvrpK1MqZ2b6Fzxz527dzJnT/0V9i6cwdj7TZbtmzF43nhxRewRtEcaXDHzAEevPc+Hnn4Ybbv3onJUlQzbJZzGEk1zlusclI11kHDK3bObuKHHn2M5UuXefI7T/DmsRN8d3SSyfYII4cOikepNhhnmJtbYu7KPK1Gkx3btjI+PgpGgZF0QnbN0uv2GB0boQh5w5cXuzhjaI1lZGvgrERqeOtQVkGSUhgRW9dWLBcvzXPstTc4eeYMWbvJ3Ydu4+6DB2i3E15dmOPSxUto65kaG2dqagLTNFyZX2Fufp7FK/MUecHE7DTjs1M0WymZBwqP0uCUp3AW7yXvcWIMiVHkTvY4XivW8i5vnz/L2xfOsdbv0RkRg1Sn2aSRish8c80Gsh53TipkUx873bUebOW8POxVJm+gitgI24gQ1rp+DK2OpXXYN6m6DilzQuVRGH5b9+IKeczrx3snz/JKBArGYvEqk/nfFpKPX/KsQ6IT0kTqFRidYHQaAkmD4B8M2WV+QwX0+32JerODasZaibBolIyZ68KKFUF0cmF/PBCoqkas/VmevzFlPr71effq92XYy17WXh7v6/m9w8YihGWr2leq+j0r70dNiK0/C6UHX1EUrK6u0uv1AGg0JEd/WeSlfL1q+9r5vptRtW5YHi4K40sRc+iz5fPh8ZJWwg3EZ6UNqVEhV2X1oIH1ZbaGa79fSVv5oBX40P4+1DlwAwdb8IO0aOqDqlb8hS98gX/4D//hut/dfvvtHD9+HIBut8s/+Af/gN///d+n1+vxmc98ht/93d9l8+bN7+drAPBeo3yGw5Glnn6Ro3WKzcG5PklaPhji5eecJ03FEqZcIQVFNLRHRipvF5RYWZQTxRYfXGiNFPwQFd1jlajv2kn4mjLBA0Mp0AZXhEWYlpwQVmmU8fRtLsUgklSsNFh0AzxGktsCWbMjRS+8LGJwDldIdV1vEhSSrD93Fq09FkkcnOc53dUeKys9llauUjhHOtKh027QHOnQbLVRyqBVilKg8ZL0EgXKkts+eT+XvIYmxSQJvtGAQvIIap3SabXASrXLouFCZWZopOIhaHu5eF5qSZvp8wLrLFYVrNk1CuXQjZQsbUoloFSqAang5dXIUpx3tFvtgTjodbUp73updma9g8RjlCHzGTjJfeIBpz2+8GiXSDgeGm8UpKHj+QStDN56nC3C4Edt4MhDWLFU/lIqeIKiJDIwbNYVBA+fQXie0j4UhpCNvFgMwnOlPLnN8eXnrOSWdNpjVUFue/TXVmWwSlOpMKoVbZ2QJRm2D3nhglu6pt+zFK5H7+oqS/ML2L5Fm4wkTWiFStbNpCEDZOEplJOKu9qQKhErrFUYE9zFbf9998GN+DDHAKM0jVTCp2wY8NOQ/HXt6ioXLpzn8W98nf/8Z/+Z468dp9Vs8eADD/KJj3+CgwcPMjExSaczhlKKlasrfOXrX+Hk6ZPkf97HectfsZZDhw+JuBomhKZJaXUytm/dxv69+zjx8jEuLF7kxBuvcekP5/kPX/lPdPMeFy5eYH5lHg+kJqGdNdgyOc3k5AT799/O9u27cf2ct994ixPHj3N5/jJGZ9jEUCgNFtRagXE5WyemOXzgNl4+foz8rT79bo9WknJo935+9Id+mPvvvZfDR44wMTUpDeM13msJRe8VKKPpdfucOvkmf/GVr/HMU9+m1+3x4KMPs3nrVia3bCZrZZAkFFpJRT6X410hgpYVm3SixChCrxtydkKjnKS95Oqz3kuhHSXi4eLCIqfefJM3Xn+dS3MXME4zOz3Dju07GWmPkiYNybdnHVu2bOPQ4Ts4dvJVXnn9BG+dPsUrx46xZ9ceJkYnUVlYdCSyYHLWobwnKcP1rQcvgmDuXPBqDFZdHXKLeUW71WLH9u3s27ePY8eO0z97mjNnz/L8888zMzPD4SNHKo+y+ma6DD+oW0QBFhcXee21V3nxpRc5f+kcnXaL3Xt2sn37NtrtdhmIIJN/KLKU5zmFLTBAI8lIjBgLbFGgk0Qm6tpYQ7AaKi3z2vj4OPfffz/FWo8EzXPf/S6vvP4q+q036ONZy7v4hhaPV8BCKJqFeD5YK2OmVlgjm+Z+/t4rlb0TH2b/Lxeawx4AION0kiRs2bKF++67j+3bt+O9Z/PmzRw4cIADBw5UYb/l+4ENxZx3EqRKhr0F678vf9doNJiamuLQoUNMTEywbds23n77ba5cuYJSiomJCXbt2sX+/fvZvHkzrVC6sJ4MvTxm3Wvw/PnzLCws4JyrvAaHcw3WE2vXeTcPyI+a4fMd/nd9Q1X3Gu8E4d9ay44dOwCqtt27d++64jPDbCSaDm9cyvcURcHVq1e5dOlSld9wYWGBLMvYsmULe/bsYWZmhvHx8WqDVU8WX8/VVL9GWH/Py7/3ej0uXbrE66+/ztNPP81zzz3H2bNnSZKEvXv3ctddd/HQQw9x5MgRpqam1m3qhkOT69f6QfBhjgGJ8WSprDl1qlnLeyRpgjfgnaEoJLTFaAUYXDBcN1owunWU8a0TqBd7LC+d5fzZEyyunOW1l1+kv7jM3bcd5oceeoxdO7ZgmppCicfgku/jXUHayNAuIcsdSmmMz6vNcGIVFxfXmF+8wkpxlfZIm8mpNu02mLSgsIqGlvXt0mKP02+c4vXXT/Ltp5/j/NkL7Ny2k0cfe4z77ruDzZsnabQ11nax2pEoRdMYbA7W5KATKBSJbojx0Tj27NjNxx/+IRauXOWFoy/x1HdeZHx6K1lnhO07pzCZxjpJs4G1qDIUEYnGck4KDJpEfr+21mdpcYU8Hzyb589f4uzZc8zPL7MWDFXn3z7Dse88w/z5i6h+Tv/qKr21q2SZYXzzNNN33snh++/m3oceZNuO7YyMjTIyOctos0XSd1x+e45vPfkUTz33LEury2zZtpsH7r6bB++9iy1bZ6EBJvNYW5A4aCFrpSJJ8Il4MGnnSRU4o9i2dQsPffxjrDnLc888z7NPv8TY2CwjI6Ps3rWZVpKwfHmZ8xfmKPqeiYlRxsfGyNKQa0x5cmdJUkVHt8IaQzbZnZEGXQ+rfctEGooCOot1ikaS4gtH3of5pVUuXl7g+Rde4tlnv8vq/BK3HTjA7ffeyfSuTax2F3njjde4MjdHp9Fiy/QMzXaTrvNc7fe4cuUKa8srTIyOsWXHdkYmxsRJJIQIWmfpU4BJKcPYNBrlPTiLxWIdeKVZXVvj0uVL6NSwbcc22s0WiQKfe0xqSc3NtQZIEoMpx7EyBhSJFjFlgTWlKqGoRFETWghhwus818qPbmDIKR1zakJWJRrVwoYrXaH+3Sp8N+8QlTI0XnsfCvzg132HfI/sBZXXUp3ZIftab7FhTy3n6INRG1mnq/UFOIb/zLKsSoVSz8Us5+yQZDhVY1BJckqJxlB5tFFpJnWvwI0KY9Xbuf6niGWlI1RZYKYUHk3Inaqq+yKh4iE/IeU5rBd4y1Qu5XfUi4KV3oGlgXhYXC7/Xn+t9Dbs9Xqkacr09HRVETrLMpIkIc/75Hkf53wl+FZ506mvMUQrWCc5hz28V9fIgJWYXT3PfhAuX9736rlU5U6ESqBcL3YqMv3eJb/37Upwxx138Od//ueDA9QqIP69v/f3+OM//mP+4A/+gPHxcX71V3+Vn//5n+eb3/zm+/0aTJbhEk2iZcOVKEPhkJx0KsOEqlG59figcMvNF/HPSQUD8JD3ehhlMIkJhToUeE3ipXKxdQ6dSD4rJaMsKhF3caXE08zakLfJexIjnn1lpeRUA97hlcdoj1EpThl58IPgpJUhCx3YGwPBIuC8eJ+hwFlPkqSoJAmfcyglef9s39Fb7dFbXUXhSBJNs9WiM9oJOZVksvKhXQrsugdDWU2qJbmn1gZb5HjvQoiGeLdYW0iS10Q6VBpyfEl4XxHCFUKhgsKKWOo9vW4fheQi0ToloUGaSPl2EdlKC0kjhOQaVCpWIbQOP3KOyiPehiGvvrUK7zRJKiHbhctRiQ4VYYOs7jx5Ibnh0iQJm26LDkmgy06otJLqR86GvHUWgvt0XkhRC5MYkjQR64NzJGmCc+ITlGQp3oEtwgYVyTnnvMXaUP3N6BDGG4JclOQ6aDSa9Bs9ySFRFMzNL1BYjy2kyIFOEqwLC/rCYW3B/NUl8m4X60GnDTyadrNFpzMiQoJRFNZKTjcxC6CVVLVWzuNdUvWB62kx/LDGgL6X8uvGK8phFisV5M6cOs1ffPMv+NM/+0+ceO0ErXabu+69n0986pMcvusuJmdm0ErTBPbu3cvHHvsYq2urfO0bX+P0xTM8/rWvoqylYTT7Dxyg2W5JSoA8Z35hgVNn3uLs3HkWiqusKUuueizNn8deOUNhLUZpRscmmJmeZu/2XRy5/RB3HjrM5plNTIxPsrS8zBPfeoIXL13k0twF+hQUrqBvc5z2Mg7ZAq0U2zZt4VOPfoIUzZ/+6Z/y8omXaZqUPdu2c+eROzh44DYmxybQllAd14OWFLWFc/S6a1w4d56jLx/lhaMvcubSeXZs38H23TuZnJmk0cgwXsITEh+sR07CaRxI0vTCY/sWlUuIDM6H8BmFC67+RuuQByVnrdfj0uXLPPfcc3zja1/j+aPP4bzn9kOHuO/hh9l38ACtdltCdEP+jcmZGY7cfRfnLpyjt9Ll/KVz/MXjj2OUobu2xv4D+2m12+I9W0jf9N5jvcUkItitdXtcunKZS/NXKKxlYnKS2ZkZOp0R2Rx7jzIJs5s2ceedd3Hm7Fm63S4XL5/nmaefptnIUM5x+MgRRkdHpZiQExFSEh/L4s86R573WV1d5cUXXuDxr3+dE8eO0uv32bdnH0fuvIdde/bQ6XQkrNmDwoccrQpMitMZa8DVPKdfWLEAq+AJia2s2SD3wnupNFeGDEzMTHP/Yw+jGylFonj6hWe4cOVSuG+OVBkSNNp78K7KQ6RRYvCismOgvUMV16cgyYfV/8vQkJJyseacI8sytm7dyvj4OHfffXdVhb6sHDucl60uDG1U1bdkI5FteLH4TsJLkiRVldxdu3bR6/WqEBZjTHVuw95+pRciiKhbVig+d+4cFy5cYGVlpfIaLD1iS6/B0tNw2PJ9MzLsZVAihcRa66r5lgv2UiQuqwXXQ7Xrx6wzLAYPi7PeS37D5eVlTp06xXPPPcfLL7/MlStXaDabbN++nTvvvJP9+/eza9cuJiYmaLVa1XOykdfB8Oaw9EhcXV2tKi8fP36c1157jTfffJPl5WXa7Tb79+/nzjvv5J577mHv3r3Mzs5WYWjDlZCHxdYPkg9rDFAJeA2582A0RT/UxlUGpx2uXrDA21AcztHrecaaHfbv3MXxqSkW5+Z48olvkaQZa90eh287yKOPPsSevZtpNDx9W6ATJWGlJgGf4EJYFh4SZVAqkf1GoSi6juW5eeYvXWBtZYEdW2fZvmmKsVZGQ4EvHLZwLK8WHH/5JM89+ywvH3uZvCi49547uPf+e9l/YDez02OkqcLbgla7JdV+C0eqNY3EQOHKPaBsHhWkqWJivMGRwwdYWHiM1V6PY6++xjee+BZjsyO0Ru9l68w4qQRCYpKUwjpc4enlltWrfVbX1uj3RezM+32uXL7MqdOnWLl6FZ1IDt3FpSWuXL7C2bfe4PSJ1+ldmae/uIK92oUkQXda0G4xtXMHR+65i9vvPsyR++9g3+176IyPYJoSWaC6GWvzXc69eYZnvv00z3z3u/S85bbDt/HYww9xYO9OJiZHSdspXku0jVNh5Z5IAUUbBJjCObRysh/E0R5vcuiO2+jmPZYWV3n++aN88/EnaXfatJqPMjs1waW5i5w5+xr9/gpTk1uYnJggScTRxKPAmTD/yt6p1y9IQpuZ1GCcZ7nwZCk4b8h7YHuOteU1Ll+8wutvvsWJN1/n+IkTdNfWuOPQ7Tz08ANs37eHtJnRn7NcuniF1d4aE5MjTM3MMD46ilGw1s2ZX7jK1eUeE2PjbNk0TXskI81kH5EaIwXHvCZ3Et5cOIdpaJwLOe8VYD0rS1c5c+YCS0srdFpNZqcmGBttQaJwWvaseoPUCN8PH5oOkKaYkJtxnQgEUOV1G+Riqxyvwv/qkqEYYTce81UtjLN0Jik96Eq+1/xfvSd8SKnq7KT/lmZk8WqStbFyg9BjJ0IjiFDkjMcbLyqN1F4VZAgMImY9J6NCG7mWNDNSWNQowElUpO3Tz3vhp0tWpOvWNVSeiPV5hHXtSijeU76nFAfXaQ1q4EW4zmiGguBsUK2zfO1eaV0JYc57cRLKa9WZq+Pr4Kwjn9O183VVOjqPDU3rvUKblDRt0Gi0aDRa4UI09e6gQ0HSUvT0XsKL87wI1aJ7pGnGpUuXuXDhItPTsu9wzkuuep2Qpqb2DLlB7spwoeUzqHWIHgptLO2+vmr2YDr3tXuw3thYRiGpSpQO64Hy/rj1z7At3nt6sfctDpbW+mEWFxf53//3/53/+//+v/mRH/kRAH7v936Pw4cP8+STT/Loo4++r+/pFjmp65GRSNgvYFIJuVROlPTCWZTRVb4BrXRIFZhgbV4VELFOOpgJIbtUVgUtooqHlFQKX5SKq9NgJCwX70nDxlNU5wKVaJJESyiwC4lhgwcaShGkfRHtykT+oTMTTkFOZeA5pxOwauCaaq2j6FtsbllaXBTrXb8vG400Y6zVpmkaZCrD9R1GKVRwRSVUJyN0Xu80Sa18tlTwkU2m87YqzCKuyrKBLQpbdUijJR+CtIELbtfQ6/UBTdErMM7gCif3JCyOkmZatbdGk+iyLLjHGyNeL95KaKDRIrxg8E5hUSSNpniQhLM1IZ8KyuJ18CoBsuAGXtaI8jrBeicDg/KYkFdSEcqlD4R3PKL2Z40MrZV8DvAMKrQScveVAzNIx8utI02TkMPMhwTBHkUoUOAlHLLVbGM7ltw68pBcFr/M2mqXLBXPIussaaKxNmet16fnxTM1azdJ0KRJxszMLGkqHpg9K4KtVXKO2rlQnNmjE1lYw0DcvV58WGOAIpy7LYILvGZtrcvZM2f41hPf4o//43/k2KkTjDfGuPeu+/jkD/8V7r33PqZnZkjSTDbcWtMa6XDb4UNYBb2i4NvfeZILF87xzW9+g2a7gcXS6LQ4c/4cR48d4+jx47z6xmucv3yRldWrks/N9YPRwdNMmmzftJUf/sQnePjBh9i2aSsTY+M0sozVpRWOHzvOd1/4Ls9+9znefOtNclugjAhDxnuKfp/cFdWCSqPZunkzP/zox6Cb00Bx4rXjPPXsU6xdXePRhx/hjjvuYMvmLXQ6HZQJk6e1zM/Pc/KNN3jxpZd4+umnOXf+HFObprn7ofu48767mdk0SzPNQn5Mj1YOckmNIPZnMbqcO3+RY8dOMD+/JJX23HpBRfp9Qa/fZ2V5mfMXzvPKq69w9OhLnL94nrSZccddd/LJT36KBx5+hJlNs+gkqfL3eTyNdpPde/fwsUceJV/r8sS3n+D8uXP80Z/8EW+8+QaPPPIIBw4cYOvWrbQ6bfFwCCER1jsuX7nCyZMn+e4Lz/P2228zPj7Oo48+ykMPP0yz0YTgnaeVotUZ4fAdd6CMYWRkhG/8xdc5f/EsX/7yf+bs6dM8+OCD3H7bbWzbspVmq1XdC2steQg3uHT5Em+88QZ/8fhf8N2jL9Dv97lt/+18/Ic+xd333MfmLVtJQ/iiiIsq5BRMwKTkSociNuL5KH7OYLyD2gJHjEMKrZKwkJLchFbB2Mw0dz54Pz3l6eJYeOJxltaWsFiwjnyti+3nJCZBJYbCDjziq5BFJC9O9i6i2Pvhw+r/cK3IUf93s9mk0WgwPj4OrPcMq+eKqYtF7ySgvNPf34mNvNyAkDfIVGGf9feU3m/DeWxKYbDMNXfq1CmOHz/OK6+8wtmzZymKgpmZGXbv3s2+ffuqXIplyPTwOZTXcKOLhO92fhvd9zJ8u/S63Ogzw2FB3++5JElCu91mclIKW509e5YrV65w7tw5Ll26xLlz5zhx4gT79+9n586dVah4GdJcjid1b8EyV9HKygorKyuVV+Jbb73F6dOnuXDhAnme02q1OHLkCHv37uXIkSPs27ePbdu2VZ6iw94n9Wepfu0fpPfghzUGOMRQo5BUQplJcbmTVapzNMrNrQ/GdS2Lum7uGCVj6+gs0+ObePPk25w/f4zJmRluP3KQO++9k32H95B2pPBDI5HwW1Wu4YKTkgsGF6sk361zUi3WJQVLV+e5fPECifdMjo4yOT5BakKki8u5cnmeF158g28+8RSnTr1Fe6TFvQ/dx8c+/hC7dm8hMY5Wg5CnW6MKhXYak2jyIifHk2nxnHJaivm5mofO+HSHw3fsZ3F5nuXlBd5+8yRPfu1xJlttxh6+h5FOk4sXF7hy6Qq5FeN2t9fn3JnzXDx/kV63L8ZyrxgZG6XRadAvYGnuEqvLyyzNzbM0f4Wzr73G0qm3ccurqEaDzqYptu7fx+0P3Mfm3buZ3ryJ/Xv3sW3LZsbG2mRNRd/2KXoWh2PhwgKvH3uT7z73DC+88DztkTYPP3AfDz/0AAf37ZQUAEYic3xo3yxp4L1jTSm0t2Gf5rEerFMhR7SIK2OjDfbv3sH5O2/nwsWLvH36DM899zybNm9mde9Ozs1d4vyF0/R7KxitWFhY4s2Tb2MSgwlrfGsLeaY0KCVr8XJfmaQpq65HYhKKboHN4cpFCRN+4403OHfhLMtXF5mYGufuR+7lgQfu58C+fYy02/ie4sr5ZS6fv0y/u8b4xHamZ6ZpZimu51hbXGPhyiJraz127xxjdnqSdishS6UAQuFBqYTCepRTUj/PiBetcwrn5VnVeJYXVjl/7hK9bp9Ns9NsnppkYryFlkcSCoNRG3tVv18+tP6v5KcsDiqPwWAuL0U8vBhBS4Y9B4F3HCfLPWTpCaiUCvs9U4215U/9s9UxyjFWFKGB8LiRV1op4YTiGqmWwnlA5VyijUYlSn5S+dGZxhQGr6WYqtFi1PaFl2fVuuq7tdYkqcb5AqU9SWrIGglZI5W0XwaknoENEWbhumreaevPmWuub8DA0690iqmMr5XhUo5Z3RK13lO/lDZF4RKnGlfej5p3nfZh2RzEyfKwZZFKrRXaIIVBvcfYgkajSavdZmRklPGJSSYmF1nr9lArK1W7WVugQ85H73X1jJVXqbWh0SiLvinm5xd45ZVXWV5e4cyZs2zdupXp6WkmJiYYHx8nTdNKFC0NhkbXIlbCc1ZqSYXNKYpc7odSoZhMKuOTNuGe1ERtCBW3AW/BWWm6Ml9hELvL7xKBMvSZ97EeeN/i4Kuvvsq2bdtoNps89thjfPGLX2TXrl0888wz5HnOpz/96eq9hw4dYteuXTzxxBPvOCiUldlKlpaW5MSMVK7UwaNCh4qsrrDYfk6qDGtFjm4kNJIUo3Xw8FJ4Z8myRDaXztFsNauJXmtdeRkYY8R9OzSkeLfpUL3SkRfiGWh0EkJPATTGNCiLpYgKLip03u1KPsFmhjaKXrcn3mdJIkUUQgfwiNpvkgStQ4LgYGWAcM+9hLwWRcHy0hJXV66ija42HWU+pdJzQMJkQwVPo7HakvdzktBuSov3I+F7vffoRBKi1AcuWQzpqn1KJR3EY65UxY3RldW+3++jlFTTAxgZGUUrqe5Vnhso8rwI98FWg5i1NlTVUVVVN611VbbeK3HnLwfs0gW6dB/23tdKssPVtaskJiHLGjgrxRQKK0ltjZZkr6J1yLkX1oVqUTLchCA/uW6k82qTYJQhz+W5SZJgyQpeec4R2tkHK0r5jOlqxvLe02g2GdeKrNGk2WzTz3OWl8UrJE0TnLWkoUp1v+ijW/KcNRoJU+MTEl7pLWnWAiXem1makrtQJUuXViCPWNcd3hdhkXP9qhV/WGOAslLUIW1kOO9YWFrg4vmLPPmtJ/iLv/gGly9dYly1uWP/bXzqsY/z6H0PsmPTVqzy9Pq9ynPK4xidHOOue++mcHJPv/b1r/DS269x8d+v8OVvf4uF5SUuzl9mrdsVYUxGcFKd0tBUyagtBaqw9BeWePOlE7jFVdrtDqBYC14gC0uLeK0YHR1n/76DnD9/nqurVwFNUUiOGGVSVPAglgqrkm/zh35Y0emMMvHNKY4fO84Lz7/EydffYMuWLWzbuo3JyUkazSbOWVZWrvL2mTO8+fYpFlcWyJKM224/zMc+9jEefPAB9u8/QJplFNYHK6vCJzJ5apPKohPP2YULfOObj/Pss8+Ld7RSuGDOS01SCYPWWopCKm7nRUE/79LpdLjnnnu55557OXz4MPsP7Gd6ZrbKo1JZUpW452eNBoeOHKbTabN565bKK+ebT32L54++yPYt29mxYycjIx0ajSYmkWrlFy9d4q233uLylcusdteYmZ5h+/btTE1OhtymwavRSrXxRqPBTKPB3XffzdYtW9ixYyff+ubjHH3pJZ789lMcffkoY6Nj7Ni+PYR5tiVczXu63S5zc3OcOXOGt8+fZXl1memxaR558FEefvRR7n3wQbZuGuT9KvO8GDUIXXBexsqGSmm2JMdjaQSS6tB2MOEzGCPq1uwyPGJiYoI777yTpaUlFhYXOHb8GJevXqFAvse7QbhEuHFVPrxhL6qbqf9Xzw/vLnYNewK+n+u8HgLKsLdbPQdNv9+n2+1WFe/rSbJLq/3a2lpVhffcuXO88sornDx5knPnzuG9Z9OmTRw8eJDDhw9z4MABNm/eXAlFw+dxowuC74XhTdywV987XeOwMPi92mJYUK2TJAljY2Ps3buXsbGxKqfh8ePHqyIx586d46WXXmJycpKpqSkmJiYqz9FWMDiU/bjb7XL16lVWVlaYn59ncXGR+fn5KieSMYbp6Wl27tzJ/v37OXDgADt27GBmZoZ2u12JznWPjLpHbP2ahje/HwQf1hhQrmmKIg8GbQk1VMHzwiuFLfqAwpiU3CLheFpjjWJiaoJNm2dpNjOWluYZHetw3733cOedd9BpdzA4jDZYKwbkvC/r4SSR9Riuj81zlE4wnTbNhjgMzF1d5vLcZRZXVmiPjbF1xw6yThuroF84Ll6a4/lnX+Trf/4EZy6cZ9P2zTz82EM8+MA97Ngyw/hoRp4X9PI+Jk1IGwm91VUamRSaSTJDgSL30C36aGdQXgz3Skul+kYLdu3ZQr9/NwuXLrFy8QrHnzlK6htcvQrtiUkunH+bS2ffYq27hjaKZpoyPTnJzKYpEp1JpJJJUUqTF30unDnL8WefY+7cWdYW5rh6eR6XK1pTm+gcmGDLvl3c98iD3HvnnRzcu4d2pw0NQ6vVJPOKppYCHoVNaKUJb5++yHNPv8Qzzz7LufNnmZ6Z4qEHH+Cxxx5hx/ZZdPBwT4zk9MNaSI0ULwze9mDp57lUW00krY9XZfVRDSls3bGZu++9m7n5Zebmv87LR48yPTsJxrK0tMTa1T7zl+Z54cWXuXRxjtHREfLgOSlePwYVvBUJ+4O8KPBAs9mgb1ckfDKkdFlZXpUllYfJyXHuvvcODhzcx4H9+5idmaHRlJxwS4tXuTB3mYWFORLn2Dw6xtbJKRJjWFrJubq4xPKVK4yMtNmxdyfjE+MkOqGfFxKJlqRQSL55HdKOWOvo93OU0ngle9ciGIovXbrI1asrjB3Yx+ymzeS5JWvIPgccLnnnMe9G7P8l9XQiw5RiTllEAgjeVNeOi++0nqiPoz4IXusDlaEexVA/Fz/kjVlpCe/w/VXBjbDtNyZUDi51sOBlVnmZF7LuzvNcwmG9QWLFB4XVqjawtloHl5/Ji7zKsSf7Z/GmK6v3au3XzbXrPDTfwQhab8PKg00PhNLBe0s3SoL8sd54VYqLg7fKP5Iy1ZfS1THL95SCcDkPFpXR1YQI0kEqmjRNQjqWGUlVkEixw7m5OVZWVlhdXaXb7QadokwnVL+2kGrOitaQ530uX77I3NxlTp16k5dfHmNycpLJyYnw5yTNZkvC4YPIlySDwitayTWV+4Rur8vV1atcXetinaXRbDA6OsrkhKwpxsfHQxqxTAoThZREUtXZV1pR+VMWN1FBXV3viejJiw+oWvEjjzzCl770JW6//XbOnTvHP/yH/5Af+qEf4qWXXuL8+fNkWcbExMS6z2zevJnz58+/4zG/+MUvXpO/AKTDNJMMbyX8yiLPSCMxKGXo5zlei8pqlBLvPRS5IpSEFhdb59S6Z6sUq+pV4jxB8U7K6j8W6yQPlwiFBd7rIDaJUNXr5WGRYiSUWSmStIm1Mr9pDa0glpVipDKa7tpqyLvXClY7PwgPqSr1yAZeQmesPGBpUoUPjYyMSEfTmiTk9SuvJe/10V5hMrGya6VLXUC890KlZW+l2IPSCp0k5HmOUj7kcZBKo1WYnpIwX2NKN1gdBDaqPAatVot+vxuSoHYZG5sgSZJBBSBjcN6RJsm6zZwKImMpMJZhQYlBJkgHvbxPmkr+v6Kwcp5hsSxhgcHLEUgT2XRZJ96Nxih8qNhkkoSisNi+rXI1GaNlI6+l4EyV4wofyo8b8a90FuusVCn2jjy3QfCVisLGGNrtJkVhJTWGNtiiIE0STNYkDaWWOs7S6/RZubrK4uISRkvbp6nkz5HBq4lSnlXbZ6TVpt1q0Wq0UCgaWStYNl01KBtkciVJSJOEonD0i5xGJoudVCka6fUpRvBhjgEQLICFQ3tP4hSJg4mREfbv2s1UZ5TJqSnuu/8+7r3/PjZtmsUaRxHM/uWk6azkbUmM4rb9ezn/wL0cO3uS5ZMneevyBd64dI4ktE+R52ijyZKE6fEpbj9wG4cOHGR6Yopm2uDM6bc5+sKLXDh/ntdOvsLJ118nQYTwZtpg8+Yt3HbwIHtvP8ju3bspioLXXnuNkydP0hkZ4Y677mJicrLKZ1k4KR6jrcI7x569e9i6dQt33303r776Ks8//zxvvn6Sc+fO8/bbZ8Taha8mMmMME5OT3HPPPdx1110cOXKEnTt3MjI2RtZohJArH9K1SBhyo9lkx66dPPDQg2zbvg2ARprhrITWq2A8qOfl8N5VnjvNZpOpqSk2by6rps6wdes2xicmMCYRqxVUiZuTZOAVrFE0RsY5dOgIW7ft5P77HuSlo0c5fvwYb735FleuXOGt06cBKq+8fr+PxTIxNsFtt9/Ovn37OHLkCIcPH2Z6ZoZGEOlK7yKlFN1eD6UUrU6HXbt3Mzo2xp133smbb7zB8ePHeOmll7hw8SLPv/givPCCyOkhxUFR5CilmByf5I7Dd3D7oUPcdvAgu3bvZnbrFkbHxFOtXknXlNdsLe2RDrcfPkS332Nubo7Nmzaxd98+RkZG5HmsL7KCEQioFg9a62DMKSuoa6anp3nkkUcYHR3l6LGXOXf+HO1Wm0OHDrF79y4Z6xEDCgwqyZUhjIr1lvXvlw+z/28kcAyLRcPC3Lt97oPG1+bytbW1qmDKW2+9xfz8fJUzr1zwAZUwOD8/XxUfmZubw1rL+Pg4e/bs4fbbb+fAgQPs2rWL2dlZ8R5Wg2I6SW1O/csgDg7zYVzT+g3LwFNxYmKCTqfDxMQEe/fu5d577+Wtt97i9ddf58KFC8zPz3PlyhXOnz8/8NpIkkoYLJ/P4WqZWZYxPj7Orl272Lx5M5s3b2bHjh1s2bKFmZkZRkZGqs1oeYxyLKjnOCwF53d63j+ItvswxwAxShVkWYNut1eFbxeFxflC1otJSr/XxxgX1lOSJijTnvGpFrcfOcj80hWWlpe4+967uf/+e5memqLVkaImvX4h47fXNJsNQELJFJ5m1sCZlO5al6sra1JEzmi0TrAOpmdnGRkdZ/uufbRGxrAornYLzl9a4M23z5A1Ux597EHufeBu9h7YzZbNkyTakFvwypCYhnide0V7pEWe2+BlbqCQja8L+YUVjsWFq1y8cIUrly5T9Au0Slhd62JNSmd2GreywtzSPN958puMjoyyfddW7r3/bhqJzO+28Gzeuo0du2dRxnPl0jKvH3uFF7/9NC89/QynT7zC0rmzkBjS8RFmDx7k9nvu577772Pnrh1MbZph+/attJqJ5H03EhmTuzWKnqPfTcEa2jpluWc5d2aBs2+fxrucO+46wpFDt3P/3XezaWaCpKHoFQ7rPanRZE5jJWgKp5TkTLeOxKQkWYqzQToIRvlSvtEYkrTBnj27+Cuf1DgUr7z6CtbmXLx0gatra0xv3oTJErIkpdvvYRettLIxOGurObgIzgfOu2rCbDSaOL9Cu92m3R6l0Wizdfs2sqzFvj272bl9K1OTE2yanaTTTiuxIy88aZbSbKXMbJtldHKM248cojM+Ss95ekWXIu9K+O9Em9tvP8DszBSpB1V4cm8lh7jWYggM+ZXTNK08jrRJcU7R7xWgYPv2rWRZg8OHDzE9NcnISBPr5Hp0pshXf/Ccgx/2HmBYqBp45pVC2kBgUtVnHHi94XHq/17nPVhzkhGngvXCivO1arPvQunJ6ILnVl0U00qBCTmnlSJNUpI0rfbZIvB5isJVPy6UspVoNCdpwGxwCMFI1eJk/TyTJBnGpCKo66T6u/w+WWc4LueRdbkVa/PhRqLgcDt6hTj0KFW120belmXhzuHqwoPzGFRDLr+r7rxVCnbiYSxCq1KIGqaodB+tFUmaok0HkyjanSZT0xPMzE4xPTPJmTNnuHD+PBcvXcL7oppb8TLnyJ7RrZu3lSq1j2B8smL0u3TpYnW+w4VKRCAsxUFdicM2rMv7eZ+1YDxOGw2mp6fZsmULO3bsYM+ePezcuZOZmRn02BiNZpMszeQYofK0Ch6UldJc3hq1/pkv/yydxd4Lyr+b+fR7sLCwwO7du/kn/+Sf0Gq1+OVf/uV16j/Aww8/zKc+9Sn+5//5f97wGBtZDHbu3Mnc/Bzjo2MoJeKNCw9y4hXagTfQR5TSzCtUv6BQHt8wGIzknUM6dOmCKwKBCFYmCIHW2dBpdZXo0WjxUZYHxmBU6ZE1ULOtLW+KqgYm70uR2+MpRciwiHei6mttMKl08nr5dREpRcBS2pD3c4q8wHtH0S/I+1JQotls0RnpSBXa8ACKJ17IeaeNfMYFzzUI5y/iXp4Xkr/PS8EOpQmehCoU6JABTeLr0xCHL8cZlM8edHhjjExUIWHnYJPeQIWknKYS6dZbJ8rBqdfrVWG9ZWnwREuuRWM0uS1IjCQnrQ/W9UqP9bxN2pgwIfoQQhwGdgaLc6O0CDPhbslzFl5XGkWBVoOS5koZoCxiIs+O9w5nS7dmhbXBEuI8JtEMap6K5dt7CRfMgxXUOU+R28rypLUUTCnyPo12E4I1tdloolFkaSreRkpy7FjnSkchEWCAoghhhUqROBvc8RWLCwtMbNnE4uIiY2Nj77mPfy8+yDHg5a8/y/joKDiH8eCto9frsrq2Rq/fxyuFyRKa7SaNZkO81bwUzii9Uq+urLC0vMwbb77J8RPH+e5z3+Wl105w+ooM6OLtZRlptRnrjLJ5apY7bj/MkUOH2LdvH7fdfjtTU5N017p017osLy+xML/AyvIyc5fnubq8At7TyDLGRseYnpxkevMsI5Pi2VuGkTnnSLKMZrNJs9lcH/YZNnd5UUjUulJVTqrl5WUW5ua5dPkyCwsLrK2tisXbiAVsbHyMqakpsVrVkvF7pWTDo3VY/Cq0kcmv1+/R6/bodUXMt0WBD1WtwwwYrIvheS6D7JWML2mSkDUymg2p2BmCnTAmIU0zSRVgBzlPqyOU98bLwsYjOXTWul2Wl5aYm5tjYWGB+YUFVq9elXHBaNqdDq1Wq/LMGR8fp9PpkIWca9YN3PGVNpXldWCV9CF8Qtq0u7bK/Pw881eucPnKZVaWV6pcqFmjgUkMnU6HqakppqdnGBsfp9lskaUZyqiBEYGwkKwbeJzDWUuv16uqoiVJQmdkhHa7TZKm1VjvlaoWiaW3Am5wzp6ByFcu4Pr9PktLSxRFUSWWLnOt1YsU1MOkSwGhu7bG3kfvvK5jwAfZ/xcWFqrz3Ejk2Gixv9F764LiMO/Xy7D8850WzKUn4Llz53j11Vd58cUXOX78OOfOnaMXBOvSMAVUFv7S07PdbjM7O8v2UFBnz5497Nixg8nJSTqdTiV+189jeEH//V7fzcJ7WbK+l+dlWBAcfl/99VKoLz1BFxYWmJub48KFC1y4cIHLly+Lh9La2jWFScp8k51Oh7GxMWZmZpiYmGB2dpbp6WlGR0ervlyKi/Vw4eFzrq8Zy/mj/to7tcHS0hLj4+M31Rrgzy9dZmxygqIsChLGX+9B4UiMpigs2hiK3EmxkERTWIXLPXnuuHJ5jitXrmCtY2Jygk2z02SNFKVciAiSGSpNS9E1rK2VbPTLVuz3cvHkUpq1bs7lK3NcmVtAJymzs5sYHxuRSJXCsry4yMWLl+j1CsZHR5iZGmN6dkyiX7xUCW6khoaG3loh3ikULK+thT1HwtJil7dPX+TcpUsUzqJTg7U5i5evUKz1UYWnsJZCObpYJrdMs3P3NlpGY4qcqVabTTu2MTozQ6Y02luuXFri+InTnDl/jpWVZV5/5TgvfOfbXH7zLfTqGmmS0ZqdZueh27jjkQc5fPfd7Nm3l53bNtFRBt3zNBqKnvGsZY5cWXzRp4Ui8wbdV1AotMm4vNrj7MISa4tzFEWf9kiHTZtmGGt3SJQjbRj6zqOMItUaX4hIZ/E4HdYvodIyRvZo1somWAF56Gc+FN/Daq6u9rh4aZ6lpQWSzNAZ7YCHxcUV8lz2UBqqMFWj5PmR/GUhUikRBwBJ3eJIEoP3a2RZg2ajTZI0aLTaaGMYabdpNTLSRJMlDmvFEKuDgG0dzC8scunKPEVumRofY2J6gqzTwDnP8twSC3PzqEQzPTvF+GiHTHkSBYRiDImXZ76vwfkCgmdUmTMyyzL6uWZhfo0L5y/S7/eZnJxkdnaSVjuR/YBRuFSxvLjAj09O3TRrgKPHXmZ0dHTdern0HqMmEjI0VA4bEOviUvn6O80jlTdWGfBahmoOGSM39GJUZR64a98rOkDYU5brtDA3ACyvrHDpsqSaePvMGd566y3OnTvH3NwcS0tLXL16laIoqmIjw3N+mbrCWkuapoyPjzM9Pc3mzZvZvn07O3bsYNOmTZVHWrvdpvRsL9eww202fG3r/u6HfCuDcDcQpsrWpPqlCq65wx5tCipv8DJe2Ie9dHWE+r0bCvX24SFQ4X6Ve59qdA/ef93uGssrK6wsr7C0tMTlkNrj8uXLzF25wtz8PCsrK9XcOhxS/j3vfV1krt3/4crag/2Cp5/nFIWl0ciYmpxmdnYTW7duZeeuXezYvp2Z2VnGx8cZGx2j2WzgAZsX+LAnK4u2yPkOxMeyY4gXrTh0LS+vcPiO295T//+B3IkmJia47bbbeO211/ixH/sx+v0+CwsL66wGFy5c2DA3QUmj0diwupx3pWttuEjv5CI9eOXxTm67UtIAXkksvvPgkDDSJEmqjbZ4zYkAmCRJJRxKmXRNQVF5gIDHWyeqvGRsCje4DM+UhYrSKoSPyYLCh8SUIjJC3a0T70myVAp8FBavgocggw1gYQuxZimNTxKKXP5dVRhKUwmzoPTiU8HCJROaPAuD3lmWIndl8ZN1D7gk2y09SzylICCTclnJCAbelmWCToC09LQKoW9lkuxys5I1snWDrAincl7Dx202G1L12BU0mhlFnlPkXgolEKqUaqn0iVqfUL6ee0drTb/fl4HOJOGx8WhFWFhYCbm2FqeCdaesWK0YeFl5h2EwSbggnBij0cFrTwomiZlTh414uWBPEskTcI1rOy4sHEwoR69IQ80Q56TAjTEiTJjEkFtL2gjt6qwkIA45cCT01VUeb3IMh1Ly/UVR4E0a7qlDruj680GOAXhpd2VMyFunyTptspGOPC9B5JdQbJkauqtrXA45od54802OnjjGK6+/xsnTb7GwskSvyPEemiZhbHSUTTOzbNu6hQfuuY+D+w4wMz3Nvj17GR8bE3EeT3+thwLa7TYjIyNs3b4dpWpCTMhhWYaS4mX8sM4xMjrK2Pg4/TBpl5s/F/pgNQF5KSTjlXivJVlGkqY0Wy1mN23iILeHJvHr1kHl82XdwNigjK6qOleVu5RYxUGMAZ2RhNEwOZTitAqTvaoqfIdxrrTQKynoU16H9BXJrynivakW7INbGK4t9KtEG0yaSkXfQqzYrU6bzugIm7dtXb8xr/29/C6Q8dITEh1rHwqC+JCuRKqeUYY5MOi/WaNBmmW0Ox2mZ2ZRt1XrEHnWQhoFCccoxKCSJDIOhLyHFIAeFKgo8ylWhg/EODE6Osr4xAS2KMQbIXxP5aleLnQIBplybDTi5WyDBbW+IAUqcbl8rR5qWA+9GTaiKBXmiuvMB9r/eXdx6/14B15vkeydxKdS5JuYmGDPnj0kScLs7CwXLlxgaWmJ1dXVwRwVhKNyXJmdnWV2drbyHitThzSbzWozUH4HDOa8umj5l1EMHOb9XuP38nwYplxf1MeiUrArBdyJiQl27NgxCN0K43sZulX3fqhXjix/6h6Gw983/N0bXUt5Tu92nR8WH+QYUG14fBlKhhj2lfSfvJDxlGDodc7T61mSRGNSyV01u3mSqZlxFGXRAarCbc5DmiWokOsKwpzlbFX63SvJ9ZYo8RYx2tDuJOzsbGLTlimZX4wmS+SYRhU0ZlpMTe3CuoREJeBlrut2++TW0+/1uXS1R4JDe8XKapfX33yTufl5nNfgE5RT2KJHL++TO4dOMrJGk337DrNpejREg3hM4shdn8lNU0xNTwSPEpnPnVN013qcu3SFUyff5MVnvsvz336aM6+/SW+1K3OlUuzYs589t9/G5OwM2/fu5J7772Hnnp202w1SpUmVwXhIG6BTKLwjL2R90NItMg+gyVNPoS3GODKj2T42QWInSHVCP++TpgmpMeEeKpLgteedpfCWLEmknX0oEBY8dLTzOBUcGBDjZ7WfCN5/XjnGx1p0Oi2U3o4ynn4h+7Wdu2bJsoYUWiv3KVqRaBEcvZcw4jTLKFNI9fIc5yXayihPkiYor+h3C7QWb6/EhHWfhp6V+99ITdgvyB7ETIwxPT6O9xKy6LUnMwqnPGZihKmpUXQQta0tyJ3DG0mTgvP00EE4Iex/FSbRtEyDwnr6wbtsdLRNp7MbhQo2XtnjGCMrONk6XJ+8w3U+yP5fjpF1qhGx/gzUxcOSdQbi8Ku6gwvr58yB+Fiu1srPuBC5uLGwuE4MCvtjWxmoqT5TnnsZ0QQhVLlc3ylFkqS0Wm1GR8XoX4aPJ0lKlklBz3LdMOylphSVoTHLMglPnZysDOplqou6sauMvhteZ24kgg2LXsCgwq5i4FxQuwEbhYPXj6Or8GERVVX1yap8y5C8KH/xWgVHKL3hvCkaTrFOWEyMYaQzQqfdgU2bK2P72toaq6urrK6usrS0VK3T1tbWqtDjfr9Pv9+n1+tJRKctKAorzjy1OX+Qq708Yx/29uLhKA4UKVmWkqaZpMMLVZrTNGNsbIyJ8QlxTJiYYKTdpplmMmaqQU0FFbwclVIoH1rOE8Y3L5XOw3moUKhUKYV2H1BY8TArKyu8/vrr/OIv/iIPPPAAaZry5S9/mV/4hV8A4MSJE5w6dYrHHnvsfR+73AyW3i4y2ZUFfaTzKhWSwCsqz0Idms/VLAulimxtUT3Y0kmNVOYM36fKnHZO8gyiPLbwlfKsjUI8t1SVJ0/rMGFpGyoFOQwmuAYX1QZOaxk4ZGJy1WDvodrYaaWrDbhC0e60Kfq5eKeUHiVBTFDlIqessIRsgOuigzEqJBsNDxMEMUm6TPW9WgqrmGQgCJbuu9I2IhyK6DRQ1OvWhsFnwoaVUlAchCOXnWcQRl2W5ZaiKHhZ8CYmFW8XLaq4teUAItdfeuOUCnx57LrHjHjliTeQDl51VR4ZmRUkLDtM4CBVPn2wSmplQlViET6cc/TzPIRzGrwGpaUynguu3hKWrUM4pSIJ4mspwCaJWKOzNAPK3I0iLCntwBnx5AwV+FSoKGK0wauQK1EpWaCG0BYZgzzeF+F58BISn0gxBLwCbbDJ9V8UwAc8BuCl6JBWeC2JicslvHh/QpokrK2scurUKV5//XWOvXKCV19/jTfefovLV+a4urZK4SxeedI0Zc/OnezYso392/dw9913s//AfkZGR9i8RYp95H0R5Au5OWJdDgsIo6XgRWEdSvuQnw9yL5W7Xajsa6zHIP2hCHkGlJKQeQ+Vx6rWWsLqw4IiKRPZliHsWgfvunK8GIxd5ZhWTkxK6zAm6EoURCl0MghBW98/xCW9zAda9i/pYjoI0KV0plBeqodpo0mNGXgGEsZjXa8ZNhgLJAdGaD8lodS5dZUIqcPnbG28rnvDlL9zpXBZiVy+TI1ajSfGGJkflKrWdyaEXwPrFgrSBvUFi3gQeMTyqJIEby1FGXIUjC7loqUaAxHjgILBwjD83siB0UHAK+9RtVot/6wtOh3l5nSQ/qIuNJSLn2Gv6bLqcn1MrouD9eu/nnyQ/f968G6eVO+XdYaedxCcymdxbGyMdrvN9u3buf/+++l2u6ytrVUiUl3cLb0/W61W5UFWLv7f6Vre6bzeC+9XLLuR+X6v5Z3Et/K1+gaofm/r/a++aR3eTNU3qsPPYH1DWu/H9fUMDNY0w5ve4fP6qEXhD3IMMChMWJcNPCRljC4jXcS4Nci57JylKBxplpCkSiJQkpCzz0sealsUJEZXRfY8EsqntZb8z8HTxCQiXDmCsV3Jhss5i0c+b4Jnt0yDsi7TCrprOflan8tLcyysLIgR0ymurlzlrTdOsTC/RLffJ0kSskzymjezBqk2OAXtsRH27N3PptlJxEFBDKFZs0WrKeZrW+Q0Mo234tyQYFgtFPNLq8wvrbBw8QqnX32VF158nlePvsSlk29wdWERUIyOTbDn0G3c8dCDHHrofnYfPsDoRJu0kTHebNHWikQp+nlBqjzGQN9ZvNZoNM0CWbNnGgz0+56edfgEklQK5HWcQ2UZRc/SSDRpKsJf7p0UeCkKWZsHgbYAXF7g8wKVJFIk0WiUUyE32yAkT54FJalglJEikUYKO+a5xVpHI0kkt7qyKMJaUpYa4R5aTBLEt0SRJNLX8qIgS2vpp7R4+GTKkCaKRMt+oZ9blPahEIK4k0hopEU7hc8L0jDO5w5IZF2rnUUDfe0g0Rjj8UWBx6EyI+KHBxx0cyt9wKrgFWYgCAJpoiEUfdMJUMgqJTGSN1qe4RBxZRW2uP6rgA+y/1drTKjyKQ9fQd1Dq/qMUoTi3sCwY0wQnKr97fqItrCpGuhcaiBavdt5Uh6zpi1eO2eX6+xyDerWrdvGxsZoNlvMzG7iwMHbyPv9Ks93XYQqz7kuFNavQQcDdhrSjjUajWptkaaJFLyofa5keB7zvmxxP7gsHwziQReprn+dULl+nhs2XNfn18FNHQiBdY+7ko286d9NsK0LxvXrKj9TGu3a7TZTU1PX3I9SQC3ygrzIqz/LnOIuGPFLQbbcY9XPYbg9SzG2bhhUIfe4VuLUUaaRS9OULM2q9GdlXnXZAJfPUFgbKKr1pKFepE6VT518f/rew4rflzj467/+6/z0T/80u3fv5uzZs/zWb/0Wxhg+97nPMT4+zuc//3n+/t//+0xNTTE2NsZ/+9/+tzz22GPfV5VC5z1ey0Y6NQm9tTWStBHEwiCQKD3oi0YqW6YSnyXhw3lBkqZBXBuEF6+tra4L7SkXaEaZoEbLwNvr9jCJIUm0iBPOiyBjCFZHi7fi7WESQ7/o450iNZJjS+u0emBUEDmL8MBJgvpg9aotDEsLglJKQkmzrApJLqx0njRNQ049FSa7sLjUplKsJTfeYKPtveRRKct1lw9T2VGSVJISS2gs4D15LgUyjClz/ZXWiXzdIFBuYLMsq0KLvZMEnya8VnrHSGn1YBkIyUPFe6+2GdJg0uC16SVvR4kULAmelqVXFIOqcomWistKg0rSIJioavEG9QIzgzw+hIk06K+gDUF6RqlyEPXB49SLgKxEoC49rGQSKYVrhStD1nUIqw6CJUqJAGodhXUYI6JQ6Q2qtQYn1bUl3NtVVgJXy3sY9AoGHp3yU3pCegaWHaeuT0GSD3UM0AqrPImSMHDjHL6wJFrRXVvj5Btv8PSzz/D0c8/y2lsnuby4wEpvjW4/J3dSAKCZZuzfs497D9/B/l27ePi++9m9ay9Zs0Wj1cKEjQA6hGRXz2vYOIT+UOaU096TBmG7XGE4RAArV51lWPPwxq/0EssSCSOoFjN6/eRcCfQhnKFekVQFz7jCherkWle2YFX7zmpTGULxK++x0ktQS1Xt3FmU9yQmDWKkr9Ir+CHrZyXEex9c2QfXZ50V40bN+1YWDio8i77ypPXV52XsI4x5Vf8J4qb04/VW3cFEKIaRwbWWY4AO1cKkX1STJyGUub6RVusXk6VnbnmfKlFvaIGxzggyvLBEimkRrLjSr2VBgA6eheH7y5yM6/K9BINBWfFsWAion0v1XIX3lWNZeZ/Lc9xIpPh++TD7/40mWr1b+w2/poP3fZqmtNttxsfHNxR53kmkqt/v4d9t9J03WlvdSHyvtnmn/vFubb/RMQYbqmsFveExovxzI1Fwo2O/mxC40bPyQfJhjgG2L1FA4jUlBiqARIXE7FYihBRScM8YEQmdQ1L/SK1AEQRzMeAbrcBLvsHS2K2C2GuMLJwcCuU1KofUJGIEdh6l5LsM4ILRXPwFNItLXU6fOkev36PbXcUVlv5qj9Nnz3Hu4gXJV+g8I60m0xPjbJqZwmqPVZ7pqSn2797L2GiH1CisBqsUo52MJCnHdBEskzCn53kfpaQAilYJvb7n8vkLvPHqWxx94RhHXzzO/LmzLJ8/w9yVSxRpQjI6wtTt29l7cD/3PXCvVG0+uJfR0Q5JZlDKoRw0DDSUol9AzygKV5BYT7e7ysjIKC7PaauErvcsdXs0Og3STNEoQmRT8KZPtMYqDVpyfavcYxoJfSeRQInWYpQvDbLO0kgM1ius89jC0jChuEPwjJH9nRSgNFqTZQZJOS7ztwKMknk2MSGPIEXlNeU9JMbgtabXz0WYs76K5ikKWXPmYQ1iUkM/75ElhoY2stfMLf1+DlqTZikOz2q3S7MhqQF8mTvNe1JjyJ2l0FL12hUFFsmpnCSyxlHO4SmCARVwkGqF0Ui+dnwII1ZoLbnT+/01CUlVIhR7X9BoJJJjHo8O6yxbFKHfGLS9udYAPnhVKa2qInfAunHU+8E6VVZ6sp7cyFjta5+p1ri146nwnInhubSWs6FldXgsr76nlG02WjeG9aiujedliKxWiizNyNJM6gqEKyqPVYqW1P7YSBR9J8EPBn/K70Mk2wbvp3xXzTBemscHZ7W+fet/Ds+BwxEOw2IeqiziEiIiawaAch0v24Sy3kEZyRkiMJWiXgtBRL6BWFemeNNBIxmcZ3m9g+PImhmybH1OxLLdyohMhRZvFR8SK60LgWbdZ8txp36fBve0fM2vv8esf8bEBzp4AzJoZ1umeQs3rDq2DsesNXPxPnSA9yUOvv3223zuc5/jypUrzM7O8olPfIInn3yS2dlZAP7pP/2naK35hV/4BXq9Hp/5zGf43d/93ffzFRVpmlQd2YZE9io0ng0uwTaXgg+EPCRJYlDO0+t1B8ps+dCiqzYvY/zXdaYwELjCAop+T8IznRPPHZOEar9KodHiRaag0chY666hlKfZaGCto9vrkSZZpeqXm1OPiIRJ8KTLiwLjB2oyUG2KtZZwAGsL2u022iQkwRRS5kkUBVsTCn9XCwfnLHluUUoUakmwL1aEesXgspOUC9PChbyHOqG7thbyMxbkuQh/ZccZDoMpw2mMMTSbzcpduQrp1oO8XCVlaFWapiRGKv1K75SOqpQRC4V32FDYM0lMVeG51+uRFznNxqDoi9GGouiL+JamYjFzyKIweO3IIEwY8FVtwRAW69aSJpIPMKQyqzxOpeq03DfnPCgZ1BtpVt1jKHNAWowRcTgxCRKO7mk0GuR5QVHkpGlGr1eQ593BwjQ8rR7Ie3nIjUPwWIMkS0UYxIh1UuIU0EoGmHKgt96hkAlHo0hrAtQPwoc5BiRa0dCJiG1OBj/r4PSZU/znr/w5/79//fucnDsrC3elpHp02EQkRnP7/oP8v3/+r/HpT/wV9m/bSdHtkSmDTzRror+KmKcHCXK991XFakrDi0LymXo/WC+UiwjvMV6svAqx/qB1SGhMELIGlcjqRoDhiX2jjZ+cYm3xoXVlEa1EuLAY0rW+PEhtMDh2OdmWv5M2HpS8t9ZS2gTLDVM1udYmrPpiwjlX5XEtz09rqTJfiqxijAh92Xm8Cx66YbIOA315teLdq2ub6/B62XZVaC66CtkVD0R55nG1yZX6IsRX96xOfWFTH6OGLY3lGFbev2EvHxVCpcJ8L0aTsEBPjKnCokvxrlwMrTPihBDo6jo3eCbq3t31Z2M4D83wovF68GH2/+vBhy2aDW8I6r97p9frvJMA+U6L7+/3HP+ycD3b4J1Et+Hffa97tBHvJOR+L8H3vZzTh82HOQbo0lsCHwypg7WyUuKNLgZ6RZaG9XpYHxe2L0ZFI/uAAo91YqxRRqM0sl62tjr26moP7yFNM5T1kvu6J5EgZWqdxCgKp+jnnrn5Vc6dv8CV+Xnm5hY4c+Ycy8uLYZ6A8fEOe3fvY+/ufTgnKUgmJkfYvnMzE5Nt0kQKV8icKiJQI1F4ybyHL3KUL6NVRMRylM+hCUYoz/z8Ii+/dIxvff1xXnjyWS6+cZpiYVkKeox12Lz3Nu7/2KPcdvcdjG2ZYeuebWzeOkO7YWgm0FTg+30UsibPbZ9VrSE14DW9XPJbj42N00DhM03XOZJEM6IbyOoWUg+iKHpoGHJZqEgkRCqFEvOiQGmFSRKMEgGo8LLHc95h8RTe4bVUG3WFFWN5osK8GgQg73FevOF8EAq1UuJZWPRRSiMxWBpjMlJdOkk4bFjveAsqOBsop/CFVLt2TvJIKwV57miaVDy3EhEzw90hTTSFzfFAO2sET1TASH7IrJniC4/VDhuMg2kjQzkf8ih6rJec8VqBTqT4o3eOQmmcklBC5zytplSy7nZFFE7TBooyV7ykd7GFDSlJxLEjTVOcSVC2QNnrsw/4MPt/5fFnfahQvcGYjKqeh2qlNzQ/Ds+31dwMoGtiHbJ2trmtUnaV6cb0Bp529WOJSFkTevy1Rt3qSypRs2YwCscQR4P1nyvluXLPXl8HlIbi+jUP1hmgVHlOA2N0XZCqvPMG2891WuhG7Va1vaIS64Zff7d1Z+nAsk5k9GUV3vI4YX/A8Jq8/v1hf0G9ra/dZ9VF03IvJF6YIvrVBTsVxFBpu2uvY/heVrqhHzRhvQHLkN9SIVC+9helZK+jwZfHVINjVA4N4c+atEupKYkw6aqP6qCWlUIrehCw7d/FCDnMD1SQ5IOgTJp8eW6O9kgHow2JqCOyqVKeHA+5lfA9rbGJplAegyIpgqUhGST5tyEHR5KlmGTgqVdu0opQ5rvRkEIB/V4fU1aYQUu+OyuTYz8UBmk0ZCLwlMlhg9iVBJdvJaHEIpzl6xKJlw9mlmVVZy1FN+9Bpn9HUbrGNxriPehLtQIZtIyuhD7nLGkIg7S16wNNv59XVXPyPIS3alWp61JVWCojgZdJR/lQwfjajWnpKVgURbUhrYf1ej8IqS5fB6rCAeXGWgQ9OZfSemISyfmILXMNyuLNa/GGdKEiklJgXVGFYis18MzTBvAq5B0UNafMbdDtdqWtQyGV0qLgQ6hjmbtBLM8Ea8NgUam1WKQLF6om69KDSp6x0lqRJCnOQb/fQ5XCpg5WkWC9U16HatjgCsldWYRiIiaEQqNEjOz3+zTbrcqCodCDCS1Y1vCEEPcQim/z0NaGpaVlJmaubyLiD4pyDDj25SdJTcLi0iJnzp7liW8/xeNPfIuTZ06zZvv0bEE374GSCt7NRpPd23Zw/933cnD3Xg7tP8Ddd9zFSKslXlwhpB2tyYNoJHldBnlAbBl2riSMBSNCnw2586AcgGXRJgU25E8JmlU4o8UjwA76YRmGWw+DH67KNSwmbCQylH2v8satMXxspWQBroK47KSsupxjsLDX+7MrK/Xhq6S+5WRdGVmGrmFwbtIy12x8g2etd2Lx8iicH6pW5ssZlmo8rE/u9RCiukWy/vdyAWWdI7eDIlOlmFsNm2HCRbGufYfPe6PFTl0QFA9mfc0x6udVDwkePr4tiipUzrpBDjkfPCOGBb7h+zyY7sslAtd8ZjjVwtLyErd9/N4bfgz4oAonXC+G78k6r4P3wLsJTN8PN4JgdCvxQSyZhzevw4Ly9eBG71d1ynP9xqV5Wp0R8qJP2kjCutGijKGwFqPTyqjqPaGAhKzhrHcURVmdVdZpJmyUPGA0ciwvqW+KsD4ocpk/sySBQtZbSSZ57fLckmQJHkWv53j95Cme/Pa3WVhcZGpqml27djE1OY4rLCZNaI612bllC52GIe8jHm6JJ2kovCvQoWCi0oZuLnn3mqnB5j0aSci3iJac0SbBeZm7l+fXePX4Sc6ePsXi/DwvPfsszz/3DMsX59C9HOMVUzNb2HLoEHc98iCPPPogew7sYXrTGDpRFNahUZLHSvngAONwrsBhMZlESBXOoXJD11u0VrSzBr5QeO3oWofRisx7fF6EnHwe5RVraz1oNVixOQ205BrOJL+WDusE5z39Iq+qtWpPFS3hJNpbZIE8RGMYhfUF1uUobYAyXRPkPQlPzoJTiUIM5/1cjHM6VSFNilynLsOLQ3SD7NMsaZJI6LMbiDHWOrKGDnmhZe1fzqtaKynyaIwUtXSOop+TGkO316XVbJCkCbmVdpEQd02vkJzGSSJ7Bp0YKOd1F4obmmBEDWvU0llBaynCJkUeCR6kIcrMiwSRJaGISb9PmoWc2H3P2tWrfHLT9A0/BpT9/+WXpSBJOR7Wo9VKRDxcXzQCBmLMRp5qw2KQLz/AtYa4Uix7t3F/IBYF8eodjIPeDdbD6wTK+nmEf1NKgiq8XvuuYVFQBCSq6KH1Iqa0hJcNoshJfuA1WX2fKp/5dzFyDZpJ7kPt/eXedOBlt17Iu1ZYHBZOy5/qHdXx6oVBYLBvqV/nQPjcWKRcv68qz2nj8xv++0bG3uF92vD1lP8u79G659MHA0d5yeVmktLwMST8hsYvxUpdei+W7Va7d/X7JwVKymhHz/LyMnffcccHX5Dkg0QpUM5jfYHXUrXKaIMLiYh1lqJyi/j/Dko6K6Vw2gEWpRLSRkbqRdyhVLjLPIE+5DVMEhq1ohJpwwSPDvC+IO9LIQuFWifyuTCxKK1ITSYWSx+qK7sC72WRktbivJUahHptmFOmPE8lCxYT8nuVXiZFIUUY5GRdtSlU4YECjw4h0OUg2mg08L4UrmyVh7C8XhEudKjKNdCmy9A2oDqHfr+/Lm5erqNe2UdyI2glnoOlh4wLYcaoMh9kyKEWHlyZ9HS1wVfeUDhPogdFAeTqfGUt09rgnVQEE1HShvLmYeDxg4EYjLjvG10N9JKEOgx3unT5LtuwHHTk9SQp8wcCStrY6CQUoQAR/RxaJ1X1ZqUNWSML/X8g2pXPN1qFUBgtFayBxBFEJbCFhBEkicYkTZQS786q0ImCIi9whVSKdV4EWJMgC2STQiEVle11CCf4sPmj//jHvH7ydZ5/6SVOnzvL4uoKhbNY5Wk2W2yanmFsZJSdW7fz6EMPs3fnLnZt3cGenbtpt1pSpEN5rvb6WIUstrTHeEfmqDwRvfeV+FUlAlWlZ+Gg+Ixi4NJdLTycWKEVUmFPXNtLl/dB366HGNdFtfrkdo2wtsHf68JTnY3ERML5lQsLowchpqUQWuYwEc9aPZinwvtMKbANTcD1BO7y2uCa6mHQ9UWLd1Y2ASbkz6z6JusWUyXlRG9q4STlcevtMnzNqUlqbTK0KFGDY9QF1voxh49XUveYrnuvbHQf6scsv6vudYgKFe1QVa5YyudQh3HJX3vv65dRGkTKXwxfw7pzZp0xM/IDsFF/3Oi193qM8jjf6/PDC97IR8O7ibvv1F+HX/ten32vn/nLTmHDGj2Igsb4KlVGlqaIsONDuDCAeJ9Jfl5XmydlreWKMu2KCGRGG6yXvFLlercUXdb6eQi1FWHIGIkaKmyB9Z6slbFr9yY6I4/S6/Vot9pMTkwwNtKSdDpAoaFwntxadCI+Z0p5jNeSnghFvygwQaBqNlOc9ThnKJzGaENeOFbW+vT7y8zPLfP2m+c58cJRnn38cd5+7XX6Nqe3epU00ey57SBbdu5icmKSOw4f4fADdzGzexvT46NkGrQDXVgy5TFpSuGDv72Gwhkp9KFTWQI5T6o0yjgMCcok9J3k33NIgv/EerT1NNOMvs0plKdQin5DckK30waJE3eHvJA84gmQ93OcCut2JQZWggGxZy2FgkQpMl3mUHayFtHiQVbuLXo9R6LrUWI+5C+XYiRKa/Gk64PJkirnnjhDiMdes5lJYbvEoJBQ5jRNqiKTeAs2GBXD2sA6F0KB9br8yNp5XOEoHDSyJh5NnkvqpMwYUq1DkRMdBFotIrVzUoXbgsFgtHgnFsGTlAIx0oZUTLJnM3jvqr1YucYAeea63Z6kJip8tY9IP6Dc4x8U9bVufdy11hK2akFsWT9/ln/WqwzXfw9D67OaWLZuzV4KXENiWn29Xaf+rw2/a0gwG3yX7B2oBML1wt6676hda31tXF1nec2141Q+Z2qgE1Dt9QfnObwfkbeWZ1TujweHqQtytasC1DoRTNU+f83ap/yKoXuAkr3+unXz0LUO7wHq9+Sd5s5hzUW0EYlsWv8duna+77bOl98NO3tstE4cvi+Uvn/eD25z/VnVsHEt0dLEFd5bCSTl/Zb/mVJ9DN4rfbPhwTbkhhUHcWLN0iaRylVpivZUA6PXZXiuQjkqL70kJL33gPUWHTZiSkunzGsbQoWEX8oAUgpFVFt/pQZCjdKSFNI7sTYCtc2lDCJlPHtpbawr56WQUHUu6qFjpdA4cJ82iaqqKSdJWj2gcm+DV1PI1+fLawiXIJ4x4SqcqzxTVMgJJuLk+oFwoFKLaFZ6/w0nLS1DsqHceIoAV56Tqm90Q2lyF9x3vQ/vgRA+F3KcObFKlpWijTJYSk8jqo1vOYiCpyjyalK0hVjyRFz0YeASEbAUPJyXcENTFSDxlUCMGiS2dviQS0x0IinwApLIQ0TVUtkvFXzKDb6sHdC6rIYt3lqJCR3UWgkZDPlSbGjf6vnwDo+87vEYJbluvPfhd+FZ85AXfbIkxSiNThDhM1w3SF46bTQ+hLDzPgaFG4V//Lv/jG5vDech9wWdZod9O3awefMsB/fs47EHHmbHlu1MjU2yedMmsjSVwhZGk3tHTkgkbsJALTcU5ZyEdYQJyXkvZlktXoLo9ROChA7LOamQz0VeDqHMYUorFKDFzq9q4ntdDCwZntxKq08ZBjuciLd+nNK48E5eb3XhsBTtq35eutFDMIBIXpxy8q6KQME1k375nc5JcvL1E2Roh5oQpkJ/KA0OZQGQ0igj33utsPJO4lp5beXfkyRdl9fPe7fuPMt8JPX2HiaspcL5DCb6d7pfGxX9GB5Dy3Ms82GV43z5/fW/V9eFjIloVbVb6e3M0Ll473GqXKCV92joPns/KFATxs91luLIdeFWF29uFd6v0Pdu79lI5I3P0cZ4JcYSYzSEnM8izlgZ15ysOYvCUSChp+VmX3IVyjzhAG8dGDG6iyeFCpVmJQIoLwoRiLTGOC+FrSqDdpmfKwgxeUG/nzMy0qHTaSNBBlJM0PZzyTmeSEic0p5ekUt+vcSTaSl2hdcUKLxJcEqTpRmuL+elVUav51laWOHtt9/m5WNHeeuN1zl3+jQX3niD+TPn6a32SE1Ke3qGvYePcOTee7nngfvYu38nnXaT8ZFROpMNuuTookB7Qxr2K11f0HM5LtFBnPOgnCTER0J18z7oTJNrS4YnsR6sRyWKTCkJIQacUax6B8F5w2lFt8hp+oSskFQiFodODFqJ4Ot9mI+9IlGSu6uKeCBEYyDLbqU1SapxStYqxgRnAWNCJWjJ163C/C1hwZILXmnJ9229Je+LF2m5n8myYKQMDhnOSx7n0hFA0jHJnqUoPN5L8RK8ZCMv100EgVUphVeKJMtQIQ+5LULqHwO5qhmYlZaULni8DQJR8AoxQcMx3mO0hzItUpk/2mgaWvLOJyF9Ux72QIO1kYQUY2U/FwJApCjKTUQp5JeiLJRiIBAcRZRSlcfpsFhU/6mEI881a6GNxJxBzjtf7UNRwahbem359d8lxwr/G1pLbuh5RimEDUSddWvX+h6hEg8Gv6tyVZfHqF8zPuSrL6826BJBUyr3OMNzzzXRLiqEqoZrL73UvCtD4gfXVd0DD175Qd7xoXauztGFdamiKrqownfUP1l9N/X766pK46GxKjGv1DoGe5YNPEuvmXN99fnyPlbPU9lu9aspjxM0goHfpyoluUrv8XWR1zP4OzBIeffOomb9GSr3U77Wnus8aatz84N+U0pS76Mg0Q0rDlrnqrLzziict2iVyEPqw8yBhINWG1FkwVAUdtB5FWglk5YneG4FActoRaKCkIMMyC5UCVVIzjulTLBIhsT7hatteKlEOq1KzzxFkiby0KtBaGGV2y4sbqqJTA+qh3rvg3ePePgpVC0EeODhVwqhkt4sxNU76Pe6MllIXC2U1+up2qOudg/GmsHgo7UPk2FRhaMVRVF5P1Ydi5DbRUt+v1LItCGfiK48A2VWciJcB/Gx/lCXm2BpY6nobAFNkhoI4iJaD74j5AUUvS0MTt7J5ZZhx6VQGTynCmtRaHRw1TdhQWidI/HyjPggrrpq0g+51oxikP9L2q1KjuulejIg4lQRNvtGY30h7yktX14WOi4MiOIBKomXVQhx8TgJz1ADaxkgFZt1EP8UKKzkWTFGFKsw0Boji1opGmOqiVPpm2xVACx3V5kcn+DAvn1s2ryZO267nY89/ChbZjbRSBImRsdI0wyCxa0fvAq9AivqrVR5cx6jFJlOcM5SuIIiOL4pdChsFCbbkPenzOtnrQsbjGQQegtB/JYFG8qv69vOSdh3mbPP1QpFrLMglf2jnNRgMIhvQH2iGxYXAeo56soJo5yoy+kpHKlahFeLg3KRU3oaKhVsU8OLKI3W68NeB8Ld+gWLC+M3flBRtzqTUnSvjQV1obMUMn1wqdfhHsvxB/lZ65bkcuEmvuRUCYJlPzQQ86rNufKDYjBhQFSKatKv6wEbeeWV/x4WZ+u/L+9DfXKvX2/ZXiBev9qDD+FPDtGzS/TwNdR1w9o51c+v9LR+J2/IyI3BDyI2RSJ/WfFe5nNHGT7pMUkqle6VGAFV2LiqYNTzSEix1hqqzaOkapH5So7nwnyXJgmJMRR5EfZUsplKjSZ3BYV1pEkaispZ+rmTQoI+bL7xrPaspBRyToxsSkJT+5IgkCQ4Dsh7AAz9vkU3kpA6R+ZapRTdbs6FC1d45ZXXefGZZ3j1pZd4+8RxVi6ep3AFupWxaecOHnn4YbbvO8DkxDR79+xn365dTE20yVoJLvFSYddbjFPoROO1pltYyfurleTQ61sSo2k3GiKEWrDOUxSWvHA0GhkFCYVzZMqhNTS1wttQJMYYcqXo20IEOQ84T+J1yMuToJRB5Z4ETdHtY73smxJt8IVU2pV1lHh32nIjrxQ6S9HokCrIUziPUWALh9GQmJR+Dt2+ReFDNWlPlqX0Cy8pgAqLNi6kTypDgrVUpw7rln4uKY6UCTkFra95BMots17yYKcuVMoORQOL4IDhg+NG4R1JSMuSKiUb8kSLYwrgC1mjaK3Kend4K0KfUjpEoiiME+9JlUDPiXitlBGHgDJfM0HEUtQKvoV1KzoINOJY4DwU9ubyHEzTlDSsvb1zkl+8Ejz8Neusd1uPDX7JOuHOM1hnlu8t179Uy2dXrSddOEblAzYs1pVfMCQcVt8R9t7Kl99RL5JXXo9eJwLW2chLTn7vQiRevRjHwHg8fG0btY0fWkeuF8d89bwOC5/SRGIEqBv8Nzr36hqqIprl6YmzRekTVxeENzLuD9bSIGkjWHdtKlgXpL1sLSz52mOuXxuXzmI1XQTZ54VX152DKC2+pguVsuYgfLmOXGrtu6smHWgzw8cv56VBoUc5htZO8u4SBOvq2fOVKKw8VZ51nbx3ye+GEwfLm7S6ukqmDM4oeuGmNJ1CWYdV4BNDnvfxuaWZJVUVMyhFLl3FahtjWOuHIiEh5Kzb78qEr6W4iAKyNJMqyATrkFK15L8hE2Al9knOurzIJS+ikYFah4ccpUOxAAnnKyuAlhhtQt4BqbxcepmkicErh7U5lNY1ZCIQa4aEpyoVNBHKQcGBK4IrNGFySyTHRZqECUPc5Z2zcp2h2qYMqiJa9Xo9rHW0Wk1MqKQMg42p5CEEkONbvz4fWLfbpd1qo8oNbuiQWidVVR1QoTiK5G9MjIRiguQVccFlXmlT5QKpBMjQhklIMu1cKZKJF5TLcykgk2aSw0PrsIn22NB+zjnSkFPSIx6MeFuFRxttKuEkz6XqbZqm9HpdlNJkjUbwxlRoJYs+5+GqW5OcDt5jMk2hHN4HsdmXQ0rwvNJJEEJDyIy1eOdEEO2C8hrfDSKHciijpHJ3Q3LtZMZIfhddk3C8C9WJZUbrrzlK1WlpcWFd/7qRKc/xp376p7j/rnv42EOPMD02gbeOZpYBIvCu2B7O9ilk7S9eV16UaKl1rdBeigwp5+kFwbUwnl4WnjevZUFrnYSOhLE1CWKWsyFBsA5efQPjlUz2rvSc9WK4MLKwtEieSZzDWSmWBLJoG4SYqiqX6vBED0OTdvj/8N1bP5nLn8bU8vk5v+599Zx5ZeqB0uO3pPRsq4vrKAlnkd/LMz8sOJUTYxkiIRsxSVVeVnv2KJQpx771glvdO7CsTiihz2GjoNfn8fOlwAjVa5SLMM9A6DRqnbBWWU6D3lgPAS89k71XUPP+BBmz8bLZcE48c0svy/o928g6WW//uieo3K9BNfmB16oYIFR5HTUhdTj59PCzUrVNeF6NlnF8aXn5mmfmRqQ8v6WlpY/4TD5Yvh9vtMjNwzvd3408Bz8Myv50o/d/qO8DVnCENEFGiUiEAjR5XwSpMtWPpL6R91hboC2kSVo5D/TyQvLdJiYsnEP6Fi3RGM5afPC00h4cFm9kc9V3jrSRDKIAlMZ7RQ8xvnrr6JY5jb1Fa4NDkQOpBtstMNrTVR6HvGa0RvXAFpDbApWJF9yFc/O8+NzLPPPEtzn+zLe49Oqr2MUVNAnNsXG2bD/A7Z/6OA989kfZe2APndTQyQ1THlrdVbrdnAXVZbXpMTalbTNU00iYMxbtLS0MJrc0LbgCFuwSzdEWXQ+FLXBecpivXs7xugUNWFUebE6GDxWfZVKyFtIsJbch56PSaKdYzXt0WynGa4wHuyYrmAKJ6hLxTArOOK3waTBS9iUPZG4ta0YBCVpB0lBiCA+OGiiNt5oi9yFctlxLOdYQsaLfd8EIX1YjBZMYVn0ZouuxueTmTrNMCoH0+rLGtxKenKYpNvRTl8txXV/2T9Z7vBGRr6jW9hplPY1U43oFqRKHj74tIMlEFO0Hb8NMomIoLA2TUHgtEcRehFZjwCVlZUR5Rq21NJpNCAUHFdDPJbc+SFVfEaHl+vJ+jgnHXl68OcaA8vzm5ubI+33qksxGhvFyPTXsLTjMsIhYean5QWhxZSCof18VhVHzeHsn4cpttC4evE9T83SsdoWDFX4pLw3ESoLW6Ndd5+CY9bx713rH1c9vw3Xi0Fq1Hsa97n3OVWvlYWG2/h4RPweCbT23+MDLjyDiyQWWhRA9SOGZEHWoVd0jzm94n69p4yAO6uH7wvrnvr5Wrx+3fl3rPl8773ItXv7a125Y/dqH23ndMxmeuSqIrXZeKDEgMCzcls9puV9R0t8He8jwLAcjS/mZUmxdWVm5ph3eiRuuIMnbb7/Nzp07P+rTiET+UnL69Gl27NjxUZ/Gu3Ly5En279//UZ9GJPKXkht9DIhrgEjkg+NG7/8Q1wCRyAfJjT4GxDVAJPLB8V76/w0nDjrnOHHiBEeOHOH06dM3dEWlm4GlpSV27twZ2/I6cbO2p/dSqWjbtm3XFLO40VhYWGBycpJTp04xPj7+UZ/OTc/N+szeiNzMbXmzjAFxDXB9uZmf2RuRm7U9b5b+D3ENcL25WZ/ZG5GbuS1vljEgrgGuLzfzM3sjcrO25/vp/zdcWLHWmu3btwMwNjZ2UzX8jUxsy+vLzdieN8siuxy0xsfHb7o2vpG5GZ/ZG5WbtS1vhjEgrgE+GGJbXl9uxva8Gfo/xDXAB8XN+MzeqNysbXkzjAFxDfDBENvy+nIztud77f83rukgEolEIpFIJBKJRCKRSCQSiXygRHEwEolEIpFIJBKJRCKRSCQSuUW5IcXBRqPBb/3Wb9FoND7qU7npiW15fYnt+cET2/j6Etvz+hHb8sMhtvP1I7bl9SW25wdPbOPrS2zP60dsyw+H2M7Xj9iW15dboT1vuIIkkUgkEolEIpFIJBKJRCKRSOTD4Yb0HIxEIpFIJBKJRCKRSCQSiUQiHzxRHIxEIpFIJBKJRCKRSCQSiURuUaI4GIlEIpFIJBKJRCKRSCQSidyiRHEwEolEIpFIJBKJRCKRSCQSuUW54cTB3/md32HPnj00m00eeeQRvv3tb3/Up3RD8o1vfIOf/umfZtu2bSil+MM//MN1r3vv+c3f/E22bt1Kq9Xi05/+NK+++uq698zNzfE3/+bfZGxsjImJCT7/+c+zsrLyIV7FjcEXv/hFHnroIUZHR9m0aRM/93M/x4kTJ9a9p9vt8iu/8itMT08zMjLCL/zCL3DhwoV17zl16hQ/+ZM/SbvdZtOmTfx3/91/R1EUH+al/KUgjgHfm9j/rx+x/99YxP7/3ohjwPUjjgE3FnEM+N7E/n/9iP3/xiL2//dGHAOuH3EMWM8NJQ7+63/9r/n7f//v81u/9Vs8++yz3HPPPXzmM5/h4sWLH/Wp3XBcvXqVe+65h9/5nd/Z8PXf/u3f5n/9X/9X/sW/+Bc89dRTdDodPvOZz9Dtdqv3/M2/+Tc5evQof/Znf8Yf/dEf8Y1vfIO//bf/9od1CTcMX//61/mVX/kVnnzySf7sz/6MPM/58R//ca5evVq95+/9vb/Hf/gP/4E/+IM/4Otf/zpnz57l53/+56vXrbX85E/+JP1+n29961v8n//n/8mXvvQlfvM3f/OjuKSbljgGvDdi/79+xP5/4xD7/3snjgHXjzgG3DjEMeC9Efv/9SP2/xuH2P/fO3EMuH7EMWAIfwPx8MMP+1/5lV+p/m2t9du2bfNf/OIXP8KzuvEB/L/7d/+u+rdzzm/ZssX/43/8j6vfLSws+Eaj4f/Vv/pX3nvvX375ZQ/473znO9V7/uRP/sQrpfyZM2c+tHO/Ebl48aIH/Ne//nXvvbRdmqb+D/7gD6r3HDt2zAP+iSee8N57/x//43/0Wmt//vz56j3//J//cz82NuZ7vd6HewE3MXEMeP/E/n99if3/oyP2/++POAZcX+IY8NERx4D3T+z/15fY/z86Yv///ohjwPXlVh8DbhjPwX6/zzPPPMOnP/3p6ndaaz796U/zxBNPfIRndvPxxhtvcP78+XVtOT4+ziOPPFK15RNPPMHExAQPPvhg9Z5Pf/rTaK156qmnPvRzvpFYXFwEYGpqCoBnnnmGPM/XteehQ4fYtWvXuva866672Lx5c/Wez3zmMywtLXH06NEP8exvXuIYcH2I/f8HI/b/j4bY/68fcQz4wYhjwEdDHAOuD7H//2DE/v/REPv/9SOOAT8Yt/oYcMOIg5cvX8Zau65RATZv3sz58+dEkkByAAEAAElEQVQ/orO6OSnb693a8vz582zatGnd60mSMDU1dUu3t3OOX/u1X+PjH/84d955JyBtlWUZExMT69473J4btXf5WuR7E8eA60Ps/98/sf9/dMT+f/2IY8D3TxwDPjriGHB9iP3/+yf2/4+O2P+vH3EM+P6JYwAkH/UJRCI3Er/yK7/CSy+9xOOPP/5Rn0okEvmQif0/Erm1iWNAJHLrEvt/JHJrE8eAG8hzcGZmBmPMNZVfLly4wJYtWz6is7o5Kdvr3dpyy5Yt1yR4LYqCubm5W7a9f/VXf5U/+qM/4qtf/So7duyofr9lyxb6/T4LCwvr3j/cnhu1d/la5HsTx4DrQ+z/3x+x/3+0xP5//YhjwPdHHAM+WuIYcH2I/f/7I/b/j5bY/68fcQz4/ohjgHDDiINZlvHAAw/w5S9/ufqdc44vf/nLPPbYYx/hmd187N27ly1btqxry6WlJZ566qmqLR977DEWFhZ45plnqvd85StfwTnHI4888qGf80eJ955f/dVf5d/9u3/HV77yFfbu3bvu9QceeIA0Tde154kTJzh16tS69nzxxRfXDbR/9md/xtjYGEeOHPlwLuQmJ44B14fY/98fsf/fGMT+f/2IY8D7I44BNwZxDLg+xP7//oj9/8Yg9v/rRxwD3h9xDBjiIy2HMsTv//7v+0aj4b/0pS/5l19+2f/tv/23/cTExLrKLxFheXnZP/fcc/65557zgP8n/+Sf+Oeee86/9dZb3nvv/9E/+kd+YmLC/z//z//jX3jhBf+zP/uzfu/evX5tba06xmc/+1l/3333+aeeeso//vjj/uDBg/5zn/vcR3VJHxl/5+/8HT8+Pu6/9rWv+XPnzlU/q6ur1Xv+m//mv/G7du3yX/nKV/zTTz/tH3vsMf/YY49VrxdF4e+8807/4z/+4/673/2u/9M//VM/Ozvr//v//r//KC7ppiWOAe+N2P+vH7H/3zjE/v/eiWPA9SOOATcOcQx4b8T+f/2I/f/GIfb/904cA64fcQxYzw0lDnrv/T/7Z//M79q1y2dZ5h9++GH/5JNPftSndEPy1a9+1QPX/PxX/9V/5b2XMua/8Ru/4Tdv3uwbjYb/0R/9UX/ixIl1x7hy5Yr/3Oc+50dGRvzY2Jj/5V/+Zb+8vPwRXM1Hy0btCPjf+73fq96ztrbm/+7f/bt+cnLSt9tt/1f/6l/1586dW3ecN9980//ET/yEb7VafmZmxv+Df/APfJ7nH/LV3PzEMeB7E/v/9SP2/xuL2P/fG3EMuH7EMeDGIo4B35vY/68fsf/fWMT+/96IY8D1I44B61Hee399fBAjkUgkEolEIpFIJBKJRCKRyM3EDZNzMBKJRCKRSCQSiUQikUgkEol8uERxMBKJRCKRSCQSiUQikUgkErlFieJgJBKJRCKRSCQSiUQikUgkcosSxcFIJBKJRCKRSCQSiUQikUjkFiWKg5FIJBKJRCKRSCQSiUQikcgtShQHI5FIJBKJRCKRSCQSiUQikVuUKA5GIpFIJBKJRCKRSCQSiUQityhRHIxEIpFIJBKJRCKRSCQSiURuUaI4GIlEIpFIJBKJRCKRSCQSidyiRHEwEolEIpFIJBKJRCKRSCQSuUWJ4mAkEolEIpFIJBKJRCKRSCRyixLFwUgkEolEIpFIJBKJRCKRSOQWJYqDkUgkEolEIpFIJBKJRCKRyC1KFAcjkUgkEolEIpFIJBKJRCKRW5QoDkYikUgkEolEIpFIJBKJRCK3KFEcjEQikUgkEolEIpFIJBKJRG5RojgYiUQikUgkEolEIpFIJBKJ3KJEcTASiUQikUgkEolEIpFIJBK5RYniYCQSiUQikUgkEolEIpFIJHKLEsXBSCQSiUQikUgkEolEIpFI5BYlioORSCQSiUQikUgkEolEIpHILUoUByORSCQSiUQikUgkEolEIpFblCgORiKRSCQSiUQikUgkEolEIrcoURyMRCKRSCQSiUQikUgkEolEblGiOBiJRCKRSCQSiUQikUgkEoncokRxMBKJRCKRSCQSiUQikUgkErlFieJgJBKJRCKRSCQSiUQikUgkcosSxcFIJBKJRCKRSCQSiUQikUjkFiWKg5FIJBKJRCKRSCQSiUQikcgtShQHI5FIJBKJRCKRSCQSiUQikVuUKA5GIpFIJBKJRCKRSCQSiUQityhRHIxEIpFIJBKJRCKRSCQSiURuUaI4GIlEIpFIJBKJRCKRSCQSidyiRHEwEolEIpFIJBKJRCKRSCQSuUWJ4mAkEolEIpFIJBKJRCKRSCRyixLFwUgkEolEIpFIJBKJRCKRSOQWJYqDkUgkEolEIpFIJBKJRCKRyC1KFAcjkUgkEolEIpFIJBKJRCKRW5QoDkYikUgkEolEIpFIJBKJRCK3KFEcjEQikUgkEolEIpFIJBKJRG5RojgYiUQikUgkEolEIpFIJBKJ3KJEcTASiUQikUgkEolEIpFIJBK5RYniYCQSiUQikUgkEolEIpFIJHKLEsXBSCQSiUQikUgkEolEIpFI5BYlioORSCQSiUQikUgkEolEIpHILUoUByORSCQSiUQikUgkEolEIpFblCgORiKRSCQSiUQikUgkEolEIrcoURyMRCKRSCQSiUQikUgkEolEblGiOBiJRCKRSCQSiUQikUgkEoncokRxMBKJRCKRSCQSiUQikUgkErlFieJgJBKJRCKRSCQSiUQikUgkcosSxcFIJBKJRCKRSCQSiUQikUjkFiWKg5FIJBKJRCKRSCQSiUQikcgtShQHI5FIJBKJRCKRSCQSiUQikVuUKA5GIpFIJBKJRCKRSCQSiUQityhRHIxEIpFIJBKJRCKRSCQSiURuUaI4eAPxhS98gV/6pV/6qE9jHb/0S7/Ez/3cz30gx96zZw//y//yv3wgx45EIt8fn/zkJ/nSl770UZ/GD8QXvvAF7r333o/6NCKRv5T8ZRgjIpGbnV/6pV/iC1/4wgf+PZ/85Cf5tV/7tQ/8eyKRyM3Dnj17+NrXvvZRn0bkA+CWEgf/+T//59x9992MjY0xNjbGY489xp/8yZ+se8/58+f5xV/8RbZs2UKn0+H+++/n3/7bf7vuPa+88go/+7M/y8zMDGNjY3ziE5/gq1/96rr3fOc73+FHf/RHmZiYYHJyks985jM8//zzP/A1lJ3xa1/7Gnv27PmBj/dB8KUvfQmlFEoptNZs3bqVv/E3/ganTp16z8f42te+Vh1jo59PfepTALz55pvrfj89Pc2P//iP89xzz11zLhv9/PIv//L3PJcLFy6Qpim///u/v+Hrn//857n//vvf87VthFKKN998ky996Ut88pOf/IGOFbmx+cY3vsFP//RPs23bNpRS/OEf/uE17/mlX/qla57Vz372s9Xrb775Jp///OfZu3cvrVaL/fv381u/9Vv0+/3qPV/4whc2fOY7nc4PdP5lnyu/o27QeL/GhP/iv/gv1l0XwJ/+6Z+ilLpm0/OFL3yBXbt2vafj/vqv/zpf/vKXv+d5xX4XuRF5L2uV/+1/+9/45Cc/ydjYGEopFhYWrjnOz/zMz7Br1y6azSZbt27lF3/xFzl79mz1+te+9jV+9md/lq1bt9LpdLj33nv5v/6v/+sHPv93GyMuXbrE3/k7f4ddu3bRaDTYsmULn/nMZ/jmN795zXG89/zET/zENePk8LyfZRkHDhzgf/qf/ie899X76t8dNzKR98sXv/hFHnroIUZHR9m0aRM/93M/x4kTJ6553xNPPMGP/MiP0Ol0GBsb44d/+IdZW1tb954//uM/5pFHHqHVajE5ObluPnq3derFixd/oGt4tzlubm6OX/u1X2P37t1kWca2bdv4r//r//o9rdWPHj3KX//rf53Z2VkajQa33XYbv/mbv8nq6uq69+3ZswelFE8++eS63//ar/3aNeeztLTEb/zGb3DHHXfQarWYnp7moYce4rd/+7eZn59f997XXnuNX/7lX2bHjh00Gg327t3L5z73OZ5++ukNz9day8c+9jF+/ud/ft3vFxcX2blzJ//j//g/fs9rrtPv9/nt3/5t7rnnHtrtNjMzM3z84x/n937v98jzHFgv3pb3IRJ5r7yXdUDJO82VV65c4bOf/Szbtm2j0Wiwc+dOfvVXf5WlpaXqPe+03z5//vwPdP51nWIjQ8axY8f4mZ/5GcbHx+l0Ojz00EPvSyf4XvuNm0EvuVG5pcTBHTt28I/+0T/imWee4emnn+ZHfuRH+Nmf/VmOHj1avee//C//S06cOMG///f/nhdffJGf//mf56//9b9eiU0AP/VTP0VRFHzlK1/hmWee4Z577uGnfuqnqo60srLCZz/7WXbt2sVTTz3F448/zujoKJ/5zGeqSeNm4Ac517GxMc6dO8eZM2f4t//233LixAn+2l/7a+/58x/72Mc4d+7cNT//8l/+S5RS/N2/+3fXvf/P//zPOXfuHP/pP/0nVlZW+Imf+AkWFhb4G3/jb2x4nN/4jd8gyzL+1t/6W9/zXDZv3sxP/uRP8n/8H//HNa9dvXqVf/Nv/g2f//zn3/O1RW5trl69yj333MPv/M7vvOv7PvvZz657Zv/Vv/pX1WvHjx/HOce//Jf/kqNHj/JP/+k/5V/8i3/B//A//A/Ve37913/9muf+yJEj76sfftB86lOf4pvf/CZFUVS/++pXv8rOnTuv2ch/9atfrYwC34uRkRGmp6ev56lGIh8a72Wtsrq6ymc/+9l1fX6YT33qU/ybf/NvOHHixP+fvTePt6Qo7//ftXT3OeduM3eGYR0YZFVEEAQUo4Ai7lsMEpeIxkTc9ecKMUr8JsYlGjTb18QF9PWVgIkBFI2gsrghizCggqKICLLMwGz3nqW7q+r5/VHd555z751hwBkWOZ959Zx7TldXV1d3VVd96vM8D1/5yle46aab+JM/+ZP+/h/+8Ic87nGP4ytf+QrXXXcdr3nNa3jVq17F+eefv92u7SUveQnXXHMNX/jCF7jxxhv56le/ytFHH80999yzIO0nP/nJPsm4GOr3/i9/+Us++MEP8qEPfWjR9/QII9wfXHrppbzpTW/iRz/6Ed/61rcoy5LjjjuOdrvdT3PZZZfxrGc9i+OOO44rrriCK6+8kje/+c1oPTe9+spXvsKf/dmf8ZrXvIZrr72WH/zgB7z85S/v719snPrMZz6To446ihUrVmyXa1u3bh1PfOIT+fa3v82nP/1pfvWrX3HWWWfxq1/9isMOO4xf//rXmz32Rz/6EUcccQRFUfD1r3+dG2+8kQ996EOcccYZPOMZzxhapARoNBq8973v3arynH766bzrXe/i8ssv5+qrr+ZDH/oQ11xzDWeeeWY/7VVXXcWhhx7KjTfeyL//+79z/fXXc84557D//vvzzne+c9H8jTGcccYZfPOb3xxaAHnLW97C9PQ0p5566tZUGxCJwWc+85l85CMf4XWvex0//OEPueKKK3jTm97EP//zPw/10yOMcH+xNeOAGpt7V2qteeELX8hXv/pVbrzxRs444wy+/e1v8/rXv35B2l/84hdDfdD26nsAbrrpJv7oj/6I/fffn0suuYTrrruO97///TQaje12zhHuA+QRjqVLl8pnP/vZ/vexsTH54he/OJRmenpaPvOZz4iIyNq1awWQ7373u/39mzZtEkC+9a1viYjIlVdeKYD89re/7ae57rrrBJBf/vKXmy3LqaeeKieeeOIWy7vHHnvIxRdfLBdffLHsscceQ8cedNBB8sUvflH22GMPmZyclBNOOEE2bdrUT+O9l49+9KOy1157SZqmsnLlSvm7v/s7ERG5+eabBZCzzjpLnvrUp0qWZXL66afLiSeeKC984QvlH/7hH2SnnXaS6elpeeMb3yhFUWy2jKeffrpMTU0N/fZP//RPAsjGjRuHruW0007rf//MZz4jU1NT8u1vf3vRfK+//nqZmJiQ973vff3f6nJfc801/d9+8IMfCCDf/OY3F83nkksuEWtt/55u3LhRGo2GfOMb3xhK9z//8z8yPj4u7XZbvvrVr4rWWm655ZYF19poNGT9+vUiIv36+tCHPiQrVqyQqakp+eAHPyhlWcq73vUuWbp0qey6667y+c9/figfQG6++WY5/fTT5aijjlq03CP84QGQc845Z8Hv9XN0X/Cxj31M9txzz83uX7169YK+azEcddRRcvrpp292f93mRBb2WfPLPb+Ni4gcdNBBcuqpp4qIyC9+8QsB5LLLLuvvP/zww+Vf//VfpdFoSLfbFRGRbrfb75NERG655RZ5wQteIGNjYzIxMSHHH3+83Hnnnf086v6w/hsY2i6++GIRGbW7ER4+mD9WqXHxxRcL0H8HbQnnnXeeKKW2+P5+znOeI695zWu2mM/97SPWr18vgFxyySX3WtZrrrlGdt11V7njjjsW9JOLvfdFRJ7+9KfLG9/4xv73wXPXY6cRRri/WLNmjQBy6aWX9n874ogj5K//+q83e0xZlrLrrrsu2na3dJ4kSRbMRebjxBNP7L9LN4fNveNe//rXy9jYmNxxxx1D6Tudjuy6667yrGc9q//bUUcdJW9729tERCSEII95zGPkCU94gnjvh45dvXq1KKXkIx/5SP+3PfbYQ9761rdKmqby9a9/vf/72972tqHynHTSSTI2Nia/+93vFr2OEEL/84ADDpBDDz10wflF5F77wU996lOydOlSuf322+Xcc8+VJElk9erV/f2LzV/OOeccGZwuf/SjHxWttVx99dUL8i+KQmZnZ0Vk+P7U92GEEX4fLDYO2NK7cjF86lOfkt12263//b6MIQZxb+/UQZ5ifl91wgknyCtf+crNHvuyl71MXvrSlw79VhSFLFu2TL7whS/089zSPGlzfMkI945HlHJwEN57zjrrLNrtNk960pP6vx955JGcffbZrFu3jhACZ511Fr1ery9/X7ZsGfvttx9f/OIXabfbOOf493//d1asWMGhhx4KwH777ceyZcv43Oc+R1EUdLtdPve5z/HoRz96u0pbb7rpJs4991zOP/98zj//fC699FI+8pGP9PefcsopfOQjH+H9738/119/PWeeeSY77rjjUB4nn3wyb3vb27jhhht45jOfCUTFzk033cTFF1/MF77wBc4444z75G9ozZo1nHPOORhjMMYsmuZjH/sYJ598MhdeeCFPf/rTF+zfsGEDL3zhCzn66KP527/92y2er9lsAixYvQS45ZZbOP744znppJP4i7/4CyCqHJ/3vOcNrUwCfOlLX+JFL3oRrVaL5zznOey4444Lrvv000/nj//4j1myZEn/t4suuojbb7+d7373u/zjP/4jp556Ks973vNYunQpl19+Oa9//es56aSTuO2227Z4HSM8snHJJZewYsUK9ttvP97whjcsqqwZxMaNG5ment7s/s9+9rPsu+++POUpT9nWRb3f2Hfffdlll136bhlmZma4+uqrOf7441m1ahWXXXYZEBVOeZ5zzDHHEELghS98IevWrePSSy/lW9/6Fr/+9a854YQTFj3Hu971Ll760pcOKTGPPPLIB+waRxjh98Hmxir3FevWreNLX/oSRx55JEmSbDbdvfUjvw/Gx8cZHx/n3HPPJc/zzabrdDq8/OUv51//9V/Zaaedtirvq666ih//+MccccQR26q4I4wwhI0bNwL028eaNWu4/PLLWbFiBUceeSQ77rgjRx11FN///vf7x1x99dX87ne/Q2vN4x//eHbeeWee/exn89Of/nSz5/niF79Iq9UaUvluS9Rzm1e84hUL2lez2eSNb3wjF1xwAevWrVtw7OrVq7n++ut5xzveMaSOBDjooIM49thjh6wcAPbcc09e//rXc8oppxBCWLQ8Z599Nq985SvZZZddFi1zrYpavXo1P/vZz3jnO9+54PzA0Fh8MbzlLW/hoIMO4s/+7M943etexwc+8AEOOuigLR4zH1/60pc49thjefzjH79gX5Ikv7frlhFGmI/NjQPu67vy9ttv53/+53846qijFuw7+OCD2XnnnXnGM56xqJuPbYUQAl//+tfZd999eeYzn8mKFSs44ogjhsyhX/GKV/C1r32N2dnZ/m8XXHABnU6HF7/4xdutbCNUeLDZyQca1113nYyNjYkxRqampoZWskTiqtNxxx0ngFhrZXJyUi644IKhNLfeeqsceuihopQSY4zsvPPOC1aQfvKTn8hee+0lWmvRWst+++0nv/nNb7ZYtq1RDm7p2FarNaQUfPe73y1HHHGEiER1Y5ZlfbXcfNQr8Z/85CeHfj/xxBNljz32EOdc/7fjjz9eTjjhhM2W5fTTTxdAxsbGpNVq9dU6b33rW4fS1aqi97znPbLzzjvLT3/600Xz897Ls5/9bHn0ox89dH2D5a4VBOvXr5cXv/jFMj4+PqQkEhFpt9ty8MEHy9FHHy1lWQ7tO+ecc/oqQZE5NeH//u//9tOcfPLJsueee/ZXMH/1q1+JUmpI6VjX1+CK5n777SdPecpT+t+dczI2Nib/+Z//udk6HOGRATazyvef//mfct5558l1110n55xzjjz60Y+Www47bKgdDuKXv/ylTE5Oyn/8x38sur/b7crSpUvlox/96L2W6d5UQVvCfVUOioi84hWvkOOOO05ERL7+9a/LYx7zGBERed3rXicf+MAHRETk/e9/f18VeeGFF4oxZkiZ/bOf/UwAueKKK0RkWDm4WLlGGOGhjnsbq9S4t1X/97znPf338BOf+ES5++67N3vOs88+W9I03ey7uMbv00f893//tyxdulQajYYceeSRcsopp8i11147lOZ1r3udvPa1r+1/n99P1u/9ZrMpY2NjkiSJAPK6173ufpVphBHuDd57ee5znytPfvKT+79ddtllAsj09LR8/vOfl6uvvlre/va3S5qmcuONN4pIfJcDsvvuu8t///d/y1VXXSUve9nLZNmyZXLPPfcseq5HP/rR8oY3vOFey7Q1ysHFcOeddwqw4N1c43/+538EkMsvv1xEhpWDZ5111qKq3Rpvfetbpdls9r/XY4A1a9bIxMREXw05qBysy/OP//iPQ3kdcsghMjY2JmNjY/Knf/qnIhL7KGBR1d7W4oYbbhBADjzwwAVzga1RDjabzQXzmRFG2B64t3HAvb0ra/zpn/6pNJtNAeT5z39+3ypHROTnP/+5fPrTn5arrrpKfvCDH8hrXvMasdbKj3/84y2W7f6q8WuFY6vVkn/8x3+Ua665Rj784Q+LUqpvVVCWpSxfvnxIPf2yl71siHsYjeu3Hx5xysH99tuP1atXc/nll/OGN7yBE088keuvv76///3vfz8bNmzg29/+NldddRXveMc7eOlLX8pPfvITIDr9fNOb3sSKFSv43ve+xxVXXMGLXvQinv/853PHHXcA0O12ee1rX8uTn/xkfvSjH/GDH/yAxz72sTz3uc9d4KR4W2LVqlVMTEz0v++88859Z8Y33HADeZ4vqsobxBOe8IQFvx1wwAFDir/BfDeHiYkJVq9ezVVXXcUnPvEJDjnkED70oQ8tSPeJT3yCz3zmM3z/+9/ngAMOWDSvv/qrv+Kyyy7jvPPOG7q+QRx55JGMj4+zdOlSrr32Ws4+++wFqsjXvva1bNiwgf/6r//CWju07znPeQ5JkvDVr34ViD5iJicnOfbYY/tp/vzP/5ybb765r3I6/fTTWbVqFU972tOG8jrggAOGVjR33HFHDjzwwP53YwzLli37vR1Nj/CHiz/90z/lBS94AQceeCAvetGLOP/887nyyisXdaj/u9/9jmc961kcf/zxm/Whec455zAzM8OJJ564nUt+33H00Ufzgx/8gLIsueSSS/oq7aOOOqp/vZdccknf3+ANN9zAypUrWblyZT+PxzzmMSxZsoQbbrjhgS7+CCNsF9zbWGVr8e53v5trrrmGCy+8EGMMr3rVq4aCdtS4+OKLec1rXsNnPvOZzb6LtwVe8pKXcPvtt/PVr36VZz3rWVxyySUccsghfVX+V7/6VS666CI++clP3mteZ599NqtXr+baa6/ly1/+Mueddx4nn3zydiv7CI9cvOlNb+KnP/3pUGC6WgV30kkn8ZrXvIbHP/7xnHbaaey3335935d1mve973285CUv4dBDD+X0009HKcV//dd/LTjPZZddxg033PCA+LFerB8YRJqm9+vYxY7bYYcdeNe73sUHPvCBRa16FsM555zD6tWreeYzn9mfO91bmbcGn//852m1Wtx88833y4JnW5RhhBG2BlsaB9yXd+Vpp53G1VdfzXnnncdNN93EO97xjqFznHTSSRx66KEceeSRfP7zn+fII4/ktNNO2y7XVPeJL3zhC/n//r//j4MPPpiTTz6Z5z3veXz6058GwFrLS1/60r5/0Ha7zXnnnccrXvGK7VKmEYbxiCMH66h2hx56KB/+8Ic56KCD+NSnPgVEs9x/+Zd/4fOf/zxPf/rTOeiggzj11FN5whOe0A8ecNFFF3H++edz1lln8eQnP5lDDjmEf/u3f6PZbPKFL3wBgDPPPJPf/OY3nH766Rx22GE88YlP5Mwzz+Tmm2/mvPPO227XNt9USCnVb4S1qe29YTE5/Jby3Ry01uy99948+tGP5h3veAdPfOITecMb3rAg3VOe8hS893z5y19eNJ+zzjqLj3/845x11lnss88+mz3f2WefzbXXXsv69eu56aabeM5znjO0/6Mf/Shf+9rXOPfcc1m+fPmC49M05U/+5E/6psVnnnkmJ5xwwhCJuM8++/CUpzyF008/nRACX/ziF3nNa16zwAnsYvV1f+pwhBFqPOpRj2L58uX86le/Gvr99ttv55hjjuHII4/kP/7jPzZ7/Gc/+1me97znLSDMtze01gsG0vMDHR1zzDG0222uvPJKLr744r65w1FHHcXll1/OunXruPzyyxeQ8COM8IeMLY1V7guWL1/OvvvuyzOe8QzOOussvvGNbyyIHHrppZfy/Oc/n9NOO41XvepV2+oSNotGo8EznvEM3v/+9/PDH/6QV7/61f2AABdddBE33XQTS5YswVrbfwe/5CUvWRDddOXKlf1xxvHHH8/b3/52PvGJT9Dr9bb7NYzwyMGb3/xmzj//fC6++GJ22223/u8777wzEBenBvHoRz+6H3VzsTRZlvGoRz1q0cicn/3sZzn44IP7boq2B3bYYYctLqbdcMMNWGvZc889F+yrx+FbOnbfffdddN873vEOut0u//Zv/7ZoeeZHgt59993Ze++9h0QBdd4///nPN3N1W8YPf/hDTjvtNM4//3wOP/xwXvva1w6NUbZmzLLvvvve7/OPMMJ9wZbGAfflXbnTTjux//7784IXvIB///d/5//+3//bFzQthsMPP3zBfGNbYfny5Vhrt9hvQjQt/s53vsOaNWs499xzaTabPOtZz9ouZRphGI84cnA+Qgh93zedTgdggR8LY0yfyNlcGq31UBqt9RBpVH9/sAihffbZh2azyXe+850H5fwnn3wyZ599NldfffXQ74cffjj/+7//y9///d/z8Y9/fGjf6tWree1rX8tHPvKRvv/DzWHlypXstddei/ob+d///V/e9773cfrpp2/Rt8grXvEKvvnNb/Kzn/2Miy66aNEVite+9rV85Stf4Stf+Qq/+93vePWrX73Fco0wwrbAbbfdxj333NOfaEBUDB599NF9JcJi/neAvtr1wYiovcMOOwwNQDZt2sTNN988lGavvfZi5cqVfPWrX2X16tV9cnDXXXdl11135ROf+ARFUfSVg49+9KO59dZbufXWW/t5XH/99WzYsGHBYKNGmqZ477f15Y0wwgOGwbHK75MHMJTPJZdcwnOf+1w++tGP8rrXve73yv/+4jGPeUw/AuzJJ5/Mddddx+rVq/sbROXD6aefvsV8jDE457ZamTTCCFuCiPDmN7+Zc845h4suumgBWbZq1Sp22WWXBaTWjTfeyB577AHAoYceSpZlQ2nKsuQ3v/lNP02N2dlZvvzlL2/3d7XWmpe+9KWceeaZ3HnnnUP7avLuxS9+MVNTUwuOffzjH8/+++/PaaedtmA+c+211/Ltb397s+Pi8fFx3v/+9/OhD32ImZmZBeX5f//v/3H77bdvsewHH3wwj3nMY/jEJz6x6Hxqw4YNmz220+nw6le/mje84Q0cc8wxfO5zn+OKK67oq5UgjllmZmaGIlLXfVCNl7/85Xz729/mmmuuWXCOsiyHjh1hhG2JwXHA/X1XLjYOmI/Vq1cPzTe2JdI05bDDDttivwnRInDlypWcffbZfOlLX+L444/for/kEbYd7L0n+cPBKaecwrOf/Wx23313ZmZmOPPMM7nkkku44IILANh///3Ze++9Oemkk/j4xz/OsmXLOPfcc/nWt77F+eefD8CTnvQkli5dyoknnsgHPvABms0mn/nMZ7j55pt57nOfC8AznvEM3v3ud/OmN72Jt7zlLYQQ+MhHPoK1tj/BfaDRaDR473vfy3ve8x7SNOXJT34ya9eu5Wc/+9kDQhqsXLmSF7/4xXzgAx/o12WNI488km984xs8+9nPxlrL29/+du6++25e9KIXcfTRR/PKV75ywQDGGMMOO+xwr+f95S9/yctf/nL+4i/+gqc85SkL8knTtO9c+qlPfSo77bQTr3jFK9hzzz0XdWx+/PHH89a3vpWTTjqJ4447bsi0cYQRtgazs7NDK3I333wzq1evZnp6mt13353Z2Vk++MEP8pKXvISddtqJm266ife85z3svffefZK8Jgb32GMPPv7xj7N27dp+fvOdEn/+85/vO0F/oPG0pz2NM844g+c///ksWbKED3zgA4sGJTrmmGP4t3/7N/bee+8hdeNRRx3FP//zP/cDlwAce+yxHHjggbziFa/gk5/8JM453vjGN3LUUUct6hYB4iTuggsu4Be/+AXLli1jampqNMgY4SGLexurANx5553ceeed/b7kJz/5CRMTE+y+++5MT09z+eWXc+WVV/JHf/RHLF26lJtuuon3v//97LXXXn2H5hdffDHPe97zeNvb3sZLXvKS/vtx8L24LXHPPfdw/PHH8+d//uc87nGPY2JigquuuoqPfexjvPCFLwRi/7WYY/Xdd999ATlzzz33cOedd+Kc4yc/+Qmf+tSnOOaYY5icnNzmZR/hkYc3velNnHnmmX2XNnX7mJqaotlsopTi3e9+N6eeeioHHXQQBx98MF/4whf4+c9/zn//938DMeDd61//ek499VRWrlzJHnvswT/8wz8AcTw5iLPPPhvnHK985Su3+7V96EMf4jvf+Q7PeMYz+NjHPsZjH/tYbr75Zv76r/8arfVmVcpKKT772c9y3HHH8ZKXvIRTTjmFnXbaicsvv5x3vvOdPPOZz+Skk07a7Hlf97rXcdppp3HmmWcOjbH//u//nksuuYTDDz+c//N//g9PeMITGBsb47rrruOyyy7jsY99bP/8p59+OsceeyxPecpTeN/73sf+++/P7OwsX/va17jwwgu59NJLFz33Kaecgoj0AzWuWrWKj3/847zrXe/i2c9+NqtWreKII46g1WrxV3/1V7z1rW/l8ssvXxCI8O1vfztf//rXefrTn87f/u3f8kd/9Ef9vuyjH/0on/vc5zj44IPvw90YYYSFuLdxwNa8K7/xjW9w1113cdhhhzE+Ps7PfvYz3v3ud/PkJz+5HyD1k5/8JHvuuScHHHAAvV6Pz372s1x00UVceOGF2+3a3v3ud3PCCSfw1Kc+lWOOOYZvfvObfO1rX1vgOunlL385n/70p7nxxhv7Lr0GsXHjxgXk/bJly0Zz898XD5KvwwcFf/7nfy577LGHpGkqO+ywgzz96U+XCy+8cCjNjTfeKH/8x38sK1askFarJY973OOGHGKKiFx55ZVy3HHHyfT0tExMTMgTn/hE+cY3vjGU5sILL5QnP/nJMjU1JUuXLpWnPe1pctlll22xfL9vQJJBB/wiIqeddtpQ+G7vvfzd3/2d7LHHHpIkiey+++7y93//9yKyMLBHjcUcfg46El4Mizn0FZlz3lw7OZ4frODSSy+VsbEx+ad/+ic544wz+oFMFtvq69pcuWv8zd/8zRbzmX8d73nPewToB0JYDK973esEkC9/+csL9i1WX4POnGssFqhhhEcG6gAC87e67Xc6HTnuuONkhx12kCRJZI899pC//Mu/HAqwUwf9WWwbhPdedtttN/mrv/qrrS7ftgxIsnHjRjnhhBNkcnJSVq5cKWecccaCgCSD1/P6179+6Pe6HzjppJOGfr/lllvkBS94gYyNjcnExIQcf/zxQ/Uzvz9cs2aNPOMZz5Dx8XEB7pcT5RFGeKCwNWOVU089ddH2X7fd6667To455hiZnp6WLMtk1apV8vrXv15uu+22fh4nnnjiVr0X5+P+9hG9Xk9OPvlkOeSQQ2RqakparZbst99+8td//dfS6XQ2exybCUhSb8YY2W233eQv//IvZc2aNfe5XCOMsBg2946d/+x/+MMflt12201arZY86UlPku9973tD+4uikHe+852yYsUKmZiYkGOPPXbRoD9PetKT5OUvf/lWl+/+BiSpsXbtWnnLW94iK1euFGOMAHLkkUcuCJSy2Bj2uuuuk5e85CUyPT3dr5c3v/nNCwJ8LDbWPfPMMxftZzZs2CCnnHKK7L///pJlmTSbTXnc4x4n73//+xeU6Re/+IW86lWvkl122UXSNJU99thDXvayl202UMkll1wixpgF90ZE5LjjjpOnPe1p/WCD55xzjuy9997SbDblec97nvzHf/zHgrFVr9eTD3/4w3LggQdKo9GQ6elpefKTnyxnnHHGgjoYYYT7g60ZB8zH/HflRRddJE960pNkampKGo2G7LPPPvLe9753KIDZRz/6Udlrr736z/HRRx8tF1100b2W7/4GJKnxuc99Tvbee29pNBpy0EEHybnnnrsgzfXXX9+f89fts8bmxi+DAVpGuH9QIiPPqg8V/M3f/A2/+c1vFqxSjTDCCCM8UDj66KN59atfPTKZH2GEERbFqI8YYYQHH69+9atZtWoVf/M3f7NN8vvc5z7HG9/4Rs4++2xe9KIXbfVxIQRe+9rXcsEFF3DppZdu0T/4CCOM8IeBVatWccYZZyzwbzjCwx+PeJ+DI4wwwggjjDDCCCOMMMIIj1S89rWv5ayzzuKGG27oRwfeGmit+dznPsd73/tevve9723HEo4wwggjjLC98YjyOTjCCCOMMMIII4wwwggjjDDCMF784hffr+O01rztbW/bxqUZYYQRRhjhgcZ2Uw7+67/+K6tWraLRaHDEEUdwxRVXbK9T/cHg6KOPvk9S/hFGeKhi1P4fvnj1q189cqY9wu+NUR/wh4tRHzHCvWHU/rc/6qB9I4zwUMSoD/jDxtvf/vZ+UJMR/rCwXXwOnn322bzqVa/i05/+NEcccQSf/OQn+a//+i9+8YtfsGLFim19uhFGGOEhhFH7H2GERzZGfcAIIzxyMWr/I4zwyMaoDxhhhIcvtgs5eMQRR3DYYYfxL//yL0B0Vrty5Ure8pa3cPLJJ2/r040wwggPIYza/wgjPLIx6gNGGOGRi1H7H2GERzZGfcAIIzx8sc19DhZFwY9//GNOOeWU/m9aa4499lguu+yyBenzPCfP8/73EALr1q1j2bJlKKW2dfFGGOERCRFhZmaGXXbZBa23Xxyi+9r+YdQHjDDCA4GHah8wav8jjLD98VBt/zDqA0YY4YHAQ7UPGLX/EUbY/rgv7X+bk4N333033nt23HHHod933HFHfv7zny9I/+EPf5gPfvCD27oYI4wwwiK49dZb2W233bZb/ve1/cOoDxhhhAcSD7U+YNT+RxjhgcNDrf3DqA8YYYQHEg+1PmDU/kcY4YHD1rT/Bz1a8SmnnMI73vGO/veNGzey++67c+uttzI5OfkglmyEEf5wsGnTJlauXMnExMSDXZQF2FwfcO2Vq8mmJwiZBqtQZUDnnkQUqbZ4BK9AGYXSglEgpcO7kkajiQ8K50HrFJRFQg8VHBpD8IEyzwnBYxsJtpEhWtNzjkJKsjTDGo0vHb70KInRm7QGlMKLABqPolSQWYMvuuBKxpoNlAScKxE02qSgNGWAEAStQXxJmiakicE7j1IKEQgiKKUoyy4EjVYtCAZCQJkARnBB8AG0Am0C2hQYDUhC8AkimrIsEEqyxGC1haAxBELoMdMR0nSSNGlglCNNHN3QpkeJ0ymQkYYU8hwpuiSZQjQENEgCLp47NYCGIrGEIITCIQ6SNEGh0EoBgW7ewViN0kJZOhKbooIgQeGNoe0LvBGM0aRa0bIJ47aBFJ5ut4MXh0k0xlqCaEovEDQojeAoXY80SdDaUpQhnld5lHIoFCFXWD1OYhKC7xIkYNKEoBU9X1IiBAGDomEsCYArEQSswikQBSGAKz2pTVFK4wmAIkGDeHxwoEDpgCiJW4heOxQarSzGGIqeQ0SR2AREkBAQFRAE7x3WGlKVYoJBjCCUOIQACApE473DU2IzgzIKLRrrDcopFBCUo8ATtEIpA0Ezs2ETj3/8Yx9yfcDm2v/5P/8mrYkmiAeE6uoBBWgQjUIjogBV7ZVqC0BAEUBVnlOGBAgKJKYc2tX/Y563FSXxIRAV26OY+LOSuE/Vx8jAsfFT1GBeCoUCpRBRMbUM7qvONS8PNVhYVH9TqioTxGuWUF37ggveMjabdLEdW+OJZu5OSZ1eba0Hm60p9++hJpHBY2N7qnp3+vevfz+HDmT4viz2XMm8z8XyWQwDmUj9vXq2qpa/pUNiexj8YWH69kyb5z76hQ+59g9bmAd85ywmx1tbPnjgUmXeYzH4yA219S09PjKQYKuf2e0DqVqPqNhXKFFoQC3wBjXX/wUNEOouLh4z9EjLVlTC/UT1vgta47WJ4yYRlARUiH2xKHBGIQjWC0pZBBv7cQkoHVDi5noQMfFT+e1S5EcSNs12WPn0P33I9QGb5wG+y+Tk+INYshFG+MPBpk2zrFz51K1q/9ucHFy+fDnGGO66666h3++66y522mmnBemzLCPLsgW/T05OjsjBEUbYxtjeEv372v5h833AihXLSZZM0BGPSiwmgMpLdOnIFNjEoKzGIZEM8wI2gwBGGaSa8CU2jcRSMDiXo0KKNRmlczifY1IFFpwojGS0tAJFJJyCouyWGAXWAFLiQomIxpgmCovzJSGU6KbFaEErUFrFc6Lo5QVeoJVkWGvxrsQVBVorrDWQgk4i2Vn6gLaKpmSEIiA+IbUJSIkxHqsVwVkITXzQeApUkscBtTJ4r8gLT2ssIU00BChzhZYWifUIbUwGojJMmoEN5K6N0WNMGoMoS1lqxAmNVpPULCXP23jxJK0WKm0wO9PFeCEDdHBkSUBlCV5ZvChSUoqZLsp5Gs0GE1NLcDhCCGgBLSqSiUqB0SwxVNSXB+UIBLQGlRrSpIFSGpsmYBTOBywaaxKshuByXK4jw6ISGs0U0QbRAaUdKnhcu6CpLWnWxKkG2kAInoBnzLRwKIoyYDA0bUoocrR4tBF6Pkf5EmsTrMnAgVEam1hQQuELKCCxCWKgcAU2M4iG0pUEhBACiU2x2lDmjkZmUKJRQSpSWDBWg4GyzLHWom1KUKYiVLukPmDFoEUh2lDi6fmcEAoaaYr2iuAVjckm3nuCK5lUCiWQlw5vDWZJNd16iPUBm2v/zQlDayJBSKr5bE2KRVIQ0RXBVhNkNWHGADkNc1PsUNN1c5P+eZPsuf3zS1ORdGJRwaLqodMQ8SiganJumEjaMlU0XP5F9vY3mX/0AJGkVGw/qiIGtshJKbWZMw1ku9jx89mXudRD+cjgrqpuZAtEy0JydrH8B4i7Iabn9yRwRA8QEIP3bUvluC9Q9/J39TmftNzyDbyX3xYSzEh8Zh9q7R+2MA8YbzE5PrblE84nB9Xw72qgGgQFeu6AhzrXJAhBRXIQ5tYhVJh/t6u+T6o+YrCtKYh95nD/oX7fdrOZ8kZCUiPK4lU8qw0OVS+CaUVQsTxKHEFpvLIEpVAImoCSgBaFDgolJt5LPSIHtxUean3A5nmAcSYnH1pE5ggjPNyxNe1/mzsdSNOUQw89lO985zv930IIfOc73+FJT3rStj7dCCOM8BDCtmz/2jjEFyjvUUVAeg7lwGLxHnp5SV6UOBdwDkQMiWrQsGM0khaNrEmaGoLKKcIsTpeozGBaKbqRQZogiUGnltZYC2stBkMrG8METdHuUXZyjCgSlZAoTZZYxhoZmdXoIBggM5rMJFidoEjxPqHbAxcs2qQEIM0SsizBKk1CgiUlCRm6TCi7UPaEEDTKWJQyJGkDm2ZgQLRExaAv6XV7hKLA9dpoX9JMEoxOKF2k14y1KIlTBe88rihJrEUb6HmhJ5Yky1DSw7uNKAqUSVDSQrkGtrRkoki1oLRD8KQmpWnHSFUTJRaTWkg1kiakY+M0xyfQOqlUApC7nDIJhJahsEIn7+DyAkKI9Exm8anGaUEjJLln3Glapcb2oGmalATausQ3LO3gaTtPLppCFKVE9YE2isRomlnCWJaRKoP4gLUp6ASHwTSajC2dxDYthXIUVgiJQiVEJSYOX+YkRpNaS7fXo3RlJDKsImtmNBoZjSyjkViMBKQskaKHCjlWeVA+lkdpJAhFUeKcI0hAfIjkbgjknR5KFHhBnMO5km63gwsOjMZYQ6PVQoymJx6XaEyaIKXHtbtI6WJ7ImCtYaLZopU2yKwFBU48Lng63S5lUWJ1VMhiNMEqZr3bVs18i9hWfYBIrZckqh+VIbY4CHg8BYEuojqg2yjTQdsOyvTA9Agqr7YCUSWCA0pQJeDip15sc4tsvtpiGtE9RPUIqhs36q1HICdQECirLbaj4c3F6xOPiI/lwVdbGKiESmEoGumTWJpBBkQiBY2IRMIUg0isq81uogmiCcFUmx342yChymNos9Xxdt6WDm9iQWz8xFR/JxAyJDSQkFVbioQ0/i6DW1Jtttrm/R3swPet3aprWrDpSpnlEF3Gz8H7pKqNUBEfg//m9KwySPSJnqdGVMN/S51mkPYdJAoH/zbENfyBTZLNbLYiAOtjknnbA2Mo9MDPAeYpdus/1dzXQdZw7n6pSq22+SwefMRnxwTi4iiL6VkVQYHXAwR8nShU6xUS+s+sVyouzG0H1OJqlKDEYcWhcZWSHlAahcVIgq4WyIwrSHyPrOiQ5l1s6TCi5nTgtQp/u5R4hO2BEQ8wwggPb2yX0cI73vEOTjzxRJ7whCdw+OGH88lPfpJ2u81rXvOa7XG6EUYY4SGEbdX+nfc0gqdlDOCRECBE5ZkoS+kdyljSNENLiVWGosjptTfSyhoYa3AEgo5ED3i00pRSUHR6KAFjhLxwhMpM2KBw7R7iS7QI1uhI7tRDa6UwxlCW0WTR4yi1x6aWUIIrHBpNmrZANM4JadogiKcscrQyKGUwxqJFE7yA02ht8N4RxJE0E8peibWW8bFJnANXOhRNrAko77BpQNseoqIpajfPUWVGM8vI0gmaaYZWjl7eppQ2ojdh7DiEcVw+SzMz+CKn2NhjfGIZXhmK0kfiyQjGKrRWeC8UpceXJbYXSBoZE9ZSKghG0baaPC9RRaClNE1rKLWnGEvoiadwORPjKdaDK0p6rqRddjCJjWReGcArnPMIGqOaMBPNjkJmaWVjJFYoel1cr4e1CYlNKLsleV6SGrAiNFJLliRoozBpigklpQ8oJ+Rdh3Iak1i0VuSdnNQYkqRJ4UoSbdEqQYnGKI0ERVF4lAfTMGRjk+RFQbdwjI21kLKMJlISKEtHzwm+jGbiWTPDuQIliswk5GUPYxXWpJTGIU7IsoTgAs4FxsbG8JWqygUhLwtKX2CThKTU5DM5TWXQrXEK5+iWvTjvLVVUVxqD6ASTJSQUSF4ynbVQStH2PXILIbWI1tB74GQX26IPUEQT90iQ1SK5gOBBlYgqUBQIRUX81cpAhUIjaJQyaKXjSmmtMpMwN+msaZ35VTNoWlgTNjXhUHE8iytv6rTDxE+l7evn2V+5HRL5KFCRRFILyCQi+Td00KDZaSQQAxbpE1Kbm06rAeWdGr5WNXfV89WD/TIPEgv9Ywd+UwM7ayUTCiV6OF0/1aCKcYDV2RqZ0NAlLq68XJhurtzxIyou6/LWWSnU8PUN3qd556xrW1ULF4PnnHtOFrkfg5WshKhkHZRF+oXnU4td5yAjtjmicfsFIJiPB3IOsKiYFYaecekzTVt63h6C9FO14KYkmuH27YMVsV8kLh7W/VlhIfGxTiJHp+Ye4YFrla1pW/cDKlRuLbSgVEAF0AHQCm8UOph+PyCuRPXauN/eyt0//wWddeuZWL6c6X33x+yyC0xNRq5bAnMK75F08OGCEQ8wwggPX2wXcvCEE05g7dq1fOADH+DOO+/k4IMP5pvf/OYC56SPNNSD+wci+pIMmEuNoj2N8EBiW7X/ojBkDYsrcgiOZrNBUhErZRCM1nggLwuCeLT22FRoeItSAXSCUpZShLIAqyExAa0DjabBl54iL5EguDIw1hpHa9iwaSMKIU1TlBGcL9DWoK3Fa6HwnlIEnYBtWIxJcXmB0oFmZtCiIXh8mWMSS6vZpPQlLkQvdc6XhErpo4zGpBaRABJVkVo0zUYrKsvaM5i0iRdBoVFaQyhR2mE0mMRgVUZTRcWNkpSi6+is34i1iiSDEo9KPA3tsCrgUgsSMKkhs4ILjmAE1YgkTOkCwQl4wYkg1hASgw8KE0pMqfCuoDSgGhk+CKnWiAhl3sXh8KWgrEYbiwvQmelC6Wm1xmgmijKUuODQRkFqKIuASMBqKEvB6gaZMqhC47o9tAKrNaEsKAuPVgmNxgTGaMqyRyGBhrE00oRutwMEUgJFXqAlwZoxFAZX9pDSoxspeE3eKfFAmiqstmgBm2QoJZTiKTx4D04nlCrgiy5Nk5AYi/clGItNdFRnAi6UGGPIbAJB8FJgyugbUkpPnheIBJQ2FN7RnsnJGll8risaJVpYBzAOjKJTFmggsZZMIrGMVnRdSbfMSa2iaRuMJ00SA9IrKSRg0pQssxRKKJ3v+z98ILBt+oAUvCEEqfgQQWmP0iUhzFK6jXR769k0cxczs+uYaW+g1+tEolkURidR0ao0WtU+AqusK0ZQa1BKV5tCa1MRiQqtdXVspQRTKroMMAGl43tVDx6rdKWMUdVnJCcVBq31XH5ao2qOp9aeKRUpQa1R2sR0mLl8BhgQBSgDSkX/pVpJRSqmBBpRzScVKbUI86mUHqwEVJ9HrImugfS6pr4GtzkKFj1HnA2OM+bzh0pUdQ01yTbEwg2UcSDvBaq6uRoQqVOpikit02iY95vU5xgiQet8B3xSygC5JjXpNJ8UnFc/DJq1z+WzOGE1T5622G41R+DE/wd9SM4RxsPW8GEufb8aB5SLdWE2y6JtezzQcwBRseoW+BhUFak2/zEbwpaI9AcXsYtQIHN0XgBEqagI1HFJRCEoAa89oqLZLqi4Jko0TdZS0cOy/a42rllEH9BBeYwSVFAQLFrriiAMmMKhZjbR/vUv+dn53+T2q65maskkBxz7NHSWQJaBNkgIBOVQCnTl53WEhwdGPMAIIzx8oUQWeLZ9ULFp0yampqbYuHHjw97n4HwycEQOjvBg4eHUruqy3nzTrUxMTKCIfrTKssBYTZok5EWBsgbRGuc9aeWvxAik2uKKQK9XUPiASlJ0mqBDiZECYxWCx3vwDoKPpIBWCiQQgmCSFGNNNF/0ZWUuo9DaoowmhGiaaLTGqASX54j3pDr6OvOlIwjoJAFtKUMAbdBGE8RhtIokkYIkSSidxwVAGUQgLQu0eII1iDUUzgOglUKcI7EGaxOCQOEF70EFgxGDQWOUwpU5pS+xDYvDo0NBKoLSCWUwiLEoq+j5HlhPlqYkOkFKoTuT40XIWhm6YXDBUfR6qMKTKoMxCRgDNpo8KVPNR4NH+UCmLRKEbuGisk1bcAEKjzEKk2qcDvR8QQgOREhMSpI2EaXwZV4pOzOcc2ijMUZwPkeCQqkUwRAqaYJSHqM1Omh6s110gMQYBMGjUKToLEE1Aq50hF40XTLGIgQ88V4orQg+4AMoa9FpglcCeCwBK4JF4csSL4JJE0qtaec9pHSMNZtoH6rz2+jpSQTnPWWI6lRMJJoiB+gJ3mOtJUkSXFHiyxKTGcg0vTzHaEOiNLqM50crCgWlkkgWO8iCIhWFOI8gGJsg2lCEQIHgLWxob+Kxe+z5kO8D6vb/nVsvZWx8IpLoCpQWlC5QJqdXrGfjzO2svee33Pa7X3DnnbeyZs0dbJrZRFkGggetErSySEXe1YFAVMWGxd+qfbomB3UkIRVR5at1bPOY6ljQWmJZVHy3xi0SkFqrinyrSaqK6NODBCFx8UIJqFCRfIJWqjpeVYRjPNaoOLHWFVEZ81MoTUUOEsuvLeg0NkaqstZp6zqoycyqn4p/6yqIj+6nj8erikOLhGc8tr7meD1G64G8FbXiTs27Fq1Utc2Vv58vA5RgTcz2yb2anBu8dzUZp/p1pJgjPOM91RVhqgbIMWIexPs9h0qZpObqKfKXUpl0z9GQaD1AXNJXtS4kMgfJ3JpOjFe6Ob1pvMZKZVmdvx9YR2moyGIJlYq9rzKsyPN+TdbliMR0bYo+u6nD0bsf9pBv/zAwXrn8q/fqc1AQvK7Ir6AGflfV7Y/kWE2wKenXcCSyqueiT9wO8MEP9sg5Plu6CkASEA1egUajfXznSh14qSjBdVFOExopIUkwWCBUpFysI6nb0janCCUGCkP3zfS1AF4DCV5pfAqq18Gu20B+06/57RVX8uurrmYisex56EGsePIT0XvtBeNLUFXZ0S4qvMXOI+Yf4hgUpT5EsGm2zdQRL3jI9wFz85WrRz4HRxhhG2HTphmmpg7Zqvb/oEcrfiRCqoik2xMjQnCEhzuC7uKweC/RDDdtIQpyH2KwBgdGaxJt6LWjAixJUoLV0RxHKxpGYbMAugulwaoGNo2KrkJ5nBN8CKBiNFxtLLoyOyyDQxnBNGyMDutBPCgveO9JMyHREFwgyzKCd5FI1AqTNtBoSh8oKqKQ4DEOEmtiZOUQUIC2glGKoBVBG5QojAQoBJ+DBAXGIMoTVEAlGWUwlEUkM0tXYq3CWg3O470jzVKCeLwvSHSCpkGiDSkFeR6Dg6Ciuetka5xudwbf6WLTSB6aVoIECFqhC09DhEQ03go2TXGlw/XyyiTXYFsZwVpy7yjLHO88jaBoeKF0vRiwxIITh0lSRAKhV2KAZmsiemULAScBVxRY49FGI+LIGi2KoqDT7ZImmixLQRuiIaAgRvAiOFeig8FkGcZFlRcWRAJd16P0HZDop9BawGu0DvhQEkKBGLDW4K3C+TjBTpQh0YpEFFYE5QuCd5FMMZrSlxQuRmS0SYJRirJ0MWiKNSgUgYBJIulQiuCD4MTjJeB99As5ZiIBWJYOG8A7R6E8TZtCEUi0wmQpeZnHyM5JQgtLKANF0cUL+CQhaMFqg4jg8hKTpqB8nDxn6YPWlu8PFA5d+XOM30NsgEEQHyjzks5Mh03r22xc12bj+pxOx1f+5WJ0aIWJU36p1VeRAKh9WPXJvcjXRtKOOBEfJOmicrAm1qjSSz+t1Go4qUz8Qk3QDCrZakIqECp/g6jKz6CKAXmUyJwJtShQJpKOykaCEROJsyoSOEjNa4GWqCjUcVaqVU3SzZGjNfk2+LeeR/ANEp79v5kj/mqSTlORnRW5qAZJyIo41EqjTUW8GlWRnHMKSU0kKqEmMmP6WsFZqzG1miMsI8lauWYYUGOC6uendE2kqv5+rTXWWIw1GG0qvrFShYqJ5ekTxXqAcKtVZ3Vd6D5JOUeamjnisqJdahJRDTwHEfOI2vpeDJKe9VklPlP9c1QRleOzWyniqudQajNuqYnB2u9g9LkYpPw9WuPDCLWVNgz4qptTD6ogA2LBWnXL3EFzHw8+FAQlGD9HWtYEZz9J8NCe5e5f3MQtV13J8mU7sesTHk+yy05gbVy069tUqzkedDtcZCQrq2c4mOqUmqAUosHkOeruu+ne8DNuvfxKbv/lr2ktmWDVYYex/PEHondfibQmUSoq7/vKyYcjHqbFfvhjSw/3/Xnwt3V+2/L4hztG9+qhihE5uB1RR6JcTJy5PZV9WxKDjkjDER4uCDqgEoUxMbpt2srQ2lD2Cpq6RaIN3dkO3dkO2dg4Yg0ueIrSkSUGqw14hwnRBBed4D10Oj2cKkBrTKOBzgzeCaWKUfIkCCEIZVmSpIaJ1hiqlMoCTYMPGNHQyXFJwDRTeq6Mk3gTg1okSfzbi0cZRaJAfEArRZqk+LzAl0KSZiSqhVKeEDzKR/IhSTTolOASAhajFSSRVCjzgCvja8oaIUkrP4EofIjX4vFkYykqC3TzDiEkaJMiuoHNHFoHBEcoPS7XjJsW2iryMicPHUwrQwXBtbtoicFYmkmKTwKdyixaJdGhu04blEWg027jtSJrNAAi0aU1lkDQBV57goGQWFQBRgQdNK7r6AaHF6FpEhpiQYfoS0mgdAVKC1lqMSqgxVPmBS4ElNXghaxhUMbQK3PKQhAMJs3QqcW5HqWESP4R0xtjsSiKokeSGsbHxggq0HVRqRckOtDWiqgSLAssniyGg6Td7lAAY1NTmKpPTbRBEydf1li0MeR5EX1j2gSsogiewrtIzFZqwaQ1Rqo0lIFMGazV+FTQpiBxQsNmOB9oz7YJVqLfRapJoY8DlmA1klq0h1AGtLKYVkauAWPQyuNm8wenId9PKKLfqr7JpkS7QYVEha/3lIUj73nyXHClJvgsKgYr1ZSqzAoF31frKSV90qu2dNUmqvBsYvtEu00SrElIbIYxCcakWJvEBYRKuSfi8aHEu4K8yCmLHOcdIYDWBmsyrEmj0paoCvbVIkJR9CjLnMLleF8gUuK9i8owT6VKk3iLqeqhCi4wp6CpiTsBHEJOjFo8R07Nx9zwYN6+/jH1vtrSYVAtJwNWwTULM6zK7BOJfeILRIWo8q38I0YC0fQJwTlCssq3KsscuVeTg/UpB0hMXf+uBpSNA5/aYJTCWEOaJFU08Fi2OthLCDUBHBWPWmuMqbeKzBzIv04zt0XVqO4rMQ3aRBJS66jci/vid6MTTLW/roeaLNTVd2Ms1misqfKoicl+XVeqUVX7w6VSaVqMbmB0A60aKMlAElC9+9MMH0ZQw39XpKmmUn9Wrjv6W/9hGjz+IWVIBRBNgnU0G54zdVdVPwB4R1izllsv+xG3/egKpg45HPXYxwAVZawUQUm1NFFPcLfPRFcAr6JXx+iOQeGVRjToTge9Zi35T3/KLT/6LnfcfDOTy1ew6sgjWXLw4zE77gKtiUhqe6EfdR0912mNpi8j3Cu29JDcnwdoW+e3LY9/uGN0rx6qGJGD2xEiQghhiJDb3ibGmyMGa7Xi1pCSI3JxhIcCijIllAajhdLntDvrsYklS1JSa8nbbUIoaLYyXMhJsiZaaTrtWXSw2ACWSBQUnQIfCrwSHA5tTTWBF0yq6bkumU1pNlqURYEvHCpE9YgrfPSZFQLiShIMWZJhMRQ42i5HYdFicL2A72iMhayZkNqEnu+RZJZgHZ1Oh5l2m9RktFpjlAE23bOJLEtRVuFCidIB0V0QFVU0WIqyBz6W2yrN+EQzEiN5QWoNqY3m0coYklZK4YqowEs01qYUPYUrAj5LSCYTuszGc5WacibgUSRJQkg0iTUoX6BdIDWWNGlR5I7clySJRmtABJ2kGJuS93KCD9jEklbmwyKRqiiQOOc2Cps0SEXh8xggRBmDVwptLZkX8IFMAtp5ckpKr9E4tAJNQJETlVaWlATlLWURSFJFKAvyskdwHqstWdpCmUBR5iCQ6QwJgukIqU1ItEV0NEluFwWGQJIYpARXFCRJA2NTup0CAbSpI7WG6JewYSAEyjxgmwlaQ3Ae0YZG1oIgtLtdnAtkzQYueNqzbcQoVKWkIgSUMRS9HG0TGjYhlJEE0Sqaj83g8EkaiYRgaWpomhTnPBtnu/SckDVb2DSh8CV4h/MedMCEqDTSztMgMOkfbn13FZyjKrbU0XxVjDTsQ05edsnLLs4VSHAo5aPSD6rIs9EE2OjKRFNFE01rDGmWkWZNskaDsbEWzVaD8fEmzVZGlqZkWYaxGZltkSRNrG2Qps1IFFqDUoEgBWXZJS/azLY3Mjs7Q97rEQSSNKOZjdFojJEmTbROEQ/Oecoyp5d3yYsevbxDr9smL7p0OrPkvR69Xk6RO8rSU5Y+Ev5VRHIJek4tyJx1qcJgVFaRILXR4EKCUG0l/yFSxzdVcycb2l/p22ozXKrY0n3isCI0FYgOiIkBj4SohLM6qm0TrTEmqUi0qPIUEYIIUfA5QBrWyk+J6UIIBAmEEKM8DwZtqX+vVaNROWiw1kRfp1XdhRCDEAUv/fwiqaj6ptNRmFib8A6alNNXpFX8XL9OogLR9MdM8TO2yUgK1ubQA0Svivt0nxSM4WmUjsTgnKm7ie4ZjIp9vNHVczzO+PgSlk6tYHJ8B1rN5WTJJEo10faBiVb+wEPN8zc4YDCrKhIthLnvWlVmulVaiYT1oIJQze1+CCCWfUhAp01cRBCP9g7V7RHuXgehZHy8ickskhmQyiJBzRGjMmi6vjXYah5RVYs3ASOKIApvIOCwnR76rrvpXXcDN37ve6y94xZW7L47j3rC4Ywd8nhYsROkEyhf+Yg0AW+iObgJ6r6U9pGNR5a4aYQRRthOGJGD2xnzycAHwqR4PgbVi/d27vlKxxEZOMKDhYQmiWqipcQYwUuJ+JKgAh1XkBiLSSAv2jit6M50sI0sEmftnBA0ZYCZTo+AIjWCNQqtG/hKfVTkBaoomZ6cRKEoez2sKLI0oVBQlCVlr8RYi00smIA4h2hN8JYQwOIRAq7IUU4x2WhglEFKhy8DiY3GgBI0adqgNT6B1oZep0dZuqiItLErDs7R7fVIm0KzkeBdSdlrkxhFlhjQARcUvVlHCIpEWUyIUQAJgbx0OHGVYlEIaJRYEh0nxQTHptk2diKh2WwREonnyBUmNSQNQ/BCalQMhpF7NuRdRCuUErzLaWYJJrF0ckfP5yxtjaOVZqbbI887jGVNxpoNenmPDe0uZEkM0pJHP0m6UHgJlBJwBIx3NJKENE3QIRCs0MzGSERR9kIkLX1BWTpMIjSyBKMb0SQwL/HdHklmSJMGucoxSUZZ+WhsNFrQK5HCo9Hx3ipL8IHSFwQVMFmCAK4EqxuMNQ0EoZfHQDhpq4VJUlxRkhclzSQlswrrCkQLDsFVhEJQ4MoSX7hoFqUN7U6HJE0Yb7UoyjKSIJXqTHtHkEC706FMEiaakVgsbIFKNKUEZqSgqS2tLKMhUM52KCT62dRNi1EWVREzTgVoWpRK0KLIsJS9LuILTOEfvMZ8P6AkBhSKk2OHVMq4QA8X2hTlRvJiPWW5ES9tMAUqRHWuVBEKolowmqg3GimNxjgTE1OMjy9hYnIZS6aWMzG+hMnJSVqtFs1mRpLaSvVmAYsiQ6sGWmfEKMig8GgrkaT0PQo3S7uzgdnZjeRFD601jaxFqzlJozFOlo5hdFqp1CB4j/eR0PJSUJRd8rxNpzNDr9dhdmaGdnuW2dlZNm7cyOxsm3a7Ta/XoyhKnCsJEhDx0TwZqQIhRcVkLOMcUXa/6r9WKQ3mIfTNVyNRNmCiXCcbGDL03f5pIViwlaK70WjQaLQqMmuCZqNJVkWYr4mAEObGI5EolP73uEX/sN47nItbnueURUFe9Oj2OvF7meO9j24SlML7qBaM54h1GD/j9STWYIzBWjug7quve8BMdaA+gg+xjDL3OwgSXEVAhspcvEpTWa8HCZWP09o0nb5pth5kf/s+FmuzZqhN0rURtIGxVoul09MsX74Tu+6S43dQGN3EmjGsoVJf/mFCDzzi/bg3aiAmbxDoFUhRIJlFZ1n0O1n5ExhsIQ+tWpJ4bVUB+/SlBEQrxICEEvIettslGU8wmYXU4ESitwJjquMHSEbFVi8S3NcK0SEuCmhABY/tzCK3/o6Z1T/jl1f+mDXr7mbn/R/N3kccTnOffWHFCkgboAUxGoJDTCDo2AeYWh39EFR1PuTw0Hp4RxhhhIcpRuTgdsagWm9QvacHHGJvDxVhPYCuz7M1pODmMF9xOMIIDwSM7oEzKB8wCqxN8EERSojTYcHYBpltIq6IQSu0xfUCVqekqUbwSKZwOpBhsN7gfHTy70VITAHKk3dmMKLQoYoGGTw6BKwyBNGUZUBSUNrjVImIJjENsJZEx4AaJlVIEHzhCAS8RJMekyYUZZzMW6NRZUGv10UD42mKNg4fHMpmNBoZZfA4UTgy0hSs91gV/RJSTTQTqwmVkMoGi/Y2+s4jEJRHJ6ovGmpkllI5Qp4TgMQpzCx4XVJKbN9Bl7R7HTJvaTQzukUMkCLaIDgyrWhaiwoguUMpTcMkBDEU7YDzJaKh0WgiKjDb2YQUjpZSSOkwpKAEFzxJZlHe0dQKmzboFD16vsAnDUySkXdydKdXTdIb+BJKp/AqJRDYVHqUzhGvQAWysQRUwAUPSZNgM0RHdVVRCuICDRWDjzg0uXiUcijr0crHSQiVggiNCyV4jzFCMzHkeZuy1yXRKS1lMR6UOHQo8RIwWYrHoJSQpCndsotKYsRiV3ooBE30jYmOJqHBR7+WSZKQGEVIY//aKYtIGgWHJtDyCquqADPBsTEUeO1QaCyCDWrOZxu10smS2AyCodvpEVQgbaWgH14+x0KwSDDQNwcOiCpB5QjdiiBsR+VgFdgmeAFtUMpgtCVrpDSaKROT4yxfvgPLpndgh2W7MDW5A2Njy2g2prAmw5i0b546Z7pqUCQgKRIyROpJdolSDi0h/m1SFAmSKQiGLMnRRpNlLbJ0jMS2MKqFkgTEYrEoayCh8hfnCRL9XoalOUFKvMspXI+812HTpg3MzG7innvWsn7DPWzYuI6NG9fR63XIywLvc0AQZxBSfBgg9O7HkGKYDpzHuqg5lqKesPf9ug1F6ZU+aai1AiMYq2iONRgfG2fp0mmmp6dZumQpS5Ysq4jZJkmS9s1rRVRlTT5HPNbkmggEH8kO5z153qPX7bJh0wY2bdzIxo0bWL9+HbOzs7Tbs5SupPYjGf0Z1uOxmHGSWBqNBq3WGFNTU0xMTDA2Nkaz0Yq+aHVUYUmo1JEBQkVWhhD9iAbv54i+MEcW1gpH731FZBYUeU5ZFuR5Eb+XJa4scd7jXUmQmJcEHYM8BN23hI2KxerceKR08RkKYJMGrWaPvFfgy0Dw8ZmMgUwGg7D84WAxkqvSraKoCDXnCBs20l6/AbV8ktb0NEZXPlir92rktTX0/ZM++FASg6wNSCGRWm2qiYG0EFRZELpdCpdj0+gjQWuNFoO4uChamyWHKqhJth3WinSIi66iTAxOtnEWf8tvWHf1j7n5xz9mpt1h9wMPZPfDn0i2z97I9FKU0VXAt2hroE28buuiWfJINTjCg4+RJPPhg9G92hYYkYNbgd+HvAsh4JyjLEu01iRJMkQMbivibbCM3nvKsuz75Kn31759jDH93xbzi+i97x836A9oS+fc0m/3dtzWXv9i59mafVvKZ0uo62XQLOi+mlwvln6kxtw6aHokSQOdmEhUmQSlbVyZDgG8oww5Ho3RCSoYdBmDwRrjca6H0w5JNNoYdNHE+ATEU5Q9rFWoxOKC4FUMbCGuizjPmGnFPD2IMpgkkmQSBGsVTvXoJQ6tGlCkSK9Hywq2UjgGm9IrHYhiyrRQeUC8oDEEa1CpR7RHjEfEQfA4V5Ari7M+mugaTUMZvG0RvKPTK0BHH3RSgglAEPJuF9tI0YkhSRKMVINtAsE7um4jiVKYROO9QZRBGRsntCHQSFPGbIL2JeILyqILaYpoQ+kVNmmCF4peFYiDOPkw3qJFo0IgtYaSQFGWGAPBlyhxWG1QAqF00feXNliTUqApvMd7gzItRBy5FxqJ0JhMKQuFD4qsUluVZYlCkdkMraBwDh8CVmsKV2A1WGshQHu2Q1ApNskICJ6AUw6Uo7CW1Bp0AcpprElQaLyGUnkKXxIMZKkmrQgEozTOUfmXgyAeBRhlsQIu14gqKVWJL0I0+/MG31VosWRZhhhP4XpRzWIsogyCpdAa5zyhDDHKtFYYm8SAxmVJKBRKWYKCEo9KQFmD9hYVGhhJ8M4TtEPbgBVQBFxeoJSlNdGkdB2C5OCLB7lF3zcIKUFsrYmMv6k47XfiKb2ncJ7SRzVtkARBoXWLRhbJpull06zYcTk77bQjK1bsxMTEEsZaS0ntBJomSjUq0q9WpoTYHgmVSWgKKiWEFB80iENrULhKtZfjpYvzbcoybs6VWJ2gVBbT1oE6JEVJCmRoSUB0JLtwKPFoSrR2KBxYR0s5ZNyxdEmPsuwxs/MGNm66h3Xr1rBm7e2s33AP6zesYba9gSLvUToqD2vV+OJepEE1odeHihFMh/3/V/VSj7frd+HgvgHCrs6n9rUXxzyWtJXRGm+yZHoJU1OTTE8vY+mSpYxPTNBqjWO0xeio2ETVprymIvJiROK+ubKqokpLbJ9lWdLptpk1s5Slo8gdvW5BlvUoy4ArPUrp6M+RMKd+rMybjbakaYOpyaUsW7aMnXbaiR2W78CSJUsZH5+YM3kWTXRbFwkLkZrAVJWysSYGhRA8QUL1PPnYC0n0NVm62McWRZe86PZNzLudNp1Om9nZGdqdWdqzHfKuxxUKV0hFRoaqPQiiPaoih6I61mOMx5iAMXN+NOcC5/wBo34+a0WrqAVKSRUEWxSo2TZqagmS2IpBDIhSUWVXkWe6jks00Ib6lu2LTTxV/UwBmIrUEqQKcCQVM6ek8nVZP3/94yvSuV6YkIp6VzGqva54/kjEhxhURap+xUHR6bKhO0MmCmVTlE4Q76PrjCois1IKX12PdhpBVf1prTKOfwdFvw8wHmL0YRv7paovqP2+ghC0qdYN4vUErVHBoTZuxP/6N9x+5eXcsvoaEgns9/iDWfGkIzB77o1U9yBa7Ev/9sUg7mrukVUDOuh6PN4X6NaLFap/bL1YoYOqbp+qyMd4hK5VvUqqcZJFi1Sm5nN3cWiRpDqllgGCfQEHUS2nDNxDqV0R1L4fBETV47PoNkNLFW16Xl4L1axC33NkVQd1PzxnJr/YgtDDd75Re6mtoeZ99jG/XW62uxusn1qqPfx90SmeGkg/rzQLyevBcmzm74F0dV9Qt20GFM/9z8XKtEhxZN7f937Y3Jt8IAzW3OcWXxuytQkH0s+5O6kDF82VodpTv+frz/6xsuBcMvBd+vWpGKzBwb/n/6WQft329eMyv+bmtcSBel44Vhr8Nr+mN/v0PiQxIge3M7z33HDDDdxyyy1MTU3xuMc9jiVLlgAMkU73F4PkU/13r9fjjjvuoN1uV6ZL8RxZlrFkyZK4It5sRnO9UEdljMSXc461a9fSbrfJsowVK1bQaDS2iuyr/56fdjGCLISA1rp//to/4/z0SkXH/ZvLZ/45tracW1vn80nHEKIKwBizxTzqa6mPGySER9g6WGVolz2cUoxNLqEohVBGE9TgXFRN4BEfzelSm2KNIoQOznXRqWA0dIoSMRlFO6fpA82GJlGOJEtxGtp5IMmaBF/gfBcbg1cChuCjuamSaOYVEMQEdKqwKbjSU3Q9zaSBzQTxXZQSjBLGUotzjqK7icTo6DFNVDRPDELpC3zwaCW0mi0I4HsFRjRZGdAhp1SxjdgsJcFS5j2KsiA10cTZlSViI/mlSVA6RnH23pOlKdam5J1ZGokFm7HBeXJfolW9WCBVdGADIgRiEA5TO9PSRMUWAY/H+xLvykj0pQ20TbFVkASjITGWXpFHBVsjJWgwxuALj/KBTCeIB6MTBEPpBJtmaGUIFAgFhfQwicIEi3MlaEMyJhiVoI3GlQUKRaosQYS8LCk1ZEqhlCHVFh+iryJsQmEcpRaS1JBqRfAerMHoDB8U2ivwARV8JOdUjEJcBofRNhLCOiExKUpZlEkonaOX5wSJ5pz1s+e9xyiD1RnWGqyFbrkB0V10IhSlQ0KC103EpGibRZUbGhsELR5rNaEUyp5gkyYmbaGIiiMpS7JGSpI0CIXFO0hSg9IOJ7H8IgYXNM4FJPSwJgZLKdzDy+dYbRKsiD4GUSVeihj8Iy/o5SVF4XGu8repLUlqaDWbLF2yjOnpZeyyy27svPMurFixE5MT05VpcAOkgfgEkUgOR0WWoJQjVIqsEHoElUfSzMRItiEUlK6D853ow7QyKS7KWTq9TXS7s4TgSdMGZbGEMF7SagVMEgPmSMU++CBADFQRyS+DVgmoEpESoQCJ+5LKb6hNLeMTYyydnmLpsinWr1/LmrUT3LPuLjasX8+mTT3KXFEWIFWwgr7Z79CINg689QDRJwiE0Ce+qFR/cRyr6kP6E6dQ+SOsffMxMLGJfvAsjUb02zgxMc6S6SUsXTbN9PKltFqt6OOx2SKxFpDKb6OvfCkakiQlTRokSYpWAmL6hKAPkQDMi6i+K4qcTqdNt9dhtr2JsmyjdEmSCllDUbpIOJZlVe8VUyDQNxuOz03GxMQkU5PLWTK5M5MTy2k1Jonm5VXAkkqLVhNPUpGCgVBVTuhPgWoST/VnH3OTj1CZg4dQInicyynKNr3eLLPtDXS6M2xYv4H162bZuL7NhvUb6XRm6fTaeB+PEfEo5WOUaqLfRptkJFlKkkaXGypxYApEJVF1+4cONfA8i8ZrQSNoo1BpXHDTnS70Ckhj5Oc4MY8KQxE1d5vrOeJmhnkLg+jWiQczqFnGQcpJzTum+tCLn24wGFCoFkfiYgMYryB3dGc7zJZdmtpAkoGxVZAbR1AaFQc0sX7q42q/mzVBOFDESIQNXAaRzFJ4aspGKrPswfl6ACgdrNtA/utfcfNVl3P79T9jPE151IGPY/rwQ9CP2pMwPgna9EnP+qSqnpLOryZkcdZG1QGn5sreD9yihjMaGMnPq3/V7xMXVESdSjGY6TBnMUhQzLG9A8dLnyTsV2hF7IooQu27tDr1UDlrwrK6pkgCapSWSIIsxgUOF+wPAlt3JVtDULGwagYfnqEbu6WSbK5EA/tlkb/VvDQAlR9eIQwQWfOf2oHyLCjavZW5JszmUqmhPfPOuSgvNu96h+pvIMf5bXbB5xxBWPXMzF2p9PcsdCMwQNzNW+wazn1wmaNug/Xce64OFPQXDhAZuO7B2qnf2wMXNY8MHLpHg2TmYrfi4cUNjsjB7Y1Op8O3vvUtvv/977PPPvuwatUqli5dul3OVZNVt956K2effTZ33nknRVFUpjSaZrPJqlWr2GeffXjMYx7DzjvvTJqmQyRXu93m29/+NqtXr2blypW86EUvYtWqVZslwmp1XTTfaQNzxN9gmQYDs2itSdOUyclJjDF0u11uuukm1q1b1ycXa5Xl2NgY09PTLFu2LEYZHCDZQgjMzs7ivUdr3T92PqFXk49KKcbGxvpk49ZCRPDes3HjRrrdLtZalixZQqOKyrpYeoCZmRnKssRay9jY2L0SiiMMQ2Nojk/Q9Y48L9EqRalAu+hgs8p0sDLTE6fw4iFRoAJlt4suCkRFQrcn0d9cahM8GSrR5C6Qa0XQml7XYUvNmJoiSeL5xWi8VnRLj00z0IZSHKIC2mnUxgY2WKwVdCq0lcNpj2lorMsJeY4xiubEOF1fMtstCIUmc4GGzsjEUgSBzKBNSoJjPCiMDzTsGF6EnuoQUkHISTCMpSkiXQq1noJZvCrBKUJhsb5F2hhDUgueKkiDglLTbhd4o5C0SUNZUqXRBEQFlFWsa88AkKYZLi9JfIE2HkIPdDRz9HkeI/3aDN1s4VuOYJvo7iSqFAwlxihUmtItenjnSVONwdNsJQiRzDJKoZwnxdE0NtKOOlAGR6fMMSYnkVlMKChE08MiSZNGYwmJHcf1Uoo8+hgT8djGGEF5nNE0kozSFWQ2I8salCLodJxcOSh6NIoCZRQ9KSm0wSYNer0CSkdTGzKd4l3AicUpRVEKVlmUaIrcIT5HWUNhAl3jkVTRSqvIud2AlRQtGhd6lLoksQFvNyJhI4RejDJsJvBmKc4YdBIDCoifJZRdEptQ5h4tKVk2QeFKep0NpA1Do2HpFZZuz+F0N5rGe0/pAmiPKMHXNo/EqL2Kymeaqu7lwwhCLw7MdA4mB4roe9Ll9PKcbq8kzz1FEfA+oLSQJpqJJRk77rqEXXbamV12Wcn00hWMtaZJ7CS1iTASid5I0FWTeHEQQowMSiCQ40NOUczSyzt0e7O0ZzfR7nTodGZxLsf5nNL1KF1OUXQpyhwFJEmD8bFINE1NLmNiYgca2SRJMk6WTpIlLYyOqsVoNlv7P4uzwGhOHclukTiINkaRJA0azRZj4+NML1vG1JIlTK1dwp133YFZcw+bNvXw7R6uDP0FqiqGdhyTBlAhDoa1ECOKqrn3ONTzl5r8GiAG+6vmKkYSpyJhELSOZvtZZmm0UsbGGixdOsWSpZVKcOlyJiaWMD42WUWBjsrA6K/Po1WJMa4/Toh+/ipfkxJNdIsikBclnU43koGdNqUrqv0hEqLa0RqzccHBNiuXDQlKOVAByui7MIhC1X78tEcbh0k8SRqjyVvbwOomWo1BSECS6lmpakgE8MSw0gGtQuWXsPIBKYKi9p9YTQ5FUwck0VTEVB1JI/OoRolMlgTpEUJBpxd9Tm5Yv4671tzB3XffyZq1t7NpZj3dbpu8cAQBJQalE7QZwybjJMkENm2ijK1O7RHtEP3wWhzYWghEYk2xYDoZahWZtdDKkFYDN7sJ0+2gJsroj6+6R0EJWgImDJNDfU43su1DpOCwoqeeJNYGzcNquJhi/kR5YV6K4XzVwHGiot/MvrIxsuX4IvrknRifwDZbiLH9Z04PnFLXxJmuooYjC1RJ2lXT6X60HUGRM8dehuhbV0WfrElRoLVUrjw8+p51+Guv58YffZ8bb/kFy5YuY9/DnsTUwY+D3XdF0lZcCLmPUKh591ioQsZXnmDnqlVLVICKjgSbqZqZMMDZVH2AqpzUBD1HU9TixMBcEwUIOgzX14JnQYY4JlW5WvBK9/O3PqoaJfjKpUsMvBLPI9E/ZgjRhUtwDJm51+ILW8mCdeUyYPCcQwV7eM83VL+floVXsigpy+/Bi87VWX+aVt/TIZJMze2ifgfOhwzvUfOevUXTz30OPuPxuVX9R2vh6foPLn0Oe4AOHCLEoHo3ycBzMldhav511gTaQLk3fw2DZwv9732iTwbPNUcIztGT9e910LKF5Zsr29zphnNVA/noeen1Ijlsjlit77mwYFFCDbg6UPPLVb8D1PB3VeWj+h33vGt66OFhTw4+EMEz7m++IsLMzAy//OUv+dWvfsXy5cv7xNS2KutiZsE333wzF1xwQZ+sq02NtdaMj4+zbNkynvjEJ/L85z+ffffdF2ttn1TrdDpcc801fOc73+Exj3kMxxxzzL2ev9frccUVV/C9732PoiiGTJEHCcFaceecY++99+ZP/uRPaDab3HXXXZx33nn89Kc/jY7DRTDGkKYp4+Pj7LXXXhx00EEcfPDBTE1N9QnCTZs28d3vfpfbb7+9fy5rbf/4QaIRYHx8nMMOO4yVK1dudf3XRGdZllx++eVce+21pGnKsccey2Mf+9j+tcLws9jr9fjhD3/IjTfeyIoVKzjyyCPZbbfdRuTgfYAvAqobyLQh9x4Sh9UaFSD0ehijCQo6rsCalMxafNGl6G0gSxwbZ9Zw97o1dHo9RDRZYgnT0yQrdsaRoJJxCE3KDigsSZoiWshdD1V4jAo0dZNkwtAturjQwaaBVFuCN5TeEiMddlCFAW0xphkjzUoPJx7xAdcpSRpNpiamIGhC7sjbPVKbMdZs0On12HDH3SRWGGsYjIESKIDSe0Qi6ebLHPElaaNEJZvobLiVtXfeTt4JWDVBa2oHGhNLMEmLZjKB1RNYlaLGMvSUpucC3U6BEig7HqUEnUbTxuZ4E8SggyZrRgKyl9/DTOdO2u272LBuLUXpSbMJsA1W7LIrk2YS6aa0g0dyoWWFqWScRFsaZrwKulHQnt1AMm6xzQZd7/A+YAhImSNuE63xMRQFSjpI2WFmw93cs2kNZT6LMilLlu1Mc2Inil5KNyhEtWiMN0nx9LpdbCIkWuPKnJlOTrMxhhDYlK9HfCC1KUuyFtpmuLJEAQ2lKIJD5R1ajYzSCC4v8cqgJAZOSbAkVtPpdslVIGuk2LEM0QqDo0U0MRY/i7UZ2fgEvXagyEuSJGAzx0x3Des23sLMpjsIRZtUJyyZ3IWJJY/CNA2u8NH/E47ECso7bMhwXlHoLo1WQoJQ+B55YWJgDJPgy2gi2czG6HV7uFKTZGmMUmzjxKsoogljEIXGk+ezD15jvl+oo1mo6HNNaYLTuJJIFPUcvbykLH2MDpwkjE2Ms3z5cnbeaRd23XU3VuywM41sEkUKYlEkKJVUJqFEtaAGiO3MSxckJ0iXXrGRTmcjd99zB2vW3sHdd69h/br1dLs53V5OCJGcDhUZVEfHVYpoqpo1aDbGaGQtxsamGBubZGJiCUuXrmDpkmVMTU6TZS2saWBNA0WKkiSaOZNEE8SgKvqy8m8oDk2OyabIkmWxjZtxlDQJLkOxHgkb6akewRUEF01PawWKqiKNUw3KQ/2OHhi416bbUpnF9TUNugpqYebUOlpHIq/ZbDI23mLJ0iUsm17eX9CbnByn1ZokS5di1CRGteZIB18PnoUkEUiiiwWRElQks0RyvCvo5V3anU20Z2fpdDoUlcuGSEi2yLJG32WLSKDbnSVN1iHB0uuWFHn0ExnvV2UGjaCx1KRHCAFXFhRlm6LcROkSklSiP0oiiRuDojBg61b7qawVoDXRGvpkQT1FixO8Si0hhlo5Gic4JqqSaaDVOOiAbRZMtnosX7acHXdazoYNu/C7O3bgd7/7LXfddTvr1t1DXuSRUEWhlcHqJKpMTYo1FqUiecCAQuMPDkOXVQfwUCABrWsTXgWNDDXeQnqz0O5A3kVajbhIUJFefUZIRy5X1f47hwifeylC7e2wNimtU4ii/+DUY8a5YvcnusN5zScq50z/+1xUEEJRkgRojE9hJ8aRNCFoFV2PDBawJhiq6O2q9usJoPvUWP8SRNekqUeJr55hQ1CmIm0cWBtJrF4O69ay6bqfcNNF3+W3P/sZO+y+C/se+SQmDz8cdtgZ3xhDo6uI6gOq2nsjdGTen6omD0Ik1IYIuzkGMbbxugVGkiOoijQlmpJH4pw+Qaf93O0SHQlJEyrrJl35gFT0Tb6h+m3BDa3vUTxXtBwWanNsVatAfTQ7Vj6AFyg9FCV4R/RjEk2Oo5JbqBxwQ5pAksZN1QSRuv/c2EMQSuZMwxn4mEcRD39X838ZOnAR2nQewTNng86CmpTFvmyuc5gzdK3/ljooUP//wfz1HOk0RJhVn6p+hjdTtoHzxvxD/7x1ORZQbIOqvz6BtxgUg7dB5q54yOx7kJ6januLkaf9NHUnNliGIeKt/i7D+2SudhZqHzdDJA6UI3YRA50ug+reRUt6L3lWZawXehekW/zohzIe9uTg9sbvGyxkZmaG2dlZjDFMTk6Spum2LN4Ck95axdfr9QghsHz5cnbZZRestWzYsIG1a9fym9/8hnvuuQfvPa961av6ZFl9fG2KvLXnV0rx29/+losuuoher7dZs+KaqAshMDY2RpZlAJRlyW233caNN95IURRkWdYvD8DPfvYzrr76ap7xjGfwrGc9ix122AGlFLOzs/zgBz/gxz/+8QKz3UFTaYjk5MqVK1m1ahW77bbboubPm7u+2iy43W7zrW99C+ccrVaLVatWsWTJkr5CY5Ak7Ha7XHbZZVxyySXss88+7LXXXuy6665DdTbCluFRBBdNgpLKf5V3DuVKplotktSSlwUzrkdedHC5kCmPVQXrN9zFmrtvY+09d7Bhwwa88yyfXkGzqWn6cdJWRTLnlixoTJKhUyhUQZCShspQIaHMcwqXkzQEqx3OleTdHG0aBB1ffSkKXFSYaZ9Ev3U6JRkbA6DIS0yREQR8KLGJkE3Z6BPR9cgyS6ItruzSy3vYLIGGxxiDLjVF5W9KaY1ODYEZZtbdwZ2/vYm7br+DXg+ysWmWW00ybmmmGSr46G9LPIIDX2CAVpLig9AL0TljmiQgCutUnGS4nFLaFDLD+k23sXbNTaxdewubZjbSLQJiG2StKWa6M+y1686sWLYbHdMjHW9hJNB1XcbScZQXXNeBEqxpUjgh7/UI3iAh4BQk401Sk0QSkC6JtFm//nbuWvNb1t99D+JhyZJpWs0lZEkPk46hVcCFku7GqGxME8GqOICO/rjAaY/WkYDUhceWPWS2R06gbBiaNiX1Ae08SgcS8SgthEQRVIhKnBC1PQkW3RynZzw+VZQmsHH9PTSNYUmaUbY7pM2omJh1bYJJUA1iVOmyQzG7kfaGDdy15i7a7U0sGV+KlqW0Mk+WKLS1cQwUhOA0yqe4IgbL0Q1HUXbwuofShjRpoUKLogfe9UDHKKvK6BgdOyQxsI0R0sygDeS9Ht6HuLhsHl7KIaUr324DA3bvoSwDee7Jc0dZeCTE/jnLMibGx5mammRqagnj41M0GmMktklwMbhJ9C9YkzO1WaGHynRZJAfpUrpNbJyJSq3bbrs5+vhbv46ZTR3KAsqydh0RB6wxurEaeNd5lC4xuo1SiqSKxt1sNZmcnGRyaoodd9yZHXfYmeXLd2JibBnWtDB6DFQaiUIimRknDSBEn6BCFIwYo2k1cibGurQnZpiZ2ESvl9PrtgleU3gQXHzfSO3TSg0soFfBl6qfo5larOe48F2NLYygVeg7PtNWY60hy1Ja4+NMjE0yvWw500uXM710BUuWLKfVnKDVnCBJ0irwwxj4MUSyam4s1FF5qTyDCgWqCjgT6CJSUhQ5vTyaa3d7bUJwNJop4xPjZGmLNI1BTLI0ukkRCZRlycxMSi/PSZJNKFX56RpYRI2KyOjqAfH0VI9NG9aDCGVZsGnTeiYnpmiNTZDatFL9V5M3HbV/kQy08T5VfhG1NmilMdZgjI6BIMycqTZEv3MoC2L7nyIGCXXgE12pNS1KQ5I6ppbA2Pg4WbNJs9mi0Whik5QN6zfQ6bRjvtpGBbrNSGwMsqN1jF4dn/k/zDFHbUaq5uZ5fcuz2o+gABiDajUxNkP1etCbxY9lJCiMVKRCNVmO/KJEwmxgvrjlGhyc4A6yWfOJDUAEGfCJWPsYXBQ6gI8KRx1qHkgRtIp+jIMnFAUGodlqoZsNgtXRL1113tqPYn+arRjwU1dN6fuzf9UXCfYzEA3iicpJG5+pfgR5gXaHsGYN66+9huu/9z1u+cUv2G16BY974pFMHvJ4il13xtoJbGliVOLaV+bWVSxzhAcD5AgQHASZI5C0JmgVSbwweM3SJ/RiyqpP0JXrCgHlA9pJZDuMRlfK23geKvJ0gMxEaoll39oxqhvnXVcV6E7LXBlEBQgFyjl06aAsY2Ch0iGlB+ciSVj511YVKSRGIYmGNENaaczfalAJ9YM+aIa+kOx4GGMru69B6myOs90cZaoGNub9vTlU7/h+/Q6qwWqScNCdQNziglFFCC8gzXTVpra0kDNcRumTwfOvYaAc/bL23/TzSMd56dUgGTd4nnhMgP7CxOBW51Gfp66bwEANqwGisk8K1ofK4I6Fn3ONf/hzKGCRGj5mMD81kF//7+guaa6ki1/VYBUN15qq+pN601XfZPo1MV8T+XB6Az/sycH7GoX3vpAyv0+gkPrYdrvNpk2b0FozMTFxn01atxb1dXnv6Xa7AKRpylOe8hSe97znYYxh7dq1XHnllXz/+9/njjvu4NJLL+WAAw5g5513rgbWdfS9MESq3dt5lVIsXbqUPfbYg06n0983mFen02HNmjV475mYmOCQQw7p511/hhBIkoRDDjmEqakper0ed999N7fddhs/+clP6Ha7TE9P89SnPpXx8XGSJOl/1hj0Zei9HyJnV61axfLly+9Tvdbmymmast9++9FqtfjNb37Dddddx3HHHcfU1NRQ/Q9e+6ZNm9iwYQOdTmdEBt4P5FrTSw3GavI8JykcqYnmdd1em7w0sQv3AaNUNDW2Qq9dsLG7gbXrb+fu9XfRK3poa+klgZ5NEJ2hfIb2CcZH0lFcjsodjh65d0iq0EpQJqC1I7gutqFIxy1lEFxZ0NCGzKSEokGv9PTEgYl+EBMlSFFCpeZo93p48VgT/fopcdULM6FUgm6kiNGI82gsRa+NTTSpMXgSXBBUYjA2joe77S4znZy2g25QzMzOYjauY2ysRcuMY1vLsI0xvFNo58iMx4SAlwCpwSaa3EG3KGmaBlmSorWj1DnB92hvuJO77rqZtWtvZ+3ae+jlBXnucK7NxHigaEzhvELbjEmVUuRCiYIkpVPkqOCJVpsxqINohSaQSEnhHNomECy5L1FSYlWPTTN38tvf3Mg9GzbQnZ0htQljkxM4AyFRaCtoPKk4jK39fgWCF8qgCMGi0HTbBVYJmdFkNsUaDUbjnUcFwTlNmlpMqquIoW1sktBIElzhMUojRuFCFYXZakLw+J7HWMVU1kJ5T1kEjGkguSc4UFYQ41Gm8jfmA4in6LQR5xlvTtBqLsWHjNJpNAlWEkIBodCR5DIJJNGURsRQOocYha1cEigFXmJ0UqUKClfGOZFJCHiUBpOkCJ6yLLA2BnrAB/DbdmFqe6P2YQdUCz1RuVXkkaAvegXeRSf5WhusTUjTlDTNqvesinMrDyKG6M8qKgejSTHUAUiEKoK1iYSxQdA6RDVhKAhhINqtstEnZ7T7qsa5NYlJf2wtAVyIasIiz+kYod3RzLTvYf3GJu3uejrddfSKjeywfGcmJqZpNpbEIEekaDJELIipyKLax1xBIEdCjvOzBOmAKjDGkyaBhhWcCQTjCc5H0rw/8a8DIkQT1zihrFRxsaIrYV8cRCsdoFrUs4nGpobWWIvJyQmWLJlmh+UrWLJ0GdNLdmR8bCmNbJI0GUfTQKssnsObeB21Sa2Od1eqKM1QRrmOyhFyfOiSFzPkxSx50cG7HAFarTGszUiTFmkS1ZbGpP1FR20UzuV4XwdOqHzS4uO1KFXd93rQbggu4MkpyzZ5r83GTZtYu/ZusrRJmmbxWTImLtRojdLVuXSMhq21rfKMgWCMsZWaMaPRSGm2MsZaTbJGRqPRJEszbNIg0SnoaK4soqMZuVh00FAHYMEjlCBRvWhtytKlFamqNUEAMbFpe4cxCcYkJElKklTkoEr79zf4P9wxSE0Q1uRP30ecUigqlzPGoBoNVJZBbxPSmUVPTYFtxAAfJs7+VBUFQQx4rfrEXVSoDatvpP6/Ph/0Ofi+1iXKSat594DSRCJpF4OF9DMbuKj6j4oRrM3gq4x1XR4fcN4hRpMlKcaamt+LnZDW/eAbc3Nu1S9Kn0SsCKg+T0hl7kr0aSnKVOcNiPJ4BCUe1Z4h3HIr91x1LT/9/g+47bZbWbHTTjz26KcxdcThyE67YEwDIwqqcU89ca+WVrbiBtOv0H5q8ZFAcwUSQNmE2idMzT2oOsqLHoheLbFO47UFVHCQO1ReRjWztZCloEH3JZo1ASgLSYIBMhqoFJX130Tio1Jrx4hGDnyJFD2kl6N6Oap0SFnGBafK7BMfquAscwSJlEJw0R2DTm1FcVauH9TmiJ+HL0RLNA1fBP2ntv9uk+E9avBZGchzPpm0CCm14Ix9s9CKZKvv53yCsDYdDQPfieMEVVkYxGegJsf7jZA+wVTTSKra6guJDn5Bxfe3qr7HtjlIP80nO4drTAbrSs1/YhYhDQcDAlXHV3Tngsqd/5daJM3gt7n+c5C0W2hCPlxKNbxD5v3Wz7mq+6pxygLCtlZWVmRtHUCMgXvUv3/0F1PUwH1SFRmIMlWgoajUD0oTwwxVHEflSEQN3ZuHNh625OBigThgjqSZWyEeDgaxGOE3Xx04qDgbjFg76LtuPhaLZFur+GpyasmSJf1IwVs6/+9jKh1C6KsGm80mu+++OwcccADGGMqyZJ999qHVanHuueeyZs0arrjiCp7ylKewfPnyvvlxrRysTWbnR+2df83GGA455BCWL19OWZZDdVdHa/7xj3/MeeedR7fb5cADD2T//ffv52etJU1TQghMT0/zohe9iH333ZeiKLjzzjv5/ve/z4UXXsgtt9zCJZdcwr777svee+/NxMQET3va03jUox7VV+8Nfs7OznLppZdy/fXXk2UZBxxwANPT0/e5Tuv0K1eu5MADD+Q3v/kNt9xyCzfffDO77747SZIM5VnXV68XfXwZY4bUkCOicCthNU7HICDaaBKtMCoqCpW2GJsSRJHagE0Teq5NL5R4CzN5m02zM3Tbs3gVGB9v0BhrYdNxxI/TKxpoD6lxZInBqoD3jiAanTTBJiRpgvYB3y5RKsMYVbkGExIE6wL0fFR8JNH/W9CBLNUoKdASXw2l0qgUFDq+dIIikQwJikKEQgcwjjRNyJIGIS/RBJQBFxRlKSRZEyTge93oJ0wsPlh6Tmj3ChqZxWpLapu0mpM4F3C+oJE0QSJRGQS0TVFJEs2CjIZSI2WgJznoHrlfx+zsHaxffxubNtzN7EyHXg/ybkB6jqYYWtYT2jl3z3RIez12zTwTtkFPNEEMwQhoX81nFIWLPn8sAS0lrdSQlw7vhbSZEAQ2bFjLXWtvpd3ZhHiFtormlGV6x2kmlk5D0qBEkVpwvS4og9EpIWhCMBgSDAlCoJmCogQcBUJXAq6KGps6jcaSIxQSCFYh1WJCRoj3HEteluShQERhlCLTcThgPRjToMDTKQoKgYyEVBuUUdEUCHBBENGkY5PsuOtKli6fIlUJzXQaa5dgsml8pcBITDQH9r5EW3C6FydvDvKyg/jo+86VHq0KvChsKiQ2ktRaqxjEROK8oyx71fsqRleNHKXCu4fZ675P2oVoAq8EEUdZ9uh22/R6bcqyiAFm+gPvGCAiTuBURYXNRZWNJnOqIsxqAiy+20OoTMuURpmUsbElrFgRoxaPj0+xbv16Nq5v0+t4up2SsizwoaQsS4J3VXTaCgogRq5FCTGyccB5BXlAQkDrtbgip9OZZdPGe1iydBkT40uwNsPotPKxOqf6EpGocKXEuS5l2aXd2cDM7AY2blzPhg3r6MzOUOY9QllWk8tqWKpq30018RQ3EVWRTHGwr1StMgVUwNjoH7jZzJicmmBycpLp5ctYtmwHli6J/hQb6RhpMo7RLRQZSqKJdCSjLRKiB0fBo7WryGwPqkBLDx86+NCjcO3KpLdD6XoE71HKYGyTLBkjS8dJbAtrm5XPsujTL4iH4PHicGWPsvQ453De9U2/+/dbJJYnUEUVriZw4vHKU/QCnZkCpTZVSsF6EkBUBKn6/R0DVNF3nRLT6WrSlqQJjSxhbKLJkqmoFF22bDlLl04zMRlVrVY3IgEdopsxCTFglVIqkpCKioyOz3I9lm1kDSbGJ5mYmGRDayONTpuiLCtSMEZpNzZBKxufnUqVotTCsecfDuIsUaguWQaN9OIkWjSEJME0xpBNM0i3i8qL/uS3T95VPqV0n92jmuQzoKKBuQl2NdVUCiPSF8HE3+opvxogFOJBtQHoEGlX/znAatQT1Kg4q66oJim9gHMUZUEhnjQxGK0iOeF9XEnUyZy6sqbjpOoHK5Ud6L7yUqgCn6jK3FUqY8igUC7EqPfi0F5Q3Rx/223cfvllXP+9y1l79z3stufuHPTUo5g+4gmE3XZGZWMkzkSle+LjdDkIoraKFhyqE5Ga9BRwHsl7SLcbEzRbMehTbcY78FzUbTheVkXASYj10+kg7RzJHSpJYcJEVaeqycCaZBZUqAlHYj+5CG9Vky81FYOqTRYDypWoXg/pdKHXw5dlVCwioDUqNdEPpq7LW5HKPlREaLQUUDZF26TyK1q/2+bV1+Bj9DBFqN4cw1hofFt/i5Chj80duzBRTVXNJ/6GSab+9z7RJ3EFMlTjkOAR76rPuAXnEO+q7w4JDqlFONXinUhsE/U7RWkdA6FpgzYapQ3a2uq+GzAxOB7GoHT10ta2IhCrd7yqVWwDpOOC+tqcUnGwv5ob22hqon2hHnMwx7nvwwHRao+HgdhXD3s+mPOVOJ/mjPuqaxnsJDfL1AeoAyjVKz4DAZUIvuoL4gKBVOMFnEd8SSjL/j3De1QIfXWwVjHAnNIWZZMYId4mqMQiNsEYi9ImBm3CVhYGtSuR+qoWfUAfMnhYzRaGnGYvQlrN9703GAyj/n2QnPPeD5F+tTPsWi1W51mr0QaDW9T5Dv6+WHnvuece2u02xhjGx8cXlHtz1wH3rtobrIfBSL81KWVtXMGuyak0TVm5ciVHHXUU11xzDT/+8Y/59a9/zcaNG/uKupocnF+ewaAf9SC1/jTGsNtuu7HzzjsvuP6yLCmKgmuuuYYQApOTkzzxiU8cCspSByipfQYuW7aMVatWAbDnnnuy66670ul0uOCCC/jpT3/KL3/5S/baay+azSaHHnooj3vc44aei1o1ePvtt7N69WqUUixfvpzHPvaxQ0FEBiMlzzdDnn8dIQRarRaHH344l156KevWreOGG27gCU94wpBpcY2iKPr1M58Y9N4PPYfzn5/6GrYUBKZ+NjZHLP8hEJCZhhagRJE0M7yvIraGQCgEZQ2kDbwKFKWjLAsMAcpAKDziBIJGByErFFOSMqkbJLqFTqaRYCnyNmV3I41Mx3F2MBhJka4QOjlGQ6pj1F3vPc55tNGMN1sEhCI4pCGUZTSh1ShcEMoASjSGykm3VqQGjDaAjUoabdHeocoOiQnoUFIEQYwiMSmiNT4oktQSSk/wBcoEglK4UqMcpKWnUeQxWjKagKUMcULeMEJTG3zWxIVoyKPI8E7wAlpbdGLwocBJFwmbyHv3sG7d75iZXc9Mp8tMtyBrTvz/7P3ZkyXHfd8Nf3Kp/Sy9zILBToAACJAASJqkuEiyRFOWHFIwFHaEbfnK1v9lX8kXCjscurBsy1Q8pkTAsrivIBaSIJYZzPR+ttpyey6y6vSZIWgReu0QoedNRKG7p0+fU5WVVZX5/X0XpvkE0TbQ9yjtsabDmugfWNszculI9B6ohNY2GG8RUqCCQjodmXBK4hUDCKuQUkf5TDA0/ZplfUFTL7E1JBPJ7Noh8/3rqFCRmAlSlQSrEIlGKkFAIYImJUEGBT7ep7w3iCzgJPTOIZIUIVJ0KpEWVs0a11mCDgRhKfIcRGDVtITQkSXFdoGfJppge8ARvKfvHXk1IUkykqCwLnrOGe8QBpIgCV4gZIpMc5ysSLIZwjURWHQZeTbD64y1dWzMhioTpJkG6QnSkmQOKTtst8R2izjmgkb7AiU78mSOVhkiJOgspe8aOutROsoclUoJBJztIFicaZEodPZ+uyf4gSnnEGpkgRmMbej6NX1fD0wxE8+B6WiahnpT09Q1pusicKgiwCiFAx9DikKIk2Yp4halcmmcqDuJEJIiS8jSPWbTGzxwo2a92bBer6g3DevViq6rabsNTbOm6xu6rh5AKYNzdrhfOZwTOBuTcsPAPOl7y3KxoqlbFosF79y6uX1GR5ZalJhG6e3I9iOCeCEWMqzrMSYGtPRdT1f39I3DtBbrfGTSBr0FuLYsBHayAEVACBfZzCIWJLQW6Cwh0RllVTKfz9k/OODatfvY3z9kf36FqpqTpiValYiQQkgQQ3CHEBHcRGm8kwPAGxDSguwJwmF9h6fFug1Ne07dLGjaGPISZdgZeTYhz+YkukLLCi1LpEwRPqabj8sTQUx3FqEn+I7gFd4rvBXRtmvH019IkMIPS4fox+idHaTOcgucxhAYcff8XYAQowPjmEY8tsAu/UsOgHN6obm4qJjN5tR1Tdt1WBcQQpNngiQRRBnxsMwaTlEYABkZIq9BDO8dgotLMiEGtqxGaU0SfExHTxRJmqB1BE8j23b8+/fb9f83twjwi613nowo97B5RvkoIgLUKA1FAXkSA8M2HaQh+mhuEQe5ZXzJUS86XjFbBtH44mhQNy52lSCCSd5vPfy2DJudcyxClBVfLq7F8D5R6oaQUU4qBThHEGOAzbAfIRY1CFGC6rsehUArIhOu6SI4GADlkElCUHL4+MgARA7gILtAqh/k1AHpPaK3A4jukV0L1hA6g+gtYrXGvHPEj7/5bb791a+yXC14/KnH+Og//E0O/sHHCPffhyimSC8RQ3FAiDB46InL+9Iv2BwhMrbHdb+xhE2NXa6QOjJ2Q5YShB5IoGPvDmPAB5zwSFxUNnQd1B1hsY4F2TSFUkGiCInY+gtuh8V4bn/eul7AGOAU/+gSWAnBEkwPdQvLDbLuY/iVlog0j6zHVCMSHWXCcoAXRYiVA+vBWoRxEQhKdGTAqoQxMfqSb+XfZefeny2M42bnv3dvO/++i+CHn/lmB3Eaq2J3g36CsAMmDYPND0C7dwTv8NZEpqczOGNxpsOZHmdM/Np1eDP8zhp8PxQQncdbGzcXi4TB++Fp4uMYG54dUkq01nFLNDpJSLOMJC9IsgydZuiiRGY5MkkhyRBJBjqJ9zkx5huo4VgUATncS3bsWnZ6b1tO2WE4XzIcx0LFTgBQfPG9HXv5dQDTYoGTy88d/u4yeGR4/53zsOvWK3feM75G7mzjPoTh1eP5c4xgoCB6pm5DxIIF00cGrzHYrsM2NX3b0rctpmkwbY3t+3iubQTxRQhoIUn0wNDPMpKiICknyLxEFgWiKBFFgUx0PA8qZSxQRM/hdxmT26785XlGv6/AQfjZztsFxsamlMJ7vwUFpZRYa++S9I7hGPcCitbaLWNuBGjG73fBsV3gcZSxSim3rLsxeOPi4mLrsbe3t7d9zbul697LWPzbNO89XdcBd4Nu4/snScL169e5//77+c53vsPFxQWr1Wr7mbv9EeUzd4eLjO819tPYr2qQ3ozvM74uSRJOT0/5wQ9+QNM0PP744zzzzDN3gXRKqa2ZeARg7Bb8yrKMhx9+mF//9V/na1/7GsfHx7z88st84QtfIEkSiqIgz/OfYe71fc9iseD4+BilFI888ggPPfTQdgzsfsa7XZD3jqkRuHz22Wd56KGHePnll3n55Zc5OTlhNpvdJY0WQmCtpa7jYnEMVxn7cjzO3f68lwn781iku+Nwt/3/IoH/ZW2u6xG5wwePRSFSgXeRGZRnJV3vaesWmac46cmKnNA2nB4fsVmsML0nBEUqNdNsxv0H17i6t4dRIqbjGod3kMiMoAOJViivsB3QivgcSVwE/7yPlHGX43pJbSQCh9Mel1tQgYnPSFVO5zyb3mCFjAv03lKFQOIN3vc4rSIQOVT2M+WJRnIC8gKZFLjOIRwIpeP80DsSrUjTDE9LojRKSFIJMhVoGcMKEAKRJBHgaj3NchFTl5MUL+PDO5EZiUgIgAsdZD2lMpjVgrOTt7g4epuj1ZJl35NUFaXOSL1laWvWXU2VayYpiPMlNnkH8fijyDQQTIO38b6rsgyEwPWBBIFWGplInEjo+xqBR9iGvlliWHGxWHJ6umC9bihUzmQ2YzK9Qpkdsp/dQPkp3gl8sLSuxksPGiSKrmlRJCRKQOgRWJyxWByg0FLh+8DGrHHKUpaanATpPVokKKnpvcOlKZ6YKpgqhQrg+o6u3RAkKKVxeJrVkjTJyJOcKitIEuhdS289SZLjeujqDtcG8mqOVnOMM4TgUFLRtwaRBPJcQ2LpxBqvNSoVUZ5sNV6f0tofc7Y64/RshRAp8/lV5nvXyLIEHzS+lyQqI9EKXIf3AZ0M1WQCSkRAsywLJGDt5u/ycn7vbbwvh2FxNUh8rYtenc73jIEg1lratmO9rlks4niqqiV5saAMoESPVh4hUhARLBaD3NK6obIsYuCLkCnbiaV06MxSpoG9aZQZh2AwtsaYlrarB/lrQ9uu6Ps2goZ9Q9d1dF1H3zv6LoZidF1P15kIIlqL847NumW1jH56u8y0EIjMttgZiFFKxN3POk80shdeIZ2K4S2jTHiIcY1+gn47cRZbyXBAqECiAlJLkkSSpgnT2Yy9vT2uXLnO1Sv3sb93lb29a+TZlERXUTLsNfgEiFXx6Ls3zIsGuXAkKzqEjGCgp8G5nrZbslqfslyestqcYUyDlJBlOdPJPkU+oSz2KbJ9EjVFUEDIIqjrIztooNTEYxnYApFRmBB8gvcJ3iUErwleDuSvuBgRIoLNfkgqHUFBscuwGJOadwMEZPwqBk6LD5feUVJcFnMj/iFwTmCMj5sNOCsIXoNPEWQoUSCEvvSPClHeFHwgYLE+ejAKEdklXVdT1yvW6wXr9ZK62WD6dijoRoAwG6T1SaKH4xrP/y/PwuNv2961+DmsJ7dQ3Fanu1PsDQHpicycIsUVObQdYt0Q5l0MdSCy/8QA/l0y7diCgmLky/jBl3s7t/YD3jAyEEegNyB9GNaoAdTO4nAHcxx/jMNODIXGWOgM1kXUUcUgjwjeQRADYGEMvu2hM1jX4+sasVjenWibZogsgUSDIs4JZARB9Za6OI5zj7Q+Boy0PaK1SGMIZo23PaHuEYsNq5+8zo+//R2+9/1XOe0dTz33KM/+w19l/+Mfgwfvw2U5OsT7TZRPixi+sZMaynDMf2MTwzkfA2JG5mDT4psGmaSIwu6QM8PA2rkEJsRgQBi8Q3Qt4nRBWG3AgMpSqAooMkKmcDKyrR0R4730ZxzA3e2AG3hmYjjnYTh/chyr0RNStC1iscKva0RvI+urLBF5BnmO0CkM9icRtGU7Dsf04jCEk0QASUb5sxp96tiRiYetB+fdYQ3vvxa5VuMRDNc+ge1lvcPC2ko2h3vpFo8ZCwY73oB3+QWG0UdgBI7ifANnIjDvDb7vsF2DNT2ma+nbCCQZ02H7HtN1mK4bwEGD6yMw6L0f2IIjPfxuXHJ7e9naeIRtYUlIgdIarTRKKxKtSfOcbAAH06IkLVuSskJlOTKziHwA35UDFYkG0eNzSK7fgnPjuBnvmsN+bP/lEhgdXyHu3eltuyxxbJHxANtUpy1Af/nuAlBhABm3fsg7O3HXOb83cGTnI3YAxF1QMXosxzmcwA/PcBsLJy4Cg6FtcG2L6xr6zYZ6uaTZbKjrDfV6TbNZY7oGbwzeGoT3KAHpQLoq8pysKMmnU4rZnGwyJXETNA6lAkJm0dN0cC+/25tyPJZf3nX7+wocvBcAstZydHTEYrFgMplw7do1hBDcvn2bt956i5OTE4qi4IEHHuCBBx7YJtnusgN302ibpuH8/Jxbt25t2X7z+ZwbN26wv79PlmXbvzk+PsY5x2w2oyxLvPcsFgustUwmE6qqwhjD6ekp1lryPKeqKoQQrFYrTk9PqeuaNE25cuUKs9lsML2Ox/iLsAbfre3KikdQ6t4W/XBypIxebsaYu/p1t4/erc8jO8dvKxvvdp52Acbvfve7vPLKK+R5zlNPPcUDDzxwV5rwLnhmraVpmi2oOwKaH/zgB7l69Spvv/02r7/+Om3bUhTFz4yL8eeu6/j+97/PxcUFeZ7z+OOPs7+/fxfrc5cpOu7PeJwjw28XIBZC8NBDD/HpT3+a73//+7z88su89tprPPzww6RpeheoJ0RMcQ4hkGXZduy8Gwi4y2zd/Tru0y7wuPt3936/e/x/H5rMNX0mY9pqcMjWRamuVjglkFlOjsIJh+k7eheBg1oY2mCx3hOCxGcppshpc4VJAxKLazeUeo9kvocxLa5bIvqOLC8oigybQm9ber8huA1CBpAlQUisSDFtw7zQpIli0XZokWKNod3UBCnJyhgs4A1IEoRvQPRAR993GK8QMkVriRQeqaB30PfRiy7tW0Lf0ascVEqaJHjT0NQL0txhbE9tDJsQok1OsByoQKoCmA6VVeiqIDiBcoG+bWmEwWcanMDY6D8oVEuqG7w7Z7F8g9t3fsTJyRGNF8znB8xm++QqQTpLNsnw51kEvrsNB3pJ3u3RrzfIUJESDfC1TDHG46QjKIfzHWVeAZquqUmlR/sOLXuM7Dm+9Q7Hb5/SNZpsdo3JtOLK4SFXi/uo1IxgNcZEFoeSjnyoxNvOY/GUs32shbbr4lzZGVRwZErihcB0Nc5EGW6WW1y/wSIppI6yrKARPpAGESuwWuKCw7goa02nFRCv3Vzp4Z4Vg1xM3+HqHmMtrRc0fSBLFGUFwjr6fklnBVIV6KTE+whmqThzJwgfU25lZIsKIFhN11jOT+9weueCs0WNR2GsoygyNpuUVLVoUdFbFZleqRu8eTzWtAiRxAJVgHa1QQSBeX/lkbBbGQ5ESbH3Hda29Kah61uM7bDWEXwEYtq65/xsQZbejuCOD+wftEwneygtENIicOAMfkiMlTL6xAgRq+0jQIMISBHXYfF5F4NLhLBk6ZQQPH4ALf2wxQAQO+xrZBobE4HLpmlpmpqmben6jrquI9Ox3lDXK9qmpm2b+Iy1DucjcBXG9QuX93znopdhGBhEUkTDe+kcMkRJuRICH0JM1AakEpGQtGUn+SG8JiHLY8jHfG/OfL7PtSs3ODi4xt78KpPyIMp5VQUhG+TCY2CKjgym8fyEHoRFCA/CRmDAd3jfYNya5fqYi8UZp2d3OL84pm4WGFujtWA2m3Mlu0aWK4oygt53KSsChDAEeoxtlBAFSxDDefDxq/PD997tSL53mA0jfiNFtIwAwmD+r3T0DxRCbsdD2GEiQJTxu+CjvdSw8BEDQCBlLJbmec5sOme+t8/B3hUOD65xsH+FyWSOEnlkXaIZUw4vl7oBG1oCFuc6un5N07Scn19wdnbB6ekxR0e3WSzO6U2LkgKlIdESrSV6lKONzFPxv2PdvH/a7ni4bJdJk0IEvPBbz0HpLkETHAgVIFXIsiQsa0JTQ1sTUjkAPnLAFWNKrx9co1RMEwNjowecHxicUkSmj1IoFX01EQPrlIB0HtG30A3AVZYRkp2C/eUhQAiDClxcyoI3dQTpyhJKhUOx9cnzDtoGt15TL5Z0XUdtevq6Ri5WeKVIVJS6+ySFMkPmKRQVIZd4kaD86K0VF64huOi913RQ19APfnzWI5TAG49YXXDnh6/w/f/1DV7/8U1kLnnu+Q/w9Mc/xvzRxwl7cxASRcBLhxcSEcTgOagG0NXfhSm8hwEwgGVxE86jeov0AoxlBzUagNbBKgEgeGTXI9qasFzCchWtF8opzCuYlJBH1pXaFlfuIaOIAR4eEJ5Rij1es34kMoXIvAzWEDYbWK4QqwYZfAQDpyUUZQwW0ckQTiO29bARNtjiJNGXhREGiUE5O4zgARDd3d2/Tff+sjUR5KWH4885mBE+Cj+z7tkBs+5iAo5jxF1u3hJcH5mxvif0Ha6tMV2L6VraekO7WdO3DV3b0DXxqzUdzsZi9MhAH84kQkjkcF9QWqNUglYarROUTlAyyoGlFKOVIBCG7wf2oJBIJWPIlZKoJCVJE1SSorMMnRfIvECkGSLNYpFjZA4OstbAGH8yBnDsiO63XXtZRIlM1x0w8C7t/LufhJ+BuMS7/VJcfuBYqHvXt74sVFyev0uwMAyy4lHUfLcH4ji3iaDg5ebiPdMOaXJti9+ssZuarq6pVytWiwtW6zWbesNms6berOj7Du8MIkTpf6IURZZRKkHwCQSPJsRwKC0JWhF0tAYIUhGEJl64Y/FxB+a8CwT927T/u1f4+wochLvBk81mw7/7d/+Ob3zjG3zuc5/j93//97l9+zb/5b/8F1555RWapiFJEh599FG++MUv8ulPf5rJZPIzgErXdbzxxht89atf5Wtf+xrvvPPOlvE1mUz48Ic/zO///u/zgQ98AIA7d+7wb//tv6Wua37rt36Lp59+mtdee42vfvWrrFYrfv3Xf53Pfe5zOOc4PT0lhEBRFCil+MlPfsJf/uVf8sMf/pC6rinLkmeffZbf+q3f2gKY7wXcuZcxNgaSjODSvX5449+M8mEp5TaMZASqRrDqXgDKe8/R0RHf+c53qOuaBx54gI9+9KM/FyAEWK/X/Omf/il1XXN4eLj1/dtlTe7up3OOruvumgCOSc9XrlzBe8/FxQWbzeYuafK97fT0lJdffpnlcsnVq1e3YSJjH7355pucnZ2Rpuk2dfje/gwhcOfOHU5OTqiqigceeICyLPnMZz7DH//xH3N8fMz3v/99Pve5z93VzyGEOFEbgkjSNN2e11FqfXx8DMDe3h5ZlrFer7l16xZN07C3t8e1a9eohrRbYwwnJyecnZ2RZRnz+Zy9vb3tZ94rM/774mto8TgRUEmKa1twIS56hMQZCygSqeMSVStEKrnoG5aLYzb1gt52OAlZkVMc7CPKDEsgQ5IIibQWawPGdUih8CHQG4tKG3paOr/A2iXCteAgy+ekhUQnHpsEeunQLqHwc7yPQEJaZQTRs2nOkDIj09P4MFYpJhh88GSpIBPQdivqZo0ThrRICSKndxbZWnAtWgQSkSGliDJaIfHWR/ld3+IN9J3EBM1sWlJWGXkKipjy2YUE7ySJd0yS6Eu39DFwJZFFlA3ZDSKsePPoZW4evcrSneMKwWG6x5WD+5nvHZLkOU3X4JWmbT2ri3OMM5xnayrWTCQkWuBDZCQlIiUTCkNLR4/VjtqsSGROpjW+W2PDGidrNu05Z2e3MZueJOR4ERBZwnx+lYPJA0gq6i7KCoSAEBxplsR8WecRWmGFxQpQWSDVAtdZCB3G9jSmiZEEInorqj4ycFrr2AhJluYkKiFKrQTGxQlVkhdkeYo1AULAGwfW4ZRHao33IY5PPLlQSKFQSiBTiQsrDGuyzKBcDCQRIkerPRAKVaR4nWPRiJChnEW0nqAcCOhcS9cZunXK5sJxfHsRzfZdnApdv9oxLWvwCdZYijJB6oANnqKYASXeZ2ifo2RKkacID7Zb/Z1ez++5+QSCJqCRYfTPifdvY+zAvgtD4Ag44+mcgbABbtPUDZvNmuvXrnPt2nX29w/J85I0qVAqQ8gMfEJMMI4MuEtPmDgB3RLIg4xMQzTBxwWnEAFNiGEajIm7u4uQ4U+HiawPLgJV3hGCozeRZVg3K5p2RdtuWG+WNHXNehUnqfEY6oGFGBmHsQoeZaUBj/cDeBX8kGS6O7WOC0Yho4eRVJIQYjEiegkW7O3vsbe3x8GVq1y5cp292SHz2RWyZIJWFYmqhpCUPPYVg1x5TAH2MRFdYAfpsCGIHucarG3ZNAsuFmecXxxzfHKbxfKM5fKM9eYC5zrSTDKZTqiqPaSMklg1JIX6YAm+j/YQIoaZRGlwTPyMTM4epEFIh1AG52u6fknfrzCuxoV2AGzdUGATeC/BpygJiQ7kmaAsMvJ8EresJElTtEriQiSMTEGH9xYfHM5HW4WxiOi3PvQBrRLSLKWqJuzND5jN9tjfvxJZkcUULXOivURcMIgdEFwIgdQSb6EzDav6lPOLYxYXK46PT7m4WLBcLFgsL2i7DSF4Eq3Be5SKzM80TaMaYww3GQNz/h60d7N/scqjfIjsjtHby7pICOYy5TWIwYc0yyDJCE2L2CyRqSBIFVnXWsabrQxxUWkd9A7R9ND20A++Yfgo1dUKmSWRmZcWkGRxp7xHmB4uFtjFGnSCPjyMvnZcypi3MKEABm9M6Syi7bEXS1RrCUkagX7hUd5sWX1cLOjPLlhtVnQqoJMMkaTINBnmhJG5RNvi+w5ZZAQpEZlG+WRn1EX/PdH2sK5h0+B7g0sEZBqdp+A8clNz/JO3+N5Xv8HrP73J5HDGh559ig88/QR7167jshwfBNqL7TvLEBBB4AagQoUIUGzB+b/phA/Erwj4jgviAZSVUUouXPQKEwO7LqKskbEYhEB4h+oscrEirNbYtkZohZ5NEZMZoUxxSXz26yDuAqRGIDCuxQVuAKKjtfIAqkKcuygVx5yL7EQ2DX65QvQGtEJUFUwqQj4AOULj49SDrachu/0itoyvuBe7xY1LYFCIsH3kXPpL/j1og1fwXSQrcbm+DNun3K4INX7dgm1jr4UIFI0y4eAMeAPWEkwEA23bYNqGrl7Trpe09Ya+bWjrmrZe07cttu+xg88whG0hSA8+5WmakRYFSZaTpFF2mg3p8jpJ0EmKShKk0kiloj2SlNuTLiK1fQdkHMeiGJ7jQzFTRb87lI4sUjnIWHdCS2KhYuyhgSU/yLTZhap276dhBAt3eafj4Lrrp7Gn2cKLYneMDuNyC05egn3xnnAJ3m19AAcQ993mUWw/ZzyucRNbIf2YOhw5v0NwHx6CBdtFKXHfQ9fg6xqzWdOuN2yWK1bLNZv1hk1TU7cdbecwNhqXKKlJlUQmCTrPyYopRTWhnFSU0znFZE5aTlFFhcoKhM7xMsELPYCxcnsu/88V6f7vXuHvO3BwbEII3nnnHb797W/z4x//mEceeYQXXniBr3zlK/zoRz+ibVuMiWbht27dIs9zHnzwQR5//PEtmDWy7F566SX+63/9r7z44otb0GZXPgvwu7/7u1uA7M033+R//I//gXOO+++/n9u3b/Nnf/ZnvPzyy8xmM5555pltEMfZ2Rnee7TWvPnmm3z5y1/mhRdeYL1eb8M7vve979H3Pf/0n/7TLfvxvTIHd4Gp0XNwlBXvtjGoY7FYEEJgb2/vLi/EcaI7/v3u+xpj+Mu//Ev+6I/+iL7v+YM/+AOeffbZ7e/fDYT8xje+wSuvvEIIgYcffpgPfehDWw++XZbku4GDuzLaNE2ZTCZIKbeMi/G4750ojufoRz/6EcYYHnzwQZ588sm7ZOHf/OY3+ZM/+RO01vzhH/4hv/Zrv7Zlbu6yC1944QX+7M/+jIcffpg/+IM/4KmnnuKxxx7jueee48UXX+Q73/kON2/e5EMf+tBdfbBer7fegmVZbpmDAMvlkv/wH/4Db731Fr/3e7/Hk08+yX//7/+dv/qrv2K9XrO/v8+v/dqv8fnPf57ZbMZ3v/td/uzP/oyf/OQnpGnKY489xuc//3k+8pGPbAHPv4+yYukF2oCwFmdcfJACovfkQUcvD+kQKYTQoESHalawvkCZhkQFdJIwn024tr/PTE/QJkPqFCs01jmEgqyIfh2taajtBm2WmPaE1cUt1uszggsolXGwdx8HWpCXc2yes/YQjGfiEqQXqCGIpOmWONcCAedzJAWd8SidkaQB25+xXh9zsTxh3ZzTuhVCBeYH19mbP4gSU1qvyXTFLMtIVIITniB19BUxNcIHtIHCZSQyIxclIUgsBp0Octs2hnWQaDoZWXWV1KxMh1RxUWy7Nev1HY7Ob3G0vsDiKSYzDif38eDVh5jMDwiJZtWssF2PuVjhFxvWpmGtBeZKSbInUanDuYB0Et9Go18ZDFp6sipDJQXCa4JxyDT6H226DUfr29RuQ2NqbG/Zn0555L4D9mbX8ewRxIQ0T7FWYQg4lVOHDqETdBYQ3uDMBdJ78IZNs6JuF7RmQWfWtN0a6xxd3+M6h7IxYTRIsASQkqqaMJlMydIcIRRVNUfZHudSFAlaZgSpMQKcCySZxgSHcz06yQghJQhQwiBo8WxY1bd4++IN1sszbO+o8j3C4QMcXLmfoCsa7+hdgfQViStRziBEg9c1lhXr+pTTozXnZ0vaTYMN0SzZmI7F2Tl5WpAmGd55hAzkZUY1nTCZHTCZXCHPDpEiI3gwLi46BseL91HTAxgVgUFB9HM01tF1BtO7GMY5eKvhJN5DHwwLt6Ber1ktzzk5usU7h4dcvXY1eubtX2VS7ZGlUxJdEg2jMxhCLrYSmJ2kynjjGdlrEIbUg7hgVXFqvFsh36kUb+XAIkSpj7aApUh7QmXwdPjQ4n1LZzf0fc2mXlHXK+rNhouLc1bLNRcXC1ardfRUbLvILnQMKXyRAeTDZQ19G4A4LCqQHqE16chom8/Z29/n2vX7ODy4yt7+IbPZAUVekSYVkpgoHqf2g7pgV6a6ZRU4EDZ6ZtJjXEPbrVksT1gsTjg+Oebs5IyLxZrz83Pqek3fN1jXoRPJbDahKiokU5SYIUWFkjlKJkP4Ukwyjp9vInubQPCRyReBSYMQNjIU7Ya2W9H2a6xtBiahZQwlCQNLT8noz1cWitks48rhAQeH1zjYu4/JZI8sqUh0fjkeBJHlG2zcfNxiodXifPRnY1hMKK3J0oyiqMiziiSJQSoxnXhIOBYqnp9BAhWCwYXoWbmpL1gsjzg9u8Xx8REX50vOzi4GsLil6xq8H5Pb46nRWpMmafSulBoR1OU4/ns4RxilnAQL/QCaNR2iMzEB1nu8lIRE4ooE8gSpU6TU+DzH1xvUchFB9jRHFJMY8hACyrho99G0+KaD3iDsILn1YcvqChKClpBpxNQRShX94wiIrsWdnmJOzkkmM5hOIBTD4n+Af8II6MR7iAwRXArrDe58hRhUNVIQJXF1Q1itCXUH65rQG1wIyDxnMj8kOThEHh4Ob2qgs/hNi6hbsA6KDD/JUSJjdyEemhq/XCPWLcILRJqgJjkhSyIY+s4R56+8wnde+BpvvXmH6w/e4NlPf5yHPvJh0vkhwRu0HgptKiZ2Ci+QQRIEODWAak7gRbxL6V9kSA63XzkCvQJQIgaAKYkQAeGi9yLOIz2MYJ4M0VOUpiMsNrCIbEidZ4S9Ej8tUTqN/o8+EvTGz9xKxu/ax0HWG6tUka1oLUiifyBENWNd4xcL/KaOUuoih1lFqHLIcoIUsZ9EtEcYz/0WI4YtQDl+/Kj+vsTJRsBG/AyJaNzn9z1AGC4LdYh7j2bkdvrh8OM43uWS7fRe/L23cbMGuhbXtbg+esy16xXtZkW32dBs1jSrFV2ziZLhvsP0MfxMMKxZVYJOk6jEK0uyoiDLc7KyIp9MSIsKnefookDnBULrCB4rjdB6kPxLLmmDI6K7i+zuQMXhnp8v0cRh2+mj7ZfIeNsCpsNzYPQOHBPY72Lchp2BOIabjPsodj5z28Z9GVOTA3HuMw5Kf7lDW6hyUC6Mcm52WJxhAPQIbM2Cd45djGFqI0g42pmI0XVgZB7a4b0cIhjwHbiOYHt832K6hq6paeuaZlPTbhraeijC9tFyiiAHfEKTJpo8TcmLkrKaMZlMqSYTqsmcbDJDlhNEXiDSkpDkoJL4fI/GSlzaKfzfZfz9n2rvG3Dw3cCPW7ducXp6CsDbb7/NzZs3Wa/XPPvss5Rlye3bt/nhD39I13W89NJLvP322zz66KNbppy1lldeeYU//uM/5sUXX6TrOu677z4eeOABiqLYegZ+8IMf5ODgYAvYvfPOO7RtTIR85ZVXOD095dVXXyWEQFVVzOdztNacnJxwcXGBc47FYsGXv/xlbt++zd7eHg8++CDn5+fcvn2b4+Nj/vzP/5xnn32Wq1ev/oyc93/X7gXHdmXFYwrw2H+j3PanP/0pb7/99hawm8/n29f8PHBwlGt/5Stf4a233uKZZ57hQx/60F3egbuf471ntVrx1a9+leVySVmWfOxjH+PBBx/cgrO7rLd7wcHd49r9Xmu99SXc/bzx2IUQ1HXNK6+8wsnJCUmS8KEPfeiuz9Vac3BwwPHxMe+88w7PPvssH/vYx5jNZnf1u3OOl19+ma9//evbzxRCMJlM+MxnPsP3v/993nrrLV599VWeeuqprZQbIht1BGmrqtrKjnf78j//5/9MVVW88cYb/Pt//+85Ojrasjlfe+01zs/P+dSnPsV//I//kb/4i7+gaRqEEHzzm9/k9ddf5w//8A95/vnn7zoHfx8Yg2NTAYSJUqE8yZEyxEABAj7Eil0Q4FyPFz2r5THLiyOE73C2wZganeUUmWJapkyyfYSb402spjnp8SH6vLVdQ+9qMt2i5Ibz05/w9puvcXZ+ilApk9khXmmSomCS5Dgn8aqI0jPfI6TGBeh7Q2cdeVGQZgWuFzRdFz33tCAIgwsNq9Udjt55g4vlCb2r0YlikmRMD26QJ5pGzwmhwEuwOLquxTMYi3sdWYR4etNjnKeaTpEyw3pYdw17U0XqU8zS4qWiQ5LZhBRJKUNMBlUtG3/C7dOfcra4QPSSUhfsl9e5/4HHme/dwLoY2FAkhkmRsao0spKETmGC4Px8xa30LQ5nnlSlJCHExE4NidQkIonSXe+Gep4BbQiqZ7284J2TmxxfnBKEYn4w475rV7hv74A0neB8RpBEho6Mno9BKHxQJEJAaLD9BVpYzhenXJydYFxH0645vTim6TZkepBRNw6CQCcK5xybZoMLnqIqB+xJkGc5VVGxPzvkcO8a8+lV8nQfrwERQWUpJAINxiCNJyVE+UAqkKLFu5q2PuX2rTe59faPaZo1znmuHFqqah/Td8iQoqXGo7GhJ6gUITKCaxG+I9NrpF9T1xv6boO1K7wIGAvrlaRrW2q1jhJqH1BaU/QTfAgU1QylBUmqwEp66wk21i3DPT6qv/wtLqDjWi/KdIIH05toh9H3g5cPw1owTjzjM8zS9562XXN+fszt2zeZvjVhNt/j4OAKs9k+8/kV5rMrlMWMspyTpSVaZ0gVZZ4xITbuRxBsGYBB+u1keqe+HxlaQsXxsV3URHaY9zLKYYfVoxAOIQxC9AiSeC9TCpUI8jyhLFOMm2D6juvtAW3bslysWCyWnJ9dcHJyxnK5Zr3e0PeD9HhAA+N+DkDYtvofC45pllGUBdPplL39A/b29pjv7VFWJTpRhGDp+4bgXQxEYUg73jJphvkAxEVt8ITgcM5gnKHtGtbrJcvlgpPTI05PTzg7P2O12tC3lq7tMNYM7EcZwYSQE3yKM5q+FXSNo88sWaqQiUFKRwgdgTq6AAQYFxhxvRIiaNdbmnYTgz+ajq61dJ3HGmIwyuD5FMYFkPBoLSjKkvnePteuP8h91x/i8OBBqnwfKUuUKOI5HJKRY79GVkIgyqfDIDX2YZQcXz6HBRIpE6SMoIl34EKAIIc1VwRXg3AEOlzY0HQXrOszjo9vc3zniJPjU05Pz6k3LXXdYgYvK+ciG1IiIImeh4mOifeZLpCkEBQSBUKhdjwR3+/tkjkEzjvUuoZNTWg76PsICHkPYUgdRiA3AZEmhKpC5BUUWVwBnZ8T6gaxd4hMK/ADW3DdwXpF6Du8dzElNlWEImGbvuk8GEPoekS3iXNQlUFSRgP8ukYuV2R1i0wyxBCSJKTaunldth2GU9/j1zXKOOyVjCzViN4hmgbWK/xmE5mNeYJIE2SAQqVU8wPkfAbzSUQZfQe9jUv3TQNNA22OZxLvQd4jrCW0NeFiiW1alJSoaYEoqwhydh3mnXe4+bVv8IO/eJGTd4556InHePpzn+TGRz+CPrwCpNH7T2tEpgg6QYgE4UVc4CuPDm4AQuXABB+Bg1/wnG8BohjmghagJULJgSU6ePJFbGIbOiLqGtYb/GqD8BLKArk3I0wqQqpikaFzKOMQKkGkg0RwlAiPoAowekoK76FrCZvIRhJpgihScIHQWsJyAaslAYGcVIj5lFCWkS0oFSMWGFmNA1/9Hszg3hWv2OkqcRdieekxOOzw35sWpZlxTXUZo3UJ+o2cNLEFhC4ZZ2J7P443/eBM9JozPaFrMZs1fb2mq2uazZrNckGzij+3dU1Xb+jHe8logSWj73eeF+TFsJUlxWQSg+rynKQoSaoKXeSINIU0jV9Hf0g5glrxCCLLb4d9NxYNdgDA0QtXjEVLuPwaf9j5OrL+IvAmBtk0zhBcH1N5rY2Sd2timvLAuA0Dy1eImI4spB4SkmMa7yhZFjqJXqYDySfIyI673P/dZ40YIMIBFAx+SP714KKcO9ieMOyfN8P3Pt7DhffIENchQmiit/HgrZ3ETSUaEoVS8bqNYPvAHBxCm+ja6DHYdJh1TbNcslmuqFc17XpDX28wbYczluACMkRrDqUleZpR5CllnjGpSqbTOZNZZA9mkxmqmiKKEpKckOQEleCkxg1QtSRsy86XZ/iXu70vwMFdJtcu4+ztt9/m/Px8yxR78MEH+eIXv8hnP/tZ8jznBz/4AYvFgh//+Mes12vOzs7uApqOj4/50z/90y0w+Mwzz2yZXFmW0fc95+fnHBwccHBwsP38o6Mj2rbd+un1fc8DDzzAhz/8YR566CEee+wxtNZcXFxQ1zUhBI6Ojliv13zmM5/h85//PPv7+7z88sv8p//0n/jJT37CzZs3efXVV/nkJz95F3j2i/bN2JxzW+DyXlmxc46TkxNefPFFbt26RVEUPPfcc1twcPzMERwc+3r0Wfza177GD37wA5Ik4aMf/ShPPPHEXd6Bu/sghOCNN97gpZdewlrLjRs3eO6559jb2/uZ49oFB73326TfcTPG0Lbt9riyLNv20e7xG2NI05T1es2rr77Kcrlkb2+P559/ntlsdleffuADH+CJJ57g6OiIl156iTt37lCWJUmSbN+36zoWiwXA1kdy9BB87rnneOCBB3jllVf41re+xRe+8IWtByLEtGJjDFprptPpkEAZwdayLLl69SoAX/3qV3n55ZdZrVY89dRTJEnCG2+8wdtvv82f/Mmf8OMf/5hvf/vbVFXFBz/4QTabDW+//TZ//dd/zXQ65ZFHHuHq1at3hcH8omPnl72JACpNIrYkQAQ/mPh7irIEFM7EhaYxHatmyZ3VEXfWx7SuIUslRZ5S5Akyk7ReE7qEPBIIaEKgdo4gU7J8wkxKQr9mdX6Hoztv8/bRO7S2Y+/gCoYerwMhy3AiJnLmPkcGixc1LiTYkGKEJSQKJz29afDOorKSIAw9a5S7wNoLTHPG5vyI9fkFQmvKgynaVfilQmSanAKZV4TE09iWIAO5TNEClkZyvllx3C9oMkemiljZ85IkyVBpQucNUnjSJEPaQHAKpVMSpfEY8iplFVYcnx/xzuKI5fmCwiquHOxx/+HD7B/eD+UM0/QkrmeSZ5gyxaaWOre01pE3FrH0JFcFmUhQJsE6CNIjCoVQjr7ZEOoeTUqSFYjMY/yCujlifXFEXy+xpkcnEyb7B1y/8SAH8wOCmNBaCcrhhcFrjZaaQsTkZu1abLfkYvkOx80dTi+OOFuc09QdXduhvKRIClJRIoxils9IigSf1SA9k35K1zeE4Kg3S+r1hqW1pEpzmk64M7vC1auPcP36Y0xm10gSjRQaHHRNjbCGUmtyNHUIdK4lqA3IDYvlCedHZzRnlt6l2CBYpQmLtebwoCCRaUw8SwK1tFjfElBkCBIJpl7RXJxj+o40F+jWY5xFD1LQg7098ixBqWhXoZMMKTPKyZQrV64hZAzDqrKCROcxwbZrMf37DRw0w6Q5AjEheFxw20KNdZHBFVdNIl4DwADhQQhDWnDA2J5Nveb46Ji30rfI8pJqOmc+3Wc6jT57ZTmhrCYURUk6hDroJMpcxcBaZrgPRcPrOLGPk1aFFHGMSJIYahI0kEUJbtAwJCTH9/lZ6bEPEo8ikCAlJCL6d+Z5CQgODjqaTcP5+QXTyW2Ojo45Pjlhvd5geoPtPcLLWIjfWSgJATrRZHnKbD5jb3/O/v4ee/v7lGVFUU7QSRL71xmUEDgXGXaB0aFokGfFlfGwzyHKpJ2n7zvavmNT12w2GzZ1g3WGNC/Z25eUVYmzLdZ0GOvwLsRAV5mQ5xVlGe0TjO2pmxqdJFjXk7ok2msRvTlHMHKg1iBFDBox1tK1fQyjuVhydrZmedGxWTq6RuBcTGoUMvrWEgaZlYghQWlSkmdzimyfItsjSeYQckQogGRIfVbDCnwEAgf/Sukvz2fwW2B2yxDwcmDAxoWdHMcRURYNg9ycHmMbVqsT7hy/xVtv/ZTjOydcnNasV01MmfdhhKIRfggZCSCDQktNIhMSPcqhE5xXjKnucTy+v9qWBzsyRwSXLBfimqBvW4rTBa5pEHhEIghFQtAS5STYgGgtqu0I9QZrPHo/jaCakoT1BrHpENVe/ERrsE0H50tU04CW6CqHSQ6Zjib/EIteLiBaA8slrBpc3SKqDlHmSGcJdY1wHqkTQOAHNuOWCBR2jjQQwyi8I3Q9oY0MeTsvSKVE1D2cbqDZIFMBsxKCxwRL17SUQZGWE0KW4dMELx2SBKkEtAlCC2gtwQ7+aIknwROaFk4XiKYhyTRibwLTkqBTQm3o3znm9C/+im9/5QXOTk954skP8uznf43ZP/go4vp1bKJQFlRWgVaEcgA33OAZqyTQI50bWEujNyM/u0r+G6atYQuqEVN7lYhgCzH0QTiPCwEvQPUGudrAxRJWa6RWMJ8g5lPII1AnAvi+w69aROdQuYckIShwMsI1yu+eq3iNO2sIm5qwWCEdqGkVgWdnsOs1rFboENDzCRzMIC8RImF84yBHWbkHL5BeXIaavMvc/RILjPcsgrwbGxr7ZOhEsfNseT83LxRejKDTeE/1A/NtlKWG7X35MmAkxOKAj+yxGNzT4bsG17WYuqFZLeO2XlOv19TLBc1mE4NGuh7b9zgbgXWlNEmSkKUZeVlQTqaUkwlZWZKXBXk1JS0LVJqhsgw1+gDqwftvUDd4wmBREbaAIDvA326Cd9i+RiJQseg+FOvGuQjbfoG7wNEQC/LC9eB6sMOxtzW2i6y5vqkxbYPtu8tUXh/DuaSMgKDSKTrNSLMqgp55ic5y1OCXuQ3F0ToWK7YA/qXQd9y9qLXwCGei3ULXR8/UeoPpG/q+pe8a+rbGdw3eRsk31kXfV6lIVEqSZOgkQ2cluqyQZTEE+6RD6JIcwPOBkehdTCRualzTYpuWvq5p6xVtvaZrGvq2wXR9tKtyPhJThjW7TjR5llPmOVWZU5UlRVWRlhW6LBFFjshySNMY+KQVXqo4OxASj9iG6ox88fC3uD7/d7fGX/Td3sunvq9mC7tS2/V6zRtvvEHXdWitmc/n/O7v/i5f/OIXOTw8ZPR6+/M//3Nef/31Ic3t0sfOOcd3v/tdvvKVr7BarfjoRz/Kv/k3/4ZPfepTVFV1Vyqsc24LGllruX37NsaYLQD3K7/yK/z+7/8+H/nIR0jTlLIsUUqxWCy27DEhBM8//zz/+l//a55++mnGcIuf/vSn3Lp1a+sr53a0X7+od9wuQNb3PX3fbyWteZ4zpveenJzw3/7bf+Mv/uIv2Gw2fPzjH+cTn/jEzwB749/ugoM3b97kS1/6Eufn53zwgx/ks5/9LPP5/F33b2Rlvvrqq7z++utIKXnyySf54Ac/+K7+hNGvQW9Tn5smmrJnWbZNX3777be5ffv21n9w9OO7N9XXe8+tW7d47bXXcM7x4IMP8sQTT2wZimPb39/nueee43vf+x4//elP+f73v88HPvCBu8aIMYZ33nkHIQR7e3vbQBkhBA888ABPP/00P/rRj/jBD37AzZs3efzxx+8anyEEtNZUVXXXZyuluHr1Knt7e9y8eZOjoyM+/elP8y//5b9kPp/zF3/xF/zRH/0RN2/e5OzsjKqq+OIXv8hv/MZvcHp6yp/8yZ/wwgsv8MILL/DJT36Sf/7P//kvPFbeV01m4ARKBLSSbExLj0RkMYgh0wlFFWPi27XEOo1pC2xTEqwHLVD5nGxynaS8n7Lah1SDbZE6oIOnEilSQ9Mu6ZOGxqy5ubzg3Cpkdg3dr7GngfJqyqEumKqE4BXWJrRNfGCXhUK4aD6ugSBTJDHZqkAiRUsXWs7dkqVZsmlaLpxiKVN6FVBiTRskjWxZpxqjEyQtqQjoXuK7ls63dKnHh5aVOaecTZinOc07N2Nqb1aThD1Sd4PSFQgTkHSkmcdKhxWGtW1pvCdLa9aLNzg7f5vNndvYOwsmVMz25syv3GB+8DCmnyH9jEmS4t2SzpzT2AQnKhI9Iw1n6P4CtfakrULUVwgyoLMcEkUf1gTfQloRxAHWKqToycIaQs/R8QXvvHFGsxbMplPKScVsryLoa9y+uEZelqSZAAvSK6QApRt8Ymj8HUxzwvnRLe68fZvNqmNZd3QY0pmiOiw52JtwMJ1TJRVFOkEqRZAT0Dci2aPf4Polvl9x8s5Nbt8+YrUxIHLOzzYsTk6oz1a4+owPPPksSRZofY7WEybTKXXbctq1VEpT1QllIujzBWebOzT2JtafYM0FXWeRkxlMFSZXrIVGiSmZqEiCJA2WTXeBxaHyWKlt64pjA7ftGmElE3WFPMu4cu0qVx++H703IZnklJUmlZ5CJBRqHxHm1OuS3mhIFa03OLdGkpKVFaXd+zu+oN9jU/1Qao1BHz70eGeinYA1kfERhvRYIeIacWTfMK7lhuKWC1gbFw5t6xDrjouLNbf1bbSOgVg6TSjKgiLPKYqcoqrI8ow0y6MPnpRolaClQmkRswgUw2RaRimp0midkiQ5SVqQJROSpCBRBUpnCCITImJHfmA+uJ1VbzJMJRMEeZQCixiQUWSeaWmZlIfk2YyqmpNlBadnJywXCzarBmeI4EMICBWBS5UoirKgmpRcuXqFa9evc/XqNfYPDsmzgjSNibkgUSJBCY0UEcyK69UBAB3YCGNCtA8uhj+ouKjOUs+k9JgDF734vI/glR/Spn2PsZHx2fc9xpo4zxLx+Z9lBVlWkOdxn7TSAwuTAVQYWHrBAp7gHU7EcBbT22gjM7BKu6an6yy9CTgXPQaFHNgUIhCEjSCv0EjlkHoIIUlAKo+QA6Nhu9BxbANyxhAUhixHP6QcD8RQwshkuQf72f2ByHZkYHd6H392xmP6uFkThvM5AIx+YMkKuT03UgikSkiSjDTJUXpI4fYDwyTsyOTvTYl9HzSjwMmAskAQeBnleMI7gquRzQXp6SmcAZMUvzdFphkqSUGlkenlHcb3hGZNOF2QrGpEksPhIUwOse4tQr9BJ+Azhao3yONTfO+xVYmez6DKQKdRcsxAI2aQg5YeqxNk7wnNhqTb4EwOfY1YNiAruK/A0iFshzKWUDgUgIsgWZBxfHk0mCVydYy3Brt/P7mS0DWEiyXBNLhphdo/QOQpYnmKMB3e9tg8J1UZqIAUFmk1+CwC10nAZxLagAwJqSkgtJH9dr5EbDZxYX2wB5MZQSnEeoF97Ye8/eILfP3Fr9JddHz8uY/zzD/6R6Qf/TD+vis4rVEehPSEJDL6LlO7zXbIxXuy3gKC0RPs8jeX7Wf4csAAAynQ3g2su4AVGqGLKAsWfZQOOoO0HZgWedbAYh2B0MkENY9sQaGzyNzC07uO7PgOctXExf3sGugEERTKj35lAClBeAQt3mrkskW88w60a/zePiE/RBgFi1PU+hiXZrjZ9QE0zAa22MB8C/E9t1ejDPcApX/TPP4XuY7/fqwFJOdIHNF1egDZhm3gdDJKiRl8b7dfpYvM2dATXAftBr9ZYTYb2nVNfR6ZY+26od5Ef+KmbuhMT+9sLEYJgdSKNE0gSyFLINXDc9/ifUswPoLufkOiowIgqBg0EkYkO17kw/cKiQYSEGoAuAMoj9AekUawTeg0AthJGpPHlRqCRi6Dj+JDZ+BPbtUM43PIDZ6KjtA7Qm2xm4623tBsVmxWC+pVDELruw7TtXgXwVCtFEmSotOUNCsoJlPy6ZyinJBPp6RuRlJVCDKQKQg/zA7EDuw5eAsOAJ3wFmEMNA2hbqFu8euGZrGi3tSs25ZN07BpGnrTD1hILIZpJciSlDLPKYqCIrcUzlNIgZYx2X3Lu/R6YGbKCMgGgTM++rM30NeebmNpNj3dpqeve3zTIztD0lmUH0qiKoKkiUopspyyKimmBfmsIt0rUdMcWSSIQkMBpES5m4x5QSkKT5QVX1rMvBd47he9hsU9X3dbuOf7X/y+8L4CB+ESMFutVrz99tuMabYf//jH+c3f/E329/e3gFaWZVtAJ0mSaNA8AFDn5+d85Stf2cp8/8k/+Sd88pOfZDKZbJlz4+ftpgivViuOjo6w1lIUBR/5yEf4F//iX/CJT3xiC8SNF+lisaBpGqSU3H///fze7/0ejz/++JZtt7+/z6OPPkpZltR1jTFmy7p7r2DP+Ddt22Kt3cqKAY6OjvjJT37CN77xDb70pS9xcnLCo48+ym//9m/zyCOP3AXY7YKnI9OtaRpefPFFXnrpJcqy5Fd+5Vd44okntoDpvfupteb09JTvfve7LBYLiqLg+eef5+Dg4F2PaUwrFkJgrWWz2Ww9BY0xHB0d8eKLL3Lz5k2SJOGhhx7aSml3maBKKZqm4Yc//CEnJydkWcZTTz21/dxdyfN0OuWpp57i6tWr/PSnP+U73/kOv/M7v7Nl4I1jbAwBOTg4uCuReAyqeeGFF3j77bf51re+xaOPPvozsmcpJVmWbYHmEVC+du0aRVGwXq8pioLPfe5z/IN/8A8oy5L5fM7LL7/MV77yFeq65oknnuA3f/M3+fCHP7z10Xzttdd46623+Mu//Et+67d+i4ODg194rLxfmrYOLSXrrsZbS5ZH9pjtepQSuNbQ9B1ZYtC2h2ZDv7igWa/oXM10b0qSpkgHeSdAdPS9xUlHaz1KZHEyHQSpkiR5gkVhTUe7XNJeLPDOI/fniGmFzwtQKdIKuvUGnWrKqkCEBuv8uOSDYNFS4o2lNp48ywlKMSlKfNKxuKjZrBd0fQdSkqY5VTFhWs4oswpEFqMupMH5HGc1WlVkmUBmGtw5R2+d0PVLsjIjOEkIFSFMCKT0zkVgUGq01miV0RqFkT0+6QjdmnZxzuKddzg7vo1BsH/9kGs3HuHa3v0UWYUIBSLk4AVeJoREMz2Y86C4Qd+t6c8v8EbTGsWi7jm4LyEvEpquxvUeQYdOAlIleCHQZQK0LOpTFos3eOf0Tc42J3TGM8mmFOmcWXnIvJpR5CXOTzBGElyPczVJHvCho16f07RnHN9+gzs336RbN6xXNQaYHuxz3wP3s39wwLScM03nzPJ9pMwwrafxgSZJUNZQpBlVdoDWhvnePpODI47eOeHk9gm1a7A0rLqOo4uE6ckd7k8PKPICgcf0LVVWUIiU9dmapW3QmcP7BpzCbARNDbWF1ltmGRzMcq5MJ5QyR4aCtpUxXRuDlhKBRZoGkoZV9w62P6H0PcZuSFPF3sGM64/e4MZjH8IlM3on0UGiTWShdDbDiQqbFngpUcIhfEviLVoLrFuyXJ//HV/R77EFM0yAI0vLeYPzPd73ECxSBLSWxGTmCMqJbaDIUJ8NAedjaEcEEgcO3LDA9N7SdT1tvwYREIshgFQNKYFKoxMdQUGt0TJFyZg0KJVAyrCVto5hIDqNQFdRTZjP9plO9phND6iqGVlWkSY5UuoITAW5XS96P+jhUCCSmNQohmrzAILqJKCmBVKmFHlJXmRMpiVHR3c406fUdUNbG6w1WzxIakmaK6pJzmw+ZX9/n/39K+zvXSFJ8xiOEaK/ICFBDoEjoOI+IC7JmQz3OBG9/jw2BoOIwUNIDImrQ4znmCgoUcigImvCG6xrY7pziIngce0sBwZmghApYhsSsyNrJoCIC8BAjw8W53tc3uO9RescH6BtO9b1iq6XGDMMoQGQ895t91VIj8fghjTl3q3ofTmwTxIEWQQoGT0CB5/Agfo1rPMjQCwGz6XRHGzr5RQuiW9bds8IDMY3iGNIo2RGWexxuO/Bayb5AYvZiouzBet1w2bT0Pd2CLaJY08h0SolURlKDgtO1BBGEr9nGGfvt6YcyBC2wIoQUZ4mnUWuW9z5Ctt06Nkeaq+CqthKN0dQNPgYMoEgLuT7lmA7RLDRu85HvznhPWrT4i9W2LYjmc2Re/OYFDx6hDF6jcZ7jCCAFOg0gywl1EswFuUc1H30+JtVUOXI2iFslCFj0nijGcZMvPIFjGnBnUEogcoU0nrCska0HeQpen8aj1MO9MPOIF1Azwr03pSQpQQVAf6AQLhhqS4kIUuQZQpaxBCGxQpZt4i8gP0pYVZFyOX4iOblH/PK//xLXvrmt1BB8txvfIanPvNZ0qefQhzso4RCDcEjsW/Czvh+t7XLvVS3e38f7v53cfmDDALpB8BdMPCnNIKEIAQej/QG0dZRsmga/LqPxfxphZyWiLKANI0yVQGi71EXS/zFCicFuhwSX0W838YiwiVrTwzeEqFZY8/P0E2PzEvkZAJYwmoF6zVBpcjJDDEpIE8i01QOxx7ETh/dfazi3brk3Zr4+T38962NcSKjz9z41Yux4DFy8UdG9Vi4GaW0PZgO+g7XtnSbhm7dUK83rNdrNqsV9bqmrhvqTU072F640b9XgnQK5x3WO4yJha2+bWnqlCxNSLQmTTVaKZQcizZDCchHC6RYr4tsfO/jPSn4eP1LKWMhT4NOFGmeDHhFLEwmgzokMhJzZJ4jkgQSHYHDEZ8Ytq2X6WhmKsZilMMNoVzOOayxsVDXdTRNTdc0ONtDiIx8rRKSJCXLWmzv8TaAGZ9XMehKcjlfEloN86tdT8MhlMmYaL/Qdpj1mm69ol1vaNZrVotF9FHuuiF4rd+SpJSKqkJkilYBn0Vbh1Ak+CrDVSmqzAhpikj1wNwbPaNj8ExMojZ4YzB9R9c2tG1D3Ta0XUvXtxjbY5zF4WAoNKtEotN4PrI8jxLyvCTLI4MyyQpkmg3gbQoyAZEO84U4d5E7HtaX+P/Pv8rvvi/cC+b9vCs+3PW+YfvSe18v3uXffn5734CD96bInp6ecvPmTQAODw/51Kc+xY0bN+5iaI3Jvd57kiRhMplsgbnXXnuNl156Ce89H/nIR/jsZz+79RncBQN32XNCCBaLBYvFAiklk8mET3/60zz99NNbcGsX1Lu4uKBpGpRSPPnkkzzzzDNbNtwIWI77NAJxu5Le99pGT8GR1ZgkCc45/tf/+l986Utf4tVXX+Xs7Iz777+f3/md3+Gzn/3sNoxkbCOwOL5fCIFbt27xwgsvsFwuefrpp7eswd3zcS/78PXXX+c73/kOXdfx2GOP8bGPfYzJZPKu+z0CaGNfv/HGG3zrW9+iKAouLi546aWX+H/+n/+HxWLBjRs3+MhHPnKXhHe338/Pz/n2t7/Ner1mb2+PZ555ZhtkMu7r+P0HP/hBHnvsMV599VW+9a1vcfPmTZ544oltWvPt27dp25aiKLhy5crWq3Lc3yeffJL777+f73znO/z1X/81X/jCF7belM45+r4ny7KfCWARQnDlyhVmsxlHR0dUVcUjjzxCnucIIbjvvvv45Cc/yTe/+U3quubatWtcuXIFrTVKKT784Q/z9NNP88477/Daa6/xox/9iE984hPvOcTml70F5xEIqrKksWs624BnWDxqEhUQGAg1UrRYt6FzNagQPf6kZFpNuP/a/ShSCKCSyCKRMsUZhXOeREm0FAhn6FcXtMszfLch0GMFBCUo9vbR5YzOSZSDqiyQSELX4ESLsaB0RqYl3hkUjjTROKnxQiGkxJkNZrPEN0s2qzOW6yVpcEyrgkk5ZVbukadTjE0RqscHR/AenRUoCcHU9H2NtIYyTUhTTa0kOilAZSBzhCrwQSCVRGfxntS3LcGCSHpqc0J3cYfV6R3qrkYXmjxJ2bt2hSvX72eSHiK66BVkvaMz0RBHpwXSakLXk4ZAIjWNF6xrwdlqxXxzymF+nawskD6DXkYgR1iccPhQkyQGncGmWbParHChj5T9NOXq/jX2pwd462Pma4jpswSPTiRS9XR2zWZ9xtGdt7j15pucn9wh0YKiSrhxeIVr9z/K4ZVHSdNDUjlD+YK+TUh1ikKgREsme9Ksiv5CfUvwir3ZNdI0J0sSZDAYs2TT9QQd6HzLycU7FOWcg4OUJMuimb0VKBR7k5IgAlZsaFxP1xnqjadpJS5okiRjUuUxTbookDIj+ARJRiJlXJAqgU5i8ELXr2nrE9rNEtdGSWiaC4pZSjrJMWgSfchMz9BGIvoWKSxkCic1vQ3IREZGUdBImaAUhMSTTd9fiSTeJxBSkBYXPL3p6EyD8R1oj841KlXoJKUqY6hMnhckKkEqFSfB3g3AW7yWfIjhERGg6jHOYE2cIHd9T9f09L2h7000pEZtJ8KRQTcAgQBiAIuGqnCAAbCRJGmcUFaTkqosmM4qJpO4lVWULedFSZ4VZGlJlpYolaFUjhgMrEHDABDih7zBEAgB0mzKbK7wAQQa7wXORy9PEwy26yK+JQaAU8s40U8KsqQk1QVKZEifRmAwKGKwyhgAM3gNjkm3I94Fw+JUgtRRXj1KfUc5bbhclGxNyUOK99nQV5ZEWhADSIe/nLMGESW4PrIGRSzHcym3irIpKRxBdITQ4kQDuotJyQHads1yqUhTh1ItUA/7FxcMgkDwcdFpusBm1XEqzwFJXW8427tDWU6ifEmncZ9HybgcvNQGqRdD2IxS0e9ofAbHsRI9i6QYziOjtFdvx5NgYDh4FRmIQlPkE7IsYTqdUF+vWSxWnJ6ecnZ2zsnxMcvFgqbeYNsOjyNohUwFOk/RSQYyeiQio7Q4+FiY9OGy6P1+acoPIUByxJsHSX/fwtkSsWhIygKuzGFSENQI3ircANwpLyObJAOqErNUSGfQwSCEG8Y+0G4QxxLR9qiqQuzNoy9dEtmCYliwDUROVBBRVixklA/qGMAR/a06WNWAgIMJPkuQXQ1dDE0RZQFJ9MfyMoJfBJDWQN1Gn8CsQmnwyxq32KATjdybEiYlQWtiErCH3qIQZPMpoqrwOsENQLYVAeEFWmpUURHyFCZFZP3WG9g00f9wf0bYmyOEh7NTNt/7Pq9+6cv88Ls/JJtUPPuZT/HIb3ya9MlHMLMZWiZIO4Bl45pTvJelJ3eBf4zf3kt02b40smaDGNZGY6LwkNyKt4R6E+95KkN4h08zxGyGmJWEPIkALwonAtI7xGaNPj7FtR32cIaYz9BFwRam297n43GKEAitQV6c45YLnEqQ8wNEXhD6GtaL6EE5nSHme1DGovAYuAuRILZ7u3vXLtlt70NA//9kkyEWlcZnEpdPlKHkMgp0h3TaYCH0sbBoO0LfQd/iBylxt97Qrtc0yxX1as16FdmCTdNSNxEsss5F1iDxg6TW6JHl7eI8QvgoYQ/GYbXGdgqt1LZAGEtoYbDqiCx65wPeeazzWBeGpPsIQobh85SERCekSpPplCIvKMuKPBvAqemUdBL9DGWRo8sCWeQRGNMx7AQ5WqD4y+ewiCxzJSRKRJGyGgpaYthARAa7i4zZ0bJRo/BJj297vO4IaU/IuuilqGQMO1Px2SXEOGQ9uNHPtIO6g7bD1w1mtWSzXrJq1nFbr6JasDd4G21KRvZilifkRUlWFhRVRTWfk08qsqIgLQuSqkSleQQF5SBxFiJKyq2P3oV9j28b7GZDv47pxPV6w2ZTR1/vtsP2Buujt6SSiiSRyFyTZClZmZFXOfmkHLaKrKzQRYXMUshySIrIoETHwu4AEN5drB6Tme+qfryH9ovcDMTP3FZ3P+q9MBffN+DgLvhkjOHmzZusViu899y4cYNnnnlmy9wbgZgxUCSEwGQy2QI3fd/z0ksvcevWLabTKc8999wWfBn//l4Z6ghOnp+fb8HB69ev88wzzzCdTrevHRlixhhOT0/p+56iKHjssce2DLbdzXu/BQtHEOndjvlv6ptx//q+37LWsiwjTVNOTk62bLr5fM4/+kf/iH/8j/8x999///bYdvdnF+xzzvG9732PH/zgB0gp+fjHP86TTz5JmqZb6fW9oShd1/Gtb32LW7duAfDRj35068N477GNf5dl2Ra4/cY3vsHx8TFKKdbrNScnJ6xWK7Is46Mf/SjPP//8XUEr43uEEHjjjTf48Y9/jPeeBx98kKeffhqt9baPdz//vvvu47nnnuPLX/4yt27d4hvf+AYf+MAHUCp6do0BIZPJhKtXr27Hx8gmfeihh3jyySf53ve+x9e//nXeeuutraR9BKW11j/DsJRSMp/POTw85PXXX6coim3q8AhkP/HEE1y5coW33nqLJEnu8nY8ODjg6aef5n/+z//J+fk5r776Ks8//zxZlv1C4+X90uygKFNIhA0E4VGpRicpwku86VDCEGTHylyw7Bc0tsF5iwiBQmdMyxlZNccmE7wUpFKQk9PWHhcUUmmsdKSJANfj6w2ha2m7NSb0ZOWE+XzG3mSfPJ0hdEWQGc4GtDAkSuAG8C+yCRxagnAOqTQqKTFB0No14Al9w/r8Dr7f4L2h8x4hMop8hreCtjYUkwpkgrM9vQ1415NmGUIofBfAgesjG0ooBVLiJSAlWqZIGQ3+68YhQ4sSoEUAViybW9y89Tqri1MshnRScd+1+7iyfx1tcwQZVTmj7h2bdkkQKWVS4BpHGqZcqa5yFN5AyUBS5IQko+k7nG/RwiKcwRuFdxqvAj7tkIlBCENTr7g4us3J0YJm06NRlEXO1fmMg+ke02ofp2asTECHmjzVBGHpzJoQLG2z5Pj2Tc7uHNMsW3CKtEy5eu2QGw88xJWrHyBNHmCzzmhDFQEXAcZ7tBLkQZF0xGqeS/Feg2tBWqbVBO4/ZFGfo85TTOOwm45UBczeGqcaQhLPqe3BeoNUBil6ijSQqJZ1U7Noz1l2KzprkGiyJGGazSjzGTqtCCLFGshlIJPQBU8QEqkzemO4OG9Yn2yol5ZVD4lSVFnOZO+Qw4P7yNI5UuTRz8lbhLToxIGyGNciHUiZIpMIFAuRsG6X9KHDyffXSkOIjBDUMLnu6W2LsQ3O9yA9SabQOmNvfsi1qze47/qD7O3tk+clSZJFVY2/TOoL3g2gYIezLW1f07Rr6s2ai4tzlhdLzk4XLJcbmjpKi6IsVg7+e0Q5quyJPnGAj0CEGACg0aevbz3txrC6WCGERyeCJJVkRUpRZhRFzt7ePvv7hxwcXGN/7yplOacoIjtaijEQZafaKxxjCIj3dgA3O6zv8KEniOi/OKqNGMCn0Vg8SocjQCVCBKMCgiAvZUBD/EtkXI6A2rAJsYMCDP8Pw6IiSgnH8RUBwkvfvcg0kHJgHYaAHySvl2m9Ml6XUsZ+9BGsDFvAcvzcAMFFGeaW0ROGYzWDv6MadiGClmGQIW8LdCH6FHofaFuH6RvqjeX8fE2W3aIoMtIsphMqrZFSIKVGDb6SowRbDMCxVGqwRlEkiR4WNdG0viwrymJKmpRkSYVSBVJENmIYU1UH3pgUCq0SlMpBKtJUkxVlTL0scrKqQGeKrNQsFxK5dPSmQ6WR4aCS+BwiSHyQMXyBnZRJ+V4XI78EbQBTxtBlGTzCG6hXsFpFL78rh1BNojxvlzGxZRcR0UWGBbQEOkMwLaFtBtP9FLdYIGkRk330wQGhKvFJMjzXQY0r359JjhiXw9ELTQChbgibFpFlmFlFkIJUJ7BuoesQ1hN0wA+0NDEA8ML0UNeEIBF5RnA9LAc23LQiTEt8qvAhFpPkYHsU8JRZBklKEPEaED4ym73w8binU4QOBJ3gNg3yYoP0Ark/pdmbILUgPVmy/s4P+P6f/3d+8r2XmR9e4/lf/VXu+5VPkH7wIcxeiZEaNY4rwlYtKcfUpl9wmO0+jd590Xr5Rtvl9Hi5DMxvhqR22UdWEo1FVBOYTFF7M8Jshs8zgh5KOF4ggsO3DersDLFco4qUZDaHsorAuo/vu02mFwM4aS2sN4iLC7SzMD8kVFOC6xDLBdgGyjlyvg95RRjCES6DZwZga4ciuGUUwyWC+P9vl20oWo2WDluOlBi8XfEDMOgRDMCgNzG40PYE0+HbBtc2mM2GflPTrWMybVe3dE1H2/Z0fU9vDdY7XPAEERBSbplrI8ljTIIv8oI8z0nT4d+ydGuNFYOm4kkdwUHrokeysWZQKvSDvYahazu63mONJTgHtkYGSIQg1wllmpNncc5QTqcU0ynppCSZVqSzKcm0QhU5Ms/iphOCkAg/UNuJ16SQAq0UPknI0hSbZtg0wxuLMxarTQwmwQ63uFgUHcHxCLg5Qm+2nqjb3+Hjgk3J+Dz2LgaddD1+0+DWNX7TYNYbNqsVi3rJsq9Z9zV122BNTIJXSDKlSYc+LyYTiumUvKrIphX5bEYymaCKfGBSZpfJzwTw4+YiU7FpcG2LrWv61YpuuaTdbGjWG5p6Q9M29L3BWjdgBESySCoQmUIVmqRMyaqMtMpJqwJdFqiyQOajz2BGkClBpIStyiBhLGr+ra7quymE76FI8De98BcvEL5vwMGxjX52b775Jk3TkGUZDz/88Dbld7ednZ1xenqKc46qqjg8PCSEwHq95pVXXqFtW+6//34eeeSRnwFWdplmu0DWLnPw6tWrXL169S65KUQQqG1bFosF3nvSNOXGjRuUZXkXE9E5R13X9H0PQFEUPwNIvlfPwVGaLKVEa81sNuMDH/gARVHgvacsSz74wQ9y48aNu3wFd99rBEallLzzzju8+OKLHB8f89BDD/Grv/qrHB4ebsGqez8/hMCdO3f41re+RdM0XLt2jc9+9rPMZrOf6cvdz03TdCv5vri4YLVabV8jpaQsSz7xiU/wz/7ZP+Ohhx7a9uG4jazJH//4xxwdHaG15oknnuDBBx/cgp6jZHg8R0opnnvuOR555BFeeeUVvv71r/OFL3yBK1eubBOmjTFMp9MtsLwLhu7t7fH0009TVRUnJyd885vf5Nlnn92OUSHEXYnRu2DqZDJhf38fpdRWSr4LHj744IPcd999vPHGG9R1vf1bKSVFUfDII48wmUw4PT3l9ddf314Lf59anCtJbO8wjUEmgmR4+OhUo6sEH3o2TcNydcbF+Qmu65hkURozr/bY27tKVR3S24LgHUIFtEzJMs1mEyuEWSnpujV9e8GmXtO2DcFbtAikUpDphCqvyJNqYDMp0izFmIbedGiV4LxAqIwiy0hUQrdZ0jUGEoPKC7I0o2sDoW+RzmDaNUJ6siTDBkh0SZKUWCto655EW5qmpreSyWyfzhqc2RB8BP97Z2mtpe47tBSUlSBRCTiBtZ40S1Ba461FSfCmZbm6zdHZ62w25xjr0GlKWe0znd9HWlxFqSsoOcGYKJHViY+mvEqjkjnCeJQ7Zl5OaPYmnK8Nne2wIqGte9rVgjKrUCrHyQyfKIJ29GZBnlhMv+Ts4pi63dD3BoVgv5jz4LWHmVVXsC7BCBVT3uoeaxpUBkJZ+n7B2fnbHN9+k+XZBdY4inLCdDZjOr3KbHKdPIkAa5Xl2KAJosergAnRMzZxElMLrLd4ERBSASVCeJwTWJmgphnpPGHS5fjaY9Yd3bJFBUmqNM52JDIjyVKCjmbrngbTt2w251xc3GG1OqZ3LUmeUU2n7M+vUyb7hE5jMEg6nHQQOqypkaLAtZq6ttRrT1MTwSnTU5YFs72rTIoDlM0JtcQpgwmWoC35FDpTI6wlUyVpmmEHCaUViqY1eCdIVIr26n97vf2yNak8yOhV50JPCD0hWDwGREApSZZkTKs9Dg+uc+3qg8ynhyRJiVL5IN3ZImWX4JcwgMG6ht5uqJsVZ+cnnJ6ekqa3UfoYIRf41QprYlhEGNLyAoGRgBUGoEAID8JGL7QgtwtdFwLORkZA50B0kHSaps2pSo9Wk+jTV0mcSxEUKEqkGCrQQUXZqo/y0yAcQjp8MBhb07QL6vacpjvH2BXO9gNLLIkT5BATvgmRhReZb2rLEoCBBTlsBB8DXkZfpEGWKu6a3l4+v3cLc+PvxI5mblxcxwmpIaiawOj9LGLKVBAEFMIpghikzFspzk4IytDCJTIwfJ5EioRtlGfQeK/wA7goBraf9yYe1zjXDgHnBi9KekxjaFYN41oI2H4vZbj8/i6AdAj7EHpQf0SAUKqYOJ3nGZNJxf7+PvPZHgcH15jPr1BVB6R6Ev/ey+10XsgkJgoLRaCPkKGHRDmqohpM2QVlnlGVBVmWUtcbpFKUZUWWlUM4kY6sqnGM7lK73mctDOwt6SPDLggQfYfbLJHCIfbn2PmMRCaMtgEjtUiNxz6AsIEIDEvjwTloWlzboIsMjMBeXJDkE8T1G/hJFeXJjPfMsB07Y41FXP4GQsAZgwouLsibNrLIJhUuy+Lw1En8XduCsVDE3VN+2E8CtDW0XXytlLBeITqLmk0Qswk2ideIRg0elJ7OGyyeTA3gJ0MyuovhO0ICaQJJGQsMtUEu16jGwGwKe1W0NLu4oH35FX78P77MWy+9zJWHH+DpX/uH3P/xT6AefYiQp0gUqY/QeJASiEDK9nyNhYRf7Oxu8f5th95DJLzs6OFeEYbwHymILDEDXYdfbnBNS7KfxBTqwxnMp7g0A6FQQW2DpKQxuMUSt1iivIPZBF1NCTKJnzkWVnz8XCFETFVtN/iLBaLpogx7PsNribjYwHoDaYLYm8Gkit5whEjeepfOGNmEYeyte8bUz3TGXT3y/ruO/9ZtCPICuTMe4nPhEhh0jF6DYIAefA+2J3TdEEBS0202dJs1zWZDu2lo6pau6zGmx/l4oqRSSB23JEkGhn9OVVZU1YQ8z2PRp5pQlhOyLI+exFmOTBKEGkNyGE5h9Mb1tsfaHtN3tHVNU9e0TUNTN6zXG5pNQ9f19G1P33S4vqc1Dtv1dE1DmmjyOqPqa4puQ9aW5N2UwnXkviO1JdpVMWAojWnoYct2jgxCoQRCK3QSGXFplpFnGc5anDW4riOoyJ4Lg4Tf+YBxns45tDVI26NsizYpqtODHcigEEhjoS8Eh7cW3/fYtqNbr+lWG/p1TbvZsFlv2LQ1jenofEwGTtCkWpInKWWWx34uS4rplGI2I51M0FWFnk4QZR6lvImKXowMc64w+BFbH++vbUeoG3y9wa43mMWCfrmi28Q06qapadsWYy1+eHZopVCJJMkUeZFQVBl5lZFVOVmVkZQZskijhUQa5cRBpiASAgNjfzj5cgv273gN3nXphnv/4Zeqva/AwXEiulqtePPNN7eyzYceemgLjOyCW7du3aKua7TWHBwcsLe3t5Uk3759mxAC8/l8m/Z6L1AGd7P3QgicnZ2xXC7x3nPt2rWtvHYX1BNCUNc1i8WCEAJVVXHt2rVtZWEEs4wxW/aj1norMX6vbVdWO8qK1VDNTtOUp556iqeffppbt26xXC557bXX+OxnP7tlq93bx8aYbT/+5Cc/4Yc//CEhBB599NFtqMgov743LTmEwMsvv7xl7z377LM89dRT78pK3GUs7oKDWZZt+zXPcx5//HGeffZZfv3Xf53HH398C7bd2+q65oc//CHL5ZL9/X2eeeaZbcLwu4GsUkoef/xxPvnJT/Laa6/x6quv8uqrr7K3t7dlnTrnmM1mW3boeBwj8Pf000/z8MMPc3p6yl/91V/x27/921y7dg1jzF2M0F2wGWL68bVr1xBCbMFQNUjhQgjMZjNu3LhBkiQcHx9zcnLCgw8+uAUJH3zwQa5du8b5+Tlvvvkmp6enPzcg5v3akmHSbJGopKDIBalWdJ3HdB1qkpCkCmE9tm4QbQ+tpfOOfFIhswofEmwdyEKKCy1I8FLRGIfUmirTaNXgtWNJy7nZsHE93jlSIdgrSw7mc9IkQ3hJGqL0LwiPy4AgSYUkIcWHCJKtupZMa4RWdLbHrGqStMf0a+rVgvVigXeGPEuZVFOuXH2A2cF95MU+zmUIIiG9qGYYmdMHgVYapS19v8J0jsXmgtpsCBKM9aQqJRMJ2oNMFD4YhJSkBTGVa7PgeHmHo/MTuqZB9ZCncw4n17l65TF0eh3fZvReUmlLJhpEcFjh6ExLIguyrEJ2FVoVOGtYbo7YuEBa3mDTepquJZEN3q7jYiQohFEUpJj1kpPT2xyv73C0OUKLwLyaM51cQes9DFOEnlGkRazQiyx6Q7YLWregt8fY/hwta7xbgoeqnHHjvod56OHHSZMJwhVMipLOWoSwhCR6SQULxkq8kzipUAkx2EIASY7xBSDp/RJjHEUhaVNLvTFM831mxTUmcp/Ea4zrkUmL9w7bOjyOjVkSQg8mQbUKYcDhUJlHTzJ0llMmFVU+xfoMnRX0pqHre6rpFNM7XN+C7Vmuztj0G4RyTAvJfFIxnewzKa9RJFfxdkIQOeQCl1ls6jEyoDpwPsF3kS3lfIu1AusNZVaQy0C/2vydXs/vtTnf4b3Ge4uzHW23oelWdF2NMR3O2bjkHwAiITIEGYQMEcrIzuKS0Qexki+ERUhHoloSPSFL5mTJhKrYo8ijPPnk5Jizs1OapqZpa4ztYoqoJ3pxhtEE3O88AwOIy+CzCOgxhJUMHj0iRckcpQt0UpHnM4p8jzybkegSJfOBVaYH4IloIYeLC29hCEQgKqYnJuR5QpprkixBN0mUCwuiNMoPBX/r6E1P37d03Ya2W5NmCSHJSBKHYOwjgQ9EEGXw1xNb6VFcxG6t9IjyfxigJ7GTuLgl+gkIDkdH8A0+mPiLYdEnBnP2yHbSwzmTRFP5QTK4ywCDAcQcQ0IsAUPwFh+iHNz0dgB1YdwjwnAv8BDCKP2VEdh1gTDOTRhYdghGz6bIUhmSDwdZUHzOKkZ/vzB6+glABqQOSOlJU8V8PmFvb5/773+IBx54lGsyDBK0DClSQpBRWhYH6DaV2VgfJe7GIoViWk7JdMKkKKjKgjTVwxwlUFVTyrIkTXOUHn0HBzRtkKLfO1d7XzQ5eI6N0nbvoK6haaBMYX+GSTO0k5cAcUysiMDiWMCWEqSLPmJmWMx2HfQGP5sh6g3i7DYij6nEIckQUiHH4FMR8XY5VAbk4Kk5XGhbPy2nJTr4yKxJE8SkQukEZTzkw4K27wnGwsArEcEDkmAdot6A6WE6jSb+mw0+KZD7U0KRxQKFj9eh8AHf99S2xeApkhSygAwWrEG4GEgQVQ2RPYyxsGmQqzpKEeclKIk+vqD74Q955S+/zBuvvsJDjz3B07/5eeaf+ijh2hWcLqMM0W9dFyO7jgjcMmD9iEvw9BdqP+e1YaDTjcy6aK+gQfaxsOYtsmsjY2+5wjdtfGFRwHwOs0mUUMuYWC1cvJZxBrFcIk4u8M7BwQx/5QCVZfGe5ANeDd6p22AVH0HbxQWirhFpCnszyDW+3iAuFqggYbZPmM0iSDhgmPcyBS8rDyOfffhx+F8kXm5vnnd3k9h57f9n2tAXI1tXjN7eAe4CBt0lWOx7cB2YhtBtcPWafpAT1+tNBAfblr7vMHZQACDRSbRl0Eks/pdlMai6CibTKdPZnLKakBcV2WRGUlYxsTdJosRWJ5fnd/TdJUpbcYbUGuh7pvUGU29o65pNvaFcLFkvN9R1S71u2IQNXQDru+iD56M/oJUO1wZ65ciloVcOlwW89njhySUoNQBRWg+s/OFZrAQkaggpSkmsJUtTXJbjjMMbh0ktzoEPPZZ4rwwiGnqY4OicQ3qLsg5le5RpkTIgsVHC3cpYJLEW0xvavqVrWzabDfWQI9C2LV3b0Xc93nhEEKQqJ0s0eRbDXCeTCWVZkpcl+XRKMp0iiwLyAoqYAo3Wd6PuwcX0eBOgt/H+27T4TY1Zb2jXK5rlmnq5jkBs02IGObELHiEFSiuSRJHnCVWRMZnklOM2zSgmBUlZoIoCkRaQ5LGgMACD8Xl7WYi+LCgN1/pwH/tbXcA7BZjxPd/T24R7vv4C7X0FDo7t4uKCO3fu4L2nKAoeeOCBuwIqILK0bt++zWazQSnFAw88sE2NXS6XnJ2dMXq/7e/v3/X+u9Li3a9t23JycrJN0p3P59vU3Htb0zQsl0uEEFRVtQ1GGfdxBOE2mw0hhK3/4LtJb/+mdi97bvQNzPN8G4byq7/6q3z9619nvV7zgx/8gJ/+9Kfs7e1tAbkRvBpTnUfPwpH55r3fMjGvXLnyc4HBzWbD1772Nc7Oztjb2+P555/fhryM4Nq79fX4WUmS8KlPfYp/9a/+Fffddx9SSqoqVt+TJLkLWNztJyklJycnvPTSS/R9z9WrV3niiSfuYtONoHEIYQvclWXJpz71Kb70pS9xdHTESy+9xPPPP4+1dps4PJlM7jp/Y/Pe88gjj/DRj36U733ve7z55pu8/PLL7O3tsVgstgDqCHyOXoRKKbIs4/r162RZtpUwj6+XUpLnOffffz9ZlnF6esrx8THOua20eWStvvTSS5yennJ6esoHPvCB9zRuftmbCw7jLB5BVk0Qqaf3Fi/jxLhd1bhwTt2taZqadd/RSkFSTCDLyKZzimoPSUqqS5yU9K6h6xpsJwnesjQGlW4IcsNyecbJyTFt02FtIJGCPEk4mM4oZIZ0Mk60pcIIh/GW4DpaHFkSmSpKanSxh3MG4w1CWXJtsG7FenPGcrWiaQzBBVINRZYync4oZ/uovML3ilQKMFB3PVZ7ZJ7R9Buk6pBa4LynqObk2RTTryiqnDSTSAzBdjivSMqM4B11v6Y3S47OX+fOnbfoNj1SwP59+xGU3L+Bawu0i56C1nV0qQch8SJBKk0mAdtCsDFxVU9Iqz0KGx+6xjqsDQilSfICLwouVjVCeGaFp28vWK7vcL44YtmucFJS6ZyrB/fxwAMfIJ9dpUUjCOReolpBEB4vLVJYilRzcWfN7dvHrC5q2k0bJy0KdJrSm5RU7aGTCd4KoCPQ4wbPOO/AWYdAIbREeEORalKV0zkwIQYmaCMI65rm7Jy+79BlhSqmdEGy6gxTIUinFU3v0QqyLMX1DdM0x3vJ8VnC4tyzXDhq06PThLLKKMoMIcG4HhM0UjiSNCM4T9NaQnAx8A2DyAzr+oLF8gxFgnWGrJhSzA8hLam7EAPzpKQ3DtP1KJkgfYZzApl4fOjQOpCnCcZqjLGsnKd1yd/tBf0em5QCrSV4hXGxKGONw1mHNY626XB2Q54tmFQXTKoFqS6pygyhLmWtQiiUHCS/weODiAsCESvfWkkmlSTLKspyyuHBFZY3zlksz1hvYpBL3Szpu5a+DTiTYLuAMR3GdvS2x4XhPEqBUmJ7v5dKD5LTBKVSsiynqiZMJ3MOD6+wv3/IZFqS5QqlA54eEewANo2SZcEonwuDzi3RGbKY4lxLbxpWqxWJXqOkRcoeKdX2Odf3cZ6BiH3a9y2L5RmTyZQ0TUmTNLIlBnkvDEDf4EkkpRqORaFEvAeKUQsnRlBwZNWPXnowylm9d5Fl3dUY0+MdEfgkBr1kaUmaFuRpgU7SgbEYQcqwnVyL7T4JIUEGPBHtc97E9+8bFutTVvUFTbemN130j4o9hw+DZ6MPeB/HgB+CKKRzEdTYAqKDHyAMiGJMPWRMWZWCbXgMg1dTiACEkNGbygqLcxKt4/wmLpLWdG1NlzVoGccJQkfT+mAjqO8arGtxriN4T5Yk6DxHJxEob9uKNEtxPqZC950lz0qypECr0edoMPAXl0wGsQU73j/NCUEYWFwBERn96zqCbbMcspQkJAQi2AbRoxAZwUTpIuPQqoD0AWFslNslMoJwIeCqHN33KBfDIlACIRTBgdgJkAgDQCE8cdxpgRcBbT2iNYjeRcANT7A2BpHkBQk6ImZZRkg0om7BdPhBth+lsgHZdVC3OBF9zkJvES4gDieQZwPwpgjIeGzWE/oYKmBCXMz7eo26WBBUGxk80oLUSJ1HEKMzhHUNzhAOZohEEk5O6X7wQ15/8X9y8vZPuf+pp/jQr/0Gkw9/GK4fQpIgt4Ckj0DrwHyLtmaXctn3ggu+K79w9z2GX8dFdYhyYOnwvkc0DVys4WwBxqLzPKYQlxUhywmqAD/mp8rtPoa+JSwX0WsxLwlXDwnTCYhkAAQDwrto1SJicJU0NoLHy2UEgvf3YDKBvkGen0aQeTqF6R5kGWMY011HOKJ/CBhDiMIOvjEc4yVysAMM7vTDgHv/fwggFJcwyDA2ghh92y4LRIyS4gEUpGuhrXHNBlOvaes1Tb2mrjds2pa26+msw3iHCwGEREuJHpKJIyAY131lVTKZz6lmc9Jqgi4qdDWJ4ydJI0tUafyWIBS2W1QqDHYPUoNQSBdQLpD5YbcTF5O+EzCJQyVdBPGCw9vok+yFB+mQYrDO8D3SdaS2xzqDc2bwUvZI7+M9TgkuQ5QUJPHe9f+y9yexsmT3eS/6W1102ezmtHXqVBWLFJsixaKKjUqkSPvCliDLz7qGLAGWbBhwMzDgZmDZE09sayR45Jlnhj3yM+yJ/AADBuQLPMGiRZGUSPmKFItdFas/dc7ZXWZGt7o3WBGRuffZp1jFpkz63VWVJ3NnRrNiRcSK//rW9/8+iUD7gMl7st4mYxJrMcakzMOQ+hIf0uSmFxFLRAqPjA4ZOpRVyA5icHirU1xA0lTs+56u72j7lqbrqLuGTdtQ9x29c3ifUrZNnlOojKqoKIucsiqo5jOqxZxiVpGVJWpWIatZuq+MScYfyjBOUWxNR5L2amx7YpfkIuympl6tqdfJlfrs7IzVekPTtHS9pbcpjVoS0VKRS02hcipTUBUFs7JKsiDVnLJaYMoZsiiT073OQGYpMwHDriPxpLMQGSanxlhJPFTa4837zfGO387EXu57HM+9be+g7b9vp+f4sQIHR9ZWEmc+IoTA4eEhN2/efABU22w2vPbaa3RdR5ZlPPHEExMz6+zsjNVqNZmKjODNZAV+CbgihKDve+7fvz+l7I4OtpcBXm3bcnJyQghhAgd3fwcmcNB7T57nLJfLc8zBt+NYPC7Xdd3k9DMaWCil+OhHP8oHPvABfv/3f58XX3yR5557jve///1UVTUd+26a0JiG+9RTT/HMM8/w0ksv8Z3vfIfPfvazPPbYY9Px7OoNxhh5/vnn+fKXv4y1lve+97089dRTk3nIZe07fh519cYU2yeffJLbt29Py10EFy+mfVtr+fKXv8x3vvMdtNa8+93v5saNG+eW2QV6R6BOSskHP/hBPvjBD/J7v/d7fO1rX+PevXuUZTmBu1euXJnA54ualGVZ8qlPfYr/+l//K8fHx/zP//k/+dCHPjQxQo0xLJfLB+o9alYWRcHp6SmvvvrquXY0xnDr1i2KouDk5IS7d++ec9He29vj1q1bKKU4Ojri9ddfP+dQ/b9DsdrjYgconBcEL3DR4wgYLTFCEhx0ruesbzmxDZvQs9SC5d4B+4t9iqKC3HDWtyklVAgyYZASeumImSWYns3mFNvWiC5gawdoolaILKMs5xQmpad0zmN9g1CBsshRuUZYjzEaEQxdkHRW4MmQRiBVRwwrYjilac44XW3Y1Ja6aZN2SZ4hlaHpweSKKASdbShihpTJ+Tq4nixXKT2xa/EuIqJG65w8s+RGE0OH0p5qYWg7T2c3EBVNd8bR0Yscn7yIW59ROkN2UDK/tk917QpleYjqKlg5VAyofEjf0iVByCRK7G1KrzYCREU228fUeyh1HxHPoGtozs5Y79UUVUp9zEpNrgSZ7Oljy6Y55uT4Ps2mxoiMZbnP3vwq1WwPVZXYoPE2YPuO2HqicoSiB9nRdmfJUe7MsVlFgtcUlWGxN2dvf5+yWKLVkugL2sbSxw6Za2SmsCFF00omMxppFDhB3wV8Z1FSUQiP9h3WN2TBI70gOkUQAq8EapmjD0p8mWPReJkCgeB6iA2SY7p2xdnqiKYPRFGQZ57CFGRCs7c4pKiWtA6iTtcwNu1DaY2lpZNrNuGU1jVYC1oWSYdVZ+iqpJeR4GuKg4OUveEbCtuS+4gLiQ0rjCEojxAeJQPBOfraEUWBMBXB/Jgxh4IjepmcWV0g2Ih3EW/B9p6mTsC8CAaFQcssaX5dDeiFQGBAGGLs8SFpjiU33MQei5iBRaYQIiPPPMYsWCyuc+1aR9dv6G1N263obU3XNTRNR1s7NuuUGtS0KS25tw3e9wgpMFpjsuT0l2Ul2hhyUyZ9oqygLJNeUVVVaYa8UCjd4ukJfjUBg2MqcApAhwCTQMQSgk2g2DBL3/c9fZeYc866gYGeXt73NI3HuZa2WXHv/utkJjkiyslIY1cLGSagZQQJpRhAwl2Q7rwURjLgGMBDIQawcZRQCSl9yQ8uuyTgNM8L5rMl8/mC5WKP2awiLwryISbb6hyyQ8NJ4+jkPBywtqdpNmw2a+4f3+Xo/l3OVkfUzYqub3DODumIw2Z25UhILDClxoF3YqTE6Alx63+JEBPoFiea1BCDTG0VB7rQkDY9mpaIDEhM6hBlAhJDIIiU6hxjjwuWvm/pbY0PHUI4lJJkmcGoHGMytFF4bxEC2rYlzyvyvETgknN1XpLpHCWSQF8UcmJyirib5vTjUya9yZGQ03SIVQ1IqEqQBu0EQSXkRI4pupHkchzTWM0RyH1ArNsUZxkNfY/Smljk+CiSC6hUROuSq7CRE+sSJv7H9G+QiSGunYN1jYohpSL7gNCKuCgHFpkk4hOTMMtgVRO7DmEt0SiiiojewllNaFpEMehpdz0i08RFgcwMCD0hRUEwmZH4tsX2PU1dw/EpkZwoNUE4HBYhM8ziEDGviHWNq1eoTBKNgHt3Wf/p13nh9/4Hp3fu8Nj73s/tZz9F9dQHidevgJLIyccqTn3Q9M0umy0MrjFvFSLcRQHH+3r6MUwLiYEFGoRHth00a+LZJjk4oxDLBcLo5KYqRMqi9Bop/UBr9CAUOEtYrfCrU7QCub+HXxwQs5zoZQJyCAgRiDEBvyIK2LRwukkmONWMuDdPAcXRKfJslVLAl/uQpwyE8ZqLbJtjOro4fjEM2UMk7gIGYlzufBPF3S7wrbXu/x5FRJCjmMTg7j6AbnKYHErw4QAUeQ826eKFrsc1LX3T0DUNTdNQty1N29L2Pb1z2BASI1gKhEp65pnJyLOKqpgxr+bM5nNm8yXlfIEqq5RSnmfETBOVIkhJkKlG49Wfev+IIiDl8HwIAzCMTkYrXiG9QPrhOgjndXqTmXliCkuR5hdUFGghMUoP+oc5JsvTpJo2CGUQagDQ1GDSMUwuJi3A9HySPkMVOdp2GJdhbJZiFqfxMQGmAQgiTahZ75B9PzCdgRBwXY8ZJgyVAGIg+oCzls726dX3tNbSeYsPiWmcaY1RhkzlVHnJfLagms8o5xXFck6xmCdpoSxD5HnS9FOabRYBTODrCA56D9YN57yhrzcJFFyfUa/X1E3Nqm2pu57WOaz3KRdjyOrIs4yyKCjLPMVlswXVfEk1n1Mu5uTzJbKaDyBlQVQ5CEMYMgemZ/1gBLW9YXeuiCmuuqzEN+k1RyBwd93zgOFF6O8H0Uf82CEJzjlee+01jo6OgORUPJpAwJYddnJywhtvvDEx6EaNvb7vWa1WOOcmptqu2cPDdPFijDRNw7179ybG4v7+/pSOvGt4MWoTrlYrIGkJXnQFjjHS9/3ETquqirIsv2/WV9/3WGuBZPIxMs0effRRPv3pT/NHf/RHHB0d8cd//Md86lOf4vbt2xPLYWQajOxBKSVXr17lU5/61GS48fnPf56f+Zmf4f3vf/907COo1XUdn/vc53jhhRemdObbt2+jtT43kLhYdtOKRxB2ZNhdZAjugny7YNrJyQlf+MIXaJqGg4MDnnrqKfb39y/d53iuxt+uXLnCJz/5Sf7oj/6IF154gRdffJFHH32Uk5MTpJTs7+9P52YXGBwByw9+8IN8+MMfnsDFb33rW5OO5Gw2uzQNWms9MQP7vueVV16hbVsWi8UEzN64cYPlcsndu3d56aWX6Pt+0rc0xvCe97xnYiS88sordF33vxU46LEgHbkxyUHLBjItIdf0tkOYgA09p82KTb0hWIuJkUopllXFvFqQZXliEciIChIVIUqByCVKOILqgQ6FpWsb6tOa2AtynbO3WLJ/cAWKHJ9nCJEhvEY5iDbgvUWaiFSKtm3RQiBkRRBimLXrINYI1kS/ot6ccHq2wQZJllVURcl8vuBg/yomn+OjTql80iXtL5MCCGsDSgxBa2cJtqVvzoiuI1ODSL7M6UKg8x26zHFuTd03rFZHHN1/laP79whtx3y+YLHc5+reoyyK6+g4I9MlQmS4EPDSJk1HFCJKYgCdFxAcbeixIZAVFWW5oCoO6PIOWTvspsbZDhdaYhRkRYXOFV3fcNyccrw6pV2vyfqew4Mlt25cY3l4iI8aeoGMKUBCOpzxCJlYbt45unZN12xo64am7dEqI68KqnlOWSXwJbiR4KNQQhODB5ehomSzrlEiYEoBypEXBb3viF3HUmfI0BLdmr5fU3c1reuJeIw0FEYzXyzA5Jw1FnxPpQvKwTzKS0NQK9r+VdZnR/iuRoWAJyCVppwfkuWHeF/h+ojOJUYbMBqrHCE4lIhEemy74vTklKaXRJlR5JL9vTm5UUgREVmkCxsCPTlgjEAZQ9cH2mgJMiK0RxIItgcXqbIcF6DziZH041SEFEnTZmB4eR+wfaDvA33n6bt00k/DSfrNWurmlE1zzCM3H2WxOKAsFkhhCE6RZndHUw627Lwd/EmIIaBXDlM6KFPaKsINWn8b+n7DenPCen3Kan3Gen1K19eEkLQtq3JGNZtTljOKbIZUGVrlZCZHD4YViWXjiXi879nUK7q+wzlLCBEpktN1ns0SwKgNSqbnqPeWTb1mtTrhjbuvc+/+69y7e5fj4xOaTdI1Ct6nFOoBIPExEL3Ddi3bIacYso7EFLueC1GHGWpxIbBNj80RHJTTclvnw3G5EWhkYG2O6dYRrRN7fj5PWtA+HGAyT1Z4DHEgvo2DgWFAsAPWJWaDG5igHc43yem7XU+AoA9uiGX8eLQIEREymQ0IBQMNLMUEMU7XwhiOTxyQuBt2S+LIXJgunGGAKlJKolQCqQfdwdmCxWKP+WLJbDYnLzK0iQhSf+mcpe0aNvWGrm8QMgymKDOyTKOlQQ+xkHNJ1N77dOxSyCTeXuQUZZniqHMTzOyAEz+usIIc2GMWsamJmw6xV0JRpNTPEIlyC7wkfGXLwIqku142HXG1wQmBRiZOWVYgXEoal8slGIXYNMS+I+QFxJg0AcUwkT1eEAq8TAwd0bbEzTotoxS4gChyRJW052JM3UzQCqUGU7u2RnY9lAVBRmTfwvFpYrvlBmED2ECc54SyQEmdjjXuHJWIRO9wTUvsk5mB6Bz0HVH0CNuh2o5ocshnYDWcrZBdi5yXuHvH3P/qn/Kdz3+BdnXGEz/1Uzzy0z9D/t73E/f3Umpi9KltRUzPZy4MUUdGTBC7hLm3Ubad7w5XLr2FOAE/YXCoFicr5NmG2DmEzOBwjyA6xPEp4mxD9BbhXEJPR6BtMEGi3sDxaWKPzhew3EMWc8IILI25wOM6AWTjECdr4qYmGoPY34OiQDQbODtD9D1hviTM56ghzhcxEuSOlui5o4pTvSZfm90xzjkg4Xz5/ztgEHZJWMTpWpkgU9K59enlfErXt5ZoLX4YC/fjy1nsYAziQsDFMMk5RJKerJISowdDjCwjz/LhlaGzDJFng36nIQzAoBcCP0HL4xWdtjpOHxFi0iC1nthZfNPjmo6+7uialrZJKbi27/DOEr1DhfScUkKilSQ3hjIvqYoZZTGnLBZUxYI8X2CyGSqbIbIKTJEAazXKXoht7n96mIGzkClEppGZRhUa1WqUM6gQUgwbk9wGLmkRWy/ARmLvcW1PqxRKJuBSMEiseI/3+x1DowAAed5JREFUPrXxYPIRYoLPKpEmw7M86TbmZUkxq6iWexSzGaYa0nZnFSIzoA1CaaJMwGDcCjnugMEWrAXbE9sGX2/o6zV1vWa9WbOq16ybNXXTsOlbWtcN2WhDKrFSKG0wRUkxm1FWZWKLLpcUe3vk8zl6ViHKBRRVmvzRGaiMIJL0SxyMR8Yzv+0D4/aGHdOCR8HqaZkHPp4DCS/7fLGfFFOvsTuR+eB2U73eevbAjw2SMAJ1fd9z584dmqaZTEEupgVDSj2+f/8+AAcHB5O+GzBp8sH5NNqLgNP4+wic1XU9gZJFUXBwcHBOQ3AszjlOT0/p+57dtOLd44AEpm02m0lnryiKNwXRHlYuAnQjczDLsilNVQjBZz7zGX77t3+br33ta3zlK1/ha1/72uRYPLLS0sz+lqWnlOInf/IneeaZZ3jttdf4+te/zuc+9zkee+yxc3qLMUbu3bvH7//+79O2LTdv3uSnfuqnuHr16gNGMeO+xu9H/b4RbBzBwV2w9mK7XGQsvvDCC3zrW99CCMEjjzzC+9///qk9x3IxDXr8TWvNRz7yER599FFef/11vvGNb7BYLDg9PZ2Yg6OZzO52RoBwf3+fz3zmM3zxi1/k5Zdf5lvf+taULp7n+ZSSvAsgC5Fchw8ODnjxxRe5e/cup6enzOfzqX6Hh4dcvXqVb37zmzz//PN0XTeBzFrrCRys65qXX36Zuq4fmub+41hUjGSZRGtobI8KAYNJk8ChIUZL052xWZ8igqeSCicimYxkxhBlYmqYKHB1TSkN2mS0IRAyiCIgooXQ4m3H+vSMzabGKM0sz1mWc4p8RtAZXZahREaoBbG35EpQmAIhI9YnWrsXliAsMjP0oae3Z2TyDCM33Hn1BV584UXOThIzSOscYwqqcsH+/lWUXtK7Ie1cBjITCC6xJZXMUDGQmYiZVfStpMgiwve0645gNOYggYvHm1OKyoD0NM0Rd+++ytG9e3S1RRdQ3Si4ffvdzPQjyPUcowtUBj4LWO9x3qOsQ8UeJSQuKDZ9pHcJSMikYDYryI8VWEXsc3rb4nxH261o63ss966gdWDTNJyc3OfeyX2Oj06h6dkvc64sF+xd2yc72MOHEukz5qJCSIGlJ8wDIuQIp5PpWF9j+zXetRADeVmx2Ntnb/+Qcl5imx7XbTBKYLQkUxIfIs4FlNTsL/aQItCGjrrrB7AHVAFe93TNivXZHe6d3qWNDl0YyliQyZxlUXI432eu5wRvkDGj1BmSpK2CFEhp6Nqe9dkxoVuj4oblUnPl+iFZtUfnS4SfkUWFDCIxvOhoe4u3NZo10d2lOb2Dt3UiJWmBNpDlhr3FHstyTtcLXAiITBCUpk12uVgZCfiUAmdByqSd5K0jCI8QkUwIcrr/1bf02y5jeotznq5z9J3D9gHnBnZWjHRdAlis7Vhtjjg6eZ2jk9e4dvU6V69cZ1btYUxFpmcIkSHJECpp3DFoEo7OcmmbgzjdkLYkpU/ZOcKRZRVlmaNNyglyzuGcTc8vrZlVc/b2DlkuDijLJbmZMenrSb0Dljl87Aihp2dD1ztsX1M3G2xviRGUNuTZmiyrMCpDCEkI0LUtJ6cnHB8fce/eHY5Pj1ivzqg3NcEGvAs7A85toLgFupi+uTTU2BJXGJQVtxuAIfgc/tgBBx/utpm2EYe0PYhkmSbGQFFkCBnJc0M1K6hmM6qyIsuqdH6i3mF3ygmMjAzmKdLjXY8UhhgFddNS1zVK6cQqEmlGPw6DAREHAxYZk7mtEiijUWi0kigtkCotM7JUwhAXhpAMTEIcXKTjoIc3xCZKygQKKkGWJTH7alaxv7/P3v4+V69dZW9/TlkZtAkE73G2pWkbNpsV63qDs5YsN5SlwmiBMWoAXQVxAMA3mzVnq1PW6xV936GEQUmFURqlRu2j3QHCjy+kkK4yRZQ+gTqrGnpLLPbxmUlA76AFKS+uKARBpvOofYDVhtg0kGtklLgok2ZYY9Ow7uohuB42NXRrwkxtY9e4046S1O97jxocbGPfQ24gSrwXqLIYUoElxEAQkahUGlxKkTQTm464DHjhkfUGNhtkmRFNhmiHvnpRIZQhjqwkCTKkCQxEugdCCOQm42B5gLhyCFeXid96BHLTEwsDuUquuus1qmlpu5q7f/oCL/zPL0HseffPfIJHPvEp9GNP4ufLdHwuuaN7DVGkobkcCLhi20EM7z9I6CpuNxlj0glsWzg9Ja5q8BFRVDBbQJURQgN1g4ybBAwOWrRxcIxNDEuLOF0h100yMzjYgyrp0oroUj8oRuApMZx018PRGo5PCTEg9xeExTIxRFfrpH2pNFQp7TuqQT8yiql9xE7Xmc6fGLQw0+4mabrdoYnYrrP7t/ixvpO/txKG/7bTNbtFJlBmdHcZHtkjVug9OBdxNgwvn57X3uPDqFtLukYG2YykDyxSpsnwkmK4NMYLfwDL04SQn6xS5AQNptoqIjJGhHeIvoeuJzQNbjOYo6wT232z2VDXG5qmpmtbXNeCs8gQMEKSK0VuDEVRMK/mVAOLsZgvyWcHmNkSWVaIvEJkM6LOUl8zMO2Sv05IOKFJ17cMBmUztM0wIScLlrzPccESgsc7i7MpTTiGiOsTC9lKSacUUqVnnVAJHEQMz/g4xB7jPJsQaZJdZ+Qmo8iK5EA8r8hmJWaeHJf1rELkOSIvBk3BbKr/qDmcAMHhZokkxqBLwCB9SiUObY1tNvSbDe1mQ900tG2KtTvn6UPAE0EKlFQoPRizVDOq+YLZfE41nydwcLFAV1XSO8xLMHm638Ug7TAAwiOjVZCyEOI4pZrmEaepDxF3b/SH95cXob1xjXBhqUumHR5adlQQ33L5kQcHL6ai1nXNa6+9RtM0GGN497vffame3/HxMcfHx8QYJwbWyPgyxkzAzvHx8ZQCOgJRFwHD8buzszPOzs6ALTh4GZA3Ljvm8e/t7Z3TRBwZeiM46L2nKIqJnXaR2fZW2mh8tW07MQdHzcFxv7dv3+Yzn/kML7zwAnfu3OELX/gCzzzzDDdv3pz07EII0/6VSqLnh4eHfOYzn+GP/uiPeOWVV/jsZz/Lxz/+cT784Q9P7D5rLV/96ld5/vnnGc1LdlOKLzuWXeAvH5g4I6NyPB9juQgwjt+FEGiahq9//evcv3+fsix5z3vew+OPP37pOuN+R2biWK9HH32UZ555ht/+7d/mT//0T3niiSe4f/8+RVFw/fr1c+nju6nfI+vymWee4fbt2zz//PN84xvfmBytsyybjF8u1mc+n3Pr1i3++I//mKOjI+7cucOjjz46Lbe/v8+1a9cAeOmllzg7OzvHkr116xbXrl3jW9/6Fq+//jonJyfT8v87FIGit11KHxs69Dr2CG/RmUOInjz2ZCKw2aw52azQWc61vTl7V6+SZRXOCnKpKUuNDuCdpe8dMkh0mcR8m7rhZHWM9ZZMaYINKGOY7e2z2L9CZuZEb6jbFqxinudkUhC6mhgCUmd03uFlQzAe6wU+dmS6oWtOeOmV53jtlVfZnG1wrUNIic4z8nyWmEGqJAZJhkaWOVIkkC49xCLO1kCg7erkShoiwStCL8FJdKbTQFl5slIiVOD07IR7995gdXpC29ag4Maj13j3e96NEfvk2W0ysUd0PTFafN+gZUaWz4ixJVLjY5dMLrzCuwytBEolJmaRGQya4ATZIqNVHXW7wRCpJKjQUzcnrM5e4+joFTbrUzKRsSgOUypzscSaDN9GlAfX9YgQkaUgakVrV/RtjfVn9N0mfXYOHwVBGISpcEFRb3qW8xKnC/o24IeZ1uhtMjZRgT5aVOYpioxcFAQbCV0CfnrRUXPGibvH3bM7HJ+csjrrkMDycMHNR25ydW+PypT4OMdRUVuPCBatLLiW9qTn9I6jaT1eBDwtucypMo0RGu8UXmeYrEDIQNfVkEmW81nqb+2G47tHnNx/kfrsdULvyKuC8soNsvkVYqwQrqQUJX0EFXKatqXpGuaLGXlRpId/67Gtw+QFUpT0okcXJqWXRYcxP26aY8mIQEQIYUhN9YEQ4uTiG0IkRo/3luAtTX3GyfFd3rjzSnKZP7jCcm+fvb0r7O9doaqWzKsDqnKOMSWCjOBHPbk0y77VnBvV6hw+RJLxRU8UAecjfR9oGkfbeHyALGqgQIkZSsxRLJDMESKllEYvB8wimVVIaUH2KFWgdUGZL6jaNX3X0HUtfe/oGsfq9Ag7aCy2TcemrlmvztjUazabFW3XYLs+gdVhHJiOoN1OCJqmlTn3b5x+YCeMfWDGeWeKbfh/J8yctnE+9ByJeNtdifNhrEguwFprTJZ0YTM9Q8slWixgMJcZGZ8CNazqiTik6BHConSHyyDPHJk5G0w+1JTay8C4isPxCyHJMoHWiqKsmFdLFrO9xOrLNdqkAWIkGZGE6LFu1GZy0zU4io8rqZFKT/rMxmjyPCPPCrIspyyridlXFMlwxrukexgHXUmlMsosEExaP9MZhKSV6kKXtAX7npOTI+7evcO9e3c5OTnC9pb5bIlAJFaq0dPE7jiWjRO4eX548eNQRByTtkH6BNwJAaHI8UqhiETRIQZNWYQgiBFGkXgJEBFNl7TmYo/O5tA7hDEIraGvUVLA/gLqFtYNrE5RpUFqDXIAmMXgximAEDHBQ90S1huQIaUb9hCVgapK7B0EiCG9VQhEVhCURnYbaBuEcwhn4fQsifqX85QK2K0RShLKHDnAnl4M42RP6puiJwafAGKluXrtOjxyHXdYIrsOuaoh14j9OaEqCKdHqJMTmjt3+cYrL3HylRfQc8O7PvMprv/0x1E3H4diDyEVQfiEiMQ4DYLlBeJWArW2PYOXSUvvgn3QdykXB7ZxYgwmHbGe2NT40zVqlQzY4v4MsdhDZIuUctr5xHKUYxq4J9KT+nNFtD2s1sTjY6SPiMMlcbk3mKb5ob8cJoUQaf++h7M18f59aFriXkVYLolZjlqdEes6yd3Ni8QS1Sp5DYwu7GFrGDA22UCwnBpvZHXj4xYrEGoAWtiuHXmgP37T5vzfDkG8jD81XowytRkx3TdSI6RBSIOUBqUMUiX5DJQCqYhSEoVPeOIlplOjlm3wI0jWY/sW2WdInSbJky5pQGgz3J9hp05DerOP6b3r8PWG0LbYekNzdkq9WlGvEzC4HtJe+77HW4sgoGV6PuXaUOUFZVFQlbNB+3BJsViSzxeYvX3EbJHMOrICsoIgFX5ikw19Jx4pQmojFcDk6NwSvSVlL1jyLk+sRefxvcXRDxkZyRDF+6RFKEa0VKbJNSEFUsuE4wmBVol9abQh15qiKFmUM6q8TFkViwX5Yo6clchZiZgPmoJDWnTqN4dJrknHL4GahBEBDmkSYAAG6Rp8W2PrzWA+s6Hd1LSbhrZp6fseN5iEQhqLm2ECLyty8io5EhezIrkTlzmmKNBZnoxm5DCJPExIi+hIieQDt1kkoHo3upqu14uUv0smAtLHqROYANERaESI4Skgpu/P3we7ny/BWh6I6r57+ZEGBy8zvDg7O+P111/HWktZljz55JMPOPyO7MLNJrkzPvLII+c08sY00fv37/P888/zxS9+kcPDQw4PD6dtjODUmJYbQuD09JSu6xBCsFwuz2nJ7ZZx2b7vJ23Cy1yIN4NrEjBYpBffV3t57+m6bgL3RpOPkQmolOIzn/kMn/3sZ3nuuef4kz/5E77xjW9w48aNCZQcX7smJ8YYPvaxj/Hss8/yn//zf+brX/86n//853nXu941sQfX6zVf+MIXODk5oSxLfvInf5KrV6+e285uu+7qB47MybGtrbUTwLkL+o5llzE4XhPf/OY32Ww2lGXJe9/7XhaLxTkm6O7yu4Dp+L5cLvnYxz7G7/zO7/Dcc8/x+OOPc3Z2xtWrV8+xTi+W8dhu3brFRz/60aldR1OYh10jAFVV8eijjwJMpiO7jMjZbMaNGzcwxnBycsLLL7/Mu971rnN1ft/73sfXvva1yZTkJ37iJ9428/RHtUhZUGTVEKRCH1xirxkFoiO6jvrshPtvvMFqtUHNKvavXGF+5RCTz5BUBKvpiCiT432LlnBlMcfhcKqlVxGnIpuuSZoYUtDbjqjmmKogL+eYmBHqSCFyRJ7hBxdfJSMySKTXECwyB1kEgutRvqHb3OPozovcv3eP09MzmnVDX3uEkczmhrKcY0xBverIVEBlmuAjXbREGylNQVEJmmaVBkDaIqXCS02MBdHn4Bw6RgoTkbTUK0/rLPfu3uf+3fu0TYPQkms3rnL9xg3K7ApSXKMPBXXn8U2DCBuW+xXGaBwCmZWEYHHBgoxIBbkchIyFwOgMHSMaj1GB3tZYrzldnfDiSy8SbUCJyPHqdTand+jWR4TgiGpBzPeYLx8l0wfoWFLmM1SfEWwKArSUZEoQyw6TG2yXcff1mnqzRkgwRU7dWY5O1tx4JJLnVdIwE5AXBc46VpuGXEKVGQKO6FKKf3Q9Mji01ynOiAEnO5xd0XYr1usNZ6c1wRnm+3vsXb1JudgDFL6PKKPQucH2Fhc6hG4QosXWjm4VaFtL1/foLGeWzVmYBdcPrpCXJc4Jeu+QIZLr5EgdeouUDpOBcw31+oyZMcgyJ5gCXe6zd3AbKRc4n1JdvOsRIVBmJSYq3MrSrXuM0UidJaOTIGnajr7foHqFU5GgJW348eoX0lgtBf+Tdl3wBO8JwRNHx4oY0+A9CFwf8LahrVuO7t7jFfMyJjNU1Zz9/UP29w+4euU6e3v7LJZ7lOUMrZM+YBpI6MH5WA2zraMOFSm1xna0Xc3JySknJ6esVmdsNuvEKisimclpy5ai6MmMBe22gfQUKA6stOgZHT+11GAyvM8IztJ4T71ec3q25uT4lPW6ZrNe0zZd0hfsu8GQwqaJgRAgSGRUiPhgrDG0KGmweXkA+eCybKkvu9/tvseLy10ECdM+PaM2z8goYJqAVEqjlEGpHEmJjHNk2AMKoIKYQUiDhUgA0Q+vegAEkou0c2kwF0IaGm0NVuS5KkmZsipms5LDwytcv/4IV6/e5ODgKnleJn0/pYFxItfjQ5IACMElloAYjiQOBiaMrBONlAqt9KDRqHaex8NgJwpwEiUEhYxkpWee94TYE+mTKQ0uGcmsW+q6Z3W2YrU64+joPkdH91ivV3R9i9EZZTHDGEORl+R5MdR9vDXGc7RN8f5xKiNJJw0G++RAKkEog7YR6S3B1UgHCEnIDT7PMDG1gSCZkHC8Iq5W+ByMkhACoipBS/AWZQRUM/CCeHQMd++mTLyygKKAskAokcCFYWgmGk+4d4bdrNCFSc9mZ5MWYlWCHFL6YkSGQBASsgyZ51CfQd8jWofqWuLZCpFJwqJCugDOw0zjZIYeTAUSc2+4v2Q6hlAn989oFNliSZjvI6UgdjU+OOT+HHH1ACkk4WTD8bee5xv/8//m5ZMjHrt2i5/4zCfZ//jThFuPELM5woIIFjR0KpJ5gfYinYgQB3B0GATvALfb/gIeziC+WC7yWAbGkQCcJfYW1mvsakVsLMrkiP0SDipCXqR0byTK6QQo6GQGAxZBiwhVYh03bkgBboizGeztE0cJp+gRcXQKT/qcOBIweOcO4fSUWBTI5QJR7qXtOQcuEJVKLEQtBv07SH3ccI4mmni6DmMk6cuNGoM2gkvp4BBBaYSGKfVvZ/2xac9/uKT8GN7jb1bkwNEaKEJbVlaCq4eXTt+LgJA56EDMAjp35EXKKvAxZcZ4n8xmpOpAdIAdQC+P9T3SxiHmFQgt8Hi6YOmjpYoOY0t0V6BthciTMYWQQ/ruIHGA9wnU7m1iC9Y17WZF29TJOHGzYr1ZU7cNbd/RdV3KFnAp+yNXBp0nuYiyLJgN6a7FbMZsuUexWE7GKKJaIop50uXTOVFmA1gKI6eNgXuJCAipEFojYkqNVnlG5h3kPSEzSUfRaJxW9ErQC4DUdl3f43xKxU50jYRaKyMxRmOyZOZiTEE24BllWTKfLVnOF8zKZO6Rz+cwn0GZJwf3rEz375CmC4atnIiYzny6tx2EId6xjtj3xLbFNw39pqFe18mNeN3QrVvcpsW3PcH2ySTKuwTMC5W2E2WKl8Lgcu066DWx72DAZhh0y3F+MJ9JlFKpRlrgzr0+3oAj8B8Hzdox5tpSUNk1dTv3mxjAQTH0R2IHJNxZdxRdYOf9fNku971wjt8WOPgv/sW/4Dd/8zfPfff+97+fr33ta0ASSf7H//gf8x/+w3+g6zp+4Rd+gX/9r//1ZAzx/ZYY4wSChBDY29s7x7QaS9d1kxlJURQ88cQTVFU1ATk3b97k8ccf59VXX+X+/fv8zu/8DkII3v/+95PnOdZaTk9Pmc1mfOhDH2I+n+O95/j4mLZtp3Tm3VTT3WKt5fj4eGLjPSz9eAQHR0fekWW3e7xvFegRQuCco23bCVwazUh2zVYee+wxPvGJT/DKK6/w0ksv8YUvfIGPfOQjk9bdLpi3W+crV67w8z//83zpS1/i29/+Nl/84hd59tln+fCHPwzACy+8wFe+8hWcc+zv71NVFa+88gr3799/4DhGzbxr165N4OLI4hvTiruuOwfkPcwsJsbIq6++yre+9S2cc5N24+uvvz6Zx+wuOwK+169fn/T5xv38xE/8BO9973v50pe+xO/93u9NrscHBwfn9r/7eaxPnuc8/fTT/M7v/A7f+c53prYbHbIvK3mec+vWrSk1+N69e+fS2LXWE7Ddti3PP/88n/70p6d9VlXFe97znslJ+vXXX8c5d6nG4Q+qvKN9QDQ4SxL6R1GKDIGFvsPRsK7vc/f0HqumIbhAJg0LkbOvZ+Tk5GqGknsIMoSXSS8DT1ABh6PvOqzs8L2lrluO1itaHNleNbjaRug9FkeR51gnaesGkwnULEuBYQeq06iocBKCsgSfNAbPTl/jzusvc3J8RLPpwYMREqUNZVGxt3/I3t4VClliZE4c0tSyosLHlr5thnsnkheGqANtG+mDp+4tEYGWBtv01Kc1Z+UpQkc2Tc1m0xCcQxtDtZxx47HH2b/xKE4cEDaKSkAWJdGUZLMKpx2b4BJA2vRUWqBQ2NCjyhxVmDRo6Tz0MM8WHMznnJzeRfQaV1taVdP6mqP1PWJnOTu5y9nmhKbpiKZkdu0mh9duUxYLZiGj8jlKzbCypFERh6OzPZzVoFMaputBq5yqyDhTZ9huA6rEhYK66WjqlpjbIVh0CBGYzXN06BHeI6MiuJwYc0RQRGqQnmyu8d5yenqPu2+8zkuvvsade2cEmZPPNHuH+1y/epXDvevsLx+l62fUbUC5GhkaBBtksATXsqmPqLt7WLuma2qWyzl7i+ss9q6hiwobegQNucpxvcdZiEYQtMW7NXbzOvXRMWFjWZ10OBbkOscEgQmKXGegBJvY0mtL0KCcRjnBXJT0tqMHRJa0NUWwZJlnTyqE8Hgt6Yxi0/6Y3f8MZhhCpPRib7G2x/meOABAqS9UaVY3qGEWN4IPuBjpWgvCsjrtOLm/Is9fp5p9h3JWMJtVzOcVRZXSWfO8IDMFekjhFWM6ixQonQbE1jm6tme12rDZrGiamr5PE4Zay8HA5Iy202gTkdqhZGIQeZ8mvtIsdo91Dd71WNfS25a+b9hszqg3m8k0bbNp2KxrbGexvZ1m72MctbHGoDmltIj43cLAXWrJW4ktdsG+4X20zXyzZUioTuJRpH2meDkxL+TgDGnMIKxusjTpMDKAkGkgHgQi7nKRtmzO5FCbzm/SHazp7RrrNjjf4ENPCMmMJMYRGE3BtlY5RT5nsdjnypWrXL95g4ODa2hVIkSOJCMGDagE5o3tLDzIlKqf3KOHFOORNxDV8ElMxwwjUJcYaIJBJ1aIQWzfEWIarEbRYP0pXbdisz7h+OiY+/dPuHvvPquzU05PTlhvVoTg0Voxn0u0ScYueVGQ6SzBSGNmedxqQSr1g3Erfyf7gEmKPQZi9GlAh0wD6XViEkq7QXhJFBK/KAgHMgFzgcTOWjdw9wTZO8ReyjJyMiKqDJQkBkeUCjkYAsS+pT87JW8FLOf4ZZmyCSvN5Pjc98T7p3DvBClBzgqi9YBEVRUxSwPcpMM3GCdEQTQG8gxiIPY9oe2Q6xrZO+LhnFjmxLMmHasUSXt3mBxVAYiRICNOBoxzxLrBdT3BKMgN0Wn0UUO83xCEwl1ZIMsCcW/F/eee57kvfIH7d+/w2Ac+wAf+zKeZf/gnETdvJwODAEE7wCNRCRSMIrHgrE9TGjKlzSMkUQhG7UMRB23GES58K+OWaZERXkzD3Rh8ShFcbwjrDdI5mFeE5R6q1JDJBLAN1OSoIkqmSaQ+BmJwZK5DuORYHOsWsd6kQf2yws1nRKkYeuWBGRmT3KALxLMG7tyHO28knGL/ALlYJI1D2yedxxjSNqSE6CBYojdpMJ4snJPLdtwenxiBejcAG11P7PpUA6NRhRzQQxL4+xab8Z0u7+wYIG6ZnROwMjxHCGzB2OGz1AmwIxkSZSRzIJ2lZ4vRhqKu2TQtZlNTN+1g4OWJIWC9hdYTvcW5lqbJyTcZ5aYiX50mNlk+ssoKlE5MbYVERpHcvK3Ddz2+63FdO5ih1HR9R2c7GtvSup5uvI4AbVJGY65S+nCWZ2RlTjGfUS3nFFVFVlVks+SaK/ICoZPRHLoEmYE0CJEkCAbazdRS499C6tSnag+5QcUMGTzCWWJRJL3GztObPukca5/MmaTDi2Ts5EgAIcMEnASU1uRZTlUWzOdzFotFkgipElOwWizIqxJTlIhqRixLgjEEnRFkDkIzbAkxZAmMz9HUo0SIbjBVcUm/0Xuitbi+w3ZJnqNpG5o6sQVt0yXJoXbQcXQ29fUi4r1EBk8ffQIMvQNnsU1Du9rQnK2p8lkyfNGD3qQZdByVBC0H2YI4EAq3fdj22t1CmxN4LBN7VYjBuE0mYzYhFULJJHejddKulenvtLzaAUxH4HC8H7b6pucYx+f++iGDgwAf+tCH+G//7b9tN7BjgPCP/tE/4r/8l//Cf/pP/4m9vT3+wT/4B/yVv/JX+OxnP/u2K3ZZ8d5P2mzeex577DGuXLlyDvyC1Dm99tpr9H3PYrHg+vXr59hi169f5xOf+ATf/va3eeONN/jKV77C2dkZ169fpyxL+r7n7OyMZ599lqeeegpIgN/R0dHE9Budii+WMbV3rOOuNuH4+/he1/UEDi4Wi+9Zc3C3ffq+n8CuUXNw3J8Qgvl8zk/91E/xB3/wB3zzm9/kD//wD/mFX/gFPvjBDwJMhiQjOLhb76eeeopnn32Wl19+mT/90z/lS1/6Eu9+97uJMfKlL32Jl19+mdG4ZWQn7h7z7jbzPOcv/+W/zDPPPINSaqrrmPK7C3JeLLvp3n3f8/Wvf52XXnoJ5xx1XfN7v/d7PPfcc+fYkLtmIsvlkl/91V/lve9977nt3rx5k4997GN89atf5etf/zrOOa5evTrp/D0MoIQEbj755JM8+eSTfOELX5hSysdUo8uKlJKbN28yn8/ZbDa8+uqrbDYblsslkBycb968yWw24/T0lBdffJGu66YUbKUUTzzxBMvlkrquefXVVyd37h9meaf6AO9Tx6uNQaEInQcbUdrggqSuO+q+JkqH1IpMF1TZHnNzQIZBRY/CEYKk7yNaOpQJOBWBHBk9ym2QbYS+x9mGNrYEDMYqggsp4HU9DSfofEFVprb1BGTMQDu8PCHQgXT0qxVnp3fpNivazRlSGtA5tV/R0mFmOctlweHBgkJlSAdFKQixxbqAi4oYFLlIqcchyMRU9EMQazNcG9FCEEWPpSbLZ2zqM8SdiFaKdV3T2B5ZlOxdOeTK9Wtc2b9FmV3F+TlSa/KgkEJgY6TtLRiBMBppQTqNRiNjhogNvo+gLb1Pws6ZyiEvELlAGg/OYJ2g2dSciDfwfYPrErgZokcJg5YlB+UhV/ZuUhb7KDUjhILOOXq7SjNxWcT5hkiPxoC1BO9YLmes1zOOT45pcHjriW1PfXKfo7svcPMG7C1yQjTUmwBOEqXCyUDwPUIN/UAUyAL6uKJ1p2xW93jjzhvcef0eZ8c1EslyL2cxn3Hr5i0OD24DS9YbD8KR5QVaKbw3eAeKFifW9P2Gul1j7QlSevJ8SVUtyYtDlKyQQRGCTQFVlEShEr4iIkpC7Tyr1rPuFbUzBCR5EBRSolWg7TcIJCqfE0WGECbpi2UR4cBQIDOFR9K6FqkcYuYQ0YENyYyjy9DdDyZR4J2LAQYwRkRiTNp+zvUp0AuJbSGFTtyCKAhhZMXJFGCOAVRM2oWNC7RNzdnZBqlAa4HJFCbTZFmONgZj8qRXJxRyTC8Wchiob4GWEGJiJIzGEFKmSa2+pa43nBwfkefJoVhKSRj04tq2pWka2rambRuc7bC2x9oOZx1dl5iBdnAd9j4QfJq8njC46bmYZp6lGBNOBCnnMGx/f6CICxSUB2ebYdiPuPi72Hnb/T7uxqHnyojJwTCZJiNyFAIfJy+VTI7JCqQKSGVBtOATCIjotmwaPMgeKXoCDYEW61e0/TF1c8y6PmZTn9G0G7q+xXmfDBoRI3yHFCmN1+iCzJTkeUlR5OR5nlKSgwGfE6OGkJzJGRgURDcxPlPacRi2PAJ+g27l0FBSbE9ZgkoTOJhAR8WoWzUChT70OBvZbFqOj064c+cud+/e4969+2w2a5pmM6SRKrQeBN6zVPeU0mzAJzMpYtJFioM5Q/APOUnfQ3nHYgABTvlBu0sQhEQEh1idEtoWOp8G5HQk/7KIMBV+GXHKo9oaeXQEqxXMSpjNcZsEFEmdgwx46aBrEacn6fSSI21P6Bui1YSzkJbNS6KKBN/A6SnijWOi86gb+8RCw2ZDUApdZUSpmDSyBvdoAJQgFiVkObGv4ew+vu0IRYbaO0Bog/Ab8JHgHZ4W5Qui6XBRo7xBhADKJSMEL4jeUhbJ5EqujmDTJ2Lt3h6qqIjHx5z931/lW5/7fV5/4w6PvedJnvrkJyl/6mnE4bXEIBquxSAG9l4IqMFEyHU9uu7SIRRZyvRXgwvqcO/vcgjhLRLYwgCgi0AQIT2vegvrJrkRt20aBM/nsLcHVTURcBQCpCRGn/YlFUFLZB+JLWAF0bhkzFTXCOsRmSEWeRqEJ2nAoUt1abKp64lnNeHOPcLde8QQUFcPUYdXEEVBuv8tI1OdKBKLsOugawAJMk+AJel+ZsxeCgMAYS2x66C10HZE6wllgcjmKMXkMD424sjOEj9iTuPv2P1PUhTdnYDawoMhAYSCAbTXIPIEwOjk2KtUhshn6KrFlEvyakVVb5jVNev1inqzoeuS27ftO7y1EAMu9NR1T9uukesE3OnhpcbPIzt8iDPSfFHS6QvWEZzDW4f3SZvYB5/4dkOYkklFYZLbsMmSBnlRVpSzOXlZkhU52awin88wRYnMc2ReJlKCNAPgZECYQfJATgD7DiUmtVlkAN+G+1YKhIpgJCIaTNBEK4gYosjxQhOERGqFNirFSgacV/id8ENphckyqiqxG8tqxnyxZLHco5rPKaoZxXyOmc2QeZ7uwawg6oIgDV4YInoCNLevOFhG7QQ+wg2vZOQWo8eFQB8DHZFWRFoinYh0MtLLiJMRL1P6eGBLfsIFfEgMYLQjdg7f9DR6ndKhTT5NViqpJxA4mVuKQYiS6VwmPeWhvXfiq5Hnl7IYSKY3SiFVMsLVJkPnBdrkqCzD5AW6KFFZhjIZZEU632oAvgfNwzTJOZq0BEbP7m0L7k4CM7VjuKBc+GblbY8WtNbcvHnzge9PT0/5N//m3/Dv//2/58/9uT8HwL/9t/+Wp556is997nP8zM/8zNvd1QTC7JptvPbaa5NG4JNPPnkuXXhkvp2dnfHGG2/gvaeqKm7evHkOaJrP5zz77LN8+9vf5nOf+xxHR0c8//zzvPTSS9P+hBD85E/+5JTq2nUdp6enOOdQSnHlyhWMMZey4uq6ngwpsiyb2HGjduEINDVNM6Uez+fz79tpdhccjDFOmoO7LMCiKHjve9/Le97znsnE4w/+4A948sknKYrigVTcXYBwuVzysz/7s3zxi1/k29/+Nv/9v/93PvGJT2CM4fOf//xk1rJer/mTP/mTaZ+XMe1msxkf//jHefrppwcWwRZEu3gcbwaYrlYrnnvuOU5OToB0HX7hC184x3rcNRCBxLj72Mc+9gA4mGUZH/7wh7l16xZf/epX0VpPDNHd8rC6XL9+nfe97318+ctfnnQrRx3Jy66TEaje39/n7OyMV199lbquJ1MSIQRXr17l4OCAV155hVdffZXT01OuXbs2beuRRx7h8PCQO3fu8Nprr02Oxz/M8k71AToTSK1xCYkBIwnSJb0QUn9wfHzM2eoUGzyVyVDFDJUX6CxDqkCkIcaA0jmyUDjpcX1HdAotBdJLfGcJtkHJHkGbmFhacro+5eT0mMPDnCzXkHvcoD8kKcBm+LCm42WaZkNXW2xrCc6RdMUkKsvSg35e4HXqvr1ymDJnvtijKGd4KbDOIVRGoQ0+RKytsUSELIgojDSIIOmtQfbQNhs612B9x8lpR7MpadYdSEFnO6RWXF0suXZwjWuHj5KpA9xGY4RiUR0QncG7iClzQvD0XU3sIkpmCJFjg0R4RfQZyifnRCMUURb0BNRiRnVlTn6cgMF2Y6n7BttZ1qtTEAHnOgSwt3eVG9du8ciVW8yyA0p9De8VXVSYQiHFhig7ogj42BGFABvRAcpqjimustevmB1tWK2O6WpH7WpOsrtUWSTTDil7yvwGUpb0IbFGouhBWMxMo0kztiebU4I9pTl7g/tv3OH4uOZ03dD2a2YzzeOPHHDtyi3mi9uU5SNk2YLok+i0kMmMQJg5QliCP8a5M5qmwXoQhSYEj5xJynlFrkpsAyrPiFrQ9ymYlci0PQFdhI3tWTtLGyNtsLTuDFVb6rOc46NXuXJdUIpIFmGmZsiELBJzhc/SrKF3Adt3CN+hcoiZpFdm0J7RqFBRmoelm7698o7FAINSewoEQ3pN0hdppj/IYZQ3DqriOLhKjMOpxG2QGUPExzDIcDigRcgEwIohjZkBFDzX1w/3tFS736d+XAk1ADYapWVyJFapDjFCCIODnx2Bvz5JT3g/aCiGCUCIjKPWBCbFuJMWMj4Th2MR07GNtYnTLPYlDToutFMuLjsElQ8FEB8COO5+H3eXGxk+yW19/DoEcDbQtj31Zs1qdZriDzx51mJUDdEkgC6mFO+UbhMQIhmRuNDgfE3dnHF0fId799/g+Pg+q1W6J51zgzng9lzFnXqGmORignP43hJsn0TpGRmrgSj9zvqD3pGICDEONNJ7iEnrjonlOAq1k7QxpxhojKcGXaiBEWddg3U1TXvG8ekbHB+/wZ03XpkkKc7OzhLj1Hmci0NatkIrg9YGKROgnYxbFJJBXyuk1NYYkm7nD6q8k+OABHYLILGCONvA8RFifwnVIjFnwpp41iPaHtX2+JlC+gZx5x68fj8Nqq5ewRtJtCcIUySBefoUI2/qpFe2d4C8cg2lDTFLIv7C9oS+J7rBCXd1j3D3PqoXiMOrydyirok2IOY5FAkk3ppRJJ0zEQNCycTQySvk6gzCXbySsLwC1SL1LTJdJ6K3UK8QoiIqR5SRiEFEgQoRrMd2SV4gLzKE84T1PWLQyHmJKEs4WnH0J1/lhf/xOY5ff5VH3/Nu3vfxjzF71xP4xQEohQiOIFNMlUhvYkiNTEBWqBt8ZxFFjsyG1F2xBWpGZld8u6SGkfVNSKYNXYNYrQkna6SNSJPBoiLuDYYfcntvJQA+pPoiiUYTMoXoQHUe4RQBT/ANwjYIH1Lb+YDqOqKKpDRGEK4mdi1xs0EenyHvnxBtj7iyj7h2A+Z7RK0TEKkS+0qpjCha6DtYDyyfWQTtEBiikkQdE5DrfFqubaHrUypk8MQIyhhUkeRqUGqr5zZcOecnZHZKvOS7d7C8U/d/egYPQDvABBiNCzA996csVKkgmqQVZ3JUsEjnUPMlZq+maFvmbcOiXtPWG2zX0XctXVNjuzZlJ/Q93vZ475K5mw8E3+G61F9IIVP/ziDXIEZIa6zUOKEkkEYi8hIjU4xgtEkau0aT5TlZUaHLCpWX6GKGrmaYLE8gZJYhswKMSWnnA5NsPNg4vY/g0MiiBBjjhBE6EtN6SexXAhmoEmSJkhl5MUPMatR8TrFc0NYb+rZNr8EoNB2iTPGN0pgsJ69mZGVJXswoZnPy+YK8rNB5gSoKZJYPAJdMmqyDMZxEJ2ATUv84eT5vP4+2H0lo2qUXScNVKoU2eYoFnSf4iNQaVeSYMiefl6mPtBY36DLHYaZVxMFpWaTJSTUw+iQyEVOwOO8Roh8mNgei1G5oM4K9Ayg4MQfFNiyTgsHTmElLUimD0hqfFfiiJBR50goPFiWSHjrEgVE4msvEnUnbbdmCgtv+8Vz8xVivy0x9Hl7eNhr1jW98g1u3blEUBZ/85Cf5rd/6LR5//HH+8A//EGstP/dzPzct+4EPfIDHH3+c3//9339op9B1Ked+LKPhx2UlhIDWmieffJJHHnmEZ599dkoXHssI5FVVxXvf+17e97738dhjj51LlQV473vfy1/6S3+Jsiz50pe+xP3797HWTiDVCPQYYyZQL4TA1atXMcbwxBNPTL+Nmn67+8/znBs3bvDYY49NneiYMjoW7z3z+Xwypthl+e2m1L6VMjLuQghTrv9oXrHrPjyy1Z555hm+/OUv89prr/EHf/AH/Jk/82d48sknASawbgS2IAFVxhg++MEP8uyzz/L666/zla98hd/93d/l9u3bfPvb306z1jvH5pyb1t09hyOIO7Imx1dZlpOT9K4hycPSq2OMvPHGG3znO9+ZjjHGiHPuASBu3PdoeHJZurPWmne961184AMf4Jvf/CYhhEkv8mEsxt3tL5dLnn76aX73d3+XF198kRjjpH148TjG9+vXr3PlyhVeeOEFjo6OWK1WXLt2DaUU3ntmsxk3b97kueee4+joiKOjI27cuDFt8/bt2zzxxBO89tprvPLKK5ycnHD16tXvmX36Vso71QcIaQm9R4WcKivp/Bk9a2TW0ndnNHZN1/UQFPuLOfv7MxZLQ7WXo/McpStcD13XUpiYWB0iSykoErSUSJVRVjMWB3scbe4Q1h3BCppY88Ybd/B94GxzRj64a0mVHiBVXoIT2OaE2N+ns54QC7LZPtXBQXJClpb5ekZ4MbI+q3F1RCjFYu8KZragzwo2MgefoanIRUHsPa7bQBFQRYYWOXhJ6FucW2ObE5ruCBdrpIjJdbGNNHhquyFmjmwWubKcc+uRGY9fOySvDhHZVURQ+Lbn6PgMyBBSorJIUSqU1xAjeVaiKanXPTaAVBlNW6OUIs9zlJS0vqV3g2GKkMSNgy4Zf5ysT4jCsb+cMZ+VGJ0xWy5ZXLmGnu3TOY1uxcBUSIL7USk64RFSkJs5IoILOcJosnwOVlFUa4q9+8iTFbHt6ELkbNMi751w2ja8fnyPw4OrFOUB3hmEyNE6S+BMbdnUp9T9Chtb6tMzTu8eUZ/VhCjoQ89ib8Zjj97k+tVH2N+/xXx+E6MPiEEOemMe1zo6WxOFJMs80Qbu3z3m9PSEVd+w1pqsKFDzJbPFgv3lgsZrGgROSLQRVDIgXE8UCqcErQsIo5kXik3maHRHh6SzkdXxEUVpgCa52ZuKQs8py6tgDrByhtMFHoGSkbKU7OkFwfaEXiKygt71tH2Liht66h+r+z+GODxHQhpIaUNRVMyqOc2sJmnJJQffGIbgaKBpxWiTK+SwTRnTrHoykhiCTTG49crErpr0eWIYAsBh5neKtRLIFWNyRx2DsAQqqm0a8rnZ21H3Z2ARheHvETgYgbQ41n38ewTytoPDkQkpR2ZgHJ89O6DikIK43T/sbHhbzj0e3oz2d1m5+Gy5AA6Ksd47oFwcALKQgmVrPXWd0idDcKzWZ9y7/wZlOSM3aSZdisGERGwlR8QIGMuA8z3WppSt1eqM1eqM08Fxvu96vE8sQSnU5DgcY3K67rqG9UZwfGwwRuN9pK07iqKaUonG1PJxvcQ8uDDzHklAxXCRTBOZw/GG4PDe4r0lEhJDUsqhHo626+nbjvVmM4jTbzg5ORnM705p6sQUdNamKyluHaalVIntqjO0TA68YtBqT4pcYgK7hSC5mP+AyjvVB8iQDKsA0BpZVHh3DOsOdaBgr8JWJaaTRHuK9w2yP0Xd36COTon3TtNg+tZV2FsSN+sE6u2XUGVgBVIV0AHGwo0M9nKC6hH1OhmdhEhsN4gTCasaeXyEDB4Or8KNayADsUkTc6oa9LOkHLJet/0AQiQAKM+SS3LroWmRB0tEMQMz6FkVGTEziK7D3F0TfI60JToTCLUCYcAGZNcSNms66xFGEJuOVhYU+yUYCUf3eePzX+JPPvc5gvO858NP89hPvIf86j5CBuR6NegLmiSjIkgUZRug62HdIJsWFSKuSsxU8sRemYaalzDa3mrk6WXES4/pPGLTwtkav1onxt6sguU8GbvkJoGrQ7+4O+Efx0G7UgSVJnUkqY8WUSF9QAwGJ8JbYt0kltLgAC080LRgG0LfIRoLUqL2Fsn5ebmATA8+BCKl+GUm6aX1OdFZQt0hSKxFjAVhiAoQgymFtYimh86mcZ1WxLIglAVUBaooB71EuQMqfZcW/V8IDMI7eP97gfRimKyLMHHituc/Ds7d4yRhapukC4cx0/NehDmZsxhnqZxl0beEPmUi+L7Dtm0CBzuL69sEJlk7gE6e6Nwwicc0SRfjcF8PLzG6Hms9pIiqlJ6bJXMjpXUywsgzdGYScyxL4JlQOUJnKS16ANKQKbZgwgJGtljS/twFCM+Bk+MdGkMCz6e4RKZ2FGG4bzSEDHSOygrUvCdzllnfpTGHTSm5zln8oKOf8Ck5HasyGSrL0VmONFnSBs3yBGSOjLcJ2E+TWgyaztOFHAfG8m7MIpiOaypCpkmcnf+0yciHuNAt93D9kInRJZA3+GESdpiMjWGQZQlpPyNnUUxtx/Z5fuE6jZNZUDw/Bwpb5uC5K3TnMGBoM4lQKgGSOkNneboOTJ7A1KxEmkG2ygzOzYOZDjJJnYyGJUwSJmzvjV30cngf8QD5wBE9vLytaOHZZ5/l3/27f8f73/9+XnvtNX7zN3+Tz3zmM/zJn/wJr7/+OlmWsb+/f26dGzdu8Prrrz90m7/1W7/1gH7Bw0pZlvyFv/AX+Nmf/VlCCNy6descQ2x83b59m7//9/8+QgiKopjAkl0motaan/7pn+b973//5DB779499vf3uX37Nu9617vOGXXs7e3x67/+6/zSL/0S3nseffTRCcS6yFK7efMmf+tv/S1+7dd+jTzPuX37NsADuoM/93M/Nzn+Xr9+naqqJmbi2wUGhRBUVcVf/+t/nb/4F/8i1loef/zxc8DlWIqi4Bd/8Rd56qmnsNZSFAU3b94khMAzzzzDv/yX/3LS29vf3z8HNO3v7/Nrv/ZrfPrTn8ZayyOPPMJ8Puef/bN/NrH9xjpddBweAc8xnejd7373BLweHBzwd//u3+WXf/mXybKM973vfQCX1n+33Lp1i7/5N/8mv/zLv3zOjW8ESi9eG+OxPPXUU4QQzhnFxBg5ODjgr/7Vv8qHP/xhvPc8/fTTE+A4gp9vBlZ+5CMf4e/9vb83mYt86EMfms77bmr7+GDZ39/nb//tv82f/bN/lsPDw4ml6JybgNxf/dVf5emnn56cj51zk9HMfD7nr/21v8bHP/5xrl69ek5b84dR3sk+wNoNwiyQPnJ295j5vmS2P2Pd1aw2p2zaDSEkzYjo2pTuIzxKJ7p652UKJrWj92fQLhBihkFSmYKuXdN6iTJ7ZMUB88UhTV2zPqkJvWUTVzjvOKnvo3JNXpQUpkSrLAV9UpBJR2k8s8U1Mr1E6zl5sUcxN0idUgk8AakURZEjtCTPcvaXh8zLfYyaY9QhKuSEtsfbFqM1MR/0KeygBU5E54IcjT6KGBmRIaU0xkzTtC0qSvZnJfuHBQcHCw5uXmVx9TrRLuk3BS5YhIFyUeI6mZw3nadtPAGLNprOWU5WNZksMJkhesdsXiKExMeIj4KinCNdy6w+oMz3OFU9fUi6aURLWSpcv6EVnvLwOvP5PvPZHtV8gRYLlCzxfRL6T9r5kQxJ9CC9ZFbM2EjHuluzaS1CVOTZozx6C8piwd27r3J2ckLbNByfdJyuInfuRvJcM5svyM2c6CuIBUbnRCxNe0QXapyO9JsNyjuqxYw8n7Pcv8n+/jUO92+wmB2gZEHXSGrfIKUiBEFwIum1KEWILYgOR8/Z5oyzsyOadk0sNKaac3j1EapySVv3NEFiq4KoJTE6iIEqy7ESumAxRcnMLal1jo6BTIEk4EXgpK45efkVqtUZZWFYFIaryzmL/g3me7co9x7DCWg6CVYljXrrUSriQ8em3uBiMknIhSR0D9xiP9L3/+h+Z4xmsVgi5CPkOVy7eoWzsxPapk0Oxi4MzsUJvEkTUC65nIfRXXZg6I1BPec/J8wwEvyI4Y2/BcIucxFHUqxP4GDSnBvSmv0wsTdOdO8EtjEmXa4owzCwYAIP4pDfNn43zg6LgZWwDfu3bLUJuBscf9MzRRKCYRuJThVhCxCOYOX4HcPyYfv3SHn6bo+QEZi8CBCMg6XtF5wPZFNMlQx8GtabFW+8oTFGD7GBTEDW6AA4MDjVqNMz4J8hBkL0eOexNqWd973FOkfwSXTc6CHtSwjAT5OTTZNAO9dbVmcrXn3lNaqyIssM2kikHAZQE0tqt90Se5wL5w4G2RSlkkFyTOxp6zqc6wjBDuzJ1Pf11tJ3NrlSt46+C/R9pO8CziaDlQREJ41DAQiZzrOUMqV0mcFxMcswOhnqhKggJJ1OEQcXzigeBDa/x/KO9gGQTrYUyV12OYjZty30gWiTyYCMEdX3iNMTWJ8Agbi2iKyEWzcSOOgFet0jvCYWFUEnJ2CxWBCX63Qu28HFODhi0xBji+gDal0T8lN87zBSIq5dJT5yE8oSsTojND1R6+QaOoBUE7tLTHhCOh6tiEWGCAJ6EKZMKc9KE2VyKFZ7c8T9iDztoD9CzJdQadBhGFgr4v1juvt3ieuWbH6AWM7ID66jdI9942Xu/o8v8Pxnv4hQivc9+9M8+vTT6CLHdS3eOtTxMbEp0kBeJh0rfCBaS+xscnQWIKuSbG+JmCcH5ih37CB25w/eNpstQnDEvkOsa8KmRUiF3Fuk81xmhCGNbppy2Z3zGCdDpEyAbJYRyyI5n5qUAiiH60ZkJt3BbZNSgUViX4UA0kqUlpAXaVvlYEBzuAdFThj6OBkZznEOy1mCYOo6sR6tB9+CskShhgkcP3ZUxCjT9ZslJ2tRVag8S4Dw2GzTBJR86HzNj0J5Z+//9AxID0cx9cWILRA2suYSWBamybh0KSbzKBFBqAAqIPMkByGHsQNhcBd2g5Zd8Ok+GP/2PpnGhDCYoDGBg5AASkbG53g9qlFDTg46dWqbkqpG1p1KZiajocmgszeaUZxngvHA8QbGZS5OSm4n5dJvu8+vgfk+TnQNWp1IncCoYcvEiIwe7f0w2zQe/45kyQ4wz3Qccvs+sRTPG2aMshrptQUNk1THg/XeTq7oAdTcYRfmOUnPNdUt844sDGZvfpwpG01BBjximlS9PNSZIIt4/vtzC17Wz10wZYtTMDeuMJzXIa5JUjVj+49gsNmankiVjlnuaA2O18e5ilwEMXfb+nxl34724NsCB3/xF39x+vz000/z7LPP8sQTT/Af/+N/fMBM462Wf/pP/ym/8Ru/Mf19dnbGY489dm6ZEUyRUnL9+nWuXbvGaGox/g5Mwf5isWCxWEwpvKPm3GWMvP39fT760Y/yzDPPnAP4dlmGI2tudK4dAasRoNkFY5RSExsQeCgwJIRgb2+P5XI5pS7HGM8Bg28V4Bm3p5Ti9u3bPPLIIxMId9k2xn1/6EMfOrdfpRSHh4fnTEIuAnNZlnH79m1u3bpF13UTe/Lw8HBqs4uA4NgOF9mAeZ5P21dK8cEPfpCf+ImfQGuNHnL8v1sbLJdLfvqnf/qB87Db1hfrMrbVZdvWWvOe97xnugaNMdMxPqyM+zHGcOPGDf78n//zk6v1eB52y24baK159tln+ehHP4oQYmJr7qaBf+ITn+AjH/kIIYTJ4GQ8VmMMn/rUpybtxtEk54cFEL6TfYBGI0m07jwHYqRrI20N69Me10eqqkQrT1kWHBxcZVYdEikIPs1ua60pc03w0HYa6XOk0nS1J3iD1nuozPDY40+hc0F0jowT+toNM8VJNLhtfNLQy/apck0MgrzMKPYOqfYXVNU+8/IqxsyTa2brkVmkNAfs7R2y3qxwsSHXmr1qxl6xZCErhNMpQPYR27eAo8xLhNRY53HOJwFy/MB8zNFyRlXs0S07gt6gfKA6nFPqjHlZcOPKTW4+9i6q5U1Ou4xKz8hMSfAeqywGjxCgEcQgCS4gi4rWJwHlWTlHeYHraggOZSRBKSxiYGMptFqwyG5wOD9mc8UiMsgbQdsEovdkZcXB9ZvcvPkYN64/RlHM6dseJ2qySuNMClSEgn6zJpOaKpuB1yk9urAslprgCtqmwOiS4mDOolxysFxwdP91jo9PcH2kblpitLjOclzfp8g7JA19K4gO8kKhjcMLh80k88Wcgypnb76kKA+ZzR+lyG6gWNLVGqOzYXIuUVYyY5BZ0iBz0aJlQMgVITaYLDKvSoTSuFwgdcZhsWSmF2hRslcucHlBVAopNTp4ehtxUmLyDKMi1ewK5tH3oUVBef8NzNkpm7rDeoEUJWebwOl6zbF2bOpTbl49QBUK02cYozB6H0GBDgIpHH2/pgkbopbkxQyFRvYa7PdvSPCOxgBiTYgVAkWZXSHX+xwsnyTeHtKKGQG7MegbP6ffEnvL40PSBgwhgXxhSk9OrscJRByBIz+404Yh5Xf4LsZpxjmwZaEHH5KWUHCDWUiYQEjiFrD0fgtMjUDlOTAzxm3KdBxSpuNWI2cEBOOARIV44Z1I9MnEI7EgGdpjBwS95JWCWCZUMo5AYmRo2zjsdxtfjX8/8D6smgYfgwbPzvS62AmURwIGQeK9oO99As4GQHS7sUvKyNbYfpHOxZQ2m9wmpRQk45IwgYkxpnPkbaC3gz7kyQlSZclZGC5MJg41HgbuW+Fxsa3Kzje768W4M0k6vsbzOFxPU0w0AtfT+UipSHFoz3FHYwqnloZCz5llh1TZFYzcR8QF+FnSSYw5o75UAh7iMKj6/ss72wcAQuAF+Eyh9mfIm1eIR2fE1sHdFdnG4WKDeP0NxGtvgIoJXFoeIm48gr2xj51l5KcNylmYFYiyIqIS2fjqAV44wkmNri14gWw83arldHVMvu5ZVAvitUPYX8CVQ+KVK4TFHBl0mitQCjGfJfdNIQhiuBZGLGFEtQTJBKUqEivNOzhcImZFGmQDMc9gfwlBIk5rYmeJYgO9BBUIAiISv17R9g6NZL5cIK7to3E0L77MK3/wOV79oy8xX8546tOfYu+nnkZduQo2oOsGv9kkUKTpie2YabNNm4tKJnZlUSDLlAaNSeBlHK+peP7+fLvRpgoR5T3R+bTNWYEoC5iVxNzglUZEUpYBsGVrD4Ncke66KBUYjZrNBpAwT2CrSaCSmA9mFa4nyJDMUwgJpDEquVTnElTSeZQBRJFPgK0cNL5iTG6vmBxRCdAaUWTQ9wlMiklG0QuQSDQypUIbRcxMYoNmGSLLiWKQARCapBN7fsJGiG0f80B3+MOZ93/L5Z28/6McjB/YRYXT55Hdn64GmZ45A3S2BQhHYCkSp2WGJpRhQLeHybYYtrsYJvMmVH96Ru5UYywTFrMDEALbmT2x/czu77srJwbged24EczZBfy2J18ipmvkPFN/3PTOvqZKDzEBSRojPVcCQuxMfp274MaZr7Bth3EfI1sS+YCkwNjy41N/l+kXB1AworbHO6H+aUL2PDAYdp6xFwBDNdRtt77bkzi8xUtab6e+F87nWxs3b1cSF/e3u8xlP02fzwN8I1txCwKeB3+3v192fez+e7H+4znc6WbeQvm+8gz29/d53/vexze/+U1+/ud/nr7vOTk5OTdrcOfOnUu1CcaS50lM+a2Uy4CfiydyF5zaBRV3l71svREwupg+urutMf11BHtG0PFh9bwIlF0sI0A1gnPfC6Cze3zj+9ieYzB/cZvjd1mWTWy73TqPoOfD1htBu8ViQd/3E0h1kaW3W3YZlmNdx32P6+V5/l2BuIt1GUHEse4Xy8X04t39X7yGxvMwts3usg9ry3G9cf9j+xdFce633TrvtlMIgTzPL3WqHkuWZdM5vbj/3fq+2fX9wyo/zD4gOjG4eOmkqeYjrhYIV3F17zZKRPJcImSgKvc43L/F/t4ttF5ircCYlDrb945IkYxcQsB3NdEFijwnqIJ116KqJTeuPZkYheua1ckZddPgpUNmJMFqr6n0PsvZNZTMKKqcfLlAVPsIDFEUiFhRKEHXJRdTXMXe/Br5uzR9v0FLzcHyBgeLAzQG7zzetQihkFkkCEEbLaZLQIENDqIgzw1KaIQ74OrV94Gs0NVV9vozjPDkWlOaijxfMltcZzm/SVlcJZDR957aHaMyyPIS13m0UCgtsd7jY0AKRVGUeB+3z1oJMSQNDw8QBUIqnLMQoSz2ePTmeyjykpOje/R9lya5lMAJKGYL9q/cYnnlcTI1I/SKGCXBNkglUCoiQ0ALjwjJbT1ESec8wgtwEdcGtKzQMg3mlFbM50sO9x9ltTqjbRxN2+JDj/cNbVcjAkgGvbKQUm6rUiPKAl/MWFY5yyKjymZos0CqfZzNsJ1MoKwFGRVSJ7ffrJAE3yUzKpWjdQmUKJWzt7dPIZe0tSUoz3yx5MriJlotkXKGIkPZSLD9MImpUxoXILoO23qUypkvn0CZfcr9I641K9pNQ9/YpHkmLD60SBVYzEtm8z1Udg0h9/BRo6Qk6EjdWYQLFMWcua5o+xbbBgIWozTR/ODSCsfyw40BFshYTUGrHGkqandq90KwSAp2x4AongsWwznQbAqaRsDnEtBrBJ5GoGcMpLfb2jIMzz3rI4zpwwnwGQDJAQSMjADjluGe0p6Hv8P2+9GdOGnXDYDoBEKGqW4+OnywCRydAKiwA4huwahdZv/03Vg/SMCoD0NK/RbETABm3AKsu2DjzrbTsYztNqbjjm20bc8HXuN5G497d5u79R7aNJU0sBjBwUTe2NURGt2uB70+Fwh+3FdI7NNg2Wo+jgBg+vdBsHI74NpO9G3P/y6oOAGvcXuNTZfutMm4s9WLoOfW8TilwSftoZQxJ8kyRTYwLlNsNprwJJ3B1GZpkiMExw+j/FBjgEH4PQ2CFDEvENeuJIBl3SJcQJy1qLAhNi3e9iidIfeXyKvXYLmHMBXSx2RqvsgQWUksMpKgIIRFhcuuovMGsXII7xODA0k422DbjricIxc5cn+BmM8JeYbTCuOSkZc62EuGGVmWGExxe41M53oECrRCzmZw8xrISLyyR8xSGjvEBHDNZ6l+ZQG2Y3QlClISJSghEhBZ5pBnZLOSiKd97qu8+Adf5PVvfJP9G4/w7p99lsXTH4KrVwlZDjYiixkqnxFDQwwhpdYOKbMohTQSck0oMkKuiFKhohlAz2Gwv9utfj8lgJACMR8Yl1mW9PrUoOs26a0+bGciMXCyDLVcgPNEk4xHgiAZSC00ZAUEhyQxoACEVgitibokqGRaIMLAiZSKqBVRDemPQz1BEHXaJ7lOKeLWJeZZTM+GROxRgE4ak0ogtE4ab1IRpR4eO2K6PkagM10rI4Q1wVg/0uWHef97EfEPOMHGc62y9bQd4O1zz/2Lr6FMGMouIBZ2ntuXIYDj3s9/vWVjXdR0263nFjAcdxsvbugcAHSukrBzjA/eDXEHJGRHTmV373L6Lk7sSnHJ5bVt4/E/xlTaXUxzB/Qbv9nFwS52D3Gn9iIKBIqIHO4BubPhiDiXOj4ChttrIF62B3F+b+eO/sJh7sDDw++7v17g1o3XwwP9T3yw6S7ro8Tw7XgNT/XcAfd2JGTOnbddMHD7AGELBO9eJ7s4w25d4uWn+S2U72u0sF6v+da3vsXf+Bt/g4997GMYY/i//q//i1/5lV8B4LnnnuPFF1/kk5/85Pezm4eWywDC3QB9V99t17F2d7mLgONl2xn/vgz0ugyEGUGicZ+XgZMXXYQvstzeShmX3wX4dgGyhwGDu++XHc/DAL7dOu6CmmP77jIeLx7PRTbkLlA2AqOXMf8eVi4ut8scfBgou7vOmFJ8kSm6W6+3Uy4Cf5ft9+2Ang+r+8XzNupYvt36/qDKD7MPECh6F4gKojSDELukyjV5JjEa9vYOUCZDihlKVPi+INqIkhHXbtBZQVEsWNeWEHuMbFJ2gtbYKIkBjM7RQlKUGbPsCm6/o7/aYV1PEA6lkwswQSK8RpMRSakoQSr6LiM3M5TIiU4TEGhmCGkwRXLibrt9Io48y1GywDmF857MlOg8x4eIFBElJZGAtT3Be4RM7FIRPCFKpJwzW1SUsxvcsGe49hQZOnIjiSrDixxj9inzffKYNOdiWCMyR5Qa12QQEgNQZTK5WroUMIcuOVoqXRKRRJ0o7nYYaEopIQi8tyAkOivYO7zGrFhybb/BiYDKzDg6R8sMbQqMrBCYlOYTk7GJiB7pI1Jn6Dyj6z09gswYTJB0wdF1nugteSZBJsaiUktCyCnnVzCZo+86pBQELL1d432LyXTSToqSIi8gRpQQeJVhZUWhDBkgvAKfI2WBUh7yDiUSQBnjoG0iIr2rIdp0bFLSW4mImiK/weLmDLcfsJ1HK0GeFURREpgRKAlOELoeIUJyUI6eajYjuIhvHIWe42MH0jBfVMzmVwi2pW96vPXkeSTEDSF0BKEIqkDrfZRaIEKBjIbgRHJeU0lLycukVxqsJ9oObQIhNtT2+Ad89/+QY4BQQKx2ouidZ/v0aTtHPS0Tt8OIB8PW3Qg3no+axPlFdksauEWSe7JH7Lq+XVj+wUB0+BR3vhlAsge7+h2QbDqe4dP47N5ZbtoUYTDg6UG49Nsw+DyPWcaJzXSuXhMIOYJ3A+i4y2AMOyzHCZTcgpMTQDgewy44iCWx+Bwxcj7FO+6CoAmwG3/fAqRbxt3Iukxxz8DY2QEr2YmphNgCh967If3YDRMRYQIfmQxGYMvmvMje3H0x1fs8UHvht6EtCfEBcHZiC15MdxoGjtO2SG0jGDJLlGI+W3Cwf8DBwQGLxZwiyxACQnSJORrllM44pWWrty5V83bKD7MPiMPFKoPAIBEiR1SSqDVibhFNcmTXVhBvRESmQUd8kRGiRzmH6iNKSNAFXBGgMoJJGqECQOWImUDICjHzYDtiq9HKs9fUyK6Fq3u4Kkd7CY2D+TBYlxLmJYQ06cOgSTxx3ISYGEgTlC1l0tK7rohKEPOMZCYzMGtEJGqDWCjCLMf7DukC+EE5TCQGoehrlNYgMvq65+5XvsLRN5/n6LX73HjsCR77M59i9uEPEPf3ENIgpCJkJAOCvETEZkiTHBhIQiRtP6VACdADaysCg2ZrOinj0PTC2GI8vrdzgrUElae1dtIpZUh94zjxkkAVsdtxDTtLoDGaBC6GmPQeZcocQamkWZgVxDik5w8ahFEPx8vITgMxtodIryATUCdjTPIEYxPo5LAqlUbkgUH4NrmxC0BqAjodVkx6eVP9p0dHJOK5+BDYhQV/9KHBH/L9z5AFsFMeBp/tPudFjOeXuPSZvvt5BAl3wcIHl30QJrq4YfFgPML2fjl/z8Rz600A4IPhzvkvRoBxF/0afxdMx36uDXaxsFF3cNziZWNHsW3biyHRxdgh7hxVPHe8XNjv9lNyT45Dlbcayg8iekMNhhhnu6X4sEpd/OOBAxv75Qc2MO5mVyZFDM7P5/G3c78/uNuLJ3CYLGU3Hkz7l0O/O0rI7DbBOFkwbeqCfMuDk5Zsz+UFJnIc2iuK8/fSm5W3BQ7+k3/yT/ilX/olnnjiCV599VX++T//5yil+PVf/3X29vb4O3/n7/Abv/EbHB4eslwu+Yf/8B/yyU9+8ntzKLuk7Jp+jOUyEGu37Kb7Xvb9w5a/CBRe9v2bgTgX67b7/W5d3sryb1Z2AcGLANJlabkXGZIPA8LejIW3u59d1uKbgasXt3HZNkeQ77Llvtt2dvd/cd+XMeoedh7f7ufLjmN8/25A32Ug7GXX8+51/2ag69u9dr6X8o72AVqRl3OCkLRtTwxJJ8TaPjlNxSXz/ACdF1grEGiC83R9Q5lnxAjWe0KwuN6RK0emBd5kWJLOhjJpDksIiQw5Ri3RRaTvV5QzRZEZ+q4lAkoPYPIQCEJAAqUCLSJKKsAk4FkrXBCEaDDmKojlqC+M9w6VCZTKMGqGIKNZrYkEilzgY0/QBqRBWktsHUFFhDZEqRHeo0NBJg1U+wTp8TLgIYnSk9M7Qd83ID1FURCwWBsRGHSepXRlPFonen8IfXqwBIF3HTqriEDXWpTUGJOhpErnQGRYm/QO83wPKSTFQhFkpLMdeI9GoEnMPdemc6mUSs90pYg+pWpKDKiIyvwwgO8xUmCFRetIXmUQHX3bQoxIkeFdge0tQhSU1SE+ePq+xegFs5kky5P+XvSeGECrnEzldF6yapNRUm40WhjaHoRPwtFCWHxoCNGj9QydGSJmSEm1BNEjhSTPSyQVKghEyJFZxGRpNtSiEGi8T6kAJs/JVIm1LdZ2aBPp+zV9nwbuWhUoErNJRocQGktOXi3QOqfva4jzxA7KKqzXNHVExpx5XqF8clttnMPKAIXG4pEiUJQKco2zFus8wvc/Vve/FAkwj9812HuwvzsXnl/2PLiQhrO7vfMb2AnaBQlEujhg2QXvYjwXwl4WHO8OHkTc2YAYPu+OfB4WwO58l+awR4e7JM6+M1w4t+8Hjnl8Vkyg4Hat7XNkmGuP53ceLxzL7vfjYaRVAghHlBaSjdEEXD6w3s5xpmrtDGJ2wImpXiOYN6SEjeAgkBhJQ1SfmIxhYENuTdEYdCTjoCMZh33GId08bXsXCLzAemTLbgwTyHeBBTmCgOeYliGBtCMIGndAxLEJBk3FlEKfGlQNcU6WFSwWe+wtD1kurlDkc6Q0IylqZxy5cw5/QJqD72QfIMI44CWxySFp85Uiab/NA8JHsAvE3gK5Pyc2NZPEwHBeRUymFmhDkDGxyuKg2hUERmSIDIIOBJEhXAZGUHTJKIPlHrFcIiiIJieoBPggIiE3yR166FMmYGfnOhUDwJQOShK1TBqCYojdghh/IpnwRIJO6XoqSLxQED3aAmQE00MmkJ3Drj0vff0Fjl/+OkZobn/waW598lNkT30Ad3iAUKMxR1L7ikoSZY6azI7EkKq8HbAOXV0ygxFM4oJi59geSFF7m2GnlxCEGs4ByJj65fNMwYvvl+xEMLhBC8aRvIhJwS0BuEP8Px7DIAqbJKkj2o/cpV1Jg+FIh4mmMF56MbUXgzlGVCRgV5ImABnU0oQiCpX6zGk2ZjSzYGo8Ma4xAD5jeubb0QZ7p8s7ef8rQkoBv6Rc1kLTc+KBH8W5t/Pr7EIyD3d0Hc/YWzk34sL7A9u5+MO40/CwH3a/2nm4PnQ/F9eLb/KnuPBZnLu3L2Jw5/c1XtDjsheXPl+2t1eY2uFh7S12tyF2Pr/NcllS8cV6n9vrhcacWIsXQ8NL9vTgEufBQDF93v66hZO3Pd/F5S7f1yU1mWLI762tdsvbAgdffvllfv3Xf5379+9z7do1Pv3pT/O5z32Oa9euAfCv/tW/QkrJr/zKr9B1Hb/wC7/Av/7X//r7riRcDvDsfv+wv7/X/Yzl7bDZfpDrvJVyEYD6bsy1t1O/NwNPL7LX3g6Q+WbLjyDj2y3fDSC+uP83++57OXdv9dp82PJvt+5vZx8/6PKO9gFCULc1MQpC9JhMoZWGYAh2hrcOb5NLWVkYpAh4afGixHlQKgch8M5ysCwRLmLbHicEKIMNAe09eRaJLqBNTufgbFOT5QuqskQJhQiO3iaDGKEF1jb0XY0SGikDPjQ4ICOJwitGOQNBb2G1chTlPkbmuNAjRIfAgYW+bnFdi1E5ygiE7zDS0HiNc2CioMg12ihcsOBaCqXIszTbXjtH65KwcAItHUIJUJ6YASicA2kzpAhY3eM6i4qJ3h+lpCrnRBmwvqfvbWJrdg1aSIyOSBVA9qw7S9s5yrwgOAFdBAeiyGmdQ7hApvI0Q0/EmByjDbZP2om+6/CAMwZtciKw7i3BOUSMFKUhzzTr9RlKJSaebx1alcz1EonCB4+zDUZojEkunEIYTF6BUHjfYzctgQ4lFUVRUJgKETSEgNYeI3KMlKioKAuBR9C7jhg1xsxpujrpzsUWH8LAUq2wweFsIIguCVTbHpPOJE4o0AVCaGLvyFQ6b4FA3fVEHDoTxNjje4+UOVHlbPqW3CRWTOw9QkuyYobQFSFm4DL04Dja9yCUZLlQ+Lbm9OwupVJEDyYryIqCdd/i8OR5Ei4OUeIsCJFRlns/Vvd/OjOO80HQ7sDx4X3ngyF2StG8fPHdqO/B8HfU0JuWEWkgOg5Exlh9O3xg2I8Y/t+BvR6I2bfg5xYLvAiCXVbb7b/jvlI/md6nIeaFQcS2Djv7PLftCwMOITh/XGJqp8uPZVh3Z5CdjtARo59mrlMKJZeej7ht0J2KXTqqY9tIlw1ExPn23FlvOyAchM2ndPFtnR/c2XDMYlx3C+SxA2JP1+QUvz94TU3DFbGbmLV7JGILXEbHCPiOrExiAiWkTOmLMSiICkKGEBlCZgjkOSBz17Dt+ynvZB8QSamFUrKTyioAlSbMpEToiMiLwUgiR9QtIjgyo4lFRshEwodEMusRsUGPYM3Iwhkcp4WSCegzirB0+GtXUEFAtUTtH0I2I+aKUCg06bJ0UhGjYJR0TKyY8R4M0zj+AVhBbgfiIgzX1+4kb4yJ2R8HPTIhkn4deepXXMC1llfvnLDuV3zgXTnv/rn/F7d/5ln0k++G+QFC6B1Juzi8D27scWvuk+6V3etWbN8HkHuq/SW35yWmxW/h3CbG4ng7JdfvcXvDkHlgzKbz/uZjgzABawwAoNhWTOzeZXJqi6k/mpCKXWBEoMKOZcJu/xa3g/3tsY8QYzy/nakakuSqO9aSC+tvyw8nev/BlHc0BohxOJeX/Xj51+OlC7tPrvP9+Xnw5bK+WVyOMX63nT+0nN/YZdDOdI9+1/W/y4SpOL/ti3Dnbhr0Nm65GAONu7qkbR6o4IX2vfQAdpJzxfYI3nzi97ts8rssu8tnPP++W6udb6eDEzu/PwxEvGSLF2KN3ae+GPo5+dBJ6Qfr9wBM/d0aYef62N3a7lbeTgQg4v+qfMSHlLOzM/b29jg9PWW5XP6vrs73XB6WtvtW1nm76/2g9v+jsK/vdVvfC7j6TpQ3O563e77fKhvzsvLjdF+NdX3+O8+zXC5TGisBnWl8gLYLSFEggyYTCiMj3q6JsUMZQZSGuvWYrKQsC0LsaerTxOtSBktBVEVqT98gQocWEm0KHJLG2SRHJCIyCFQ0OJsYQUKDUAElI95anO+RRiTDDyfoGotAUBYZMQZ8hMzMMTrDu0jXdsTQUZYab3tca8l0CWis6xE6UFYFPma4KPDS40MPvqPUglxGuq6hjR6RFShTEoIELwjOE3GoXKFzTfCBvukJbSRTOXqm8JlD9JEsGIINdG1HkIIejyo0WZ4RrCX2PUaAVpLe+yRQnuf4KHGNRQVBJQ2ZVnTKEgiokNgxLjgQEmmylHYTIv26BufIihxlDC5GOpsGHFqZpIclAyJXWBwq9OgAweXIUKBkjveevm+QxlGUEoSn6x1ZvkfwiQ2dGUHdbHC+QemkX+J7j5I5QUJDRylLspARPSme1x4XLcElJqNWedJNDB3W1Sg5DOKlQZiM3jqi7cikp5AShMGRDFtQCoNExUAMFht80jPCI7zDAEVWYL2ktgEpDZnWyNATbYfQAlVm9D3U6x4lFLO8QonE7pQqYmOHw6WBrNbb2ccAbW1xnafIZhTFjKbrEApMoVjVZzzxyM0f+T5gvP//vy//LvPl/ELMdFkfeDEIhHMjM87jY7vB8YPLDK15WZc6RXtvHpyfZ5+cr3c8/8/5Op3b5xYgPL+vhwfrcQIStgPX3aY5v5047WIEqHaBwAkMO1/Dc+OAS0Ptc80utg0v4jDOuKiHFM99vvwR9yC4Fod9RbYsydSEw9Z3dr2tg5iWibt13RkdnDtjwzFcHmrvnq84HboQF+r60PB6u/6DmWzjACKBlkkUbtSRHLSgR8wGQRKHFYBCxOR8Obopb+scWZ+t+T8e+8yP/P0P2z7g6PP/H+aL2ZApMN2pnLvWZEgmLITJXRQCKJH63iF1VEY96F31TKmjMgE9CSMajXzSP8F3xLt3UK+8AcsZ8bFHoZjhlUDIgHIQhcJqkcw1QrqXxm1cEvHtfIpMjp4xbsFBKQgiZRbJOGQoxEjUamCagpcSfXZM88df5r//v3+b3//cV7h+c8Zf+j8/zc2f/8uYm9egrEBmiUysJF4kR+cppZbzceMuBrA1RdgW+SbDxAnrEg877stLYATZmACNIEbTs8SslWFXNmJMO35w37tD+BFQOg+7p/PNzr2W1g1bYFAM7uPs3jkxnZ9ISnEfQWp2UrF379xIupYS1XWnXcUEWonzOM+5ttsufUmJb/bjWytn6w17z/6fP/J9wDReOfkiy+X88oUeuGZTY17sqR+8cncmzy7b3EVM5ntBvi+t53eHwsSl53h8Ap2/QM4/zR++7Z1o4NJLZ3t8Yudmvrj7ne8e1lC7N9dY5wvHES98erP2uCwc2v72g+LWXowFL9vp5bV881/PN5tgeM5w8aq7uLWHlTf//bJL9LL6nZ2tOdz72Fu6/3/wCuX/TwG+N6DsBwlu/SgCZW+lfK/1/lE93reS8v7/lMtLbzuc7YnRo4e0VIfDYxFKI5Uk2EDfefAgpU5absKhjEBqR+82eOvQKkeriFCJKVJ3DVJrlDHEzhODwPaBFFJKfHCYTKKkxFuLzgwISRQBIQUhOlQuMFQIb1DCIAqJVD3W9kQlwCuES+mioXUQQHuPi4ntKEzS4XNKIoXA9xKCxEWN71uiTG7ZSiv6JtL7AErhs4wBbkKEgAgR21m8j6hMAwkoDNaiiBSLjCBEcjzuIbpIaxtcn1wKTZZDiHjrQErmZYmskrux9wFhLYFIsB6IiZFh03GoKIk2IGViSkYlIUqsh+g8UiTnPmUq0A5PQEuR9AZx+CCxEbK8QGpFazucl3ivkrA7iq7vEPRkmSafSaKQeFJabhSadbNBCkUksuksxsjJ8TzPMlzvkgGBDmhlcLUjxgwlNNY3IHuUTtqdOElK/0nmU1lWQHTpb2GQQiMymQxanMfZCMEhlCdTAu88SmeIKAneo1VEqkjA40IgBo0LaeCuhCf4nj54cpMj84K230DdI5WmrAqEj3jfIiX/v/buLUaOo9wD+L+q+jKzdtbrJNiOk5j4SKCckJwoCsQynPMUnxhOhLg9RXlACCkCnAcu4oEHkscgkHgARfBGeAKUh4CIgINlB0c5OIYYIyCJLJCSOCJxojhs9jYz3VX1nYfq6bnszM7uerzTk/3/JF92ure7+puumu5vqquQRKrofSXwMHAwsNDQkYLRCshzGO1R37EDMXYgbykYlSLzDeStFbTsOxOry5sicfgz7CJ01f+7fu7L0aj+EfR7EnRSrNO1sKdp7rrCK69/12i7B17H9V+cq65VOz3QVicuV/+06ui7r8m1h1p1nOjNZXVvcMQN56pej+UOVW+8BhUU7SMLl8SmmHmv97ag9/Zs1UeidGK06ljCAffuv+ed6fTJVKp3aedxYxWSNFL2DyqPT0t7C93HNyA5Ufylusu4HtLzT+cGt9ilQhSuEbRCe0IbwIcJGIpEbvnlY/thUKXhfeddCz2rN1CmCtJlfMOjqAIFI+i8P6IBZYvHSg28icLTeQoIQ38U6Zsw80b56J6oMLNsO41anmdFEklFMdSOWSBdgrQy+GYLamYnoHXZi1EJEHmUvQbbyZ/BOueXKv720ID20O2ZQ4EiedeVNDMxPDIYa6CgYZqL8C+9hFf/7xyef/ElxAa47T8+gOs//F+QG24C4ghoT66hwgQEqt2maQF8++doQMnaMejU0pHJkf62ZJ10EUMpEqpeSZEYlKKXDbqS/P1Juy7SWVoOsaCKiUW6PgjCGGx9LXBvVrTMj5Rrtrc9oPEspw1RKN+vkLdXUEXMu9dU5SPTavUBlO/9Gqa8Hl9Jg1JfQ8O1KtG01sroqtAyYsXRRv72wGxlr9HJz9Xrt0vefQTl5lftp++DaVQg1yxzpx3pH28v5NqHJS37X9nI9dblvEeD3utBB7iO5GTX9WJnmxtIAo6pvm+yeWZykC4fk1xbY9vFubheTpMZOO+QZx5Ka6RJDPE5kiTMHJ6vhClAvNMwWqFeN3DGwcMjy3JY71FPdoTZ6JBDxwliAawNl81RNAMDFb7KtgIjGlrH0A5QkUKSqJB8szkio2ESA6UFyjhEKoayCfKGg0UWemlFMZy1gBNE0JA8Q2yiYkD8HCrWgAYsPBo+h9IOWsWIEgOfCeaXl5DUgMgIpBF6NSY6QqYFK9CI0hQ6d5BmhlbehIOHSVLoJA5xcwi9GvMM0IBJwrfWsBqwEbwPvWxrO2owRsE7hziK4MXDOovWSpi0BTrM3qujFN5ZGIRkJcQjsxYt20DuNFJTg1YGmW3BugxJEiPREWzLw2YeOooQpSm88cjyJpx3MEYBopC3LLTRcDaDazpo77EjrqHlgBYckthDxS2YCEXcFSAazgOAgUlTaCA8buzzcCOtNXQUwwNYXLbhFqGYudNohTjWUDaH8xm08dCxhoeDOAutBNZn0CqBiWI4p+F9jDRJEMUGmW8iz5qITIK6uQrS9JC4BRN5KHhY8eE2PYrgNeDyJpI4DE7uoaDjGnSUIs9zwAviyMB5wHpARxpeRQj9RhRyA0CFyVSUVvAaAGI4K3CZh809lDjAACY1gFZoOYeWbwCxhkoMxGXQ0kQUO4z+3rpqimTIwHKvlSDsf33AZfTQO/hRMQoJ65BM6v6djbXN3Zed/Q8SjbosHran9uQN3Sv0H82qG6EN3a0MeE2ATo/DAZf45TODKHvlrG/HvYmUzjhf3cvXinuRwOzaVPmod/v3VFfklUfvtnxfjli6SiRF0qXY2sBzaTOX5O2Cdm7OPAyUL845KKhijLZ2QlKr9mPt7WyYQmdklu7zvj0m5XRpj9XXfhpTFT3LpOhxBxVyfaIdjNOh1xiKIRUgMFDF2IJdx69MuE1rT5JZDhIqRRsbEjlOGcjMDOIddah/NWCWVoCrdkF0XPYCkfbkGcDg3htdrw06TdrLvZIiQahRnlnFqaq8CxN3iAcWV5C99AJe+d8TePqp5/DWWwt4/96rcfP7b4a67r2QWh3iHbQPnwteCeAddPlIrgpfXHoM7KVU9mrrvo9tn1prlL+94vAR24YJO2rvQrfzktKuW2FSEKAc9rBnD+2ytpuhTnFMT0+97sPsnki69y2T8pzq6tDY0/tv9Vvc6YkZfgrXdj3xBXoT9O0k5aoDoX6idPEl8WplyAYl+9a18SErD/387Ft5yKk+cP/9+1rrI2NQOzJgwTpToSPXGPopqvrX2pj+MvemAbu/plsjC9o91MHILO7wUgy+3ht1DTngemXNMPS9geW6XY3p0OL3XhF2Uqqb1x/X0O1l/fFjcpCIKimNa6ilM7DeYaXZgolMSDypCCYGIh16UiFyYVZYL1CIAInhWw6tPIcYjTitIRMH+AixTqF9BHgL7y28IIz9owVGA7EBjNfwysB5FcbW0wpaGWgVoaZTJLHGQmMezbwBE+UwNoeCCYPFi4LPLZSEBFgSxYhMjLzlkIuGilLoKMz4m2UNwAtSMwO4MNB8FGvEiQZiB9tqhh6AJoF3CogiKGhkzdAjMDIxTBwj8w5xPTwmnWcZtFJI0hhJLYbzDt5ZwAu8dYAI0jSGWAvlHIyKAAkzLGoTQSsbZkoWgYkixHE4fm9zZC48+ltP63DWF5OSaMBFiOIESRrBOiDLV+ChYZIEXgOtvAGXeyiY8JRTHCGKNZCHAafDI0QezrcgzsPUFFIdhUe6ozBWXBSHm8FWM0eSpIiMgXce3jXhBFAqgnIaeTNHUq9BnCBrNeCtQ5Ik4bbFSegq4i1Eu9CDMdJYyVoQhdB7DxGMKFgnsLmF1gZaC7yEcSdXshac94gSgfXLaDaXIUkMcRqR0qjXdmJxZRkOLaT1FDpJsLjSgghgojj0JzAWJg4fvY2VBgRAXDfFhDU+zFJtQuJbvIXNWnBawRQzbBtdQ5xGSIzAOIsIHlkrQ1NZJDMzyKyF1S3MpAl0bmGdB5SG+HiS1XkTHAYnNNa62CqWrXldNeQ79zWvm7rulMUPWHXzF3KXf1/YvtlUCL3gRmx71bfZ6zMw1BvbxLASjV5fBv3uWtsacMshnWW9/0pXhmj15vsTCKrcmBqwvLPeqt2N1B9QFZJdReKyp6emdM7/zriS/dmcrm11vzRF+u/p2omzTmeeECMpk/UCiIMR6YwVV8ar6KGmw0QRykuYjEzCuxWSjkUiCoASDTExXD2Cf8ciyhrQLg+TmxRjAIazrP3FS9+ZMvR0LXqCFitpKZJq7cyYtEsa+haKAuAMxFpkr72Mf5z4LU7/9jT+8dYKlAZ2X7ML6Z5rgR07AcnCjkxXOyWduhBm39Vh4hNfZPxG3Dd3n8c9k3P2HV/nEeENNAhlDlTK5J/qqzhSzPbbWxbp+xjoJNvCpB6mc2iqM3utoDPng+45gE6Z1YBD6CQUVc/22kXpTDHpivOi2FL7tJC++lhmJgdkaPvDN4X1dnwURo01uenP3vYXV0NyfiM/3vrP/0GbH7ZwQ4alAdf6/BlmRKzGdq4NKvPqjavuStz/GwNyc93rdn0EDFnS9f+hic7h8ehPY67azJBXhhS8aIvWStH2/k8G7Ff1rdu71/5ADCjtBqpK5ZKD7cckFhYWJlwSos0bNNbgVo4D2a9dnyo2xOhA7TIuz6/Ae8FK3oT1OUwUIUIEo4BaEsPmGZy3iOIYChqJSWFzh4WFReS5Q1xPgMhhaf5fcDpHYq5CrFKIZFAQmBgwsYbNLbLGO9DeIjERtCRwPkHTAjqJsWPnTkjugAzIljLIvIOuebjUIcsbgI/gWkAtmkGiU2TNZSjl4BODVt5CIxc0M8BENaRxDNVsQLsWtBckOgLyHM1WE42sBW8yRKlCkqbwUMg8oGwG28gRWyCNFDw8nBH4KOS6cueQLCcwRiF3OXKfo54kqEUJtBNIJnC5YKXVQK5a2JHWERUDqGvEgI5gFWCVwIqDiEU9jaFbTSy0msglD4PCxykatob5pUWoTME4g8grLGbLWNbvQJsWEGfQNUHTteC0hjJ1NHOP1NeRuhpym6OxlIWelwqAeEhuy4sE0YJLrSUoW4fYCBAPrYBaWof3QLORYdlkUMZDGwelAZsLxCdQSAEYLGdLgGSwdhnWtlCrpYBTcCKQ1AA+R6oUEh0mOPFKhRhkAiMpcgtYB2ijYOImsmyxuFZJ0cwVRDRWpIFYLyGKHJybQ8PGUE6hbg28KFjJsbLYCk8BwgDQcI0VOGfDbMpQcHlxI2gAixZUU5BlYSZupRNoGCTKIpIMXhyaysCZGqxysJmDyR1m0gjKt2C1wMcGeSNDHMfwzqF1aTE8Km4MxMT411Krp35VVVn/l5bXyEhNUGXjp9DzeOymPmaGXay/m/UlCS53pr92rvbytlJsS0P1l68nsTBgL4MGPVfA8uJKWFzZ87ejvA9YWgnhLCaYCGPyKWivoV2Rgi3vnIrHZcsJDEIv8s5tU3hSwGkL4z2U82XPVmkPaCgSkmleQWDCzVwUAbt3AnEElTXhBaE3pw9jFop28LDQoqFFlxMLiGonorrHSyxSYWLhVQwgCjMJqwxiPDw0lBhoX3Q/0zaUzdYgeQaxK9hz3V4c/u8P499EI41iHLjhBvj3HsB8K4fBAuBVkahrZ6Y6t5a++A6h+wwIOcne/sudshfrAD332T33n0XivtzneutPEadVp3epGCew3En3jb707Uqh+1hFDKB8mJW6SA63e/i5YkZjI+FAvZLw6PmQYheHV+y9cy6p9qMt5Yrt8oYEpaiunpA92wvH7HRISIdxrfWA4+86tDFZWJqONqCTB1hG11Q4PTqJ/5FbW3vxiOTgBrbUl8RZ/csj38o1c0dDv23YgCFHNWRTfSn5AUY9Xtud9O5uOYb9u2YEV+XQB71XMnCNYQav01+K1YnCAZ+xqzbTncor7nDWkRwcsrGhZet/feiJq8KYg8D66n/lkoOLi4sAgBtvvHHCJSF691lcXMSuXbsmXYw1Xbp0CQDwgTtumXBJiN59qt4GtK8B7v33/5lwSYjefape/4HONcCBu++bcEmI3n2q3ga0rwEO3PifEy4J0bvPeup/5WYr9t7j/PnzuOWWW/Dqq69WekalabCwsIAbb7yRsRyTaY2niGBxcRH79+8PEy9U2Pz8PHbv3o0LFy5U+gJmWkzrOVtF0xzLaWkDeA0wXtN8zlbRtMZzWuo/wGuAcZvWc7aKpjmW09IG8BpgvKb5nK2iaY3nRup/5XoOaq1x/fXXAwBmZ2enKvBVxliO1zTGc1oustuN1q5du6YuxlU2jedsVU1rLKehDeA1wJXBWI7XNMZzGuo/wGuAK2Uaz9mqmtZYTkMbwGuAK4OxHK9pjOd66391vzogIiIiIiIiIiKiK4rJQSIiIiIiIiIiom2qksnBNE3x8MMPI03TSRdl6jGW48V4XnmM8XgxnuPDWG4Nxnl8GMvxYjyvPMZ4vBjP8WEstwbjPD6M5Xhth3hWbkISIiIiIiIiIiIi2hqV7DlIREREREREREREVx6Tg0RERERERERERNsUk4NERERERERERETbFJODRERERERERERE2xSTg0RERERERERERNtU5ZKDjz76KG666SbUajUcOnQIf/jDHyZdpEp6+umn8fGPfxz79++HUgo///nPe5aLCB566CFcd911qNfrOHLkCP7+97/3rPP222/j/vvvx+zsLObm5vD5z38eS0tLW3gU1fDII4/gQx/6EK666irs2bMHn/zkJ3H+/PmedZrNJo4dO4ZrrrkGO3fuxGc+8xm88cYbPetcuHAB9957L2ZmZrBnzx58/etfh7V2Kw/lXYFtwGis/+PD+l8trP/rwzZgfNgGVAvbgNFY/8eH9b9aWP/Xh23A+LAN6FWp5ODPfvYzfPWrX8XDDz+MP/3pT7j99ttx9OhRvPnmm5MuWuUsLy/j9ttvx6OPPjpw+be//W1873vfww9/+EOcOXMGO3bswNGjR9FsNst17r//fjz//PM4fvw4nnzySTz99NN44IEHtuoQKuPUqVM4duwYnn32WRw/fhx5nuOee+7B8vJyuc5XvvIV/PKXv8Tjjz+OU6dO4bXXXsOnP/3pcrlzDvfeey+yLMPvf/97/PjHP8Zjjz2Ghx56aBKHNLXYBqwP6//4sP5XB+v/+rENGB+2AdXBNmB9WP/Hh/W/Olj/149twPiwDegjFXLXXXfJsWPHyp+dc7J//3555JFHJliq6gMgTzzxRPmz91727dsn3/nOd8rX5ufnJU1T+clPfiIiIi+88IIAkD/+8Y/lOr/+9a9FKSX//Oc/t6zsVfTmm28KADl16pSIhNjFcSyPP/54uc6LL74oAOT06dMiIvKrX/1KtNZy8eLFcp0f/OAHMjs7K61Wa2sPYIqxDdg41v/xYv2fHNb/zWEbMF5sAyaHbcDGsf6PF+v/5LD+bw7bgPHa7m1AZXoOZlmGs2fP4siRI+VrWmscOXIEp0+fnmDJps9LL72Eixcv9sRy165dOHToUBnL06dPY25uDh/84AfLdY4cOQKtNc6cObPlZa6Sd955BwBw9dVXAwDOnj2LPM974nnzzTfjwIEDPfG87bbbsHfv3nKdo0ePYmFhAc8///wWln56sQ0YD9b/y8P6Pxms/+PDNuDysA2YDLYB48H6f3lY/yeD9X982AZcnu3eBlQmOfjWW2/BOdcTVADYu3cvLl68OKFSTad2vNaK5cWLF7Fnz56e5VEU4eqrr97W8fbe48tf/jI+8pGP4NZbbwUQYpUkCebm5nrW7Y/noHi3l9FobAPGg/V/81j/J4f1f3zYBmwe24DJYRswHqz/m8f6Pzms/+PDNmDz2AYA0aQLQFQlx44dw9/+9jc888wzky4KEW0x1n+i7Y1tANH2xfpPtL2xDahQz8Frr70WxphVM7+88cYb2Ldv34RKNZ3a8Vorlvv27Vs1wKu1Fm+//fa2jfeDDz6IJ598Ek899RRuuOGG8vV9+/YhyzLMz8/3rN8fz0Hxbi+j0dgGjAfr/+aw/k8W6//4sA3YHLYBk8U2YDxY/zeH9X+yWP/Hh23A5rANCCqTHEySBHfeeSdOnDhRvua9x4kTJ3D48OEJlmz6HDx4EPv27euJ5cLCAs6cOVPG8vDhw5ifn8fZs2fLdU6ePAnvPQ4dOrTlZZ4kEcGDDz6IJ554AidPnsTBgwd7lt95552I47gnnufPn8eFCxd64vnXv/61p6E9fvw4Zmdnccstt2zNgUw5tgHjwfq/Maz/1cD6Pz5sAzaGbUA1sA0YD9b/jWH9rwbW//FhG7AxbAP6THQ6lD4//elPJU1Teeyxx+SFF16QBx54QObm5npmfqFgcXFRzp07J+fOnRMA8t3vflfOnTsnr7zyioiIfOtb35K5uTn5xS9+IX/5y1/kE5/4hBw8eFAajUa5jY9+9KNyxx13yJkzZ+SZZ56R973vfXLfffdN6pAm5otf/KLs2rVLfve738nrr79e/llZWSnX+cIXviAHDhyQkydPynPPPSeHDx+Ww4cPl8uttXLrrbfKPffcI3/+85/lN7/5jbznPe+Rb3zjG5M4pKnFNmB9WP/Hh/W/Olj/149twPiwDagOtgHrw/o/Pqz/1cH6v35sA8aHbUCvSiUHRUS+//3vy4EDByRJErnrrrvk2WefnXSRKumpp54SAKv+fPaznxWRMI35N7/5Tdm7d6+kaSp33323nD9/vmcbly5dkvvuu0927twps7Oz8rnPfU4WFxcncDSTNSiOAORHP/pRuU6j0ZAvfelLsnv3bpmZmZFPfepT8vrrr/ds5+WXX5aPfexjUq/X5dprr5Wvfe1rkuf5Fh/N9GMbMBrr//iw/lcL6//6sA0YH7YB1cI2YDTW//Fh/a8W1v/1YRswPmwDeikRkfH0QSQiIiIiIiIiIqJpUpkxB4mIiIiIiIiIiGhrMTlIRERERERERES0TTE5SEREREREREREtE0xOUhERERERERERLRNMTlIRERERERERES0TTE5SEREREREREREtE0xOUhERERERERERLRNMTlIRERERERERES0TTE5SEREREREREREtE0xOUhERERERERERLRNMTlIRERERERERES0Tf0/A54hMhkDSSMAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axs = plt.subplots(3, 5, figsize=(16, 5.5))\n", - "for i in range(15):\n", - " ax = axs[i // 5][i % 5]\n", - " random_index = np.random.randint(0, len(test_captchas_dataset))\n", - " ax.imshow(test_captchas_dataset.__getitem__(random_index)['image'].permute(1, 2, 0))\n", - " ax.grid(False)\n", - " text = \"\".join(tokenizer.decode(test_captchas_dataset[random_index][\"labels\"]))\n", - " ax.set_title(f'{random_index} | \"{text}\"', fontsize=10)\n", - "fig.suptitle('Test captcha examples')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Modeling" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:00.527911Z", - "start_time": "2023-04-05T02:50:56.018823Z" - } - }, - "outputs": [], - "source": [ - "from transformers import ViTConfig\n", - "from modeling.encoders.cnn_bilstm import OCR_CRNN, OCR_CARNN, OCR_CRNNA\n", - "from modeling.encoders.cnn_transformer import OCR_CNNBERT\n", - "from modeling.encoders.vit_bilstm import OCR_ViTRNN" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T05:44:09.387707Z", - "start_time": "2023-04-04T05:44:09.384343Z" - } - }, - "outputs": [], - "source": [ - "# model = OCR_CNNBERT(vocab_size=len(tokenizer), hidden_dim=128,\n", - "# nhead=2, dim_feedforward=512, tr_layers=4, dropout=0.1).to(device).eval()\n", - "# model" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:08.682153Z", - "start_time": "2023-04-05T02:51:08.614160Z" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "# model = OCR_CRNN(vocab_size=len(tokenizer), hidden_dim=128,\n", - "# lstm_layers=2, dropout=0.1).to(device).eval()\n", - "# model" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T06:05:19.543881Z", - "start_time": "2023-04-04T06:05:19.540430Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "OCR_ViTRNN(\n", - " (batch_norm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (encoder): ViTModel(\n", - " (embeddings): ViTEmbeddings(\n", - " (patch_embeddings): ViTPatchEmbeddings(\n", - " (projection): Conv2d(3, 128, kernel_size=(32, 32), stride=(32, 32))\n", - " )\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (encoder): ViTEncoder(\n", - " (layer): ModuleList(\n", - " (0): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (1): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (2): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (3): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (4): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (5): ViTLayer(\n", - " (attention): ViTAttention(\n", - " (attention): ViTSelfAttention(\n", - " (query): Linear(in_features=128, out_features=128, bias=False)\n", - " (key): Linear(in_features=128, out_features=128, bias=False)\n", - " (value): Linear(in_features=128, out_features=128, bias=False)\n", - " (dropout): Dropout(p=0.0, inplace=False)\n", - " )\n", - " (output): ViTSelfOutput(\n", - " (dense): Linear(in_features=128, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " (intermediate): ViTIntermediate(\n", - " (dense): Linear(in_features=128, out_features=512, bias=True)\n", - " (intermediate_act_fn): GELUActivation()\n", - " )\n", - " (output): ViTOutput(\n", - " (dense): Linear(in_features=512, out_features=128, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (layernorm_before): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " (layernorm_after): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " )\n", - " )\n", - " (layernorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (decoder): BiLSTMImageDecoder(\n", - " (norm): BatchNorm1d(65, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (rnn): LSTM(128, 128, num_layers=2, dropout=0.1, bidirectional=True)\n", - " (out_proj): Linear(in_features=256, out_features=65, bias=True)\n", - " )\n", - " (softmax): LogSoftmax(dim=-1)\n", - ")" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "config = ViTConfig(hidden_size=128, num_hidden_layers=6,\n", - " intermediate_size=512, patch_size=32, image_size=256, qkv_bias=False,\n", - " attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.1, num_attention_heads=2)\n", - "model = OCR_ViTRNN(vit_config=config, vocab_size=len(tokenizer), lstm_layers=2, dropout=0.1).to(device).eval()\n", - "model" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:10.577729Z", - "start_time": "2023-04-05T02:51:10.389268Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "================================================================================\n", - "Layer (type:depth-idx) Param #\n", - "================================================================================\n", - "OCR_ViTRNN --\n", - "├─BatchNorm2d: 1-1 6\n", - "├─ViTModel: 1-2 --\n", - "│ └─ViTEmbeddings: 2-1 8,448\n", - "│ │ └─ViTPatchEmbeddings: 3-1 393,344\n", - "│ │ └─Dropout: 3-2 --\n", - "│ └─ViTEncoder: 2-2 --\n", - "│ │ └─ModuleList: 3-3 1,187,328\n", - "│ └─LayerNorm: 2-3 256\n", - "├─BiLSTMImageDecoder: 1-3 --\n", - "│ └─BatchNorm1d: 2-4 130\n", - "│ └─LSTM: 2-5 659,456\n", - "│ └─Linear: 2-6 16,705\n", - "├─LogSoftmax: 1-4 --\n", - "================================================================================\n", - "Total params: 2,265,673\n", - "Trainable params: 2,265,673\n", - "Non-trainable params: 0\n", - "================================================================================" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "torchinfo.summary(model)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:16.447161Z", - "start_time": "2023-04-05T02:51:14.965007Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([2, 65, 128])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.encoder(torch.rand([2, 3, 256, 256]).to(device)).last_hidden_state.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Training" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:24.294332Z", - "start_time": "2023-04-05T02:51:24.093387Z" - } - }, - "outputs": [], - "source": [ - "train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", - "val_loader = DataLoader(val_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", - "test_loader = DataLoader(test_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)\n", - "test_captchas_loader = DataLoader(test_captchas_dataset, batch_size=512, shuffle=False, collate_fn=lambda x: collate_batch(x, tokenizer), num_workers=6)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:47.985340Z", - "start_time": "2023-04-05T02:51:47.219234Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_165935/4162284212.py:5: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n", - " wer_metric, cer_metric = load_metric('wer'), load_metric('cer')\n" - ] - } - ], - "source": [ - "num_epochs = 200\n", - "criterion = nn.CTCLoss(zero_infinity=True, blank=tokenizer.pad_token_id)\n", - "# criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)\n", - "optimizer = opt.AdamW(model.parameters(), lr=5e-4)\n", - "wer_metric, cer_metric = load_metric('wer'), load_metric('cer')" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:51.420288Z", - "start_time": "2023-04-05T02:51:51.198805Z" - } - }, - "outputs": [], - "source": [ - "def evaluate(model, data_loader, eval_er_scores = True):\n", - " model.eval()\n", - " losses, wer_scores, cer_scores = [], [], []\n", - " for batch in data_loader:\n", - " with torch.inference_mode():\n", - " inputs, target_labels, target_lengths = batch['inputs'].to(device), batch['labels'].to(device), batch['lengths'].to(device)\n", - " bs = inputs.shape[0]\n", - "\n", - " predictions = model(inputs)\n", - " pridicted_labels = predictions.permute(1, 0, 2).argmax(-1)\n", - "\n", - " # CTCLoss\n", - " input_lengths = torch.full(size=(bs,), fill_value=predictions.shape[0], dtype=torch.long)\n", - " loss = criterion(predictions, target_labels, input_lengths, target_lengths)\n", - "\n", - " # CrossEntropy (needs same seq len in targets and predictions)\n", - " # loss = criterion(predictions.permute(1, 0, 2).contiguous().view(-1, predictions.shape[-1]), target_labels.view(-1))\n", - "\n", - " # WER & CER\n", - " if eval_er_scores:\n", - " predicted_texts = tokenizer.decode_batch(pridicted_labels, drop_special=True, to_text=True)\n", - " target_texts = tokenizer.decode_batch(target_labels, drop_special=True, to_text=True)\n", - " wer_score = wer_metric.compute(predictions=predicted_texts, references=target_texts)\n", - " cer_score = cer_metric.compute(predictions=predicted_texts, references=target_texts)\n", - "\n", - " losses.append(loss.detach().item())\n", - " if eval_er_scores:\n", - " wer_scores.append(wer_score)\n", - " cer_scores.append(cer_score)\n", - "\n", - " if eval_er_scores:\n", - " return np.mean(losses).round(5), np.mean(wer_scores).round(5), np.mean(cer_scores).round(5)\n", - " else:\n", - " return np.mean(losses).round(5), None, None" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:51:58.145523Z", - "start_time": "2023-04-05T02:51:52.441679Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 415 ms, sys: 527 ms, total: 942 ms\n", - "Wall time: 2.21 s\n" - ] - }, - { - "data": { - "text/plain": [ - "(35.97881, None, None)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "evaluate(model, val_loader, eval_er_scores=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:52:15.074059Z", - "start_time": "2023-04-05T02:51:58.150535Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 1.09 s, sys: 1.07 s, total: 2.17 s\n", - "Wall time: 3.59 s\n" - ] - }, - { - "data": { - "text/plain": [ - "(36.30176, None, None)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "evaluate(model, test_loader, eval_er_scores=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:52:19.902478Z", - "start_time": "2023-04-05T02:52:19.646282Z" - } - }, - "outputs": [], - "source": [ - "def train(model, checkpoints_dir):\n", - " Path(checkpoints_dir).mkdir(parents=True, exist_ok=True)\n", - " losses_history = {\n", - " 'train': [],\n", - " 'eval': []\n", - " }\n", - " min_eval_loss = 999999999.9\n", - "\n", - " for epoch in tqdm(range(num_epochs)):\n", - " model.train()\n", - " print(f'---------- | Epoch: {epoch} | ----------')\n", - " train_losses = []\n", - "\n", - " for batch in train_loader:\n", - " inputs, target_labels, target_lengths = batch['inputs'].to(device), batch['labels'].to(device), batch['lengths'].to(device)\n", - "\n", - " predictions = model(inputs)\n", - " input_lengths = torch.full(size=(inputs.shape[0],), fill_value=predictions.shape[0], dtype=torch.long)\n", - " loss = criterion(predictions, target_labels, input_lengths, target_lengths)\n", - "\n", - " loss.backward()\n", - "\n", - " train_losses.append(loss.item())\n", - "\n", - " optimizer.step()\n", - " optimizer.zero_grad()\n", - "\n", - " # progress_bar.update(1)\n", - " train_loss = np.array(train_losses).mean()\n", - " eval_scores = evaluate(model, val_loader, eval_er_scores=(epoch % 3 == 0 and epoch > 14))\n", - "\n", - " losses_history['train'].append(train_loss)\n", - " losses_history['eval'].append(eval_scores[0])\n", - "\n", - " print(f'[TRAIN] Mean epoch loss: {train_loss}')\n", - " print(f'[EVAL] Mean epoch loss: {eval_scores[0]}, WER: {eval_scores[1]}, CER: {eval_scores[2]}')\n", - "\n", - " if eval_scores[0] < min_eval_loss:\n", - " print(f'Current best on eval, saving model to {checkpoints_dir}...')\n", - " torch.save(model, checkpoints_dir + 'best_model.pth')\n", - " tokenizer.save_to(checkpoints_dir + 'tokenizer.pickle')\n", - " min_eval_loss = eval_scores[0]\n", - "\n", - " save_experiment_info(model, losses_history, checkpoints_dir + 'experiment_info.json')\n", - "\n", - " return losses_history" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-05T02:54:05.154864Z", - "start_time": "2023-04-05T02:54:04.914694Z" - }, - "scrolled": true - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e9110f0c4dc6498cac0d09d3a92fa7b9", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/200 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.gcf()\n", - "fig.set_size_inches(12.5, 6.5)\n", - "plt.plot(history['train'], label = 'train')\n", - "plt.plot(history['eval'], label = 'eval')\n", - "plt.yticks(np.linspace(min(history['train']), max(history['train']), 12))\n", - "plt.xticks(range(0, len(history['train']), 5))\n", - "plt.grid()\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T05:21:25.981059Z", - "start_time": "2023-04-04T05:21:20.099162Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "((0.93186, 0.88384, 0.4522), (1.17299, 0.90336, 0.49401))" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "evaluate(model, test_loader), evaluate(model, test_captchas_loader)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Manual testing" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T05:23:02.749168Z", - "start_time": "2023-04-04T05:23:02.737901Z" - } - }, - "outputs": [], - "source": [ - "best_model = torch.load('./experiments/cnn_v2_128_64seq_lstm_2l_80e_2/best_model.pth').eval()" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total 16K\r\n", - "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 03:05 cnn_v2_128_64seq_alstm_2h_2l_100e\r\n", - "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 01:09 cnn_v2_128_64seq_alstm_2h_2l_80e\r\n", - "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 5 03:57 cnn_v2_128_64seq_lstm_2l_100e\r\n", - "drwxrwxr-x 2 hivaze hivaze 4.0K Apr 4 23:57 cnn_v2_128_64seq_lstm_2l_80e\r\n" - ] - } - ], - "source": [ - "!ls -lh experiments/" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T05:23:05.316093Z", - "start_time": "2023-04-04T05:23:03.552716Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.06764, 0.19687, 0.04471)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "evaluate(best_model, test_loader)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T05:23:09.312765Z", - "start_time": "2023-04-04T05:23:05.315982Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.1209, 0.25071, 0.05986)" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "evaluate(best_model, test_captchas_loader)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T04:06:12.717018Z", - "start_time": "2023-04-04T04:06:12.652392Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAACsCAYAAACtpnyoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtDklEQVR4nO29ebBtWV0f/ll7OvvM59zh3fde042NISIBURHblsRY0gVYVn4aqEQNqVLLktI0RIEY01aEYFmiphKJETVaFpgqFUOVSKIRy6BAaRqUVsuB2BHT2tMb7njmYQ/r98fa33W+e529z3Dvue/e172/3ffde87ee6211/j5zkJKKVFQQQUVVFBBBRV0h8m66AYUVFBBBRVUUEHPTypASEEFFVRQQQUVdCFUgJCCCiqooIIKKuhCqAAhBRVUUEEFFVTQhVABQgoqqKCCCiqooAuhAoQUVFBBBRVUUEEXQgUIKaigggoqqKCCLoQKEFJQQQUVVFBBBV0IFSCkoIIKKqigggq6ECpASEEFFVRQQQUVdCF0biDkfe97Hz7v8z4Pvu/jgQcewB/8wR+cV1UFFVRQQQUVVNBdSOcCQn7lV34Fb3/72/Gud70Lf/RHf4RXvOIVeN3rXofbt2+fR3UFFVRQQQUVVNBdSOI8Etg98MADeNWrXoWf/MmfBADEcYx7770Xb33rW/Fv/s2/WfhsHMd49tlnUa/XIYTYdNMKKqigggoqqKBzICkler0erl+/DstaTcbhbLoR0+kUjz32GB555BH9nWVZeOihh/Doo4/O3T+ZTDCZTPTnZ555Bi996Us33ayCCiqooIIKKugO0FNPPYUXvOAFK927cRBycHCAKIqwt7eX+n5vbw9/+Zd/OXf/e97zHrz73e+e+/4/feQzKFdrm25eQRdKJNliwjdJV6T6YAi/hHGrFAJKi3gaKZkEEEMKmW5DRjtFoqmUACCl/s2vCyEgdTkyeQfM2ibj1EfE6rMqRkBaFqTgNyiyINQ3wlI3y1m/pKWDEnEUIYoihGGAKCkfAOIoRhxH6HY6mEzHODk+QRAEiMIIYRBg/2Afw34fzzz5BILpFHE4BeIYMhwjCqcIJyPIOIQMw9m72y6E48EtVeD5VUjbhrQcuKUK7JKPF7zgXrTbbezs7KBSqWJnZwflso96vQ7HcVTbC+lmQQVdCjq9pkEie/+VGA0G+Jf/3ytRr9dXLm3jIGRdeuSRR/D2t79df+52u7j33ntRrtZQqS55kby+uBNU1H0KygchQBoYCOO3vkMIyDOZMsXGb7NG9bcQlgIYSZNIaykhFQABHahy9rhU75BACEgZQ0oJIQSESMqQDMvYApLuTf4RELAMYCIkkrZIBnPUX9PpFBAhwiiGlARyJOJYIookptMQ41GA/mCE6XQKmQCW8WiCyTRAGAORBGJpqbYLG8JyYbsxIF3AiXSZluPB9nyUaw2Uqw3AdgHbgetX4Hg+tnevoNVqo729jUqlgkarjVKphEq1Ctu2k35YY/LctfO8qLuo+/LXfT7mDmLtsjcOQnZ2dmDbNm7dupX6/tatW7h69erc/aVSCaVSaY0a2Iit1YfGSJ9q4Iu6z1b3vKQjTebF2aGbLvMUZkxz723pcoQ06xUaEMy+Sd/D4ZIg0EBAAxJSSi3EsCxLAxFgdo/+nPwTQ4ELVZdEHMca7MRhiCAMtORDCPUG/V4fo+EQnW4Ho9EQcVJpHEaIwhA3bt5Ev9/HrZs3MZmMNRiaTqcIwxCDwQBxHEPKCAISDiRc20Gl6sOyBGybGilQKldQrtWxtXMF7Z0rcL0SbLcEyyvBclxcubKHWq2GWq0Gz/PgeR5s29YAZO2BumvneVF3UfdlrnsTD28OOW0chHieh1e+8pX42Mc+hm/4hm8AoIxNP/axj+Etb3nLBmo47Yubcn5g/Y4s6t543cL4gyQP+j45d584zQLQkgpWZkrasKg8A4AIKo5AEpN0sNKBeY5AgZOU/GPWtDgpT5A0I6bSEQQBxqMRwjDENJhqhVSv28WgP8DR8SH6/T5knACgOEYcRTg+OsJoOMSg38N0OtXCmygKEccSwrJgCQFIAUsIeLZAyXPQqFbgODZcz9bSG79SRblax/bOLto7u3C9EhzXg3A8CMdBvV5HpVJBqVSC4ziwbZsBsFXH6zk6z4u6i7ovTd1nbcNZn03Tuahj3v72t+NbvuVb8GVf9mX48i//crz3ve/FYDDAt33bt51HdeuRHq8LkIEVdZ+ibgINp2xzZt3psoQ05ByS3W1UKwGlHmHfx8wWgw5bIQBLzNRGBCpmAAQA4tnfUkJGEaSUiBLVShTFIDg27A9wcnKM4XCEwaCftBvoHB+j1+3g2Rs3cHxyDBlKyFjqdozHY0RRhPFkhDiONCCQUsKybfiVGoRlwbYEHMdGtVxCvVbFPVf34Psl1KpVxFIijiOU/Ar8ag1bW9totbdhuy5sx4UUFqQQ8BLwQf1wId5td+08L+ou6r5L6s5ty+noXEDIN37jN2J/fx/vfOc7cfPmTXzxF38xPvrRj84Zq56ezLdeoxdMzruo+3LVrQUidG+6ntlfK6pkTHSRBUQE0qhCIDGIlTNdCS9FQKEMCAgpgeRQz4Y4VEwiTpBQtiIALBkp5VICUKbTCcIwwmQyQSxjDVpkLNHr93B0eIjBYIBet5eUK9HvdjEc9NHvdTEaDiAjkF4HABAlwMayhLL3SMCB53lwXBf19raWWMxASA1buwRCKrp9rleC55dRrTXglyuwHAfCspWxsBCZapfTAZHnwTwv6i7qvtC6N0hn5BPPJU7IWajb7aLZbOJn/9dfpg1TLxLwFXVfSNVZpL1oTl0oKTL4iyXSC62lmQEgKWNAJhYkpH6xBGDNOH1SsaQbqkCJVqvIWY1hMIGUMayYJB4RgiBAp9PBaDTC4fER4jhOfiSiKEK3c4Lbt26h2+3i6OhYA5oonCIKQwRBgDCMEpNZoTxlpESpVIJl27AcW7fVcRzs7u6iWqvh2n2fB9f1YNkObMdGueShWqvi6pUr8DwPVd9HDIlYKtWNEDZc14PruZCwFFgUEtx6h/qCVDErj83zcJ4XdRd1X1Tdp7LTWkLDQQ/f8ZovQKfTQaPRWOmZC/eOWZnWGrgzIMyi7gutOxteiLmri0vOrlsKs3wtdkmEIUziQug+uU2Zk8y+XIzdJRBLRFIBAVKrECgZDIaIowBxMIWMY0SJncfx8TGGwyFu7e8jiiPEkZKExDLGoNfHyckJBoMBxuORapYEZBxBJuog27IghDr4LWkBQqBcrcBzPVRqVVi2AiKO42B7exuVahW7u1fguB4sx4FtWXA9B2W/DL9ahWs7sD0vMeGVEEKVadkOIBSYIwud1NholdRM9UP9lbvxPc/meVF3UfflrnsjD65Edw8IAdYYA/OmDXRiUfedr3uuHDJJXSYJWaXu9D0ydSUxi03ULgIA+dUKCMQJsKBDVujy1D0xSTjCAHEcISJbEAGEYYjbt25iPB5h1OsgjkKEYYjJZIKDgwP0+308c+NZhGGIIAiVbYll6XtUTJAQFoENKINS27ZhuRYs24awBBzHhW0nYKNSwQte8AL45TJs24Vt26hWqyj5ZVy5dg9s14Ptuuo9BGDbFkquB3pti+w7BHUKlGRE27wojx4TYFDERG4zs5Cer/O8qLuo+9LVfefo7gIhK3feWXo659mi7jPWbQKHNMKXmc+KjL9Nvnt9mntWsCvaBkQa96dbaCUcfpyoPYR+SiIKQ8RxhOFwgDAIEIQhZGLjEYYhbt26hfFoiP7JUXJvjCCY4vjkBKPRCIO+cpuN5QzoaE8Zy5oF/oJAySvBc11Uq1X4vq9BiGXZsCw7CRxWwfaVK+q65cCyLPi+D9fz4JZKsB1lYEoYwrIsCNtOwp6Qxw4DIslQZ404ST6AtLSI4qXMenS9ubaK1ng18fJzeY099+pex1oge/zvzve+sLovAKTcXSBkZVrSiws7+qwjUNSdXzfTbyx9Nq88sbyuzLoVjJDIUsuwTwIQUkIgnn3LQAagDmlL2CrWRhAodYic2UWMxyMEQYCD/X0Mh8NEghFiOp1iOp3i6aeewnAwwNHtW4ijUIOM8WSMIAwxHo8hLAHX9SChVBm2bcNxHHiOA8u2keADNFtt1Ot1XL9+HVtbW7AdBTLCKIaQwM7uLiqVClrtFlzXA5jLrGXZcF0fwrLhOC60KGQW0ARxHAFCSVuUHMjoLz4yhvolC4zMxvAc6cLneVH3Zus+C93N730Bdd8RgJSm5ygIWUJ385p43tU9/+AsJulZ6pZIG35IdrYmgEIiMUxNDlQd40NASGA4HGI0GiEKQ+2FIiExHo8RTKe4efMGBv0+Rkl8jzBRvZwcH2EynmA8HiOOIgWQYokgihBLCcdxYVkWbMfRTS/5Pqq1GkqlEsrlspZONBpN1Go1XNnbQ6vZhOXYEJYFGQNCWGg0GiiVPJT8siqPGYsKYcGyCZRIzALPJ0ovAQVaANN5KPkibZCqe4/6idmG3FH797tynhd135X0vO3zzVV++UHIReqwirqfwySNv83PSFQoEeJYebDIOFZBwMIIcRiic3KCTqeD8XiM6XSqXWpHIxUi/cknn0S328Gg30cQBknRUuVqiWKEQaCeiZO6hYBtWyiXKyqIGPtptlq4cnUPzWYTW1tbEJaAsCxUqlWUKxW0mm1UqlUFMiwB23ZgCQu2o9xmbVsBENu2AYiUx47gBreQCmAIOVPBJF2SspsRAIWpB5CSgFA/kNpoIQB5vs7zou6i7ruubirI/M2vr0+XH4Q8R5HmSpwh1xKsEW9hWdnctTTre3rv3OunaAOFNp99b3hMpNxiZw8JOikltxxhHLs0loIQ4Ecqexn1SyQSDQggiZ8hAQUwpAIYVEOcuM5Op1MMR0MVMj0IEYchojDE0eEhjo+OMByOMB6PtUpmOpkiCEN0To4wGo4wHg8RhdFMnQMBy7ISdYuqWwgB23FQKnlot7fgug5Kvq+kFZaFeqOO7Z0d1Bt1tJot5SJsCZR8H55XUl4wpZIyBrUELIoJQpIPodxpY0n9o4CGSPVT0veCG30kvSlmijABmcRHkWCDxcZ6Nr+WzvNlEuec56lscgPO8sDhz2bO3efo3rKpurNses4cgM54fJHXVNbY541xXrvmysjZUxfNs6yy1+6Hu2C8iZZ6/mG2n5+pooQuPwjJoOcEqLyDdS/ajJe6Tm6c5g+oVN0J2NBKF7IzwAw8cGVMzEKlK0+VBNDIdG+pEqkM+gYQsAFIRHGIOIowHU+SNgFRGCpD0UEfBwcHCIMQwXSKKAgQBQH2b93G/u3b6PV6GA6H+j1INRMEiTdLFM6ipQqBSrmmbDxKrmqjlLAsGyW/hFq9hhfe90KUK2XUm019yFaqVTSbTVQqFdRqNcBS6hKLAo3ZSoVj2ZYGdFISxCBwKRDrqTADfUlPzu4ngxMr3dd6rGQMHe1VJCAuA7BqY9o1D69F85zKoTgqPBbJJlQ+d+P6Pu+6syICnwetAgpOQ4uYKRPA8u/pvU3V4sbaheeBwHkFuitByF0EKk9XR56kYgNlZ+nrz5vSi37+WopzhiHgM4wcqYxFXJL5t34OUCHRkRhcAogCII4jjMYjhNMAg15f2YFAIggCDIYqQumtWzcRTKeYjCc6Nkf35ASdkw7GoxEmk4mWOlC2XCEEHMeB49j6vWzbRru9k2SXrSdurEoyUip5qFSruHb9OnzfR61e1xxHyS+hktiElHxfG9cKS2X8VS67PBAblwjR2/PfAJIYJLOkeWwsBLtTJv9o7mdmCyIgIaWAlPnc7LpzLOvupVKNnHvXpef63nKaurlKzXS33uQ+suq4rSu1WPT8ovvpvc8rBcFZSlxnPWTWveS9s+o5L7orQcj6dHdizk0Z9PFJZaJ7iuWwaVq2MHSMDbbAwzBMPattDFILztKuq1lkAhYevRMQyqYjjhCFAaRULrNhGKLb7WIynuDo8BBxFEEiwnQ6Ra/Xw8nJCZ5+6mlMJxOMRiNYArAtgcl4jOlEZaONomguYRtlkXUSjxXbtuG4Lq5fv4ZKpYatnV1thGpZFjzPg+/72LmyC8/zUC6X9Ts4rgPH83RiOC59UL84uBCzzyltiUjdJyEgIwXGLEFjkgCpROUleH9KAJZUkpAEMCp7XYIk1tzYbZp4mZZlrVTP+QLtyyq/2CxlSQw2AUBWPfAWr+v0fctUNVmMTVab6DfVcdHBxTdV/yp783m3gdPzBIRcHgCyCMVz2sQCX2XDWMQ9nLbuRbr5xe0k7po3ggKtJ2qWOTWC1Jy6PphZfSrehlRAIQzR65wgDKeQYZhsRDGCIMDR8TGGgwFuPHsDURSC4n2Mx2MMBwP0OieIAhUeHZD6WTLAdF1XS0Jc14Xj2Gi32/D9MnzfV4ailgXXcXDtnntQrlTRam1rjxUyInU9D/VGQ7njehQwTMKyKRCZhTTgIGlE0lmSuolJn5J/+TDIOJGACAGyDaHu1VKO1EatMgWnzEX435gByvNW8ZnzKY7zQen502WVX2yG+Fie1yGcV3be91m2KuvWR7+z9ijz74udX4vpNO1a1md03ez7rD7aRL9cbhByXkB/Qbn60gUyOGcVteWRIOtCo560eiZ1hq9MvKy8a8ufZ/cJ5QZLbSbj1TTnnRzA9EkmKeyZtIdsBwaDASaTCW4/+wym4zGQSF0ggCAIsL+vbDueeOIJLZGhAGNBMMV4NNJqliiJgkrgw3VduJ6r210ul+F5Hq5eu45GvYF6va5idECFTL967Rr8chm1Rhu27YDsXiBU5NNSYmDKuby0JQuAWCq7UPqS+9AyuxmlPBEzbUrSL8ojR8KyBX8suTtRuTBAp+1tWA2k7yGVUdZUzVTR4PRrbNHGuJIo/gx1r0QXubdsuG5TdUvED2/uPXVe771M2iUg9PrIsvege5T5FZvP7D24VG3RXjY3x+7geHP10CJadb9dy04ro082dTZdbhByXiBgQblihXvOk84LgACzg4yXPy+1OF3ZfFNaBSXPbWzsXwkAZNSI2UImuBEzsMGlHxLAZDxWthyDASbTKaIo0iBkOpng2b99EuPhEPF0mth+KEPSwaCP8WSC8WCowqzHFKxM/euXfNY+lRfGL/ko+T5arRbqtRpsV6lKVEp7F9euXUWtVkO1WoPrKJBiWTbqzQZc10OpUtHqD3pZpQqZvSOnufGbWXJoDMLBQapXBQEWrTgB+6jfUz3PI7HwkcHc31zNI0kiZWz0Jp11ja0ics+jc1/fF7m3bLhuE2gstJE4Q91rj6FxXyxn6yRX0qwlpkjNnVUO14U2IXd4vFfpo03dw4lA2nlIxC43CNkYXaBYI6fuVVQUmxRtn0ZseVrKWsT6MDMZidT7JanSkgikxp0KaCQHHeVQMTeS4XCA8XiM/f199Pv9FAiZTCZ46oknMOoPEI5HiOMoxf1EUYTJZKIlKNQu13PhV8pqM7IsLXioVCqoVKq4evUqdnaUsanneQqMOI4OmV6tVpXEQ5UIx3VVWHXPS945eT/MNkaJBdyfYBBBMjDC9etJWRoj8KKk1OMQ6705+cOiPDAzQKQ6XehbTFiiOFFVielJsWm7pmWStvNUG2TT5dtbNknZa3lztGx/W12Ve/p68tTWl1UFY1KeKj+PVpIYZoDNLEZzE/Q8ASEXOZnmF3GWTpuubVT9kmH/wX/ntem0esas51NcKwAZzw5AfR3cK2aWbVaDhCjSRpD0zHA0wqDf16HQ4+Twpkyzt2/fRr/fVxITKXWI9aPDQwSTCUQcJaCGb04CXsnXbbNtG27JQ61axfb2FhzXheN56t4kRkepVMLu7i7a7TZc14OTRCwVVhKt1PO08anQRqs2IOjgTvpMiUGQOLymMEPuaHBRuDEGMgFs8+LjmYpFSpkEp5eQIgEeqXtnnS7YdynND9Jjnadb3xSZc5WDyPPaJJe06A7Vc3F18z6WUs4Zg26CQQLyDY0Xzam8Ni2ry/ycNX8uOwjJajv/fpN15H3/3LcJyaHnEu/BuW47SbXOr5nc7VnrNr1jOIeZBx7WpeyJq1w5kz/pH5D4fl7cr4KFxVGEMAwwE/er8keDAU6OjzEcDjEcDrXtx9HhIXr9Pm7duoVer6fLjKIIURRh1OsjjiK4lpWq07ZtWLYN153ZY7iui3K1jFarhevXr8MrlVCuqGimwrG1PcjW1haazaYug4gMUnkdQlhQDsCJfYt+6VmME6FQGO/Q5BbjAAYJOYz+lpipcoTFKpEGCJmpuHTPG0XNlDIzvbvy36V5Q3fMexycFtgum+fneTg8l/aWTdRNY8r3jTt1QK8COCn+Dt1P9/HP5r62ClC+IwbWON14ZzGT64zJqu+VVeZ5gPu7EoQ8V3gPCmpFKgBy5SSvCMBA6GeoSxoHGYUZJ5dSL+HwORDa9GajirKgAl3RhgGEibsstBpGxejo93qYTifo93rqewHEsQInJ8cnODg4QH/QR7/f1yBkOBxiOpmi1+9hMpnouqmvbUvAsRy4OqQ4YDs2Go0mfL+M3StXlBeKQAJCKqjX6tjdvQKv5MGnvC1Qz9mOo0KnUwZbpnqykjoinWlXAQwFQOhQZxFil9DcBiAlYpkxLwS0OicK1XtHcQhJ4eelRJxELYuFirw6C3pmwRIqfLxIxkzFIREMOM2gSdKQVPVhkhmY5hbN67XtNpb0hZRqnoRhmHKHPsucfa7sLZuom9YUubET00J7xaYOpGXjRW2Ioki3gdpG6tZlkhBTysINUmnfo9/mXD2rlDiPzlpSnu1KljRp2bPrXt8kXX4QchnZg00VL5UdwnQ61RPHthWHvQ4CXUefSvfSxkJcPx0Um6J5468Z90zf67ZEEWQUIQ6V+yuggFmv18VoOMTRwSEACWEBURipkOlHR9jf30ev10Ov10ttSlESbj1KYmAA0LlSSiU/Oaxmfex6HhrNFur1Ou594X0aiDmui0pV2X2021twPQ9+2Z9FP03cZkkiMgMgSfgvEvzEM3UTmZKSnQaX7vB+y+xTcKFGWiJikgIhsepbGWMaTBOpUpjMu1iNh6XUR67jqmir0oFlqVZaCUCZqWlEokZC8o7Uqjg112gMaFM0JXxGQ0+1xog7D4IAQRCkwrevvIE+h/eWTdRN+xOlLqAD2nWVkfWpDiqj7mVqBBrnMFTu8QQWCOgGSf6lZW0hEEL3CiF07B66xve/rPLOdDBvcLzz2pEl+TlNOad/5nSg9PKDkMvGHmyQaHF1u12EYagBCA9wtY4R0bJ7aFOJoghHR0cIgmDmYpr8rFMmp0X3qrpjhFEAKaGCgSVRSaMoxMnxsXKDHQwQRzFkHGI8HmF//zaGgwH2b+9DSvWMTCQho9EI/b7yeJlMZxIPkrB4rgOr5Ol1IaFCo+/uXkGpXEa90YTjuDqAWKvVRrlcwd71q3BsB5Ztw7YtOK4HNwkcZtsOHNfR6iQhrOSQ5lKC2UK0tHrFBoSEFFbqHpEc9iB1lPpADVb3cC4MLAoqARzW7Sq2iYrmOpmMEYUBBoMhwiDAZDrWxrxxTGJtQAoHQqg8NrZtw/c8uK6DaqUE13Hgl0qwbAnHEUq1I+wEdvDxVnMlihQI7PWUFIrm8cK5fMo1RodSt9vFcDhEs9lEuVxeS+LyXN5bNlE37RdqrfX14d1utxNja3v9g2yNuuM4xmik8jINh0OMx2OUy2W4rovhcIjJZILJZKJd6oHVpCoEQEhKR27xruvC9314nodSqQTbtvU7nlkycE7jfV62IKvUma7v9Cjr8oOQ86A7wYWY8yGjPr7QptOpVsW0Wq1UnAgFCPIq4iLxfIkIByHahXUygZ8YV3LdKn8utfjk3B9p9jxnQVDZYRAiimNE2qtFtaXT7WAyHqPf6SbJ4QKMxyPcvn0D/X4f+7duJ9lsE2PSWOpDSHPdFqkRFGfjuS4cx0naAlhJZtmt7S1UajVsbV+B6ymA4TgOarU6Sn4JWzs7sNnBaSWSAps+2zbJMphKSUV1lQaAkEr3kvQLmZzO+sam3CyCjaLuN2l086yjCbAwq5pZX0sFNCZTldm311cqrfF4lICQSI+HSmjnQAgbrqMCrFV8H6WSC0tIxJ4HN7FpiS0lieLqJnpVrlqL41gfGm4yBo1GY+MbJAF4OiB934fjOJl5Tsy6z1XUfBdIOFYujklqh8MhANV31WoVvu+nAd+GOX0u6VL5mwa6DVJKDAYDjEYjjEYjLd2jZ/lvc+yzQIjjOKl9kKt3aB/OVT/dwfE21UJZ83gdO5ZF9jB5dfLf6edP3wnPURCyZGYs7K+zzqr5583SlNmDRByFCMMpBoMeRiPFqfq+j52dLQgh4Tj28uamaknXzSeN0p3OFu+tW7cwHo+xvb2t9aoLD4q8S2QkBYk4jBHFkZJWyJndB+ntj46PMZlMlD1KFCMKA0wnEzz15JMYjYbodTrKGDUOEQYBBv0uptMpBoMBKDopbU4OcdluYgOQtK/eaKBcrmBnZwfVahWOq8CDjJW49crV6/ArFTS3thXQSLgdL/FiqVSV4SmERZ0I6E0rHa00ifeloYGVPEN5XTRIEMnYiHQ6OBlH6jkrYzPRfatDh81dn/0kRrxxjF6vh/FojOPjQ4zGI/Q6qg8nk0nibaSety2VVTeKbVWHsGFbIpF+eGg2a6iUy2g3GyqwWq0O2wFsRz3H8+9SxNUomkknut2u5iq3t7dTdk5nWWPcFmQymaDT6eDo6EhzruVyeeOqRaMFuEx7y3nWTX09Ho/R7XY14Pd9X6sftRrylHXnHXJxHOu1f3x8jG63q22/oijC8fEx+v0+er0egiDQNkGLDuY8IhVTqVRCpVJBvV5Hs9lEtVpFpVLRYDqTLmC8s5hF2r/J5ussZKrS+bgQgOPg7Kx0eUGIYVyjD5ol75wagFP1j8FxApg7gEXqqnGZgQDIJLS1iv45uzcxBpAqJoY6JMaJbYhC/2rSS81180rkrILZd1pGny0iU9Upg1TiHsfjMWq1GjzPW2xzwiqZs0Rg6dyjSNmZxFGUyvcynUzU4dQ5xnCokr1FUYQwSQh388azGoSoRaS8YoLpJJHcTHX7tD1GqQTPtjUYkQkYqNXqqDUa2L1yRbnIJodTFMUQlsD2zp5Sx7RaWrqhDdISMAII5cFCAIP2WCbRELORZD1E3MkMgnBliv5LiNn4QwIwbCaYCknVa82tBw5CYkgtYRqPxxgMB+h2uxgMB+h3e1qnz/XhruMkIMSCSkCnbD9sITApeRBClec6yp3Y98tKFWMn75VCU+o94limJCFc+pbe0HIW5pL1zacoSUKorkkyx8wEayvTyufFWTbd07433wc3U/c6NmZhGGrmgfp8Op2iVCppQ+BUG+lfMftmFWmU6fVCcXuGw6GWhNSSJI7jRDrST9z0q9VqvlGyNCH87IDlkpFSqaRVOwQ8aP/I88BZ1HfqlvWfS983Dzion7iXDDcips+LaFVJCR8TAh7UH7yMs4CRywtCkCFaynnP/AHOekDOn9WLW8F+pw+bxeKo5ASLJSi7urYHSDZtx1a5RDzHwcSykrgXExweHKBer6Hsq7gTjha9WZBIgnlZFgR9hoTATHVjThAJZfwZBCFOOl10O10MhiOEQQjX9eB5PixLieUhE2PChJOc8eHKhgPaAHSWe4VicXROTtDv9REEU4RRqAwypUzUTRM8+dTfot/vK5faKEq45wgnJ8cIgwDj8XgWqVRKyFgZN3qeiziKEYQhhG0DwoZfq6PVbqPd2kKr1da63UajiUq1gp2dXdSqVRUYTCQSJUug5JdhOw5c31OSC6FUIpZtJe+acNCSAcBUT3LfEDNUOQEyqR/U8gIThLIyEBuTUQPUJH6HxS8xQ1/M5tOg38doMMSNmzfR7XbR6ZwosBdGACQ8r6Q5vplxoUAUA3EUYzoNNOAbTUJM9kfwSx56/R7arRZiKVGuVFGp1eHYDmzH1m/A1wiNd7/fT4GQlcDBSvuYBSEU4JlOQwwGI3S7SpKogNb8pr0SrbyHmojhrNzuWR7fQN0LyBICjqVUdZ7rYdgfoNfr4fjoCJaw4NoOXNuBcJBICamvRfI/m6M5ZHLdNF6kAjo5OcH+7X1lZC6VnZUlLATTQKVSiGLYlo16raZURBSB2BgiHf+YMTMEckhFTeBqNBqh1+thd3cXYRiiXq+jUqnoPUYXm6P6WAY4+PtytcoqHkdmPxFTNhqNtBSSPIlyAQ/7V/+VLGPJPus2QkmDPU8Bs2ajCY+lljirNORSg5BVKNczhN+TfgD8kFj8sIlG59HfPBBhC5EOMhrI5MAgLtpKDnvHcWBbFsJAuaoOhwM4jq3E53HioQCLSR2S31wSkhKQz9qgvCRmi248nmA4Gmn7DNsm+4cklwKUxGnOFkRzDon3SSK1IQQuowiDXg+d4xNMJmOE4VRzxqMk1f3+zZvo9XsYDoeIoghOYpU+Ho+0/heYcUQWFHBwHQchIoRRBFgWYNlwvBL8ShWNdhu7V64q+47EtqNcLqO9tYVKpQLbcpKFrhaL5djJb7545vWrmZ/m1vQy6VFaKpU6MiS7i4NGU9SqJU6J6x09yrkgGWM6Vhxjv9dDr9vFcDDU3gQKdHg6KR4ZQAPKK1p5sgBBoFLqxHGkQEkYQMbKdbw+HELYNjzfhxCAJU2pz6w9YRhiOp0mKi5nuaqP+iNjTc42dN0NUJz1TBoy0ZmM41Sfr2wLstZZbt54+g04q0/W2dA5p73s2XUMzSXrbMuyYCeJF0mSOh6NMRoOteTJii0Ii71LggGotpX5PcwOPppDJOlymJGolahrwkBJLSwh4Jd8VMqV1KHIwUCMdGRlUunRb9PbJgxD+L6v80CRRGSuj9jf63qn0LN5UpBFY2ZKQUja2e/39fsslHbx4TJsQPLUMaSGq5QrifR5nZHNp0sNQvIHdRZbIb8jaGOcHTTJA7MDPG+yCKG9EgR9NtBtirPLLUf9imcQZPYjVBwJB0Cj1QIsCzdu3VKeK8fHCKMIOzu78EsebL+kTBMsKlRx8Jyf5hNmZtCKBK/IRKw5wuHhIU6Oj+E4Dsqui1a7qZCt68KxLB2lNAoiEGerJDfKNXYyGWE4HKJz0kEUBgiDAGEUIY5C3Lp1C0eHh4mqZ6TfP0wMSLvdDqbBFME0SGxGVNttW4n4fN/XwE4IoTcez/MQhCGG4wliABEsNFptbO9ewfV77sW9994LzyvBc70k3b2NSiVRM8WzOaS8WGK1SS40smLfzw2qYhdiKXPnJ+cxSI6UK35LNtW5eg3R9FwrkvEeDocYTya4efMmDg8PcXh4iOFwiFKphFqthmaziVKppMXVlBxPqftEAirjRB0YoN/va/foKIowHI+Ak2NEMsb29jYgBKrVCmy7qt5PILXxc06Nc2xLyZQorShtmK9vteo2Ufd5UJ6NRNZ96wALs2yzjsyyodSUlUoFzWYTvV4PrutiNBrh6OgIrVZL21FwY08CnavY5XCVCD0bhiGGwyGOjo6UjdN4hHarjUajoY1iCZCQt8ze3h7q9bpug5n8MZVnCjOmjCIuk5Frr9dTBt29HoQQiS1VrAEItZNLMPj8y+rPtIPB/FlirpVVVGXmvCfj3Rs3bmimbxUQkmeEyv8mqUotkTZpe6CEoUk6+dTL5PKCEDHPnbKLWMiFkoTCkBYAmJ3MiaSC6qJS07UIfll/S5N5xr1qPnDu+bQLJSAF5X1VeUgsS7mHlZLomlEUYzSawHWVjtuxbcQyURLowtIHpDBACOdBqK2ElMeJy1up5CmE73nwPDc5CBO3zVgZjcaxTGJtSACJqH40RK/bxfHxEcKkzCgMEUUhDg4OVMTSXhej0UgbXJK0ZDqdaEkKtVfpYhXHXC6Xk41IwrJESnVgBwEiCUQQiCBQKpXg+2VUqlXUGw2UPB+u66mgW7YFr1SCbbtKPC+VO+1s2mSLUTM3kSUi1UXc9UyLKGjEc0W4JvFN2dxMqO+IA+L68XGSwK9arWog4vs+qtUqXNfVkhDaPEhV4nkugiCAEIDj2JhOJ3qDJg7L932MxyOlHtOxGfIPsbVASPrtMz8vOjA3R2eQdOiNeDPAJW9+mQdW+p7NgSYCmAReKXwAeSWRnUielECy/XcRt8/XBKnvSD0SJEkobcfWhs7cbZake+VyOeU2bB72kUxHfDUlCGTMTFIEJTUeQwihvRepD7KCmdE4LJuPeXYUiwDIMjUNSY6CINARpMfj8alBiPkceSHy/oqiKK1mO8OUu7wgZAnliZD09eSonx0ihnBQr1WRxg50UMWzr6Wx1y6TwtC3EZWffCmFUCtbEjIWkFYMv9pGBA+1xo6yBu90EUQ2jk/GCGs2fN9RESxZuGwCPtptNAn4JZHYishYcQBhiDCK0Dk+QqdzgkG/g2A6wu5OW6WYd2xAxhiPBrCEAkVRFKLf62M8nuD46Cg5CBXXMBj2cXx8jJs3b6oDKuEUZCwx6PcwGg31IlYghDYEKE8Ux0HZcVSUTqEAxrUktb1yTRYqzbxQEpIwCDEcDTEcjeF0uhCWDeG4qNXqsCxllOq6LrySh5LnaxBiWSrqqYZ8YrYhSjk/f7IO+jziG1zm+GdJy5APPLIWP+css+6lYHOdTgfHx8c4PDzE8fExXNdFo9HQnGG73UapVErinNhzESFpcyHOsNlsYjweo16va250PB7j+PhY91MYhqmDib+byakt68tViQOerPI2ikNOS4L/kQ8GlkrfDI4078DLnk/L80BlceNZ7VBeYipRo2VZWkrQ6XTQ7XZxfHysVXs0p+batQIm4hI/8og5OVERkafTKfwkU/WVK1fgeZ62RZBSwvM8+L6PWq2mJSE8vAERqWPMviWPH7JBqdfr+r3I++rw8FAbvZJkNiurbB7AoLpMwJUFLubOsZzx438TM8d/lqlLxIL1YjIR4/FYAzLuwryOFG4R3RUgZJVFlUXGNNDfkByB571ICsoWsGgcY9yfUbb5rYoVIZN0GwQiZpIMCQu248F1I5T8CqZBhCA8wWQSYjwJUPIixFJASAELSR6Qme0kJBJ3UiGTHx6PIpFChCr413A4SEKkR/BcB57nQsYRojDAJI5gQQGaMAgxTKzRj44OE8mFkmQMhgN96BGXLKUyogymE4TBlE3gxKXLtiFA4jsrUQnYsCwBzyuhvbWNSqWCra02LMtSqg4AQlgYj8eIAcRSwBtNYTsObK8059GjAJSlwBpfIGnhUTKMp188WRtAasxzRJpczZTH3S4jk4sjrwXyDgnDEOVyWUs+arUaKpWKkrQZhmTUBh7OOo5jbXxHEU8pDgPVNRgMtAEfAcC8dp6OTsPJbwqBnFaKYDwnYYpP1yJzXpmHXW4rVuTAV26DKlQfvEr66Gvjx8lkoueHeTil2ivEwl7lEgSuIhmPx4CU2n2WJKXmszwonrYb4SpCILGNm5e6ULsJZBAQ6vf7qXk/HA61d5DrurljsuraPu1YZYEeel8CH7Qmc+vIUBCYbeN9A0AzlhSFWoj5zN2npbVAyHve8x786q/+Kv7yL/8S5XIZX/mVX4kf/dEfxRd8wRfoe8bjMd7xjnfggx/8ICaTCV73utfhp37qp7C3t3fmxgJLROCpe5iaArzT1AkeS9KhzDYQXrawuUsCKTYU0aDTQJlDOmOIlDqGVDCCvDEkqw8SruNC+hK7V3ZR8ko4uH2AKIhwdHgMGUvs7O4Alg3LchMmi1ojEcdAEEQQibhRa5riGDKOMBmNMB6PcLR/CwcHB0AUwncdeI4FGzFu3Xg2eQ8lNZJSYjKZ4vBA2XY8++yzSe4TFQOENgdKDscPVtdx4FfIOEx5XUgp4Zcr8DwP1++5nvjeV7V3heu6uOf6dfjlMpqNhu7XKI4RTKc4Pj5BpzeA40nUajFK5TJqjQbG4zFGo5EWP7qOB89TwYbUOKdGIjV25gafBXIXcYqrUl620VW4UAB6wXOgQHOOxuDg4AA3b97UAGRvbw+tVgu7u7uoVCqpuBmLODUiz/P0T7Vahed5ODw81Lrx/f19fSAJMcsjsojW26hW56JnkhZ1s/p8FkCyHgef+VzGR06riuuz5ogJHM1y16WstqSlGDOVqeu6aDabAIDhcKg9oEh6xiUFFFODDjDLmg/bz0E53UvSCIoLMhwO0Wq20Gw20W5voV6vaxUQL4f/cJsQXQcSZpD1kyld4i65JF25efOmsosaDvHMM89odZDpJcPbMdeHrI5FxNu77F5TkmXbtrb5uu+++zRYWgWE5DFSUiojZDLelVLquCnUD2JDsXjWAiGf+MQn8PDDD+NVr3oVwjDE93//9+O1r30tPvvZz6JarQIA3va2t+E3fuM38KEPfQjNZhNvectb8IY3vAG///u/v5EGA4uBiN6I2CYiJMVbMFH0vBg3XbYuADKePb4QqVI56VLnruvvhbJ/sC0LZd/H1J8orxFITMYjjMc+wjCCZcdwGbKHNs5NNgpIbQSpJBOxirURTDEdj5VkY6BS21u2jTgMEUynGI3G6r6QEpupzeDw4BD9wQDHR0eJPlVqkT3pTc2F57gu/FIJjqNUIlGkApdVqsq3v721jXqthmqtBjsRF7qOg2arjVIiUhWWiokRJuGi3cFQGfZaNlxP2c6Uy2XtDcGjgKbHcbXxyhzDFe/P4lZPwxnkqvVy5rmUs2Bdk8kE4/FY23tUKhVtB+J5ntbj03uZm7AJlKSUqUOkUqlgOBzC932tGycOWHtHWNkp2Hk9p6IVHt2Eque0dZ+5ihWkG0D6HVMGlxmHhzkHF82hZXWZbeVhzR3HScUMmalgs9uXp7KYAcmZLQiP+UK2YqWkTvKgo+cX/Zj1KUZw/nuzz8rlMoIg0J4xZG9BAIi7vy5b84vWxDKGepW5QX1I6heyBVsEQgSgjh5jnvC/FTOq9heKB2PalHH51lnW4Vog5KMf/Wjq8wc+8AFcuXIFjz32GL7qq74KnU4HP//zP49f+qVfwtd8zdcAAN7//vfjC7/wC/GpT30KX/EVX7F2A9ddLOpi8o+UECQ1SO6PEzHjbLHwg52XzRKQyeR4l/TZBDAM+PBymJBEceeJq27yoJVIHyBjwIrRqlVgxyHazSrGoxFODm4hDqc4vHIFtXoNbolxnRpsqecjGQFxBBkr1UkcRojDEEf7t9E5OcEzTz+Jg/3b8LxSkv8kgm1ZODw4wnQaYDKd6hgdcRRjPJ4gCAMMByPE2sseOlhNo9FQbREzPeSV3V20t9qoVqoo+Srol4BAtVaD55ews7OTRN+swbFtRIlxI9krOLY9E91Op4gGA0yCAP3hEJ7ror29jUqlimaziSiMcXzUQTBVbsdRlNZTWhYfo3kumU+fLP1t3me+0Z924S2KmWGKec2NitQw/X4f+/v76Ha7mEwmaLfbaLfb2NvbQ7PZ1JtFngQkbwMCZhEkiaMElFTm4OBAB446ODjQLozkoXBaEJZPXByh/s7e1Pm7bar+06pmVijZOMD4WJPkgX9nPmtyzIvAJR2Ym5DskUqv3W5reyQVk6ajU05wWwRdF+vKrIOXDB6HwyG63S729/c1sK7Wqtje3p5TxWSBjix1o+43tj/nzVEhhAY9lmVp6d/BwQFOTk7Q6/W0ESwdzLy8ZRKurPvyxnlVIsN16nvP8zSzmEs56hizLRSllt630Wig0WjAL/uwHRsiI9LzaehMNiGdTgcAsLW1BQB47LHHEAQBHnroIX3PS17yEtx333149NFHM0EIoS2ibrer/lgiKlw4aHT60MJklyRnkbULpfrXJAIjdG/6Wn71dDeVqkuQsxghM1WQ+s4SgOtYKHkOyr4HGQUYD4cIphNMJmN4JQ9xFM8CV+nnYwgpEYYqrkMcBojjEHGgoo4OdNyIAUajoeIuQgf9XhcCFjqdE0ynAaaTqY5yKqVkOUaUFISAG202yljNTjx8FDBptlpob21pTtxKjFLL1YrKVNtoouSXUKlWYVsqDgoA5dViCaY7Vs9FcYwwUplgXddLvIhKKJV8OA7FuVDxArJyhrCOyhzf1HitMLfOsoGv8+yie7m0ajQaadsNcsPlXgyrukhmEY0pD2dNBnmU1Iw44NNGKV18zKevSj3fMXcAz1bb+dR9p2nZXMlS0XDaJBDkQIkiZZK6gkK5kzQuN0DWkuaYUpDxeIw4jjXnTd43ppRjLVph+RGQoXnv+74O2y6E0B47JPXha2wR43BexNeA6Zq8EIQAuYapfG3N8mel94KNJfVL6NQgJI5jfM/3fA9e/epX42UvexkA4ObNmzoBG6e9vT3cvHkzs5z3vOc9ePe7372wrjxOLmvQ9a0x5RxN7sVsa0ktFCF0aHWwaxR5kffzPMdstg2pyZ6cq+wB9c/MPUo1SAUqFRCODfglXLu6g27XQ7/XRRROcHx4gDgK0KjO7C0IvKi8HRKdk2N0OycYDwaYjIeIwghxFOPGjWfQ6RzjcP8Wev0+hvYAlhDonBwDEuj3B4nNR/LeFDE1EbnVahVIqDDmruuqmAGtFvb29jQwIB3p9u4Omq2WMobUtgIqsBQE4FO0UldlbqXDi9QFKkGd6pswkugPRhiORphOA1SrNTTbW6hWKmjUGzg5OdHcSqfTQbPZVC7Nrgvb4uOYB07yv+PzgF/nG455bRl3s0hfnPcctzui7zjHeHh4CMuy0Gw2sbu7i6tXr2rdMM+fkvUu1C/mNb65kESkVqvpuslD4uTkBFtbWzoOCeWGyZIqLRQL59LicZm7e8398DR1b4LW3bwXce1cysXnSFYf0VyY2WnMq9Cy5jPtrWT0KIRAs9mEEELbbXQ6HQRBgHa7rQEwdwNfRDS/J5MJjo+PcXJygpOTEzQaDezu7qLdVl58HpPMUbn0LL27TulgSCnV3j8vzcxickkaQu/pOI6OITKdTnF0dITd3V3t8p61P2StN7Nf8yhLnZb1jBmLhfcJgEyD8VQ9Gc0w5w+pZAiA1mo1FRvGK8G27I2tklODkIcffhh//ud/jt/7vd87UwMeeeQRvP3tb9efu90u7r333tz7l+mdZ6oSZRdBAATQxzboYBQiOR0Fy1FqAIl0deZBI42bjbbS89Q+Ur9AULVJ+9VXKtOrhZLvoTT2YFlIjEsHGHsOxqNBMkkB5gMDQKLX7eDk6AijQQ/j4QBRpGxCTk6O0Ot1MRlPEAaBCpcuhEbKyr02TvUh6X+VOLSm+jBxp61Wq2i129ja2oKX2Gg4iettq9lCrV5PAtooECIAhJFS5ziuqzxlROI+KxgXQeMCtWEobj9IbFUAIeyU0aTjqM1Ohe+eGWKZm83snfjvxeqXZdfSoHfe0DXruUVcUlZZeQcC9x4IgkBn/6SfdTjGZXptvulT+b7va68Bnsl4dTqLlOFsouuLlXDM130aiRsHqCYtUhEuU++Y3+nDz7ifgKlpG0J2HHodyuU2UnSfjnczptD7yhaEPLu4YfUytcY6ZK43U7JAhqoEskkCGQSBNtjMey8qJ6ttecCCg4o8ALMqI7Wo3/OumIw9jQu1iyRTm04OeSoQ8pa3vAW//uu/jk9+8pN4wQteoL+/evWq5pK4NOTWrVu4evVqZlk0yMuINmA+wU0R1AwNqwNYxtHMloHCdtuJK5ZezBkHkzHRZSzTuVJoAkmmXgEHBupTLBNz0cQrJo5UKnrbsWBZAo6d5AURArAEhGPBkTYq1QqCYArHsxAFExzdehqT/jFEOAIArcYQUB4rYRjgYP82Dm/vo9/rYjgcQEYqdkd/NFDGhMF0JvEQAq7r6ayjwuJvoUJ8t7e2Ua3VcP36NR3a3Uk2n0ajge3tbTieB9fzYAkVeM11PdiOCxUCPtHPQsCWyp7GdmxQjolYQrUHEhBWYjisuLMwDDGeTNHp9jAcjiEsB65XQrWiXE4rlRoqlSrK5SriWKKXxDQJggC2znaZeEhp8GGK9rPnFM/Eybkr4iBNzofPwTyu0uTUzMPfBA55GxB5xZycnOjAZM1mEzs7O6jX67kujFmf+RrKqosDC8dxFPhstTAaqRD73a4KSNftdlGr1VCtVlc8CM4HBKx2Bm2g7lPjGFPSGutkadytlO7hBzT/TONHqoCsmBhUvq5ZzILekUG5fh05s0Ph8zSKlCRVJtFCSToghNB5VNrtNihzM0kypFRGkr7vpxLKmcPDD7nhcIher6dtQcj+YG9vL0lCSQyN4Xpr9Es+mJ71/6rAnBLaOY6js+oeHx+r1Aj9firDrtnntHZS758xlmYgQn6mmerUPObbBGWLgOisrOwpTM8pY39ld9bpdJJghkoFX61WZ1I0ZJWzPhhcC4RIKfHWt74VH/7wh/Hxj38c999/f+r6K1/5Sriui4997GN44xvfCAB4/PHH8eSTT+LBBx9cu3FZ9dMC4QOVXkDKl5mieEo6AG11ADpO4g6lXaJU2XpuymSfEWqw4lilSZ9OVV6XKAp1WwQZhiYktKyF4IgNKWcgRCZR5txYxciAaydBuwBQ25P3C+MQUZREpxsrWw/PtZnRkVLFKN/tEMdHh+h0jjEcDDAeDVXyszjGNAmrLqA8cGiiuq4LOzlcLMtGDDqUHHilEtrtNmr1OraSlPf04yW2B9VqFbbrwmEiSdt2YNl8SqnvoySRHSKRgD4xd4/Uf0tEUYwwjLQlOm2CLvP2IGtttZGFLGnTbPPN5vJUbYrJm4EQ8vIgvTd9RzYPtLHww5uLnfMkH8AsYiyPpwDM3PKI0zMPo6z5T5IQajcPGpYbMCqjnHWINh3XdVNGqGZbTFoujVn3RFfzY15KdBrJyCnRxAZwDA8OB8z6iavf+D1ZzBeJyHWzMiRn/HsThJgcN6+XDiECIQBSc4vWH0nGBoNByp6DAuBJfdrlS1pIusBtQUjaqaUgIlvqs45qSzVjscTAZBCoj7hLOvcQ5Oof6mPzfMp6bx59lL7nc4D2E9Pw1Wx3niRolT5Jz/70Jz7vVBRlofd/2mfyaf0FshYIefjhh/FLv/RL+MhHPoJ6va7tPJrNJsrlMprNJr79278db3/727G1tYVGo4G3vvWtePDBB0/lGcOJFhCFDCZDGe5OSJ2mYlmozK1RpCaGm4jv/WQTLZcrsG0HQJK3wLKYJkZqAKLEjFP0eipAz3QygVaDyASxJObG2hUYgFL52FB5XqD81KMYAhJeyYXj2PArJdhOAkhAicMmODo5RufkGCcnxxj1B+geHMG2LTz7dFm7xSnpCYBkYo9HI0xGI0RxlEiB1PdukkvFTkKaSykhLIFmqwW/VMbu7h4cx0UsJSzbQqVahV/ysbN7BZWyykZrO3bSTisFAJCAOS37ERYE2zCm01AbMYZRpD02tDeMM5t+nEMko0vy/KDgW+T1UfJU4KJarYZ+v4/BYKBjhrglD16plDqcuPqJFglPrkebA28Tn2u0wfLARrRRkrFWVjhn2mwokBgFdqLNhwA0xfIgq3xT10yhskkS0u12MZ1OYVkWqtUq2u22zqfBgy6ZQIj6gv/O4ibpOv3QYVEul7G9vY2TkxOUSiUt9dzd3U0fPAblb4rrb1ircHorlrSBMtYnKaVWYVEUSu7JRACAu4SSXp7mKOVZorlHNllZcWmov2g+D4dDvR5IzQbMuF9SN1DYbxnFOjcMgWWaYyrCsYV+v4/pdKqDmG1tbal1JBIDZyYR4P1AfXB8fIyjoyMcHx+jVqthZ2cHrVZLxalhkgYOlPIk4ZkqCwNvmvPHBCL0md6zXq8jDEOcnJyovXY81sCL+lFKqQ3FyVWZM8o0BvTOJAHi78ODwtHewgOwZbXZlKrwPTXv/ecpfZGYC4qUSvOMmE/HcfR5uQlaC4T89E//NADgq7/6q1Pfv//978e3fuu3AgB+/Md/HJZl4Y1vfGMqWNlZiTqbNnPe2bRJ0+IZjUYYT8aYTibay0PnPYjiJMCSDdeNEx2XrRLUiplgQ0lCklgb00BNOhbFD6DgYHIG9ulvEvfHIpGEqOsyUYf4fgmOayMIy+qA13k8AownalF2OycqOuVoiMl4CMsSiCOlcx1Pp0mZs2kQBlNEMXGkAmR55LguXM9DtVaHkxgPWsJCo9VS4ZDbbdi2g8lEHWrKs6WMRqOh3C8rFVj2LBKpFgEn7rRKlTILCKdfX84s3kfJohMA4LrzsnM500OqzSlEFIYIAuU27LoOXIqIaNkA0uGT+cZNAdI4dywl839KxIicC+NShXK5DCmltrugzYY2GG61T/YYSN7dNAblG38QqDlE7SQRuLJriTXwII6DyuTEgbbqSjflu5/HofDDiH+3iLI2PQJI9AMglWtjM+Agrz3q92x9cjB1UXYeq5Nkc5ykYsPhUB9WBDDIvoJH6SRAwCPahmGoowYTIAbm44hQP9EaGY1GKS6d1hzZOVCdo9FIrZVYarDC481w2xA6LKntBGQc10m9u3lw6v0hMfqME9UPuYSaczpL8pGnulxVQrIKEdNB69uUAJp9GIahVucQcXuSwWCg9xZa09z2imKUcMlMntqN3pfPr7l3z+gKLfjPGBuS0tD+RaCIg11rg+tubXXMMvJ9H+973/vwvve979SNMuvkC5cyBVI+Acq8Sro6srCeTKcIwkClrA/jZKHYqNUbKJVK2N7eQblcxtbWNjxPSSsSHAGScig1zAT9fhfPPP00xuMR+v2eym0iZSKMmIlItahdSkDGiIIQMoxAyCRM1CjlstIl1hp1OK6j7RhGkxFGoyH+5m/+RsVi2L+NOJgCoxG0jEZKRIghZaJKspQUx7ZsWE6aa4CUaLTbqNZreOEL70ej0dSTuVZvwvVclP0Kolji1u3bAIB2u41KtYKr168rn/hSJYn6Om8wOZuE6cVB0qdhkuTqYH8f48kEV5IonrVaBZagxTvrb9XnAaaTsQozP+jDcRy0Wm1Uq5VE2mBDAvBKJTRaTfQGfUyCKYbjEfrDAWr1OiS5Ms8GVEubokhq1VcQBDg6OtIcDcW9iKIIJycnqdwpvV5Pbxh08NfrddRqNW3BT8GNqP8pxPn+/r72IqCNiPqSdOulUgmtxLMoiwMiV0iKVCmEQKPRQL1e1665FG6dAA7ftBeJUFfd3GkzJqkUxQyhCJqZXNhCOrWBxVwb1z9zzlb3aYiDyOFwiBs3bsBxHGxvb2tAMR6P0el09F5GY057Cx0GZLS5tbWls9ySRI4kYcBMlUbM2a1bt/S88n0fvu9rryfK2UI2GpZQ+Z2uXr2aAskEYmo1lam62Wyq9Z4AmE6nAyllItmzESV7IL0j7eWUtfbWrVsYDoc6Y+/u7m5iC1JS9mZcvrxgrhKYW+UQzqI8VajneajValrqRBIsAiKAWu8q46+SkhCTRAwC7TXj8VhHIO71elpywl1gfd9Hs9nUWYNpX+F7gslQcBDB+yT7RYH5pKczorZROoh2u63HQwcqE+rA3ATbcXlzxxgiMr6ARyNloEnxRWzbxmAwQKfT0YspSBK3RWGkRe9BYEFYNoIgRKnkI4piVCrKoM4v+fqgUp2ruGkpSZ+vUG6Q2IaQ1EMwcEDthFS61GA0QhRM9f1RYig7GQ1hOw7GY/XbctTBOg2mmEzGytByNEIwnUKGAUQcJYdp0iqLcrKovDHCUlljPa+kAQBNxlqjgVarha2tbTSaTaicLRbKlSpsx4FjuwjCYCYdSCQptu3AshwFcvSY0NAYotXkHw4opMQsv0Qi1gujEGTYy9F7qqyEowjDQG+knufODOOShliWnYoGanInKo1O/kKkDMEk8SA9Lln59/t9DWxJX23OQ1XOTMpGP3RgUEj5Xq+n1UUkNaB+jKII/X5fGdUmzzYaDa3+oE2C101AiMAKl8DwDcpUvaxFkmYbdBm0SZM6jtpP7eKgabU6c+65I/jg4urm+5jjOFrdYlmWni+DwSBla8HXDHmgBEGgvTZ839fctDkXzL3Ttm1Mp1P9mw4d2kNJCuPYNlzH1apAc15RYDICMyQtHI/H8DxPzQmyX8N8dFQu8o8SdS2VNVNJCsa25/dp1rxLSWYz7s26mDVveawMYja5TQi9E7eLIYaApAkk+SAmwpRw8USSYRjOGR5zW5GV7WAyVGCLiANEDrAIIKXUQrq/eUeebuFcXhCCeRHRKElZfnJygslkAiGUgeVgMMDR0RFu3bqlEb+wyBND0SQZgOFITZDxeKK9CarVKra3tpTdiJNOSR2FSjUQ0u8ggITywKHErLSQaUbHUQgZxxgcH2Ay6GrXWNrULVvF3ReOCwihs+taSRTR4WiCKAoRTCZAHMGOA33IC9tS3iquh1LJByxLqVeaTdQbTQyGI4zGqi0CAi+8//Nx7do13POCe1Gr1/Xkti0HUgKjyRjD4QiTZNL5kwkcrwRlTGshipNJLyieyvJxI0BD3P/R0THG4zF2d7YRlX19YPExpg0ziiLNXYdhqDNklssKJBIMIXdhUslMp5MkhoWy3eA6S1W2/pDMp5kFOG2CZH8ymUxw48YNjEYjHB8f682BNgOy7eh0OpozovlI2Ten0ylu3LiBbreLg4ODVDAnbrcBAP2+kvh0u10VEyGRNpAxHB32BJgorTiJrU1jsY2IorX+akbcTc/3ffR6Pa1eCoIgM6fGqeu+KDrnumkf6/f7ODg40P3pOA56vZ6WDJAERDcrmQeUMJIA4Wg00rZEzWZTjxEdGHTAjcdjDIdDnRG2VqtpIN3v9/H000+j3+/j6OhIA91qpYJ6ra4PUhOEULvJNqTT6WhJDtmGSEh4SaRVmu90YHc6HR0XhKQ67XYbrVZrzi5qHVrruUUCAwN4E/gmUMbBGe13FEHWdV1taEuSwmeffRaj0UjblpAtCNVFTDVJUU9OTnDlyhVsbW3pcc3zZluLNLOZLoP2OZL8Uo4e8ozhHlJrdeQSutQghJOJ6ClQFde7TyaTmTeF68FxPN1pcZxIRBKbgcl4rIDCoA8BoFlvwLYsWFIddMrTBbBtC45jo5RknA3LvsrLIiPtgRKGYWJrMONUFGAZIwrGCKcTROQaJ4TysBEWRJiAEFgqWJltq8MylrBgwXFcCGnBjknSAliOyqHiVyqo1Rsqq6zjolqtoVKtQloOYkEo2ka92UK92UalWoNfrsDWYnqFqqdhBMuaAhCIYonJNEBpGiCMJGwnG3UYZl2pMTJ1pGSEFYYhZOI2S6XoeLWCRINKgjRNjIEBmehWPbiOkzKDsW0rpbaIopkBqJoDIgVCeWsJlBBHwyN/DgYDzc3QPOMiSBKtkg6buMt+v69CGvu+jndAkhDiKGgToaRv3HCVFr/jOFqcy43eaNOjZ8ig0VTbbFIXPtd3hiSERP3cgyOrDedpK3LhdEoGkOaOlFJL30gSQuoXYhh45EqezZTmDh1a3OjbnsUeUAwM2ztpjyJbt0Ff/YxHY4SB2qdcx4XreilbiCwSQmhA7HmeBsmK0RvDdmy4LOM1twWhPZvelZKjpSR7pxmTM5ApSaE5z43ySX3LjbG5DRjtDfS73+9rSeh0OtVlEgPF7ci49ISYbvJK4/dvak1xySm3ByEpzXnGByG6vCCEieu5XpwbC/JO6ff76Pf7OtRurdZAuVLVQa3ooOl2ThKVRwcA4HkORrUBtlpN2BaUHtRS8TssAfiei6hcQrvVwHTio+qXEjCkpCKTyUQFFBsLxIlHSjCdYjIeIZj0EQU9hKMhwiCA5Sqr4lgq111hKwPZWDhQUUmVusgrVWA5FuxSCZaQsBAq9UEcw3E9+JUK2lvbuHrPPfDLZZQrVQhbhVB3bu1DHB/B98vwvBL27nkhrl6/hlazAT9lKJUYZoYxnGmgpB6RRLfXB4SNSRDAsm24npjZy4jFm8IMTc84A6UnHSEMlWGqMmqickilpf6WcYQwnKLf72I0HChPItdBs1FHpVJWxlCJHtJxnVRGR9Jrj0bjxCjORhZPLgSUEXKy4MmuYTKZ6AM/CAIdkZXClddqNb0BEJfa7XbR7Xa1ZI5E4qPEFubo6AjdblcfJI1Gg4W8t7R9CNmlkGSB7FJ2d3e15IS8oujAIm7WjMfA18umiTZlktQ4jpPatMhDx5wTz2k6ZVdLKbVqpNvt6kOM5hVJAMlOidRvJGUjFd9gMECv19MS4UqlosTntqPnuYxjRGGEcBpgPFR1TsZjhNMAvW5Xxei4fVtzwr7vo1avoVqpotFoaC447xCq1Wp6ftO6p0jGsVQ2cFw1RAB9f38fg8EAgLIlvHLliorIuULcqDtJpr0GjYE2wE3UUqSOIUBItls3b97EaDTC0dGRtsWhWChkO0IMNjE01H8cYHJQBGQbj69LpsqO5iBJsyhlQ71eP5N0ahFdXhCSQRyMpNzIkk6kDqtWq6jXm6hUa9qjYhooECJkjPHY1eL48WgISwDj0RC2LWBbAtKyEFsUUChIfOaV66uORWHoz7h71nQyRjCdqpwmYajcZmUMxCrNfCwFIFTCNmE5EMIBYAG2C9tx0WxuwXEd+OWSkshIFetjMplA2DZsx0W5WkW1VkelWkW13sBkOsVkGiRusw78chXVWg1+uZxIhCztHcI6NPF8sROwFmCacPlBEKQC8RDDp35nTcR52xjqGyvhrBzHgWM7ENYsOSCNa5Y+0klCvHPbD0A9yzkTZfBGFt2J1CXOymcyUy4rodSs3slkogEEqV5KpZI2+DNBiO/7ei4Cyj6p3+/D87yU9AeA5mJarZYGIUIILVEhcTmJvOkwIXE52YpwzouLZ02jtPMmzp2TyP8sOWSej0Tzjg5tYOYWTknSyEONjJUJhJD9kOd52o2djCXpeuSVMrl6ze1OAwSYeRNyaUSlUtHgo1qtahuNLFUbn4s0Z7ltiOu6CKNQJzsjtSfZgpDtU6VS0WCLyk0aDmvGppznkCwkkoLOUkzMDm1z3RGDQ+o08o4jyW09iSpNYeE5CCHJU7/f1/WQFGUwGOi9xByL00hC+b18/yX1Kg/HQIzOOjYpq9KlBSGm4SJfRDxkNA0eWexTNtFGo4VKtQbXdWAnXGcURTipVTEaDhFHIQaDPvqdE0yGfXT2dhFHU9iCggDJRMQ/xmQ0xHQ8Vgf9ZKzaA2gDrk6ng/39fd0uMliNxiPI6QRxrOxB4iiGiAFYKmy5WyrBdjxI4QLChudX4fsV3HvfC1GuVNDa2lLur9EY48kEJ12Vo2E0maLZ3kZ75woazSZa7TZu3T5Af38fsbQAy0GzvY2d3Suo1ltwS8rGI45irQukieS6LrxSCX7ZRxCG6PR6sG1XqwZmoGP5BkAqIxoTkhi4rtKn+omrF6mE+PhKKefSxBPnQdIObpFN3AlJvobDQbKxqQ2uXF7ATQmlquGglrgWcoOkQ+Dee++F7/uo1+v6fuJ4yG6Dsmzu7+/rtpPUzrZt7O7uol6vY3t7W0cIJhASBAFqtZqOOjmdTnFwcADbtjEcDvWmQ/1JwIZHpaT+4+OaHhhsTK4t5cxlk7sskirUNNZ7XpK2P1p8Gx1iBGSJkaJ97OrVq3MghMBtp9PBcDjE008/rb1pSCrieR588iwxDicOfMIwxMHBgQaPlUoFe3t72uOLpwOgDLqceGwKIYTOHUOSwU6ngyiKsHNlV+/fQRCgm0hfyBaK24LQgUxEa/4C8YduOwVoo32Cq2W5NxpJlI6OjiClRKfTgRAq3kilUtHj2mq1UiCEq2AODw9xdHSEXq+HTqeDSqWCOI61VxSBIrOd/PeCN0LWLSRtpR/yvCPbs+edOiavI7kBDfljU/Aecmsid8lSyVN5TRIjxSgKUS37sAVQrVQQRyFOhgNE4RSd4yOE0wniSCFAAYEojjAcqklx69YtTKcTDIZDQCqx/mQyxWg01AaROlCNUAe3FBak7QKwVCAzSyVuc0sVOK6Hrd09uJ4P2/FVaPJSBaVSGbtXr8Mvl9FstWAJCcQq+JrlegpVn5xACgvTIMQ0CBEEESbTKUajCWIp4TguSn4ZlUo1yVCbuHUJC4JcbZPoHhRe3St5cMeOVjUFwRRhGGD+BBO5eyxfhGEYIJhOEQRTeG4lQe9kuJjANDqkEqPbMIwQBiGm0wBRFMNzS/DcJE8MvQMSlYpQbreu6yR2GKMUko/iWBnyCsHkH2Q0mwa5pJcn/TYZvdZqNb3oeap6+qlWq1o9SCJUzuESF1Gr1fQGxLkKmrsU8rxarUIIoeMmaCDIpEvATApENgNZkpDlG9HqyMQ8wGgD5JIQUz++qbo3T3eg7iXFm3sYeUNQoCrunklAnNv+kMSCDjZyKadDbDgcollvIHZi2CIdD4TqpZg10+lUu/zWajUtAaG5SkGzzEB8QHqOkeSQRPgETJXqZ6IPce4lAkDXTVIQbt+0GRB7uvE228AlIVyixI1t6Te3U6RnXdfVfVuv1zWwoz2CYoXQOBHTzAPIkdo4DMOE+TjlXBYzaTZ/P5II8yBs3EaH94kAVX32tXR5QUgOt8z1itPpFOVyWQOQa9euaRCicqM4CdcNOI6FOHbgWEAw9dHvnsCxJA5vPovxeIRnn/pb+H4JnURPJywbYRSh31fcxZNPPaWshvs91b7EsJCH9Z6JylWIdGG5sNwqhCshpITleLBsB43WFvxyFffd//moVmsoVxqwbRe2U4JXKmF396pSAdTrsC3ARoDhaIjawT4ODg7RG00RSwu9wRDC8eCWxuj2BjjpdtVB6pdRrzXQarZR9svKwNUSKkQ8M4KClBC2hO06KFcqmEynyi4jmGI8GsIveYCMtYGblNwyen6DEIk9TRQGmIzHGI+HGI+GaDbqKJd95WprOxCwIJUnsypJCMgYmE4CjMdTjIZK2qQi8VZR8kpwkhgoIpGEEBDx/RIajRoGg57e+IbDIVphSxmxGC5+SkeedhGmTVkIgXK5jGq1ip2dHTQS92YSS9JCJI4UULmPBoOBzih6cnKiD4yrV6/qbKAkWje5CSmlluiQ/cjt27e1PY1t2zoOA3eZM11zl9LcfnW6zYODEB7lkzZHE4hkW9OvU/emQcN51m3cn/G4aWBPRswzW7Ya7rnnHp2xlLtD00HOVSck5ifjR+K6t7e24Hozbwo6MLkKkPbRer2upRF7e3tarZ2KCZFB/NAUQmhbp2q1qg0yp9Mpev0eojjSRtuHh4c6cqvneTq6NsV8Oi0I2bTXhlk2AUUOyjkwp74giebR0ZGWnpAEpFqtqrxbiQSEVLw0J3hgtEqlotcWlTkYDHR8ltMe32Scz99NCKHjcJFU0/RAzF7LZ1+flxaEEGVZ2pMYezqdar0lJRSiDpNxjAghEBN3rjbIyXiMyXikIpEm0UjHoyGOjxTn2ut21MIVFqI4xijRmfa6HUwDxd1Tu/gCpDwmpCO1LAFH2LAs5eYrY4l6o4mSX8b27hVUqjVc2buGSrWKSqUBy3Zg2R4c10Wt0VCGUH4JFiQsCJTiGNVqHcPRBH65DAiB4WCYxP2wlR42jFCpVlH2y6iUfZRcV0U65Qcx60dqO20GtMDIU4M4ezXREvACJMFYBf0xJ35X6oqxPpRmC87WumGTOLCkRHSlkgJlKmYJs/YnV2drFrWRjEq5TQlt1vTyQiDxc073A/fNp/JICsI9E7gUhBuUkfEgGeSRzQRxPaROMrlJ6muqt1qt6hgDAPQBxaUrQDp5WfbGkLWQlt+yKnHjOGCmfjsf9ctFSUzMulfZbMXCjyZxDwsygiYJHJd+mO7XJAkDoFMalEqllFdWmOw53H6Le6aQYT/N92azqevNk3zwckwGkQAS2YaQqz3F3KF3JdsGUreSuilL3H8WiUhqnWE9bQ5X/edJQvLsn0iaQFIgAme1Wi0JNTAv8aHyaVzjONaB3WhO8Oi54/E402WWj8uiPYH6wuxX8lii/EJkjMuNYsGfFelAcqelSw1CsjqSI8PxeKxtQFqtFprN5iygTBQhDgPEQsASAjJWsT2G/R4G/T763RP0ux31edBH7+RIe+RIABESFUGywQ4TNQwdxnQoCkuo0Oiuqw8LGjTPUyBgMh4jjiJsXbmORqOJe+69D/VGA3vXrqNcrqBaqUMFBlOAwnPVgrTsxFU4diAsBzEsTIIQ1VpD2aKcdDGZBhhPphgMhojCCNVyRWVVrdVQLnlwbUt5/SAdupsvMMtS+UsmiXEbcTGlUinZIG1ToJA79YgToNDEcRzPgIJjz3LNsIVC/UaiZGXToULG+74Ph4ziWANo0VJOAzJoo02YXBHnFqSxI3H7FdoUSSdO9hjmPOSLkrxUarUaDg4OMBwONeCgDLd0SGTNbW7o1mw2NWcrpUS/30e5XNYAhFxzs1QxWeOwafsQKo8HUAKQkgg+d+1AzrDZktbRsNvhIe9J4tVqtXScDA6AzQORrpHBdLVa1fZUBDTooOScO0lfyLia5u7u7q7OhmzOq6y5NGe3AWiJDUkPb+/vYzqd6uyzZAR7fHwM27axtbWlM9SSZ5n5npeBaN8kCSSQbbNI349GI4xGIw0qGo2GPqd41niTeeNSagIrtCdQmf1+P6XSyWLSV+m3WMYplQzt22ToTC7EOleMCUAAiGXukivSpQUh5mGZJeLlrlPcvXI6nSbZZEczd9AkBsX+7VsY9Pu4+eyz6Pe6GPS7CUgItecIgZAYQCyVOyulq3ccV7fFSaQV1WoN9UZDT7ooUoBHuQVHcGyFand3r6K9tYW9vWuo1mqo1+pJQjYXwrKhop8K2HaspQxkyGAJC67rwS+VUa/VEAYBgmCKqB9hMh4DErABlEsuGtUyyp5SPVmCJBnZib8soUK+l0peYjiqJDqj4RCjSlm51goB2/GYJGLWND5eM1XZBKPhAFLGcGwLnueiVPIY+k9P3lhKhGGE4Xic5MURsGwHJb8Mr1SCECQFyeZOeLKnKDGuog2eSy8AskaZX1AkvSBjLM6tcM6IiOYbcZPEyZEtCOn3OYeXpVPn9fMoqABS8Uv4AU/tWQRCcuksZymTnJk64kUGqc9dYAKshOoyWHHTdog2fFLZ5Y0rB4IAUq6jPEZNFEZafcefpfVD10zPFJM7z3xjY5x5m0hNFMcxKuUyxmJm40Q/dKAT6CHbCCIC20Kcjc/W83NFOYi5xs1rXAJonklE1LdctWJKVRe1lfY0KoskXTQ2PEQF2ZHwdq+0H+ijZaaOJmN7stWhvSvLE2fW6OVVrUKXFoRApsGHuRHzzZ8GmEeVPNzfR/fkGLrH4wgyjnDrxk30+z3cfPYZjIZ9jIcDRFEIGYb6XgkghIpkKqE8KZQO3ka57COKYwRhgErFR6PRwM7uFexdvaYHTklqpjg4OEKv20NcVgag1++5D1euXMG169dRrlR0Bl2FNKHrVvCH3l1AQIVQL5WUyLbdbGE4GChX4AR01Wt1NOp11PwStlp1VHwXng0IIRUQETMgkjpMLQvCsVHxfQRlH37JS9xNu/B9D8F0AotACB8e0GGettmJ4xjjEeXYiVSf+SVUymWVTTNJQMcBTRgGmIYh+oMhhqMxpFCZNyvVKny/DGFRIpg0kciQ/O49z0MQpg245iUGqs38AKVNkdxoeR4OqscUedKGRBwDHR7cu4Z+uIg0C4hwqQ7pg4UQmmPNmvu04S/aONlAbZQ4COEBy/I25ec2rS9t4nsaAB2MqtlsalsMc37q2thhRWpUAFoSopMksqSCfN6R5I9ACElC+EGXNUfz3oH+5nOinkRmrtfrAFQMJ1I50Xs7joNms6nVlfzg5d4ml4nMwGJ8DDkRQODj2mg0NAjJXhPJjmqoOgnQkdSDYsukDVTnbTwWE+XsUsRD6A8Gg5SxMGX4XmVOnJYuLwiBCq2tkWUYIA4DRMEUUTBFnMTumIyG6J4cIw4DhMFUcfCjEQ5u38JJ4iIFSMSR4ih7nQ4mkzEGg76KzMliSgiIJEW9sueQQgCWzQalgnZ7CxACMUOp7fYWtnevaE622+1iMBjC7fQhLAfVsg/PK6HZbKHeaMLzSkn2XCuF9tOIfWaBLOTsik5e5XmwhEAURhiPRmjU6ij7PvxSCSXXg2MpDx8r8WlVojOuU5mhYC1qTA50Es1R7hfLsuGVYuhEdSkOZQZEtCQkmOVFsG1bR1+0hEhsMmYeNhRxdsqyaTq2irJYKpXgpFJ5zxY/PwRJF002GiQJyToY9WdjHyAQQtxolt7WJKqfgBBJZMhGxAypnme/YUZkJHWMGZVxEWVd19zRGVGI2X8cgGUdlvygfF7Siq9Nc5fmC8XkMNVdWQCWA1JymSbDziiJaWR6bgBpDyfXdVNeW1m6f/1KOfM26xqtpXq9DgmpQwsQ506HG70vf8e5Ou8wiF0mUcgCdASauLeMEEKPK+0FKYmsARronOJjxRkc2ktCJunlOahOo8LiUjEuqeIZwvn+xffeTTI2lxeECEAnjwumKlU9/0nE1OPhACeHBxgP+uh3lb98v9fD7Vs3cXRwoA/GKAr04pRxjGCS5PKI1UBaIhGtl0rKBsJW0U1hKwNJyiR4zz0vUEnn7JnIvd5ooNlsa67bTtxyXbcEIWzU6k3UanW02ttoNFso+Yn4kQQCIjnI9QSkfC3JWItZZFHHcRIRpg9LWIjCEKPhCAIS1WoZZb8Ev1SCYztJBsp0n2o9Hh3okIjjmTspReskmw4VetlBVTu45h9ptAinExW8jUTNruvBc1XANCSlaBAkJaaJKJAMO+1EjElGcmloxl5HzIy5aCxGw6EKxJSoY7i3Bm1q9N6qGeo3gRgycDZF0+Yi54eAuVFwEEI2JZxTNHX1pNohEOt5Xio8d5bRZ5ZomF/Lp4RNz+TWF7Pw5gbJDSSzvGKWNWGdujdGF1L3/EFKYnc6lFWAxboOu87F7HnSJToQOJCh+WVKz+h++p6DkFqtNgeWzbaan835zMed3MqbzSYAIIqe1AaVJG0kY00CIdS+ecCVoctakSSQk+8qe7x5v2YBOFO1yw2yTfWMEEKruiiyc57hLa/frI/UucTkkOsvT9bJy1oZhLAzgGyICIQIIbSxsBmu/TRgZxldWhAymYwRSyAIpuienGA0HOLo9m10jw4QTYaIAhU2vYcYz0aBNg6lyd7tdjAc9FNiM43iADieB0dCSVugwrW7roudvT2UfB+VWl2pDhIuo9VqoVqt4sqVK8r1N7FcVy5YPsqJ2CyOY0zDAMPxGEEUAgKo1WvY2t5CpVpGyVfJ62gNSLDFxg89ECcwk16QhjOOyWJFkapXBVeLpbJjgRCJEajQifYglbRF0PVEPUMpux3bRbVSQxTG2A8PMJ0GmIyn8LwAMo6Zi69KgCTY3iAAxFGMMAgwnaofz/XgeioYmuu6ShJC0UoBDQrDYIpgOsF4pAxKK2Vfu/S6jg3K4yMS9RhYoDEOQsrlMkbDEaZBgPFkgvFkjJLvKzWQJMmSMibW+XiTw4A4SVMNk0XmZkkHMpfI0OaRZT+RVR7VR5IVKaU2rqV7OBdrPre62iM1mbKv5bxz3ucsLj0F/FaqZpVNTbLfi34W0KnrPgulD1LzEF/kNUH3m5/5/ONgXAMDGSOKY8RSxcshLkYCsGwLvltGuVJGpVpFyS8lUlIKYsUYoNQ7IPUeMhHrE6TXa9K2YEulTo3iSDM2w+FQG2xTavgsO5SUKkZA7YEAIKSuS9I1wUde6s+6hWuO9zLwLNhvAbVvqsql/t62bAgXqJQrqJQrKjGqZc+Cx+VIRPLaQ4bH7XYbnU5HexCamXyzQA0vZ7ZPiBkDKiWmwRS9fh+T6QQSgFfyUK3V4HoJA5jsmZCJo4SVPqvOSpcYhEwRJi61B/u3MRoMcHT7JjrHh4jGI0RBgHA6RW8ywqBzrOOK6GiqUYgwSVGvKPFmSBa66ynOPNI6PQsl38fu1XtQrdWwtburuDxL3atiVpTRbrc1+OAHoWVZMxfTMMRwNEIYRYAFVOvVBIRU4JU8PRGJEg0FlLojxesrlZD+BAiRJHqTad/0KI4RxRKxTICNUIe1WpRMeiHpbQVbwBYELDi2g2q1huk0QBhECKYhJpMp/GmIOIphCZX3JU4WnclPKEChEmNNJwEq5SrKfgUlL73ZkJeuknRFCIKpMmYdDZWXSKOOsl+C5yo7HJIMqW5Ty58vPA5CIIAgDDCZTjAaj1GrJ9FqpWq/eu30Dkv2GCYI0f2es7jNw4QMpcndmQ4U03iMl2lyTwRmTG8Tzp3lictNHX2acrh9alIWVshpIwdE/N6s+/m1zXBPpwAeecUAZ8Qf60lQeD/QT1awLl16Dojja5/KMT2mYqnmPEVI5ge3sCyUK8r7rFKtoOT7ycGC1AGZ8xapt6e9iN4PACzbhiMEKtUKYqmifPLsvxTLids/8UPZnEuaYZPzYCMLjAiRMFt8bFYY70WHOC+HgIhi3sQcMHFsG9KyUK1UUCmX4ToOHNtO9p8E4OWsYbN+DkJarZbObmtKenl/LRo/xcgljHkCRKZBgP6gj8l0CgjA9TzU6jW4nqf7lmcl3zRdWhDy1FNPQlgWxsMhbjz9FMbDIbpHhxj0yZg00plpLctKpAu0QapjVS1qB1ZiewFhoV5voOSX0Gptq6RPwxGCMMRgoFwrdynA1N5VWI4DQCgjyUoFnuuqZEyWpdx+gURCoOoPAlVOrzdAt9eD4zpotpqo1WuoVGcGPnkW0oo416RWFgXXUp4ngRbHkfsruenxHAMq+6+K0EoHt8DsgIj5ZpJIiEgiQAeolCq8M7nq6oOHNh3WainlnL6SYgZoA0qkLfPpOXK5Jm8WOsRXkSBw6QEZuJGvPrkrmvfrnmYcJDcKPY1RHC9rmQut2QYT1HCuxbwGYE5UbEohclq41td5ZB4QJjAyD5RLSxtp2ukLIeBAHhRmRN5Vy6DfedIoc34RyOXeD4tTtK/WBvM7AljkPMANtQnsmzFQzpVOOVTmWuV9boJt+pv6kzyW0u+5OnDlTA7NEyFmEYqz8tYsI3PP4Elhac/m0VzvhIHwpQUhN248C0hgNBzimb/9W0xGIww6HQTTCSZJiG4yKJ3F7CAvCpGkuHfglrzEuFENZnurjWq1hmvXXwDfL+Po5ATj8QT7+wdwXBdbO7totlq4cu16chDPPHG4nziQqEEESVIEgjDCYDjCYDjEYDDUYtZKtQK/7CfeMPM++Jw4py8TaM91uWEYpIJYkY0ISWLIF79cLiP2ARvM1Y0xjqbbGk12AgD0nqPRSFtopwyv2HMETihQGCF0DgyEEPpdzIVLOWPI2jsLhNC95qZAv3kEQlJlUOS/RURSLLLH4Emq8ijvkOUGhdT2PBBlci5Zhzh/byrf/G6VdqZpPe59cVn591xqAHLHKXusaK7xoGSrALhFXC8HsFmSMwI//KA5KxjIW5Mc4HM3Ym7weLfME9Wvs7+JshgBApTcpoKYsFWNxM39gAAd1bkuCMnbf3jsGAIhJM2lubFKOWehSwtCPvf4/1XShckEx/v7iMIA4XSS+L9LCMuC7apOsh070WcILZVotVqo1euo1moo+X5yTWBrexeVShU7O1fguh5KlSoGgyEGowks24bvV+D7yhNGqQIAAjC0sEwOlSyke72eDkkcx0oM2W63tQU6SRfouWXEB5y8PgaDAY6Pj7WRF7lQkSdLv9/XCY/IUG0Rl8MnO+UKIKNKADpgFlm2m8/xtnIXQVqE5Po3k1bN7qeNcph4NAHQwb942Og8gzkAelwo8BJtrMouqKv1pnmcIpWRB3xWId7H60pCsr7nBwn/TOXRfDtdcLDTARATOHJgDCAFuvKA1DJR8d1Jq4A6Lt1MvjE43Dz32FXInB/APNgnonlJBthZ6sdNkCnp4XFzzFxMdwuZxqdAtoqNmBmS+pzWm4TGFIDuRx4ZmtuEnKYfKUr1eDxGr9eDECIlrTLtdc6LLi0IeeapZ2DZNuIwwKjfg5SJAoFcSmEp+45E2gEoLYFl27BsG62tLWxvb6PZaqFcqWpdZ3trB+VyBa1WG7btIAbglfq4cWsfAOB6JXjejEvgxHXuQFokR1HtKOKclFJnYs0KS5wnSp/bOBKdKNVBE4YST5FlfafTQbfb1UCFpADmO+QRLSDaMMgSezQaaZRMVu9ZE5O3L4oiXRZPgETGIKadAxkTA0gt3iyXwSzJCK+LNgASMS7jFjinkS9+nD9oFgEiHt45TxKS1Qbzb/4c35BMqdRyOp30gz/H5zq3CTENJBcBkYU1za2H07Z5E7RO3adrI5cU8KSGpymH/ybKsuMBZhF6SSph2qFklZ1Fy8AvXwfExfNgfKvuS3eG5sc7T/2bBfzN/Ynej6fCyJeApOvOk2yZdoiLJCHrSEeIeSXpOY+5xOMQrc/srE6XaSakaDgcwBIq5X3JS9y4ZIwoDhFMpyhVKtja3kItSb4Ey4KwZjk1dnZ30W61UW80US5X1PNCwC9X4CTp6wH1eRrGcFxXGXJBGXlSynRTTJkFQEgC0O12U2mbG42GDnxFCJZ8yqmMZSQBIFYHfK/X0z+WZaHdbutEV0IIraY5OTlBu93WCaXMOBUmZ0tEagkKAMcBTRAEWrRqEh2I5GYLQHM+HISQURlfSNPpFP1+Xye04ostCIK5A5r3PUk4AKRS3JdKJc0lUNtNTt0cT95P82Oz+uGQV88qlAVG+A9J4Xj8kNWAyGkP8+yDjcdHoDEwc+xwwLJsA8u+nqdKuhO0OTVWHnF7puXqkMV15wER8x6qj1w+uQdXvoR2vfdeBWybcyS/3Rcz3nnvwA/+LGbDBAw8OJmUUhmmLqk7jwisUp2U72pVcGBKyEgNQ0zmeDzWbuKcATxvAAJcYhAyHU9hWTYc20alWoUQgJQRRKg8YLxSCY1mC+2tLVy7dg2W48Bihp9bW9toNJqo1Rso+2U9nS2WDC2KY7ieB9fzlEonStCujDU3Dyxe3DQZKLb/cDjUfuEk2iKxFpcALDugTPE3r4MSGFWrVZ3ptdvt6pTQlKdhMpmgUqnMcUXmO3FuduZ2XNIiPzI0zRL98UlNqBpAiuvhhqmcI6BnqK18kwKg1TpEvO2maxodxtR+sk0hK3IeByGLsiQg81z56ofBWcSYWc/yMk0AstJhL4GcoAkLKJtDzAojb4I4uvf0lNXn82qN86G8us9SFvvGULMtByHLD8lV5htfX9wglcqkPcr87jSUB2qymID8Ou7MeJvqlbx74ihOgRAOqPjzpm0Yp3mJSP6aNFXGHOSvoo5d9C5cpcNTXNB5Re0+bwACXGIQUq1WUPJ8lP0yrl+9miQwkxgOB7i9fwutdht7169j98oeXvh5n5cCIUIIlP0K/NIs+dlsQHjUT4FIInFVElC5W2xYtqNigdgOLEOFwIkO0cFggKOjIy3+L5VK2Nra0rYNpiRiFaL7uISBEkFZlgpwtL29rUEIpfLu9/vo9/s6pTwFuTElIHyj4UTSkHq9rjluUm2QLplvWLwfxuNxqn1zG10stSSE9JGTyQS9Xg/9fl8HzDk5OdEGtlkHO5eE0GdaTP1+X/dXHKukeJScjr9rlvFovgRjtYPIVFUso1XuMSUh9BxPGpf1zPyXy9uf81Bm2VwaQi7Sm/V0OOvhf6fqXgbs8gHlMrC5CTLnGHHSpgooDzSsAkTy9pK8+4jM9XcZie9zYTSzwwBmMYr4vVxCMmcXJkTGdFj9POBAxFSJZt2/iEgS0uv1dHRr2vezEuPxMjcNTC4tCKmUyvDLFVQrVezs7MJxbAgL6Ha76A/7KgFco4lWu42t3V0FHFzlUiuEgGM7cOxZXH3VgQJ8zxZC+YjEEgB5eQsrNeB8LMzDlw4DytxKeT7INZWnxTY5jGXERWEkYSDXXCGETv1OBqhmymeeMtuMN0HlczLFw6QXpMOGfNPNSc/F8+Qdw2MepOxgIOf6jktCaGFQOmlSx6THMF8dQ9lwCczwdq8SAXEd6dSye0zphMn9rUumGJuDAPM+U4w6N9Y43dHO5y/fAGnOrHKYmHUv74vNqUHWL2lVo9PT01kO4XVUXrwu7kqeVX++amZ5+XntyJr/2Wtv3kbitIfeWeY5l3Zo5iJKq0AWAcl8gLV+i8z6OCOw6rjzcsxzxVRln8Vl+zR0aUHIF3/JF6NcVrkFrl29qrjdMMDR0RG6/T4azTZqjRYqtQZKfgUqXz3lYkkWmWUjjqUy7lQRYkBqOSnVoRjH6SREelEn/5H4zBxsklAMBgOcnJxgf38fQRBoY1SyyaAB5ZM6qzxO/J4gCLStydHREQBoe5NWq6UnTaPR0CF9O52Ots3Y3d1NpWNetGFRGymbLKV0DsMQvV4PjuOkDn4iU1VECbG4JMQEYVEUYTQaYTAYoNfrYTAY6LKeeeaZlEsa9QmXKHFJCJUZxzGOjo7Q7/cxHo+1x1Kv19PBkcz35eXR35mLb8la5/26zsGwqCxTHMuNCAlgcRfkVTeOtbYW9gp8U+aBkrgkxBRNn7nuDW6EF1l3qh3sMDmvjd4sm/7OcyPfFHdrrnVe99L3vcjxxmL1RRRFCEIlbQWQknZkSXjyXPWzK1jeLg5sqE28fesQByDkQUimA5VKZU6qabZ9k/MFuMQg5NrVayhXVJrn7Z0dSKkMQKdBAL+sovx5XgmO68F2VNI5aSkAIgQNvgUhYh16Vkk6ZpgE4IcHP0CWt4840clkotUQtBn7vq/zj5AUxKQ8MGJym7yO0WgEz/O0lIVbt1PeE5pAZHTEJRh59ZnSAdIZ8/ZTEDISvxNxiQZJI7jOWasQCNCJGYLnSZNIwgMot2AzXkfWIjSlAFJKrX6htpLKx5SE5HF7uRvGAvX0WTaE5KnccumHxLycCzKjquZuojgDv568t8kZcikMuZpmqWPM/lyrfy5SSn8H6t4UAFlF+kCfzQNtkRRwFVVMXr15+9riB9euaiO0igRUzflYg/48mw8qz+zbtKQHSL0s21uWjaXJyPL9zFxnixhebsMXx7H25FklcSdvzybo0oKQ+1/0IpSrNdiJfQFx4yW/DMtxYSUJ5lRStARwEPAAuTIClPqNZBrJkAEw9WzqqhASQKyDoUkDEQoxi1g3HA5xeHiIXq+HyWSCdrutf+r1eioHickl0/cm0eThkpbDoyN0u109WXZ2dnQYeWo//b21taVVMSSlIU+VRa54/JDhCbEoM2e320W5XNaeJuSuSy625DYspUSpVEKtVksjagnAAgSEVrt0u139XvQO/DDj8T24+oX6h4MQ6ktu/0LSFh4vhKcMX1ecvQ6tt0gXIJyEKIYL9SnZIpErNn8v/ltJBs9G5twldR+PcJsKSofNblKbVMlcpro3LYUwKYvxoD2PvDfo8yJG6TRkHsR5TFBOy3GxCDRNdGDrhJ7JWuQJKleWhK75anmqFBNIrgIiaQ8llTedE67r6txoywz4z4MuLQipNxqoVGsQlrLvsIIA9nis4oBYszDtM/FdIgVJbEIgKSYoeWXMtnk+NfQACoFUWNEFE4kPJkkbuC1IVvbBrM0mj9PgOrtgGmA0GuoD3rZtLQnhOl1TCjMajXTcjtFopLnmVYJxERChHy2FSt7TVIOYqgEeWCdrQlMZJKWg9pNqKUuFZXICeVwelwQJITTaz8pEu+p4LKJTcXynIO7KaVmWnn88lfgizmcTROVS1k2+GWYBkM31xXNLJLJp1UfW93l9z9fPMknIsrqJTrsG8tfbxQIQftDTZ2I8yWuSu+FmMZkms7mJtbAKUDQBZ54UhAz5gyDQka1XiWI7P2YZkp016Uwg5Ed+5EfwyCOP4Lu/+7vx3ve+FwAwHo/xjne8Ax/84AcxmUzwute9Dj/1Uz+Fvb29tcr2yiV45TKABGfEMaQApBCIoSQcMSxIkDSEJgySq6R6mT9o6CeOI0gZK8ARx0AskyRt2Xo8Dg4ohsbJyYk2xmw0GtjZ2dEeMeYiXxbTgbeVuPj+oI/jo2OEYYhKpaLrIMkH52SEENo2hOKWUCS8ra2tVBh185040SIjUDUej3Usj+l0qv3UaVGSxCaOYy1FITsUKg8AZKwSahFnQa7EdP+9996rIyry/uDjQIcw1c3bLITQB/Pt27d1m6jdi1x1lx4MK5wbeRv8aYnPIdOtkuxweBwUHpNgYwCAvTdtxtPpVANbAqw81wTdux73m1O3ML+4Q5RZt1hwfcVipcwE8lmSUoDm/vLKsuZcFsDgoPFUHO+CpuRJeM33MSUk+v5lfZ7XpE1IMhMbQV4eB93KUF4xTTwYGe0nfDy5of5KsTxWbDrv35XtTYzniWkk+70gCOA4DlqtlkoAukL9aTr7PnNqEPKHf/iH+C//5b/gi77oi1Lfv+1tb8Nv/MZv4EMf+hCazSbe8pa34A1veAN+//d/f63yhW3DssmeAMrmg/6GTu6ufwQEeNr79AROGYEAoElGV2eSjzzi1whJknhOSplK1JSVnnqVcvPqoNgbPPSxGfaYDiAeyj3LNoTnVzGRsnnYk3SF/Mi53QdfqJwzJlHvXMhfssXBbJHyGB5ekql4GQihBUhl8O8JhBAIo3ZyiUEWLeLqePuzNoussV009os26Kz7+G+uhzYlIYsiOa67Qec9xzlCPt6LQtRniZGXqSPTX6zV9IW0qN45mrtFLLl+npQ9h1YZ1zxQQj+Lysjsp/N875w+X9TOVfpgnfmftR/T+iLGh8c/yrKfmDG5aa/Eleb7gnYtUvOsA0Ro7yCAZFnWUq+Y85KuAqcEIf1+H29605vwcz/3c/ihH/oh/X2n08HP//zP45d+6ZfwNV/zNQCA97///fjCL/xCfOpTn8JXfMVXrF6JACIBCAkIWJAQiJSwAhKJHYgUCfywk9+J94QkuMKTrVFMieSzkIiFhJASlowh4wiQMQRiCAZKeCwKmgDD4RD7+/vKU6fbRaPRwPb2Nra2trSf9eLgV/OAg39Pdhb7+/voJDEzKpUKrly5gq2tLR2F1NxgKC24lBLtdjtlNHt0dJTyYqD68wyrSKKxs7MDy7Kwv7+vc9NYloVarabR/mg0Qq/XAwBUq1Vtu0ASl9nmp96POOler4fRaKQjv95zzz2pnAV5AImTuTj4gex5Hk5OTnRuGpK6mAe7KXY9zaF9FslDFvdLbaN3IvEvhekPwxDdbheDwUDrqXko7LxDZq2DGJjj8MgehGx5eD4QnhvJLIOkX7zePBfRrHaa0gKeOyOPu18JXK5MOVz5KXT8WVIrcy6uW8kyMEF1rWKQum7d64jv11PdZNdtHsa8DzdBfO3RfkUed0EQoNlsol6v6/VmqiPJ5ZWYtjhOMq2vuIdlvSsPvEjriNdp9nPW2UMM42QyQafTwXg81tLxWq2m89ys34/SEACsR6eyQHn44YfxdV/3dXjooYdS3z/22GMIgiD1/Ute8hLcd999ePTRRzPLIjch/gPMGCCZCDiU9ANJUDF6W30RSAxP+Q/ob8G+TzPnSamqxvnJkEbFnOsnUTh5g1BwLlOvljcxTG4mS7IwGo0wTvLQkC0IT4FtbiZcjUIh02kRESAh9LtMhEllEULmCJpLQjhnDCAVHyTv3WkhUVkkQaKYJ9xdjH6WXec/1WpVG9UCmBONLjuQFkknNqbmQD6Tn1UPjQd3XeZ63UWBi3R9OVK3rPuyyuJjzbM4Z3GEZl00r3nI+XXHwuQGs2Kk8N+rkVxN2iJzyjzFdFjUPnM9L6zboHUBZmZdc4Wu/oJmOXkAmIOvhbRC3UvnT+6H1cubZQfPDs5nqpcIdKcklEsknmY5VJa5z/Ko1eYZsArQ5nGf6OzimZzzxkTVw8+t1FXM7CnXp7UlIR/84AfxR3/0R/jDP/zDuWs3b96E53lotVqp7/f29nDz5s3M8t7znvfg3e9+9/wFMXslAQIjFlPDpA1TOehYhURiVaJELRniLWsmsiQujibjyckJbt68iclkAt/3Ua/Xsb29re0gVtW15nGNw+EQvV5Pxx6h8OztdhvVajUzsyyVRQdUs9nUagmKHULfkw6f6zJNDpKDEO6R0ev1UCqVUgcSAZx6vY5qtZoS7fHyhFTtpIRJtBAqlYqOLrsoq+eyxcYXa61WQxAEuH37diqaa7vdTrdpw8BiHRLIX7ZcKsM3CvI8oj7v9Xo4OjrSQI4ob1yXgQ8uWeDzP4oinZmYItw2Gg0t+XJddw5YmMB6NBqlgAvZTmVxdvR81t/0LhzorqsfT0rFbANdQhczRYq6+cccxm4hqANbY/Qh53YOGrj0iDKXT6dKLU42bJxB44wON+BPrYU41pww91njEkHTgJ4zf8T00jMkiVkJ0GGm4icbvzAM59KLLCbe7znXT4FD1pKEPPXUU/ju7/5u/OIv/qLmMs9KjzzyCDqdjv556qmnAKh3kQnekILJNvjfpq400cKwbSzzJ6v/eKn6uwT9AbPJwKUKpB807TTofvq9iuQhq47JZIIojLQtCBkmLnqeNnMzgy3Zr3BdIG+f+Te9Px0YJD6m57mOlH4ooFYeEJNJHSb3buaZ4REdzRDIWdfM4EDUDu4+x+vk73eZiXO2dOiSQRwfD4p6uMocW+Wds+YrbbRk4MvjwWRJvrI2UprTedF3zXYuAp382dNJQIDFMLCgy0TrjHHefial1Manqe+y7mMSCJL8kRcaSSNNtVqWxI+DCsmkbnlzP2vOUzt4mgZTBZTXB1llkBSa9l6+756ZKTvFo2tJQh577DHcvn0bX/qlX6q/i6IIn/zkJ/GTP/mT+K3f+i0tKeDSkFu3buHq1auZZXJDRE5SKFmFTBxvJQQgrZmITpjqFwVxZ/BkfsIZNaj7JGAlwhABQMQxhJw3YCS1xtHREY6Pj3FycoJqtYp2u41ms6mjl5reAVli9ay/AWiUur+/j06ng8FggFKppGOPkBTDtGPI0rM3Gg04joPDw0NtyzEajbC7uwshRMqw1WwHlUk2JhRFT0qJbreLSqWi7ToGg4GWariuq41LeSAftfihwx5TlFSKb9FoNHR7z+qjTn1TrVa12zQA9Ho92LaNvb09/V3WBnSRkpEs4gDEtm2Uy2W02210u10IIXSsGh6bxgQDizYqencTRHCjXwKco9EIx8fHGI1GAIBKpZKKDJwlCaHfYRji8PAQQRDoQHs8oF/efOb9QF5RPG4DSW74wZDXj9mA5/KMdUGLaZEkhA7ZVfYPLunIq4MzLpSLK4piHRSSIjDzPY7mMXms9ft9LTWWyM6iS20xgw5ySSgALb0gF2FiMnn9Wfs4J9p7Kb9YuVxGs9nUUp2FfWdKkHIlSuuD+rVAyGte8xr82Z/9Weq7b/u2b8NLXvISfN/3fR/uvfdeuK6Lj33sY3jjG98IAHj88cfx5JNP4sEHH1yrYXOvwr/I01tp3xmzj8xPOR2VGjTaTGeTkrtFEidIQWtW8bGea6+Bek3XVQCpOuZysch5bwP6jktoSqWSTq6nJSwJQl80cWlz5xu86SnD44OQPUqmcaBU2YlJ0kNxPIibNr19VqW8jYSnviaRP733aYxPL4Ky+oKkXPRupCahPuXgb1G5iyQQWVwYSUFIAkgcYda8NNvPJSHT6VRfO+04cPE314+bhq7m/L5M4LKgO0vLpGrmZ9rv0xGdZ9nBs8A+EaliCMRIyeyOFjCl5nzlgN6MzUPqmGVz2mwX7d+0Z/PI1qczSj07rQVC6vU6Xvayl6W+q1ar2N7e1t9/+7d/O97+9rdja2sLjUYDb33rW/Hggw+u5xnDaFV1rZCJiQg3NF2llCTce+IyoyeJjCWklZ6M/X4fN2/exHA4hOM4qFar2NvbQ6vVWjl3RqrdBudJsUf29/cxHo9RKpVQr9V0Rt68gFRZ9RAY2NragpRSA5vj42NIKedsQ3iZnDsm/Wer1dK2HKPRCMPhEP1+H91uV7vZEnfLvWI4qg8SNVO/39eR+kqlkk7Et6lFIKXU70ZJ/ciVmkLfkxiVNozLKAHJOtw9z0O9Xtc/QRDg+PhY24WQBJL6clGUXP63ab8DpIPKkV781q1biONYe+lQZNxFBz+BBu6lRJshD/jEyVS10HcEXMhLh2LT0MFg9tciSVByBwppyN1FeRJMrk5YJIHm33EGkL4jZpAkIMfHx+h2u9hqb6FRr2vbNa6KAWYxjOiQJ/u5IAiU6tixk2MmW5LD5zy3KYnjWHsTSim1FIRLQrKkRKZairLmUvgCig9SqVSW739ztgqr3ricNh4x9cd//MdhWRbe+MY3poKVrUspy49VmCUBMIVb5i1pUJLVq1yZo4rhekE6hOnQJQ+Us3LxHDmTPUgYhiqefyLJ4D7cJreaZYdCk5MMFul5UqPQIZClCuNEHGapVNKLi3SKXFdK9hlZKhWN5o34IHR4mDYFpwUDvF+o3XQ4Ubt51EPetruBaFzJLsT3fS2RorlJ+YPM+Zh1qJufF+mRx+OxznZM9jb0s0gKYpbHxdymtb/ZDv59lt7dTCbGD6HVxrUAIHcznWafyFsH/Dqf88PhUNuSEWOzKL8KZ2xIgpKSvorFaRTMeWtKVQAsjFGyqFxqE4/6atoZmutn7T4+xXZ6ZhDy8Y9/PPXZ9328733vw/ve974zlattNBYYsMvEs0WKWNuP0LaSbX6aPJdcl0nEVQkriQ6iorDGDJDQwB0dHWl7kFKphK2tLbTbbS0FAealE4t0j1Q2l7ScnJyg0+noWBx7e3toJT7pZkZZqs+cNCYqJ4nH7du3NRKeTCa4fv26jgWSJb3hQMb3fbRaLcRxjIODA52PhfSLFC+C1EZ5nC3ZvJDHTr1eR61Wywy+tirlHV4EQMiT5ODgQNdvRo2lckyO5Lxp1VpMbqtUKunIuTSmJOGivid7C5LyANlqGLrGbUBMcXSv18Pt27dxfHyMwWCAnZ0dbG9va30yn5tZ4NhUl4zHY/2bjIjp3XgZfA2ZAaNoHgkhdFyaVfJepGFHorhdJcbBReKVom710ZAW0G9z3tDfWaoNvh7mqkvu0Tm7Dg9x48YNjEYj2LatvSDL5fJcriYg7V3DJSEUx0edEzHA4jRxaWUWY8S9WSh/F+21pk3KovciUNXtdrU0uFwu67hW64L2BE/NXz/FXLmzmWrWIA1AgJzdmlkc62+kcbsCEwRQTGmHWaMU6WscFZPxJW30lL9lmX/1KsQN/0htMLMFSdexqB4+EelezjUT50zePXk5VUzxvBkvhMogTwkgjc7z1EZcGkFGo2aOmU0AAGo/HXB0yHHr8LzD+E7S0nMvx96F3oti0ziOo43OSF3GM+yawGDZHKIx5rmHBoOBtjmhDYyHkc9qp1knzQ8uTeNjscoYcK6Q7IryYtNkUUZLV9T55tmRrfDsWWklUfAdrvsOvnceY7BorNdRhXOAQnsbVx0CSNnXZe3FWepMmuNkr2XaQJmMY5aUku+1pNYxUyRkkdlfBN5JEsJzg62eeJK/b6q2ZD6cbg+9tAnsKHzH4ndTMg2JGDJJXrdGDQCThBBQiaVI1DBAHM90zwcHB9qOoVar4erVq9oThDZXmszmgOZJQ+h7Qqn7+/taCuL7Pra3t1Gr1uB6Lmwre5M19X6mHQBx/dvb2xBC4IknnsBkMsHR0RGklGg0GilulLeN2kd2CP1+H4AKMHd4eKhVR+Rrzt2I6bAhi3UhBKaJyoDUTdzKPC/a5qpkHrRcIkBh7wlMkq3IZVbFcLEuJ9JDV6tVANBeT6Qz9n1fb1YANLeUF5I5qw/IOHo4HOL4+BgHBwd45plnYFkW6vU6tra2sLe3h0ajMRdiH0hzdFyFRNmwSYXX6XQQxzHq9Xqubtv8PZlM0Ov1dKwSyv65CBBthnLKvSPY9SJVRpfnvfPA9KoMBVdn02e+f5Lt09HREfb393F4eIhOp6Ozlm9ttVN7vkm0zxFTQGuy0+moNVurwrXcufWRJz0EgMFggIODA/R6PS3FbbVaqajZeapX/o6kWur3+xBCaDs8rqo3XY5XpxWBfA5dWhBCxE09Zn9kdJBA4r0rNRgx79IB+KTIuDqTlJBaRyaqGJ6JluwYuC7N1FdzNUyWqsSchFm2INrrxnPnEupl6e7zDgESg5PRqOM4WhJCtiHkK56F7OlvjprJUIqkCkB+pFRqB7d5oX7hVubncXhwSRBtGjzct2lzsJAugfkAn1NcwlUulzWHMxqN4LouhsOh3lB4pk/Tu8pMGcC9YGjTIkNSilJrhuVfpd1cKkVtobbyOWGqGmlcyAaE6+np3ThnuLF5NDfepm7AvH6e9Dype1mfJ2QeuGZ00lVULjS3iFGiCNWDwUD/hGGoJX+VSgUlb36emWoQHliQro/HY52DSwgB24j1ZEpHiDEl5nQ0GqXiMJkZ1Hm/ZO1jXHpI9ns8COV57b+r0qUFIZZUuiLqUmUjkkQ5hUyJCaVAIgvRd0M9zSYrK3tmEyLnJCFSCFVeLBGGAY6PlXX08fExLEvlTKGw4I7jpBKI8QiXeRMCSEsZKAcIRaKM41gjb56HhqNUbskNLD5A6QBqtVpwHAdPP/00ptMpjo+PMZlMdHZj81Dhk5JADB144/EYBwcH+j2bzabOPWCK9vhiJ70mSUdqtZrOwbDIRSwLYGX1KQd7VHe5XEYUqYBvdICR15BpEc/Hbr6C3C4+F6JxztKBCyH0BkLeTySxOz4+1hKrWq2G7e1tPW6mWx+vg/4mw+WjoyMdtZcAZ7lcxrVr17S3Fkm78rwSqO20MddqNQDQ64Zi2FCcAooGzLMvm+7Bh4eHODw8xHA4BDCLVWLOvTPTXDFiyfXzpOdJ3cv6HPMAxMypQvdkqTZMRpGnICDAfXh4iG63i+PjYziOg1qthna7jStXrqCW7MdZ84yANkUCJps0KSWOjo4QBAHqjYZahwzImO9DqkpSBx0eHuL27duIokhnaufemFn9won6qNfrYTgcaia31WqhVqulQFX+2lmEPPmZezq6tCCEaOm81J8TixCODHMkIqsoNGlCjMcjHYeBxwLhnBlNQNrIOWDIIj55giDQE44OT8p7ssjeJEsykjeRCEGTQROJ7MnjgQLqmCJxXhfPW0L2JPxQIxCT1aYsC296dhlncRriEgMutbJtO5WzhrfTfD6fLl6Fwzc8Sj5VqVQwHA61ZG0wGGhVGrfu58abHISQzpj04P1+H8PhUKuySApChsSrpII3uTSeBZr03KPRCP1+X3OJpssu19OTazi55tLY5h0Mm6FLZJn5vKHV3pvmL4FUsnEzVRqcuLSEx9ghEEJSNiEESqWSDtbIo09n7Y/UHpLO0dqzbVt7lI0S4FzyS6m9k/YrbrNGhte0Hqk9XIKxiDjo4vFBAJwiNtNqdiKnpUsPQhZGZqM47RterMoeJMZ0GuDo6AgnJycYDAbanzqO49TkBdKc+CIQQgcIDTzlN6FDgzxvSAri5IjdOPChA5d/NoEJ+ZRvb2/Dsiw8++yzGI/H6HQ6WlLCQYgpYiTxf6VSQb/fR6/X0waKxOVyA1CuYyTwMRyqQ4QOG9JJ8rDwHECosZhXPS2TlvDxIO8fkuDQoTqdThf2Vz5lqfI2T6ZkwWwj9Rn5+U+nU9i2jf39fa1Hdl0Xo9EIvu+j2WzqA9vcSPl87na7OicNgYRarYadnR3s7e3hypUrqeB8i1QgvP0k+aIIuf1+H8fHx9pDxvd9tNttrV4h4mB/MBjo9A4UubLRaOh326RxM3uLDZZ1N9V9kbQaACHALYTQElYzZxXdS7+5RyIxgOQNQ4CYDul2u43d3V0tmfYyovvyNUlS8UqlgiiKUK/XIYTQeVoqlQoq1QokpJ6/tE9yt16K50Txf7rdrpY+Un6uRek7+LvT+qFYScQM1Ot1lMvl3Pe5k3RpQUgytCpxnUwUKCLpXGGg3ASDzAK5p0sxiSw/lFVvDEgJy1LfkuwkjiNELMIoj41BBkd8k+UghCZWHhHXRpw5hfklfR9JQizLmqWAFmT8kxyC/P2N/pD8NksAErAdB06yQCbTKSzbRsikIUEYKnROOnvek2IGREqlEuwE6QtrJiFxXAe2k4AJ3QbV7iiOUgmeuJ3G6pbZbFQNILJI7UUHJcW0IG6DewVxYJjbBlM1brSB12WCh3Xei8oywSp9T7/pXhL7VioVNJtNbc3PYx3w0OZmum7aPMnugzZMSipHWYkbjYYO358lws0CyeYPzaFKpYI4jtHr9QAgpfOmuWFuomTHRBFXiUulOD2r2qesTOcohOD9kTdfTDUcXVtGVGbe/VkqgPM4ePLWR95ayHpf/n0ekS1Ut9vVXh9ZUmL6m0AISQZI1UgZxskFniSMZPRs2zbbi6lAJIfJ7Ezi7+mXyxBCIIwixFKqsOtxBDdhBkj9SyCEjLaJCaAw7WTUrRlTQ4KS15/cXoZ7xZBtVpbqnI/XnaLLC0KEpV1m4zhCjAjCFhAWYCUJdC0hEhyRGKPaAiLl858/gYWQEEICMgJkBMexIWMBSwBCSoRBgMlkjG63pz0QpJQ6zgZt9osGK+9Qo02cJiLlUaG4Ga1WS9uczIEZAYgkB4HM+DzLfp0Ga67nQlgCra02LMfG0888jSAM0Ol1IQWwNxpCWAKeX4IlBKI4VmtMCAjLguXY8PwS6o0G/JNjSAHYtgPPL6FU9lHyfbieB8uxWWAeBYKCMMR4OsFkOtEGjuRNc5pw91n9zLkdbhNCIKlarWI6naLT6WjRLS1Cqn/hQSaoh9MbuHmg8MR6AFLcWWpDxPwZZ0o6+OHKJQpc1EqgYGdnB9VqFZZloVKp4ODgQG9mQght08RtjIReXyqkOm1WVA9Z4rdaLezt7aFWq81xT7xt3CgwC6SQ+HdnZwe+72uj15OTE1iWhU6nw+IpKOKJwHTkSdtGs9nUHCq38N8YZYz3mYvMAGT8IKC+WxW4mjYOAPQhk3W4mMDHHK9NEF+HWe+8vJ7V+pzKoojNlmXpTLDmfmC2j893nviRmCzlCbOlf1IusWLWSsUgJwULAcux9Y8QAu2tNgQEwkgxsDdv34LneRglXi7kmUi2VdwlnuwEycZkZ2cHV65cmctZY84TvjdwwEUqT1KrUtTXOwk28ujSghAAQDLIJBWhhcuDYqUODpq/MvlAi888PLQUZOY9UkoStCkx90zk7jh26kDgOralzc8BIdxuBJhFfKTJwQ8fftABWctz5picx03Qd3QI0UQkJG4u2CzoRgejV5oFueHJ7fIOAd5+4nKJ0+B2BXmLYdVFkscV0HuTJwklX6M28Uy7/PDLqWXuG76J88zFiyIq6r+RPkh4ORQAzsxRkffuFJisVqvpjYfbg3AxND90+IYFzLycaJ5wo2MOGE1umh803LvL3DDJjoXaaia+M9cWd1MmuyYSZdOhs0gqczZapZz1gQq35+H2SmdpN4FtYmz43kj7GveKyLLpWa/+xe/NwRQBI9MjI+fJhWVyAEd2DcDMA8SUJGWBELKBAmZghsAv7W2krphjkkgazfdao8l8r7UsC9VqVdtAxXGs7U5I+sclIST1o5g8JBnndikc2JnvZr4nrR1S39D63MSc2xRdXhAimFoh4ahpETWbzdSgcMrmIvIOAwnHsVEquajXq4lNhgvHUYvXskTq0Obc7bJU5LrmjEHmGwBNVsdxsLW1pT0FyLJ6vgyOtBZPILNtZLtBcUOy8saY7m3czoVipBBnTHllyB7EzBnD+8C2be2pQhz1elKQ1d7bLItbrEdRpDkgDvy46iEbzGTXzcEDvV/W5pU1R0zJDbWV1BXEeZnqk6z5LcQsaqiUKoYIAa6TkxNt1EkGfLyfOIgisS9xaeR5QnliFgVIonJs20a1WkUYhilmgcbBsizNzVG7hBBab02bsUkEXhuNho5V0mw2U/kzMkkCOuzyyrT6Glt4PaNuDtQoEjKtd/3YAmYiswVilrCS1qJZJgEUyladzThs6L2Ntvm+r4GxyXzM0/L1TeuC20LR2qa1bMbX0aWztUh7L6kzyfukXq/rrOjzjEl6LM2Dn77ndnJCCO18QLmeqP4sIMGNyEkSSbnYcpmSnGOI9gsC/q7r6ijHtC4vyhaE6NKCEHNwCVH7vq83+qzFuw6yMxcvccN0oLquqwMpcX3hMr2rWYe5qdDzPOiNaaiZJ0WZLYKszSObeBsJ8dNmRO6ry1Cx2f8kpiSkbhqE8UOWFmWlUgEAzVnzRcDryWnByu9tbg7U1xyE0DgSOBFCGa9m9/t83VzsSQCtUqnojXaRBXsel0Z9zPuTqz/oh28afE7RZmNZlh5XIYQOwsSjxfL5S+NDc5Abrpl2ILyt5jvQAUFg08yzQc8QwCZJCLlJep6nVS+8bUIIPddIZUntWhpJWOh/1qD119iqdXOJILmn8/xT2ZQ/z4m44XgWyKB9jurMTpVw9vc25wVJG0kKxz2Zste9WXeaOFPRbDYBKLsQelcu/ckq3wQKBDRIRVytVjUjuCh2Ut678x8aB5rng8FAG8GSd06W+phsA4kZaDQaC71zdLdlHEV876XzjTsDZK3jO02XFoQQ8UlDrqS7u7sa0fG8LeuKlmjTtm0bW1tbAKAXMalednd3tUUygDm7gUWDZ0oUuFiaABAtKtd10W63c0WlrEbMbwqrvbeUUte5u7ur9Y90AOXVyTcyijRKIl8CaqZxIJ/cxGXTYqLMq6vk+jjre9PByL13pJRaskVcE22W2e2Z52bNfpFSav/9RhIPYFGfZgERAjONRkPH5aDYGYv6iTY8ADqYHKliarWazi/DEw7SBkS/ac5TOHZaW7Rh8c096134OJOEgso0gQiPSUPggzxxSFpDZXI1gmksmKceyhu31en0a2xRGXzdU0RkkhyRfn4x45FPBDibzab2xOAGvlT+7u6uVhHMq0Y2+940v6gtxH2vbkg8O1lNwE9xjwj4E5lqRmpHnuSP1N/URpJiZuUDW0a0l3NpF61hch+mOEU8CzRvJ80NU+K32O4pf65ROxqNhmZqljFJ+XQ+1tqXHoRwZEkTkDbmLA4tm7IHCZjpyggp8sifHOiYSbbMcha1ny8gfoDxCUubNfmYc9BilLjkXfPbwD8T+CJuiPdj3jtxyVG9XtcHRNaEpjrpPengJ3sBDgj4vQveYu335mVSv5LEi1x3+WaVz2kslhBRP5LUghvcmm3JGgveTjpwuR49y6DPLMcsk29YpHvmkhCTa9O2UUndPBZIHreUJcnh0kKuhqHrwOwgoLVXq9U0l8xtQmgN0EZKKpk8Nd4647aYTqO6Wa0Mmi8E9OjdTInOqgwV56ABaCkUj4JMDAOAVJ3zbp6bf28OOmkurBJjJlWTASZo/wKgM2Tz+ugZE+BnrRGa79QfpnSW1sqsvatLnake2mO5+nA6naJcLmubJw4YuMQv5Z2zJkileUFgixh5rmJaTxWzeQACXGIQYorBTJE0n9D5g6NLyC3fNNDhhwdNnKwcHnyDXEZZIASYBzR80+AH06qTxDyYstpA1+kwJv37coOxGafOuXO+yKgevpESNyuE0HWa9hKnkWItoixRLG0yBH6IM+S2N5yTWYeoL4jDpDm16kbL6+OiU9IN57Upb8MFoA8hirlBbrFmtF1OBBxofdFPFnAiMjd6qovP97x5Ra6C5XJZz0USU/O6uKQm65BebbzOh4tbrcz5w8+yVIZrOihOayTIpSsEKri6ke4h5orqObtX2mrPkf0GzWcTIK9Uk0irtEmySYd4ntrFVFlmtY3Ggs91/jzfv1R5iwFIlhkBvb/rugiCQNuykCSE2+FRQDJSC3HbjXUlF5zRJUmIyWjl2c7cSbq0IISTeXDToWeKYk9zqPGDksqnZ6kuWkBmHeuAEHrWXFB0Pet9TqOnW1S+EDPVg7mZL9oEs/T+XJ+8DATSe5FueDlo3DzRONFGzd+bg5BV2pa18dECJ6PXZeXkHeScq+UHubk5rtLn/H4uYVvUJi6dy5ony+Ykb7+5LqlNxGnyecrXlCmqX9Se1efRnZ1v83VnryH6fJb1wPuCxjlLgsVB5irrdlNEa8xUR69D5v0E8rPUmlmfs8pZNK8W1Z1HJsg3zxLqe1K/0X7IiRglrjI57Rjx9cW9Y/LKu9N7MtFdAUKAtCiOHxzLN6PlHJCJzvnvrIkC4FSHaRZKz7uHAwb+/ar15HGupsqFHwyrEokN17mfb0LmIZ6iDTOsJgdlvqepIluln01QygGNCXJWIRM4cjG5Wc4qIJveFZhtjCb3mTUHzY0zqw3L3stsP9XFnzW5MBOs5FGWWH455UwoquZMc23ZZM2+bq6HRfvLKsSZG37Y8LKpLG7If/pDZ5X3zgb6m6A8hm0VILIKY2DOx2Xzks/nrCCI9De3ieESP/4Opo3Weudc+t1X3VMumu4KEJLFhS3qyPTArT7pFn1ncm3092lACP87S2xocrGnmTRZQCSrrKyyV60zq6y8PslayJl1Q0KFeDk7Z7jKfDG/NyVFq9SzrI5ltArXxjfDrHmRBVbMa3njteo75PXrKtIR/g5577eo/qw1t9p+kPP9RvbhZYXkrwNz/Z927vAD0FSFclpVUrBirStc3wzoyDqEVwUX6/bpon1r1f2A792L9keu/slaHxy8mNKe7LbM97kQM1dlznytu+7Pm+4KELJpytrE+PeLwAn9vSogyit/0cGT176z0qpAIOs53p5FQCPrYOFkgq6sgzb5hHVPirzDLks9lfduyw5D3u6zHhxmW7I+r3ItD0gSZUm5FnFWWW1atBmaXGjeBpylwgKWSMZYmcQpkiTB1GcvHo9kPmVOq/OyF5mVL4SqW+YczmcFI0TmvMyb33lr03zuMtAiaUDWwX1ebVi2J/C5mbePCJFWt5r7fdb4nIUJXUWCc9F0V4GQdcVryyjrIDGlEJusL68NVN95E5/g5oK+k/UTLUbj57NAaLNYBExWLYP+XgfArFL2WWnRJmhSXnA689lVpB2LNl6znCypyLINk/+YnP9yEqlfmdfOjVjdMhvMn2bcTeCX1x959Syq86yAKAt0bgLkLGIM12nPIjrtvm+eJ6QK5WrgLAlVFvCgvzmwWZWy+iWLkbwsdGlByKoi3rxr60gnlol6160/j5ZxslzUfto6Vm0DbTK0OLhHQt4zed9nSQbyOPxVOIqz0LJxW+aGvArRu/L3X+eQXrUOYDlwy6Nlc8iUQiyrb1F59G6r1LWIFvUR9fnK3O55Czc2WPcm5vyyvcU8mM6F+ch570VSsHVpEcDNOuD59+u882kl3VmSjUXzdpFkKq/MdAHInWtZ/XyWvj8vurQgZBEt4h6yOzg9UssO1eXlrU5ZqoFlm7XZnk1NmqxyTE6Y7lv14OBkiu2z6s66vqn3zOIksihLekHfr7tI81QXZn2L2rLsOy62zSrfVL2swiGaADJLxZEFtvKAZp50aV1Qvewe3j7TqDhd0NKqNkQZp8AKdWdJJ9bh7LPK4/Mky+jXvP9stNp7583vdQ72vHJWpWVzMAt4r8s0SCl1pnBez6I1s+p4L1Q7LukWc0+jsk7L3JwHXXoQsoxDy7o+36HLJ15evdnlLac8Mdsq9a36zLpl0nerHpynacMiTnqVDWATtAwE0e8s6cw6LteLwOw6c2YdkLLKmOZxXnn9knUgrtq+LNVe3phncYmr1GHWxw/blZ89N8nI+nWb7d2ULUPeYZdV5zpSgZzaTt22hZz9kmdXbi+7bZ25dhrQQ2VHUZQybD8N6M46B86ixsrbB9Zhjs+bLi0IOSuCXqf8PA5zPZrf5c5S3nrPbn6HXYV73US/bbrPl9WxTNp1lgW/Ca7ttHSqjZrRIpH+qvXm1Z/XH6fpp1P38ZmH5AxrbO3HzLoW153FuS+zI1h9rDe3t6w/3mdgUMTs8WUM5brtMvcIkiByKZQJlM3716FN7icXuUfl0aUFITAGUA/oAr3j6kVnTUSkCs4sb+F6PAsAWWGhr1H3Mkq3bfkGt0zvuC6t9cwp3luVvz5AWa/urGclhLDAN8/sDVBinX1oWX+tJ9rOfqkU6MyStK8kVUs/OP/u+QBv1Y359IzInV1jiwpe3n7z+ryEafZZzl2nv1eeFxDn8t7mnnq6uk1Ay79fVPZiF/bkljXXd/Y8NaVzXK25KujZBFCn+bBoKS3tkwug8/NpOi86t36bHRBF3Xeq7hXo1HVvgOtaWoT5jDB+59E8eFmfzipGP4/xXvW9N6+CW06XfI2duexV6TTz/LR0Hn2+7hq7c+NN0X4pBw1wPurmxbSJveXO0uWVhJw30djMTcQ7cOI+X+u+1HSa91/xmdw+v8i670pkuTpd2jV20YfCOb7/Rc+1TMnG+dfNbUB4TrNU087LEPRc9pY7S89fEPIc34MvZd3PVyrG+85T0ed3ni76vS+ofiGETjwZRRGiKEpl5D3fyk/xyCVRwxCt3UPPPPMM/vk//+fY3t5GuVzGy1/+cnzmM5/R16WUeOc734lr166hXC7joYcewl/91V9ttNEF3X3EuYVFP3eijrO25U6XcZ59dlbaVBvvhnfdBG1ibO/UPL8MdNneI6s++uy6LkqlEnzfh+/7p86MvMk2nqqfpP5n0Q0bo7VAyPHxMV796lfDdV385m/+Jj772c/iP/yH/4B2u63v+bEf+zH8xE/8BH7mZ34Gn/70p1GtVvG6170O4/F4ow1fiy5SAlrUXdRd1F3UXdT93Kg7g4RQkpBGo4GtrS3s7u5ie3sbvu/rbOPA6T3QNN2p915qULxZYLWWOuZHf/RHce+99+L973+//u7+++/Xf0sp8d73vhf/9t/+W3z91389AOC//tf/ir29Pfzar/0avumbvmlDzV6Tnq+i2aLuou6i7qLuou4zU57rPo+IWiqV9DWyDVmmjllLUnIn3vvc4unk01qSkP/+3/87vuzLvgz/5J/8E1y5cgVf8iVfgp/7uZ/T15944gncvHkTDz30kP6u2WzigQcewKOPPppZ5mQyQbfbTf0specrCi/qLuou6i7qLuq+8LpN8GBZFiqVCur1OtrtNlqtFjzPSxmo3hUqsFM37fSDuBYI+X//7//hp3/6p/HiF78Yv/Vbv4Xv+q7vwr/8l/8Sv/ALvwAAuHnzJgBgb28v9dze3p6+ZtJ73vMeNJtN/XPvvfeyqzkvdkfGsKi7qLuou6i7qLuoezERqHAcR9uFEADhkhAOQO4cGLmjOpxT0VogJI5jfOmXfil++Id/GF/yJV+CN7/5zfiO7/gO/MzP/MypG/DII4+g0+non6eeeopdfZ7J/Iq6i7qLuou6i7rvurop263jOPA8D57nXRKJxzm3YQMYZy0Qcu3aNbz0pS9NffeFX/iFePLJJwEAV69eBQDcunUrdc+tW7f0NZNKpRIajUbqp6CCCiqooIIuK2UlxSPpBgGSLBBy6dUxK5Gc/d7Aq6wFQl796lfj8ccfT333f//v/8ULX/hCAMpI9erVq/jYxz6mr3e7XXz605/Ggw8+eIrm3YXKwqLuou6i7qLuou7nbN13PgrqWWi1tq73Sixq7VJ33uW0lnfM2972NnzlV34lfviHfxj/9J/+U/zBH/wBfvZnfxY/+7M/q5okBL7ne74HP/RDP4QXv/jFuP/++/EDP/ADuH79Or7hG77hFM07JczaiIVvUXdRd1F3UXdRd1F3xtenBCKrJAZdVvd6tFoBQpyyMv0c/70erQVCXvWqV+HDH/4wHnnkEfzgD/4g7r//frz3ve/Fm970Jn3Pv/7X/xqDwQBvfvObcXJygr//9/8+PvrRj8L3/bUbd2o6k4XvGUe9qLuou6i7qLuo+zlftxAi13V3I3QH31tKgdM1X+T8XqMEeclkS51OB61WC//pI59BuVrbUKkX4Pxc1F3UXdRd1F3U/dyoe3Fq2tz7c3PGnOrE3+x7n4dtymjQx7/8/16Jk5MTNJvN1dpx2UDI008/bbjpFlRQQQUVVFBBdws99dRTeMELXrDSvZcOhMRxjMcffxwvfelL8dRTTxXeMhdE3W4X9957bzEGF0jFGFw8FWNw8VSMwcXTqmMgpUSv18P169dXTt536bLoWpaFe+65BwAKl91LQMUYXDwVY3DxVIzBxVMxBhdPq4zBqmoYonPOM1xQQQUVVFBBBRWUTQUIKaigggoqqKCCLoQuJQgplUp417vehVKpdNFNed5SMQYXT8UYXDwVY3DxVIzBxdN5jsGlM0wtqKCCCiqooIKeH3QpJSEFFVRQQQUVVNBznwoQUlBBBRVUUEEFXQgVIKSgggoqqKCCCroQKkBIQQUVVFBBBRV0IXQpQcj73vc+fN7nfR5838cDDzyAP/iDP7joJj1n6d/9u38HIUTq5yUveYm+Ph6P8fDDD2N7exu1Wg1vfOMbcevWrQts8d1Nn/zkJ/GP/tE/wvXr1yGEwK/92q+lrksp8c53vhPXrl1DuVzGQw89hL/6q79K3XN0dIQ3velNaDQaaLVa+PZv/3b0+/07+BZ3Ny0bg2/91m+dWxOvf/3rU/cUY3A2es973oNXvepVqNfruHLlCr7hG74Bjz/+eOqeVfaeJ598El/3dV+HSqWCK1eu4Hu/93sRhuGdfJW7llYZg6/+6q+eWwvf+Z3fmbrnrGNw6UDIr/zKr+Dtb3873vWud+GP/uiP8IpXvAKve93rcPv27Ytu2nOW/t7f+3u4ceOG/vm93/s9fe1tb3sb/sf/+B/40Ic+hE984hN49tln8YY3vOECW3t302AwwCte8Qq8733vy7z+Yz/2Y/iJn/gJ/MzP/Aw+/elPo1qt4nWvex3G47G+501vehP+4i/+Ar/927+NX//1X8cnP/lJvPnNb75Tr3DX07IxAIDXv/71qTXxy7/8y6nrxRicjT7xiU/g4Ycfxqc+9Sn89m//NoIgwGtf+1oMBgN9z7K9J4oifN3XfR2m0yn+9//+3/iFX/gFfOADH8A73/nOi3ilu45WGQMA+I7v+I7UWvixH/sxfW0jYyAvGX35l3+5fPjhh/XnKIrk9evX5Xve854LbNVzl971rnfJV7ziFZnXTk5OpOu68kMf+pD+7v/8n/8jAchHH330DrXwuUsA5Ic//GH9OY5jefXqVfnv//2/19+dnJzIUqkkf/mXf1lKKeVnP/tZCUD+4R/+ob7nN3/zN6UQQj7zzDN3rO3PFTLHQEopv+VbvkV+/dd/fe4zxRhsnm7fvi0ByE984hNSytX2nv/5P/+ntCxL3rx5U9/z0z/907LRaMjJZHJnX+A5QOYYSCnlP/yH/1B+93d/d+4zmxiDSyUJmU6neOyxx/DQQw/p7yzLwkMPPYRHH330Alv23Ka/+qu/wvXr1/GiF70Ib3rTm/Dkk08CAB577DEEQZAaj5e85CW47777ivE4B3riiSdw8+bNVH83m0088MADur8fffRRtFotfNmXfZm+56GHHoJlWfj0pz99x9v8XKWPf/zjuHLlCr7gC74A3/Vd34XDw0N9rRiDzVOn0wEAbG1tAVht73n00Ufx8pe/HHt7e/qe173udeh2u/iLv/iLO9j65waZY0D0i7/4i9jZ2cHLXvYyPPLIIxgOh/raJsbgUiWwOzg4QBRFqRcCgL29PfzlX/7lBbXquU0PPPAAPvCBD+ALvuALcOPGDbz73e/GP/gH/wB//ud/jps3b8LzPLRardQze3t7uHnz5sU0+DlM1KdZ85+u3bx5E1euXElddxwHW1tbxZhsiF7/+tfjDW94A+6//3789V//Nb7/+78fX/u1X4tHH30Utm0XY7BhiuMY3/M934NXv/rVeNnLXgYAK+09N2/ezFwrdK2g1SlrDADgn/2zf4YXvvCFuH79Ov70T/8U3/d934fHH38cv/qrvwpgM2NwqUBIQXeevvZrv1b//UVf9EV44IEH8MIXvhD/7b/9N5TL5QtsWUEFXQx90zd9k/775S9/Ob7oi74In//5n4+Pf/zjeM1rXnOBLXtu0sMPP4w///M/T9miFXRnKW8MuJ3Ty1/+cly7dg2vec1r8Nd//df4/M///I3UfanUMTs7O7Bte84C+tatW7h69eoFter5Ra1WC3/37/5dfO5zn8PVq1cxnU5xcnKSuqcYj/Mh6tNF8//q1atzRtphGOLo6KgYk3OiF73oRdjZ2cHnPvc5AMUYbJLe8pa34Nd//dfxu7/7u3jBC16gv19l77l69WrmWqFrBa1GeWOQRQ888AAApNbCWcfgUoEQz/Pwyle+Eh/72Mf0d3Ec42Mf+xgefPDBC2zZ84f6/T7++q//GteuXcMrX/lKuK6bGo/HH38cTz75ZDEe50D3338/rl69murvbreLT3/607q/H3zwQZycnOCxxx7T9/zO7/wO4jjWG0RBm6Wnn34ah4eHuHbtGoBiDDZBUkq85S1vwYc//GH8zu/8Du6///7U9VX2ngcffBB/9md/lgKEv/3bv41Go4GXvvSld+ZF7mJaNgZZ9Cd/8icAkFoLZx6DUxrSnht98IMflKVSSX7gAx+Qn/3sZ+Wb3/xm2Wq1Uta3BW2O3vGOd8iPf/zj8oknnpC///u/Lx966CG5s7Mjb9++LaWU8ju/8zvlfffdJ3/nd35HfuYzn5EPPvigfPDBBy+41Xcv9Xo9+cd//Mfyj//4jyUA+R//43+Uf/zHfyz/9m//Vkop5Y/8yI/IVqslP/KRj8g//dM/lV//9V8v77//fjkajXQZr3/96+WXfMmXyE9/+tPy937v9+SLX/xi+c3f/M0X9Up3HS0ag16vJ//Vv/pX8tFHH5VPPPGE/F//63/JL/3SL5UvfvGL5Xg81mUUY3A2+q7v+i7ZbDblxz/+cXnjxg39MxwO9T3L9p4wDOXLXvYy+drXvlb+yZ/8ifzoRz8qd3d35SOPPHIRr3TX0bIx+NznPid/8Ad/UH7mM5+RTzzxhPzIRz4iX/SiF8mv+qqv0mVsYgwuHQiRUsr//J//s7zvvvuk53nyy7/8y+WnPvWpi27Sc5a+8Ru/UV67dk16nifvuece+Y3f+I3yc5/7nL4+Go3kv/gX/0K2221ZqVTkP/7H/1jeuHHjAlt8d9Pv/u7vSgBzP9/yLd8ipVRuuj/wAz8g9/b2ZKlUkq95zWvk448/nirj8PBQfvM3f7Os1Wqy0WjIb/u2b5O9Xu8C3ubupEVjMBwO5Wtf+1q5u7srXdeVL3zhC+V3fMd3zDFBxRicjbL6H4B8//vfr+9ZZe/5m7/5G/m1X/u1slwuy52dHfmOd7xDBkFwh9/m7qRlY/Dkk0/Kr/qqr5JbW1uyVCrJv/N3/o783u/9XtnpdFLlnHUMRNKYggoqqKCCCiqooDtKl8ompKCCCiqooIIKev5QAUIKKqigggoqqKALoQKEFFRQQQUVVFBBF0IFCCmooIIKKqiggi6EChBSUEEFFVRQQQVdCBUgpKCCCiqooIIKuhAqQEhBBRVUUEEFFXQhVICQggoqqKCCCiroQqgAIQUVVFBBBRVU0IVQAUIKKqigggoqqKALoQKEFFRQQQUVVFBBF0IFCCmooIIKKqiggi6E/n/XHyuUHHxk3gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "test_image = test_captchas_dataset[np.random.randint(0, len(test_captchas_dataset))]['image']\n", - "plt.imshow(test_image.permute(1, 2, 0))" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "ExecuteTime": { - "end_time": "2023-04-04T04:06:14.931628Z", - "start_time": "2023-04-04T04:06:14.910009Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['n',\n", - " 'z',\n", - " 'X',\n", - " 'v',\n", - " 'A',\n", - " 'm',\n", - " 'O',\n", - " 'l',\n", - " 'J',\n", - " ' ',\n", - " ' ',\n", - " ' ',\n", - " 'n',\n", - " 'r',\n", - " 'Y',\n", - " 'D',\n", - " 'p',\n", - " '7']" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tokenizer.decode(best_model(test_image.unsqueeze(0).to(device)).permute(1, 0, 2).argmax(-1), drop_special=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.4" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/trocr_seq2seq_playground.ipynb b/trocr_seq2seq_playground.ipynb index 58de14f..7404939 100644 --- a/trocr_seq2seq_playground.ipynb +++ b/trocr_seq2seq_playground.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 112, "id": "94a78791", "metadata": {}, "outputs": [], @@ -18,42 +18,17 @@ ] }, { - "cell_type": "code", - "execution_count": 93, - "id": "4104b3fc", + "cell_type": "markdown", + "id": "d7f84086", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-04-05 05:31:41-- https://github.com/AakashKumarNain/CaptchaCracker/raw/master/captcha_images_v2.zip\n", - "Resolving github.com (github.com)... 140.82.112.4\n", - "Connecting to github.com (github.com)|140.82.112.4|:443... connected.\n", - "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://raw.githubusercontent.com/AakashKumarNain/CaptchaCracker/master/captcha_images_v2.zip [following]\n", - "--2023-04-05 05:31:41-- https://raw.githubusercontent.com/AakashKumarNain/CaptchaCracker/master/captcha_images_v2.zip\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 9075967 (8.7M) [application/zip]\n", - "Saving to: ‘captcha_images_v2.zip’\n", - "\n", - "captcha_images_v2.z 100%[===================>] 8.66M --.-KB/s in 0.09s \n", - "\n", - "2023-04-05 05:31:42 (94.2 MB/s) - ‘captcha_images_v2.zip’ saved [9075967/9075967]\n", - "\n", - "/bin/bash: line 1: unzip: command not found\n" - ] - } - ], "source": [ - "!wget https://github.com/AakashKumarNain/CaptchaCracker/raw/master/captcha_images_v2.zip && unzip -q captcha_images_v2.zip" + "TrOCR Captcha finetuning \\\n", + "https://colab.research.google.com/drive/14MfFkhgPS63RJcP7rpBOK6OII_y34jx_?usp=sharing#scrollTo=3VazhIpdx7mW" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 115, "id": "6c9262d7", "metadata": {}, "outputs": [ @@ -63,7 +38,7 @@ "[(' ', 10061), ('8', 3028), ('S', 3012), ('b', 3006), ('V', 2992)]" ] }, - "execution_count": 2, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } @@ -75,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 143, "id": "8d76957c", "metadata": {}, "outputs": [ @@ -85,7 +60,7 @@ "(20000, 1500, 5000, 5000)" ] }, - "execution_count": 3, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -93,14 +68,14 @@ "source": [ "train_dataset = OCRDataset('./synthetic_dataset/train/', tokenizer, do_train_transform=True, image_size=(384, 384)) # need quadratic images for vit, 64 h for others\n", "val_dataset = OCRDataset('./synthetic_dataset/val/', tokenizer, do_train_transform=False, image_size=(384, 384))\n", - "test_dataset = OCRDataset('./synthetic_dataset/test/', tokenizer, do_train_transform=False, image_size=(384, 384))\n", + "test_dataset = OCRDataset('./synthetic_dataset/test_clean/', tokenizer, do_train_transform=False, image_size=(384, 384))\n", "test_captchas_dataset = OCRDataset('./synthetic_dataset/test_captchas/', tokenizer, do_train_transform=False, image_size=(384, 384))\n", "len(train_dataset), len(val_dataset), len(test_dataset), len(test_captchas_dataset)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 117, "id": "19fd399f", "metadata": {}, "outputs": [ @@ -109,7 +84,7 @@ "output_type": "stream", "text": [ "Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration.\n", - "Some weights of VisionEncoderDecoderModel were not initialized from the model checkpoint at microsoft/trocr-base-printed and are newly initialized: ['encoder.pooler.dense.weight', 'encoder.pooler.dense.bias']\n", + "Some weights of VisionEncoderDecoderModel were not initialized from the model checkpoint at microsoft/trocr-base-printed and are newly initialized: ['encoder.pooler.dense.bias', 'encoder.pooler.dense.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, @@ -677,7 +652,7 @@ ")" ] }, - "execution_count": 4, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -690,7 +665,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 120, "id": "f208be90", "metadata": {}, "outputs": [ @@ -722,7 +697,7 @@ "=====================================================================================" ] }, - "execution_count": 5, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -733,7 +708,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 121, "id": "c3c94740", "metadata": {}, "outputs": [ @@ -743,7 +718,7 @@ "(3, 384, 384)" ] }, - "execution_count": 6, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -754,23 +729,23 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 167, "id": "c0f7f09d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 89, + "execution_count": 167, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGiCAYAAABd6zmYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e4xs2Vkdvk49urqqX9XvvnfuzGBMwHYwEBlnGEGQAcsPLBTE/BETBxtiYcUaI8EkQIwIYEgYCSGB4GfgH2QnCpYIUiDBQeZhgi3CYGAiQsDEwsbEd+69/a6u6qqud53fH521e52v9jl1qrr63jt965Na3V2Pc/bZr/Wttb/97SAMwxAzm9nMZjazmT2ElnnQBZjZzGY2s5nNLM5mIDWzmc1sZjN7aG0GUjOb2cxmNrOH1mYgNbOZzWxmM3tobQZSM5vZzGY2s4fWZiA1s5nNbGYze2htBlIzm9nMZjazh9ZmIDWzmc1sZjN7aG0GUjOb2cxmNrOH1mYgNbOZzWxmM3to7YGB1Ac/+EF80Rd9Eebn5/HUU0/hT/7kTx5UUWY2s5nNbGYPqT0QkPrVX/1VPPfcc/jRH/1R/M//+T/xlV/5lXjzm9+M/f39B1Gcmc1sZjOb2UNqwYNIMPvUU0/h9a9/Pf6//+//AwAMBgM8/vjj+J7v+R7863/9r+93cWY2s5nNbGYPqeXu9w07nQ5efPFFvP/973evZTIZvPGNb8QLL7zg/U673Ua73Xb/DwYDHB8fY319HUEQXHmZZzazmc1sZtO1MAxxenqKmzdvIpOJF/XuO0gdHh6i3+9je3s78vr29jb+z//5P97vPP/88/jABz5wP4o3s5nNbGYzu492+/Zt3Lp1K/b9+w5Sk9j73/9+PPfcc+7/arWKJ554Ardv38by8vIDLNnMZjazmc1sEqvVanj88cextLSU+Ln7DlIbGxvIZrPY29uLvL63t4ednR3vdwqFAgqFwtDry8vLM5Ca2cxmNrOXsY1asrnv0X1zc3N43eteh49//OPutcFggI9//ON4+umn73dxZjazmc1sZg+xPRC577nnnsO73vUufPVXfzX+4T/8h/jZn/1ZNBoNfNd3fdeDKM7MZjazmc3sIbUHAlL/5J/8ExwcHOBHfuRHsLu7i6/6qq/Cxz72saFgipnNbGYzm9mjbQ9kn9RlrVarYWVlBdVqdbYmNbOZzWxmL0NLO4/PcvfNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5am4HUzGY2s5nN7KG1GUjNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5am4HUzGY2s5nN7KG1GUjNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5am4HUzGY2s5nN7KG1GUjNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5am4HUzGY2s5nN7KG1GUjNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5am4HUzGY2s5nN7KG1GUjNbGYzm9nMHlqbgdTMZjazmc3sobUZSM1sZjOb2cweWpuB1MxmNrOZzeyhtRlIzWxmM5vZzB5ayz3oAlwHC8MQABAEQeL7SZ8Z5z7TuJbvukEQTO0eo+rk5WS++rkOzzVNm+YYuIo6Ttuv72f7+u6V9rVR15l2uR6kPVJMKgzDoc466rNpPz/qHvrauNfVz9vrXNamfb2k679c7arq/rrYOGNq1Pv3ow/6/r/f7Zm2L6WpM9/1pj03PEibOkj92I/9GIIgiPy86lWvcu+3Wi08++yzWF9fx+LiIp555hns7e1NuxhDdtkJZlTDJ3X8cYEx7WenZbascT+jypvmOy9HGwwG7u/r8kzTtlFtPun4mVZ9+/p4mnJM0+LGy6j7pwX3adTXuHPW/bArYVJ//+//fdy7d8/9/OEf/qF77/u+7/vwm7/5m/i1X/s1fOITn8Ddu3fxbd/2bVdRjCGbhElN655pBkjcd/Q1nTCnaeNeN83gui7mA6nrBMKXtbR1MQ6TukpGleRY2XJchcXdJ8nps+VOus40yjfKcb2fdiVrUrlcDjs7O0OvV6tV/PIv/zI+8pGP4Bu/8RsBAB/60Ifw6le/Gn/8x3+Mr/mar7mK4kxkbIg0uqyvc9nvTZN+6/2moRv7WOZlr+urg5erzYDp8jYOkF11v3kY2nBcJjeqXnwAdl3G35Uwqb/5m7/BzZs38cVf/MV4xzvegS984QsAgBdffBHdbhdvfOMb3Wdf9apX4YknnsALL7wQe712u41arRb5mcSmRYWT3rusRzmq816Vh+kDqknv+TBMAtO0OCY1swubFpNKe61xbRyQvB8satwyJb03bVl0nLLdD5s6SD311FP48Ic/jI997GP4xV/8RXz+85/HP/pH/winp6fY3d3F3NwcyuVy5Dvb29vY3d2Nvebzzz+PlZUV9/P4449PrbxpdOGHpbHUpl2muE55mfvMJvRH06YxcV7lJDntfn4VNml5Jv3eYDCIlUMftE1d7nvrW9/q/v6Kr/gKPPXUU3jyySfxn/7Tf0KxWJzomu9///vx3HPPuf9rtdpUgGqURJf0urXLfNeW5TKfmcQY4KL/T8uug+yQyTxSQbATGdtY+yhD9m04dVx/4Oevqs/wmknXnvZ9ffJ5Wkk9zXjXALXL2GAwiFyL9x4MBg+8/1/53cvlMr70S78Un/3sZ7Gzs4NOp4OTk5PIZ/b29rxrWLRCoYDl5eXIz2UtafESGO5UowaXbwAkfT7Na757pBlok9qowZPWu7VlfBi8scuYr01f7sA7LfOpDj4mZSe/Sa8/qSWNywcZFGBNgVpfizNb3kn7Z7/f917HSt0Pon6uHKTq9To+97nP4caNG3jd616HfD6Pj3/84+79z3zmM/jCF76Ap59++srKEAcyoyQuX4dJcx9rl/F04jrhNE07pB3Mk3ZKXyd/uRo9ySAIkMlkrgU7nLapQzIYDCLyEY11N8quUjHQ30mfmYbFAZ/OR/Z+Wo86D8XNIXz9smyn3+976/1hGL9Tl/v+1b/6V/iWb/kWPPnkk7h79y5+9Ed/FNlsFt/+7d+OlZUVvPvd78Zzzz2HtbU1LC8v43u+53vw9NNPX3lkn096oMW9HgSBa6Q0TMf3uXHkvgftxbEe0rKlUexSr/tytrgJYAZU52YnVl+/GOW0WNY97bpNK2dfxjFLWw6V1pIsDsj0WtahnrTeyKTs9+ls6PXvd7+fOki99NJL+PZv/3YcHR1hc3MTX/d1X4c//uM/xubmJgDgZ37mZ5DJZPDMM8+g3W7jzW9+M37hF35h2sXwmgJJ3IC6jIas9xmXAY2SxmzZr8Lsc/qAc9zO+nIHKOD6yZdXZUnjiu/HgdRVLtbbMfMgJlrWh+/5ferFOHPOJPONNct841SkB9H3g/BlOOJqtRpWVlZQrVZTrU/p+pNq4+olZDIZL3MiDc5ms4mUOq5jxUmMdqBoGVUW0cFu5ThgOov6YRii1+thMBhgbm4ucj9dOB0FTj4dvdfrIQgC5HLXI01kklTzKJqdPtiPACCbzSKbzUbe73Q6KBQK3uvomMzlcq6/T6uPx4073jOTySCTyaRmOmnvCQzLob41Zh3zWodp16SsPDiOVatVlEqlyDgNwxDNZhPFYjEyN9o2ndTSzuPXY+ZIaXF6r/1M2kVLawoocWtg415Tv3fVtHscaTLN+l6Slv5yMzsZXIdnuiqbtN2vkk3F3Qe4fGTuOOZj46OY3qh5w84Lk8wzdNL1erYsVy3JxpbtvtzlIbCkTh/XSce9Pj2ySQZYnIYft+h61RZ3XwXMpB+16zihvwwFiPtmSQ7MKFZw1eD0oNotSUqbtEz8npXqJrke2ZEt18Mwdh8ZkKKl1XitJ5F2/WVUB4l7P0n79QHEVXl5PrBMI+/FAdWD3mMxs6s3C0Iqn497Hf09bfNFHALDY3xa9x/FiOx84Zt3Rtk0wA5A7HJGnPN8P+2RkvvU4vTbSRchbYcbBSSTNnZar3QSG3U93yCwA+S6sigr5c7s3JKkKl/bJzk8V12vvgn9QfbPuLWvSYIestnspcCKTErXnnRZ4UH2+UfSzU1iM75OnHbyjpO7Rt2X99HP2f99LGXaHccX0WM9zDR1dxVle5B21R7+dTA7XmxAQJq6u4xcPm457f9p+vgkZid5/d83X/jun6b/XbaPanBU3LXj/r9qeyRBipZE89M0lu+9OD0+bcOmZW1XYaOY36iyxXnO14VNATOgSmt2TKVlLlfRX6zT9aBN55249fBRwOW7pr3GOEZ5Nk4JeZBA9ciClI+p6N++10bZJDp82rJehWY+ynwd1ko5/M1nv26gBPgj+67bM07LRq1fpnGErqJu006++t5VlMHHOOPmIt//Pht3HWtU+fR63A4zk/vuo42Sq/gzbjqQtAEG45bTt142TflpXMaYBFSj1iNe7vagB+vDbD5Pe1wnzzdpT6MfjRqb44LCNMxXpiQJcNS1LFucdM7Rec8X9PEg7JEDKbW4TqJ/j9NZfExqGo3rY1LT7DRpBqlvrSHp5zqZepfT2uh53WxUnxzFpO5HnSbdQ8fW/WhbspQ4sPL97bsGr6P/T2qWSfGa4y5ZTNseGZBK6pxx8t6knqBvMfay5fbJfdPuNBYE4yQSX11eZ7mP5hvEM0u35jOO3KeT7rQtrcN31ZKjz+nT8ozLpK6yjGnKcJX2yIAUMF5QwjiN4huA02JQvt/Tun5aszq6LYvadQQq34RxnZ5v2hbn5KSZbO2kOM16TgKmq3L8rNl1KXv/Scpg62iSOosr18PQzx/ZfVJxdpk1FWVlk+jCcd/ha5bWT9Ozt+tdcWVIstl6zcwmUSBoV60U6D3U7P2uQkrXsW3HrW/cpy2D/e5lyp527N9v4JqBFPwbehUIJvVMfPcZ57s+T8tKinH3mtR8rMlOPL4y2HJcpUd8v+2q6vo6mK+/2KCjSZg1ExtPU16NcwInDTQYZXGTuzJNXzLptMwobvxdhkn5xu2DHsOPJEiNWjwF/Ol8xm2kaXZ8DlpdcJ3m9X3X0w7LgAGdPPie7/svZ1AaZbN1qahZZ8oH6mnTY92PRfr7Oen67qWnL/hONvA5zGltMBhMfOIAQTOu3A/KHqk1KWtx7EkXb32f9dlVLXT6Fi6vcm0qjffnk0Xux+TyoOw6PtO0zTo0do1jHKfqqvpSUjnuh4PlqyO9f5zzkxao4taV0pj93sOkHjwSTCpONvO9b83n6aQxX6cbV+7zvRYXEXRZ861xxcl9PqB6GGSB+2HXFYinaXoOlJWw0rLQq1yPetBMWJWJcRzauPU0HbuXOe7dJ/fpvR9UQNQjxaTGmUQnaZCrnMAu4yVNuxy+v+M+c13tUXjGNBbXJ9WZeZATnDXrZD0sY0kt7ZqU7zqX7ZejHN8H0e8fKZBS83WEuOiiyzCgcb6fZFcZLBHnYY6SHuIG08MwGU3TRq1Vzixqum6qfSJNn/UpBldVxnFen/a9Rz2fT8XwmZ2jLuMQjCrPg5L0Hwm5Ty1uPcfXCHbSTpIJ4r6T9Nlx16Z0YdP33mUHWBLI2s6fFGih17sugGUZwXV6tmmaruda5ydtnU0boKxUbe+lf1/1BKxr3pqhJo7B6JHto+pPA5omsTgHTPt8GIZTOz4+rT1yIDXK4hYw03gQ0wi99ZXHmg+wpgEQvKZvQol7nff2DfZJJ/Oken4QwGDrYRyH5FEy1osvTU9aFmXXsKZZNl8wR9qyXcbsfZRp6vtx39FxmeZekzrBcWuHGvGXFOChzxh3j0nskQKptI0X1xijOvNVDTDgvMwM/05TlnHLYK/vu9aoweV7/TpN4vr8l1mgvu6WxPbT2FXLxj5Z2xcANA1L49AlzTGj+plVgyatM2XAPgmRr/OAxftpjxRI+cwHRBp5owMuaTFxHOYwqQduZYs4+W8S42DweX1qVvLS13xlvczAeViYylVPmtfNklh9GufqKuo5bj3FgtI0722v7QsisePMNw7v1xqQHdfW0q5JXUZF8dkjC1J27WkwGGAwGKDX67m/aaM8BzuwBoMB+v0+stkscrncxNKCdoowDNHtdt31p91xfWDnuwfrSv+2m4yn5Y0+TKCgzz0Lnhg2sku2fZzHPapNOXaA83rOZrNT7wcsY6/Xc69dFTvwjQVd37Fjmc8+NzcHIL1MCkTrbpINvT7ngnUUhiH6/X5iW8QxsMvaIwtSQLRxe70eer0e+v2+a4wgCDA3N4dCoZDawwvDEJ1OB+12G3NzcwiCALlcbuxJ27K7Xq+HZrOJTqfjgCGbzbpOeVmbn593E4KCN8vCQdXr9dDtdiMbNlmWfD4fAeX75QFetXECbjabCIIApVLpQRfpoTNt616vh3a7jVKp5M1OkmSDwQCtVguDwQCFQgHz8/NTKZ9dJ+31ejg7O0MYhsjlcigWi0PPMk1wtIyKANVut9Hv9yNOUDabRSaTcWMpjfFanU4HhULh0uDOPl+v1931gyBAoVCY+JqT2iMDUnaAqEQ3GAzQ7XbR6XQcUAEXHnMulxvZYXQib7fbaDQa6Pf7ziMax3zyI0Eqk8m41CdBEES8wctYJpOJDFTe2+rRvV4PrVbLDSyCFMvDqCV+52GR7C5rYRii1WoBAEql0rV4pmkb27rb7aLVamFubg5zc3NjOSuDwQBnZ2euf83NzU2N5ShQdTodnJ2dTR0M40yVGzp4/X4fnU4HnU7HOceca3K5XOojS3jtVquFZrMJAENjOU35+JtO5mAwQKPRAACnDOXz+cjn1OIc08vOAY8MSAHDky7/Z2dptVqOUYVhiHw+79hKEkhZ5tDpdNBoNKa2wE4af3Z25q45Pz/vAHEaVigUIgxBOy29YYJUu91Gt9uNyDpkUezEl53EHyZws0yKrz0s5XvQZuuBLGVhYQHA8OJ+0nUUpHK53NQDVHj/Xq+HRqMRka7vV3taJtVsNt28Q+WmUCi4sZQU2afyaqvVwtnZmQtXH7dMtm+HYehAqtvtYm5uDktLS7FlibvnZev1kQIpa+ws/X7feX/dbhf9ft8BQy6XQ6/Xc5JfnOmkRS8tm816mU6aAWHBlExK16jYMadhy8vLEQ/KlpP36/f7aLVaaLfbEZCiNzotie9hAwCCFL36h618D5Oxr04CMHTGOGFPUzLWvsz7kCFcdbRmEpM6OztDt9uNqDhkkhp15+tzHK90WM/OziaqN5VCed1+v49Go+HWw4vF4gOJan3kQEobw3o0rVbLrfmww8zNzUWkrVFABZyDVL1eRz6fv3SjsjPTO9UMynxtGtbpdGIj9LSeCOYETEqPg8EACwsLQ2tkl5X8HhZGRYdgFjThN52Eu92uYwd8T3/7TKPbOGmXSqUrYVIcO41GIwKGVvK6CtN5h6rE2dmZUye43tzpdCLrxKOM/bPRaEwkXfqCO/r9vluT6nQ6kXUzn13VOvQjB1I0dpJ+v49arYZKpYJqteo6CtlTr9dzgQHz8/Mj15jYsMfHx46Fpe30cXpur9fDyckJjo+P0e/3XXmazSaq1erEdaC2tbXlvTc9Na6znZyc4OjoyC1uE6Tm5+eRy+WQzWad/PcwgMu0rNvtolKpIJPJOIY9s2GjRHR8fIwbN25gZWUl9fcYdHR8fIx2u41isTi1wCB7r1arhUqlgm63i0KhcN8YAp+RgHJ8fIxKpeJAiioFwYnjKo5FqQzPOeIyz6NAfXZ2huPjY1dmG/Uc991p2yM70ljxp6enODg4wL1793BycuI8BrKo09NT5xGurKyMBKlut4uTkxPcu3cP+Xzerd0Ak0lEpNr37t3D3bt30e/3USwWUSwWUa1Wsbe3N/7DG8tkMnjiiSdi3+/1eqjX6zg6OsL+/j729vZc8MRgMEA+n8f8/LwD5Lm5OTeJXxaoHgago5Syv78PAJFJ5FE3rQN63+yXjz/+OLa3t8eKUDs7O8Pe3h7Ozs6wuLg4tcAgGif1RqOB/f19dLtdLC4uOrXEPtM07qfX7Pf7aDabDpzu3r2LarXqgrYKhQIWFhbQ7XbR7XZRLpfdGlWcUeE4ODjA3t7eVBhov99HpVLB7u6um4OmGU08jj1SIGXXWDqdDiqVCvb29nDnzh0cHx+j0+kAOG94ghQjgPL5PFZXV2OvzcasVCq4d+8elpaW3N4me3+f+egyy3nv3j3cuXMHYRhiZWUFq6ur7j6XtVwu5xZIfdIMQerg4AB37tzB7u7uEJMqlUro9/vI5/Mol8tYWFi4VtJYp9PB/v6+Y5XFYvGhkSIfFiPrJkjV6/WxvOswDNFsNt13Nzc3pwZSdm9SvV7H3t4eut0uNjc3IyDFz1/WfGOJIHV0dITd3V3cuXPHKThk6JTNGbS0urqKQqEQ298Gg4Hrn/fu3cPGxsbYYOILfiFIcS16YWEh8eiimdw3BaMerWtH1WoV+/v7uHPnDg4ODtDr9dxgy+fzLpplZWUFi4uLI+/Bxr137x42NzcdM+P9k8wHUApSd+/edV7TzZs3XSe6rOXz+di1LdXvDw8PcffuXdy7d2+ISRGkFhYWcPPmzchmzpf7ZK5Mqt/vTy2i8joaQWp3dxenp6dDjuGo756dnWF3dxe1Wg2PP/54xMmbhlElaTQaDqSeeOIJpwIA092sbfs+n/Hw8BB37tzBnTt3UKvV3NID9+ExoINsMmkMWZB64oknLg0W/X4fx8fHDqQGgwE2NjYia+K+Z0169kntkQIpNWVS+/v7uHv3LnZ3dx2tBeA6ST6fx/b2NjY2NmKvxQaiNry7uxs7yNJG9tEIUvfu3XOdt9FoROj4ZaxQKDgmxfsnMam7d+9GmBRBajAYYHV1deLIrofZ2u02Dg4O3L6Wq9LfX85GuY/9n4vuaScqroPs7e2hUqmgUqlcidzHdbP9/X10Oh3UarUryeIC+OVQMqm7d+86JsX76/aSYrGIzc3NRKDmdxSk+DyTlhM4Bz5lUoPBAI8//vjIrBMs0zS3aFw7kPJFqVgjG2k2m6hUKk7LJUhxPSWTyWBhYQGLi4s4Pj5261O6udBHk2u1Gg4ODtzn03oUPrrMTr2/v4/9/X2EYYhyuYx2u41qtYqDg4NLD65iseg2Aeq1NMy9Vqvh6OgIe3t72NvbczvlFaQymQy2t7dRr9fdgrTPLLP0MU3NaKHvMyQ3TZTltIwL7YeHh2i32zMmlWBkUoeHhy58eRQz0dBsTuBHR0eoVquR8TONNSNlUoeHh+h2u27j/WXGUZxUqBM2WTjXdzmWarVaJDKyUCggl8thZWUF1WrVbfeIi77lfHZ8fIzDw0PU6/XUiWl1b5QaHXjOL5lMBq1Wa2h+sNfUccvr2g3+vvsl2bUDKcAf86/W6/XcQDo6OsLJyQnq9Xpk3wS/FwSBm6APDw9RrVaxtLSEfD7v7TjsiO12O5LXblR5tZyqZTebTRweHuL09BStVsttus3lci5KSL+fxoOy5Una0c8In8PDw0g96X4yerunp6euY1erVbeZM+mZfXVAlttutyObqzOZjNvsGLejnjLjtBfBz87OcHZ25jZ8z+zCtL/SSWNYtRrb1jc2dU2X44eO0KTl0QnYrgs1Gg3H+LnOctm+Etfn+DojCo+OjlCpVHB6eurKQWMUHSOEOUdxndd3T457bqHxlWFUma0sW61WUalU3LaLpaUlLCwsRFK8aXtyrVY3+gNwkb/FYtF9jskB0joF1xKkdKLyNVan08HBwQHu3r2Lo6Mj5/nTdCBRgjg+Psa9e/ewt7fngihY4Wr0JoIgGBnlNkrbpSxBeQ0AFhYWsLOz4xYxWUbdZzJucEYmkxlKd8IOVavV3HOfnJw4r06vB1yA88nJCe7evYtbt25he3s7dl1qlMbearVQrVYdMDAoY3FxESsrK7Gbq31tclmjs8CIq+smZV7WtL92u12cnp66zan6/qiFdR07DPXXa6RRJEZdX/f/cDvHNBPZ+sqpEiMVm5OTk4gsbsdUt9t16+V3797F9vZ2bDoupkrjvDcqlVRcGXXcHx4eolKpIAzPDzlcW1vD9vb2UHSz1mmj0XBjlrJgsVjE6uqq27vFOh/Hrh1IsaP70Jp/c33h3r17jh5b79h6KEdHRyiVStjf33cgoY3Nz1JOUJDyUWoLhPY9/q7X67h79y7a7TaCIMDi4iK2t7fd/fXzLEOSV+gbxEEQeEEqDMMISKn0YI26eLVaxb1793BwcDDEauyzxUkHlNdOTk5wcnKCRqPh0rKsr68jm816oyyVSU5LGqIxue8MpIZNHaNer+dkbmVBZMJJbc6xC8CFO2tdj6NMxLE1ABGQ4r6+aWQS0T7t+91oNLC7u+tASnNg6veD4Dy34MnJCfb29nD37l186Zd+aWzdcYwRUNLkO9Q68jE/sj3WOUFK5wngou0ZXKUybRAEWF5eRj6fx9raWqR907IoABjb5fzkJz+Jb/mWb8HNmzcRBAF+4zd+Y+gBf+RHfgQ3btxAsVjEG9/4RvzN3/xN5DPHx8d4xzvegeXlZZTLZbz73e92i6zTMA6OuIrgIuPdu3cdSJGi+qQB7mvgZO3bfa1MJolJpR0EBDyCVKvVQhAEESbFjqmDw67l+H6sKZNSI0gxqKRWq7lnJ5Cxvkj3yaQYCeczXxn0NToGJycnrp1eeuklx3y51mGfiQ7CVRhT9TAZKPBw7OF60KaOVhiGQyBlGcIopqN1y6Sr+v44k5vv+sBF3j5lUnqc+6T3iXO8OD7q9boXpPSz7FOWSfnC+fm/5tbM5XIuC3qaurDl5vOTSRGk1tfXHZPyjT0yKa61MQqYa5OcK217prGxQarRaOArv/Ir8cEPftD7/k/91E/h537u5/BLv/RL+NSnPoWFhQW8+c1vjuSYe8c73oG/+qu/wu/+7u/iox/9KD75yU/iPe95z7hF8VocWuuEQialIKUhqPZaXMy9d++eiwiy17ffITsZJ92+XoM/9Xod9+7dc/r+wsKCY1K+5yRI+n7UW9XXWFYbiTQYDHB6eord3d0Ik/IZ85BxIzOZVFI9xf2vTMqC1PHxsQMpW1d8/mlbGIZuHU6PKZnZuWk7K0iNkvt8bagnEFigS1PnSQDDvq5MKgiCqTEpXxl1zMWBlO3DlPuUSSU58aoajSP3xdlgMHBMite0cp8FKoIUw9YZjcz51Y7PccbP2HLfW9/6Vrz1rW/1vheGIX72Z38WP/zDP4x//I//MQDgP/yH/4Dt7W38xm/8Bt7+9rfjr//6r/Gxj30Mf/qnf4qv/uqvBgD8/M//PL75m78ZP/3TP42bN2+OWyRvOfRHB0e323WLkkdHR6jVapFkjjSVCOg908NgB4+bfNn5mUXdXjOp3Pq72+26oA1G/SwvL2NtbW0o0sYytbh72deDIIhkL1fPiAu9DJrgPanfWybF406Ojo5wfHyMs7Mzp0XHDV79n8B5dnaGWq3mFo4PDw/RbDZRKpWwsrKCzc1Nl6PMDsarAg8GTDyIHfcvFwvD0KX2seMjDMOhCC/7XXUwCSYW6CYtl36/2+26PJgAIizqMmZZvb7OaFwyFHW0VHbTNV6mPeP463Q63nLqmhRVkbh1H984tEsNdMpZxkKhgLW1Nayurkbkex33XI86OjrCwcGBS8acy+VwcnLiEm5P4uBNdYX585//PHZ3d/HGN77RvbaysoKnnnoKL7zwAgDghRdeQLlcdgAFAG984xuRyWTwqU99ynvddruNWq0W+UkyO1Eri2g0Gjg4OECtVnPRY6qDs2L5N70UHvbHSZtrRNbYWXj/pLUhX4MpqDJUlRJbqVTC2tqay3agu9J1AVjLn+Ynn887JsV7t1otHBwc4ODgwK0JWZaidWTBilkHGJDi65hWWiFz48blg4MDVCoV1Go1NBoNnJ6eOjnhpZdech6az7mYtjGakTLuzC5M65zrSLrOac3nyfvGqk/uG8d8jhD7tp4ooEETl+k/drwrcyPYMErXZjnX8chyMXiEe8dOTk4izEtNlxlGsSj9bY1LIbwXcH5CwurqqpsjbJ2enp5ib28P+/v7OD4+xsnJCWq1Gk5OTtw+VGap8a29j7KpBk4w+8H29nbk9e3tbffe7u7uUDLTXC6HtbW12OwJzz//PD7wgQ+kKgMbXSc+ZUWUr+w6FD0Pjenn9/VvSlCtVgtLS0tDbGYwuDjCOQmkeL0kD65Wq+Hw8NBp50tLS9jY2MDc3FwEXBWk6EWNw6R4OB2N3tTe3h4ODg4iEp8OZv3RQceowDt37uCJJ57A3NxcJJjFGr9HieP27dt46aWX3KZOrgf1ej23NsiQXHu+jXrr0wIsMgS2A/d/TfMeL2fTfsAFc/YrOwbUMdFxpk4Ox9AkzDUpOImv2Sz+02BRPlOQOj4+xv7+vsu8zrLqMRzq7AFwoNBut11u0bW1Ne/RHQpSSdFzPuak1ul03AZj4Hw8lctlrK6uxkYyn5yc4M6dO9jb28Px8bFbu2Yf2N3dxUsvvYS1tTVvwNcoe1kkV3v/+9+ParXqfm7fvu39nJX3bMdX1LfrUPRAeCom/1a9NwxDxxDijm3g/ZI6i3qNvu/zfYIUB34SSJHRkBXpCZ+jfvgdLVuz2cTu7i729/cjmwktILCO7IBhwIVdv9P65mfVoTg5OcFLL72E27dvO4+uXq+7Iw2Ymulv//ZvXdodtWmd4mqN9R0ED+YI7YfZtP11AvYxKR2TwPBEpeulZFK2z/iYhM/iGEez2XTSNSNQ9TuTmo4PnYMGg8EQSKlzzB+ORR9I7e7uulMQ4p6Lr8WNAZ96Y6/V6XRc0ls+D0FKt5Po96vVKu7cuYN79+45kKrX6zg9PXVrVLdv346cxzZOXU+VSe3s7AAA9vb2cOPGDff63t4evuqrvsp9htmkafSQ+X1ro7IAq9mOYoGATEqzQQAXEz0BihOSbxIlk1KvhwM1LZNS4EtiUgxAIEitr6+7M67YYQlQClZxHSCJSekkoCClQS9atypPaF2HYeiYFD2qOGlTJRfKIrdv38bt27dxeHjo6pltorLjV3/1V0ecEbYDrz2t/VKUe+l1X/VR4y83i2NScac0x8l9OokqSE1SHt5Hrw1cRI5akJoGk4q7BvN57u3tOZBiHXHeCILABVm1223ncHLDPgEgLhEu60qDQHzmcza1npiCjUxKQcoyXzoT1WoVd+/exd7entt3qttxmJibJ4trW6SxqYLUK17xCuzs7ODjH/+4A6VarYZPfepTeO973wsAePrpp3FycoIXX3wRr3vd6wAAv//7v4/BYICnnnpqKuXgQqLVd7nmoUxKO6kPpHT/FL2G/f19NJtNLxgo7R7V8TW6Tu/B/7kGw7WQxcVFbGxsuHOudO2Lz0CgiusAcSDlY1KU+zRIQ5+Z9aWSKp9LmZR2TOsVazkUpF566SWXg4wgSlbGSUYTmPoG3zRNQWrGpKKmk5dG5+k6J00dFv7tk60uI/dpX0sr903LfGOZct/BwYGTrjX1GsetjQTO5XIuEIVynzrWOvew3uikxpmu+ek1eF8fk1pZWUG5XI7de0qQ2t3dRbVajaz3Mcfn0tJS5Gh7badRNjZI1et1fPazn3X/f/7zn8ef//mfY21tDU888QS+93u/F//23/5b/L2/9/fwile8Av/m3/wb3Lx5E9/6rd8KAHj1q1+Nt7zlLfju7/5u/NIv/RK63S7e97734e1vf/tUIvtodnDoPh6m+wjDELlczp3PND8/7/YYEBgYBcTgBYZG8wgPOwiUScVp3UnsitZqtRx1HgwGKJVKKJfLWF5eduXjGsnCwoLbjU75bRyQWllZicgMjCpk6hbeJ5/Po1gsOm+NB7KR7eiCcLvdHvKq9J4WnDWElRsCz87OIvo7z9zhBHZ8fIxmsxlhNupFTxOwtE05wczWpIYlG5WytE/Zz/T7/SGwp+fN8aRqwbTqmeHnut/vKtakdD44OztzAUC6VrOwsIBisegcYzqfNI4thvUfHx+j1WpF0iMpk+LzTLLtBbjIO8pDTVm+crkcSWvEZ9Mxy7nq7OwsIvEz1ykDKvj6OOUbG6T+7M/+DN/wDd/g/n/uuecAAO9617vw4Q9/GD/wAz+ARqOB97znPTg5OcHXfd3X4WMf+1hkIvmVX/kVvO9978M3fdM3IZPJ4JlnnsHP/dzPjVuUWFOU1rUPbQCeuMu0Haurq1hcXHTJHTkp1et1zM/P4/j42O1VYIhmp9MZSs/DgaXsxpqVCGkEFtWw2WmXlpawurrqAhzoOeXzeWxubrpMDJOA1M7OjsvJRSBmCDmBeG5uDouLi27xM5/PO4nw7OzMgT9zkYXhRTopnzdstXvuXTs6OhpKqMkJi/ULnAPp7u4uDg4OsLS0NLTP5TJrC9b0/iqnPuoABUTXgYGLY8YJ5tbrZvqsTqfjJlv16slY+fekR3XEtT/zdmpkrDodlzXbJ7glgyyIzh63kqysrGB+ft6tC/f7fZTLZXQ6HbcVg6BO521tbc2Vl+NHA3tGnRqt7FUdRqonPLYnm81ia2srkt3F3pO5BZvN5tAav4JZq9XC3t6ekyTHGT9jg9Qb3vCGxMYMggA//uM/jh//8R+P/cza2ho+8pGPjHvr1GbXpYCL7Mw8mpoNuri4iPX1dezs7GB1ddUxBVb46ekpstmsC4NnYxKkNIJJvT96aKPKqaYSpYJUEASuU3PHN+8zNzeHzc1NPPHEEyMj++JsfX3deb1cj6LXRjlkbm4O5XIZOzs7TnJk/sJarYZisYjB4DzZLDs5Pchut+utC13LaLfbrsMzvF+1dfUwM5lMBKSeeOKJofRL0zSVhWYn8kbNghQjZllX/Azf7/V6Tq7Va9C0nfv9/tDJ1uPWvf0Ot0fQiWPwkJUkJ21jq6ywX3McBMH5kfArKyvY2trC1taWOw6IznGtVnNbMZhImo5rtVqNSKV0mLhWG5c9xpbPp2YoSHH+unHjBsrlcoQZ8vl6vR4ODg7clhwbMKbr9J1OB3t7e5FTJK4MpB52U3DSzhaG4RCTmp+fx8LCAtbX1/HYY49hc3MzAlKcgMMwdEc9U9bS/Uu6WE+vJ2mDoMoMauxkg8HAHdVOT5J7FQiKZFJzc3PY2trCk08+iUKhMBTGmqa+lpaWImtLzLzO7Mzs+CsrK7hx4wYee+wxlEolV0/Hx8fI5/NoNBqRc6kIdr1eb2hvkbZTJpMZAikAkc1/rGfWXbfbxd7engvRt888bcBSx+MqwtxfrqbrSzpZ0snQ6DmOD64JAcMBE9xnpUxqWm0ZBIGTtHgP31rQpKbrW9pPlUkRpJaXl7G5uYlbt26hXC67LBF0jHnUj45nXoem/Y/1ps5BXB3onDUKpLa3t7G6uhppI96bibo5ZhWktE9wqWVvby9yjUcSpHyTs4IUd0STSQVB4DbI3rx5Ezdv3sTCwoLrzP1+3+30/sIXvuCuTTnMZk5XhgNgpNftWzfTDkkmlc1msbKy4pgUP8vImc3NTXzRF30R5ufnh4A5TZ1xHY6fJ7gwSzM/s7Kygp2dHbziFa/A4uKiAxceHcLjTHgdyn2jQErlvuPjY6fb64BXr5FMioEdmpVgHIBOa7w/J95pLrS/3E1ZA3Bx1IRP7mOfbbfbEWeG1yAwqUxkJaRxzX6HTErH6FWxY66jUqaj86pM6tatW06ZYP9uNBqYm5vDnTt3XNkskwKiMqluNo9jUr55QZ+bklyz2XR9fXt7O8Kk+v2+kxPJpBSk7DWBi/Oudnd3hxSRNHatQIpm5T42MkFK16TIpG7evIknn3xyCKQYlcKj463cZydEDixOspOuSXGnNjuFrknRWx0MBigUCrEgNU596WRDEGZwCdekFKS4ibbZbDoAun37dmQxnIdK2gzzPmnFMin1CNkWeoaXghQHp9atlaEuY3Q+VO67Kmnx5WbWw1bZyZcBnyDFdUuV4/m+OnzTYFIqxytIhWHo1nFZPn5+ElMniX+zX5NJFQoFx6QIUjs7O25tOwgCJ5d/+tOfjpTNgpTeV+t9FDPU6GMts29NikxK78VrdLvdIZCypz6wXcmkNKHuI8mkaNZT4N4IHvvAylxaWsLa2prLS8UsBgpSg8EAa2tr7j0uEFI3tt670u5R60M+z2YwOE9EWalUnEdDz4vsRTc88oj7lZUVdxDguIOMEUj0ZJnWhKcULywsOCbHelpaWgJwvoeN8g3fY4YJhpQ3m00sLy9HymbrjM/MYA1q9DpZFQqFSOQQI4sajQbW19fHeuZx64eOR5LePzO4zCDMW2lBSqNW+Tka65kWB1JpJzjrsHEiVhbHyLppyX16L+A88IpjQMcyg7U4ZjQAq1AoYHV11QVWcDM7c/l1Oh3Mz89H7qdbJEatSfmMyaE57guFApaWllzZbGJpRhzyXCwGRGiias4nTD9HmXXcur6WuoXKB5zkGFKtARPb29uOzjJZKTs2QYahohsbG9ja2nKUnMeJ65qJaupJi+w+OmxlLO5TyGazKJfLWFtbc51PJUWfBGWf3/7YutJnpufHjlcsFrGxsYGbN2+6NTsFGLKsUqnkAlAISPl8Hqenp6jX67EMj4uqjJ5UGaZYLLq1uLW1NSwvL6NQKDh2mclkUK1WI7kcL+sN+4yJcwFgfn4+UmePuqliEAQXx2vEZRav1Wq4ffu2k5XsOoY9Lt7uBxxV53FSFt+r1+uRHHK+za+XYVJ6jX6/j0ql4nJMUo3Y3NzE5uamO+Fb2RevMT8/78bd/Py8qx/msbTgy3pTZhhnKqPTuH+UAS2FQgHb29tYXFyM1Du/2+l0IhnO6cDRoV1ZWcHy8nJkeUIdEJKHNHZtQYq/WRnMqk2PmEde2Kg+GgdOPp936Yi2trbcZ+gRWu8pTQi6r7wENtLiarXqqDt3fCuz0BBalaDSAJTvf3Y+JpYlSJVKJWxubrrAEjJNlSwVyBWkcrmcSwyr7aJl4KKq7qlihy+VSg6k1tfXXbiublpkqiy2mbbftCQ5glQQBC6KcQZQ56Zrh1QguFnVF3F5enqK27dvY3d3N3JsOscpxw7/t4mN07Rp3GcGg4FL8MoyM7pvGmZBikFFVFwIUtvb29jc3MTi4qILhFIZjWvAm5ubuHnzZmTNmPsHVSYlAKQBKW0vfh84bxceQxSGIYrFojsSiN/T35wnuC0nCIKI6kK1hUsQqkZo+6axayv3WTmJTIprUYuLi9jZ2YllUmzMXC6HxcVFbG5uuuPQKRscHR0NbVRlp0nShi0T4d/ZbNaFatZqNQdAZBL0SsjW+H2yPjs449bDrBemzMCCVLFYdINlY2PDbRpWkCoUCm5tr16vu8S7+Xze5fDyecEKUhzMHKS5XA6lUsntXeOExVRJFqSsxs7rX8Z4HZ4jxcljBlIXZveMcU3Wx+6BCyaVzWbdmqdGsCmTYptPyo5tPydIUXoD/ExqUuOY1HlH+zUjZLe2thyTUpDSsaggpRHHZFLKhnxrUkl14gtYIJOiYkAmpRuHgYt1dDIpHudBZ7VUKmFpack53JoKSduW9ZPGrh1IsTOqF6d7pDRgwjIpXUPi4Jubm8PS0pIDKWUclPvUCCAaNTRqcGnkGKNgTk5OvHIfny9J7tO6sOZjGHEgNRicZ7rY2tpych9BStkMN/pubGyg3W5HmBTlvqS2IpPiYKY3yPOjuNbG86kqlYobiMqk9JmnCSLU1YGZ3GfN1gFBSpMz6yRcr9dx+/ZtFItF18fYj1QS8sl9+nqc6URvt2Mok2L7TXNNysekKPdxu0i5XPaClL0GQeqxxx6Llfv0ewSAUWtSLJu9H5kU5T4yKQ0Y03sqk7JyX7lcRjabxdnZmXMgub6oZXikmZQ1eiA8I4VBE1tbW9je3nbasNXQlcKur69ja2vLSW70/pVJaUCDLzs4zddJ2NDtdhv7+/uOSTE5Y7lcdptnLZPSMNW4+8SZMiIyRK5JEaQ2NjZw48aNSHACJwOWkYyv1+theXnZddpGo+HWpPS76k1ROrVeGaUD6uKUAAFE9pSo3OdjqJc1SljMUDKzC7MyEKXoOLmPiYdXVlYSM4tYuW8a60QMSmq1Wm4iZzmnYfZZKfdxIuc2DmaI4YZ4ls0yKY47MimClKYL43fGWZPSsUFHkScu6Nrr1taWG2/azmF4sSbPIBQeW88gLsqodP55H15jnPF5rdakfA/NCq1Wq85L4N6ocrmMUqnkNF81H1Ctrq46JtHr9VzUTZzcl8ZDU2ChLMkIHsqSPOjQDmZ2yrhsDmlMn5PhuYyA5KBSfdkmDWUZGOjAiEmGojMKyMqi+vynp6eRaEKG26+vr3t/lpeXHatknsGkwxUva/TKmc7mqu7zcjTtB7pGSvncbm5tNBo4OzvzpjvSyVb/v2wmdF6PfVGvx/E9DdN7MmJW+/Xi4iJWV1extLSEYrGYeIIu63B5eRnlctk5x61WayhQSBnoKPnSJ/U3Gg2Xp5OyZLlcdmCjjgTnPh4+2+l0kM1m3QkN/FlbW8P6+jpWV1exvLzs3Tyc1q4lk9IKHQwG7mhjRh1RF15YWBg638SuZ/A1Tp4rKyu4d++eYx2NRgNra2vuXr6AhrgysoNx0ueGVnonQRA4qc96pXof7eh6v6R722fm83BzLDvexsaGy0hBswxR2cvc3JwDEsp8nBh8E7uNgCoUCpH9I+vr6yiVSu69xx57DCcnJ+6kz0wmExkscc95GaOXWCwWsb6+HpGvZpJf1NHK5/OYn5936oT2zUwm46Q2Hr9jF/GVUXDytSCVVO++tlGVgn1SN87rBHoZ58NuPq9Wqy5oaG5uzjlelO90nrI/vA4363N9m1tEtNwAUoOUPh/LySPf6XBT4i+VSpH5id+hisTAF5bx1q1buHHjhjt7amFhAfV63Z2ErnU8jlx+7UDK6sKk+ExvlMvlXITNwsJCRLf2dX6+nsvlsLy8jJWVlUjwBDe+8bMcZHELlLaMGs2ki5EAnIS2vr4e8WhU2vNtLk1qfPse/+deMh6ySBZnQco3kPibbIN6OzceNhqNoWzW/JsgxWemzHDz5k2XN6xQKCAMQ9fpj46OcHR05FhcrVZDq9WKSHHTBI98Pu82YfJk1BmTujAFKUo8PpDimiedGe4N0j6kmz3JlCdhUjSVmdrttgMNLbON6p3UdB7hHkFOzgSptbU1F/HG8tn76vhibk7dfkKQ0mswci5NIIg6pmF4vkmYUh9BiuvPOv8p2DOpLJnX5uYmHn/8cdy4ccMxJzrx+/v7+L//9/9GHINx6vragRSAiGdkmZQuXhKkgHj5RhuJTCqTyaDf7zuQsvquj0n5GoSdWU/g1IgZjeyzmYN9TIr/j2p8HwsC4NajCFKk8JZJ+bwgli2fz7vvaCZ5BSntpMyuoUyKC8Y3btxwYbrcT8U1u7/5m79xsmqtVnOBDVcBHmQHxWLRgVTaRd9HwbTO45gU+yaziZBJWYlMZeHLyH1aNt670+m49VEdS9NKc6XPSpDS8HPLpNQsk2IdJIFUHJNKeh7WM+eTwWDgzrrielSxWIwwKZaP31eQUrZH9YPzKjf57+3tuQzv+myPfFok/qYnz8zHKvctLi5GgMRSYfU2uB5BJtXr9ZynEAdSSYDBaxM4OYh4MBqZmGVSbFi7JpWGSfmYotYV5T5mLbdMSjuX1g3NMil6dyr3WcYax6Qee+wx7OzsuLyAujfs3r17LoiEG4bt2uBVMCnKfZlMZiic9lE2Bey5uTnHpHxBCQz/VrmP7aZyOX8IUr4x6jOf80QPnkyKzhEn6mkFTmgiXYIJmRuzSBCkrHrjAymf3MfxwrlA64llSMOk+DsMQ5dzU/dIEaS0jPxeEkhtbm6656NTyfHKbRwzJgV/yh0bBqqdJclUumNIdC6XQ7vdRqvVGsmkRpnurWBCVjY+vS+yN/VqLBimrRf9zfvyN9MMMTqLm4hLpVKEnVpvT6/PkPnl5WX3Pk8j9TkB3W4XJycnbn1pYWEBm5ub2Nracok3OTg5YChFAOfAyACWqzKG1rZaLZTL5UuvXVw307rgdgQGt1gZi8ew8LRlrcs4kLqMQ6Bl08S21rmahimQahAS5w4GEdjnVmXCqhT5fN5JhMD5fHZ6euryAKq8mFbu430YPXl8fOyOEuFaNIOfeFwPLQwvDn4lK2ZWmu3tbaytrTlA7Xa7ODs7w8bGBubn5yOZPrS+Rtm1BCkaK4ob+MIwdFF6lnJbbZyelnYeTsClUslNvHowoA2ciGNS1uOnVs80I51Ox0XYrK6uDg12AIkgpd6Z776+CZaRhWSGPGdrYWFh6CTapM41GAwwPz8fCTBotVreZLxcL6S3ydRKzJPIEF1d3+NJoRwMwMVx8r76nYZlMhnHoJhxYmYXpv2Bewq5V8b2FXrTuuWDxnGn/3Mj9bhm+yqj7ShpAReKwLSYlM4hPEut3++7tcyVlRWnmsSV2RoBjus8HE/cM8jvUbUgQKQBdYae60nlpVLJKRisPxvufnZ25taZOdZXVlZQKpXckSM0niheLpcjyXHH2VZwrULQgWGW0Ol0cHp66tLaMLkj5Su7UZDf81HSMAwdSAFwIKWLvfw7ieH4ZKmzszOXgZhAx8FuAZS/dSNknGSpP0lloYxAb2d5eRnb29sRaSKuvvnDaKxsNouNjQ03SXU6HTcI9Ds8JbVerzsPbnt723nhdr2QA4afYwaObrfrmNRVsJwgCLC1tYWdnR23PjYKrB8lY7tkMhksLy+7DfK+gATKUjYbC/uzdQDIpC5bvjA830jMDBa6HhUXHTuJ8do87h04l7A3NzexsrISK7cDwxkr+P78/DxWV1fdc3BO02fjOvKoNSkL3JVKJZLkYGlpCbdu3XL9XDdas43Ozs4ioMYxq8sAfJa5uTksLy9jY2MjAp7jOHrXmkkBcCfqchJjLjjfkdE+GcxW/MrKistf1+/3HZPid9KGoKuMGASBA6lGo+HOX9rc3Ix0TiuN2Pv41ol8z+QrC0NbyUh4lIAvoazvWgpSuVwOGxsbLsCE2rT17ri4XK/XXWCKgpQ+N38IZltbW5ibm3MsjeXmdyaRcOK08kwm4+pibm7ObWV4mGzctZppmkrBPBjTghSNTMo3NlSJ4HvMmziu3OdziBqNhmNSyhIu25a27sMwdCAVhqEDKWVDauyzelYTXwfO17M0YIfqkH5Xo/uS6kmZ0WAwwMnJiUsXFwTnB6A+9thjkfRfuvbFQDTLvJaXlyP35pzItfyNjQ33OufOtHZtmZR2ci6sA3DHsGt0i5UGlH3Y18vlssuAoEzKyn3KcOJkNwARkNrd3Y0ws42NDcek+ExaNpt+yXf9tMaFXh9IaSe1da0/HCy5XM7JY8qk7HcJUo1GIwJSKysrXibF+vIxKU11cxVy3/b2Nm7cuOGysM/swlTaJkhxjAFR6c3KUmqWSbE/TSL30TjJcnK1R3/oJDwNi2NSW1tbI5mUT/WwTAqAY1I6L/nkvrj6sEzKgtStW7ccSLFt1RG3IMWsPbodxsek+H3e+5GV+6yp3AdEmZSV9XxsxAIX10sAuDB0lfvYOGnkPvVqVO7jQjFBSr+jv31gaDt60v/6Q5DiwjbZimYxjjMLUir3ARdynAV9roOdnp5GGJJddNf6ymaz7pgVK/eN622nNcp9N27cmMl9HmNfT5L7gOHJ1I4PC1IEtUnXpPQ6FqSUSU0rcEJNQYrbKpguzJaP/1vnx8ekgPP+rtnHya7SMCm9LsPP04CUggtBCgAWFhZGMiluZeFzjiv3XSuQ8nlmDBNnqDflunEi4vS6CwsL7vDBMDxfxNT4f030GHcPK59xbeb4+NhFzCwsLGBtbc1Ji5bRkQH6onkm8QpbrRZOT09dCheeB6PJKn3X9bFEsh0CHJmO/R4jldrttpMF9NgU32Bj8AI/x8Gt0X1xKZjSmo8xcvuBbmqe2TAYcC8Z+62+pxOxylqqDOiaLvvOuKfz2vuq3GdTltnxMw1GxX5N54vpkKx0nvZZGGnLQAmmZNMyc03JB/6+a3Lu4vYPpkHjQYy2n7ONeG9uU+HBiL69X8DF5m5N7cTrpbVrBVJqWqEMA2U+Kp14fXTbvs7/1ZNn52m3287T0xxaozqL3otp8rm+NT8/73Zu+0CAmaaB4YwTFtDSGKPsmD2DEZC2nuI2Pus9KaNyYLEd9HgEXqPb7UZSq2hnj5NFeB8eiEhTL3Tach/bmvVxFZ73y9l0IguCwO1/shOclcPV9P1sNuvCtHVN6jJl40Ze4OIMqSAIEvPnjWM6+XY6HZezj9tWNFrO912OL+3n+gx0kgC48aQqiDLUNMbkt0ySHQTnKdg2NzcjibZVHeL3uO+RoKYnSNhxyr8XFxeHjv1Ia9dytLHxSIubzaYDqXK57I3m8Ul/1vg6mZgPpHQQxrEB2/i1Wg37+/tuz1WpVMKtW7dcmnwtJ4BIp/RF89iO4us8lpnpOTv0/DRfoEp6cXXOOqG3ura25p5TQYq/dS2JLJcSnu95VM5j8k2+xvrQtpz2OgPreQZSF+aTjnVdxCoGevKybR89MJShzMqkJmFT/F6r1XJHXOTzeVdGhoRflhlr+TqdjkseoFte4spH0wAUa2QswMXJAQrslPvizrDTcgLnYHN0dIRKpeLmodXVVWxtbQ2VR9MZ6THwDK3XZ/MBLue0paUl99o4Y+hajjZtCIJULpeLbIwFhsOnfROylTOYiWEUk0qbXBY4Byke3TwYDBxIsVHZ8NZzAqLRh5OwKH63Vqs5IOHAymazkShC6935rkVKn81mHUgxCtJ+p9frjQQpBbY4kGIUoX5u2qYg5cuX+Kib9me7r4/1xH5rmZT2a2VSzOwyKZPS/sLkssqKFaSmYQpS3HDLTbzMK+lTRnzOsf0cTwYAhpkU16TSyH1a14eHhy4CMQgCrK6uYnNz032W11GVgoFoBKnV1VWvY2nni2Kx6OZN3/Ml2bUDKV2vIZPi+StkUjpAtEG1s/jYiYIUO0Sn04mV++JCWxVwwvD8SGgep02Qevzxx7G0tBT5Dk0Xk21apCSgiqPjZFIEDIKUL1/fKElU0zdZkLLelYIUTy3VQ+DsfR4Uk6IpSM1s2FjfnLRsG4xiUmQFmUzGgcckcp/t/5ZJEaQymYx3U/FlTOW+fr/vDgG055D5mFRSFn+V+8ikOM9ZJpXGLJMiSG1tbUXYDudTH5Pi+iMzX+jc4mNSM5AS4+BQJsVkrWRSyjz0O8DwBG4ndoJUPp/3yn1AukSPvB/lPoJUsVjEY489FjkVU783ak2K5pP2fJ+Jk/s09HxUp+JnKPexvn1yH83KfeVy2cukfB5moVCIgJTN7zZNgJrJffGmazFW7rNmQcpeg0wqk8m4M958IJV2gtPvdDqdIbkPwNTWpPR+3JvZ7/ddxgU90dlnOrH7+vvi4qJb41W5z8ekxpX7lEn55D4bGMakuVyTsomCWW6dlyj3xTm4SXatRpudnMikut2ui9dnhI2vkuIGgk7UTFOih+5RwiCTopyRpvO3222cnJy4Ts0AAnootrNSmmTH8dH7pIHgAy5GI+kBZr4IyDQdS8vJQUVP1tYpN/kGwfleED3faxTQ8BA5Psf92LukIDXOIHvUTJ0bOx7pXNkjzhl+rnJfJpNxqkFap0Pvyd+DwcBl5M5kMpifn48ETvhYzaQWhhdH+PBecVGycfOQzyiHc/xrzlC7Rj3qmgQa3RdJWZLBDT6VBIB7NiouzHYfp9LweQuFQiQH6Dh2rUCKRgTX9CFMehnnaViJTzuslQGLxSKKxSJ6vV4EmOjlaGdJAgwAODk5wfHxsUvuWCwWsbm56U62jRtA1P+TZEWdKJJ+GPnEpJWsJ1tWX/l9dcV6ojyRzWaHjtIIw/OU/wy5X1xcjOQi8z2LPhMAF6puJ8VpM504xj2zYbP7nLSfdDod50wQhNQBpKPHU2lzuZxjX5epc266Z5i2TpZpncm0RlWi3W6jUChgbm7OG9k3CejqCbfcn8k603knyYLgfHP9/v6+mxszmQw2NjbcXiw73jWql9tUmMfUyph6H/0+2XFScEicXTuQshSf1HRxcTGyK9o3+ce9pgMpCAKUSiXMz8+7QUdPz5dgNs74fq1Ww9HRkdsEy93pZFF6f5YnLrOFBR9f3fg+Q5DSvWT0/NIOLH5ON7oyW0YQXBx2pxJFs9mMrIONykrPZ6eVSqXYQx+vguno/R9mJnU/QdQnHcd54e122zEpXXukaeAEj59XaXvc52JfI0gxfyeP6AGSA5zGMR2rTBLN40io3tiy+f73OWP8f2lpyY11glQQBC6/oTraSc/EM9n0tFwmdtZn4d+8JxPSdrtdp/jw2excZ9kiWaWWL217XkuQYgVQGwbO9/5YhqCmEz2vE/c5HoDX7XaHmBQnsTR5+4IgcJt46Z3wVEwyKVsW9TiBKJNKAqik+uLaHeVGK0/4gNpndhInk8pkMiOZlIJUkuOgz8iJLI5JTWuytlKrff1hswdVLg3g8UlanU7HAY49S0qdPAUpyn1pMxTofVUOazabbt1GT+SeJpPiPZVJ8ZiXOJCy+4t8n2G/1mhfzRlq18JHldGCVCaTieQJjQMpAG5ZwILUqHnBMqlx7NqBFM3KfdRP2SktKNmKtp1dZSwyKQtSaUPQLUjpabhkUpS+fOyOsiJwAVI+OcrHmkbJfVy7oyw6av3F5xHy8/TMFKS0DAQperd2v4U1yyp5IKJ9/SrkPv7WXI8zGzafozSKSVmgsiA16Xojr5sk940KNEhryqQ4kc/Pz0fkPl/Z4lQdX/9nwFYQBJEcn5x30sp97XYbe3t7Lv9fEARO7tN50AKpMilmpeGYjRtznEOy2awLhuHrjzyTAjC0JkWQirNRnZWNxzUpBSne2xfdZ0FCjUyKch+ZlI1y0++p5+QDKd99fNdSkGLqqEKhEJuVwzIp3z1U7rNMSjsmF7MtkxpVdvWodad7mudOqg8fmOt7+tn7bT7Hwle+pM+lveao54v7LPuGfU/HlDKpceW+SdsVQETu0y0kKlP5+k9cfSTVl2VSVu5L0y723sqkyD41HZsGTvhkN3tPXZMisG1sbESYFI3vj2JSvmfQa9ABn8QhuLZHdTACpt1uI5fLuUkwCfF9lWv/D4LA5aPS3d70Ai1IJU3kPAmX1J0hnSpL+srAe+l9xjG9JteGNCWSPYk37TUt+6TcASASRswB02q10Ov13Ea/NF6gToS+Z+feqzAM3eJ7nNm26XQ6rpyan5EsM26R+CrMlo2eM4NrtL4pifX7/cimdHrycdbpdNzWgLm5uZFh0rZsul+H46Jer7uAAd0vBcAlAab0Q++cv1l+DZwIw3AiNqV9hXL2YDBw8hs/E4ahS5uWz+e9kpQFXK0jAiCfq9/vR3KFLi4uOkDWevVd0/cMWk7Wa7PZjOzPZL2xDZKMJ2FXq9VINO/a2los4PA1RgGH4fmp4XogatxzaVtotPI4du1ASjsmw7oLhcJQhfJzcSBgK1n/puev9wIuOgvg33+hLCIIAhwdHeHg4MDtDZmfn3cH69kyqfE+pNG2M/PvuA5nvbRGo+HAnGH6cXUTVy80BTduTD47OxsKIyY4ssNryhQtq8/sc3BiA84nQtbp9vZ2amAhGHHfCCf4MAyxt7eHbreLjY2NSL7A+2U8UuHs7AzFYhE3btyISDBceyXo08NeX1+PPdeJz3twcOAiMbkpM87UI6dsdHh4iHa77VSKw8NDd36SDTNn4AI369pra9BRsVh0Y0hP503DqFg+nVwrlYoDx4WFBTdOu90u9vf3AcCdRq3BOL4+yP4Whufh5vfu3UMYhi7jt2a20Ozlar7xmTS2yGhKpZI74ZYnO+gZXPYUbf0NnDs73JMJnDu529vbLl2cnUs4NynYsxw+GZP39llcaqhRdu1Aisa9AAyrVpCahgbNxVdupGOD+vYvWYZBgDk8PMT+/r7rCDybRYMmaJb9xG3mTfN8VnYjSGWzWTdZ+e6dZoKwZSmVSu6IBD1DhnIfGaTmKUy6p0/aI6sCzrO57+/vo9vtuqzqPvPJOkz0OxgMcOvWLVfOvb09dDodt+H4fpk+39HREarVKlZWVrCzsxOZfNrtNqrVqjvck32Q0m0cQ63X67h7965bl9GUOEllUiZ8eHjoErdms1ns7e255L88wVpBDcAQSKmzR5Can593+290f9U4ptclSHE/npW+BoOBOwZdn9XnOKlT1Gq1cPfuXefYFAoFNBoNABgCqXHmHR9gZbPZyIGrrE9lUty/yfLqb+A8dJ0gReDjGW4+J5RzFXAxp3KuUgdQ60odGbW4z4+yawdScUxKF9lpPsakr9nfNDYSG9HSbiA5Czo7lIIUJQ4yKZ98RtNOmZTENu41O0EnMalRdWHNPnOpVEIYhkPHdscxKdvZVbaxdWFBKggCB1LtdhuPP/54YlntvU5PT7G/vx85sjwMQzeo9QDK+2lhGOL4+BgHBwdub54yyVar5fbbMUCATCouKo7tfu/ePeTzeddOoxwROlms68PDQ1QqFbcRe39/H6VSCU888UTkO6NAio4XAaBYLLoxRDnTjgOf8Vr8G4A7dZrATSYVBOd7huiYZDIZPPbYY5Fy6287flj3u7u7TjW4ceNGJNu6j0kl9aGk9zjv8N5kUhrMQ/ZqGRRNQYrXHMWkCHzKpIrFYqQs/J3Uh2xmikcapNjhR8l9+ltfT5L7+H+c3KdMyp5Myr8VpFTui2NStrNxdz6lE+upxT2bTy8mk6I+rRE7vrpN+h8YzjZgQUrrgGmgqN2PMgtY+psDjCDFDANpjGWt1+vY3d0d2pvDY1Qee+yxqUcOpi3f8fExdnd3XdJfZenMWnJwcOAWtjOZDJ588smRIHX37l0UCoXI8d5pygPAgdT+/j62t7cdSC0sLAytQQJwkyozStB0zFomRblP2yNtxCnXiCj3BcFFZhOOH8p9vV4P8/PzQ4zNN+GyjghSd+/exWAwwOLiYiT9koJUGnVD75fEpFgGlfvsmpTWvZX79vb2Rsp99vk5z/GMrDgmxbHNdtL6i8tfOMrGHnGf/OQn8S3f8i24efMmgiDAb/zGb0Te/87v/E43mfDnLW95S+Qzx8fHeMc73oHl5WWUy2W8+93vjhzidVlT1Ge2Xk25M8rSdChlUhqCbgMa4jp5t9t1WYj7/b4L7mBkXxLgaCJOyw7TMh6V+7j5kExKQdInAYzy9vT+DDCxe10o9wFwToR+z+fF6kBQJgEgIr9w4rQHLY6qC67RcNICzieA/f19F7J7v43PWKlUsL+/7xKCsr91Oh2cnZ05kGJZ9/f3Ua/XE5lHo9HA3t4e9vb23J6ZNExKGdzR0RH29vZQr9dxenqKg4MDHB4eelMZcVJlkALNyn3KpIIgiDDbUebrm1yzI/iVSqXImtTh4SH29vZQqVQix4L45DL9n0C/u7uLvb09HB0dod1uO7mP8nDaNSnf6/o31+o479AR0BMA9GBBW146pIeHh5GcmZubm5GNwmoq0XNOZTninFnLrGi+ZYw0NjaTajQa+Mqv/Er883/+z/Ft3/Zt3s+85S1vwYc+9KHYwr3jHe/AvXv38Lu/+7vodrv4ru/6LrznPe/BRz7ykXGLM2SsUD1Qj2GgPpBK6izWdMJkWhcLUpxAfR1TJ5dareZCzxktuL6+7s1vZSdu9VQuu2N+MBi41PuFQsEtgNuOPsk9KK9wovGBFL3bUcEi+ppKETSuX/C0UW7eHGV2wqlWq658ZIAnJycuUvRBGNvo5OTEAU8Yni/aVyoVBwzHx8eRHIy64dNnPPcon8+7g+ySTCcdMuFqtYpqterqplqtOvZCp4193p5azfvxuho4MTc350Bq0jUpWrVadVkS2L8pK2YyGTQaDdTr9chz6DP7/md5Dw8PXSDD0tISms2m21axtLTkzb+ZxixQab3o/dlHAbgz7OJMT+LlXqfV1VWX2HnUEgFzbSrT9dVN3HUmjQkYG6Te+ta34q1vfWviZwqFAnZ2drzv/fVf/zU+9rGP4U//9E/x1V/91QCAn//5n8c3f/M346d/+qdx8+bNcYsUMZUWGE00Pz+fGH4+iWmH0AGZlDaH7Kff72N3dxfHx8fO81lcXMTNmzeHQMc3SHgfPViR4JhGBtFOzwkwCAIXCj4to0YeBIGbuGiMSqNXZnfex2nWuh6jkx4j8VqtlttwmCZsWe/J4xwKhYKbXNvttjvGhGzwfkt+3E7BTPXARXTenTt3cOfOHRwcHOD4+Nhl5c9kMk5OjTNmYmi1Wi7IyE481nSSbjabOD09RaPRcGyHnjYnUbYB24PtxfsTMOjIAOdjK5/Pu7Jo/r5x1zTC8HxNkfddXl5245VHdpAFMkIyaSzpuOn1erh796575nw+H5HOeZLAtEydUmV7nOf0xGELGGF4sebKtigWi9je3vZmxNB78vvsW3Q+VTVRB8YGjNlrablSPXfqT45hf/AHf4CtrS182Zd9Gd773vfi6OjIvffCCy+gXC47gAKAN77xjchkMvjUpz41tTLYDNvTBCldc6L0pp0mroPrDnGCFBclFxcXcePGjYgnFNeQBKo4zynpe74yTRukVOpVkNI9PGRS1LdtKH3cBKFSnwZjkK3Tu+delbTGSZdZ8y1Ica/UKDnsKox7bwhSrIfT01O89NJLDqQqlYorK4+o8YEUv082RKDR4058ZiUw1hf3cLVaLdTrdSd3kT0rYKmTYZmUBSlOuNbBGbcN9vb2AMCF2nPMcm2MGVeq1aoDKSB+HFmQajQaaDabmJubcywlk8lMFaQ4JnTNic6qj0nZsgdB4ORY5hzN5XLY2dlJHPMKOHTUON58x62wnFbqS5IxR9nUAyfe8pa34Nu+7dvwile8Ap/73OfwQz/0Q3jrW9+KF154AdlsFru7u5EzS4CLKJjd3V3vNZk+h0b9PM44gXEBuVAoXBlIcbCptGHX5NhYjJRRkMrlcmi1WlhaWorsf0kyy6RYJv2dZFa2qdVqQyA1jcmYIEX2qAvOBAAyKcsgrcSp/+u+Db5HkCKTYlRYUtmscZLlOhp1f2Z+JnilXduclpFJ1et1t85mmdTh4SFOTk5cXWcyGZeVIM4ILAQqPTjSZ2w3TtJkdwQprsdQHSC42GzmGtI8Nzfn+oVuhFe5b9LUSOw7BwcHAOCYFCd4bjbnabPKpHz9X/sig2sIUty8TCcnn89PnUlx3uGcopI016eTon0JUmRS+XweOzs7iUxK+zrTWjHU3hdab0HKrqnp59La1EHq7W9/u/v7ta99Lb7iK74Cr3zlK/EHf/AH+KZv+qaJrvn888/jAx/4QOrPB0FwZXIfK57hsaoNp5H7gPRMyt6Tf/PHyn1pyq5l42CLY1LjascWKJVJxa1Jqdxn7xk3UZDBWrkPuACpubm51BMb79lsNtFoNFAulyNMisl3lRlcZh0wrelk5JP7Tk9PHUgdHR3h9PTU1UMQBKnlvlqt5p4xjVzMvwlulklZkMpmsxF2ynsokwIQaU89mJDXUYBLa2EYepkUnY18Pu+YFGVdHSe+8axh8QQpRqly43qhUIjdyDupUe7jc7FvqNyX5LReJZPiZ6xzSQuCYGKQunJx/Yu/+IuxsbGBz372swCAnZ0dt8Ob1uv1cHx8HLuO9f73v98t0FarVdy+fTv2fqrTKkgx0GEaFgSBAwj1aDSgIU6uosTCSYUDcmVlBevr65FovbiG9DGpSY1pXewGvThvcpTZ78StSdHzZiTXqAAQH8tidBPZMnAOUszTNk75OQgpp9EYPafHdd8P0+clmDSbTTeRcwPv/v6+W7yv1+tOdeBa06iQcqZGItCMmjw4EfX7fZydnbl9WXotRvER9ClVMi0S36PMyDpX2UrlvsswKc4tnMQXFxcja1LMskHpUoHd5zDx+ek4MOMGt7pwfY4JWKfpzPjkPiAa2h83x/V6PVSrVVQqFceYFxYWsL6+HhulB0TZD5+T4y1uk7IPqHwglbZurnyf1EsvvYSjoyPcuHEDAPD000/j5OQEL774Il73utcBAH7/938fg8EATz31lPcaTNSYxji5tlott4Dpi0QBJotYo9Fr8enuGhquDZXJZNDpdHB4eOiiqcIwRLlc9qaR0WfShud91JuZxLsnYDLKbnFxceiUzXHNB1J8XeU3OhGMbGRdxbFCq3kDcDnTOKkB8J6tk9boHXOwB0EQCUm2WUSukk1Z1tLpdNzEyn0/R0dHTgIkeOVyOReU0m63E0GKfZTrGmlAivVP50YP92N/Bs77OkO6c7kcarWay/vW7/ext7fnmE0+n8f6+rqbbBkAYEPQk/qHLSONQArAHbHDbR/cd8SchQR3ypC+NlGQIkBxm8vS0hJ2d3dd9BtPjp6WqTKhigqd8bg+z+AoptaiZLexseE9gVvvp863tg/nY9sWSePCvpfW4RsbpOr1umNFAPD5z38ef/7nf461tTWsra3hAx/4AJ555hns7Ozgc5/7HH7gB34AX/IlX4I3v/nNAIBXv/rVeMtb3oLv/u7vxi/90i+h2+3ife97H97+9rdfOrKPxkHKzOJx4eeTmC5gKkgBF8c4Z7NZb3aLbDbrcn1xw99gMMDOzg62trZSryepJ+hLKBm38GvXyLhvQhNN6vXiOlxS57LRb7pvg+BBiYIHw9mw+6TrK8tUmYWTCkElrm7irk8QpVavIMX7XRbAxzWVkDkRFQoFF/p8cHAQOaGVxyEwyS6BzWe8lq7vpZEy+fxkmL1eDysrK24djypDJnOe9otBU9zLBZz3g9u3b6PRaLi9kuVy2T2jMimusY1zhLwaGRxwnv2E9cPxs7Cw4NZkut2uN8+kb2Lt9/u4d++e69NLS0tYXl52yWqLxWLiWs8kFrcmpYl77f04XzAjCefFUqmEnZ0dlzUiyfjMXOPP5/NDR61Y4GR57XUmqY+xQerP/uzP8A3f8A3u/+eeew4A8K53vQu/+Iu/iL/4i7/Av//3/x4nJye4efMm3vSmN+EnfuInIkzoV37lV/C+970P3/RN34RMJoNnnnkGP/dzPzd24X3GxrtfTEo7Cyc53yZb4OLIit3dXccC+v0+1tfXsb29HZkAk/RdXZBmGZLYR9zrlCwouxGkLjMRK0iFYejqnWtINEZfWomRn2V9aZnpKfI39wFx0ACITEDjOCZJIMW6IEhpea7a2EcIlnNzc+j1ejg4OMDBwUHkyAaCFL+XBFJ8HtaRXTP0GfsF64WRbAsLCw6kgAvZ6eDgAH/3d3/npF2CVLfbxe3bt3F0dITl5WU89thj+LIv+7IhJkUJmAzXSm5J5aQxnyEAdw6cpl9SkFLgtWNKJ2HKncxOQhVieXnZSedMIDDNPkKA8IEU37dzBj9XqVQiILW6uort7e1Ux2fofQiU3P9l5xjrpE7j+ccGqTe84Q2JHs1v//Zvj7zG2traVDbuxhlBislluXudNmrNZ5Qpk9LOrKGtdm2Jni5Bigke+/0+NjY2sL29PTKyjyzE3gdIN2naDkyQ6nQ6KJVK7riMy3QsWw5NeKnRY+122zkRPrkvrgyqg5NJ5XK5sZiU1ofeS0GK9RAHUvfDtJ10wZpSk49Jzc/PR9iXby2Hzzw3N+f6cNp1HwUpTug+kGJG9L/9279150jVajV3r9u3byOXy0U21/qYFMeIDziSykhjMEQQBI5JaZSmZVLcBJ7GwSOTyufzDqQajUYkt91VMClbliS5zzIpOjULCwvY2dlJdUoA651RhDzSRMtgP8vy+p7Bln+UXbvcfWwURqLQe7JedRptO8k0aIGDk9q5hs9quRSkqJMTpCj3pVnzUCZlc3WNMr0mQYrrMCr3JdVP3OsEUf2cb02KXhkZHOU+lQv4/D7Jkr+5t4cgpbJVGpDSclomRZCid89JPc0WgWkaPWEFqX6/75gUQYp9RyfhNExKw8HTMikAEWksjkkRpBgYwb5AJtXr9bC8vIylpSXHtoDomhQj6cbZo6bOGJlULpcbkvsIUgQTBd44uY82GJxnx+/3+y5BMpkUQep+MCkAXiZFU5CqVCqOSSlIpWFSeh9VLqwlqTr3Te57ORgnQU5gPpC6jNGj4cSqa1JkOD6vu9/vo1ar4eTkJLJHaH193WUBH7UG5FuTshN7Urn178Fg4DapcsDymaZlXC/idTnA2D7cEzMKFK13RoANw+jhirohNKnNfVIOGQkZBgDvmpT9/lWbbtikzMkUSJrvjgcXcjKx+RLVVA1Qhh5n9nkZZBCGIRYWFpwMCVwEZNTrdRwdHbl24jEY/X7fpSBi+LcCMdtOy5b0LEn1VqvV3FoZk0wrk2Iuv1wu557Jl05L+yf73vHxsWPtDADhWvOoAycnMbsmxR9loDbbA98/OTlBrVaLRB6Wy+WI0mFNx50yKZ3fRo0DO3dNYtcOpCgPpIlEmdTC8CL/mL7GSS7uSPezszMcHBxEJuitrS135hFBKqmccWwhaR1JwUvDa+lpAudgYhdRx60vBSFasVh0AKyRiHqeTdzeDvtMvD4nLT1NmFFtlBRVCk1jOknrojAnXnqxD8Iod/Hvo6MjnJycRFgek/SWSiW3l2oUO2Ifjktj4zPWf6vViqxlkvEQ5DkO7doIcJHaivdl23FhnuOHP2zXtFsA2E+Yd5HXYT9UYOf8MDc3h3a77dayk54/DEOXnYKO5urqqttTB1wkVh6nD6Yxm+WBQWIWpPQz9Xrd9ZdMJoPFxUVsbW1F9ieOMraBtoveA4iuWfqcZsrJ47Kp+3/uwH0wH0hdVt6jsYJ91Fr3L/myk1uQ4mY6bh4Fopt17T3ZKTlgVbe3n/WVmWW0cgilGN0vMUld+e5dLBaxsrKCtbW1iDyq59nY9UILTj4Jg3tywjB0MiUnc06AcUzKeoisVy76an9RIPCta94P0z1m/X4fx8fHODk5iTwrF+rJajhJJ4EUJzW7QXSUaWCSJm2lvGiPjedYYd9jPVONyOfzLjhEg45YPlUP0hjvS5Ai6PlAiusr7Pu6JqWTrP7f650fosi0XvPz81hbW3OsMAxDtzY4bbOb933grvUQhuebvplkN5vNYnl5GVtbWy5oIg2DJpOyfUY/43Mq9ccuBaS1awdSrHSGZdpFvssCFa9hmRSAIRnOMqNGo+F2fPNz29vbWFtbS+3F+pjUOM+kXiw7MHDOHnjYoQLZuKbPy8G6tLQU2ahMkFLZ1F7D1+HVEyeTCsPQ7e/i62ybcSReAgFZCZ9D8wP6Ijav0lgHelRFr9dzKZA0EIWh/KVSaSgVlU9y0T5so1STjIDBbN/ZbNYF3HDy53gj8PM5VBbnfQlSKiexT/Az6pixXkaVETgHqWq1GgEpvm6ZlG4Gt0zKJ9sTpMik1tbWIsd0EKSmqd5YR4ltpiDlk/u4R4qBSmRSaZx3VS+USWkAk86rdEgsQLHetGxpx9K1BCkyKTaqenbWQ5900hnFpGyUXBCcp6nhWTv83NbWFsrl8lDZfM/Fe+gCv1378j2f/uikQdkCuAAptbjOm6acNDKp1dXVCJOiVKeynMp8SWmSCEa6JkLJiECj8mIaU7lPj1fQrBYPi9ynTAqAY3/KpIDpyn3KJMLwYrM8szhkMhnXry2TUjbCPqhqAzcC2xx0uu6rcl/adZA0ch+dWB9I+eYHll9BikyKcl8QBG6D8LTNzisaFWnTIimTUrlPmVTaNWi2AQHKF+5unUurVqj8O45dO5ACLlLuAHCdME4nndTi1qQsk+J7YRi6A8fIpLLZLHZ2dtyalFpcY2pj2zUpWtLzWcptmZSWN6lD+QBQ783vFotFLC8vY319PSJVkElZxhMHUHpNynAEusXFxaE1qWkxKU1iq+z4Qcl9vV4PR0dHqFar7llZZq5JUe5LA1LKqtMCgDIpDSNXkFLmpN41cLGXhpOqZVLsJ8ryfGtSSWMEGJb7mKNOg2vIpCh9afYOn7FeuefIghT7pEY7TsM4b9k+nYZJMcM763dpacmBlH427r68j7aPby1rlNynWxzGmYevXeAEAOeVBUEQ2R09Tc/Gx6Q0i7PtTN1u10X2acj36uoq5ufnxzpFVlPgTCJBsS6Yf42TnIaLX2Yi1g44Pz+PcrmMtbU1B6icbHi6pwUp9dh912bUFicJevIaBadgl8bIwoCL6DQr93HC5PXvl+kEzYi4drvt+jYX7svlMpaWliJJfZP2PinjH2fNR7d4MNUQQSkMQ5fZnM6UlfvsBMV61Y3wCmIKUmmMbcQ8jpQgGRJuI0Dn5uYck2LdWsDWv5k3kanJyuWyC1jhMyTlw7uM2XmHfZT90zoDzWYTJycnbk8hy6sb99NY0thiP7NSv29JhDbO+Ll2IGXlPk2Z46Oik042Pi/feo76Xq1WcxkCBoPzXF964JhvXcb3t3r3k2RVUNmw0+k4wPSljkqqmzhPyJZ7fn4e6+vrEZBiu6ytrWF5edkrjVqvWdtuMBjg4ODASZ48ep5MijZO3WjuOgUpzcxt2+GqgYr34GQ/GAwi5xXR0dnZ2cGtW7ewtbWFlZUVF/I/an8RPWLW26iTjFUCZUJaMjetD4ajE+A5Wel+Lg2iYNtq5gwFKwKeVQHi6p8Awz1PvV4PxWLRgSkZqAZukD13u91IMmHrLAVB4BJdA+djfXt7GwDckR35fN6dkTZts31Q84XacaSbeNm2CwsLWFtbc+w1jTPHttGxoIyt0+m4fkmnaG5uzsnw/Oyk21uuHUix4TiQfRtrL2s+yUc9L41K4nv1eh2Hh4eRwb25uekkCAuecaYefxzt1jJZ4+cVpJjklV5rmo4UV592UDORpe7JoLdNkPLtote/VUrkZH1wcOA2TrMOdU1KnzWNqaSm0W704Nne9wOc1BQoFaQoVS0uLuKxxx7DzZs3sba2hpWVFZeTLw1IaWCCArw1bVcGrQwGAxSLxYgTCMBtmNVNs5zoNB+fTzK3TErXpHQ8pZG0FaS4qR9ABKToMJFJca1TWZ81RssRGHZ2dpDJZHB6eurWidNskp3EfOoN+6dlUgSpo6Mj17YKUnHX9N2TTMq2G+eRWq3m8oACcIxes25MWh/XDqSAi4VmdkA2yLTXEiwz4yQXx6QODw9dWpJisYitrS2XKdl6GUleonr8abw1HdSWSVHP9u2ZSAKiNPdTJqVg5GNSvmsoSGkdMeMCd84rSOlEO8rT1v/1eHMfSHFg3k+Q0snGx6S4HnTr1i3cunULy8vLTjkgY4jLnsDnJGB0u91UWR3oOXMiJ0gpgDArBteolD0BcPdkeVQO9Ml9rANlN0nGz3HSVJBSJsXn5yZoMilmNtd76d9kUuwTW1tbyGQyaDQaEZCyzGYa5lMc9HlYVtYZQYqSYKlUiqgaQLIzp23D9rTbFtrtNmq1mlun4xjl5m3rZNrnGGXXCqT44JT72AGvIueaApR6+ECUSbFR6vV6JI2Nyn3A6I6i9/HJfUkMyCcdXlbuS1NW4IJJMbiBZeWhcASvOPnUlp0DYH9/38l9ClIqWY3DpFRX13Jy4lYmdT+Nkypw/nzMEMJJfHFx0YEUtxAok4qT8NTJ4XMmMSl+B4jKfZZJBUEwxKSAKDBZ6U/lPlU+tHzjyn0A3NlOmrqJQARc5GJUua/X60XO4bJrLADc2jLLz+TQ9XrdzTfjbJQdx3wgZdmNysRMLGvlvrQgRVP5ViVCOi10whk4ksvlcPPmzQgoTVof1wqk1IOg56BMyn72MsDlk/sUpHxM6ujoyAVIFItFbG5uOpBSjy2pMVXSUjlE75VkStPb7XZE7kvL5uLM1imZ1OrqagSkLJOyu/J1YrDXpeeYtCY1DblPvVQdmHQG7qfkZ+U+Tb21vLyMmzdv4ubNm8jn82g2m4lMSm0cuU9NmRT3ZXG8heH53kSVSXXrgdajMmS+r0yK+720HUYZ24dMis6HJpclyNOZ1Og+BSmW0YJjtVpFrVZzZWXeTcukroJ5p5H7aIxuPD4+jqQ+0zUp3zV999StLwREzkWtVgvVahWHh4duM3OpVHL1qONxtiaFC29aQUob7yq8YfVogIvwdA6WZrOJ4+NjN8HMz8+73FlWzx9l9HrVC7WTOv/2XVMZl560yT0T9rkuY5SU9DgOXpeDhSl19DvWFMB7vfNs2ly41rUGnVjGDSpRacrKfQCG2N79ZFTsy2QBbLPFxUWsra2hXC5jYWEB2WzWAZhOIkkgRQdO92L5TPsZQQo4Z8q5XC7CPnRf0traGhYWFlzYNtuezIUL7BoJqIETk0T38Xnq9bq7Lp0kqgcaaKDyXK/Xc2tZPnbPCbndbrv6p5PE5LK5XC6S2+4qHRqCFOtM1aR6vY5KpeL2EzIK1AZ1JJVR5T7Ob3QeyKCOjo5wfHzs8kkGQYCVlRUcHh66/ZF6LIzeN41dO5ACotKNHnOsNu2Oo96ejbShXsuIw2Kx6E7FtDKdlcus2dQ/NAUqdjpfJ+D7mUzGSY82JdIoi+tc9nWddPQ1pmbp9/tuj43v+8pWOVG1Wi3s7++7c3u4DgNEMxz4BkWS6QZrZVLsR5p09n4bQYrAE4bn2w+YPd+eWq1sZRRI6V6ZUdF9/JxmsNe1HA1DLhQKuHnzJlqtFkqlEmq1Gu7evYsgCLC2tobt7W0Xdbe6uuo2TQMXDDhJ7ksqH+VEJpfNZDLuKHfKUxp0RJCam5tz52RxrGqdkkVVKhV3n8cff9y9xzRJugVlWs6MLikoA2L7clypJEvgYL9eXV3FxsbGUOLbNECqa4KMHq3X69jb28Pdu3dxcHCASqXijio5PDzE7du3sbS05BwAzYk5Tt1cO5BS6YJUPm4ynxSo7PesNGSjlk5PT12ETRCcL15ynWaUWZakkpZvnUTlDl+5FaTo/bKe1PObZHDxugosVr8G4EAqk8kMMSkrD+i1e70e2u029vb23AmoClIa+DAuqGiqHJ1gdL/dVawxpDHNck0gzmazWFtbw9bWVmTS0f5HCTOuLXlCAHCxRplkOhlrSqAgCFyAAm1ubg43b950e3P29vbc5La6uoov/uIvRrPZdIyaG9zJglXOZp+3a5Q+iwMp9jfd/EqgYhQaJTCNUuNz89rVahUnJycRkOL6H/ftqQxPZjstU6BWkAIuFBy2x9HRESqViquDcrmMjY2NoQzmSWNdwZH35vcbjQZ2d3dx584dB1LNZjMiea6treHGjRuRTCi+Z0myawdSnFj0/B07uUzDu7F6rl2/0HBQgpSPSfmulWS8j10otUwq7nraobmuwHrS9ycFKd//dpBms1m3n4cbcW3Zadp23MOyv7/vPDYfk2LATNrJgUxAWbDKZZzIdDPv/TJ6/gBimZQ9XZX9Ly5ij5/NZqMn+aZdk2K2cB+TopFJ6VlfTH+0traGV77ylTg5OcHy8jLW1tYiBw2yb8fJfUkOJtuQUhQBfWVlxQGHMimV+7gJmRGUtk4Hg4FjUqy/W7duufd4uOJVMik7vrV91UEkSPmYlIIUAShurPBzymQ5p5JJ3blzB/v7++4IIrZzGIbY3t7Gq171Ktf+MyaFi8FmmZR6Q8B0w9F9TEo7KXVbDQMlk1J5Tq8XBzaWSelz++rCltMn91mQSlMvae5nB48unC8vL6NYLHqZrkqe1glot9uxIKXPNoncRyaloMmJe9zrTcP47Cr3aVaM9fX1ISYFRFN2jZL7tN3Hkfs0bx2ZhMp9c3NzeOyxx9xaGSPf2u021tbW8MVf/MU4ODjA6uoq1tbWcPv2bVfOOCaVhuUrkzo9PY0wKfZBSpW6JhXHpKxiwcMD2VeeeOKJCMPk2NdgkWkar8cysV6sitHtdiNMKp/PY3V1FZubm0MZeNKAhTIpfr/RaDiQ4pp7t9tFoVBAs9nE2dkZbt265RQbm0P1kQYpenV6TIf9zGUAyufR6B4dnSR6vZ6TCAiclDgYMjxOmVSC4oAj7QeQ6O3Tu+aBbK1Wy3Vu1hOBxAeeWoakerHfsUyWdWBBgaZhy7wmAYqZ5FutFlZXV91hc/yeMqlx5Dkr92mbPki5j54/QUoVgrW1Nayurkb2KdGT1/6X1C6FQsF500kgxeuTMTBvH6PYyNo4eebzeWxtbblTl+/du+cCF1ZWVvD4448jl8thbW0Ni4uLbk1KVQjfPqk0RiZFkJqfn3cgpdtTeG0+ByfRs7Mzl/uTdcoy8PBA4Hyy3tnZceOFY1EZ4DSZNxmNtrWyVw2kYrCWHsVTLpdRLpdjo2mt6Tyg9c9jcWq1Gvb397G/v4/T01N36i/7HN8/PT1187F1uNPYtQMpuzPaJlGcVqfRSDJ6e5zodFd9tVp1oee93vmpmOVy2R1voICTxjQKq16v486dOxEPO2ki5WSyubmJ9fX1yHHdloqPsjRMiq/5GJ2mZbHf5aBQb5FRVQcHB6jVauj3+1hYWHAyDuuGg2ncLCMaOKHX09eV4d0P2Y/34+ZS4MKZYa6+QqHgovpYXwRaOjRJfUujS0fJfWwXbkhn6Daj4lhPnKQJUAAiG+p5pMjS0pI7ZsXKrXQYeBSN5iFMalfWz+npqdvusby87A701Gw0bNMgCCI5CJkolv2I1221Wk7SonxGJql9hQ7NNNUams47KlNzTLEdT09PUavVHCMslUool8sT79/SUHdVh6rVKs7OzlzUpIaqB0HggOqLvuiLnKMwrl07kNKBqQvD07w+EPXsFKSAi828/f75KaqHh4eu4ZiBwR6LwSi7UcbBAADHx8f47Gc/O8SktJxqBEV6sHowpCaXHZfdad3Y+6qnZyVN/tbvqLdLI4M6OjrCnTt33OmnPAKE11Avbtzd/j6Q4vV8KXymPfnEGZkUWSLLuLm5GRn0LJtKnWTacSDFPsd2TtqLxLbVjbzz8/MOpNQ54GSpx+QAF54z1ws1qbGCFIGBIMX3NUx9lPHkXAK6pj3iGFAA4qGRdOS4aVrHU6PRQKVSQa/XQz6fx+bm5lCQCjck83vTZN8qP/PaFqQYEFWpVNw4Ac5PClhZWYnkpdQxOMoIjjqvHRwcuHoigOm1g+B8g/NLL72EV7/61e48r3HuC1xTkOp0Oi6q5iqYlNJfZVK6pyYOpPL5fASk2KA6mcfdE7iIwgrD0IEUXwfSMamtrS284hWviJxDoyCV5vnjWJMuwvK5KNvRQ1YPU0GKr+szDgbnZ0/Rc7t79647s4fyBa/FOlYPOE2dAog4NhqZpceq3C9gsmVkGVS2YzJZ661r0IgFKctc6fUrSCUZHTEG3JB98JgUH0j51j5Yvvn5ebfx1zIpIApSdrPxqLYg4wHgpHXgAqR0jZEgRebHE3aVubEfnpycuHojSLGf+0Bqmn1G5T6CI9MQKZPqdDqoVCo4PT117y0uLkakPl0XipsztN20Lnq98+NiKOXZ4A3tp41GA3fu3EGtVnPS6Lh2bUGKA8buIZmW6Z4cy6Q40fV656eoHh0duQ5sQQq4GAT8O8mUSVUqFXz2s5+NgAY7nO86lAde85rXOCCwIAVMvmZn1+m0nnxl8cmABHc6GmEYOpA6Pj6OgJSPSaUBKd+zWZACLqRVy6TuF1jpWocFKWVSCu5kUhrJphKRGhez2Q5JIMV7E6SYEombeS2T0gACtj/HC9cLC4UCcrncEEj5mBTbIWlSVeOGWzIpOquacSKJSXHjvbbD2dkZKpWKe3bm7ONYZxk1gcC0mZSySQIq60RB6uTkxDGpIAiwtLTkkjyzr4wDpGxfjs/j42Ps7+87JmWdT9rZ2ZkDqTRbCHx2LUGK0oAyKb436QRszaYj8YGUZVL0wNbX151GrvKhNV85CVJhGOLo6MilIbFsJA6k6GVxAmP5rdyXtO6SxKRs/XLB1HdNnVzVWJcEDh7apkwKgMvawesSVJJCauNMk2eq3Kfrm/eTSfGZFKQUbDY3N916nLLSceQ+H5NKYtIKUmRSKvexrbm+SSaluQeBYbmPZ1PFrUkBFyCl9ZNkFqQYIMI2JUjxeX1MSkGbTErlPoKUyp33Q+5TkNIznlQaPTk5cUwKiMp9vBYtqYzsgwqOdL4PDg4ck1LAU4eb6+YM4ODr+nuUXTuQAqJecdIxzrbSxjFf4ASjm9gRms2mo93qBVIiGdco0XBA1+t1t7GQP0kLtgQprin41qS0XsY1K+2otOT7bNz9uMeFbIphv5oskwvBPI+LA4n1PG7gBMHNMindIGwB4SrNSpHqABQKBayurkaOg9DfcUdc+EzXjEaFoNOxYZodHruugRMq9+n6no4XMimNmNToSoIHgYQTY1I4vVq/f55YleHQq6uryOfzEWas45TPwvOPWq0W6vV6ZL2HIe08PLBYLKJcLrs+wecPw/DK5T5elwwOgKsrOnUnJyeunYCLk7c5V407xnUNniCokirbWvsCcL6ezCjDtPvwrF07kKK3B8DtfFaLm8DHvYdlUnxNOwvDVXX/FMHBAiQnFS2nryMRDNnR+Kz8rC5g+owRhgpSKn341oqsxb3nA6kkBmKvwYn49PQU9+7dc/sryKJOTk7cRsyNjY2hgxTVy0wThKJAyvZU710XizVi636ZerG8bzabdeAc5wGro5I0IREw+L5uqI0rD0+uZeSsMh1+17ftg/WrY1LLyShXBjRYCcuXPSOuLbrdrlML5ubmHOPUcHwgGnGYy+XcXqmzszO354d9otfruf4XhqGLTOS41brTxLjT3FtnGQ3rRR0CggJPDub3NMR/EhlSmTxP8yZAMa0aGTz7COu71+uhUqlE1s9Y72ns2oEUcDHYdLc7G0c7+WWkPw4alfvYKSmhVCoVp8XSS2Q4NSUDnXy0U8fJaSppJZU9CUS4I1yjETnZWLCMM9+9ddFU1+tGOQbaLgT3O3fuuDDgRqPh9ppxXW97extra2uRwaaOw7jHs2hUoHr/rJ8HsU/K1iUAF5lpo0PV6WGda3v4jEEW/H5SuDrvz7x9QRAMgRT7uQUpZXTsa3Y8EqQ0fF6ZlA+k4srJiRo4B8zl5WX3vj6fOjIMmed8Ua/XnVRKCZATfxiGLqydfUIdPl0TnKbFMSn+ncmcb9A/PDxEtVqNrGNyzplEPWIf5Pii3KtJvJnoOZfLuTVLMqcwPA/y4r5MvvbIgpQOiKtiUkB0QqTXZJkUaa5Odv1+P5LpQSPfCFJJDahyn32utINCj/dmuXRtQn/7LK5sKj9wktG9KPZ7ql3T6x8MBqjVarhz547T1NvttluX6vXOT+MlSOl1x2VSLCdwkZnBhibzuR4Ek7IBB5zEfSCl5fXJbNbY92zgxKg+RC+Z6710qkaBlMrdymD4vkrPPrlPnbOk8REEgQvBBoZBysekeF/ml6NjpIoH2RnraGVlJXIcB9d3ycrGGY9pjWBhmRTHGUHq6OjI7SXk8yqzseM8yfi+ghSzxLPNKCXqcfHNZtOBUhieZ+rQ/x9pkAL8TIqDdhpMyif3AYgwqcFg4NajNDxXmRRwAS6+TBG+NR17b/vZNEYmpd6faugKGj5LmiC0nFo3SvH1uaxHTXnvpZdecjv7dTOvZVIqp1yGSancpxkngPNJn+so95NN+QY0mZQNCFJTSSdpogyCYCgt0ijHRJkUo/OAaGYLm6YJ8O+D0olSg46U1U/KpCxI8V7qyStYWiZFkFJZnVljBoNBBKT4fDTKXqO2lYxrBAqWmcsHLD8BmkyK9TUYDIbmnDSm45LjgyDFzbv5fN4xKR4ZHwSBWysHZkxqyNihgKhXRrusJ6yeRRKTotynETaU+5RJKUgRNHyUXCfxuMnE93n7PicRZVJaZj5L2npQ0wlc60adBC2fLSNfI5OqVCruPt1u18l/02RSNGVSNu8aGcfDIPdZJuXz2JW9Jsl9BF9+ZtSaFHABUhpCDlwwKQBD2z5U3fCBFIDImhRVhTiQGgW8ClJzc3NDTIq/NXgpmz0/EFDz92lkZLfbHZL7uC6oTFDLnGYcjWPKSJVJqUyqTIr3J5PybYZmOUfNi+ocn52dodVqodPpYG5uzjEpZg/RTeL8rq5JPfJMygdSgJ+V2O/p55Kur9KUauj8PwgCNJtNnJycuOOUKRUpXVbanWYC5GBXCWdc0OUErpsjNaLNXs/Wl+5p8ZWPsgIj8ygBcmF1lLF+qtUqqtVqhNUxaCKbzWJxcRGlUilSXh2E44CUShk2LRKvxzqyLPAqjX1KQ3zn5uYih2UCwxuifc+gfY2fA+Ci86zz43Ps2L5sB41S9a056XMoSCXJfVp2tiMZg8qRSYyvXq+7o1x44CY/7wNLAC4QhAyVchX7Rb1ed2HpPLRUs4lrJOC4kaVqo8a1MikGQLH8g8EAp6enkfB7WqvVcs7xJHKkzjt2XZL7FXnibzabRaVScVk/AKDRaKBer08E3NcKpFjxOpnZdYQ4sBrFTOxnOWiUrWkUFvcpaKQhJwx2dv28ApWyAzVOJNpRfZ+3E5K+rpsPOXnZ9Za4YAcumsaFk3JC1cimfD6PTqeDzc1NN6jjyq3XUC9QP89nstKbAjiZT5qJggDI56GToZ4jX7/fFgRBZF9PGJ6v92i+Qt93lA3a0G1bn4VCwa3DJDkfANx6KmUeHmYHXLBObWOtf7ufx+f8ABen+hJsNXtGmjWzfr/vggay2ezQ3iBOmhoIw3FQKBQie6XI3AeDgcu/ORgMsLa25s6nUhaq7G/aTozKonQGOKeQCfV656dWc++knqDbbrcdE7TbX9I45nZ9jmDN86Ju3LjhMlrMz8+7CMm9vT0XpEX5ftx6uVYgBVxUqOq0fN1+Tv9O26l0sCvVViYVhqEDKWUr7FB8nZ16nPvbyD7fd1Trt6Yg5Vu/sSBin5nRQ74D8jTkld+fn59Hq9XC0tKSy92l5dT7sQ41Txtft5OrD+BGrYto2Wy5dUe9vq6g6LvGVbIpBSmuZ2pItXW+2O6qIGgWDrvuSZAqFAqo1+tDbWq9+n6/7zbezs3NRaL7WFdxDNbu59Ey0MGgPMxn40RMmZwTpWWG+pvRoYPBwAG6giLXRdQZUZDi3jNmnSDLPjw8dOs6FqSAi72ZyqQmkYdt+1iHU9f2CFIcd0xXRPWGdcdz2Gq1mts7Zu81qkyq/HB8MhP/jRs3cPPmTXfKdqlUchGWzLbT6/Xc+vy4du1AirKQRrzETSQ+9mH/TroPWQMHPzuPghS9YO6sp3SgIEWLk9z0niorJJUxjklx8ChbsUzK1osOlLOzMxwdHaHZbA7dk7IUJ9XBYIBSqYRms4kbN24Mldc+gzIYvaeWW+WNOEkpCaR8plKSMjSVOGzuvvsh93FCYH3ymBXLpKyMp0yKAOVjUgASmZQdEwpSlNEUpAAMsWV+dxwmpSH0GoTgkyPt85BJUWpeXl6OsGBlUrrdg32mVCq59WFlUgSpfr/vjojRNtDxbDP8X9bovNFpYT36mNTh4SEajUbkGYMgcCA1bvAE788gEj5rv99HqVSKMCmeHba4uIhut4t79+7h85//PDqdjgvh14jetHbtQIqaKbVxG9WXJOGl6Vg6eXJgUo4glbZMSrM9h2EYScrIHwBDE4/v3ior+GRMW077mmVS9LwVIH0eIMvZarVcOiZr9LB5Ome328XS0hLOzs7c7nf1+H1Aq7KdD6TocfvKyTplcMUoU4agbWmvZ1+/X6ZMSteklpaWEgFfJWjWpe6ZUbMgpeZjUir3KZPi9eOiKn3pe9TYrhr0oXKfPZ4+DqwYHUrmuLy8HLkfF+/t3GDlPmVSYRg6ua/f70eYFOuWE7fuOZwEpOLmIJ/cxyhdDe44OjqKgBRZHeW+SbI+cN7RMpCprq6uOpBitCPXvv7u7/4uwugnzd93rUCKnU03BiaBkvX20t6Dg0HTq3ByJJPiRl56v/SuLJPS647ah8OJRAM04iyuo5P5KRDYhV4rF/qYFPVltXa7jWKxiLOzM5RKJXc4Xr1edx4sr+crJ+vHtyZl5b4kJhUEwdhMSvfxqBOiEX6T9JfLGEGKDFUlLJ3M7XeS1qSsg0O5zzIVPqNlUs1mE51OB7lczq1JqcM2Su6zTMrKfXZNSgMn4piUWr/fd5u+FaTYt9gPtc/zGpT7uI6jcp+uSa2vr0fC2oFoKjYNoR/XbJ3b120EqyYV8DEplqXdbkey34xrWve8hq5J3bx5060D69qdprXSiMNx7FqBFHAxkftCQeMafxzTCUw30umExuACpg3hHoKDgwOXoJMdiddM411wMAMYWrhOYwwNZQg6y8vOpSxH76l/M2rx5ORk6Pqk9Txwjhp+o9Fwk4MFmzhZ0idRacQaQ4R1v5AOwLRZ0LUtrayndaTXux8AxXIqy2O02vz8fCKL5kQPDIOU7x7WQ/a1B3CxJsUJyh4dT4Ziy6NBD7onj9dWFmcndg1JtxOs9g/+sP8RDO06qC+KkNcg8HKfI6NwGTHHNcHl5eWhNtAtKXZv4DTM1pNO/uzDjEDkOCfby2azaLfbkYMgbR0mmQYW8Tu5XA4rKyuOVS4uLroyMWCFpy4zc3yj0Zho7IwF9c8//zxe//rXY2lpCVtbW/jWb/1WfOYzn4l8ptVq4dlnn8X6+joWFxfxzDPPYG9vL/KZL3zhC3jb296GUqmEra0tfP/3f/9ENNRnbDA7GPR9+wOMt8ENuJAnCIbspP1+P7I/ilnPNzc3XbgvM5ErMLBsSaYDYX5+Htvb23j88cdT/zzxxBO4detW5JRSIN771WfmZEYAZoi4/nCQMMFlrVZzRwaolJQ0YcbVhcqDnU7HZWDmewrg4266VW9UJ1kNpriqLAKjTAEin8+7fHFJpu1lo0h9AEJmpJGjPmmQDlYQnJ9PxAV49nvA7xzo+5YBcvJlGe3aqE+65Hu8pnrnTA7Ljfzs69qmvI+tR44rjgeyxoODAydXLy8vRyREdVoVhCcFKOtAqdytcxvLyPt2Oh0cHR25PWzFYtHlt+QeP02Qq3Wfpk9rXQdBgIWFBWxubrrkvVpeKhkrKytYX193z6SbecexsZjUJz7xCTz77LN4/etfj16vhx/6oR/Cm970Jnz605/GwsICAOD7vu/78N/+23/Dr/3ar2FlZQXve9/78G3f9m34H//jf7iHfdvb3oadnR380R/9Ee7du4d3vvOdyOfz+Mmf/MmxH8Caor71fu0EqACVls3we5rVQuUzyg0EqVwuh42NDQdS3K1NJqIT36gGZCdVkFpZWUldN6yDUqnk0qZQNkjL5AhSPrmPIHp6ehpZ7NaNw+zIcTkKkyQ1dRD29/dRq9WwsbERmZB57UlACoiGoKsk+iDWpICLCZjrnUmJZVlunSgVgG0f5yTVbrcjIBXHpAhSmUwGi4uL7oQBjY6MY1I6idv9ZlpGO8HbSEUFKbYNpb0wPF8zbTQayOXOs7GXSiV3X53kbTmAi71ShUIBmUzGydX7+/sOpFZWVrC4uDjUHxQoNeR9XLCy4K2b4a2SojIr16O4Hl8sFrG5uem2yWQyGedAall9Iek+037ICL6trS0HUjqPcU4pl8tYX193Zdes7OPYWCD1sY99LPL/hz/8YWxtbeHFF1/E13/916NareKXf/mX8ZGPfATf+I3fCAD40Ic+hFe/+tX44z/+Y3zN13wNfud3fgef/vSn8Xu/93vY3t7GV33VV+EnfuIn8IM/+IP4sR/7sbHWEnymjeurfEV7/g9EJ8ekjqUbC/l/Lpdzm1d7vV4kHVIul8P6+jo2NjZcrjPuiNdJI42Xrh4nQWpra2usugnD0A1cje6LM1sXjBKqVqux9+A+Da4BENT1M75r+8rKz3FCIpPiqaAaIemL0EtjylCVMdnNvA/ClEnNz89jcXFx5MSn0iiZlH2fRibFqEy7jYB/U1oik1pYWHBnNFkmZctnnQALDhw3Wm5aEpPi+FInjyDF9SwyKZqPbesYZCAJEGVSZ2dnDqQYaq1GRjINh8bnuKrjRBBQx8zHpLa2ttBsNh2T4iZnvXZaJsV6U0d3a2vLbeBlHXIccdO5MikLUmkB61IjjxPV2toaAODFF19Et9vFG9/4RveZV73qVXjiiSfwwgsv4Gu+5mvwwgsv4LWvfS22t7fdZ9785jfjve99L/7qr/4K/+Af/IPLFCnCNqz2rbSZvy2bGmXaWYCLDOKc0CyTmpubi8h9XJS1IMUyJplOBgSpW7dupa4brjswpU6S3GdB08p9lNp831GWdnZ25kCcE4sNirDX4Hv2ff6tIMXPKYNOYlI+OVHDeO2alK8v6XWu2pQtkEmNurcNo+fEBoyW+7Rt+Pm0TIosNi2TYtspk/LJfWRJdk2KZdUyM1BHc8rpeFcw1Dbla2RSQRA4kFImZeU+mjLQy4CUr//b8gMXbI1juNPp4Pj4OJINZHNz09VFNpv1Mqk0gQzK2OgULiwsDDEpXTvN5/NDct99YVJqg8EA3/u934uv/dqvxZd/+ZcDAHZ3dx2Cqm1vb2N3d9d9RgGK7/M9nzENB80nNdGU0tts1vxbPQnr1adhNMoMuEitob48cIyh0Gtra0NMShMwjiMz8tnm5+exubmJxx57LNV3gfPOo8EGKvcllUMHTqvVwunpqRekODHyLB7+XygUvOHDvvsREHy79gnq3LSop33yeYBkkPKZT26yct9lUt1cxvh8ZA1Jch9NQUqfDRiu837/PNHw/Py8k2bjjJtCOUlxTUpBysc4LYgRiJSx+kAKSJb7tG7oADWbTZydnbkQbU2JxGv47kMALRaLEZBiwlYGHIyS+3xscFKzTiIdMTIVdcy63S6Oj4/RbreRz+exsLCAjY0NB9aZTGYoNZGqKaPurwybTsrGxsbQXM/vMHBjfX3dtZ8N2khrE4PUs88+i7/8y7/EH/7hH056idT2/PPP4wMf+ECqz9rQ8DRmJ804LVm9P00oyYmTnYZadiaTcXmtKBOwjLVaDc1mMxKdlubZtJOurKyMtSZFFqfZLwAkrklZaZSbS32nuBIEmR2AUVKa6WCUAxAEAZaWlrC9ve0GoEaVsaM3m0134jE1b2Yk0Oi2NKZylIKRhvs+KLmP7USQsvkKfe2mgR7azr5+zewEQHQ917Z7GIYusSjLoSmRCEK+vqTyuA39JkhpCLoaj9th30uSLsMwjKQiY3CHglkSkwrD6GnDrVYrcoAgo9Y0+7nKXNOQ+yzTVzDm2i5lSUb7sQ4ZTTs/P4/l5WUsLS0hDEPn2DDyUTOLjHK8tI34fIVCAeVyGcvLyy5SWK/H+uUcxTVwJRrj2EQj733vex8++tGP4pOf/GREbtrZ2XFBAYqwe3t72NnZcZ/5kz/5k8j1GP3Hz1h7//vfj+eee879X6vV8Pjjj3s/qx3Rbqpjg/s2zVoJMKnxOCGqXMeGZxYKyjMbGxsuY/Lq6qq7BsNaV1ZWUkuNGoJKL9F3Cmqc6X108hoHzO3+LjVek/XHzY524CaVNwgCbGxs4JWvfKUbGJQYK5VKhCEQpMgENTx3EpCyjEnXuGxC1/tlNgzehj77zG6/sOtM2udrtVrkf1+6K05SPL6CKZGspAhcbGfQ72oZfOdyWZDS98gEALhM3jR+juUYDAYOUIIgcElgtSyc5O26Ja/FNSk6XLu7u267iC+5L03XduICttKYZU9qPB4DOJf7dT7QwIZ8Po+1tTUsLCxgMBi4dUwGNWk28jSsT8GQ2yA2NjYikZM6t+g8S3l0f38/4tiOUydjgVQYhvie7/ke/Pqv/zr+4A/+AK94xSsi77/uda9DPp/Hxz/+cTzzzDMAgM985jP4whe+gKeffhoA8PTTT+Pf/bt/h/39fbfo/7u/+7tYXl7Ga17zGu996d2kKZ96nTZHmJqtUHamNHIfI6KAiwFCL54DrtfruTBQBSnelyCl900ylouDjPuk0tQLTb3HtEzKWtKeG93LwglHJwX7PZ+cl8lksLGxgS/5ki9x16vVam7xWtcnNDci64aS07ggZeuC1yMTHPfoj2mZTc3E3HJJxnamsxTHpMg8OIGpjK2fAeD24bTbbSwsLDg2QRWB7W6PNLHrhZqqR2VVdSz1+8qkNDWPfV6yRmaboIqh7cb1N2A42zpNmRRBiselcyO1nmasTIp2VdIwQSoMQxSLRS9IDQYD5PN5rK6uOqnTghTXhtKAFD+nIFUsFrG+vu76YhxIAcDS0pJLIcW5YFwbC6SeffZZfOQjH8F/+S//BUtLS24NiRR4ZWUF7373u/Hcc8+5TV7f8z3fg6effhpf8zVfAwB405vehNe85jX4ju/4DvzUT/0Udnd38cM//MN49tlnx5pw44ydXndb24qxHpSuTfEao+7BVPUWpDjYyKQ2NzexsrKChYWFCLs8PT11ayppFxPZKRWkxpELlV0qe/CdXszntPWik56vfPR0rTY/LpP6ki/5EjcxHR4eIpvNYnd3NxJKbEGKE5DmZUtjGiBhmRQnvAcNUkCUSSXVIdf0ODElyX21Ws21k9ahT7Ijk1pdXY0wOpVLfUxK5T51iFTGimNSPK8IgIugpVllxMekNPpPx4+VhHlPBk4oSDEFGJmUSogWpC4r91nTtuaaYRAEQ0xK1/YIUkzxxDRa/X4ftVotckLuqLKqk8GxQCZlT4dWsGJfU5CiY6+qVRobC6R+8Rd/EQDwhje8IfL6hz70IXznd34nAOBnfuZnkMlk8Mwzz6DdbuPNb34zfuEXfsF9NpvN4qMf/Sje+9734umnn8bCwgLe9a534cd//MfHKUqsxa1JacWp8XWdeNMyKZUMVBsGEAGpJLkvbUOxXHr0x7hyH8vO8lGK8yUFjbt/EpPSBXLgApjipBU1nXAYZAKcL7YWi0X0+/3I2UfU1y2TYt2kkTDZH7Qu1JNXuc8H5Fct+6m8mpZJsbwWpKyMzf/JpPi/T+4DokwqTu6LY1IWxNLKfVzjUiZlQYrOEJ+VTCoMQxeFp3KngpTPWSWT4qS6t7cXkftWVlYiWcQVqH1y37im17Tt3O12nTOsTErnL6pIa2trKJVKyOVyESZlQcq2hc9UISFIkUlpO1hGRYBkkl8uhfieLcnGlvtG2fz8PD74wQ/igx/8YOxnnnzySfzWb/3WOLdObWwwTji+NaZJJxf1yLgmxUbm4FavlbmtFhYWhg5KY3ohLsimMcukdE/HOOUHhg/0S1Mn/L5ddKZx4LMjUpqL8y7jnAYNCGGyynq9jqWlJZfAdjAYoNFoTE3us46NlTgeJJPSso1ak2KfJNj61qRonLT4OQCxi9tMuMqFeWXwcUxKx4tdk6JZBmAneK5JxYGU/qYEzPFPJqXh03FrUrwOATibzaLRaLiM/0FwvjdIw88ti+MEfVUbv5lkl0yq3+8PbZKnHEcwZVZyjsVGo+EijwF4ZXg1n9xHVYhzj7aDbXumhMtkMhNnFbqWufvYYeL0VutRTnJ9Hgdic2jRKA0sLS25CYNnKlWr1cjmOw7CUaZyIuWKccJd2eHUswbSRfjwM3Nzc7F7dRj2q56UsiqfRGIZCQFYw5SXlpawurqK7e1t3L17F/v7+05yVZ1bg0rGqReV1NSTV+nyQUT3sV/RkSGrGGUEVYKPTyUgg9Q1KcAPUgQIyl7z8/MR50g3DPvWN7UMyvxV7tMAG1U9mDmCjqAvnJ6/m80m6vW6AxubLV5lx7jURczfRweXfSyTyaBcLru1OCuDax1PKwTdlo+RswRM64AHwfkma+bM4/zEKMdMJuPSRuneuVGmTIqgR0bPeoibv7LZrAMpa2nn3unU5kNkdvKNq0T7+ig5Sq3f77v0IxxA7PyqbW9sbET2tdAD4f96QBkHaZKxs5DJjMsI4zrFKM9cv0tvkoCrP2RAy8vLzovVycfucfGtbVnZgHvClpeXcevWLZTL5cgGRjJaBfCkNSn2D60LX/iwhlXrnrtR9TVto5RGB0BBKq4cyqR0HdH2eQUp1p3vnDAADqQo93CfjgIpwUHLxXZmm/nWnZNYPXPwKUjxuvb5z87OcHZ25tjE4uJipJ4UpJRJ6XWUefA7fLa1tTXvGrAFi1HsJMl8jiP/ZnZxtoEdT3Totra2HIjonjauszGXJsfYqLLqMgaT9tKxjptf9bpcG5sUvK8Vk9IJSJmUbXjLpHy0P+ke3ACpTMqGV87Pz7sku2wwC1KHh4dOSkgj+1kmNSlI2c5lJxU+g68DF4tFl13ZGgNWgIs9WVZ61Xr3dWyVUAG4dZiVlRXcunULq6urbsC0220ns7JugPECJ1j3FqS0rlXuu58ABURBKu1am4KUSnF2QmHkJKWYubm5SLZ6XguAm9zYHlwnAoaDcHxMygdiyqi1n1iQ4jXtZmMfSDUaDQdS3JfIfqzymB0/7I/MS6epmLgXjyDFPqPfVVXgskzKB8AA3HlWyqS0Lhjyvbm5GdlPZ0GKsi3XlJJAiiybTCqXy7n9UT4ywP/1umR1vvk3jV0rkAKi0oL1aFTW0M+nWdi33/HJfbwncMGkNGu1glQQBJETbtM0HAfNpEyK17AAoYAUt37Hz3Pw+wYig0VYD5VKJTL5M5x7FJPSv7PZbIRJra6uuu8xJJffUZBKM1Ho9+x+LvUeH5Tcx7KxXi2TssZ6ZXQfwUeZIhAFKcpjnPziUtfwfCUCgJ4+q0DoC8LRMelbs9LAFduvVULWNRk+r/5WJsU8h/osWs44zz6bzboTZllHHHOMamTZ9TlUCZmW3KcWBIHbJ0ZHwbZrEARDIEUJkAdUkhGPEw5uQWppacltJvbNG9YZopqUJkjDZ9cOpEYxAQKVRXXfxBx3fcp9vjUpfrdQKGB9fd2t34Th+X4FK/cRpCaR+8Y13+Tjq5+kzyQxKXZislMCkzIp1pHKT9pOtqNzwuEEZuU+DrYwjEb3pakfWxbLvnVCe9AgxVDsuG0VamQ0KvcBw0zaMimuWfiMTCoIgsiZSywj29nuIfLJfXasWVk1iUn5QtD5N89p8zEpAI5JJSkRClKsO5/c51s+ULDwKTRpzM5fWn6CFBPn2rVGZVJkSXFyn0bapZH7NGOIyn36mbgxzPqcVIW4diBlJxxbMT5aOi5IMT1JJpNxi/Q29JqApJ4j04nQG67X6y4aKY1x0Oggm1T7Vj07beehzKDPYE1lPU4u9Ox5DX0e3z30bwIc63p1ddUdTc81KT6PSk5JE4T1/HTvl2VSykzut6nclM1mUSgUUst9DKrhNXTSZL13Op1IWiQAEWav5Wg2m2g2my6wQNs/bp8ZzTIpXlPrn//b72sQCNNxxcnG9XrdrVEuLS0NrR8pk9INxfZ+XHNj2cMwdGzeV/82OOUqmBRwsSYVx6SY1NVG3hWLRbcuxAjIuK0GPrNjiwccxpkd19yukBYUrV0rkFKvMe59i/jW++HfScbBEgSBC1fViU8j++wA4I51epCVSiVVaKZ6pEmeYFrT8sZdxwIKB/Dm5qZblLamYeecVClT2fskDWb7WTod5XIZKysrOD4+Rq/Xc9FoNsx5lCnT1kncMinW9VVNPEmmZaODkJZB6z4p7q2xE/vZ2ZljJ4wEtEyK9dpsNtHtdt3WB53kdaNn3FYDjq04uQ/wb4TV+icTigMp7pHKZrPY2NiItJkGwgDRNSnb14rFYiSKL5vNYnV1NRLVquNGpevLjEnf93VC53EhDJPnkTj8XrFYRLlcjkh9HIdcdgjD0IG5T973mY4tRvdqHfjqUV+nkzljUv/PfEDj69B8fdzJJwzDof0KlLV0IHLHtwVFZVdhGOLk5ATdbjfVfid6bCo/jeuVsC503S6tUTrY2NiI9cRU4isUCi5sWjuqSnlx5bO6Nq1cLqNcLrt646TqWxdJY8qY4uS+BwlSWjZ6w2mMZebeIF+4P7PVc2IPwzACUqz7weDiKPW5ubkISLGMFqR04lKm4YtO1PVc63yRXWWz2USQCsMwkmZsc3NzyPGMC5CxxkwurD+eCWfPptKxlGayT2NWHWG90qkYDAZO+rUMjiqH3Utnw/EbjUYkQGZUuTm2GLxj0yFpXaixr3LsjxOgpnbtQEq9Mv7WhredclyEJ0hRVmBnpjeVyWRQKBSwuroaYRvsDMqkwjBEpVJBt9sdmd6I17eTwTggpc85jtzHsnKi3NjYiGWsGqxCBsUfO/mMYlLWqQDOQWp1dRVf+MIXIjvwdV1E8++laVtdE9G2fBhASp9Ls28nmTJtZVL6XUp4ZFJ0LiyTIgg1m030ej13jpSCiTIpbX+dxFXus+8nMSngImEw21s3zFuQ4nsEKX6O97F9RJ+TvymPcWxkMhm3vuxTYXzrMdMyXpub18PwIiuGOsbABUjZrCRzc3ORwzKZOcQ3vqyxDymTsollAf88qjKkfX+ceetagZSl3T7qrBNXXKWOMsuk6HGx4rn2xE6tshpzf/E71Wo1VaRNHEiNa5y8Wd5xJl8uKifJg+zU1PEtk7KfTyojr6VGJkV9nYzOlzUizqzTYkFKX+dz2wk+qfzTMsukdAF6VN1ZJqVtzfIzFFnlPhvdxz5HJmXlPgBDcp8tm44NnxRroygtA1ImpdsaLEgxF2YQBENyH++jYGrnAd6Tch8BinKfzVVn62ga5mNSHAdsG7JZC46lUsnlUVUjSNGBaDQaLmsLMFpN0XnHB1K+eVbrN07ue2SZlI2SUyY1CqSA0RNQGIbeNSn9LuU+MimVt2zuL65JpWkw3U9yGSalk38aJqXfX1hYiJWdeC1OrFyT8jEpYPSalAIJBxiZVCaTiRyGaeW+tDYJSN0v03WUNHKf1pkyKZXIdEJWJsWQcs04oQyE61dW7gOiOQ51TZJlipP7aFaGsxM1659OifYLdbhU7tvY2BjqQwqWKpfb+YBpn7gOls1mHZPSuvYxRTueLisD6rzFNSmmQxtH7vMxqTTlY/vpRnmNHNTP2Xbh33HZcR5pkALSsSQdCNpYo4CKO9+ZVywILkLQGdm3tLSEfD4/FDI7Pz/vPGLuU+FRAKNM2cJlAyfS6ugW8MmKfExO6896x5y86A3qOUH2GknAy/rj51jvmtoozfqeLatlAjYQ46pZk8/4XPw7zTEdNM3dZ9dxWHdkUnQkuDna1n+v14u0G5UAbQOua/n6ZZwUS+PWgTiFQPuPzTpBY/g5mcby8rK3LhUM40xlS7KpxcXFSGRikukEPan52kADJ5iTUKPulpeXXeSdSqKck+iI8HRt3dfoM7YT78PQ/rhxa8udxKTGqZtrlRbJaqy2IujlsANO0pnYyPT+5ubmIp2FSWW54VUpMe/NrMCDwcDtW0hzXw2VVslCvTd7P/u+yobKUNIYy5/EMnntfv/ipFB6UL1eD5VKBQcHBy6zdNx11PPXsjMkGYjmA7TZLdKaMilOskA0omncTPPTNNbfYDAY61gWXzZ3rdfBYIB6vY5+vx858oWAoW3d7XZdZhQyKVUoGHxhA2N4HQVJ2zYKxDbwgnWuOQvtmVK858nJCVqtFoIgcOtmvA7N7ntLckJZZl7DblKOc3pZt5P2F5+TFgTnG3k10S0dYzKcxcVFrK+vuyM8tIx8nzIdo4q5rj7K4iRnfW5bD3b82gjocexagRQQPXzMgpCPivuALUlfpiTCzsEFTA40buKl1GdDXSn50RMaB6Q0e8Ak0TKWkut30gAVy59URtYfw8Mpl3CyOjo6cgcYxpXZtot+hoEpBBV+XifKtJnhVcogE7ByHx2RB8mk2G7jgJRvnxRNQ5GZHod1ynoELuq90+m4/VMKUlpGW398j5NpnANBpse+Fcek+D0bOEE7OTlxEpayHj6H1oNGx9rrANEjMfj9pL13Whd2/piETVn1giBFxYWMWs+X4vEZetYV709wIUj1ej0cHx+nXgtXJsXsEUnzhp1TbUDSuPVy7eQ+XwNpZ1NvL00FW2OH4aCjNswGJ0hxt7tlHkEQeEEqTaNptmlOCONOnuwkKvf5KHrS849iUuzYyqQUpJrNpjuKw3dfltEnHTFNDhCNJFQmpXnl7Pft81om5TviYpzjUKZpLFsQnK/zTcKkeA29po9JKaARcGgEKToIyqQYFs7v+BwhDYHXwAj+MPjFB1L8DjeJW7mPbVWpVBzTYNZvvs/nValcmZTtK2RSCtbWUUnLpCaV/JSJAOcbeenYEaQ0ZROzn5NJaT1aJjUYDHB8fDwWk1KQ0mvHPaudc5VJ8f20dXPtQEr3g/hos3rKk4CUyn0AHEj5mJSPeWQy5xtSFaROT09HPlcckxoXpKy3N67clzT4VEbUsGWWkx5cvV7HzZs3E8vI+9lykykRVPi6yjOjQMUCoo360tfJpOK+f5WmC9aDwSByyNwo03VDnXB1YleQUulOJZkgCBxIWbmP11OQ8jllFqTU0sh9yqQ0Kk2fRZnUwsKCtw/Y9EvWeD8GRqmEyVRbo5QE/T2pWadR5T4Arh9owl3uX/QxKb5vmVTcKczWFKRssljf89ryU0ZXue+RZ1JpvBiNlLN0PS1IcdD2+/2I/MfzXJS5AcNyH9ek0oAUEA2c8Ml9aU2fM6nDxMltcXKoXscn9/EMrVqtNpSOJ+46ti0JUqwDn7euyU/T1IVOXho4oY5HEoO8KrNyX1wItM8sk9I2tyClGbVVmqN1u10nNZFJaRlZ93abAdvAto19xlFyX9yalPaTSqXi1qSYAFX7b5zcp/2KZgNIWO649regrONqUrnPjj2V+3RNisEPi4uLWFtbi4Sma1kIUmS/lUol9oBLa8qu7ZqUHWe+59axOgmQXzuQoilboFGaaLVakT0HdnNiklHGCsOLo62Zy4+NyIMOfQuoOoi4QfH09NTlAkyS0jSCbRIWZcsBDIc5x91bv5PG6I0CiITzVioV1Gq1kbnD4sCTjoGWC7iYvNKuSdnnt9FpdAjCMPSegXQ/TEFKA0bSmK6haDogIMqOAGB5eTkSym+3RLRaLZdQmXvfbBnJbH37yTjh+3IgEqSA5Og+uyalfbLf7+Pk5MQdacIEyFbmVKncFzjBz3AfkU6ouq5npTiWg5NwUmq2cY33aDQa6HQ6Lm8fgAjbW1pawsLCAnK5XOTYIBqzTuRyObfEwGjBUcZ5h3n76MRZVcrOE776ncSuHUj5orOAi45Wq9VwcHCAWq3mPAzS5DQZptWrZKJN7UBLS0uR9ClWo+Y9uVjNMnU6ncTJlZ0/aYE6rXEyoEdtc7ulMd9n9TUGl2Sz2YgHV61WI8e+j3Ntvs5JUicOTioqB8aZvkfGxElUQYplHHVk+1WZsgwNw05j3CrAZ7HXPTs7Q6vVQiaTwcbGBg4ODiIh67TB4DwLBfP2lUqlCFPVEHffhm3g4rRfex4WHUk948nnfBGkMpmM20gPXABDp9NBtVoFcLFHke/ztzpjypitbNXpdCLSIXDezxqNhmMtlkXoupfKl5NYnIzOkHHuU9J6y+VyLpONPreuO2ezWZeNghlzuK9sVHnoGHAsazl9qpVtPx2nrPNxlIlrB1IaGGGjbLrdLmq1Gu7evesGJcM2y+VyKjbF/QoA3BktZA1MY18sFiPelm1AghSlQoLUqImVnpOmGRmXPvP5fLKWT/5L0putaQQPJdFMJuMSow4G5xk2uFal17SSok8y8IEUTYF2nEAHZUy66ZBSShiOF1U3TVOQ0qM34j6rZkHK1qWC1NramnPa4kCq0+kgl8u5AwH1vvS07X4Y60DEMSku4FsJm+1p16Rs6rNOp+POLisUCi4oR/uURnH61qT47Jy8CVKsP0qjtr7ZL7VtbDTluGblPoIUxz7lWToH2Ww2km5N65/XUZDi81Wr1Ygcb02ZsMp9ypyUQfqAiHVvPz+OXSuQsl6N9SDJWu7cuYOXXnoJ+XwenU4H6+vrkYEct9bDjuEDqTgmxe+pPsxIm7m5ObTbbdRqtYi8EHdv3+F8k9QRgMgEZhfL9Z627EnSn3ZMghQ7NuWXk5OTSIRWXBl9mjfb1m6gBoblvrTMUD1s9eQ1g4Vvz839MJXC4jZQx5kPpLR/KUitr6/j3r17kYmaZkGKkhKvRVDzrUnxGXg9BRu+p06SDZxgmbnZmEzKytNkP5TvLZNiOS1jVuP9ut3uEJMaDAaOSbHc1qnS8qrTNw0bDAao1WqOSXF+UQaqx+do8A+fjQFbVAUIxtaBsWbBkCClgUZJDqUqQPreOGPpWoEUcNFAVhtWJnXnzh18/vOfdx73F33RFw1lhogzMqkgCCKnXZJJLS8vO0/H1xhW7ms0GqhWq4lMitewiTzH9Uq0PDZtzrjmAzSVVzRogoutZFL2GPC4azO4xXp6XMTWNtMkquMwqbg1Kcuk9NmmNfmMMk54ZFJp5T5+Po5JAcMgpTko2R+UFXe7XZRKJS+TsnKf7Rt0wCxI8ftJIejABbgFQfTgQwUWK/fZ/si6ZB/h9dLKfcqkfA6bTtbTXpNSuY/neakzoUxKn1fBgwFbjOQkSMUFQdk6oROiIMV7sYxa31qv6iRNEux17UBK16S0ATjYqtUqdnd3cefOHRQKBRSLRSe36WJgnHH3PXAeCqpyX6FQcEc1a4PYCaJYLGJhYcGlTTo9PY09tpvfV48kbWRfHJsgE7NrUr7vj3NN/g7DMMKkODD4rLZt4q6lz66vc6K7DEipTKr7suLWpB6EKZMaB6SAKPOyIBWGF0lGc7mcO0iSbedjUrompZuoVUaLk/t0MlUQ4vf1tFwfSGmgg7Jw3ocRslbuU1MmFQeGfHY6jarK8Mh1n6msr0xKy5jWLCMBEBk3TPCq9+Eyg005ZUGKDjTBng7jKNPAFwZt2DFpnQKd+2ygy7j1cq0yTrCjs2NpqCo9pIODA1SrVZyenuL09NS9Rjo9yrhfgRvbuN+JnriuF9kGYUPmcjmUy+WINEZPMM5UluKENaqh43RmlUXV80uaAPVaStntD6/TbDadd8XoOIbc282GtnxJ99VBp/fUdD5pouBUrtIFdZX72H8eZMYJTWSctgzKWsgK1fMNwxCnp6fo9XooFAqRCc46LdzvRi/eJrnV/hMX+BAn99nvxzlf6jyQSSmb4blYwHmSVetU6GSvcrlPDTg7O3OZOBiBC8CBlE/utpPyNAMn2AdOT08jm6mBaGJf5lOMk92C4Dx0XbOhn56eDh3N4iuPtp+VFNOYL4htHLtWIAVEZSz1IFutFvb397G/v++OHeh0OqjVatjb23NpQoD4SiRDaLfbQzIWEB1kFpisPLC2tuY6WLfbxcHBQeIkpA2tE9A4P/pscbKoPqvPksqoHpxmm+CGZw5gu09Fv2fvZcuusoFOirquMepoa8uiWDa7mVdBalS9XIXphEcPOG0ZyKQs4PL/Wq2GwWDgjqXgOpNdk2JyWS7a2w3F7D/0tK3UAyDCBn1hy7r3z7Y1cDGuuK5pFRKyqCAIXCJVGq/H79p21rom4HH9qVgsumfSzOFxSsI0mJQ1jqVGo+GyrejR9gRcHU98XZ0uAM4h0WdiUt6k+/O5tU/Zdva9puPMbmt4pJkUO6hO6vTsCVLshFyj2t3ddceRK5j4rN1uOy1/cXExspNaQ8MVmHwgtb6+7r7T6XRweHiYGqRsKO8klhRg4rNxOpUyKe7vUc+cr8UxPb2nr+Pzulrf6lWOYlIWqPij97NM6kEYB3cYhkPBOEmmExcBXNuYIMWJWCU8sl2dcFutVgSkrONgA0+sxYXRW5BSRqKmIeP6LPw+N8OHYTgEUlonyqTiQIoTtwWp09PTWFlc6yPNvsMks98jk6nX68jlcu6YDmA4Ya69hmVShULBJbfOZDLuWUeZbiFgP7Fr4r5xqj82mnccu1ZrUhwIlklx0jw4OHBMitFbp6enEZACECtHjcOk1IPxAdb6+rr73CiQ4sTsk/vGHQhxct+ojjOOF0TZRLNy8Bkskxpl9l5kOJyIdfLi59Psd2M9KGNSzzOOSfG7aeviMkapB7hgUmnqXusGwJDcxwAWZptQJsVJkc9omZQeeMf7kYnaY8LtBOWLUIxjUvq+toumBuNnyaQADB2poWPQgpRlppZJlUolJ+2fnp5GmJQt5yhlIq3ZuYdMptFoxIKUMimtG8p6lklxjkyzodfKfRxvtq18ag3vbUGKn09r1wqkgPjNvD65j5PA3t4ejo6OUjMpLjiTSenCexyTAqIejpX70jAp3kc7y7hmPZ8kJjXpBOxjUhw8ZFKjJDn1dK0EFMek+Nlxj+qwAxuI5iF8kEyKIDVOSiQAQwDuY1KU+7hBF7hgUjSCFMOfuTam8taoNSmN/vMFTqhUO2pNyj4L5T6aMimdJAlSPrmP4wCAAynWjTKppDRCVu7TsT6O+eYeZojIZrOxTMoGs7AvqzSqTOoych/vqc9u64Hf1TnGzoNp7VqCFBuHnbLb7aJer+P4+NhtZOMkxGgehp3aBtP/uV+i0+lgfn7eLUKqJ677POLkPuA8FQ1zwvGcJaZGovlYBJ8xDVuIMw5UftemfNHPqSeatnP1++cnuTLiSzV0XsOXw81n1jvjdTgIdUGdktMokFIZQkFagV/3pMWlRZo2i7J1oH04TeCEfl/DrO3E3uv1HPtgMlbN9adMimnEWA+2LtR5so6T1iUQXZPSMvucPDVtZ0Zdsh/pswRB4A7989WJfs/KVZwnGEyQyZynGjo+PkYQBGg2m0729KksysB9EXNxMqHPbF/X7QLz8/NuPI1KmaVOF8ccmSafyXcCg50DGFzhW4+Kk/vUNFJ21LP77NqtSbFD62BrNpsu+7Ymu2RFaboe9TzYAHyNm1HD8DzUlWdG2f0XdqDxXhqRVigU3BHXwHn0EHfN89784f+joqDSmgJnJpMZyiztq9e46/g6eKfTcR5aoVBwe3B08KYFKXt/Tkxa34A/gsxXPntN5l3kd/m65kWLW+MaV1sfZXEgBcBFb41jc3NzyGaz7kgHXv/s7AyNRsNNxAxusSBFL7rZbCKbzUYAQOVAC1Lq2PAzLI8Cg0pwQNRTt5IqAY4gwPe5XkOmtry87JUMdaLUOUI/U6/XUa1W0ev1XLo0PjP3StmtE7wGnSPWtb7ncwDtNbSvKitjuegM6FEZbFONuvPVv/5mIgEy2FqtNjIakXkbRzl/FsBoOucm1UOcXSuQAi4WjbUzNxoNHB4eOu+en9PJvlaruQ1zlvXogDw+PnaeLTe2qYzgS1ypZePvfD6P7e1tBxhnZ2fu2npPtTRZMZKMZVQmRZCyYegcIGm8Pfs/QQqA27QMIMIUbZ4xCyi+/2m6qZkDVkFqnLrRA+607TSVjwZ+XKXZtrfrYuMwKX4nm80ObZ4+OzvD2dkZstmsO2Zd92GxLhWk8vm8iwzTtrEg5VMCLEjp+7puHLdPSkGK5eOkx8g33j8OpHQ/ljIM/czp6akLKFlaWsLm5qZ7Zg02sc4j78261vqz97A/vme1Y5BMcTAYRIK1dP+ZStJx/T8IzsPQFxYWnAOkIBVXLu4ZiwOppH7JPsTxOoldW5BSj7Ber0dASim/D6R0ERS4YFLdbheVSgUAHEhZTd1KGj75g4NuZ2fHvccyWkaj3pUC7Dgpcmz98DfrgDKGvZ+ab0D5XqOEyoljfn4+wqR4XR+TShrUWn51CngdX5hsUh0oY1KpkK/r5uA4kJq23KdtQOeH/ZVMapx78jsEKV5XmZQFKQCREHRGsxKkdGxYJsT6sw4O28sHtDrpWybFa+m40n1cQRC49RpKyzxsVO/DutQjQQh4+plareYCSpaWlrC1teXWcBhkpY6i3oNlJzNPcrp8f9s609dqtZoXpDQtkjp9lq2qLSwsRJxrMkefQ6h1rHWmbawWB7x0+GZM6v9ZEATumAx25kajgaOjo4icZ/cQcIOvj0mp3Hd8fAwATu4LQ3+6FZ+p3EcmxTKfnZ3h6Ogo0dPihAXgUiDlY1I6QY7yjJKuDWAIpHSy5GeSIuaSrp9G7tOJLu66Vu4LwzASFq9JNXUhXssxbbNljdtQnPbeBB4rQZFJZTIZl52Bn9VxQ0ePTIprsGq6zmODIrS9fM/gY1I+b9vKfXqmVKvVckzDJ/fx2upM+pw8MhamChrFpGybUWZW+diOYx8D8z2rLbsyKZX71LlSuS+JSRGkyKR8WSfsuGm32xHn35bfjgcr+ynzncSuJUhZbZ0gFcekgiAYkvtsZwHgAhzCMHSBE/RIgPRMCjjv1Nvb2+41ljFpbUjTwUwq9xGkLJNKkvvinsHnKbLeCVJckwqCICL32TOJrNbvKzvvb7NZ857A+IlYu91uJLccLQ2TmrbZCUBBSk/DHfV9mp5ZZpkU5T4yjzgm1Wq1hpiU9g0fk6L5mJQ1H5Oyz0HH0xfYoXIfQcpnKvf51nQVpOLkPpu/j79ZPoKUT+7TPh7Xl3zjSaMX4+Q+Bif5xqvWocp9nLd8a1K2fHFrUqPGhErnvjWptGPq2oGUhjxzAqrX66jVai4JLNOD8DyoMAxdpAsr0+cB8TP0SNgxxg1ooFeyurrqJh9mX05K839ZkOJ3OSHwGnpGj/Wi0nh/9tqNRsNFBLGeCC4q90068VsmFRehZ5/Ben9hGEbWa2yd8DXfxDlN83nc+pxkEuN6onSYuCeQkx7TCOXzeSwsLEQ+y76ogKaftZKjzcyvE5EFMfsM9n27nsjPqvPHNlMmRbma2TN8TqYGTvgYG4+uIMNcWlrC8vJyZB2O6ZJ87WfXM+kMx7H5NEwKOO+HTGGlaanIDFnv6pj5WA1tfn4+co1Go+HyhqpSo6b72NKYvQavP+m2mWsJUjxCmYknNYHr4uIitra2sLm5ibW1NczPz0c29vpyTHGCrVQq6PXOD/Irl8vuMzYE3XoMVuLg38ViESsrK44VVKtVd+qvBUpdRLe687jGjZkqi6p3au9rn0M9aZr+rSfvcpAD0dxpHCT6TFrvcc+mcg+j0lRe4cSXNBj0OSjP0BtWGRAYjli7SrP30Mk4TTnse5qPj9cZDM6PfWA4MzNqK4BwDHBMDAYDl4zZTlS8dpzUrZFdvoX3Ud/nc+nWEg3W0D2P5XI5cg8rjxKobQ7BwWDgomu73a4bl9z8yno/OzuL7JXS8UKHNZPJOCcgzTxgn9P+32w23XjSExa4rcDW66j+wXU75jdsNpsub6iOdWVy+hw+BmrHqp0zKFeqJDmOXWuQYm4+TaS4uLiI7e1tbG9vR0CK+y18Iegc6CcnJ+j3+5GoKG1I62WOagwOBjZ+rVZzIKX3Z0dIyj02jnFQEaTa7fZQ5msFKd/3k+zk5MQBB4/y1usqSGkdpwUWevpsa2VoZA52gopjiDxmxYKUrlPdLxt3gk8ylp3sg32HwBMEgQMpZQKsP5WDLEhpW9HxsCDD+lVA8dUlWbAyMevMKUhZJsUDNAeDAVZXV2OlXq0Du+mYLIlOaKlUckdfcB2O4MMDGtVRI9PlMzabzViQipPLfRYEgTvKp91uY3l52Ul1cSA1ypgph5vD2+02Tk5OnLOgzifnNt1rNS5IAXDbUegIsf7SgtW1A6kguEjDw8159XrdTf4LCwvY2trC9vY21tfX3SRno3eUIZFJKUj5mNS4MpyCVBAE7tRalRxpKmlNA6TIpDhRK5PyeVT2+0kDjBFDACIJLTWnGRfp7cDQ6/s6MctLkCKTYn1xkvWV1zeYGN3nA6mkCeAq5T+aRrGlmYjsJKhHN7CeyRoIUvPz8y4yjt8nM+GYCMMwsrbIewEXJxvHMSGVLO0z0PkjcPjWPDim2IfIpNiXyKQGg0Hk4D8to7JjArINrjk9PY0wKV6La0BkNfYwRNYv55xsNusk0jjlwceY4tSRs7Mzx6T0QFUGw0wCUouLi+44oWaz6fZ+6lhUx1j/t06Kb2yphAvAralNeprAWDPd888/j9e//vUuPPNbv/Vb8ZnPfCbymTe84Q2RSg+CAP/iX/yLyGe+8IUv4G1vextKpRK2trbw/d///ZdKb6/G1CFhGLpTby2TIkitrq5G5D4ujFoPiF4/14w0KsoyqXHChDkYLJPi9bShCVLqvU1qHFRcECab8LEn/dt2TmvszIwYCoJgSO7j59Rjj7u27zl9cp+msyIY+spl/ydI6WAn+GuWhMvU9TiWxKTShNXT+KycFFTuIzvKZrMOpKyX65P75ubmvEzKrkn5ov/i2CDbQL/veybLpDR/nzKpcrkcy6R0/Ni1LwI3FYBisYjl5WXMzc0NyX2qOKgjxzXWXC4Xkftsv7N92tem+twEKTIplfsmYdkWpLgWZ51tPhfnJr6uf2sd2LrWeeqyct9YGsInPvEJPPvss3j961+PXq+HH/qhH8Kb3vQmfPrTn3YLsADw3d/93fjxH/9x979mcO73+3jb296GnZ0d/NEf/RHu3buHd77zncjn8/jJn/zJsQrvM3qIyqS4JgVcgBRpc7FYdMDEAWknaw5cMql8Pj8EUsD4DGd+fj7CpCxI6SDQwXxZJqVrUsqk+KwWpLQcCga2o/K3hrVq6qhRcl8aswNUmRRw4VCkkVXYR3wZJzSY4kGAFMumzHNc88l9jBZTJmXlPmVS3KNDuc/nNKjcp+XnMxD0lNmpo5CUz1GZlO4PsmtSlPuSmG/cmpQyqTi5LwgCd1Ck9nv+zcjFXC7n5D6tBz6LLZN93YKaMimCFHDBpDTCNY6NqVm5r9VqOblPnWCdA+3eOF/d6t9W7mNGEHWExrGxQOpjH/tY5P8Pf/jD2Nrawosvvoiv//qvd6+XSqXIRlW13/md38GnP/1p/N7v/R62t7fxVV/1VfiJn/gJ/OAP/iB+7Md+7FLJPNmhWRk86JCVtLCwgNXVVaytraFYLKLdbqNcLqNYLKLX60UWYWlsGHocvV4PS0tLDpRtZJl6GqMag2BHL6zVasWmXtFBdlmQYsdmFCSf3XZQPofP4j7HhViCOUOc9VmAaOfX7yvg2UFMgCIrJtDaCLEkUNLr9/v9SPi93cwbBMHE3t80jIyR64ejymDrUEGK/Vq3B2iEqk3Wy7VKSoPFYjE2hJwg42N7ukfGtyYVt6Zln8u3JsWcnCrBx40LVTyUSakz22w2EQTnqYO4H4lAHgTnUY9cX7HlVClL13iTxo9POeD/nL8qlYq7FvN9AhcnDQMYq49mMhm3V4p7F317pdRZteMm7j6+5+BJ5mF4kX8y6RreMqf+pMcYFbK2thZ5/Vd+5VewsbGBL//yL8f73/9+nJ2dufdeeOEFvPa1r3UbWQHgzW9+M2q1Gv7qr/7Kex/KdvoT+0D/TwJipzo6OnKbEdfX17GxsYHl5WUsLi6iXC5jZ2cHa2tryOVyTvZSZsSK5wLmYDBwR8SzIdnA44JHEARYWVlBqVRyg5X7sOymYu2Ucelj0honFE5Q9CQtQ4pjS9rB6DXxh0l8ATgw53u6DtDtdr0L2KO8SwIqcL4PiB4x2ZRPnrMyi9Yp1wBZr2w/spg4Hf0qQMvKQFz/oOOV1liPlHTpAFEe0+0BBHX77EwSfHZ25kKffQ7AKJDRdTVfol6CnAUxex3dJ8Xxxsg3Mj1fSiR7H44dBSluCO73+5ibm4uAAdkUxzrnAC0j5xzgYp1T13h1PGkf97Ub7xOG51s59vb2HOtdWVmJMEDOByxrEoPSeuUWHK4Lc0nEN26sLO+T0u244pgOwzByovE4Z6KpTZwFfTAY4Hu/93vxtV/7tfjyL/9y9/o//af/FE8++SRu3ryJv/iLv8AP/uAP4jOf+Qz+83/+zwCA3d3dCEABcP/v7u567/X888/jAx/4QKpyUQLKZM7PaTo+PnZnsWxsbLgNevl8Hv1+Hzs7O1hfX3e6r02zPxicZx1oNBou0omaLutB05OkAQ/t3KTwZHGVSiUi7QEXXr9GQU2TSVEC8jEjHcz6Ol/jBMVOeXR05Dr8wsKC2/DM+uH3bMZ3vq4gyDrQe9KbBaKbVVWy813Xdw9OxJwUdJKl90qQuh9MKm6C10lwlOmzsn6CIHDebKvVctI3zxZSkGLb0BmwIMV7sI51W4EGX2g96vohv8/+ohuzfamyeC0NduB3KIUNBgO3jhTnUKgsqc9qFYxCoYCVlRXnhGoYuoKUOleMMiUzUbbP+6vD6QMTO+dQ6tvb23MsREGKdQcM58FMMh2X2WzWRUA3Gg23hGE/r+m5+v1+5AQGnzOp8wEPi+R9JxlHE4PUs88+i7/8y7/EH/7hH0Zef8973uP+fu1rX4sbN27gm77pm/C5z30Or3zlKye61/vf/34899xz7v9arYbHH3/c+1l6ZNTWj4+P0Ww2MTc3h42NDWxtbbnF/Gw260DqpZdecmsz7IRc3yBIUcYiSLFD6aa6NIETOuGvrKxgYWEBe3t7GAwGOD4+dh1CG1vvMw25T5mUghSvrwPQPo+GlGswRBiGqFQqjklpnjDLpJi00sek7P8W3JRJaVJPOih2sNvrqVdImZP3sSCVJtPDNE0nMIKUpr0Zx5RJMavG2dlZZM8gtyGwTwDwgpSyLjWb/SNJ7rNMihMtGY5OtvY+uoZKh4QgxUmcIOVrL4JUHJNiyiMFKdYhJWuCFCdq3kvVG+YI1Hx1OlZ17FsGwtfJ1Or1umNSjAS2IMU+r+arPzXLpJgSzs4pnNNUTu92u5F29D0DxzW39SiTUucgrU00073vfe/DRz/6Ufz3//7fcevWrcTPPvXUUwCAz372swCAnZ0d7O3tRT7D/+PWsUjl9SfOdKLqdDouZ18+n8fGxkZE7ltdXXUgRblP16S0scmk+v2+W3i0ct+4MpwyKZX7FKSA6JrUJPfx3ZeTAu/Fwa71qL9tx1K2ox7i8fExarUaguBc219aWop4WPwcmVSc3Of7HxiW+2yKmLhoPN+k0O/3Y+W+Ude7CrMTLCe6tHKfLSfXsgC4gBzKffRsOfGr40OQajQaLn2SMim1pDUpgiMVAF8WdN3vE/eMyqTYdyhdktmQaVjTtk4CKd20bOU+MqkwDB1IARf9mSBFaYwgZZ9B5T5fn1IZGoCT+wA4ELYOGwAXzZzGKPdpJo1arebWHu1n+UzKpCzQ2rlA65YgBWBiuW8skArDEO973/vw67/+6/j93/99vOIVrxj5nT//8z8HANy4cQMA8PTTT+N//+//jf39ffeZ3/3d38Xy8jJe85rXjFMcr1kmValUXO4xrknxTJWVlRUXip7P5yNMitdip6rX645tLC4uehcw1RtNW1Zu0CMrYYSRlfviAjQmsTgmZfVmftbXeVkufh84nwgo9wFw9axyH7/T6XSGsnOMAil+j3LV/Px8xPtPUzcKqhowAiBR7nsQxomOe4jGlR05cQJwa1JMIwTAedNA9IwlRo6NWpPipJWGSVESs6Ygl2ZNCrhYL2w0Gm5Mzs/Pu9yCvv5qoxDp0RO4rdznAyllUgo6BCkyE8p9cSHdakmv1et1HBwcOCa1vLycikklmQUpjv16vR77eV13TlqTovnkPgAuWGMcFgWMCVLPPvss/uN//I/4yEc+gqWlJezu7mJ3d9dNGp/73OfwEz/xE3jxxRfxd3/3d/iv//W/4p3vfCe+/uu/Hl/xFV8BAHjTm96E17zmNfiO7/gO/K//9b/w27/92/jhH/5hPPvss7EnoI5jlBUY9XV2duYkunK57I7KzufzblGUMoGyIjWGaTKHGTuLyn3AZOBhPUCNMgKinmBcrq5x6kZlPD2SnKd/8nO0NIMKiKaWoXxDhsrvaZ1xXSmpjLYMnJgog2kuOU50vEbcQFCvT09bZb3aNqXcd7+ASr3sy8p9ukGWR8BzoyklPJWs+FmmimLk3NzcHEqlUsRpY1ntPimaPoNuF1BjPeuaVpxp2Di/w9O0gyDA6upq7GTNyVVD4WmUpOisLC4uRg53zGQyEdah21n0WfP5vGM0jBZMs/fT10/pjB0fHzs2TfVH6y6OoY66HzPmcMmCUdA+JxVAhMHGfUaNZeHeU6om7EP6mTQ21oz6i7/4i6hWq3jDG96AGzduuJ9f/dVfBXDudfze7/0e3vSmN+FVr3oV/uW//Jd45pln8Ju/+ZuRB/7oRz+KbDaLp59+Gv/sn/0zvPOd74zsq7qMZTLnOcmotXMvAZNF2mMXOFjV47S0nIcm0mNbWVmJTHaTgBTvn8/nXTqXIDhfLK1Wq0MBC/T6OBlMyqR0UOgk1Ww2I+tSet+4a3By49pdpVLBycmJG7R6qCOfVT0se331Tn3/U5rgJMU9LPQICTAsj30GHRgEVTIMZQJ0CMIwvK9ynzVlh+OmRWLbUFVgqL0CD50UtiG3QvT7fZf3kk6fOjRAdO8e29iyGE6AyjasjUqbRKPcx/ah6sCJenNz0/s9O36AaDRcr9dzmV4ISJxM+cNtIgAce7OOiybr5aRPJuzr4/Z1fS8Izg9zPDw8dP2/XC5HnHh9nnGOveG8xrVwynnHx8exya2puNDR8Zl9LvYjgjUlYy1f2nE1Vs8fRdMef/xxfOITnxh5nSeffBK/9Vu/Nc6tU1sQBA6kiP7cj6R0Gbjw7lUrpWfGis5kMu5AQqXdbBQrw43LcHwgxQSgLKPehx5nmgCNUfWkg1EjnEjJLWCwPArgLAel1Uql4jx/ghS/p/t2CIhJQGKdBYIU5R7KMFzc5QSmYBV3fU7YZFJcmOc1bAi6Pv9VgpaOMU3NNAqk7EQIRGVCZmZgNGM+n3dSrA+kmH07CaT4Wb2Gtbgzj2gaHZgEUhxb6kQcHR05Br21tZVYPxw/bFOVfJnYmc6sRqEFwbkkz7ohSNm64DzCsXBychIJQ1eWr+1lJUH+3Ww2cXBw4D67urrq8izye5ah2mtY07FEVYksiSmhGDCiZkEqTmnR8UrnXUGK9cpnTmvXMncf5T7Kd5lMZgiklEnpZG1BKgjOM1EcHh4CwBCTojcGTCb35XI5rK2tucmeARoWpDghqKZ+WdPBaJkUO5IOImWPfI3PrEyKExIDYfg9lfu41y2OSXHi089wTcAyKd5fZT/fuqIamZQGJ9hJEPAHToyrqU9qGlY/rvOjEp6CVKPRiEh4BJBJQEonfsukVO6LY1IcO6oq2Gfg53xMit5/JpPB5uZmIkvhpA5cBBrQiSVIEZAYhcYyKEhxbZrvadnJpHjsDtdilNXb5/L1TQUpfpYp3HxO67hynzIpgpRlUvqb7aYb333mY1KU+xSkxnX0rh1IUe5jp+I6DqMC7UDQM1qAYbkvk8k4uQ+4SAqrTOqych93ymcymYjcp4NAPadJ5T7rabHTUA7SvVJxUoQdWCwnQapSqbgJz8eklBFpXcQxKVsH3B1PkLJMShmU3psDw8ek2M7KpNTrttLOVZplUgBSMSmfsR0sSDFAgJPqOExKJyJOlOyXvj6ZtCbF8ZlG7lOVgoEdx8fHqeU+y6RoVu5TJsUfn9xnTRUZK/dpvflkMd9nWq2WA6kwHJb7fEwqjREwlUlx64vm71TzyX36OR1bOj/0ej13BpeSgXHtWoEUK0vlPnrW1JrVI6UXqZVnE0hyYuTeH0bGKKu4zCbbXC7n8oQB5yDJhI86udr7TBqCrh1K6b7uFbGfjzNOTGF4HmpcqVTcfov5+XmXiUSZFFkO10YsQCkoWVmh2+26NSm2qUalUWrRa8QZF7d5QJ0GDiiTukyarsvapFsbWG8KvK1Wy+0xY8g2PXMfSFH+ZVSeb4+TTvyj5L64MHp7sGNcu1kmxTRllC5t1htryqR4n8Fg4LLZdDodFxRls71rNK8qDmqZTMY5TVyL4fYGHxD5jJ/j909OTgCctz8PSNXPsN/6mNQoMFhYWHDjh3OcHhOkZeKzM91TXBvZ8drpdNw4z+VyQ2w8rV0rkKLNzc25iuUkVigUhkJc+cNQXZ3kWOFnZ2c4OjpyjcONfpyc1ZP05S4bZRwEy8vLbsBXq9UIWALRRJ6X2SOl92V6p17v/MhrepTW6xvFJKjBUzKghGknNk6ajO7zeZq+gAf+zROWB4MBSqVSxLlg3WsanrgyKyhrIln2AU2NdT8TzFqbVO7TeiOTYg41RqaphAVEUy8x8pHsYn5+PgLW1kHjaza6j/elM+jLgq4SUxJb1DUprnUwGrVYLCbuweF9dE2X5T89PXX5+Dhx0+mhMVUSnUWGoWs/5ZIC/2+1Wm6dx0rOcRIfX6dyw/XSpaUlrKysRJyASVNmse24Fs7+oRujdc2IzgPBl+PPV8f6TDa0vVQqTRy9fS1BimffABedW714q4nqpkdOWny/Vqvh8PDQdUo98l1BiveaRIYrlUpYXV11AMlDzmyjWzCcZPLUa3IfE/eHHR8fu42ycddWWYfX6nQ6ODg4cHkHs9ksNjY2hoI7NBKPx1ZbeU/3ZCjYKKPllgJdS+SEqzv99bo6CQwGAyerahSf3SzK695P04nMl519HGP5M5nMEEitrKwMgYoe7dFoNNBqtZDNZlEsFiOpcGiUujlJ+/qkMikNyOEz+kDO56nbtEgEAOC8H/tAVI0gBVyEVNO5ajQaCILzY2XILvQ6uVzOSfIcnxpezmfiGXPAOYjQuWVdcZ6wfds6aLVaDXt7e07WXF1ddQDIzxKgx91Dpw4oc5YGQeAOP9TnAYY3KlNi9TEuO19p3TKZsX4+rV1LkJqfn3eobUFKPUcaN+IBFwkU+T6DJtiByBAUpNiok4AU5UmCFHB+sq09odduRrysd8+OUywWXVqhSqUSASkFJP2e9Qw7nQ4ODw9dSifmSVRmyWtx/YggZS0udJydnp7c0tJS5OgIensaCOGrI/VWdbLRYBSVNB4Ek2L92nRbkxjrhZF9TImk6yzAMJPiep1VIeykauU+H0jx+pYN6jOq3OoznYx107tvAvSZzTHI16rVqvP2uU3F1jVBSh1XXb/h+F9dXR0aEzYQi5/XutT6JAMhSPX7fZTL5UiwFhAFKW1HH0tT02sQpAA4uZ7l0PKxD3Hd2bf/y943DEN3AgXVIjqS6qSksWsHUtRQlUnpArLtIMAFSHEA8H3gHKQODg5cB7JMShd+J5H7gAsmRTnCpw+rBn0ZuU+f34IUPR+tH+uh6f92QFomZctp5b44kPJFFnJCIZPiGiMnRh1srCcrW7LMPialnvq4J+JehVkmlQak4hhIJnOefUUzoFsmpdF3KsdaJqWWtCbFOuf4UKBVdqyb563MZp9DHUlurtcJkHXg8/J9m455HfZ5H0ixP+sxINpvOA9YJsUxwRyVcXKf9lO+XqvVsLu76wJ4lEnRCH4qg44yHQdkUurc6Qm9+h0yKQZYEKR89Uyj8kGQUkdC5+E0dq1Aig+uC73s3JZJaaNS6gEQSXkCnHtNBCmf3Kfy4WXkvnK57AIC0sh907CFhQWUSqVYJqW/fa/5mFSc3Mc6pdxHr96aZVL0ssPwfK1OmZSV+wBEovVsua3cp2tSlMUADK1J3U/TZydTuAyb8zEpACiXy5Fn08AJlftyuZwLRAKG5T4bgm5N16TimBSv66trZbSsB5X7dAK0nryO9Ti5r1qt4uzsLCL32bpmBC5fV5BiPShIhWHo8oZS7tO5QuU++6xhGEaYlE/uC8NwiElNIvcxI0wQXJxdxXLo5+KYlB1XliXRAWBQiW2jtHatQIrGPSCqcbPBfZVkZSlWeKvVwvHxsYvm0UzE/PxlAydY3rW1NfddzUnG8muOs2lJUMx3xudgRJECpO8+2hGZmUDXs4rFovcAOk6EXJj3pY6xkgjLdnZ25kA0CIJIRCRwEYXX6XScl+kDWOAiFQ73DAFRkHoYmJSyjGmBFNlRLpfD8vJypH1UbaDkxD2GBCnrpChI0UGLk/v4ftya1CiFQPexaXZtToCj2omOh0aDMpK23W5jbm4OKysrKBaLEWeW99ZUaARwjnvWCSdirgGenJxEsoD7TFklHYmTk5PIwaE8mFXNMqm0ZsvLSEYCth2PQRA4p5z7GzUvoTWCMZP/6jEd6ug8skxKvXVWCvd8kHpqx9LvEZjIwLrdLiqVivNowjDE1taWCzOlcaBOAh4csEEQuB3l7KwHBweOWalcMUmKHL2f3teGtrbbbezt7eHo6Ch2YOnzUYLb29uLhK9zo6D9Hr1yPiOPUVFPTNc2eC9ubGS5COoael4oFNzEzuOwrbzCdibg6R4euyYFRCdOX5+5ClPnR6VIH7ONM31uggMjszqdDubn510/VrlK13w4VnSLhgV99ksrl/LebA+Ww05Og8HA1XVcBCPvqyBKwO10Osjlct6IPDXeR9d0yVgYxr60tOTYpc4HND35QPeQsYwsH9eOyEb39/fdmpc+P59L25vjjzLhYDDA8vKy6+tat8qkkgJOfMZ7MnkuxxvXIe1n2f5cq/RtVVFrt9s4PDx00YLZbNbdx8cgR9m1AingYt2DOjXDq7mHh5OSlQY4qdFj6Xa7OD4+xt7enmuQGzduDA1YK/dpAyR1Gja66tmlUsmBHkGKn/Mt/F7Wstks1tbWHA3vdDrY3d11g0TBw9YXJ7OTkxPs7u5GmB89P61nTvjcm8O0NlwPYBvYtQ2Cyv7+vgOpQqEQWfMKgsBdl86Fbjq05ae3qkBMD5j1QMB8EEyKEzFZyLgRhtoHOYlxjaDdbrvzhPhZyxoJUpxgNEDF3oN92Lc2EscGtU3oiI1y8CxInZ2duTUzZh6xfVTLqlGGXBet1Wpu/+Py8jLK5XJkwtd+Y0FKN6Orc7y6uuqcgmazid3dXfdZC1J6DwUpjv0wPN90qyoLy8akAz4mlRYEyKhZfu7tsgoIn5uKhh5Xos/PZ1KQYttpxn3bPqPs2oEUBxslAAtS6lFbrw64SJnCo+fv3bvnwGFnZyeSiZidy24GTdsAlknxgMB+v4/9/f1EJjWJtmufPZPJYG1tzU3w7XYbu7u7ODo6coPE0norwxGk6DVRitOs2Rw0lI6USXGPig+kfEyq1+thbm4O6+vrrm644ZR1p2dy+UCq0Wi4NQ0FfpZXQcpKwfr7Ki2OSY1jyqTCMHRMqlgsRlJi6eTNyYgOXSaTiYCUZaVW7tPPKJPyjQ2OMyB5LxgnY92v02w23XEv1kv3MT7NKE/WVavVXL9dXl7G6urqUDkVpCh7cVM5jUxEs8dwQqfKoGXh31oPBCk6iRzvFqTotFJGs+vg47Apbl4mE6zX6w6kFHiUSflAitfj8zFbBjPnZDKZSECKdShG2bUGKTIpzYYQx6Q4qJjEUZkUddqdnZ3IpkE23KRrUsoyNIFkv993e7N0MuCkYTO5j3M/BQ6f3GeZlO8+Pialm/x8TErlPmVSXMfS6+ogCcPzdCzKpAhSyqTUuSBI2Xrm381mc4hJaY4+3Sg5rSCVJPP1GSa5BTCR88PfGrWqIOVjUvpZSlSaNkyBir8JUj65T8FBnQAaQcw32frqSAMnyKQo9zH6LM6s40GQYnaXOCZF88l9On5ZPjIpTug+kLJAyvHQarXc+ON4X1lZwerq6lAfIZPSTBxpTD/HumN56vW6W/NV07EcB1L6LNw3yfRRlu36SEKSXTuQYif0MSlKGDStKHZwhq5zcytDQcMwxM7OTmSthcCmC7LjghQ7SJLcZ0EqSX8ft67IpPjM1MQ5gSfdhxLS3t6eV+6zz3gZJkWQ6vV6KBQKESZFkNI1KbvhUAcH16Tspl2f3DeplDKu2Xq2ct+o+2pbKZhw8qe85QMp/tYN7WzPTCbjzbnGuiTbI0NRL3lU8Ae/D1wEVvjuw75D54wgxTUpSkm2vdWshBuG52tSyqQIUr5JNI3cZ5lUs9mMZVLaZqwHHX8+uU/7sB6IOakjRSZl16TsVoFxmBQAd8wIT+gm251U7nswoUtXbBxYZD30DHm0OQe9LiqrjMHIFE6iS0tLWFhYcOs3apNusmWj8+9SqeQ6DCd/hguzE1smdVkLgvOwWy6ic2H0+PgY1WrVpc7hMRZ8XspkrCNuPg6C80S+3Chq64IBLdzQW6vVXJiqskOC2GAwcOllTk5OXIYKHkuvE6zq5lzr0rBqAC4fHe+pA80X3XeZCeCyxmhUlm0SU087DEP3zL49K3YvIRfQbQZ0BUK2lY9JAVHJ0j4Dr0MmpfnnfGNIHQmyzMFggLm5uSHH0Sf3KZjmcjm3L4induvmcJ9zVigU3HzC6EcNvwfg9lPNzc25XIns46enp+77mv2G0t3p6SkqlYqbcwaDi5yEVpUgSF1GvWG5ecYeo2L1nDfeUxN2Mwjt9PTUBadpHXOTfKVSiYxX7UPjOnrXEqTC8DwAQg85JAW9e/cugHMKy3BT6rsMHa1UKtjd3XUZvQFga2srkmqeP2Q4OpGzDKMaQyfJTCYTOcmWHUY9La5JTQOkWLZisei0eE44JycnuHv3rgvLZd4t6vGNRgONRgN37951Ocb4DDdu3BjKM8a6oNdLaa7RaODg4AD7+/susScHHe9DNksWXCwWsb6+HgGfIAgc+A0GAxwdHWF/fx8AHKPm9fb29rC/v+8GOcupe+V0HeV+gxTbxeaaU3YUN4n7TNkNAw3YPlbO1TUpTuilUik2nQ1Bit+1ct3/396XB0d2Ved/3a3uVrda3a1e1C1Z0niNyWAPECfYSiqEigcvuIgT/AcBCk8SyhSOSSVAXGYICVuBKVKVxJUirlSFAH/guAKFIQV2DDbYCTBmcXniLZlgl8MwM9pntLbUWvr+/tDvu3Pe1X2vXy9apvW+KpWk7rfc9XznnHvuudKd53bkCb0F8qh7WU/Zx9x0z/eGQiFHoly3vpIWG8uytLSk0wAxabRcU5PuZt4n5z9Dy+mFINHTI0I3IvcQnjlzBn19fUgmk/oeKmHcFzU2NqajKoHNYA4GCMm+4nNln8l+qSd35PWpVAo9PT068TD3SnHsAdCKAD0Uc3NzmJyc1DKWSifznE5OTuoIwHA4jFKppInWSxFxQ8eRFDuRhxNycnAx7/Tp044QZroEAWhT3iSpUCiEUqnkCD9nJ5OkGt35DZx3MXKCMU0JTX+uoQHns0W3GnFmlo8pmRiuD0CTFNciZNg7yXN6ehqnTp3SJMU6lMtlvRhrgm7YeDyuM3JPTk5ifHxca4UUNMxOPTY2picvy8ud8qyPJCkKBU4iSa5zc3MYGxvD5OSkVkxYTklSNkuqHe5VN9iezaO63QS8F6SLzAytD4fDOkza1KplYAKw2SYyA7gJWgK0lDhX+Fw/LkuSGPtJXmMSssx8QK9Cd3e3Xss11zykQiktqWg0itnZWZ1hgdGOXn1tuj1t+5+oALA8HHfT09M4ffq0Y/6Gw2Httjx37hwmJyf1OOe9JCnbWh1JSrarnzEqlWsAjswtSikHSVFxpRVJbwszYmQyGcTjccRiMZ3xfGpqSrv/GeREkgKaCz7quDUpQpIUsCn0aElNT0+jUqlgbW3NMZFIUmfPnsXY2Jg+Cj0UCjn2SFGTk26pRtx95kABzltStBDomiK4mTcSibTl+AjWQ1pSJKJz587hzJkzerAtLy9jbW0Na2trqFarWFxcxOTkJE6fPo3p6Wm91ykcDmNwcHBLnjHWl1E+sVhM+7cnJyf1e/gOJrwlSU1MTDiyKZuWFAUI1xpmZmb0M7nfhCR1+vTpLZYUrSb+TVeSW3hvo+6KZuB1DpNfSHdfrbZ5LAU3ppprR8B5lyeFOt2zJBATbpYUr5VHnpjClO+mslDv4D4vS0qSlC14ws2SokC2WVLmXj26rfg3x5YkemlJEdKSOnv2LFZWVrQrl4oa92OeOXPGsW4uScq0eklSzSYQYDvJzC20pKRsoktVLp0wAS43/jMykSnkOPcor0qlkrYemylrR5GUnATMpsDJsbq6qgXr1NSU3gxIoQhAu/5IUmfPntUD12ZJUetsdjOvjDSMRCJa+ALnLQkOJpkjrZ2ZuW0kRUtqcnJSn7lEgcPBKElKLuKalpTUrKXQo7uPJMUTPDl5mQ2AlhQ3T3Z3d3u6+xgZOTU1pQMF6Pf3Y0lR+wWaOxG3XZDuPr+WlHkNSYpjmIvipjuW18qME9z+wP4iJMFIS8rm7uPakVLKdc1JnttlC5yQiMfjWmBTiaDb3rS6TLekzMkZjUaxuLiIubk5PXZkGLtpkdDKl5bU4uLilrOVuCbFE4+B88sMp0+fdpAU5Y5fkjIh3X22vnSD9AAB5919kqSA8/3CdpfXMFiKGSWkXDAtKbr7zGPpG1H2OoqkpLZhs6So0UxPT+tBJknKdPfNzs7qaDOuScl3MRJPuoZk47uZ37bvGWknN9ba1qRacfeZQoJkznNlKJBJUoxM4p6U1dVVfQ7T5OQkzpw5g5mZGcfud65J2QQmo3zkAXIc1CQUvkOSFNekgE1SlYkx+eyenh6dcol+cWq78ryssbExTE1NOdYhgfMkRUuqHa7VVmC6+xqBbBe5L4juPioRbu4+mUXFy5LidYCd0GkxyGeb6yfS3VcP7CO5CZ5rUsDW/TfyfRS67FMG0ADQ7j6OBSqPNktKkpTN3SdP9mWbz8zM4PTp05iZmdFzyY2kGDQBOEnKtEIlSTUDtiFJSrr7ZL+alpQkKQaeMHyeywByTcrNkmpEme/INSlOikwmg1QqhaWlJUderLNnz+Ls2bM6IIAZCkKhkA5JpSnLAwlpbZiTjJ0tQ6dlOdzKaCIUCukIIxIgBTfgXPtqJKGk27t5v2wn1p2nnjLaiBOYZZqZmdFRfXT1xWIxZLNZ9PX1aa3ZppEyqS21W0YTzszMYGZmRh/CuLy8jJmZGb11gPuj0un0lrxzABwRa4wInJmZ0eG8s7Oz+nmMcpNRVlIjtWXu3mmwDF1dXY6oO69xRfAaWt1Unri+wP40w4hlhCMA7Z51syZpSQFwuEuB89GrNnefLKdJYra68HkyKwj7p7e3d0vyW3PcSUuKigxz0HGvkNfR5mzPZDKJaDSqz+aS2VL4fub3pLegVqvpIA2Oc7rsZWJmmeePa0D5fH7LRmr+pvfCJpPqQZa3u7sb6XRaf7e4uKgj/HgNQ9XlUoScX3SlUy7wKBP2D/MeUiFpFB1HUpycNL1zuZxj3wE39o6Pj+uoPLp/lFKYnp7Wbr9wePP4gsHBQZ2IFXBGHrkdVVAPdJHIwcUBwzrw9FFOrO3Q7qlNFQoFR9YIRsNNTk5qHzwAHSE3NzfnyMuWSqUwNDSkIybZPqYLhnt0eB+JanJyUp8DtrGxeXz55OQkKpWKFs7RaBT5fN6RzYJg1BSfyYipZDKpJ4487ZRWBv+W6xFykd2M+NpuyPUcqXBJ1CsLv2cdpUJjCzRgHaVLjpaReUSEqdHLdUETUiOXgS68n/Xk9/UUL0m4wPlAhXr3cZ6yLektIWmTVMx6SlKQrupKpYL19XW9/4keDpYxn8+jt7dXp1yq1TYTrp47dw6nTp1CpVLRZDc1NaXXyOWWlFwut8XVR+IHnO4+G4nJtraB8qqra/OsLN7DeVcul/V1bOdYLIbl5WWt8E9PT+PkyZPo6enRcoGKNQmwVCrptjWXSvyi40iKk44NKzMTANDnJo2NjWF5eRnRaBTnzp3Tmb+np6cRjUb1wnosFsPAwIAWrIQpTBrRujkBTLKhi5J14F4pRtkArWdBsA3gdDqNfD6PV155RX+/tramyUOm8ZcpT2Q2gVQqhYsuusih+dkWsRm2yjZbW1vTa1xcQ+EiP0lKRpCRpMw6SZIKh8O67JHIZr7ASqWCqakpLC8vO0iKwksKP9OFu90EZdP83Y6w8ENQ8jpaOBTkiURCZ74mSFYyQo/3SS2b5THXpIDzC/iSIGU2Frf1WhmCXg82kuIRGvXmngxC4XimB4Ak5eaKkpYULSRJUpKwI5HNY2pIUrSmGJ59+vRpzM/P67FHC5/jnHXJ5XLo7+93lEm+p5UM+Swn+4UkRStpYmICQ0NDDos8m80iHo87vFJTU1P67D6eREy5EA5vptMiSbUyhzqOpChwlNrcrU2SYgNxE180GsXc3By6urockTrT09Po7u7WDR2NRrUlZZIUB2CjlhQHhBQ+FCC02CKRiF4P6u3t3WJJNdPhpnXD36lUCvl83vE9Q0q5CEqfMk17WlIsayqVwvDwsIOk6JOW76L/X1pStHp4EqzMHEFLCjivpUqfP5FMJpFIJHRf85nM78Y1KZIUy01Sk+HHzVrH7YK05mSgjJdbx7RYSRSSpIBNJYEkz+dJK0DexzUW+Wz5t+nuM0mKQUX83lYH05Lyglw35TNJUvXu5XtIUjz7TFpS8jmyLmwjN5KSllRXV5e2pKS1SBcZhTfdzJVKRW/gpcJES4okZZaJSpx0k/qxnsx6uVlSExMTup2lwi/rvrS0pE8s5/YVZpWnJSVJis9yUwS80HEkxQ6Q7j6bJUUBGolEsLKyon28U1NTSKVSOoNCNBrFwMCAJg9zwMjzcBoVaCRTDhDTkqLfHEBb3X1SSCil0Nvbi0Kh4Bg4tHDW19cdi+LcgMgQfmlJ0d0nn226TWRKnkgkolPw0HKkBs6JTVKxufuk+4AWAkmHz6Qg4SI+n8doRkYgyb6T63+7tSYlidLt+Ih6kHtyTEuK35skZVpSprtP3sd+4WemEsR+dLOkKPDcXJqAc77JE7SB8+4+vt92P/9mOUxLyubuM0mZY8EkKenO4/tIUrRA2U5cY6X3RtZ/aWnJ4e6TlpQM65fzSIagNwPTkiKYP1Aql5SlTD0mLSlG3VKxtZGUDJrwUrTc0HEkRQ0hFNoMROBCPjub0V5cm+AC8traGrq6uvRZROvr69p/XyqVdIZy+R7ASR5+N37KSSYRj8cdQQELCws6ASvfY9u700jb2P5nyicKEg44nuRqCkdqyLyW59KUy2WHK8nmxpK71OnuowtBhgDLDZvsU0b2mQfAAectBE6+paUlvXgrU/OYmzplNmmpeEiXyG5A7t1rJOu97Kt67j5pJUh3H3D+xFfzpFrZt27uPl5ns7RMtxVdXI1YUnwGF/TNssm24G+5JsW0ZwB0oIN0N7Kc0l1NS4pnvnG/kNkv3JSfTqe1p4CKXa1W00Jdkjn35cnAqFwuh3w+b+1fehpsSwZ+Idek5JYE7ieVY4PKCucd8xKaG38B6HoyS0WxWHSk4JJt7BcdR1IS8Xgc2WwW2WxW74vi/hO5v0lqQgwNpZZWLBaRyWS0sAOcg59RWDZtsB7MwUr3CoMHuPdALkC3Y51ECguWO5PJIJfL6X1R9Hvz3XJRl+jq6tKaKLVHM9rI/JuTIpPJ6OfL9pQ/vJ4RacViUb/DrA81wkQioUmPz2W/SYHKqE26TSjM5QZUTlA/7qRWYfYnI6HYP37729bekiASiYRjj5mEJKlQaDMS09zfIsvBOURCN/c5cdy4zQ32ERUdsx5mnZhHkuVIp9OOdDs2JZJjSa7xMSqV0YvMNmH2s9neVMYAZ/4+CSpTnA/mhnKOQely4zOUOh8lm8vlXEP/5SnDJrn7GSdmHXt6epBOpzE1NQWllG4fufbb09OjramVlRUtnzgG5FlfJPRcLqdlZyvzp6P2SZngIOQeJ6mpm2szUnMAoA/Ws7mw+FuSFAeMX5eMbTJwobqnp0dvbOXiK90irbqgbNYU24kbcWVEm2wfCbZfIpFAsVhEf3//lg2bUuARXIQtFosOweXVZiSgoaEhxzlILBfflcvlHFGYfC7JRrpkqKmyDJxIMrGrJKnthOnKAaCPRmd5G3H1yfJGIhGH4kBrU0K2C99Zq9W0QiDniiyHJCmbpSQ30EprkM+jMgTUX5PiO+T2BpsgNwU2f1MZAaDDpiORiD7HTY5xc3xxDFCZIxgybiOzYrGorQjbs83+ki7//v7+LcdzyLkos6U0mo1Ezhn+zzks60VLk+ju7kaxWNSudilLzfJRCZTX2+rud151PEml02kUi0XHZj0TstH5u7u7G4VCQUes8ToJTkQzfY3pT/eCOcFIUrT6mBZfLkBLgdsobNoi24lrbyZJ2coKnHeBFAoFTVKyjU2S4rv6+vrQ399v1a5tigPP6RkaGnL0o6xLOBzWQRWESbJSIPb19TlcnDKfGhWC3QqcCIVCjowYbpaP2702kmI9mJnD9jx5HS0V891SyeO4pJvKfLftDDQJeW6Xm9tKPi8ajTrmGDe/SwI1hTDdY1zDUUphampKu/dJUqbFbCM+HsXB+nP/njkeSVKFQkFvzpdt59ZXAHTYtiQp00okSUmZ04giZXtnsVjUn/MIEwkSmc1y5d+S1E2S8rJQ66GjSYqbyYrFotWSArYSCgccO44k5eaSkulrOCDbbUlxjUwK03aQlJzQvb29GBgYsFpSXs/i4GUUj0lSNkLMZrPo7++vu9bCe02ScrMG8/m8DsqQ/SUX9YHzJCUtKZKVzZIyy7MdMMejJCnTkqpXDtnHJCmCkWW2e2Tuvlpt88A9kzzcLCkbSZn58qQgA86TlE3Y2gQ4SYp9mc/nt1gqtjYlSfE+ZhyhhU5LSq5/mmUBoF3VBLPWmO1pWlLyGW5gu0qSks+V80SmcWsmRZqc934sKaWUvkaSjk15oSVFD5Z5YGYz6GiSotA33X0AtkyYZi0puSbVSiJQ/k6n00gmkw5LSrr7bLm6Gn2Xjajo7pML5TbBaLpLE4mEw5KyCRnZbjZ3n6mVSdCSsrn7zPpIkjLrLNceSXokKdmuu7EmJesvSUpG2jXj6uO9MrKunrtPBibwXDCbu09aUiQpc1yaEYom6O4jibm1sbRkOMdqtZqrJWXWTSmlSQrAFktKCl6b8ijfT5KSlpT5zlgshv7+fm1J2eriNt5NS8p2vbSkzE3S/NurLd0sKX5vWlKhUGiLu88s03a6+zo2cIKdwQU8nlckN4cC5zVteR8AfZ802c1Glbn7ZHSfhO0++R5ew8+Y7JJCgFknJEm1U2BKbSqfz+sEmQx9t7koKLwZGZXL5ZDNZreUzW1QMsMFd/DLKDBZJhKH7AsZPWiSXyaT0f0s3TvSqmAesmw2q12H7DtpSW1HW7vBRkAUfiybXwsd2NouHJfMmuBmKUurKxwOO1yDtvfLKE/TkqJiJUnK9EZIi8DcMyjbhj+MfGNZbYdryrEhLT6+a319XadB6+7uRjab3bK52W3cdnV16ag9YDP7Cg8mle8kmVFp6u7udhC6WU45Bnt7e/V9NsIF4NpufmHWNRaL6f2kDC+X50EB0McbcX4xSa6sD+uQSCQcKdKkJdXMfOpYkgLOa5IUioVCQYefy0Vbc+0iFArpCDRbSDX/p9ZthoU32hHy+dwBT2LkTnUeWNdMri7bu/g3n0M/Mq0ipZSjnWRkHJN6MmCCp5Ha3HtmOan90eXH3fZMt0JS6erq0iG/hULBNdpJvoNEm8/nMTs7q4/+oKBkJGKxWNRHhQPQB1aGQiG9HQGAa3TVdoJlkGdaubl93O6XkK5ObqlwGz9U6kKhkD6R1+1apZR2STO/oAm5h9CM8OL9XLNy21ZhKkgMQ+eWAy+vAssuQ7x5YCdJTq7B+gETsi4vL+tky1KY873xeBx9fX0olUqYn5/Xe6FIMBKxWExnGi+VSg43q1SyZH1MmdUIbGOEHpy5uTntwVldXXVs8GZIeT6f1/U2t6L09PSgv79fW1GtEhTQ4e4+CieanjSjSTxua1OhUAjZbNahNfE7+ZtatyQpm4Xkt6zA+cVZbi5kGiJmYzCTabYD0nXX39+PwcFBbemY6W64qTGXy6FcLuvzo7y0fZPcKSAGBgZQKpUcSUJ5HZUL9puZ3soGRmRyX5tZdh5LUiqV9AI48zdS0ydJUdDsBExBTJLipuNW+ppCYmNjQ5O+17spWGz7qaQSx3Uehh/bQqFNL4NZD3lulxtRSAWJ448WocwTadZHfsaM8rVaDYuLizrVWF9f35Zo0HogSbH+Mjm1lCXcADs4OIhSqeQ4gFUSC4V7NpvFwMAABgYGtri0TXer3EPXDEnZkE6ndSYYpRTm5uYca4bAphJYLpfR39+PRCLh2IMXiUS0Ejg4OIj+/v4t2xeaRUeTFHDebUGtv6+vT6fPsZEUgC0kZWoz/GHQhHTJ8BrzmX5AVwFdEEopLC8v60P66O5o18CU7wU2XZwkKUZEmhodLZxcLqcnlUnmbu+wkVR/f7+VpHgqLEnKzBxiqz8XrElSMsgkFArpY0nK5TIymYyDpKS7j0LAdANtB6QQZr14tAjXz2R9G3H7SdRqNSSTSeuaggTdgcyuIMtpCkuTpMzyybU9qTDwxy9JyfcyuIO5Gm39Yyqc7SQpuuMBZ/Yas3+4jkpFjCRlW+MkSZXLZZTLZe2GNuUOn09Lqp0k1dvbq5cZeByHDNsHNucDScpc2yRJSWJu1/zpaJIiw9MEpSVFDUxOKKmthUIh9PX1OUiK38nfpiUlB06zYAQRO5iWVLVa1Rq/rF+7QCFOkmL6IVMDlpbUwMCAw5Jyg6kAUMscGBjQwRo2Muzp6UGhUEC5XN6Sg9Gt/Lw+lUo58ppJkqJLhRMyFovp90tLql2aYCOQLkcKu2atc8BpSfGAQD5HPottRBKzJaKVQlGSVCwW23K+l1yTsm30lcLWK4uKaUlR8aAlZZbPbEsAupw8oqNVSyqVSun8eSQpEySpwcFBvf/QFhxis6S8tssw0teNpJqVCb29vdpCJEnJtS+OiVKp5CApaUmxHpKkWikT0dEkBdgtqe7ubs/NaLSk5Fk6ckCw0c01KZsl1ahQoSXFsHdaUjxV1RbN0w5QQNksKSnoaUn19fXpSVWPpOQ7QqGQDnKgVsYd/3J9jJYU3Xd+3H1ulhSjL20kRUtA5iakBbBTa1Ju7j4bSTUK3ktLyo+7jwLJtKTM+2ihmJYUIUnKVDCYgYGeiHqWFGGSlFt4s+nuo/BdXFxEpVLRJGWLBvVCT0+PdouZ7j4JqYjRknI7ndhmSck5Z6sPP2sHQQF2dx+Dp2zuvmQy6bDyTUuqv7+/bfOnIZK6//77cejQIX3w3OjoKB555BH9/crKCu666y4dnXLbbbdhYmLC8YyTJ0/illtu0QLx7rvvdhxV3G6EQiGdEy+Xy6Gvrw/ZbFYHRjAiTIaoS02Rx0zPz887zkoheAaU3BDYChi+yUVduv26u7t1/qxm3Yn1wHWgXC6nI/bYPul0WrcXs8sz7YkkfRtMC5NrHkz/YvYJ38UwcbnhUsImGBgdRUtYlp0beBnBGI1GdUoYhgrThQs4z1faTtjaTR7wKMm50T6n5ZtKpRyRbBzjJnhIHRUl+V7Zj7SUTEtKPpNuXXlCtvk93Ux+9/swotQWlWdCKkXJZFKnHGOfc+w2As5DplOyHUcD1B/j5g/HOoOQvNDVtXlQIwOs2kFUJBj2l20+08vDusjr2SecY7JPW51DDUX3DQ0N4TOf+QyuuOIKKKXwpS99CbfeeiueeeYZvPrVr8b73/9+fOtb38JXvvIVZDIZvO9978Nb3/pW/OAHPwCwaXnccsstKJfL+OEPf4ixsTHcfvvtiEaj+PSnP91SRQibOS3XOPL5PAYHB3X2YWBzQM3OzmJ8fBzr6+uIx+OYnp7GqVOnkEgkdARTKBTSrieSX7FYxNDQEPL5vMNlJd/dKHp6ejAwMKBDXovFos4KLrMr2+rbLGwEUiqVUKlUkE6nsbKygng8rjf95nI5R3ACrRWvZ5vlpvLANmQSXwpocw3RD9hm/f39qFQqyGQyWF1d1eddMSCEBFUul/X6BgCHEtJqCiq/kGs1tFb7+vowMjKCgYEBx2RvtDyRyOb5RiMjIw4XjPl+/s5kMhgeHkapVNriTjPHnMzbZhOWyWQSw8PD+sRpfs569Pb2Ynh4GIODg65BKnIO0cMxPDyMcrnsO7Clu7sbg4ODqFarOqsIj9NoFKFQCIVCAQcOHEC1WkVfX5913xn7kvn+OMYZvs22pPXPbCk2sgfgyOrR09OD4eFh7a60WVuNIhwOo7+/HwcOHNB1tClHTOo7MDCAlZUVLC4uQqnNdFvlchmFQmHLhnFpETaDhkjqLW95i+P/T33qU7j//vvx1FNPYWhoCJ///OfxwAMP4Ld/+7cBAF/4whfwy7/8y3jqqadw3XXX4dvf/jZefPFFPPbYYyiVSnjta1+LT37yk7jnnnvwsY99rOnNsPXA/QQ9PT3I5/NYWlpCKBTSGb7D4TDGx8f1ya3hcBhTU1P4+c9/rgcVXRaMEOMA5OArFAqapGRm9GaQTCYxMDCgj7VgdoZqteqISmv3mhTLLEmKe7W4JpZKpTAwMKAnlV/yIKT7hhNYEgpJKpVKoVwua425XlvyudTOy+WyPpqD6zEkVx7pwbrI4yvoSqFQaLR+zcBmEebzeVxyySUYHBzckqG7EXR1dWmhWi6XHRkQbM9Kp9OaBGjFc2zIrPR0la6vr1uj+4DNcXzxxRfr0Hezzul0GgcOHECxWPQkKemhIHmTpPwogt3d3foQP2Czb2kxNtqeFOAXX3wxNjY29FYGUxBLoc4AoEqlgt7eXgdJyRRddHvL+wnZ9r29vRgZGdFE2w45EAqFNEkxC7st3yKVwHK5jI2NDSwtLUEppSODi8Wiw1pvB5reJ7WxsYGvfOUrWFpawujoKJ5++mmsra3h8OHD+ppXvepVGBkZwbFjx3Ddddfh2LFjuPrqq1EqlfQ1N954I+6880688MILeN3rXmd9V7Va1eGQALbklXKD1PyoOefzeayuriIWi2lfNSfdiRMn9P/T09P4xS9+gVgspjP7dnV1YWBgQAswklS1WkWhUNji0mi0k2SUHRdb6RZNJBJYXV3dYkm1A6YmL0kqGo1icXFRkxTbMJfL6cVTMwLLTx257kSSkgM+Go3qQU/XnF+SokuiVCohFNoMPOEkosZKfzqtQilEpSUlz9HaTpjCjWcSSQEuLZBG0NXVhWKxiIsvvti6mG32GUmKY45lorUswc3sMvBE1imZTOLAgQOIxWIOwpOW1MjIiF4nrtc2ALQlxX1zst3ciCKRSOCiiy5y5CGkItQomH7r4osv1tlTzFyIktA5xovFok41JXMayn2cXEc1lVDZ9qFQCKlUCiMjI3rd2ESz8qe/v18rFcxUIpUUALo+9PTQG9Xd3Y18Pq8tKbMfdsySAoDnnnsOo6OjWFlZQSqVwkMPPYSDBw/i+PHjegFQolQqYXx8HAAwPj7uICh+z+/ccO+99+LjH/+4r/LZ3H1yIZ6uOvqTuf5QqVT0eUO0pKghcsBEIhEcPHhQN3o8Hkd/fz8AWN19zYKW1NraGuLxuF77WV1ddaRlaRfkGlc4HNY78Wu1GlKplD7mhEETvb29vsnDBtOSohXKjcNsd64fyRN3ZXltz4xEIlrT4wF3sk75fF4/j5YUj8BmMIC0KnfK3WfWIZfLaYFgO+vIL+juoyUlT0mVz+SYNt19ElKrpiXltk+KbqmRkRHtgZB1lRaBWUezbeRzs9ksRkZGdCYHt7aQgpEkxeg11l2eReUX0hXGI2RsJEXIAKBoNIpKpeLIxMHN8ZlMRpMUcN6SJyRJ9fb2agWmGWvQrV7FYlEf0bGysrKFpExLKpFIaG8U5xfd87KfW5VVDZPUlVdeiePHj2Nubg5f/epXceTIETz55JMtFaIejh49ig984AP6//n5eQwPD/u+X7r7mHmgr68PwPn8YufOnUNXV5eDpLgWJRfSmfCVbilGsWSzWW1JSdO8mQFE1xRwfpAzGopKgJxsrUAOIg5EDjiSNk/hpbBhxglJHl4D0dSq5Mm43PGfSqV0AA0tGEZSyXOO3MCyk3xoCfBd8XhcBxDI5w8MDOgd/wAcudh2wpKSAoD1oLuPBzw2k+ma4LMAOI7yNt9LMMiBblYJaUmxH2lJ2YJMaEkB2PIsuSYl3a0mbJYUAEefsTxuYzCRSGBwcBB9fX16PFSr1abXpHhWVG9vr14eMEmKFjHnLxUO5uSUJEXC4wZZPkPCtKSoSNjSJzUDkhQVlYmJCWsqK1p+DIphWiiuVzMgSbqFW0XDJBWLxXD55ZcDAK655hr85Cc/wX333Ye3ve1tenObtKYmJiZQLpcBAOVyGT/+8Y8dz2P0H6+xIR6Pt7z7n9YULSuuS3DAUGOnaU33YiQS0QMkFos5dmFTIHLgyGt5TSMgqTH3l8yFBUAHdbQ7qs8sZ1dXl14HqtVqiMfjel2OAskMO/ZbV3kdJycVB/OUV5KhaWm4gROfARnUcLmwH4/HHXkYqcFKi1me2NxMhulmYE5mjieen0SCbkYYUQFQSukxaguZ5vMZpi61egmWc3193WH5mum6OI5zuZzeMC3vBzaJi0li6x3VQSFJBapeijBT+2eU3fr6OmKxGCqVStMyhXO+t7cX586dcy2DHI/RaBTd3d06lZQkKcoS1sd2wKgE242KpNnuzcgH1ofniNGS4ncsC2UnFT/KJi4FbEdcQcuqOAX6Nddcg2g0iscff1x/d+LECZw8eRKjo6MAgNHRUTz33HOYnJzU13znO99BOp3GwYMHWy2KA+bgNv3h1GD4N8NSu7q6dEqa1dVVvW7FjbvSBcQJEIvFtpj8rYJkQG3enJTtXJi0gZoQrVAKIrmBz9a2bpCarlkHvkP+SPeel5ZM8Flyzcv2PPkcki4n+sbGhnbHsF+3G7a6UfCbCUSbHV+spxQ0bpDjzuxPWgy1Wg3Ly8uoVCoAsOWIFpaVc0sKX1mHcDi8ZSOwG+Q4k/sSTXK3tSVd8xwDnLfNzh/OBUky0r1luoltcoftIuWQlCum98H8jm3eLhkg5yEA3V7ye5ZF1ocKnrkPTs71VsvYkCV19OhR3HzzzRgZGcHCwgIeeOABPPHEE3j00UeRyWTw7ne/Gx/4wAd0ttw/+ZM/wejoKK677joAwA033ICDBw/iXe96Fz772c9ifHwcH/nIR3DXXXdtW54005XCQc6O53oT0510dXXpg8zkjuuNjQ3rznkKgHZlgmCnSqFCC20nSEpOfGmJcBLJSdnMAq2NTPhc02Jo5B2SNPlcLpRToLB+vJ5Cku/e2NjQ0YDSutopUJDTCqHrT5a7UdAqNA+kdHuefK/sB7PfVlZWNEnZhBRwPh2S6TIi5Nypp+DwtxwrtntMRchGUiQIM/WQH3A+sPy2tFWmcsWxZquLXBagPGLbyefIvpNeoXZBkigAPS/k91RQWAb5vW1sNdq2bmiIpCYnJ3H77bdjbGwMmUwGhw4dwqOPPoo3velNAIC//du/RTgcxm233YZqtYobb7wR//AP/6Dvj0Qi+OY3v4k777wTo6Oj6OnpwZEjR/CJT3yi5YpImBqVKZikRsOGlJbU2toaotGoIy8fw21NLUkKQrMMzZab610suy1ooJ1alHy/dDVwEstEkvzcpln5fYepdZpWDv9uZM2Nz5QuQ/rUZfnlxJHuRgDakuJZQ9vhWvUDCkK6WFtFJBJxrOvZ+oqf0R3qZklxDZckJbV6E9TMpUIo21+Spx9LSgYwyXUg25qQHJ/AeWvPVLYaBfvGdNcRct6YCpa0VOS8lj+y7cz/5fO325Licoj83uaRkvUzLSnb582gIZL6/Oc/7/l9d3c3Pve5z+Fzn/uc6zUHDhzAww8/3Mhrm4LZqPJzNi4tFPrtSVLLy8uIRCKOo6EpMKT2Iydzq+4+U4CSpGjBAXAM/u2ypIDzmhvfJYUA/5ftKz9zE4AUMOY1NqHD99i0U97jVXazP9hnbpo8xwTD4LluIY/+3k7YNE5aca2SFPvG7UBKE6yz7E95H4lGWlLSSjHHibQ05HYPtrlcZK9XD0lSpmUn32HeJ4lUWneNKEESknjNDa+yvVhec97K9jHdePLoC/lceR3HbbPlt0FamMBWd59UMuR8kpa+rU/agY4+TwrYmptMugvY8DK0OhqNYn5+HvF4XIddM8BCauSEzfXgJlz9IhTadPdJq4ADQi66toukTHIwNVT5HpJ6OBx2bEr0qouN4My6meWRAs3PoLdp/ZxwnMy2NRHphuHm3/X1db0IvFOWlCmUpCVF66UZ9ypw3jUjj85wgxkMY84f9g3XpDhWbVaazUqWqLetgOUw6yLL4nad+Tnnk7QYTMXID9g3kjDN8pt1kcJbzgWbFcZIYlPgS8VQurLbBb6P40R6cmSdTEuY9febcaYZdGSCWT+Ck4OVf/OwQZkmHzif+oWT01ywlc+xCZFmB5K5ViMtuHbC9B+bk8Ykdi/rpp6FI691+9xvXf20g6l1m5DvAjY3jfMU5HZElDYCc5yY41O2e6OwtacpME2r0801yHFeqVT0GWema8i83utzm3Vtwm2+ub3HJD5pufHeZueSaQHZCN9WJ7P8fsa3l1XS6piwPU8Sp9mfNtnQrvFZDx1JUhKyEc2Jwb+B88kwC4WCXouQu78BpxZFcALZjj9vpMNMsjD/5nNNV1s74EYgtmts2rXfyW5rIz7brT6NChJe7+b28SrvysqKJilmAW+3UuAF2d+mZir7vJF+N8ei29hxs6Ztz6MlRU8DXWk2ojXXON2EtxvcLEhbv9iEJcvA/02lpRlLSv5tkpStDWz18FLUbN+5haW3a3xKd6T0Lphjx2sO1eufZtFxJCUnsh8BKq0FSVKhUEiTlDwvRm7ulRPedCW1UnabILERbDthDkRzkVuWr5H2Nd9hcx/I9qsnkPz0JwDH8+oJAX5frVb1Zsvu7u4dy4JuU2jkZm1JNM1EG/JeW11Mi8rtfoIucmYh4f4fN6El+8E2XurNG9bZFJBmnWzWk+0ZkiibbU9ZdinQ3easl3LBI0TqEZhNqWiE7P3Wx43ATQKTn5vXtRsdR1KAt2YiP5e/SVL5fF7vfpckxUHNz0xXiekyMcvRTNlN7V9Osu2AqUW5XSPL5rc8UiCYgsZNUPnR2OT/8npJsm4CwKzn8vLyrllSJjnbSMosrx+4tWE9S8qtjGzPSqWiLSmbu8+m7Li5h/xYU/KZbn0iv5eWqHyHGVHXrCXFZ3qt78m5YSMjqaDJdvJjSZnPsbVDo7AFesh3ua29m3+3UgYbOpKkJGwDW/5vIykumHP9SWpbNncfAE9tqBFIDcmmlfHvdmosNk3Xy6rzcl14wS0bh0nyJjHzGi+Y/WkSn5egYz1XVlZQrVa1JbUTa1Juwtrm7uPnjT7ftDrc+tONuOR9tKQqlYpOOuyVpV4+083dV8+SMoWkjWDcxgsJSwbqmHVqBGa7yXrb6iLnj23O2L6zvc/Nkmq2Hm51MxVVm5y0vVf+tsnXVtDx0X1+wI7hgXmpVArz8/NIJBJYWVlBKBTSm9tIUm6DR0IKej+oZ9KzrPXe2yq8yutWHpbJ615be3gJRz/lcbveTWCY98jfFLy12uYptrvh7jMJwfys2X73Ow79jFmexcb9hDaL07Q4ZD1s7/N6p1edm6lTu/qUfVSP3OvJC7c2qkd67YStDKY15bd/bHNcPrdRdDRJmZPf1gny2lgspo8XZwZyag48yIuCq16DN2PtyEkkNRJp0WwnGiWHRgadl9ZnIzqzr5ohKjd3hE1gVKtVzM/Po1qt6iSa2+larQebRdCshd7sOLTdy/UoHnbHKEg3oeT1LNMqcqtbI/W2KVHt9EK4jSn5bC8Lz1aPevN8J8agjUiabXM+r13l7miSMuGlpSi16d7LZrO46KKLdGocJp2l393cIc8BZoahy++aLeNOCUg5uWyTyWvim+4Yr8FpW++qJ8jk+/0QldkfbveZ/b+ysoK5uTlUq1Wd0dnPO9sFk5ilG2ljY0NvGm+0PG5uJhsxuFlD8jsegsmDQ+kWtS2om+NEvpPbOep5BryUGz+bWdmW8v3ylIJGN8Ta1gltsAV7EF4k5tZf5txp1EvjB7Z5bpa5nlyQZTM3+jaLjiOpRhrDFFTMljw0NKQ3Uvb09OjJGA6HXRfTvfZKNVt+tyCG7RKccuB7TUK3wXO2gwAAIMBJREFUSedHG5bXmv7tegLLT9n5HDcryHRhEMvLy5idnUW1WtXnXDVrubQDsu/lOlSjQtVsl3rjU/Yh3y3HA0lqcXHRQVJuBGeOYRIEM6nwuV7ZNeQ1Ztm9rDA3i84Mi28WbgKba2Dy2TbXrSyDHxJzs7RMZdssjx+Yc8LLZVdPkZSZKdoxfzqKpLxMZT+dF4lE0NfXh6GhIaytrUEppdPyM02Iubvepp2a726k/KaFxrKbAqbdwpODyyQMW5uai8V+n28L1zUFRT1t2Uu4uk18t7pIQbKysrKFpHYLsvxmQE4zQtU2J/z2mymsNjY2MD8/7ziRVZ4cXM9K5o9MVGoSsVlWt+AEP0QrLSn57mbbUt5jIw/2mTwOxTZf3ZRBm7vQfK+tnu2AOU/MdveytOR9Zn8GlpQL6rkyeI2bJVWtVnXCUZIU16Rsrj1TADeackUOcvNvtzq1C3yfdIPwc/nbDVLg1HsP4BRWfvZd+C1HI8LcfI+0pHp7e/VhjDthSZn9bJbfbRO0H3hZUvJvuWHdFOqyD2yWlFTcTI2c0YCmm8otpNrWNmYZ/c4Lr3lk+9wPTPKzvc9sN3MMe0W5yt+2uprXuv3fKNxIyOw3N5j1a8e+UaIjSUoOFtt3JuSESiaTyOVymJubw9ramj7Nlzn8bMdkuz23GQFnEyRuZn47UM98dzP7/cK0/tw0xXpl9PseP/eYgmR9fR3z8/NYWFjQ4ec9PT1139ku1Gt/87N2vscL5vt4KOTc3ByWl5cdJOXHi2ATeI3UyRSaXpq+bV7KPm8W9RRfN9J1q6fX3JJ1NOdOK3PSDX77wizDdityHUdS5kC2mdnmtWajc+Gci+jMXWdmXzZdR612lrRobIlXt3swNKNZ8r5Grqs3uOtp1273ePW77XpqfYuLi5iamtJZvXt7e3XAzE5BvstcB2pl3cR8tnyH+Z0cf2YfSTKfnZ3VG3l5NLr5Li/NXNbJD1n5IT9zzLjNe7672b41FUfbd432mc2D4kd22f5u1ttiyjTT+nNT/G1k2Wobm+g4kiLquQ+8rotEIkgmk46FfTMppJzk5oRvtnNYFrmI7NcabCfcBp6N0P0QWz0t17S25GeNlts2wc0yS0GysbGBxcVFTE5OatduOp3WqX62w3o1Ybo33dqrFevDrItXRgullGPTK+9dX1/H3Nwczp07p8/ccjtm3s3KkPOJ7/ISaCRNzj8vEjLr6CZQW2lPN0vMJBC3hL42MjLLYiunjRC92qxRGSHlmrnu5vYOUzmQ9bM9u1l0LEkRXmQlG5gdQ4Lo6enZYj3ZhKipWbXaIZyUpkbjNunbCakBuk0QmzZXT5ib95ht6VYWeX89TdutjPJ/m9BSSmFxcRETExNYXl4GsGlJueWjazdsxG8LXzZdZY0SlUl6FEa2Z8nwcPn+tbU1B0nRLSqP9zDfZ64jmaHfvMcrY0Uja6VuComEJLxm+tjWBzbLwyvgw8/Yt11Xj9RbAceFWT9zDLqhXcqmiY4mKTdNyavxqUUmk0mEQiGdx09e76Wt297XbLlN7JRm38gA85pQhE2DNK83ybjRepoaHT9zE+r8jO4+N0tqpyDfZVo5ZlBOI5DWh2wHWzSdre3lZ+vr65idna1rSbn1oRwrft19rLNUJG3XmO80A5fk+GomOtUGtzLbLCm3e72Iy5wfsv+98ug1A9v8kZ9zrsi/ZZ+YZWtHmYh9QVI22AQkr+/q6tIBEslk0nEPM6DLiSMjo9plSZll8yp/u+CmudnK6DZB6pXLTft1004bgRfB2T5jny8tLWFyclIHA9CSaqYMzcAkcZNA2iVUZfuaIdLyGtt6lbSkZmdnsba2ppU5eSS66SpyGyuNWlLNWstu/c7vmmlP233m/zZ3n7mBuV75+LdJtl7XNyuDpELnpXB7Pd/N69OqrOookmp1AhOM5uPhd5KQVlZWrO6rehphK+XaSY3eL1qpr997Gpl8JkG5EVWtVsP6+roWxPPz8zh79izm5+d1ZF86ndbHmu8ESZlllL+9LB+/aMY6JTEwnJhRfefOncPS0hKUUtrdZx4EWq8c8h3N1MVL4TB/E+ac3Y5+NV1k5nv9wM1L4yVj2iUjZJlbaaN2y6uOIikJm0uvnkViarTSjWEb/OaAlL9bGTjSXy41E5uLoF1w0+7cXECtlsWcBLKuNi21kTb10vTW1tawsrKC1dVVrKysYGJiApOTk1hbW0MoFEIqlUImk2m7y8IvTFeRtK6aWYuga8bsMzO7gyQZvpPna62urmJubg6nTp3CzMyMThkmLU7be835ZIPNgra1B6+1PcvL8nCrn+1ev5Dv8CvIbRaGrbx+LCuvZ7cid2wyx23e75R3B+hAkpKdZItScXNByAFsEpKpIcn//Zi/jcJNm2rX873e2+izvVwDXs+t51KQnzdChKYAkROrVqthbW0Ny8vLqFQqmJ+fx+nTpzExMYHV1VWdCZ8pkfy+sx1wG7dEsyQlny3bxrZmQ9CFvbKygkqlguXlZUxMTOD06dOYmZnB+vo6urq6dKg+769HOPI9fq0BWW6bpWKD+Z2st1f6pUYgx5SbUOf/NiXT79xqhnxasRKlUmD7zvzbjcRs3zWLjjtPyk07d2tAL6uAg9mMeDGFn6n9mu/3W24pQOQzzGdutwuqXtuYn/tx80hB00qZ3J7v9r8poGlJLSwsYHp6WpPU2toawuGwtqTc+rTdsLUjo88kbFquX9j60y3TB6/Z2NjA8vIylpaWMDs7i8nJSZw6dQpnz57VllQ6ndYk5fZeP23oNS7MfnCzNPjjlUYrFAq15DY1n0kL10uZdJs38jnyOz9WlWnFtWuMullS5tiQZZbl8iLrVtDRlpTb9ybcLCkzcsXsJHl/M2Vxg6nlmpadV12ahZc146YRmWWpZ0m5CQk3TbMZQjYJ0exDWlKLi4uYnp7GqVOnHCTV29uLdDrdFBm0CzbtuR2bxflM2S7yc4Ljr1qtYnFxEXNzc5iYmMCpU6cwPT3tcPd5kZRZH/kev0oOiccWPGE+30toe5FgI/BDerZyuglwP+835VO9a5qFqVS4lbPePJfP87reLzrakvJzjVuHmKa2/M6MvnPTfJuFbVCaJLmd8GvxSC2rnc/ltY3eUw+1Wg2rq6tYXl7G/Py81ZKSJAXsjLvPfIfN+mjFArC54dw8C3x/rVbTZD47O6tJ6ty5c1ZLytZPfv/3Q1TmNaYS46bhm/e3w5KS5bfNSz+KZL3P3drEy2rzus8P3Kx1v2SzXfKp4ywpwquxvLQC8zvbJPB6RqsC1c0tsFPC0kbW5jVAYwvG9a53046bsaZs7hCCaX3Onj2rf2ZnZ3VG72QyiUwmowXvblhSfsdtO95jU9b4ebVaxblz5zAzM4OZmRnMzs5ifn4ey8vLOqqvt7fXcXpxvX60vdOP4HN7tt96epWt2Wd6kaFXOdzmk593+rlnO8esm/JsvredHh6gA0mqkU6S2qU5CLyCLvzk5WoXsXiR6HbB7zv9Thx5TTPlb1VAEWtra5iamtIBAOfOncPKyor+PpVKoa+vz7HvZzfa2/Z5q+cemWPYfL78m6fvnj59GmfPnsXMzIxOvgsA0WgUfX19yGQyjswUXs+UnzVKVG7PcnufW1nkvG5U+XF7r61f/MyLep83QuB+P68H27xvZfy3a+7sS5Lyo525WTL1NPxWO9XNtG6nJui3LH6uaVSQtyKQWoUkKWZOqFarWvHo7e1FLpez5qLbCXjVu12H8/F/c/xKF+PGxgaWlpZw5swZnDt3DrOzs1hcXMT6+jpCoRBisZgmKb8nBrsJ7kYEYStCs1WLzO9z98KcbBdJtQutPndfkpTtOrf/bdpXvYHQrLVgs+zMCd3uiB7bs9zeaSuvX+Fpq5+fxexWLC9zbYAkdebMGSwsLGB2dlZvzg6FQg5LaicsKLO8Xmhn2LTtfznGa7UaKpUKzpw5g7m5OSwsLGBhYUFnqYjFYsjlcg5Lqt7z3crjJ/pPKoZ+n+tVP7/l8/MOr3Btm6xohsxt45mfN9rmXu+1lbUeCe+E8rzvSMqvKV6vs/y8qxXUI47thEkg7XQrNCJs/L7H73OkJcW9UpKkent7He4+YOddfm7varclZXsv+126+xYXF7G0tIS1tTXt7ovFYshms1tISj7HT/0aGQeNjEEvD0e9cPZG4RXy7lY+P3Brw3plbwfxuinMraCVZ3QcSbULbpPJKzy63RZAOydTI2VoVjBvhzBvp/W4traGmZkZjI+Pa6HLTbyRSAS9vb3IZrOIRCJtjQKrBy+rkmgXSZntyb/Nk4ArlQomJyextLSE5eVlRCIRbGxsIBKJoLu7G319fejt7d1CUm7vtX3XyDhrhdC81p6bhRsZ+Zmr9dqlmfdvNxp9XzvL11Ek1UoH+9WAdsKi2U0rqpF3bNfAbbc2KsOPmUVBHnEdi8WQyWSQy+X0OWI7SVKyrI1+18yz/Yyn9fV1LC8vo1qtolqt6ii+ZDKp16Pi8bhv8mjVLdROQmkntnOuNvqsnX7fTqGjSCpAABts+1ZCofNrjclkEv39/SgUClrw7lbuvr0CuXmWVk9XVxey2Sz6+/uRTqfbsk4WIEA9BCQVoKNhbm40N7aGw2ErSe1XcgK2urUDkgqwmwhIKkDHwlwnkBkyuICulEIikUB/fz+KxSLi8bi+d78SVSgU2mJJAdAkVSwW9XpUgADbjY5LixQggIS0pOTfFL7hcBg9PT2BJSVgBlfw/0gkssWS2smgngD7E4ElFaAjIQUtLQJJUpFIRP+k02kUCgVkMhlEo1F9/36GPJ2XIfkMmsjn8+jp6Wkp4jBAAL8ISCpAx0O6/XguUywWQyKRQCqVQqFQQDqdRiwW09ftd3DjbiQSQSKRQCwWQ7FYRC6XQyqV0hueg7YKsN1oSBW6//77cejQIaTTaaTTaYyOjuKRRx7R37/xjW90LLaGQiG8973vdTzj5MmTuOWWW/Ri9d133603CQYI0G7IIAmGnUciEcTjcWQyGZTLZZTLZb3Gwmv2OzY2NgBsWpw9PT3I5/Mol8vI5/NIJBL7PvoxwM6hIUtqaGgIn/nMZ3DFFVdAKYUvfelLuPXWW/HMM8/g1a9+NQDgjjvuwCc+8Ql9TzKZ1H9vbGzglltuQblcxg9/+EOMjY3h9ttvRzQaxac//ek2VSlAgK3rT0opbGxsaEuqu7sbmUwGAwMDKJfLSKVSwRrL/wfbCthKUnIvWYAAO4GGSOotb3mL4/9PfepTuP/++/HUU09pkkomkyiXy9b7v/3tb+PFF1/EY489hlKphNe+9rX45Cc/iXvuuQcf+9jHtLslQIB2QIZS09XHAABaUgMDAyiVSujt7XUcNrmfLQQvksrn80gmk0FkX4AdQ9Pq0MbGBh588EEsLS1hdHRUf/7lL38ZhUIBV111FY4ePYpKpaK/O3bsGK6++mqUSiX92Y033oj5+Xm88MILru+qVquYn593/AQIUA/mnihaUqa7r1QqOSypZs/86SRwTaqrqwvJZBK5XE5bUolEoq153QIE8ELDgRPPPfccRkdHsbKyglQqhYceeggHDx4EALzjHe/AgQMHMDg4iGeffRb33HMPTpw4ga997WsAgPHxcQdBAdD/j4+Pu77z3nvvxcc//vFGixoggAYtqJ6eHvT19SGbzSKbzeps3t3d3QiHw1o4m/fuN2HMVFE9PT3I5XLI5/M6aML0eOy3tgmws2iYpK688kocP34cc3Nz+OpXv4ojR47gySefxMGDB/Ge97xHX3f11VdjYGAA119/PV5++WVcdtllTRfy6NGj+MAHPqD/n5+fx/DwcNPPC7A/YCYC7u7uxtDQEOLxOMrlMorFIlKpFKLRqMN95Zbod78gHA4jm83iwIED2n2fy+XQ09Ojw9GDyL4AO4WGSSoWi+Hyyy8HAFxzzTX4yU9+gvvuuw//+I//uOXaa6+9FgDw0ksv4bLLLkO5XMaPf/xjxzUTExMA4LqOBQDxeFxnAggQwC9khglmlhgaGkIqlUI+n0ehUNCC14xKNQMv9hNIUpdeeim6u7tRKBS0my9Yiwqw02g5RKdWq6FarVq/O378OABgYGAAADA6OornnnsOk5OT+prvfOc7SKfT2mUYIEC7YBJOIpHA8PAwLr30UgwNDaFQKCCZTKKrq8sRUm1mT99vCIfD6Ovrw8UXX6zd9wyYCPZHBdhpNGRJHT16FDfffDNGRkawsLCABx54AE888QQeffRRvPzyy3jggQfw5je/Gfl8Hs8++yze//734w1veAMOHToEALjhhhtw8OBBvOtd78JnP/tZjI+P4yMf+QjuuuuuwFIK0FZIQcp9TySp1dVVxONxJBIJbUm5kdR+s6IA6PRHl1xyCaLRqG6nwJIKsBtoiKQmJydx++23Y2xsDJlMBocOHcKjjz6KN73pTfjFL36Bxx57DH/3d3+HpaUlDA8P47bbbsNHPvIRfX8kEsE3v/lN3HnnnRgdHUVPTw+OHDni2FcVIEA7YDueg2tSMsFsNBpFNBrdkq/OfMZ+QigUQjabRSKR0ATOdbuApALsNELqApyJ8/PzyGQymJubQzqd3u3iBNiDkHn76I4mGckMFAAcGdE3NjbQ1dUFpRTW19d1GPZ+sajkAZEAdFi+SeJmAtoAARqFXzkebBsP0LGwHXBofmf+3a5TgS902AJI9nMwSYDdQ0BSAToe4XBYkxSzTgBwWFSmQ2G/rkcB5+vudR6XeX2AANuFgKQCdCzMjBPyM9vnpsUVuLKcBGUm393vbRNgZxCQVICOh5slRdjcffvZreVmRe7XkPwAu4uApAJ0LChQJUnJRLNe7j5gfxIUsNV9V8/dFyDAdiIgqQD7Dm7WkhtR7VeyMt2hAQLsBoKTeQN0LEyC4ZpTPZLa70EUbhGONtLaT+0SYHcQWFIBOh7mmpNfS2q/pv9xIx65n2w/tkuA3UFAUgE6FjZh60VS/CzYD3Qesr3c8hru9zYKsL0ISCpAx8LmtpLuPlvGCRmevp8tKRsBmQEoAQLsBAKSCtDxcHP3mf/b1qQCYXyetPZzEEmA3UNAUgE6ErbTdW2fy8/c3FoB7METAQLsBAKSCtDx8Aotr5erb7+SlFdwRGBRBdhJBCQVoONhCly5yZcwT+Y11632G2zpo8zM5wFRBdgJBCQVoGPRyCZdM4qN2K8kBdTPDh+QVICdQLCZN0DHwwyXdjsLyUZU+9ndx99eLtGAqAJsNwJLKsC+RSOZFfYb3NakAlIKsNMILKkAHQkvVxU/s1kEpmA2D0vcL3Ajo2ADb4CdRkBSAToatmAIL5hCeD+TlFeEny2FVIAA24GApAJ0LNy0fi8rwbTA9iNJueU0lP8HpBRgp7D/ZmCAfQeZCqlR7FdhvF/rHWDvIbCkAnQsTI3fT1RasCZlD8FnW8q9U8H6VICdQEBSAToaXmmQmrl3P0MS036Negyw89h/amKAfYdmySawFAIE2H1ckJYUhcf8/PwulyTAXoVSCrVazXEMhwlbnr6NjQ39HV19+4mkZPAI2zASiUAphUgkglqtZnWj7qc2CtAeUH7Xs8ovSJJaWFgAAAwPD+9ySQIECBAgQCtYWFhAJpNx/T6kLkDncq1Ww4kTJ3Dw4EH84he/QDqd3u0iNYz5+XkMDw8H5d8lBOXfXQTl313shfIrpbCwsIDBwUHPAKUL0pIKh8O46KKLAADpdPqCHCREUP7dRVD+3UVQ/t3Fbpffy4IigsCJAAECBAiwZxGQVIAAAQIE2LO4YEkqHo/jox/9KOLx+G4XpSkE5d9dBOXfXQTl311cSOW/IAMnAgQIECDA/sAFa0kFCBAgQIDOR0BSAQIECBBgzyIgqQABAgQIsGcRkFSAAAECBNizuCBJ6nOf+xwuvvhidHd349prr8WPf/zj3S6SFR/72Me2nAz7qle9Sn+/srKCu+66C/l8HqlUCrfddhsmJiZ2rbz/8R//gbe85S0YHBxEKBTC17/+dcf3Sin81V/9FQYGBpBIJHD48GH87Gc/c1xz9uxZvPOd70Q6nUY2m8W73/1uLC4u7ony/8Ef/MGW/rjpppv2TPnvvfde/Nqv/Rp6e3vR39+P3/3d38WJEycc1/gZMydPnsQtt9yCZDKJ/v5+3H333VhfX98T5X/jG9+4pQ/e+9737ony33///Th06JDe4Do6OopHHnlEf7+X295P+fdy23tCXWB48MEHVSwWU//8z/+sXnjhBXXHHXeobDarJiYmdrtoW/DRj35UvfrVr1ZjY2P6Z2pqSn//3ve+Vw0PD6vHH39c/fSnP1XXXXed+vVf//VdK+/DDz+s/uIv/kJ97WtfUwDUQw895Pj+M5/5jMpkMurrX/+6+q//+i/1O7/zO+qSSy5Ry8vL+pqbbrpJveY1r1FPPfWU+s///E91+eWXq7e//e17ovxHjhxRN910k6M/zp4967hmN8t/4403qi984Qvq+eefV8ePH1dvfvOb1cjIiFpcXNTX1Bsz6+vr6qqrrlKHDx9WzzzzjHr44YdVoVBQR48e3RPl/63f+i11xx13OPpgbm5uT5T/3/7t39S3vvUt9b//+7/qxIkT6sMf/rCKRqPq+eefV0rt7bb3U/693PZeuOBI6vWvf72666679P8bGxtqcHBQ3XvvvbtYKjs++tGPqte85jXW72ZnZ1U0GlVf+cpX9Gf//d//rQCoY8eO7VAJ3WEK+Vqtpsrlsvrrv/5r/dns7KyKx+PqX/7lX5RSSr344osKgPrJT36ir3nkkUdUKBRSp0+f3rGyK7W1/EptktStt97qes9eKr9SSk1OTioA6sknn1RK+RszDz/8sAqHw2p8fFxfc//996t0Oq2q1equll+pTUH5p3/6p6737KXyK6VUX1+f+qd/+qcLru0Jll+pC6/tiQvK3be6uoqnn34ahw8f1p+Fw2EcPnwYx44d28WSueNnP/sZBgcHcemll+Kd73wnTp48CQB4+umnsba25qjLq171KoyMjOzJurzyyisYHx93lDeTyeDaa6/V5T127Biy2Sx+9Vd/VV9z+PBhhMNh/OhHP9rxMtvwxBNPoL+/H1deeSXuvPNOzMzM6O/2Wvnn5uYAALlcDoC/MXPs2DFcffXVKJVK+pobb7wR8/PzeOGFF3aw9FvLT3z5y19GoVDAVVddhaNHj6JSqejv9kr5NzY28OCDD2JpaQmjo6MXXNub5ScuhLY3cUElmJ2ensbGxoajEQGgVCrhf/7nf3apVO649tpr8cUvfhFXXnklxsbG8PGPfxy/+Zu/ieeffx7j4+OIxWLIZrOOe0qlEsbHx3enwB5gmWxtz+/Gx8fR39/v+L6rqwu5XG5P1Ommm27CW9/6VlxyySV4+eWX8eEPfxg333wzjh07hkgksqfKX6vV8Gd/9mf4jd/4DVx11VUA4GvMjI+PW/uI3+0UbOUHgHe84x04cOAABgcH8eyzz+Kee+7BiRMn8LWvfW1PlP+5557D6OgoVlZWkEql8NBDD+HgwYM4fvz4BdH2buUH9n7bu+GCIqkLDTfffLP++9ChQ7j22mtx4MAB/Ou//isSicQulmx/4vd///f131dffTUOHTqEyy67DE888QSuv/76XSzZVtx11114/vnn8f3vf3+3i9IU3Mr/nve8R/999dVXY2BgANdffz1efvllXHbZZTtdzC248sorcfz4cczNzeGrX/0qjhw5gieffHK3i+UbbuU/ePDgnm97N1xQ7r5CoYBIJLIlomZiYgLlcnmXSuUf2WwWv/RLv4SXXnoJ5XIZq6urmJ2ddVyzV+vCMnm1fblcxuTkpOP79fV1nD17dk/W6dJLL0WhUMBLL70EYO+U/33vex+++c1v4nvf+x6Ghob0537GTLlctvYRv9sJuJXfhmuvvRYAHH2wm+WPxWK4/PLLcc011+Dee+/Fa17zGtx3330XTNu7ld+Gvdb2brigSCoWi+Gaa67B448/rj+r1Wp4/PHHHX7XvYrFxUW8/PLLGBgYwDXXXINoNOqoy4kTJ3Dy5Mk9WZdLLrkE5XLZUd75+Xn86Ec/0uUdHR3F7Owsnn76aX3Nd7/7XdRqNT0h9hJOnTqFmZkZDAwMANj98iul8L73vQ8PPfQQvvvd7+KSSy5xfO9nzIyOjuK5555zkO13vvMdpNNp7fbZrfLbcPz4cQBw9MFuld+GWq2GarW659veDSy/DXu97TV2LWSjSTz44IMqHo+rL37xi+rFF19U73nPe1Q2m3VEpOwVfPCDH1RPPPGEeuWVV9QPfvADdfjwYVUoFNTk5KRSajOkdWRkRH33u99VP/3pT9Xo6KgaHR3dtfIuLCyoZ555Rj3zzDMKgPqbv/kb9cwzz6if//znSqnNEPRsNqu+8Y1vqGeffVbdeuut1hD0173udepHP/qR+v73v6+uuOKKHQvh9ir/wsKC+vM//3N17Ngx9corr6jHHntM/cqv/Iq64oor1MrKyp4o/5133qkymYx64oknHGHClUpFX1NvzDCM+IYbblDHjx9X//7v/66KxeKOhBHXK/9LL72kPvGJT6if/vSn6pVXXlHf+MY31KWXXqre8IY37Inyf+hDH1JPPvmkeuWVV9Szzz6rPvShD6lQKKS+/e1vK6X2dtvXK/9eb3svXHAkpZRSf//3f69GRkZULBZTr3/969VTTz2120Wy4m1ve5saGBhQsVhMXXTRReptb3ubeumll/T3y8vL6o//+I9VX1+fSiaT6vd+7/fU2NjYrpX3e9/7ngKw5efIkSNKqc0w9L/8y79UpVJJxeNxdf3116sTJ044njEzM6Pe/va3q1QqpdLptPrDP/xDtbCwsOvlr1Qq6oYbblDFYlFFo1F14MABdccdd2xRbnaz/LayA1Bf+MIX9DV+xsz//d//qZtvvlklEglVKBTUBz/4QbW2trbr5T958qR6wxveoHK5nIrH4+ryyy9Xd999t2Ovzm6W/4/+6I/UgQMHVCwWU8ViUV1//fWaoJTa221fr/x7ve29EBzVESBAgAAB9iwuqDWpAAECBAiwvxCQVIAAAQIE2LMISCpAgAABAuxZBCQVIECAAAH2LAKSChAgQIAAexYBSQUIECBAgD2LgKQCBAgQIMCeRUBSAQIECBBgzyIgqQABAgQIsGcRkFSAAAECBNizCEgqQIAAAQLsWQQkFSBAgAAB9iz+H/X3jCtjnweuAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGiCAYAAABd6zmYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9W6htW3YW/LU+5pzrstfa+1yqck6VqUoiKAmCCSRaFkTwUhAjhF/Ngwl5CBIMiBXQQsQCTUwQAiIYoqV5EYNg8PIS0IcCiWAQKlEjvohKIuGPSeVUzjn7tva6zjl6+x9a+1prfcy5T53yT1K1kz2q1tlrzTlGH7233i5fa7311kVVFS+vl9fL6+X18np5fQVe7cvdgZfXy+vl9fJ6eb28nne9NFIvr5fXy+vl9fL6ir1eGqmX18vr5fXyenl9xV4vjdTL6+X18np5vby+Yq+XRurl9fJ6eb28Xl5fsddLI/Xyenm9vF5eL6+v2OulkXp5vbxeXi+vl9dX7PXSSL28Xl4vr5fXy+sr9npppF5eL6+X18vr5fUVe700Ui+vl9fL6+X18vqKvb5sRuozn/kMvvZrvxbHx8f42Mc+hv/0n/7Tl6srL6+X18vr5fXy+gq9vixG6l/+y3+JT33qU/ihH/oh/Nf/+l/xjd/4jfi2b/s2/MZv/MaXozsvr5fXy+vl9fL6Cr3ky1Fg9mMf+xj+0B/6Q/iH//AfAgB67/jIRz6CH/iBH8Df+Bt/47e7Oy+vl9fL6+X18voKvVa/3S+8u7vDL/zCL+DTn/50fNZawyc+8Ql87nOfO/jM7e0tbm9v4+/eOx4+fIjXX38dIvJb3ueX18vr5fXyenn95l6qiouLC3z4wx9Ga88P6v22G6l33nkH8zzjjTfeGD5/44038D//5/88+MyP/uiP4od/+Id/O7r38np5vbxeXi+v38br//yf/4Ov/uqvfu73v+1G6v/m+vSnP41PfepT8feTJ0/w0Y9+FP/v//u/cX7/HNvdjLkrWmuYtGGCQEQgEPSu2O5mdACbzRoiDbvtDn23BVQhrWEHBSbB8dERpmaeWZ875l0H0Oz3uUNagzRAdUabmrcHKGaoAooOwKKnu90Ou90OgobVtMI0TZimFVQF2+0WfVYIGiAARCHrhp3OmHdbrFYrrKYJ8531cb1ao7UJgKL3jnmeoWrPN2kQETS18QLAvOvoqlhtVpAm2O46IIBMRpeuHR0dOs/AbP1dtQmrtoIC2PUZO+1AE8hqAlqDKiAdaN0WMpsAu92M7W5n/V1NRnMBIIaSdn3Gdt4CgL9XAQGOVit0NRpBmtFVxMYCwW432xghWK1XaCLo84zJnebtvIMIsF5bf7uaN97EKNC1QzEDAJoIGhr6PAMwHuHcTNPk77RpUAC9A61NZTxiY5l36DpjtWpAB+a5G79NKwA2tnk32/tkgqp6P/zSjt47+m4HiGB9tIFMDaoK7TOgHarAarWCiODq6gq9d2w2G8zzDvOsOD09xTStsJ13IQt3ux36bsbUGo42G4gI7nZb7Gb/bL1y3gHm3Ra9d48+NOM/ZCSiTQ2tCRSKvt3h7vYWTQTrzcaen2fjq9UKbZqw2+0w9xm9K+Y+Y7VeY7PZ4Ha3xTzP2Gw22G3vcHd7g6OjIxwfHUOhuL29xTzPONocYbVa4W57h96Nnhw/uhptFEBHzKV91zH3Du0mk5OPu3fB3BUKxeTMstvtsN3dAVCs12vjn93W22uACtTfJeLzoR1Ta6kLdIYInM/XAATSgd7nkHjx9ppMUFGgW8THX2R8BEChxmtd43vjowZFj7lVEfRJABHM84zriytMKrh3dgaomjxME6bVCgJgVsWsHSIK9A5VRZOG1TRBFNhtt9je3UEgaKuGtjLPpXdFV2CaJqzXa4gI5rnj9vYOIoLVajX08+7uDrvdDsfHx5icB1Yr64eqYu5GkWlqoatWk83pbr5Lmojg6cUFfv/v/X04Pz/He12/7UbqAx/4AKZpwhe+8IXh8y984Qt48803Dz5zdHSEo6Ojvc/Pz89x//59M0Jd0SYzUk0FTWyCe4d9rx2rlRmpPs/QeQfTvIJZAEyCzWaNVTNG7XNH35kR612x282mtBpCCGxSjak7jNHhrNh7NyWsgqlNg5Ha7XZupFxBNEDWE2bM2G23WK0aVm0yhabAalqFOxxGqptQ0UiJAqI0sCbc02YCmmDnRqqtWijxWbsp7t4hEDNS0wqqNFIKNGNobQ3aAXRFU9iPC8/OhWW1mgCYkZKmRrM+Y9Y55otGajOtXPHPZqSmKYRcVDD3GfPcoRBMqymMlFHABEEasFpNUCAAihkIN8KuWCYRiBspVVOE82xGsLWG1hpErV1VY4nWTOioFLt2zPMOvc82Tq1GagLQMPeOvpsh0jA1Gin7ARTiPNFn46PVZg1pZty0z65UgMkFerPZoPeO9XptxmDuODk5xbRaYVeM1Ha3M9pIw9F6DbSG7W6LuXe0JthMk/cRzjemJAQNqgYKCCpopACg79xItRbKvXcztNPSSGlH74rVeoX1ZoO77RY77/u8vcP27ghHmw02R0dQVRwfH4cRW01ppKgUW2tmOKjQusEIAyEmZ713ThYmV67VSDF6NM8z5r6DasdqtfLPSD/jN41nxHjADebUDKAouhupCa2tjGYKMxaqAUSaTCHT9px/U5YkVHDQSLUmIZcAoA3Q1tAFmHc7bKYNmgrunZ5C3BhME0GSydasJhdhpCCDkdpt3TivGtqURkpBYLZy+Xi+kdpuE4BQlqaV8VjMi+A5RmoL1RmAQMVoYeR57yWb3/bsvs1mg2/+5m/Gz/zMz8RnvXf8zM/8DD7+8Y9/aY1pTrShXlPY4I97VKFsXMggCPQORzZNJBiHKJheEb0yxCcATFxcsWn8DHdIYVjvayAJIBAcmVhgv6pSoTeItAp289kwivbK3hXdlR1Q5EIBoWcp5SVDG+xzvih+i4fyfo4ZAJqjxLFf1n9TvOP34LPlleL/Bg3VaNda0l0KHSGcbyqLcQ7GXKB94lnbLebV2s4xmf5xZRHt81VJL5vTVEZKK7eYKbYTpPd+UxGbwu1JZ9Whj4Vw0T75vPJxL2M3D9LRu38uSLoNtOQ95EfeTxqX+Rv+TibxvjbeZF8t+lrHRtofzNtS5Fh1EGcMd0c72ZXqySctDIwEHVyuXEMkr/l9AV5CLsXHJqNhWihX/mU6pMe406vWUS7LXMyzGXohn4D87XLk3hYfbz7Q8Dadzu0QTZBylKQlLZBgeW8q9mVnSZu8y2Wv/M4++UviXSF37zOf4MsS7vvUpz6F7/3e78W3fMu34A//4T+MH/uxH8Pl5SX+wl/4C19SOxRAAO5VGGquDKsQSBNghqM1YGoNMjXzfjqFprm7mu440Rvb6v7SUMyaStkEPhkGztiKHihR1RnL7+hURt4+PGSn3cJEzceEBRNVJU+hV0ezU3PlVd4TDELd4p4DBYBMtLzqx1SARXdARDBJc0G0Nk1dOgpWggHF3BGKOE0B9phVXSu1+MwDJCLeZoc0KcYxDRuNCIVl1KWjAQtF6RZSHZyIxXNjrCKaxpwKvKJl7YCm0tcYiiA6NVJ1ULiGNjumhuiPOQgt5jZoszDAAa6ozGjIyvhQnxFZUD9pREUqvQ0ASFpb3C8pX6EKNeYk6C1pgOgp1L631pwGaeCThk5zf3OTBqAl/d3g0kiHWi8GoPu9IdtAyOHUJgeh2degl73RARKVLCAFjGm38fI5Gnty2ux6ZuXyMysinNnQnMeTqNa3OehY+wLXL601TOFTyDBv5KcEogkqY5CUZbdSiY1lvL8+4m3Wi+CpzqXCQu69KwBbJujawxDHswtF9P5M1JfJSP35P//n8fbbb+MHf/AH8dZbb+Gbvumb8NnPfnYvmeL9XIZ4WyChxAx2kdAKc/1FzBVtzZje1ppMwLp7Uk2cEQszMBZemSGRNxWjeQ5U/Jygrh2YKcSVKTpEW8A/zh/DRFNhiH18XhA93AOcLXTX2hRM2cszsvglFa9/KMNdWLIRPSSBrwM5AmX/az+704NGrGN2y7aP1kOfEzlDPI4PN+zeRfdc2pRoLKjRYSESjks0x7Qg3qgE4uU255O30dXimihexyDcVOwWAg1jkPagvHdhOIqR6762osN3GuHdPSOFgnydP3pr6Dt60elJGd9rKOdE7smzqFTsZiCWSFhag+4sRCbVwygGq/naIvslnAf3suqYqye1nJugoea9lI3gr2p0pfBHjEYdZHpInGFVvrs1tFCqaYxoZFXcU9GM0tB7MG8zGCn6TV2hPcGwyMr5MYEqkCyZRq+nbmoMm1OmbHTTNIWRCmBFelX94TeoFNqSTs4PfFoxyhHpq9QHi4t04O9pnJOXow/D/FVyCZJ935+Z+rIlTnzyk5/EJz/5yf+frZjSEkehrRBchsmzT7vH6QEPk9DogMKb4cB6UZEq1L0QEzqbI01mgRpz1Oesm4OyaDKlsElFxs5M3d/l+j+xb0EgGv+xbx0Jt4IyrdMHtHRtQ0vL5bbQlyKQojRQDBGNuyFBDYFaKrmBnqUddkSciny8ejk1lNG9bSqV2iYR56DEOAQUpB7IPL83JFi9FA3jnkKrZR7qeNLgHg73lUeITB00WaiP8zal0lKGpHLs7EFVDJxn0rh3RWvpPZjStPXShlaMVI6TeiMAFwccAGJhBIY+Jgiongbnh31t7Ivu88WAyJegTx0otjrXNNTlnUtc1QGGa80LamhdYy4MkBrXWZcbWkPohlAdajpCaLSEfavSuK/Oe+8Gdmq3u0KbJsPFIGx9pqtCVDHpVDwjBD/Zmutk8+LzHmt2i7kSFQcKB3iRry9gK4ze4HUfGlkaqphHZNg2nlXZm2c2Sn0mUuHRe1+/Y2r37aG7ipQLgqQyFWcQfkeh4rpRRaW1uVRUroxBBDKybYZChDI/TmQ0jHJnNWxaPuVVFLvUe9NIKTzk9B7zvxSugR+H/i3YaOEZoPQh6DWSLTLugDQ+tamx/aLE4v7l6z1EGmt1ZWIO0Xd5FaMXPdDhq9IXDqn8XsZHT0rzg/d+t4OQJgIJw9YPPmdKM1FrNbT+YXzXgqbZFyLkXtZZC8TJsS/4JPrkdBaOq8zLwZEVz2hQmCCtR8VV98WM4V4ME1HnHNXAuiE2refvRQUkMUI0wWDouEZVvVqbmxb0bKVP5n3ZO8yT6nt8Rq81w5YF1ujIH6k5RvmpolPsEwCL/kwe/dnjlmpXFvOkA0FpUsrvAw2WQCLHNtDiABCnfst3l366bNb3QlHx+XteL7SRWsp2COmgCIk8qfAUQC82wBnwvZQ6J8sfHxixIgqpxik/q8kF+e/hwSxDQgf7U1gtxi0pEOHV8duFwY33DO8n/fItYYQRpCrGnbRALLhHmG1AaIt3xocpuHWti6+uKJIGmTHtWC9Q7I0h3hVKa08LL6g5KhAZBkr5qpYpkSCfkzJsU1RpFJazGAqPkLLwDwHN3iWCSFfzDuwBjQEsFEWh3TJVS+pvRdBanol+FEMuIhF+Tk9n6NwCRi2MWTVIzzHiQzhNRy6syk7Hh5INg/cqiDjQy/J59eTC64IZs5ifQUnbWlKvcl9pHYCmJkYdYjctrGSMI8O76m2c6/SMgXG+kkKJoIatD9CBPqhrXgdB+iIMn+QOWuxtvF3wXkie5swF6ctkflFA6dcLsU/qi13LmKrZJLG9FhVZStkbEMkJRXFKRX7AnpZxxakd6GIpq0uBtnUxsg2ztCaoh93q5NfFf46ikQl64uIMo5SxtERCNbShAguLqUJ8TcUMgSTzofS5Khka4KTiIFQMeVDg1QXC6JlhpvQCRqUWHgFsbwbnTLoWBk5kBhT0L/DQYq6JxMK8K9J8GtnPHJjRQWRAo5ynCM0sDNRzrEb8V+tHBVWKLPrjloWZZaC3ogLEeo4WEDQqySYZYobwOQRClUViAkMwjAyMioVhl9GEhrJy7ySMxsJAhSFsLY066QgdlNVgwDRlor6zvnvf6Ab1nIYV7O0hvfdUfvYo5849zcjitLXtcsticlNvQC1TeHaPuPJj98QeM+49toVEf0vX2M3WLJlD0UPelqHRxEQ6/FtGDmj1mvO+XmgSoDmAOQETDUkvspdrYFqSg6pRY99kMdcMNlbQxD7y898VRipUu2AgINoqUIW64mtNPHff0WWnl1Nj/8g49wH6hYLtfE/gsggTmNsviaZFbOE55SvFhOgRFo82G2oZc731mExpiDwAyql5E555xbZj86EJ3oQp/SGFKz5TJDTGwavhfY1uunYNPgYNo73E3uUbnW1DrUBkQmsWnsg0bjMQ3Ls2IOUOy+aiseervT+2JuFzODWfS2accRwNInN4XMrnILGelkwzCodw6K64a6jquVdaXfeg7P4MbZqRkfKewVCL2SiGO6bGRJ6qfDQEmjw06mTOqdNGGmaQZjnWCF8PIb/0DvjOBFnV05JB8aGCAf8uFLhq7M8p5EHYkthukYauetZLdJ6KkPfqMI+j8ePaUobc6j2hdEn7YlhCqQuN/GFDAsBo2M2YaVd0zLYPz4Gm7Xlz8NrE16AtJFk9RcJNdYMkrWFaTeCWQoaXKceR0BE6zYCy1JC3e7uz7x9r5GXA9w1WI9UM1PijMZUFPCZAL2nzeI5hEdMrVW6kED+aDKw4Ap8vdr3QRsokuCVqVEVj2AspDIBNjm1qnN1I2Qa2vTBJa0hfyF9DBSqAqCEkU8CTf5H7B/IhQyRNmH6733Uyn0MMEI+01mxHuyo6OiZMPsN2HxUzkTVDnE0awIoB2jE5eocLj/aqgNMTo+EJBeNonQnlgZSkhFgA6Nx98d8rbnhlA4HRoysFruxla7kwTYaF9ngLDa0a/LMqGYXGMF/KDS/HLeDW6Iy4L2wNGUIyYyq/SiXHfvL3qnSXVwBR/l14SSjgtQvK+xN1NjE+bOIbWL1NerTqPJ6spdlqGDX15ACi4FFp6sJ4xFwIlaX3q3rKPt/VyGGRelwjDgyb6fiSQVmRxwkeqxdVN6vHZyKYXZlxI3j0jw0rjbkk2FoYwDD2bMD5RpBGqob8EqRVhKOh7Juwn2Poi3PWpprynmtgNr5U+gSEzXVTNVyq3YyUSFSbQciTZ/9OGOZQVaOyivgG7upNA4zUTJDGDFzOFfVlkVVQTnPOfFoHHqK0DB4yJGjQHGSGcaKx65VZnn+90GtSwMiwzJbiVa02MO7XmGffle3egbqbPjnKCMqHQnM2r6iw9IGLrsOakqobnWnYJAjAvaEWkwzVCB3E5kNkxQLrBbkkhTiUoQAyiTMbhboYbCqsMNpE/t5GEYBBnfnrw8ssMW0yYSaakN4c3wgAmsgYXvVxR3y/6ISuDK0wlxLDXpxol33jXBQlVvyagWdC6cX0utKikh4UuBaUMjSTBl5ybKR/CDuAyk6IvlGwG6YAWuBEGDlquNrXSdjfUJ2FthyzsJmCWOs4EkEnuCMPl8ElDXourlS+z3U303BczwjkXP5Lb54yNUQ+SMsSxUiPtgCnSj9ZAKvoU2CR8Z7eg+4jLajESSfapn1wUuVH1Su/DO9ehPtKVQkZPKm8n6E50zstdIGBC8oqjQSz+YoxKQMfDNIgj4vQYaNnXkErm3aeS4Zd3HbYA6rGKvu80DuU724/BRe85/WCG6lUeKFgtRJx/LsmMMTnIh5u0mDs1HqJZql4EwWxCxTT8r96j2RYcS+jqKDXYFg1T8HqigGZSeRvpGJwZstuSKwR0EgFqF4ohko7GqqlEaNA17HGSAtCHgyFWEmju+3Owh6BnqiQcw2wpiwvFWqngCp8K0GhfXXl9rghp0TqZ/H+NFsV8sf4yj42kdGYcY73LRWiLYbAKmJc3D0+etBoL3+VkWeC5iNI4n8h5dk9eVh0XOr8Fa+nvq0wfyhQ7PPSofcMbYadXyjFQrvcGlDboaEiSCSYCAZETPDwbIbh0hiM76y3k097odmw8L8Eb+NAHUCQV5N/gg8WxiDJkiCEQCPkwY1UQ34mNPZKDDryzjgHRdch6Rz8FLqz3Iv9/lJ29oc98u7eupvzThj2+vBzSHnoesGNVF5LRJE/48TtERYoDDAqzhBQrXFZ4f/j+aqwGXOuCm2PQeufFaFE7D+NgSG9OdBRMhtCOKj0q8ILRHSwf0VpV2MUQsUbFl3kfUUQgyTu5cy7HW5ub7zQpH9dDSvYz0z3lTCi3UOpSfc6F1HvbIDWh7md76pEHwR0MeZ4Df9LJVO3LDznCpTIv4lkXYHKeLN/7mNvua6YfR3bXvaPwGnRi72/D9qmxbsI7rj+03sfyv5I4bEl8q5eeai6wk81ooDy2RIoJk9K6Lgl7wZdCt9jwc/DbfGOpUFlv/eJo4XHCGDp2S3nuL6rjq2Oq66p8fkEgfnOyJx0uTqIbArfPO+WoV+cB8HA8/ydIhRSJNn/eJ5/h+yM4xzotuCFMbKSIGEJUt7P9TvCSEmBkOZF9IE4qqk4avybfGcx93FhlR5M3QdDbyHXcWSczNRLFag40NufnOrhQfdr+xGZW2JCYfQ69vjXPamWL9baj4LsuNgf46ARKIYhRzgKxFLgBQIWWm1Tw27e4fr6Zgi7QkodujBUrfzYe3qhQaJWMju88Oy8SLHNiXQ5H3RZRd9E6xlvT6USTYUHt28gloYvBJ1ApiJXzX5XW9uR6yvSbPxG/lExkibkweALLS9GZlwuNSj/Etmvr1gaKSjbkMJyn2CAixIJYEs0ZoeUW3o8fJ0O9M+pq0rM6asYvfrh2gdVg2dVxj0ajT7wN38Vtun3LsPXGfbt45ioR6oB8PqFXJur2cSDJ1aMEYFZrsUh2kswXACPzyer96P0Uxwsjhury76vRKsJiIvcV73GDdgE6NQEzSvBVHJr5U/vUqXjaMQkwMj7vV7oxIliD/Izn4CAZH5nLwqsteZErda+O/Jg4oEpc2a38U0imghYkjmiHbBDhfF9okcF7wLmyRs0lhBJgwlWZZ4hUMjUXBmWcUsKUo3vV7QoTSCz/x0psd6LokTK1yHkXXMsqbgkPpNm1RK52XC32+H6+hrn5+c4cvYK4x4z1dCkQ32/U+8KyGyJGM7APG4lQh/woyJ6t4XmggBSWWXvOA2prIuh6oKe6inupVFwDbOP8mNu8z4FnLfUk1a8vzKuPwz8iR6gosGOAVEgwrU1LEmBN6rRPrkhDUucYCpkIQCKAEiAQNBWaUciqVq2pmqP0NsyVM2KKpE8xPU00lAod25wO4vwYsg4Cxr6vwKx0wBEwHqXByMgFVAM35W/W31P7v8JetV5baydmbJqVeUnT9V2OgWITWU9RUFr55BmR+YYyHLQqJ7pW8GnddrlW60if4A1o6YEz6UMxGdF54Td820fkyYY47ukebYwi8ojt+BUT7oC7ti8vDCsh0J81QAlX6XhDfnkerYmwH8/1+8AT4rGI41VxJXLLbXieK3iqwNiTsZhy/uurEQCxmig/LwgHUN2xmD7iALAuDBKdOMp8gArHcPP7OlDX5chCyq2FKx9BT1+amNZUjKtrESbVN7hWdLboKL14yBEgO12i8vLS9zd3Q3vqQjaGLRUnC6Id9bZUZ7dGX1SprvPpkiBQbEs1wuk/HegUWGUIbQLV9KqIbjpvdaQ3YKOOvIIyvxwvmrXqDBDaFvuZ0qjUow62+rpPVK5oMzrwFf8Hgg6Zxg4v1ekofVJzky+MISlsnbxhkkvf0lQhsAFzju6uO9QuDUQdyFUKvWFIhveXz0pfw/7ivqeOidJAfNMKn0ogxlZafzcB8EtK01sS8SosFsc7aPqyRAOToeyW+yaZDh/nmendyY0cM05gEWdj7INI3VgJl3VaAE9vAqmAwRo8s7gBRewF7pgaaCKAa2eYPB4cQLCU5P09H7XGKmipgeBHUM1qXiAki4u476Kg+0XhQOMk56TR0bsaQwpPIv+pDJjpWbrexqgMVFCXHCWIcylgYq+7THTYvd4kZN8ZqQm9UAgYxmFpXqMlj7bYnPx7d0tnj67wM3NTbTI/kSauRvwRob19Df1jRR5BlOZAzAUNSPThUdvR4vA5XhGlFdDGntzHUpKEzQM7e0/Rf6pAjl4J+NM5fciDn8ljOPwljJn2Wb9KW362Bd2OsbbWin+ymf9obAf4H6aRbq683tb8lYxzlLvXfJfGOqkeZ3XQ+G1oJuOWwPG3yo48D7UNgYAmffnPCzoc1BWq3dQQY4M4c8wKuTzMPAM/xW+ih64Ee88psP4ula/iXsGLqIxcmqG8YKvC5cz5vxnAILFaEYZtQNGap/a9fsyBxhDfaT3Hjjz5g7rqPe+XngjBVQk0EIQEknuM1r9twp7FbbxBXBhM7ZJT2rsA8+R4Sa8AcwtrwMTREWTZwyNszx4M1WRsDnBIDB1eAlgR6ObY3eREHo6VVgOkKPup5C88fb2Fo8ePcKTp0+xmy3JYaIwK8eYiLo8OiixqgyXNFoAeNSbBhN1CHxojk+qB170QCDBmnJcqUXFGWh4MVUasAj7T5e/BYC08Giezyw5+OWYKhcE3cpw2gHUKkhe4t/1HRWUACNQYfv1+/0rW9RhrId4Xg/0pYSvF0qxtj4auVTmpbuFEgu6BWCtBrX2e28oxcsYDRa/W05f1REJZJIe6b1pHA00jJMyq+NnI1Si0qjzvz/fAQaBgTOzlQXI2rsWbUoCNHuuEmtsIyMyozF/fybqBV+TApL9RJNRSDCRjJUH09tXRZgpHGNcXZodE46qFB2y0HWOKY/NvQzNaHgWg6Yv6K2C4npRgfQ+A2LrPUuU10Blr4snBzsV6JLhx/jSgO1olBuAvng2GtxXn71bP9qi7uH19TUePnyI1199DTc3H8LJybElB2gytQLh8tsQTLFMIl7VIt9dMd0YhijKr1yqmusmnetUqZR4VhHYBg0TMqRi93JOEd4CMXuYgSiBlWJ/WAGMxoSGrf5dxxLC7zzdyC9lHGkcHfEXg++dBiG2OM+mQk3y7dGQskGP4JDBKmNaRgeCsSoILPqXx4Gw/T2aVaMkKUPkE8o1b+naMfe5rAEmOA1q7uncqmyzn+yXKfP0EnPMLkdLWuervA+UWQ1ZWsKV0WYXAvncVOgh9Z2VjfL28ZNl3+hRcVsLb3sP0NC1W+r7YKT5fR/uB3IvYN5ripg6eIEcssH3cb3wRioYoyCbGvuld9CWRqwgEts42wvBzUgpYEUiO9FCutrV/tCo9N7duCkAD4EF78lwXDIZL0Nodk/z7KA+K5ofuxwbjJ1B+mDxUH5niaUyViRT1Ti2atkH4rRoLRkY4xARgkdlzzOQFuVsrq+u8e477+C1V17Fzc0Nzu6dkkiL4zA4psLokwA6BY1S4HyeIt6+L4fW2VRIptR7KJlEfPuoIL/n2JRowRtbGBn2TxjC7IvK8zQQw1/+HP9TQYqUuYHNFz+HzX9HH0KCvHi4X+NGUGCR/ZgecvwtWVEllLD3P0JDpEmh28gPiytQTyrcalTFmNE2uwqNqnCi0tg5fZYbv2mkpfK6e7zY2ZHko9JLQ5N/Y/G9KVdWtWCUhLPV1fb6SRNIl1gXHNZ3CgymXDVuOtdC37ijKG1kBKOG0dLjSg/E+mDzUc+hS0qXIcZRGaknwviGDqonKfd4Lz3TPncvalx5py41WH/nbrWcajhZgKwCE8a6VOYoP+/neqGNlJZfVPKE2zxCSYI4IsWqaxLZvrMznuwrXzCdJnSxmsY6LDJiESR1w6FMm/ZySFUZL4+AD0UlfqIla3SZgtj1GbP2iHm3ycqijOGnpdoELZ21VZBS7z0EkIonDBUAeP9sI3EKxwKmBa0YcrR7JNsBcHN7iyePn+Dxo0e4vroCXn8t56jXGmKING++avLxs+2F/fXspSmUbupdE/RhhUUs0cKem2y8zynD4mYmDEbQqFg8OglaBK565lTI6bGVaakoml4Kch0yFNYCqYqn6KvzJg825EGTGnNbDjnszFtcrCsVZQgYC8+9R3YmUb/xoD1mBzqaPBCAZXWmpCUVl6qAibUBkOoEwk6g5dpJBVPscfSxVjYhSFDOVl7MUgMAmaZ4puCp4fdh3gBT3D09INO1LP/UofBDCFuD9p3J9lCiqtgGRjqisgy3vMgiDb3IQOAD+2+NOHC0nF8CJ6tEwqLBNPRKBvXn98Oyof/Yrk80ixXTg+qzeafpVVZ6+rl4bYq+GKBAkS/nMS+HRCOr0R98SdcLbaTCaPgfIlMoW3PNMw5LNojFXhZj7d2OXG88qdNOxxTXkBErVt1jdIaIBhfYtBVUyymaNEqFWVLBI97BBW6dLS11miZMq5UXa1Xs+hwMVxGNte840w1VDYt17WgyuZfHBdyss0ahbt5kMBMUeR6GRLv2fjtKj+iKJ+ju7ra4urrCkyePcXl1mVOlij4reggoi4Y67cSMlIoAXb169GCJYn+bAULCVCzuy2novq1A4OHGSA0OrZiKkpmWKDXkdEx+sb66p9e4/plGJvuT3crx8/NF+BZUmlltgR7n5IicGWbAHCgpPtEeRU5p/ApcLki+dEYkJpmbqWlA2+Se1MLz7b17mFnHZnhPUXThEWSIIN4+946JXrTfKMiEEkYqemSoOfjwTdXaCoFd6eo8AwKsJtIwxzoo6PAu0ijHG+gB+Hvn3S5OXea61XINjyaHCwWR1efGksDWgMY86o94P2LuotUig4jvrXJ+n1kouHhSPTRB8tVyHgYawCzIALI0gFzvlkXbWsMKDpBD7s17XbUEZgYoSjRK9k+XCBnRUJG/yzwpuCyE1T98KJnd2AOxkVnhexRm7OJeopcuqdBHFs1eZMVzY3o7KqOcDCrLZ/i5KfnuipJ7JaybrGYsgEyeolrQ6/AbDWgfmNXo4kokCuC58QnGdiVFRdfLycSpY9JAiQBe66w1egjGuNNEYzTj6uoSzy4usNvtsFqtoh+BrN04iRM2FISHXlG6wT4ypFWPwRiMAZt2SagGnQbBTsHNGo4+4SAQYUp49Q6jDSQPBC3ieeT3Un5q18gLksIKV5xCpcu+aodqCwXVyrHuVGxUEp1umyPdLEZcxoYy3/ydRkIkQFabfN+Tp2J3MHRTMhCDD6vhI6A3g8WxBZ/SA5/7Yl5lXz4KiANyOFHAVtug8K0Ce/E+4jS97Gd9hRlXcdEf303ANtfx8LQBnzSGsHjCTBcrNV09KRGJsUphlTQHpXu6xy57VyZpaNCV8xhD1fg6HCtx3RA0dkCcG3412qV8JvBAAAE43w1rkD4ncHni1tM9w+v6pQ75S7le6Oy+vawlZzAZuaJ8PwpmoFbgMIdEM1UJwBVMckV6NbpoZ4BOB/se/QmEnW46GUMGZXBobL4pcC+Vd2Qob3Is+Ohtxt4WKR6n/6+XdgpGLePLRfDVeo2joyPstjs8efwYT58+BQBElirfqxpZWVTebfGTc2nvGE9ULfRdkKN6toH2sLynjL20VdHo8He0qzEHYajeg9/U1/kIYPb6wZ9q0JRoWqMdrunU92ev3ShHRqI91BY8VhVZGIri1REILD2HQ32GZJZrRQrkg7ivNGHKs/Jo9mFpqOhF+V8ZGmZ7HSPdB8VZ4ERMj8Tfxq+DCQPK3Oz3J+W8hm5rGS9Pmxqel2wwZCuMdWf6d/aZ/2N/2YY8h3OCzj7eKpG0Umloqyzt1xIcWpTaH5bK2q8GW9cRxecIOtJgWaWkEHmg+XtdL7QnVWPWh0x0RX91V3ksIBJxdIUWc21hImYUjfFtEJm4cg2hdMhkgp4TEMCZuhnZVh6ayFh8jKzsdfC3FqRY93hFgkT3o0paPldDKNbXjq6s2tDGxX6xsEegKkL93tFFUPEM6V3HAgB9Bk5PTvDaa6+izzs8vXiKR48e4vTkFK2tQvGoZKg01lKUMExSmMreGoSn6gcGEkrG17mnRl0BDKG6Mv85jrLBkLMQkzUKG8+jY/WEXN8s7bqxl5JiX42XGTXOI70FVw7KNdPCMJwJzXuC1YCSoelHNKgnTSyBWlEIY7jO+jkcjMiGyyWs0B2AikaknsXG9tk/fuE0gs95V6hk2ashJLS4MuJBOhSU7/Ro4lUwitEuLB3vCDnYe1E1IPlcyEz1LIbO+flNqgBKFugAPJHr42F4AK79xHh4wKnmmlwcASJUVIs+o8wl5Tz+TmBkPJslnTLEDND7jTlykKJtlAvW4WyrpF1GKUr3gjFH2eHG3qSr670DhvLQ9UIbKaK5cUG8EJIZaAC0tVBCLBgSDNI8tOLP2tqUzXRNAQd80tHRutjRGPYpBFk4tYWyrxctYlFSTVwRK8JXhsb5MnEQnmRIsRWFEQIpEvXd6qJxPXiR4+oz0U/R8od4pZuA8uhw463mCicFnsZAYZk+Z/fu4cMf+hDeeedtPHv2DG+//Q7Ozx7glVdejWeYHKF9BlY8woCynO0VvZE2aQAMBIYeOnTDzvWkifNTDEmsk3Ayl3xDy+F0qWgWLuAELyGMtUgshTuakwQw5LlqjDXXznhPhhJ5f49314s8B1VLw56t7aiEUN6bMDtBVaXJzHUdrAawFKHvkj3IucnF/PS+Q5sKcl0xMb/zpMSEPs9I6YG5qUrdyMUz4srzA50OeWi1nxJGtZ6yHd69/xGVZFzOCRwYCZil57CdJqLxMgAadIzN23OeY8UwpnaGchta2Q+ihR5ST0B1wGRbXpIMMf4CYjJcnXIfXlbQ2o3jlAYGyMSuqksI2GKuqicbRMw5garFRIWguRYwe+/rhTZSRByWBpmCwLEzPTeQlS9ES3GD6XpLRyjHPIK5HmSYhke7ehw6EVMgj2YIk/1LASvvUz/sLoQcgZhU1U7qFPi+BgrmokDugNAR45imFrLBhdzmC7lRTR0pyNFM1Qk6IkgLY9uaE+hJFlTIRvo84/z+OX7PV381bm6ucXl5iXfeeQcf+MAH8eDBK2jThNZNqfd5jkKrTayWXq4FpfIz4mqQX0SIWwuTO32k5ZpS71iv1gD8jB8HEDUbjLQLwxLzqAFgQ1hp79TC+hPfXMaPihYhxYGh6WnoXvZJpuIlB7rlc+J9ckXQFmg++mNraH2n2PVuCQQA0ASTg4pUWkV5O7/VclS9d7Q+1tOqnkg1UjGi8DbIgxguWXg5bLp6+DUMV0OMdazRtssQQ09LIzWYw9L+GF4sfQndKiH76eUWkODGJAeKNF4QSO+Fd5A3FfqKWXWjl6/pwg1u92y9yZGarZeOVoeekjjw4LpfLbmWQCRniXogk5RGWkWRYH9imiYYzKZhlawIslovaFoMU7hkrsdKL1Kuc5chRCpbvOf1Qq9JAZUxCmk4GSBD8HTRcdGZ2Uv8DqCwWRZNPSUURSV2FoxUTpOA+w4EEqnUyzkYwxWWYMPsLYaZVBVNGlZtcpSMcVGY9e6G/Uklzk2YjHo0dh64lntwsGASDia0QUGutZ6bhrHke6lo5t5x//59/J7f82GcnZ/h5uYG7777Lp4+ferjqqGMTJdmsd5KGxoqYZcqCCl9FehwRHyTpIUI952V1OblfAQPjT9YfkalFZyWawD1e0gNjRUvYfCcNBWecERa+Ij9Tl6rIct0krIadp9nzLu5VJBfHt0S0zooedJhCD+hdjvnrO6JC0BWDXyOOBhs+VmESYs3uQ8E0lClMsyQWKXH5HUjx7XK8X3lr+JJ+Txq9gPu6YEKWsjuPSvXY/RsDASVyvbCfVbGQ3U5wKI4zgM9TzZQcEwMU7eMmKQvlAY0wK2GseOPFpCeV6HdwrCEcfPPp7agpySIWYZo6769wXGKvuZ7hrJfBC7v00q90J5UEoLcVMFEcXGHarwwpBya2pAxFRkJbFlgDGehoGIS3RWLllTWKnDIfTv0okrHQUZmu3UZQAah8fBGt3c0YQZcaQrJcPmTCI77o2qYg2iGguQkix/ShPyfqL8gw+X7e8fZvXtYrSacn53j7m6Lhw/dSDnqtwMdMb7Pe1TfFeQoSHIpfQswF7Rj4yLJF8PcaFaQKA8OSrn+mMD20heOOz2CbHBpDGlsxQ+pM0XRkd6YtZP3M924muU6thKALIqkB8+K1rW+qsQK3QY6aqExAqBUJULjXx9NA8hJWzRcTZQAXATltDSnexl5ykwFnIMnNu7Rk9YwwZU+6hirUmQH6r9J2xaAq3gd0Z96bMnC8By4JPggoQeBYshhnQjK/0JHNGnohEIjpokrij1jBHjj6PblpEZJUPojsOxOFdc34UlpJOQMp20vGTQUZCV3URyLrr1PR+rFN1I1HjogMCC9k3Jv3oNEuKPmyfaRn0VMOQQhkQ0Fb1BOLpRUZuMX4xho5Hp+GPcN3gUrnBfF3QNU1fH58wuUuBxfhtVc2davg3mTmwR5L4oSTIOpZqDWZzg9vYfeO54+vcDl5TOoqlW0UMl290SdYYFKprwvxrY0TMsf9bFRBwzgoTzHcXEsBWfW8B/CSx4VAsEMg3kqagaYZ/0M1nZ/xEWNBsLnOxUC28ZQlPjg4S0VlwztR59CIdY+jIh6uA4o4DBYQtka1xMMoBHkjW3Vywz+/jzU8e91x/lWC9/xc5sahlEVYDULQSSCGI9miv3eu52IIoh12HgNxcapFqfnRq8PkI99Rq4/1kSW8TRd6g7uNyw8sEehpEcYy56luwTuIX9Rb3LZ1/IfykNUyyhvHfRjQrz0jBE6UOsHGOWlAqdD833oeqGN1LKCMhkqN2LC4sC+o1y779NojosEtpHXLFrYBtsfFSYJACJFuwL6DME0SMnaMianV1b3u/jkSqI27kHJdMEePKPIUE8caEiPAznJo3udnhRQQ1W8FuEV9WoLXX1jaxU0Vyx1/I4sI5xJQ1W8KwA42hxBpOH6+hq3t3clWykFsTUpfU/EFQooFG9sJXRF5bdyK5p4ejrSi1AClIVxCgTuymsQspDS8oxIHiTHNQUaKA/Z1I3/4VVTkVD5VEMfs2YXEbbtPcuwYL2IxCEoc5oL7XnYXQteSWyirsyy/4PtYptOC2aS1nAgeNZZfW7wIgW2GJ4qbInuzUiVlVx/xua8GF7/JXnjACqpv9BoR66BgMkIrU14r8voN85INcIJmjirbZCNBEKI+ysQXkZQjLeTv1jmS73OZO/dKswEny84xmnOdG8bryWFoauvdTp3lHnk3NZwJfu9BPD7dPa3q8Y7K/geAHoxUAns/X5NQ3zY8zt8vdBGavad0egoRUyTMZpnwqjQmHXMHjpjMoEdTKYRzjDl2dAMmOVnLghA7uTmlRNkyqBLIi6LNHZkNQyG+FzRIePUiL57OLHsKalrAqrjgWVLeK6FgblmEZt1qUTDUEms21HBh5ZxLmYtwyaCuTBZKDFfs6rrZKv1Guv1Brvd7NUzIqcykjdCOReEFUppidwlaRNDJUhAOW5B1bMiqfSBWjfMJ2wUXAcprhnjHmciv99CfuxBnCKsHZxF9tvxMavULAxtsEqWf/JKILHRWAQ7FKNX5oDeQ0ETENjaTCikul5ZUOthRF2ScVAUCGpWaE9eCeW54DsUORDEO+u4W2Oig0b3ya9SaMe2ItQ1KDSawcUolGPxihGz1fNjXkUCSrsn2iMptTSk1ZuUBCpuWKvib7YTP0Ab+dl9o+hx9LMnvRm9UJ283IvE2u9waCYNb5Rv0qCPgokW7gEO4IIFAfK8LP7bk7kCcFQvmd52K4DLp2uYBSnzW4HvGAIvc6QMHY5Hl7zX9UIbqd47drsdGhralOVswtV3xiITElko4If1eRiHcV1PWTcjpcNaFVE/kBNgHk4yZzA6y++IQHV2ZdNCcZGJ5lkxNfgerWTo3lMBQtNAtTaho2wedCWXAkjGUGeU5aFsB4yUP08jJWbZoj9NBGh5zPtcvbbwSOzvyVGrZRmucHx04m/WiGUbIrMsNNY3s31bViPNirsyREJP1OicyHBULA0N0nINin22cSFOPKXWr+E/GpH8PTP06GUAGI46oKAR+KhqVFdPgU3AlIAi56F6vwwp9tivJ4M2oOGpnhT7wfHKahVbBeoBk4HmCTo4CzrOI+tGMoRpIKeuZTq4aknLzncvEioABH/SiNp3LYwpx1hB5RBCFLEsXChyj6DE3JM2IG1B5V29g/1q3arwsLOzw34lpTTorsfJM41zxDqG0iAovNzzUNAu6S1EQZACFto05TlMPg30zFnGLME2Q7eI6uRCORfbctDnbicKTy2Eg94Z+UbhcuQAmDJHoJAhVQwX9/6NH/IfgrjF11Xv+H/MI0+ZrvPzXtcLnd3HGlMhhAvUVXfPEymYAZgDKbZW6pUBoEI1wwB4vYXBGIUgUMok0V1neilb83cCxUj4q4ZD5ggrXVHMPTMMlWhoKmjX/9eLIESYpDA3xyXx/vGH7+OJrNRbDNxEKI0pyEHjHA9pTjR+d7vDerXG6ekpVqu1eQ09GZL7glpr6B2RGYWC4FgzMJAj3Evt+4on5tqV5ySWYckKDNUYx0zFRFSNV4wWQ3shhO5NxRjKibKaSD7QapXaglLrOyvdRDLVtz4qYBhvcaBdAaH8zrKy/NhzSCLXAbCO2kTL81ISbFylm2LsPJQvPZsYP0ddDLBPXHxXr2mavDZmekq86WD4R0cDH/NWiFQVHt/P/UdL5VlpMDQVfdjvi2CsdlJp1oRHySdwJQBZnhjNcFnjs/4zTQTMGOif85DdVkW0qb5EMJxugJzhQU455uxM0GCkow5jAEY9QtBuNKltVkIPq1mgh6x0FHh+1vtzpF5sI8UwVbiNhchAKuYCufJ7TcRcXXUSjgeWpXvNVxTrT8EMr6kgEv+Gf+8ZB38+qiMT6fFnj0HJFCVjq9y79I4w/J1GMjzMIujR7zooh8CG4veR0gD1AxSYkZx3O2w2G5ydneP4+ASqitvbW3/GQxCNWVUa2ZexFuMdiv8FCt5HX9QlrcxxQ8O08AJGUlY6eRuuZA59by+QDLPF/GgoWn2OxMV87pWsyj0qBFOH+jsoGKZ8l7ESJDVGBoZD/HTgFZ+twWhD6xyPxlNJHP8Zj1rJ+xaYuWhJ/lnH42FrRhbIdWGs9ulYZXBPhmIu8jrEq0sDWOm4IFHeu3ifeQ05VCZSLFP9tdBqeOtQXzANlbQxhZ58vpy77J+/SVFoMpJu1HMjb8eYq/EPOi4MKxAVR+rn1KqHQUDt7KLjh4DIF7leaCOVSBvhDodgLNFsPgIi5vG+yrQJ70YDUpFGXvZ1CR/FlxWpF4ZHTrChi/HI7kEIF8aEXsDwfqHHw9EtjWFRRryvCnmlTTHqVaGlFtlXeDmmxgoxONoc4+zsHPfu3cPcO55ePMVut90z1qosLSNDW+xYFZw4sZhvVwAFkYk/U9veU06kXzF8pFmLbfvFy6xPVroVRBnt7r0II3BSvmc0CCCdB/JKfl6NJ+vqoYybjC+jAVoey74nE972MHZ+jqR9Xsu/94ebd5bPF1/WOZZS+ioNVjmSnHQpY1iGqg8pcym0WL57HGau5+yPSZL+I9bNO5aAZqkrBpqUJ4exFDBTxt8XeiFfwQ3Ng2lOcFv47dC11HNS+GsPhEDDi6Q8UhRwgI9jpEXn8K2DLjzctYPXC22k9phwgVQPkUIYAsQ+YSk8Y9hFYzKhuQbBd/XhnRVJynvORHg1YGHYsbRKbNotCrdTmVN4qjFpEpv/KuIEkhmzIGiiPnuf/wSyWyisPRQ9DmwwLm5Ij442ODs7w9nZOfrc8ejRI9zc3oBZagxbRbvUBYNRTgU0hJgqcFA/xbgqKnZvcQR8NbqpCPeV+Kh4FigdEv9l2Cbvr4JYQEBVHD5Xud+EtmIh7D4f6aEvjJn3jQC6h6JlO2WD+kIhjsBiYQTL2MPICUNKMvRjHDeCluQBArHg3xKqTRBWeTXndJ5n33w/grxaFsymeJHh6883906S/vsGavAqIlxY5rqCKYxziNp/HLh05JxqNAbwBxo0r4+3oH0sB8ST9kTOTekv37sw2hUg1WZY7SLo6gZZfQI5ZgLbGtUIA80RqFfO8K8HT3LgNRnA7fu5Xmgj1RZZW8k/VHSMi5NYHlrxlJ8I1QxMLAPTD3Fad8N7T4OCYFwZfuJ/z0EbZAzAqgWwCCNgCqHu/IZ4EVAve9NionPTZg07iOyjdVUiw3IOEtQrD5Vw0TRlWItGW23trw+CLBjDDfVkTsF6vca9e/dw/8EDdO14+PBdXF9fA7AYPJMQip+UCgslfZ/faQmBwN+PkmVXyx25UEYbFNpKk1A6OR9Jtxgk1WYqmVDw5n1MbnBBcMCH2LAmD8W8x76rgWlTeSw8rlBWzlnhRTnfKTTCxuyrFRxmeS+JOUrvQOKdS6W5NFLVg6v3HFIyuhhPNTK9j2uK0a8AjdnGbt7FKb5sIg4BrfMYCSxpDBOQ5Xlnyz6LCU+8r64jx72NfE1vq+iFHETwSCgZH3+yqiyMVjVQxsNz56m/adC5lBFhOyDWDfvssqjje8KDJlLgnOjo+du9tg5djVR8T1zO+efR8xXUlXGSPnyQa9xlsk1fFd04LbNun3O92EZqQLEHCAhnfE1BnFrDarJ08Fp9mJ4UpJQsSUuURmqBzpcKKL0BINCGjG603ZtZN50THEpwigXm5kajl6QBZu3FD9GlG7TYK0NDXcZH5OxkyX579mC0gYLbmGxCT07SzPHvWF+CLQyv12uc3jvFgwcPoAAePnqMy6vrmDemiVc3JRV4nc99Og+0VMSOeBQFkoYNgejS+OQcDsCBY0Gul/BZ/ki9z1OqmX2VXs441+xH5cMsm0WA5AqdSHjhYcy1LBXIu9m+zU8a5HqatNS2pBhTJLod54BGyvoWayfVe5A8qqMakqRlMUJLxavjOkmLk6tzvpgQJYW21cAs2wz5xdhnJ8/wHDvIsmN9oNX+e6grQicUPZ5TYN+Rx6jAA+yEN5P3sxUNAMrU8uyT1rkEjVhWJoekIanJDUqjJhLH3vvbQrYJbJYeNMq9wYttMegK5HTcsxp/s88YQdcSaHyx64U3UplxQ06sTJzCHMSpzwweEoKDuibT2lXuK4pLkIIyhj5SakN5ZVOhx+Lz6hrDGCJqkk0ZFuMx8CG4xUC0sqg+MmzWagMGfTSg+AijlHBg3qZpCKQoGFcsWXswx7VarXB6eopXX30Vq9UKFxdPcXl1CcXsQrzPeoOBT31s9AF1tA4PcD6istge3ycC5hwn8qsAoxgKH5uUjiQ/SCh9puXLoPhruzWpIGmd4yxGTfNejfcUpVPWJ9g2raYCuV5HwwwURL1ImMH+HIN9KnPAU5LaAjzwnmwr+53KOuk0evSHgYHJEuK+PjNcObYz9BEYFGPtQ9UBQCZdsH3J2fX9R3vkGOYg+Sj+QvVodXgq/3voSmBM+UxPKvb4Dbpp1A/xbn/PYMCgGfotOi74q/JWGLNDlUASMJHXSbv9ce7PK/Vi3JLYYIj+vJ/rhTZSUgxO+k4lnMFJ0IJemV5e1YfWSY9PB29igEHFIMbzmp9JvaUIV7wn9dXQj+x/A9oEmVqE+/geoIyVqM2V/qg4ikfSa/+q55l9pBLT8p54J9E5TXO80xuJ310Y3Ejdu3cPr7zyCo6OjnB7e4dnF89wfX2DPnv7MioBanqiySp8dXoGz3cxZwMlnQfoqY7AowicIhfwhRTO/wUNhjlaKE2UuXRwVNlkhC58p09t2TSenti+wIdxAgLRD16t5s/S69zzDobRLGiGkQYo8z3KWv07QREVdzxf7t9bPwr3Mv/eM2YHDN0Xu/bGWEBbHXkAH9UFP8arjb7BAqkHekKj/X6FUVwkOe3RoAAlzWc4kXvABIUzqtwdGHO8s/J94eUYu1iHgzd0wRMFiHiPU+4PvFKcYEmTAzzzPg0U8IIbqTx3KYmYpqoIbvUUiiIEygQGOI0dQkWzSGzmXB6TsYfIQcYsrvJzJ0Sz/UHpMVzgaxc0unWAioGZEikuwhVERIf2zcV9iHfsjYXvqR5DZTJXSFSMRF6rSXB0dISzM6vjBwguLi7w5MnTOLsoKobTOB5AvNU9CtouPcPoSioEzYHFukVUqy42ILxjcMxJ5qGSfeGRwhZ7zwjbjPWgVPiDoAd8d5oPIeSiQMp1KETJN7NMjvGcKVwqt+otZmPj80vUbvdLaOlDvDz+XlmzhpvG99b2Oedsy0JTY4VwgpEsSzb2r/Jl7dfgNQ0GLrc7VI8GMqhRdnYAlMNcBK3qe3NUSR8KX4KQ6t3U11V5TIXmQAlakoyk6LKSqVzA977KUecPRF+Sj3PsBwHAsq1i89KoHvh7yb+Lv79s4b6//bf/9oJ5BF//9V8f39/c3OAv/+W/jNdffx1nZ2f4zu/8TnzhC1/4v3qXiCUYjNlo+/fF5rlgmhF5UEkNFR584jI82AZDt1SmSf9U3hFWWEwGVWL3oyom7pOoiJRC74wYgoqiwEJpFparTFvQLSup0+CEUEq9T4e1L36WCju1ctaGY7vUrAHMsF6vcHJygrN797DZbPDs4hkePXqEmYu+8I3UTQCUYpkkYbc5ZmIC6UBlIw0lRJnzSAOV9QYV89wxz330KgvqT4QpwR+xiTG+S0NGBaS2GzmL2oIhYHvGqr77DzKsRRpzf1ccglfoPtSm9DFngk2Z8oZAwESuTABZmmC7L/l+YNmFAWAyDUlVAdDS00EY4RIaDWUreyF2MmaOeWzXqRtGhuGmmnwREYCS3MDPq8GlHopnC7gbDTKGawQEIxTp2E/xjzGA8yJQGY+pGDzFEKdidAY6j2s3NN4iVrGinnUXhlmC4mUghdYOiEzPZfIWAQB5vYKwoCP1z2K/V4A1YpolSGA3Fs+93+u3xJP6A3/gD+DXf/3X4+c//sf/GN/91b/6V/Fv/s2/wb/+1/8a/+E//Ad8/vOfx5/7c3/u/+o9DVy4HsN39SKRpoq2XKEMhOLkAblrn8pFWkxoZKYthJXx6uXELtFnvs7LHglcUZcCsq7IlAZHSpgyDG1tbNm4/xuGRd0ApVJKhk7hVNhawDyXQyRdKFglgEwZRmsoc+LqkIiwCY6ONjg/t/1SV1fXePjwEXa7HTthBloaYYJ7UxJDtPe18uO0AYVVrKime7gK8EQIU17CmL/amUs142hhxCP5gs4I/1e8KGqgNDY6CKIEL/UQ9lA0wTNWTQTqJZz6gXCeg4VeM8roCRhhbLxFmYWCESQ9aDAXDHIo9Ln0pJgUQt6ovFxRcarnRNAZEiIr7hu4QWHbKALw0dCwxpx4qa55nofki+Uacw2tV2Mmsl8NBu5VQBBVOqqhDc+bbSTZo/0MZ6WJUs5BWkISYaQxrVnhkeDrAKaZCdtLNl6uV+dwqoHIZFvNoQKIBTjVBGHl++rhUUemYeH6+P7+uwTtUsCDDBl+y+zO93v9ltTuW61WePPNN/c+f/LkCf7JP/kn+Kmf+in8iT/xJwAA//Sf/lN8wzd8A37u534Of+SP/JEv6T1EWCoKjaMClkyInGwX5EA6kPCeDGx0iApWbfJabPkOEj6ECOkpjvuqGCdORbqHIMG0YZswMwDxZPSR7dnEN7gNGxEvBSucgwMbiksNtDRQRYPA/1Y7hjxq6Tkyp1GCWO0+wIVaBTN6bODNPpHuwGa9xtnZGc7Pz/Hk8RM8fvQYd3fbuM9qIlIIFY31foSIboLVkOuGplumucLntUG92v2ojKUJpDewRE7vVqfRHK8GeN017NHTkaYIgGb7sPidoQcrmeV13Kzi+uSeC3mJ6NPAlCIRoaqBAQKTIdU4FINXxO4tkK9243Me763ed85NloBMgLUr8xJi4cq5hsKwuK9GQsKILFD9SGwqb+cZRaR4U9aWBo6ypFm+PJrLii/GiyZnlpaO2XQMZXKaFPOcBn6USQdVTbDbKZJZWTqpeiEOUKoXUIysimQ5KuXcs7BwSzmU7AcNtohE/TuTr+YHiiUfS/zpf2sPcNbRg9+YVIXuBbPtZW5ECRcSkZuEFQPJ+02wczzkWQjQ0vRWuc7hd0AmvjrHG3STMMoExOHFLYr+frHrt8ST+sVf/EV8+MMfxu/9vb8X3/M934Nf+ZVfAQD8wi/8ArbbLT7xiU/EvV//9V+Pj370o/jc5z733PZub2/x9OnT4QdAEHqIjUOGCYJP0HLfUEUJNGxLdABgKCGUm13T++BVwFK+u7q6w4RYv1hbLD0kelIjcGfh0Az3Ee1LNuejj75o/dy703OhF1I8SypXV4Q8l0bghhtjdtfghRJ5HVCEIoLVeoWz83PcP7uPee54evEMNzc34fE0IVLsABeiJVFm9UAkQjsEABmysNBKWYfh/SVEGjF9kqDwyj7CdYACsIwgJyPGam328MAk5tt5qtsctRqydLCgnZlzLRInKv+MXo0e+AxhGDIcVmF1aQzsc45PA8noYKTjcaL11kajKwvGD0YrvkQvXkxpr6LyMFAYN4pX1E4FyaEpsvhy7efoSWEAhUO4j0pSOeZR5iv99mhNclZPqir9BTWCHHGAYrZr99XQ12CfUycwI3PBo0BGDvhOLDww+67IZYzHPnbo6zKO1AsFI1K/Dn09QJsKaEh/ep7V8C117fv1qn7TjdTHPvYx/ORP/iQ++9nP4h//43+MX/7lX8Yf/aN/FBcXF3jrrbew2WzwyiuvDM+88cYbeOutt57b5o/+6I/iwYMH8fORj3zEvijcUWOygwHRkYh5f96n5d5oC7IgfipKDO3wu4Wg6zjp9tG+MjCGK+py6L8EA5p0+HSViihpkJfKY6RNpUcRu/qxxdnrOEwLF6VYaFwfDIU3ttkasF41nJ6e4t7ZGVqbcH19jcvLS2y3O+zmXRibSp/RIyN9SxhhKIghw+ZjdonfHTpW/P3hNwTIqD/0ythf0OBEdYcU/uGH/auKEQQKaZT3u6ADYtnzijhWmDDvCXTVgJrhSbZ1mCf3ZWZU5tk3Mxr1VftRg+dz5qHLowaLPU7xx2DkqpLE3v17ShRjSJOnzdZxHfYsZY+HBqNTX+oTbhKb/GPHtoyGuIIiAs4M15W9dDF9I2hJ0FEN6aKvdfpZRBoENhLRgUNOzYi3R4OsB3hxMFAVIBW6RJPP4btD1296uO/bv/3b4/c/+Af/ID72sY/ha77ma/Cv/tW/wsnJyXs8+fzr05/+ND71qU/F30+fPsVHPvKREBKpdFgI5R661KTXe5LI4JI3U9xgGRmUivB5lz3r5ZMWSHRPCSgRpA4Kd2bJfSRzqPKsl9HoqAvGMOxBwIioR/RWvxv+UuQRGZrvU2h4GJWOo3zYt8dHRzg5PcXm6AhXl5d48vQCz549w8npMdpRCaEAADq6n5DKElZ5wrEpMKbb832R7Owh2oqeoyhryYYa+4dhDvYMmhMqDoTsHV0A1Tbcw+MboFSIyYMLjABOj1CbgcYWsfYS3qokvQ/OVJkAhqTqi4aqFb4mkx5H2ysaG3056Pns32seRQ8Pl0Y3qnx5d1hJfVBgzqiKNJoA5Ulg57AtaFfmahmePHRVXmhTw+zrOhYOfE59R5FhvSnbguuPykfF6PF5PkV5bhaN4B3V8wOyD1F7M4yTREMxH8Jj41llpSPiNZIyF+vro2VwvWH3BSBd2NiRpoXepCcI2NJo0kDx3vqvsFr7Qt992Typ5fXKK6/g9//+349f+qVfwptvvom7uzs8fvx4uOcLX/jCwTUsXkdHR7h///7wA+RRHTz6ATISwq6FKYrvKqrVwhBwzTzeE3XQIHuTwdM1h/cVRJXHYCy8krIROXZoBxqx52OjXyDqRE9SXhKe3zBY759IUVYJvPbVnrfnnqG9qw/KLcSA6CtQrAxMXQ3etLIsv9PTU0hruLi4wMXFU8zzDix9FFOjmenW4iRiDxMIhr1xOaWDRQ5hgjCc6GWmWiYCVMU+ZPBpGUHxIofzlqL6hrezKF0z8iGRctJZoOMY3LBN5cgYhjGj9NceolooViA2F0MP93v2M4eq4ub81lBRNVDP+4leqMZ81ee4sZj3zPOcWZ1UxuFJZihWBJial5uKeoHl+8V8L70lRDtLPeDJPwB6nz2BYt8z4b05xDG0Hbzq74y+IZV1NaScl2Vf+TbSczkvQUv2SiSAgLrem+Mon1RXPPqdWxwoklpoHH3QUr6IA24RXIw5gki8k6ANpe/JgeOV/IIACbWe4leMkXr27Bn+9//+3/jQhz6Eb/7mb8Z6vcbP/MzPxPf/63/9L/zKr/wKPv7xj3/JbZuR2hnDDZMLmxha98KHweSEOkB4BEPYrnhRY8mPUUC5sAlH8v6FtVsZYSHguYvfujF3Kgt4SrGjFS+ZMuysr4auGl2iNcn+QUsWlBDP7YcJgj6trG843SwtfR6UsAlmDwSV/y6ZVdAEWG82OL9/js1mjYuLCzx9+hTb7RZ9tv6Io0BVS94wgfczdpCKx5T3BHqcdQhhpIPOEsp3WmX1jtK18YiKbCj4ix50GvnDBU219zBEUXiWUxX3Zr+i2K+/rrkhJe9Ks/OhSNuqHKOvSxRcFFl348/st2ooeu/BO1zjobc5lhNKfuUcLL3NWmPOTr2FK+5eu2aZlfPoSXHOoQgQFwWIW0v5gGa2ZEmbHrPFilJfGCmOgWtsc8mapEyFbA0sUEeQiSqc46oveOwKgk+cJ+gZSm4NGTLfjFg+D+O+uqWHH+2oYvYTr2s5sOEZT7YJrz5AWOom9nEAyIuKM4SdXbNUVRyiGEYuQSb1wJ43hdyryv69XyP1mx7u+2t/7a/hO77jO/A1X/M1+PznP48f+qEfwjRN+O7v/m48ePAA3/d934dPfepTeO2113D//n38wA/8AD7+8Y9/yZl9AE/mndFWDTKt0nsJ7cCLSpnCwclPtFOZmhOmGInZWiqBAam2zBSiOjEjBOyYAQaU9yRC8YGgdw3EQIRGJdx7T4RUFHNVyiYuEg4RGUvL2ASWz0alpAXJorwbZQ1ePXRQK2ID9DISvYbBDNRJHWqd3Ww2uH//Pt599108u3yGp0+f4O7ugzg62eQesTACsxsjDLSO/kmD7avyz8YBFDRt305eqxEhrKSZ5DxwHJVrfE5XKy+6WzbTppFPYKKqcXKtndTqnwOGhPw8eeODcV9Mk6K8pHiRwTkcQlG8xbADo8Elwo6yWjtLv+chkGHs4nDADOVW5Vg9xlwTKUqOtJ7Uk7ZqKZ54SQFhErX6GBSt75maeZS2RYN0XZ691YZnaiQjQmdDSM3INnnKttGmAyHL49SPXrr1sybd0FuiDC3DfSMPOi9ofsd091npf5l3N3G9258P2oCeNenV0WcNsNEwOZ8x0zNP9415Qu0C5ZaZhtQeLECcHmOlR/fMQkZMWG5NCz8huGiU23AiIJ4oVM4B/CLXb7qR+tVf/VV893d/N95991188IMfxLd+67fi537u5/DBD34QAPD3//7fR2sN3/md34nb21t827d9G/7RP/pH/1fvoiXPk10POJ0BImo9An8eJOQ+cuE6SBXMMTTgzcvS6GFxzxji2wuTqeuyODp8v39dFU2ruioGKt5RAFDqYaRHIuVe9oeeGZ0mdSGiEdVguVBGDAZoB9S8yPB0FopB1ZIxRCzL7/zBfZycHOPt3/gCHj9+jOvra5ycHWOz2th4VCzHTxUNhzLJUBSzDGMRSdQ34F8XjkTfFsJUZCWDIbxVjE7dVxaYQnXgCaLUNFqe2MEJIDjKfwAaDzgYcaXHvXkdZTLrvBYgFfNcvHeChBrWYah3RoblpmmiGsnkAQKnci0jB/xsGW7TZLbQsdHBIMVYUT1bTXpSBs0IATr3lNEwxOPhgD70cQ57Bxb32a3iSJ7vG+U0EN7iSuiZlwERiQ25vdA/jEvXSIDoBbChAN3wxob9W6kvjA87Vljl3jdm4Mbc6J4uQ3lflQ3UEUrSRsorB8+rkKOXOeyF/vZcfcP+RT1psRxWf/kyeVL/4l/8i/f8/vj4GJ/5zGfwmc985v//y0KIUhjiK5DGSRTpktV8/S5V9UMDKaQVGY8IazAEi2spmONnz+1+Ycj4zyB8VRlG6HJPmTjDD53NMUgZVkU5/E7d7VHNPTfVGD63//H+RI1hpCSNmzSr5Xd+dobjk2Pc3t7g8ZPHuLy8wINX76Md52bsMIgYMJm3p26cijdHH/KQkHgjdf2niWZyJAEGx1g96UUfhoMFB57Q5WwUZe9qolMLJEM1f/fM9dQFravHAozrFOFpC5s0lBEVNqrHRLoskgQs/FfLRIl1Sit/jEpoyQspe+Pnw730MnT8XOp/yjmWqcg4lnGvEsNsy/p3gM3zPM/oUKxKX82Dy0ox7K9EX6OrYcwWAw0jwkow1k8HaaS/jHNoYGvUIYh3acjsHjgADZj/3nvsjTPvbdlgbtoecriUrDfyUEUS/k30gX+rAygGbclHS9ASvZD3/o6W8hDw+WLXb8lm3t+2i4SuXAYp2m0UOOkMNYxhBnUkWx9TVIImBgmAMQhsVWdkoZxcOzBsvJ1hNLZbqylIATI0tHWf19Qa1CW7Rxilo+MAeqQB46tp53hP/Gv/ozEUSByZ3vphYyVO8yG2XBS/AFaLzXn05OQEx8fH2O62uHj2FBeXzzDPs23ILvO1gOMAMrmhF6UeAuwCkLMkeUM0R3SZBkn4L5/XbDNmUZI+XDMI7VEBCbGqItZCle/UHtqteqMDtJUEQYI8TJOv2zsuo77e+8cNpTb3nnE32JAkiG2KpWIjz1SANAKPXEcqQIQjJ784TegNkZ+rgQqFVcZXK0PUK8CXaLyjhttJy9pPlKZrmEpktlCVe0DLJJF4YQWq7B/ofS/JaOPME3RLNKZu9J4qyEqvuy411H2Ic/ez26bJjE+tA+n0s2SYHpM79xkKxTRlCbH0UMljuVZKIo3jzzE3aahHoLDqDgFC9OXAvPGKzymbrpN4Stz7vV5oI5VIyNBQlDxRFCIYs3Tt4UntI9ZFCIPM5KEQAZCl7Ikevaw+0iMJlFPoH+ELFAWAPAOJwjfU7tN8v6Bs7KPi9/YACoOii2JqGpWUq0BxQ38FiWmW0iBzsFFmqvkBkdJRw1qmC1IhDLX+YmLgRkUh8wwVxeZojePjDVQ7rq6ucPnsEn3XMWGFGTt0AFH+qPSL6LerZUHxRGMbOwBRbn53RJuGOj0JCiVCaFJAC7hxJd97j83GEXtXjcoAJqxBssI/Pv/Okxniq6hDsjZjcQai8sICsVqIbCzHNRjq1MoAcj1KNdE826HB6L171iggVrODUwbKzJKHoy+SXpn9nQkuUMXUBFYpJOWwNV+xilpxcOL0sS0UmOcAjFmLNh/7aePa1QBVmQMbT6VHhuOspNAUAHKoc1iML6mspZxSvsNWcNAYcUn+imK/XdGlR/gxDVXODwEqkzpEBPOuo8PWf4A80DJ4tjVMItCe1Vpm1n7sk61vEtRVHePVeUhDmxeetJDrc+FdqvHIajVhmiyxB6hjTcBH4LH3XZ2H0KnlCI/3cb3YRqpmI7mEmaAQmTsqhS3Gd21o2jws5uJAVx0ITT4iHpRKB0vhFGegGatVQ4R0qH1Mz0PVT9OsyNeVOw1QzQaj4ukLRjKhAhQtCh+wvpg41w+okJ6UG9JQjNENelJF0TkZopSPG08as4xduzItiSVa6VjeYfXyOtarFY6Oj9GmhqurS1xeXWI3L0oO0WBHPT+E4Zx3c6A4vs88gTwpme8XMIYOiExIjzgsaBiS2mUDEA5q2gS0cR2rLvrzCdsL4+jVeTDDjxIAIDG6hi1Lv9s2xbLGJPmMGV2NxXSrF0KDQqXIlur7uoZnZwrOfp97x263i8MyE+HiQAHR0ZMK3vF7pqmsRbohn9qInvOARMmuB6vmu5TDo033MjpM4z4UVhpoFfSGOxSSiU+TZQxWg2CnG/j8x5iopO2H0Qr2X9XkwJ6dIB3QPrvIV71i64B9Uq+aYSDWDrBEzCNrgjZp6PDSZFCsgsd77EVjnxmWt7rRHu6bbVmDOqXPs3lzXneTHjMNioFjHnS6MLTSoDrbYYyrCc1PCmfK+p53jbqNYOQVgmauF6rrxnHp5fnXC31UBxFehivGw8KEWlPz0L7qzSSvkzGJVIvGsjchjkdfvJsMOTQFNmEZM/VgvPQ+MmNO4AvpLWsD9iIwLMIaqDXShBNl1XRpKqfoUtCl9q3swaByUltMFoeDInW/TtKY46ctZjycVipj526k5hnaZ6ymCcfHG6w3a+zmHa6urkxRAkCNmy9SdmM9DlkkNNdStKThFiFxJcPv0hBn6FMGGiA9kbJ3yAxPOVE2UuALA/mYq9Kt6yWB0BfKNZnJ+96zlMgwp04TpmTnCkKhv+rwbJ37RMfJi10Vu90MhpIrjZZp9ilnY7jRDIPED5X81FoeoeOX1ZtbDc/Xdqq3RnDSWYQZCGOKA3xYQ0cS7mn53nmwz3mwYHNQEX2XBIcBaKpyjdBapr7SO8FzlC2VcoYzMbbn6qaJxEkI1ShW0JGGl/UKp6yELnlyNz0n0n7cvL0sIZV7lxiuVYI3Gj5miZYC17XoLgHhwfks7xOUcVFP/K4wUkBMEhDAMhRCqolQFfb3QogDdeGQB7qIW/PTIizDxsWi9itzSGknGTWcB1dAZNJiaEUi3MF2E6WXdkAjg6ENEoAI383xMJYRgSPDCt6vPA6h3s/f+Z7DUeZQNr1jkobj4yMcHx9BVXF9fY3ddrsgdwEENCrEDv6uLAqcXmPMIziPSa+8pxQT5o2kof+tKHte4qiP3PfTfKNp8ED1NIphDYFH8l88A0kvIbsRJ56EgdX8Pqvk8wGuq1o6tYKZcLwlERFbCSXVUgHReFWerEAvp+WwHFQAV3l2WmR60luoc3LoHfzc5hrDnC6PHBd6PIWfQ+YXRjvWbsEwvQxt1lFVuqeRQOHD8v4RMuxdWv5Lhd5Rj+8o8yK5jhQTGezrHjrowWUdUal8rJTwFrweffU1Zt6buqUlCcuitXn3rOY/7tOy4UhELkYD7+8kqOH3ZX/aYV46fL3YRoroSytTLlHV8wRsmEF+MnxUmfJQrDo/P5BKWTR2vnbfSwvBrH2gZxJ9oGIblYeWNiQ+cPQ2+7k5dcyuifeYI4wezVjxDgXB3AEFtHyPpC/qFPhPVZACqx5y7949TKsJd3d3uLu7Aw1R0KYqK1Usi3RaF6gcRkMVISeGGhaT+7xQEe8ZDpZbaCUChNhsLWV+ZOx7bBZNIo8aDoq+EOpyJ5YMtAeS+Ev3MI+nJccb6+uKoZCFN7RcY0r66h6/kV71uaBMua9+nu8pa1EHriqj4eEGv9bixktaMTxa3iYIT/uQ7CTg6eHJsO1hvMGHOQYpYcfaC0AyUqPsl8T7g1Nl4NoARnuDq8YAyONi2Fq8X8JrOTSvUu4XgqNhrlq2WbugBegV8EG9eGgil/yy1LsB6Esf38/1Qq9JAQgBm2fDGQoUOAoIPEQT1Qbsnkgp9rvIFNUYLdcVSPDcVJcoSylVRXkR/YRyVC2bctl/3pvCwHWmqVRABhBCkLXNkgYcNhlhnudEs3FjUmXJ0JBUQDrQhojR7jPhZ5X0RIFBNi1Cx2cJJsSOWDg7O8PRZoPtbou729uhAkJ4g96RyJATW/shKKFxEBGIatA/UG+hS/RJM6yJ8i/XBhXI8JLTREIq9xWJ0IsIIyUQqWGz0WCkQeBcZegDPg72t85N9UjiM6cPy2ZBrGrJtKhWv+ST6AcQ9GxN/KiLHDc9GdKmXtE+DXLXRf/sh/ooeU2CyccQ3cII87baV2RYb1DA0V+UZA/xGov2Ra4lpRJlGItHfsR7PQzPjb+DwSr6gDJR5ZjhveXRPtTp5o0IrAwWIuU/QvOqtn7Ycu8hfJ4GHgRvT0BG/g1593aSRsXglPCjd2fPKHUH3lyHmrl23AToyw2dDM8q0NXOd6vAlW2WuadeeD/XC22kODkRbpM0HvwdkplzLXZLp8+QE0jvYIkUGRrJXd9+2EoqGdAgjcpRQzki0lGbcI+LWMHWQZGmJ2UZQZOfN8QsHY3yMVObAimOiBYef5+hq5WfqcQKFgANVDV+9e8BcYICUgR1QKSmpNs0hQFl6N7SuY22bWqYmrUxtYazszOcnJxCu+L29hbb7RbrzVEx/PDf679cD/LzlWj4usKqT4SrNPQviMv/qiFoXYxVnSe6K/zMtvRhiywK4Tr/7QmbjbnPc1DYeKzFXHFNLb1/KrwEUTFPpe0IndFwAVnZWmhQFgpc83muw4grsKmc7hphIsEeL4QR9/fzuUyYSToO1RWSZYYrZKbIGkFSykOuxTEMlgKGYYx8ntmKgIGN1lvwTGzm9ixf1hFUeDWSXmVdMXmyxqxz0pz0GW0/AjV58VpMFhLunk3HY90rUAEEMicQMJmx+6ay1g0gwCZfRZTTVT0j1sp+YbEPVERsU3Nj9qXprKhEU8A550owJocxw9CSbJzmkeTFLMWi41SzojskN5v7nPLe4pJ90euFD/eJGGqa+zxYZxoohQukp1HGJGryWVHxRdhG5s7aYrnXINeOvMEqjUxT0vSMCu6y/xaFMobx7N7lGVi9jyeTMvw0FivVKAZJGiFcqAUDx5+JtOj1cR2J4w56A7kHBJa1ZIviSSdPOfJn4MVCeUBaw/n5Oc7OzyBNcHt3h9vb2wGJcxxJr7rWMYFIdswYK8am9tfXW8YQFl+xDJ8mqp2mjNMzJT4IRKo1WYTP6nyVunIiw71CgLOkbZmPUaEV/hhZKJB/1/w3lfsIQFprEVHg4nv1GIZQoZtNruUs60/Wvh06cTXnYQGiljdh7GMYSB/iUOqJXm4BWtVL7z1D3FGVgeNm+rR/vtvtwlAl1Unnwrx8X8nwHYBDMbQ06Ly/ubGKIzfYF8n1JI4rwZKiTZPthdQEY82tTPIBvcE8qXe1yjJIfBdP1MZiPtlnZ66gG8EC1ytXK8uMpd6x/ogbM6dAkav9CELRSwsZf38m6gU3Urxs/0x/zqg1s2E4YeW+nBgMRKyhEBFEGRIDJxWBUMEV/bHwpKztFLDRW/NeBsIvISuxlHO48jS3m5k/2UY1UvTCqqAVHQoq+FAMUhC75MIt919VxR2qZlDu9JSmwdiSNGZYWtRja01wdn6G++f3sVlvcHd7i+vra/D0W/qTNCzi/6ob7al4w6mgfHd8QeiByhcKmHM2hn10+KlAJBRhQexO1r33KxE1EphozIEMQquaKd+F6XLAC08qPL8DIZ9QWgQuxXiPVd/5ty2Yr1ZjBl7aqAQtS9pUBbcs9EraEbGT1nXM8D5W41wLlgajlnmIOdTxuZiLyGTrHhYu5ZGwSNqgMe8J9gb6o8iq6wVIbrYdDRSC9tWI1HFFineVu8b9Wekx9SKzrACvyH2Sy0mqvEtPyrInM2FCaFBaysHemL3Pkj0MWtrzE1QRxWxtDAngoildgPR6+VfCtyzo+MWu3xFGSjXDJyNqK8aAzI4Fswdyo4LLS6qDUTyXvL+icgBRsid/BnRBeIiF8MJCFXOnpcvvE3lrOQdnRLNS2GvpHcaY6mAkx51jzU/S+O57iRkayx+mxasCPGVWy1DEM4hUFZNMODs9w/0H93F8coy7uzs8u3yG7XZbZiEnIvuEUPbDKcHC0JeOk8cxA3uCqct/F0aMGU98x7CFoDw5GpGFAVkorPBC+aN6oLvV0x3/row2eozjGh6BAVF/KJOw+K6UGkM5NRRMHJMhKSDHseftVvrtGbP9e1OpL8a92GBfUTf5e2mkgkjj0MMQKBK01PR5RQUlmfIvyE29QTHyYKXnMJ40hMELDlbCSE1Mwc7tHfHjYJeApi/4Ba7YY/+X6wetPOCTZgBuXIMWQfHea+Zpgiks6Lo0Hq1kgg736MgXlb8GXROUypT7VEPvz1D9jjFSVdFE+Oc5hE31MLrtVW0sJ4sV3+Iu545qaICqHNJsEGSEIvTNoXwFN+t17YGuhxg2/S8tCqkYnNRFBam0PAYk3x+DGWjnPc/GgDS4BYhX1BQejkGkpJcWQeKCumTfWms4Pj7G/fsPcO/ePdze3eLi6VPc3d0Fchw6Gd7QaKikdtPHUZZfBqMzGKkDyvAQShdDNEmrCn6kgIiWCjEVcM5DHU14y5GFpyOuGSESnncFbb1fPF5FvJuxLhU8iGF8NGTjelS+VpDfV0NcvfXn9ktH73SgnR4AiQvQsezrwc/1+dSpY66f1UrpdXFRyxwnTfIIE13KeRljnMWEauRkaG/fQFC22/A9+7IEzyJiyTCK1GcFwBH8ZPgzaVXv2aeRXTxqIz2dch8BTLWGPgaIHG53oLMbOO0Dz4X8vk9n6oVOnOBlVnxkbApKDWcY8llAdEkFwmvfQPksBQPUmG6ZSBEI0rVXVsOu7atGaGswUt2OJmgqhbFG5ZAo2Se5NbA2T0WRbZowOVOFApbctZ/jSmUOyfCDaaoxA2fPW3WlGge+xWcY0H4U7/N5aK1h8gy/8/MzPH34FE+fPsXd9hb3cAaR0cug98E+GLJMD4mKPm1JEaTodw/vCABEl0U6s89LhZmeBeI9PHWjuDCGFRVomuVrFLDsRFcKXMOca7i2zAXqWwNgJN/wxu4bQTM0OTmarhvHHXkvjBSTNsTfwVNeq6KMNr3PoyLVoT3SnL/30hbHQhqCC+3Qgwqxtjt6vsXw9QQ94nwd/fB1v5GuOhoQpJyQhnuhR+9HHtJIL2oENBw35dGSSfb1CL38fI+To8xVFDVWExkCttx8XYziYp9eBazGe77JHwni6q3c1E2a9q6w6Y6AXB7UWMpB0QDn6QAcH9stBlM48vRYGbplLdOFmn3u9UIbKSIawCdMc/PsXM5bIdKlx0JNI6WdZfhlaabyX25w2z8GOq0YFdO4/kSDpp7NQyHJHeY8poFmDvksBazsvCc+qwheJMM4VFSd7n0YWQxKMHrvTEghTsas4Rb2qUVGWVerJRYGxb2eQ6iZCOz09BTn5/fx8O2HuLi4wN3trc9flrhin9ky+y0tyzElavN/uFmR/MEEBpEoOSSQQfhC6fjfUUVRU8GUYKiXl/JeueFijTwWwLW1gWIkYODGStdkFQXyJ//LF1dakv8EOS7obCRqgslPchrDlAVVA6V8lQy17rjHyonh77F5su4tTtOVBAhLb4e8PHpfJBtBi5KKe8YvDBWqMUoPo/fu5YXKxnLtnupOgOEFvbjVg2R1vgHrYU5t4GuIQNQ3ISPXt2qWJ/s58HT8pLdGxdy8tJdP2uDJmhyoZd9BI9FIFbHmvASJPG2XNK96gX0pHQ0QyqgAPTjAeI9r3DYvpR1paI00t3aYvKEKoGwCrxlSbUodtaSVtVEAdifPf/HrhTZSANFkegUKxcTTSXv3hb9EkWR+HRtJRg2lWL4Ob2MUxKgSUVPZyrNxjkw+7q9jiRVHn54Wyr5Y29kWT9SloA2JEmLZjellNUyTANL9/V7Pi+JEA6Bld7v3PY0UUtkVhK3uMhriFMyeKZVFTHNM0ERRqgIoDacph9PTU9y/fx8KxeXVM9zc3NjertUSXknS1fvQRNDFkO6QcluEmvMWpWKagt5GL5uvOUYW+829ZRURIzwidcSLpmbFHIiYJ6VoXRKpxhRyId/qspmHT/rG0EAujjHTSy1G0hR4x0y+aA0Tm3EDG/NcGJ38DzUwRN+AACkPhgQC7ZYamLHnZ1Cao8KsC/nLjNNE3XrYk6rfO7iIKu7Vg+m+G7LwJeq2gTCOlEunqeRcN+df1VxvsfGnB2EnfiOTrTTHXMExEybooVBOWHOw8gc6vX4CZInnROYw4iaebkzJy2yz0qzV/VMLnaW2QNE0x895pKzHOGh8Fn3q3UCVqHnWjRVxVMveMwl2W24Up2Htru9a80Qdpey8v+uFNlIpKKPXYhNCBVnq62nfExD6IznNErJt0++MXtrsqo7KqRQl+xAehHhZnUUJECKi9A8cyerQD39d6Bq2MdZPS0HNHghk8npiHXlwHAbQFbJLAYr9PvGuFOplmRyWSRKZ3VApVJz6oWxAy5Yx75ZK+fj4GOfn51hNE26ur3F9fYW7uzscT1N4KKGrvcu2WRCYViwk2gH1hJjQyy4EnHM3pBP8KHbfN2a3LjYPoyg6R79Lk5nE4y1l/YVeGTQRPadJ3ZuZnQenEpt/j4v9U4IQFL5nQgBM5pcZiBr9pJL0Da4CUP3ROxZXdva+Ft6UKa1SwYOGGsDSSNXP4t/B3Cf5aIwiNFmeqyFOuw973wfZNPcK7YfIy8ZWcB3ExjVNzTyw0AttaKPrWN0fIB8vU/Eb0NLr6QRGwN6Cv82BfyFJu5qBqZq/sBgwv1teVhk+5W0p3mzPZGN/ruo8RfvhcWWIUYTGuqWxJMqhkSy6Keeql3muJ0k8Z0DPuV74xAlNDV3U/IH7DgnL8L1daUuWGS32eex3cu43oseM2T2xA98FRZeCjEATVGr2kkUfCqoOU+hKZimoZC7So3FPWLQ5KkTx56oCqJ5I/p7jqusE4tYzkKUW2i+UJAbkaSGpo80xzk7u4fjkGPM84+LiAldXl5jnHQAtb43JXVTnznkaB5X+CGk73LO4xtBULXJar4LE45MaytB6ZyBrVqomD5i3VU4FDgQyDHNUOKG4+Lcu5sH3PLVcj0ojMFamjrkO5J/jWVYop7fM9b+lcqu0X37+vOs9piHaq15K1brL9Z1lw2Pb+6GwOgbSjEWax87xuZxV86yzuHG9MmFmwZfLTmr9UYpsKPqquQI4FAnIkUWnQi+Y4chNulpBNbViqkk/NqSWXapGUsmy0Zea5MHPLBsRyVNj5wbZyF7Et6CMv5/rhTZS+8p1LG2Ux3iQ6gs0USbDv/AfeLmZORapRSj4LKmQ7TVmV7kiSCOVk1c3BttnBbrEPRLNDsyv+yGUqhz3DaDThNQJeV0oGbZTPIF9oozXEAsv4CDj13qwCSpHbmRctQmb1RHOz86wmiZcPH2KZxcXsQl5lBSSSVMh6XiL9aMakQJMKs0Keq+pycMPMoRK4yhaE0b4ec/q8m50GKriumQSDkP7ATZk1LnDGgmZofB0vZfzUNcQAesvtwIMZZ7gyop92ZvXpHH2fd84HTJKlS+G7xe6OuIHZS6WYw+lpmMDFYUP4+XAkEpz36i6YnTwUA8+LI+j/jEANV0YKbImkxm8r7G3UIuRq0CP4wrZrtQphnLodpHzIaQpAVgjjb2E/pdGusoCf63ghM9WcxKysky6csOoSG8p3ruHIhDAyWiWeu39XC+0kbKLytKEjLXMmleZkAhNGaMsldG+oNp9saiopTyQhwZqiCKMBxfsY4e+xjxUJZLsKgNLtsaYrYcnI93UjRQQfYuNtl0X5zsBvc+enpwp0jXt0/hawsZUfnqeiYrPOYa6AVQkhCNAQ/XgADfcvSB0L/+yWuHBK6/g+PgYFxcXuLi48KM7aniU/xB96n7GURjgkm2IMczwPEO1/OFid/VUWQF9tFElKYP0j+okqRDTMy2/i0SZnRDU1IVD4dkwtpqKAFRW9Xyg6nEqq03nxu88MFFLmvAyhLzY14f0vp9nqJYhv5pdSDoBZZhRrYATWxiwKlnygM955ZtCruE9z0sbH15D/odYOK1RqSb4ocwu98fVCg+5VpWVwmks9sZW5I5yH/fG2zH0O/hMR7mpR1+QQTjueZ6xm7PqyGDraDQlvS8WLIiqI6VALtmKepLvivZ6rvEPRyAF6A1OGftQ9nq+3+uFXpMC6uSbUNmCoSUNrNoqStlroAuMShaCWDci60vuSm/qC6pNQgBWUxop6Jjlx9Nju4yLkbHQGGhzZAYyYIPVC8uabLb2IkDsyQlFG6WGiP5tzcOOyrapbU2gaKWKuYTQ2EXkHtYgyJIfVCQ30i4EVc3baF5vULqGIox30KiLrR+upoZXH7yC09NT/Mbbb+Pi4gLzbpfC0WXZBTN4WrKL6jhgQh2Do06PWmPhRgwKjkkBMY9e9glTAoaKYqv3GV5U44blGbHGQQDlvAnhwrWBHqZPL+FSD1Bi9Avk6cav+TzwRNxUhlwMnwE3tt2TS6ZpsvUwomeygrfRWjbDsVlywfgZ6UR+GIyUb4mIc4f8IMA6iXY6bKn5V1it8na9zKDYu+a9TERjXcsJ6SHfU/BecEa0lgBKYtw2Dxp9oDGt3MW1Y1mxUKxipzN0dtqUM+IML7heYbavIA4nTeOk6YmUN0ZhZe9XE4H4em0FPt15XhVRiY2yMfYfIX8xxgAoDayiL55MIr4oHNEfScAByLD3qVqvdJA0SM1+aO92QGPvqGz7xa4X35MiinQDxJi2iMRBgkSEUT+tFeVWmJmMBJginJmthDRK9VTKXgqdjgcv5rkpqRf3KxiQTaV56aBSo2vvTB9JVRYbQln6iMZCvN/z7AoNee5MQfFLVBxeiqbolC/juRaGwcVZyKSZRWjvFOSe5oK4NdGvakebBK+88gBnZ2e4urrCxbMLrzyBQcAqyoUivUjvEw0PjWV6IVlWJms2jsh/+cMx55oistwQ3+P3DOWAKNDcr8f3xGiYVeZp4iVFWkp/0mPK91eFln33MLZS0XF4GgrHlDr3CzbQptdh1HWnOuWjIR5RMvsQ9/vLY3zFM1uw0UjDxXXIQNW5amW+a3iRcz8YiUJ9xDhKeyheJDLhhZtb6WUMPBGFnsc1rZD1Ob18AuY6BhSaUN6WocHAyTLeJ2I6YiySzbF5IQCv7alKHbMwhAfobIcnevLR4BGVfh+Yj6gZ2WlkM5MyaF03aYEe35xRJuzP9aHrd4An5arbGUC1A71DW8FoAuTJr/5MSo3bqWK1hgwefpUL6ul1pQFbeiajQI+xX1OYiVKbpDHJ/RKFtVRtP4WYMag19eLQMxpXN6KBqMBQTww3xuGcYgJY9o3FVb4PWhHd00i1LNcStJY6L0UYqWRB1Cs4OT7H6b17uLu9xeXlpVWe6Io2lWxNxQC7mPIei/oHmH007giPL9Z7lrH98m/Qx38xAZw4NHAXUygQ55EGwQwJsiWvEVWmYo3PizGKeU+mWwwKiU7duOicBpHPEBCkgvN+MP03TGdN7ig0WxiL5xkOUgPwLDe/iL5jfZFt8tn9kYVhrt5aoH7kBtBlH0RzT1nn9hJRKPcfPe+S0g9BeffoZewZ6DDuDbZjnsCirM0Im1Q3GAlGIOStotBrP4K2fo9/z1p/KjD9tpgf1sNhRCMsVHlbzJbTOgB7fOcb3zXn8rCRyvcyIpS4jAYreSQ8VHiEQhX9IBccvl54IwUg4aEbK2PYDpln27TYSh0zyZgskbYunq1Iki+gch6nOx7za0SZ1UhV0QzmD93ONQq2UYRrQOT+L2+RoqDqpVpuXvgk73H/oHdCCdemqkKj0kUYrPjxByyUslTA46unacLx8THm3nFzfW2HILpnMiAt75OI2H6T5i8pBkZFDtIj1luya/vfS1IqaVTwZ5kHKXQNXlnmHCvFs74o3zW+n684cHgmX1obCpDktDctNj7jht08CzvuPvqjCvUzjSwcLAt+Z38Oezb8jvPxPGO/r+A4/+PnAWIOGSIkuBhEEDlPFTQOSt/pU4fwPNW4xAUR+kfyLUGXQNDQ7MQeAbjH9jB/6SADz+sBw4J1LChjyg38xdBQXx3CckWWSZHk6myd7w452pMBhIcf97L9go2qzqORr++N9joLdU8H+OPw9UIbKXowOVgJRdq9HE+TKSoIoPHIhSQgDwsL5YsKTEtIQZmJZM92f1eGaQzLmOCPWXhLxrTQX/G0IPHfvscMVQmbXYrRFqSEejsVIXmvCBA9MEiudWhIWDGUNFSd0jtIMGj0BYLWAUiPEJ+1l1JSabF34nATrFbGhtvtDrvtFpZQWd5HxncjwJCK41iEjSzCRuFMQXQl/RwPYSgDEwp9BAG5huJjbw2YWa4nk2zIg+Q1VH7KT8u/NoYMVS34xdukh1wGCIYaAcSeGdJ7afIYYrbKDc3HLZhVvbp+UfqSSRQ8T4rgahklMNo64i8ZqgTzFZxwn1EWJc72yDF13xPXopbGZzkuji1+VxooDfDACEbw9/OUZDG8pIF5HgSrlU4NKnO8p5E3Sj9oJiLhk/Sh3MuiZFkBQQM6ERps79OBVH2iqFAN9cfHswRyQXvSnDqOa6CeaMNQJyS9ZX6XIUhGf9ivfDmBjapv/n9/NupFN1JIZez/09ZsDWGevUSNWWw6tUu6GD+0YWLT3SezetEaYSV1uNGCJzNoCCOfY/XgEb+MSoQKKYRcuUfEaw46w9EmwJkpQx+D9QF4wFoNARbEA3hc2BfTa3gH8DoEkn9X5VEFWiGIzYjGsUDoAtYhS6PAUBBL2IjHxyToaoZKtWO73ZV+lYlyZdwE2Hm/Jm1gsGcZWgglHuPbvw6tr7B0UKwPoS42l+yuGJMp+EhFhgGQ7E/2QTmPBBSo/1rCDYRlrWr/PNlCAUhR1q48h79pYIJmlevN8MzdDv5brST4Y55nzHNfACzs1aIb1s0GZVzug2MUSHm387fnUmT4qlRML4CQfGE8lKWkTMGNZXdQQ+kiKR9cL4HLcgmle5dAJqlDCC+KRlp50KjLvz8ncE+02/umCpIot2V+CG4AAxQBrOBKf8GmEVKlrokp902200RzaYYOcFogZNjoHpondJXPCLL6TclSph0vnn04BMi1PPb7kCdV9U4AlaqvyjNf7HqxjVSstRC9NIvH9o4tS3q0KYW3PMvJolGJ/SpUsI6S6iKltCmMCbA4lNAFzQzbCpwl9TjQErV3onQiusp8xUPjuCokapJzHTFzN4Lj3jCMdgxc7J8hamlN4ZkpMlwVTMqxJuNrlHag0Pl3UwOPI+xR2FT4/4LE1BfY8zOIYHN0BJGGebeLtO5AZT4vzU8uVSjQvRpOo7JkhuYUJ9WSPpTXaphrWGLw9GpdPWgkaIAeqCPqzGDr2O26nYQ8rVxxjZlVnOolQqof2dzPaG3lFQh09GyQ84ngQefXRbs8pLGH8fbx+y99VvTYs2c05oK7zXXNYizHWTitmPJs2C7pkHRD3L8c8dwz2gBn6zy7qKWhqu9z2ah8Wj2wSZqtQUmPuVGdIw3fzjoTq17PueDYQz4KjC2kNsNq9+Whqck7rTX0lkY2HaLi+VaQFDaMY7R3Sw2RKMlAgDxo+5IqnkCBerC5vihDHEEh+V9cd/TMJJ2YmUtjRvpO3MaTfWf5MBqvZTWJkbcpyb6G5XSQZYj6OdcLbaRI+Oo1NNjaxHa7xc7XpFbTNAiPApEh1lZjtYhUXiNCgKMx2xPkh5wNxUyzbhknjpt6a2iP2oKpntEnhaPxGYFqODAaDSy8Gl0qK8m9HwtB4xX1uBpG5gfCs+EP1I1vG5MqiJIDn7WGpm48Zx3CAtbdDIlaardg0jwkUQQ4PTmBKrCrRqrSrHo9mp4rpYGotEEW6f9wJFqFCEP7EUPn3E5eTLMzhCvl/gQjqu716NazCjsaFgdrUklVK6XZd5qfqEbeLLwylORx78BQBnLzqB8ZAh1pTT4NesUcc7M5vb4p6GMVvwWrVUXF45hpwFR3ZjR0cexCMYR8d+U/vjuUHgSKOfmQ3kW+bXiu+mWcD67NUFaby4DObmA6Sx5x/BkdyKmhV5PvDR2hGd2YpjWkIesvesiyNecTmPLOOpz2n8G7CA+bAM5eOtGT0pTL9KRyBijzXRWThjXzZgWs2B4hSnD90d4X0+mgkzUSBWWbTOHRur8x5kUIxOrfOTPW/IjKqjjSsP7u8KQqR9snAIy41zc3uL6+xslshRuPjo8w8SgDSCgVZe03oqqiPJrvRXERM5Smgl3foQNYhTBzAyGVBD2ncVUgFmDJVKXfVFS9d7RpGjagBprylzCcYa3T63B+bV63TxD9DvMW6BOhuFPR7SPyUUElfQPqec+ljEmFYyzKJhiS2UfZDNTqgt07O8PtzS222x3m3XhqaoxtT/ebIBBmcG5FxDxq3lhHsAhLqOa+H4INuFDXk3OrQAmFHVk7T2nQV+wRO17pVolbzTwGwLFkawITAaJGYoxvr3mOn0qdql0Crcepwcqx8PiOfD74RvPf4uRkX+uEBLyRoFnFUEn3pSEsPBJ8VcANXC5CCS/6UO5trnDpNYSBUN6ptYsDmCk6HxoFmBEGxo6E96xFf848KQ8701DCDU2IFg1jGhN2PGwXKLM69GNpoOqPjb+FHuQarxl1hdDzL3oEPMssGzVvivommTtA25JZFWUtv1yKPI15yfOy/GVPdz//eqGNVFyDoBgTPX36FE+ePMHJ1RWub29wenqK05MTHG2OMLUpPB8+qGhFJcFRSYGIAFCKhrJMjqpmhQEkmkvTUYWdTaeCr/1GMHNmAOrYq6GN2odAr1GdGOHBDfFgDiWEymMug7TmL7Em5XQey/gQN7vhY6YYUuBDaRZDFYLrTWw2G5yfn6PPitubO9xc3+D4+MRJ4rRlG1XZRA+WRh/l2edfma6fnlk84bKqyMSEoJv3n+jdNrFqfJ+hssNyWBXnYMyB4V174yjoc18N5LyMEYB6Zetj//bVTe3n2NQiKgDOc7ZR1/psoy3bQ/zL8R9aF0TpfzU0HftJjKW38eySBjyuJvaW7VXgTrBpSr8NtKUMmA0oAIRjpDxLekjoaaiGNbzasguKLsY/OL8Drcvg6nBdLtmHCNX5ptkKaFI262cjPQbjXl8kyCPkm4GeeU458ApyBy5BeHss7lyXJL7I9cIbKWZ3qf+uAtxtt3j06BF+/a23cHJ6irOLM5zfv4/XX3sNrzx4BdORZyoJ4+AZCw9EPCDgYqgWjGKLujOoSPM6JPjJzAB8jWRoNZiyifjhePDQjK8NLEI7Q8vFQxsFhMdljAwXYcnRfqWXomUcNBKVEiK+NmRPN53yET/GQhbvymHmesd6vcb5+TmuLq9xe3ODZxfPcHp6is3xkY3Bqy7HuwdhZ6jHybNQlgzlLa8UQiJGXw/0sS4Xf6Hw9YYMmfG47qlNpQoG11H83eqGK1LmkUYOCO0Sxs6/D7BTUDPDuFL4ZDBIA1yte/gynJXeCSLLT9X3SzkqV59Egq9U4onyByjs/a2htOAP8lJwVqE/17acSQLSVVErtfAijCpUevnOvpjnYZxzR28d08pDjFL7nV2r3iJD6zVUndSV8uCCt4RzqsGP1j/ff5QvCBoI2rg+w+71jshvJ5AkXwxG3SZNBZHJrGq1RxvytOH86THWrIafRjF1RgUXEnSxfYq654WyL5R1cVo0QVZrL7z4fq8X2kgx3IPwOCzsdnd3i3cfvotf+7VfxdHxCe6d3cOrr72GVZtwenKK46PjCPFMbqA4jX1q2JWjM0ZNZVddyLZsubnU1NLh/qXhCn0iFppgXbhAyRRyCq5aCUdAI+VcFLnGVhlUyEhpaCsqSkBu/Wd5HZ3nEISKSu11xbCyzpmyDYSys7DZNCh1N1NgmIOL2kD2CaJYbzY4OzvHo81j3N7e4uLiKR688gBHx8egJ9mYWanMQszZibUL6BBhHWr8Bb8k7/Bv1l6roRHWVXPoMyBm7pxnSZnJy9WQ/v6yRM+hVEkXHfpm/zZM08rPcSplmDxcvRey8l8znGcfpGeNUX9W4+fzOPce9EpFhpifGhIcDY54mUKfx/ieXnvSfHkFebpi1o6ObpUUogJHmTMtlVeGFigezvsl3E7xCwMNYO6KNiumSVFltxqorPDiiU4gXSqycjFZathhrDk/gxfYjdcbIl8kPyenxeZ0MyS9RGhML/C+5nEfGd84GI08WVjrWWHl+yyrVbwv9stlsxI1jFTnMkmp7lMz6D3iFMZcYIla6MW4FpDzRa4X20gNf/i5Mqq4u7vD40eP8Navv4XNZoPje/dwe3uL++f38dprr6Hf61hN485LslkDHF32g+/gZbRWaLf1k6mua+wZqsP9twVuWdpAe4aK1zPVWq2tl1A1yuv4QwijPXgJOiiu5siNpXLCYyNgq70v6LvA7FCO3bPSoMBUKkQrjWrRfcL+lgVpFWCz3uDs7AxHmyM8uXyKi6dPcXN9jfsPHrjg2Dodx1/XLqJdAAovrmkdGCuAl/trCDWEkx5sMaLlAaeDCV/HDn3umNuE1apZWRkga/sNiNPXNps9iaBxMWCONmvquR2c6Dak9E+GTjXqgGSLAN3VQFdacT3BDK3MpuymSGcmH4RGHgxUReCSWjt7xbPSojOjAk0Q4OW7xBJVptasLp9WHhrBRIzD+Zy05umxCDWuDgqM+Xqf4wTaRPGuJEVtIzaqVwcHLN5OQ9TnG2i6oHN44AMd/ffeLT2c/dQsRM2x0NMSBznm2TufAGBpE9bj7PVdS4Cp6hGegImlX8UwVn5l+Dv4v0RmrBuliG8CvFiH9zZ5YGs6+F4uDEgP7P3ZJwAvuJGq8MmIaATcbXd49uwZHj16hNVqhaOrK7TW8OziAjc3N7jb3kF1Zcd9l3Af9znEJFE4gVEp+n9UMUyY7AlWjefbzKhSCTlS7guFuEAY9lVW4UYgKAkkPZAklK4fFU4PiUoYpZJy8z09CNbet5eU6jBSBcn7WA2RK+apo4VAVGMG97QsI67zRFRHrav1Gvfu3cPx8TEe9Ue4vLrCzc2NLZa7J9eabS9gWI0gbckOBhgyay081JFIpvgBL9rhBsVDKab4si4iAQuFT9UyvJrf0zzF2UjFvSi2JqCeWGGhuyLxQVzyk52oHJl3XmXbgIBmf8MV8Rb4gfKfhcdMK+YDF7Galt3BlXm4U0QWggu0cFrIgbqX5+P0Gmyh/cPGKFjRYhwvojSTKtDn2cCSj7Ouk1Xv+JBnOHi2ftpwGg5z+ltZnzW6AlZ5lmtH1ejRk0ijQA/Rsi1n45GiYSuwi1wZTbBQ9cAwjiALMwfJd56K7sa26wwBMMH2k8F7riJosoTC/nLNXzuLPB8wCNVDps6q/eQ8hw5UjfT77kd0CGw7gtcVHjxu8FHNdwgyTHnYzz58vdBGKowDoZrmxO92M+7u7mz/B4DrqytcX1/j6uoKl5eXWE1Tek3SgGnCer3GyvdVpcIBnDWGd4ZSCMRJVKyJfCUVlz27P4ZIJuB7ykSLP6RAxnSLvIaHEJ4CGXzsK72RaN+Ft4UCM5R/yEAJJbb+6Ng2yZHoi31JQw/hGsl+EdbVtMLJySlOTu6hyYTbm1tcX19ju73DalrlJkNPqhoVb5mLhaIZ6LS44v2kKw2KlLWVA2Edtto7D3oUxziT1VQryroqptqW+kSGgQGCNvTADvb3wEVPTFHnpPCJpKImaJokIwW9K1bctlAMXMCVwo88qqJ5mKhTG4dR2+v1yPPFKChBgFb5iE4Pny0jRFL+VZQN2DS00fWG3Ehe+bMNtMuea304+jbyQa51obY5qN2ytj1QI1luAJNqRQjsIUHNuFUAXN+lEYEDTPTZgYSU8XEiaHSkzIuC4DqWSsC59nepDDLEEwsSiVB2SCmefh7UKb8j+CfAFgSyl7jy3tcLbaSAXL+Rwmwigs1mg5OTEzRpWG82WE0TdjvzsOKcGFiIZVYArWGz2eD05BQnx8c4OjqyyhEhVy6oxdXvNfW8TA4VoCw+t+9SqKYplVTKZ1tMs8SXWj6l5NYFd42GSAeEcgKFnWOXImyl34kwdfheQdmhAd7XSqoKbbl0RfsWHF3sqeZHaH4A4r17pzg62uDu1ozU7fUN2ukpVquVhyVqOxTmVKg0DEk+2VN4A2UlVUvOmQGSdNL5+2hQYrxaBLlUoQgFLfWdFdbK3n+XtGQqZdzD+SRPhrYmiTUMVKzJtNHAAA5SmGWV7s7QE425KsfQlPOUknb0pjTWt8bwYOVt/ifvEbc0mUSwOCXAUMlh3O1ghUa95UdJcRFkzLnMYWjQAqQONe8/ecrBOEcUtwo4SM5IxEDqjGrU2UZG8tXnO8dbnT3Kchwb73M+lEcb2F8W66R8yzgvYfywTwrup4zIjGiEBwnGhmcoK8NRRP53WX/b6+x7XC+2kSqgp17TtML98wf44Ac+CGktsseaCJ5dXOD66grzbgfAUPxOFSqCo6MjvP766/jA6x/A8fGx7YOSLKlkOketHEmfo6Jvej65iW75OTuczEFhBzJEVOr+9VSkiayLIeZ/hQgcjspQGK5lf+yDwZM6EDCwJps4TM61qFi8pqGycg8Aco2DCjWQe8Q+fOxxQwOavZvKbpoaTk9OcXp6D7vtDrc3t7i6usbJyamt1ciyq9TW3hfSnuMEkIf7Hb6KzhwMQbTLMSyeGkJs0RNxUD4qgEjJL/MWBmQPwJhhEkikTSdyduOJ0mm+2y0XFb12Abw0V/PKIjQy4sCrTbbnr5Wxkh8Bt62SGzy7bzS3RAkrTSSVVp4iWs+5ygyxou3Twlp2pPe7z/BjcFpWLyhVXAhqtPATpyD3eKGALP7dvOJEfLvQqtZ/aaSxJJ+CBgpjFRek5zJmAhfQA5jRbm4sAnAuWKrqMKUBEQdvyZyRmNLt+4gAhDdW28ptLJPEm5O9kR7+UgNENMj5ju/hyQOpr+KBAnRyP6f3drTbjFDsC/N7Xi+4kSppooArJ8FmvcEHPvABXF9fQaRhtV7haHOE9XqNZ5fPcH11jZvra0AVq/Uau3nGDMHx8TF67zg/OwcZesnOEMEEYAfugkegTd7D9V9ZTqBq/KA8x/g+VO28mFC4RZmRKTF6PwLuyxrbzlNFi3L0AUlh+jzJ1tsTCptGuqg6re39/m+UHrI1Di3IiQkhNJBVHBRu21SQRWhNoE5OTnB2doabqyvc3d7h6uoKr7/+up0LNiiPYqDUK1zE2H0eWvPnxv6XgQ7zU70De8V+SnW07cobQsMSzOE2nN6m0ZrINcdL448UaK1z0bwUD+sE5rxEVmNxSb2ugGXMdUOsUxNYpWmr1dj7DGauQVyB+Voa4GsjzU6cpWFsPH/NjVT3rRCiE6SVMJzCT4MGGvJ0aatpONIucYBgwmQAe1bMpLX3wcJDXAts6HWjqNBgacyBlsaDRdQMJhNSTAbTs0ggxfD3uHcnJI4gQVDa0Qj5NkiAi7jciJl8Zqmyw8AnH2K1FmlcA00PR9WTgbTFhv4wlFUruH1ZTVOUL8ojvJEG3x8jWA1dNOiJ5OcATBwHyl7B0ld+hzj+R4MePF7ovekwXu2L3zJeP/uzP4vv+I7vwIc//GGICH76p396JLMqfvAHfxAf+tCHcHJygk984hP4xV/8xeGehw8f4nu+53tw//59vPLKK/i+7/s+PHv27EvtCjgbNFTwfzebDb7qgx/E137N1+Frv/Zr8TUf/Vq8+eaHcHx8jJvrG7z9ztv4/Oc/j1/7/Ofx67/+6/i1X/s8fvX//Cp+9dd+Fe+88y5urm+eS8CQSzXhB0yoqHxSghBKaQwF2jrAPGfRTHpLCrFag0gUGYZsQIgSbZnCWxTcVH/r4pEIoxSmHbKRQMUqoIdGb4kVOvhiDW/KQqYTvRYBqqyTX6sBTXiaylqk4fjoGOf3z3F8fILdbsbV5TX6zgtghpeR5M31oznWOCpgb3FeTjHC8TOGPQPoVO5awky2Idzw2cJD6X4zlZfPDK3UwE9U0jRqfFkcnS6Cee6u5Kk8sjJKDFKSvtCsWLKXOi48bK5HP5rY/i6mz9OIhdLxdSryDLPRKlFIQ9CbJTBryY88wXWYGLFkhGkyg9bVawd2KvVqEBBezjhBCZoOZgBy6wQaWps8mcb2hIVbgYxA7Rui5IEwYGW+KMeRPEJ5i+/do1Cnda0DGiA1n2kOWOr+pEhw4g3imbil2G79kbTOEBFMqwkrj0LssbEbpwHAsT8D8fmenvxR0vKrHMW0aIZBEQaxZAUWWXk/15dspC4vL/GN3/iN+MxnPnPw+7/7d/8ufvzHfxw/8RM/gZ//+Z/HvXv38G3f9m24ubmJe77ne74H//2//3f8u3/37/Bv/+2/xc/+7M/i+7//+7/Urvi1mHChJ/VBfPSjH8VHP/JRfPQjH8Gbb7yB05NTzLsdLp5e4NGjR3j48KH/vIt3330H777zDp4+fYrr6xs7fA9jYSNV23Ox29mREpF+ORzVPCIxKZ8xRJBlaYrSDi8k1wDiOxfs6ttVJBLMH2yngSjTWMkgFHF/RaEhsAgliEBsfVjQ59EUgCHdKVL6E7GVt9i/fDz64tbMyxBtjjY4PzvHyekpVBXX19eR5RfeitS2c15ifUCSVpOfYkrkyN5lN3zuOH+DhhJgT4hybDlPrLunYYtqNhpDI1ldJvtX1zFM6TFsw4y0qgCTRzTmx/oYvqrubzdIxWibznscKcNTgv17i7cVYJMeQKLpPH1VAkUjMiShYzIIFfjSRnH+Jy//pV6ZfzQIxjkiVtcuNjIHDnRlx9/r/IDhOGsvjTEfzu+DN2hcA+w6AVENRuWhKjt8fXQuZcn/xz11lQEFo97iPHFtjmH5kQN77OEbR01pz7ZXrfmGc7Azg/yE3Pj/iqpJGQX5t55AnTxbDw9NumsYKuopevohU89DgAeuLznc9+3f/u349m//9oPfqSp+7Md+DH/zb/5N/D//z/8DAPhn/+yf4Y033sBP//RP47u+67vwP/7H/8BnP/tZ/Of//J/xLd/yLQCAf/AP/gH+9J/+0/h7f+/v4cMf/vCX2iUA1RgoVusVXnnlFdy/fz+E8er6Cs8uLwy5zXMUMm2t4e5ui+3O0mFvb25xe3uLZ5eX4ObglRep7b1ju50x77YAOlartWWfVW8HpYxOEdjK8Emv1L3mRxH5ArQWQjec7RWmTVBon4dLDknvngJABTJaKdRwVrr17L8ncVAYQwmREbsjRRv1iLJrV0tIMSpm7Bv1taein56c4umTp7i9ucHTp09xdn6Gk+OTgcb7bg/cMEs0y0PkqiqpSS1U/gImxGC0You5snRbKrExE9D26CUNwbmstJV4ayLk+jKns09XASK5TSANfSEn30sDJdxGgTyDKxTSePzCnvkmeUlLGkKOKxKUks+Hfrm3Ww9rzgmRUOQixjddGoB5vM8bFV97sUSPhnLWhr+K/CyLlyWSJ0hj20HXUjKM/VkaBP6ZcyUxfF2OT/Mf/tQ16ebrw6XSZjEEKaOUyWBxBwiUofrO2l+jpwzfNWH6/HiSL73GQso9VWXeGz/TMMpsN5+rYMtHXvRaUS5BpKpv3s/1m7om9cu//Mt466238IlPfCI+e/DgAT72sY/hc5/7HL7ru74Ln/vc5/DKK6+EgQKAT3ziE2it4ed//ufxZ//sn91r9/bWDAevp0+f5pfpv/tllYg363VBQwCgpgBPT3F6eorbm1vMfbbMsTZhtZ2xOdqgNcHN7S3effchnjwxhL1aTdisJgvB7Gb0PuP09AT3z1eGBlcTXw1BQ5smm9A2HtGRKG1EbcOCf0FrqUJG5cZnHHRjzAek4tDQHgJE0bM0iKm8BRJHh8Q6gPczhE5TKVGgElEWA9c9NFB6vsS5MT4XUI5FWsPm6Agnp6fYbDa4ubnBu++8ayWS3jjCajWZEnwOcw/TfeCqfRSUJBWNnWfZORpkzWezOvu+Aartk0Z7YRDkd9Fn3sd50jEFnQiUxmeg4mLAodxaRbSHSMJ+0FPbp2esz0muP4Ss7WnoRdOs/l852I1AiKuPJT3LfH4UGfdESMvBHpU6cr0ir9xzBXoYxFBQeJ7NntfJf2PKoo2UhSW1CJvYb8GCB0JmTcrq09VAVdlOUOfSqh29C1cA+LD3NdsIGml6YkGpMs7WWqwVptmLkWTfBkCrCaT9DK0wrkh6ayUSHw/7JEPbC0zw3Os31Ui99dZbAIA33nhj+PyNN96I79566y181Vd91diJ1QqvvfZa3LO8fvRHfxQ//MM/vPc5hbqONiZskdm1Wk04PT3BgwcP8IHXP4DNZhOp4De3d9juZqw3KxwfH+Pu9g5vv/0buLu7RZMWRqozg0mAr/qqD+LB/fuRHh2T2YAmq1BKfTaFnajVs66m5jvHDyAKGYYE7nxHE0OXquHyi0rhAak8FTvWpZGhEKiTyIjvYgmaOMYjvEOgpFSVAxf5IgwovmvH3D1IUDU/ETZgSow08+e7KqY2YbVa4eT4GCfHx7i6vMQ777yN03uneO2Dr2PVVsAsizOLPAuKqFuSphXpsxuWpaYD6txXkjbPPJSPtc7Gk3OrcBpFelGMh5B5TrPQSuecOHDRWQE/O4mItfshheKVpxOT+jsIDGI+XZl32+RKBIzyHFDmDVp4bpSnIWyzZ8kPaBn1kCPXCBFDTUcqWrC+NfHkG//U1jqp6LPga2441tLo+Ln6xt5u0+Yd0OhAGO/wDry9OOS2KnbvZfEWaJ+Nf5udZ8Zn+F2pPh5AhwZFq2FwHgCBihsKTRyQa5weDvVnkjbMEk46xTSZggAjLPToWmuAH7O3Z6TholTWmFl53wCQ3Uw9EDJW5ICIII0YnB4ofZXxpe9xvRDZfZ/+9KfxqU99Kv5++vQpPvKRjzjTFZF9HrqDZ48dn+C1V1/D3e0dXnn1lchYurm9w912xrSacH5+jt1uh3fefYQnjx9h1SasVpOXURJMbYX12gweQxHDRYUXWhEu986AYjH2Nk0hNN3LBxPtVUYckBeMeTpPgnWFsrcQW9CstduGNoBSMohwR2lkvC2uRRT7G8oULIALV0o91hR675i7nVJKQ0B62FR5yENRQg5j0sDRsXlT+s67eOedd3By7xRfN//ekL5qiCC+hqHIwqFFDSR/1OxKO2OINBugO1Jwm1d1t1IwCtV5UAhUYvHvkLxBJFrDiDrMAVwZsB9NBDtvp3nhV1tHUoiKV9/I8RQEsOfBAcCsbtzgR0p0KbShMZlDgVSdQQ9HQ6lGTQdwOEKtjMz0U1Xo7OuXtEzBPqOsdPdo7QymXPfItd4cS6xVafYf3iNmE4YHQuCkdgdD0a2x7FQJf6UORQluFF5IcJdb3pI/oCUkXjxqYFy3zPPSabFQvKhCc5Q5Dn61xBIrgyVlfS7PnZNWThInSFHzGmtihUxeB7PRk3TdE4Cu8FFseBzHDcg4l+xuT/8vpz7BEYsHMEFlyQ/Pu35TjdSbb74JAPjCF76AD33oQ/H5F77wBXzTN31T3PMbv/Ebw3O73Q4PHz6M55fX0dERjo6O9j4fSFhoSfTRisEQsRTz1157FVNr2M07zL1ju93itqxJCRqur2/x8N138fnP/xrW0wqr1YSpmZCs1xscHx/hjQ9+EKP/vegYAPQU8txoaKhxmho6vEJz15JmnOG5dJ+pIArKo0DC0bKpIohoLmRTkA+cb7AscArJvTn2fkpnYUwAo0i5gp55iJ4bunnGNK1CmMqqlx1hQEvsHK2qdkClWtmmo80R7p3eQ2uCt995GyenJ9jtdilM/mygQ6dVGHeOvy1QKwBltfOh5mFa4oqus8adDIptmiSEkJl8RKXLMF/2KUEDx8yxMCxmBtMU/EomiDT03c5KznSvTMCxsxaalEMe3fBbv7tX/66hsgIKkMeiK7ScrDrON8FAhKOCVjogGFPGZdMvOmQ1oUExd5qTYlY1jYk0sdI/Mzy0pVaibCqnvyocGMwIR8pZlOO1dnvKHZUnaUv+jDCfDoqYlROIW4Z1HDgIovEzIQGal0oKg+LvlbIHDQpBLbpaAu2ho9LwoLw//1Uf65TgT8ox7sU7IeclKMsSZBPyGcvoHI1FjFgYlUhZreJCqlBemAxGA2U30zPUsPatpR57nzbqN9dIfd3XfR3efPNN/MzP/EwYpadPn+Lnf/7n8Zf+0l8CAHz84x/H48eP8Qu/8Av45m/+ZgDAv//3/x69d3zsYx/70l7oXgQdz6qPrHgpVbsxx9HREV558AqOj44BMcLe3t66kbLMpuvrG9ze/gaePXuGt99+G5vV2rwoUTSZcHx0gnv3jvHs6hJb3xD8vMsKisau3METaN7/nTLcwhitAsMZT2VQaU8Q6zgUpsFrSuacWjJheBcYFWo0rVQSBW+zf4Fc2QcaC1MPeWaQ+qK5Im8eVB4yZMa+dOjcMaugTRM2mw3u3TtFaxPeeecdHJ+4kWJbmv2r8e3qCRoT5KCrwg16haqgyS0KgQpEBCJjym9rXo1DK0UJKDDQle1HJXt/Wz2W3cbExfV5b25qODXqERctXUFJVLbvYt40FGhTUWJlXt2rpIHMMRFc0GiTt0r4ahy6KzSeXM2iyBwD0TqZzGndPUW7CdoENBXMsyu7NiErIlYeMkOer5ZE/b0qdaO2kUVRy3SrIrZPCO8pxrle1ta4HkV/QcSNg89ZBV0EmjxXSsgXAa28FUnwx/bS4Ka8MMlr2JMpZfwygliJ57PjlJkm/E+hopRQ6gIMhvGsV0QI0lAVtxPitf2Mp2rURoque39W6ks2Us+ePcMv/dIvxd+//Mu/jP/23/4bXnvtNXz0ox/FX/krfwV/5+/8Hfy+3/f78HVf93X4W3/rb+HDH/4w/syf+TMAgG/4hm/An/pTfwp/8S/+RfzET/wEttstPvnJT+K7vuu7/q8z+0Ymy2uYNrHqEqenpzg+Po6TJW/vbnG73WG3s30iT58+w6NHjy0MeHODXdvGsQRTmzDvZgAzri4vcXV5iXueLh1MODElJpFizf4Lhbro8RAZ8Y2xuncXQghGhTUyPD8jVULpFYLVz7g+xFAJyECp2cvniI7W9ioGT8MWXQ6FklOV36fgmyew3qxxenqK1WrCo4cPcXxynEYKRXGW9iGStHAjJB5ShY7vqgQPgW/iuq/0NjL5ZPG0Lj6vVxJqQOSV5hJkG3Vj2H2N56PVMCppuLpv2o1mBBH26b2uuXC4NUy65CtrdzgWRvbpRT6xk3Kp3CSNkCZgEV+zaeNCVDJO8JWFMoMuQZz8OzNORzAKeFi2O3rpXqrMhYNGd8G6e9pi31DVOxzULD9me+4BFxcrMOnyPZRQGioDKC2+MxCQ4cvlkCOrFMl/NbRc5aJH+Hn8PMd46He+J3XJ6PEjPCWFQIQmuByXIjm1QLIazVf89T5dqS/ZSP2X//Jf8Mf/+B+Pv7lW9L3f+734yZ/8Sfz1v/7XcXl5ie///u/H48eP8a3f+q347Gc/i+Pj43jmn//zf45PfvKT+JN/8k+itYbv/M7vxI//+I9/qV0pVzKilr9TGOAAwfeGFFR1cnyM1bpju9uhd8V2u8PJyQmOjqxChSj38/t6y7zDdrvF1fUVnjx5gqOjIzCjp00rTKsVIJZxt1pNdkZQOfspvCAqU2h1sry/Ze2EwoFUclTqEUcOTdTyXmQts8HwAOXdCERUDbpI2QtRzE1FanY8RQ+UyLb2hb96BVkuRUZ2HeSktYbjk2OsVis8efoEx6cnmOc0UnOvySg0mCYw6Lm+1XiMzkIYliE5iMQZPSiGhN+TZ2xdAMOzSwVgeoprNCm86eHlv8zaGpDw0FXzrmadow16fObBFv5gv1vhJB0TdpBvxjBTAZzUlG01OgP6tQBWVy9syrVAzbnoySzGRxCrsKWZtpzKXEeQ5fTEoFDF118TtOUrkh5khQ6G40KTBj+n5xFdLPOx+M7npId3Vqnn7XKc4NwUECK8s9J5HBqBW/Us9oGPOBDIuosaL9Dkm2hxKYHjtQx/j1I99CrvqANdfG4lnErmb20lkJN5+91RT2WD93N9yUbqj/2xP3bAKteOC37kR34EP/IjP/Lce1577TX81E/91Jf66udfBwAQGZoLlzyd9tD6zGqarLxJU2w2Rzg7u4cHDx7gwYMH6Nsdet9BYSVe1qs1pmnC7c0NHj166IZoQp9nrNZrrDebaPPk5AQnp6vIrjOE69Ul+hxTW9NrXd8MhoQIlSfUZqirhYAko5NBJGuROaxZHn1tbRR6FEN+yEtIm2AbJOniEyLQDFWUZ+8WVIOCoshpRJq0XEMEsN6ssVpPuLy8xLOLizjADYIwWKv1OoYjRRF23lv6QQUYcfuCPm0OGrpYqNJuKQkNjftNfM2vGCmuhx260pPKSg9lF52VMZI5xx4/rcyZBE21KzDZaJg4owFT02gCRL85voVfkPrD192iCr6qGXvYvJXReHuKPjt2lgRwkBJBEISHZYbT31sNWlX6noUYw9BR8doaWukHaFCBqBgeX1Huxw3BUUkfeWRMTlJRxMP82d9WqmgZLfA+D0WFncdag4RnVeVmOQkS97Ar1Wuvhoth3KSdS10V38GYZp8qKI9XK0Pa43hjv+Pi84wCyWALw34N49MSTRmFg30cTdp7Xy9Edt9zL9M86arTQIXzoS7wtrDfBRAeFEdlBYEtxhph1+sVzs7P8Prrr+ODH/wg7m5usNveQdEx77onT6yw2+3w6NEjTKsJ69Uau+0W66MjHJ+Yx7heraIeXaAJGBKyEjXe2caSQmRyY6A+ZCC5KlCNxAOiRRGxxIWWREnHyjyr3u2cJ6wQyJf0oycQSldsn1mLorVOR6SkcRytNz/fCW48gdaN3nWhmmkdqRdGZB+GEZ6gAPPUpvUK2+0dbm5vkMd3e6aTAGusy/zTwGveq448GfIR1mdbCK5pMUB7ZOjV78U9qWmaoNoLKuccINrvvYQ94GhauXhOBWud7arAbMCjZvnFgjXpPAtm5291QNLJC1Pu8UplAgctI8YmkWrbon5wJSSzTNWOBw/wLKOmtWxDhU4cITM5xevpFYUKX2uDRhFa8gDNdu+a+/jcqJXTKmAHCNsHjVpxiJW6YSojTfRvyRFtyhMNdBIoGRaApWmP6yTj+l05m8k/iPPGAhnSODqwmC1b0ZrMQrrZxUPIxkF0z3aZHMGfur7MxCXKMI3PGKlBtMN+xncx3nJf/Ust7Cvlf9lzdePuUYcKKwrIViB5w2nkrPtb50l9JV1af3PPoRLCvnGcqB266y5APvleuNRS0S3Vd5omnJ+d4wMf/ADefPgGri4vcXd3A6Bje7eDdsU0mSJ+evEE02rCZr3G3d0djo6PcHp3CoWdNsvq67U/gO1FmvsMiGDdrLZYVuJM5R7KxDQaFB3gBmFJpTSg5KKxmydR5ImjiUKXC61AMlwoaDeWIaAUTio/R6629iDBvMySGjxCgR+nglCkwfJEulSCvUOmhpWHTne73SDgHA+Fs6uF9ugJZGVqviu9idwzJkXgMwXbEiMWpV9Aj6l4B8Uw1dCfPdPD8Mvwt2vf0Bc80wklE1UGw9qkQZsCOodui3F7KIrjgfeLoK2ufxnQcFXuGEFcKUrPPpJ3qPB4EGj0mcZVO1ZuMK2rXkAVVh0/+I2AUHPzLJUaBLlPqwsgWaaJtE+l6gd/TkuuTTrmowm6wnCU9PIGZiIuGsLys2yjFuc1QnZLEGrFmyQZIJg9YiKw7Rg+daXP1RwQMHMe7bPBk5qmEgWqa40ZKVH0A2MqwMfBbddlfcklFcYrT9pdvF+ZjyKIVEuJOzLEPdpx42cUXfVFrhfaSAE0QvbbyL71Gy/q2m2jKqurNLXNo6yXBVhV9NVqhddfex1P3ngDl88ucHd7DUBxe3OL3Xb2uVDc3Nzg4uIppmnCzc0Njo+PcXt7B1XF0dHGsglfeQVHJyc20S5wc7eyTCLim4FBrWCoziHk4JEQPS7RkRsPLBenQfTrlZUrY5Q2KqNYyKkYC/da5j6jQTADtrO/1b0p/lwcH91CQSeigwtRWe+JdzMk5Aa3W+Hdpor1eo3j4+OoCxjKqndPT05DSPolyjtghJ1mLBcTCRbFgJOuw9qfwLwpVQDdDRgNUxoncaPturv02X9KUV96WFCFulHKM5zSQPK0YIGt90iMtcylSEw3vTAxSJ/jUu5D46zRqDWwMlGHxtlE3NiQGbJpBNm36sdEuwRPzg8EJL0zXd/nPJ5Vz7QTtJWAtXjEsw7VITdROUPHNMSkp4AgYGD9oEkFFuY0W5WVg20lAouxZm/LNwTEyOeT/m48Q36TVkWC40MThdyWQLAKBxLN3O3sb2WyoKMHbQsPxZvC2zKAUY3cskeGQXqxOTK+i2w3tD/csrjIz04/4s33Z6NebCOVVXWBkakY9y6KAHDlZ5POkAXgisA3bq5XKzQRPHhwH6+//hqONivc3R5DRHB7fYvb2ztAFFsv1XR9fYV57ri6vsLR5gi3t7cLI/Uq7p2eoU8eetNuin+eo4+C3P8SbExuKSMjuh3ceN7qjF1j4zRQ2sdQS6VTXfdqBVWpqlfinjHvZszVi2pWYVlUQqhjbWYoBZX/di2rCuFhJJrLxAEJhj86OsIrr76CSRrurm9ij5OCW3HHcYTwEvXJoht8dyj9DvQOkamoEYS0hQGc8tkCpUdeGynrnx8OvexfxqPdswtre8TY9AUHJVmuXDNI4ee5TrGx2xvcw/CS6161S2lwfULIpP63QyeEEqOnzO+LMgpaoqPW79ujg7+CoDE99MPjHkBXGOrSFkbwMBBWU3lHW+CR6ON8DYlGfAffMxItfh95Y/lyflasPmVgMdqIPLQxQhHfS9mfJpUXZPg+3lkALcHYYrBJ8zCcJTM0u4v9Wdn3dEuzgcVNVz3Xqg3XC22kLNRj57lwYoARiRIpUykaArCNdTEVRJRi+kgAnJyc4P79+2gCbO/slN7b41vc3txBxCp0y8UFrq+vcXl5icvLS1yvrsNIrddrrFYbvPLKazg/v4/jk2O01RRKgRf7Vt3x+HwPDRVMJilUVGMJ0+y53nmWUEfTCZVP+W9m37WoGt5a8wwiMmT3cj2OrCeJheg2NUylNJSA2XUWDrFY/BiiY9NE0CiL7NUsHx0d4c033sTNzQ2ePXuGm6trTL7WZ31N2rB0DJCeXfJBxboIxN3nnqjfjXJ9RtWBTdnSRONj7+yxfyXfkyK/NFDL333iA30TUY+JBYj5kViZMRpxBz9pl/TT8pz9PYSOnwd5XX85BVypFEVa3kUtreDZWhL958Zgq7xuxmtQbj5HPN6kQHYSDowmANzekRtthWNHyjgNhvGvj1gRyRL04ugF17p95umxhlKd/2KkC43EQW3lCT4afhUV8gJYcKiGAcZ1nFiqlWgMMQODPqh9z76FPpwmNORa4GKKB/N36FIA7rZ7NmHaY9LVO1WnzD1/OFhoqJVuqmjQwP2u8KQMPcwQTJB28I5xgpdQqiASocKwb7Ber630UZ8xH28so+/oFnfHd2hNcHJygqk13Nzc4OrqCpeXl2it4fbmBgo7Y2m9XuMDH/gAXn/9A1hv1n7CrERVABoEuxiH9IVeVwC0Q7H2xP6WzKA4DRV5UJyI2NrXPO8py1zL6VEpfGoCyMoQkySNcj3BQgQqxvxUzqvGA+U4CgG8dJOoegKTeXIsBSXSLI25l7BUMHcy/ub4CL/nq78ajx49wsXFBZ5eXODBK69gtVrZelXxLnovR1C4saXyZ7LBYuqz/E63NUKr/GHjYdy+ax4hkUCH4Zx9D2n88z0MFnJdkNUvbAwtEHM4BCJgEJZPNw8BVdy6XGOLIsEydozPBMaphLGGQjbUgQkE4LIM9xjy1iihVYwjx2zGoXpVqdD5RgIcBTycqX44nml6kwfnD76XWYk8r8pplVVCLGBJY9Y7K60zZGZrravVFJ4J2UQiLFsoE96I131sE5hwBdSkijJxQLQdg411WU4uktYQ81xqPU7+R8a5rmBHJA+l7LBKKTJZokXnEd/jDOfcSXo0SzDFaTKg6QNTRLUatrdMghjDqxxb8seStl/serGNFDyU1RbrURX40FNwRJXIqE6IPZRCbsx+dHTktc1sz9Tt5hbb2ztM04S7kzsIBO+++y622y3u7u7Qe8etnwIqIliv13j06DEury5xeu+epUxrTiKAshjK/loGoXiJ/UDFtQgFABV6kRi8yBA0+L6uXR/i+ilM7il4gUrw9FIyqh+uxjDCPO8Saatl/01tgqz20YGkCIYAqSqkNUytQX1svc/mwdWpK7Q52hzhIx/5CFarFS6ePcOTJ09wfn4e64Z1skmrxjJA9G5ghqaVWvHmdWqEXNs02WburmjrKZRG50F/UD+XpwVi5DvneY7D+3aLCiSDgorPSgq2MHNLoHOePJtl3ojCW6Q1izOBSK3ivpgAV2zc+NkL2InZISouD0n9HovvU2MORgrIAwHpPjA82fuMeWY6OGUulXooQeFeKsQG9VSUCju4kB44P7OMxwEo0EiJYlZLtmlttQcQYrNzmZv0grllZY7xBR09gUhEME3u1zKU7gOyjD4JT2owClh8UOeC412EwNRdrITPOQ85Jg35rt6fNEHT0bg5Eqw92nOsKfOZqp96I+eltsE+IJLSarFbe660vyTDF7leaCNl6FOH9WFggRTNKoQnYowiKaSqORH0VvyWzWYDgbW/2WywWW+wO95imlbosyVQ/NqvHfu7NNaa+Pfls0tcXFzg8vISD+7fYlrZ7tLZT0lVVcy7HVZrGggU7yYTA2JMFa0i007jiG8fM/fc0BDQuNlCbt0D5Zl/nhRAdutzx91ui+28xW67w93dHbaeEKICyKrFKaqr1cpO/1xMDNcKeDKuhRxLjJ6CIAJtZb2gelJHG3zkIx/BPM+4vr7GxdOn2G63WB9tMvHBb6/hRMvOmwbPR6MkdpA6ntHe0WfzpDYbu43V0q2yuReWbalkKciRiow0SGPIMD+rBk5VMXnYsoliN9OA8X6/z/foNPcKojivZEpyrn0UT4qN1LCYUDbcK+uI9TZyWfAWibTULrAoQRfxviHSx+u6DcDCvDxI8fnnq5oyVTtValC2OoA6aYDOjBSUvUjeN3qnaOyse9MxjxpyVcPDwa9loFrfu9CoNTJDD42hVhoy6hrV/AnDXGQg3qgwg1eySu0jWzuXRC57Xkje28PTFuRZUsPcgH3In0NejYE0sgd1ZOrMMJRunDRAj829ZesWY5qadWE0v/j1QhupSqzl+k1MStfIP61Mt7eYWH9TQ+RHRxusmmCaGjbrDTbrNXbbHdYrorOO09PTKIArEEstB6AeQrq9vcXV1RWeXT6zqtQegmIYrjXBdG44v3fLpBOx46a19kz2lV7u4/Rx1e3+yA2gNBSqmSxSPRzMMwQWquvzjNvtHW5ub3G322K32+Hm6hp3N7dZk2014XZz6yWigHunp8Meju4ebs5LzfQbDRWES/ZFiFyxbNYbfPjDH8bl5SV+7fOfx8WzZ5ZFeXICrHPCliwfx8arZs07FGVTaBl9jv1N/rcj0qHfQy8Tce7x3OLvymtC6OyfhzDLPN5TtEdVLwyhWtbfIcWfHkF5LBQn4Pt4OkO+nIM0USEVYeD93Ugla8e+52GFOXY3gmKgKLwhNxykaQ7MW6VG9y/CSEaf7V+POLpXJaWN8f6RIhoecfU+hr4UhRpkCwNVPRhTshHWxgzQOMLDj/A1xojM+PvI6cGHGXOwuRBMmjMYc4AxUajSPGmpYaj58F7yRB3F4rslvUxXZNMhaBW4kD91STdg9BJL40tD/T6uF9pIJZHz7z0XXpGZQlTmRJIH2qS30VrDer3GejVh1SY0sXT1vp4tjt2B7XaLs7MznJ+fAQBub28we9hGtePo6BgiwPX1NR4/fozL66sU8NlSrW9vb9DnHY6PLNV67jtDyZLnxwQK1RSCCFm6wQ2+V/9PFQR6krqggxuq3W6HvttBFF7y6RrPri9xu73DvN3h+uoat9e36PMMbYBMEzabNW7uXWO33WK33eLk5MRCV9PkHh+RWlnwLXNTj2GgUqtXV7Vzxj7wOl59+BC//tZbkaRyeu8eNkfrFJ4caoQaoEtFl8h6eACjgLE/43NpOGrYZYm+63tqfN+e3wdH0V8wjFR4GYBK2cTNueX0ioyhYsL0YSjFWFFWkFEFrhUiMtkk/rsnG9E5ppULOtduer4n1u6GR2m02ISG8h1IV3rhKt8VtLfvLgkzWXNEaVoHILcYwnKaEzBo9I9tVN0iwszL9EIgOq4TSq5/MpzMRvdggxtWEXi5IDVvHkBTJjsQoGgYoIHGe4YlqUG6Lb0pibEtaZB7rVCMHIY/tegQzk3p2uIakjziaaQ+OjCG510vtJECrHS9+EZCKuxluGDWrPXGRAURKcdjEPVZBXC61pNXj27u9Aoa2goAJkA0Nuu+/vrrtkfqLr0LKtnjk2Pc3NzgnXfe9gmyTapdLcR0cnqC7d0tXn31Vdy7dy9RlyZitUoHALifK/rNMMhhJClNImMvlYPF5KdIibejNe7mHXQ74/r6BhdXz/D04gLXtzfYbXe4ubrC7fWteX8NttF2vcLV1Rm2d7Yed3Z2hqONpd1Pm7W9Q1ax5hLz0jtkmtwQS0GTDIdpCEWbVlht1rh3dg9Hx8fYbrd4dvkM928f4OT0xJUBYj4jWcL1Q9cU1mqgBOLVt7MUUxMJYG5/N8yeLp3gBj6H1r6tbSDmqxo0008LY/Q89DoILoo2J3DVrKYdQ05VHpcr8Kq0411uDJN3GK708dBL83ZKk+FFjtrNnukK88Q9wy91U2ba8fyg2l6cH4ZU5K792TgIw61PlE+GiK0TTVjhhO1XD1kWf2P4t67hGH+MYb86X3XNyvpVlKzrHhtbj3G8pxKuX9ETUd8yAjOMtg7NJJDRHUk+L++SDOZGCTVNUJoepJYyXABKKK92LaBvMUxjn/0rAg7Ju1ql2wDUxmjW+7leaCMlIlhNk59RAiRz2xUM6CG4ZWmRtkDwFj9Xd+UpuKzRUifRsUETnJ+f4Y033sDV9TW227usMef9W6832O22ePz4Ee62W4iYhwZYDbqT42PstndYrzc4Oj7yxUp7TxPBNK0ATOBise3hkDi4zF/kAl9RkmX5YGWJAKHciPSmhqkBu75D3824u73D9uYWl88u8fTiKR4+eYyr6yts77a4vrrG3c2NFXYVWALEasLV6SW2t3e4u7vDPM84PTmBiuDES0VxQX2aGtrOytBwY7Glr2ffiGqzeoBEaZ2joyPcO7uHq8tLXFw8w83NNebdmRtvn8uoVpCp/KpjCI/3kWZTHBjXwEMGUeZWOoW/FSUwGppYG3suj+Z94UX3HKffZUZ78oKt0FA2VCraxTcD06ggUG4FNnwnFCiLCqHU+D62G9XM47mExsXe+B669G9IBztipWOCJTiEsXBaS2Mx4myzq6X7N99wHcfq0Ejx90Vobp5tLRetoXXex/m0+yyMDnCbgfaMPKRy5L4+iXngPj/yAIGcFRbuhZeqp6WhcszY5pYEprqT5OmkUJnLgDHU5yvLpbmxQR4GmSCoGJjsQJT8MvDZk3/LFfhHkjeTHwaO3Psu/ypZs9UjduNd3cZq2jlflOv3aaNefCPFM1YsTp+fD57U7NlQUxop8Vpdtl/DnsvFdz84rZmCUjIXz4ZCouTz++fo2i25YLcrp7NaH25vt3j77XcijVpaizDgbrfD0WYDiOLBg1dw/8E51qspssZELIsISEQ9FMp1Jq14OjCRink8IoiSN0RswZyWgTPvZtzc3OD62TM8ffIUj548wbuPHuLZ5SW2d3e4ubY1qdnP4EEzxX56eort3TbKFm3Pz9FWK6zXa2w2a1CALDur+bpPBzzjaJqmSEMXQWw8BpgRZnOyWa9x//zcw33PcHV1je3dFu04U7WZ1l/Rc/cx13BoBTFTSVWfVhN6WYdvTdCV/JV77SCpiI3/qoBXY1WVSvKq9TGrn1OE47DCPmgKK0PkqfBZD8++rMiWMIoBSfLswI8LpEyUTo+nwUoJMnkjGu4+5+qV75Vs0DD75vQmk5UZk0y6MP5tkU3XVUMujL9XAbxU6smyTv9ZoX4oWFcvJabG22zL1h4Br7GN3c54fbNZAyrY9hmp1JN+BAtMdEgjlYagDR5gWm7V8i8nGFU+AdtKIIhMl4AS9QoYkMbYK77XZLAxE5HP5NHx9qkb7OYe2eznT02HQmuFL/2XWqaJBor/S/tI3QE/mWSfA4PvXV5ibZrgigYKv4s8qTBSKEzjV10XEAhWrYT7kJNkXkbuG2q+P6MDXsBTMfcdGMKwsEAHRC3MdXRk6zpMRIAZxHk349GjJ3jnnXdxefkMjx49grRm51mJpSyv1yscnxzh2aUlBczrFVSB1TT7fp+G1WoN1R7vaJ5NxyKwoZWgngHmjN5alICZ5xkZ306h2O12uL29wbNnF7h48hSPHz3Gw0eP8M677+Li8lkYqe3d1itOILyp46MjbO/uLPVara1ptfJq8Cu0TYt1FFMKsxmCbl7e5Ps4ErHl0RNk4Nmry9+/fx/vvPuubZx+9gy3d7eWfenP0gAw4SG9FYZDM32YNOB+KqgfLc6qpj4+6b7u4PvQIBLKg0kvPI020CZdnD0+TaWXCDaVTxOBTm0sLOycaqee+tYEEJYgkfnI9WEoMuFjVDrVUqt7MWhTwh1nquoVUcnYEfQ9vB1VywbVKb083/MQc2LVXOYwXL376cNMarXFmOiXhDeFAFYZIjQAwxBkE8GsdA00ZNBkQ6Bq2wKmcsqv8aPNXc0KBcLe+Fwxw9Z4KTZtF6qPEHF/3g/NTxSzLVPBhAdVlqSSMo99qNjCtksoxejVxOs+2qnMEFg5JaT3xShDwTojR1Be9wxbfS/HkXpEKuscusRoNdSofN69i+vFNlLgUdnU0X1AQ3v3c6LC5QZSBOGuqxs1cRQwmUAw5dxq083B3Ccnpzg5lSyU6U3avpkt5m6V1ZmgAGmYpp0J12wHLd7c3ODy0tLVV6sVjjZ3lqzRbD/W8fEJ4N4atB4H7q8LZQTqeigstVw8e8wE0o2vp53v5juv5nCBx48f4fHDx3j4zkM8fPQQ7zx8aEZqu8Xtja1NhZGCGaqjoyPstrtYh7vbbiMUOE0CnCmmSdDEK22w4naERIbiRuBiuoU5ItiFzWaD8/P7mKYJl5dXuHh2gZvrG5ydnXlNRAoVBqVGYaQ40ANgOjIVl3bfX9O9aChDG25RYu+VMRESiVbB1+HzMZsv+S9/r/wHR89iyRIEEj7HGVpBGBqGghK5Ugjy24r+zRiX91fB4OPlcyouBfxMtfwkFtlL6rk64WyjtrVR1yPtmPscuO1vRChiKKJuIOljXaYXogWFMvzkhiR6XqwqRiW49KSApdJOZZ6AZh9MpNEq8haeFPavYsMCOERGa5kJNc5X/u7eWAyHfCnZ6MhPDsBFM/JDamnt/zLMlpYl5jsMduUGX8tyus1IMDU6eYU2OfTwnipZflcYqXSDKtJCUC0FoK7VULy5bqEL13Mx+UhUSsMQaK01rNZrCJb7hOyaphVOT07sXKmTE6tgAdskbBl+s4UgxSpXPHz4EK0J1qsNVtMKUGBzdISTk2NM04TVtMLZvTMvSivRu5oc7eISHgkVFG2ahY9mYFbcXFu5oUePH+Pdd9/F43cf4Z2338G7jx7h4WNbk9rtdri7tSw/CpjCFOhmvY59K9O0wna7jVJJNi0zjo42lrnYvM890W6gcehCcHwMLhCbzQYn907Qpobrm2s8fXqBm+tr2zvUmp1vdAD1qY6GBE4lJlQQgXLOua5AAVdX+pYmvmC9xfuItuMco0CYnJv9RXkAYbCjvapn+Xc1dMUrgubuLyn/TQrigHLaV9K8uT4ti7aoKWNvlAgYxh3L3+wrRK6VTiLobUk79pthJQXAclW1P5W/CdKKcZC9JMWhD5TX/Ss9QPPyDqtPfl/1BPteK8iP60XDwwE2CveFYt97H0aAE+Z5YAxXf6As2dHze0CdRmgAT8aXve+Pdt+gjz2zuRqNdzXGqOMbelsuApv3cb3YRqoYJKgtxsJ3fIsgFrW1pdtO5rKJ9HuHhbyF8PJVBaVy742huOdvUrQ09g3Ozu7htddei/tX61Ug99Yajo4tbPbOO+9gnneYphVWbR3VDE6Oj3F6eoJXX30N52f3i5Gy/tIQ0VxBdQg9Qkbh6dqxvbvD9dUVLp89w+PHj/Hw3Yd4/PAx3n33IR4+foSnlxe4vbtD383Y3m1tk7IiKl1AbE/Vqk2+T+wJtrttFJ+18BZw796pHVuyssSA3QzbODvZOVrePYAoUQJCxNxOqwlHmyM0abi9vcXFxQVubm6tRtnUSskbBE0CEYMo2Vq1Tbo9PN8Gr1NYjBg9A3rUVGImhB3LiwaKu/STXwJDgQfnBdIUGcPDzbLUkFwWajkNmIyuDsSPcOEahiDXk9Kzi/uL4hFYuHgvjETzJPDqB5KeQBhihsJsXXG10tiXFu8u8hQbXltDU6430QiyBiGVpvkTbcrPKLMEC4wk8Lnw7Cbu39KU10WNveevgwiiVl2nQeHmd3oqNQRXpkER56pxkzWNUt7E+xA8oCKoy3/ETDS6OfeEDKPnsgTTkDSC1cj0hRFlVEALnZb6Lto+6B0WcOD3CtNKwwssQC/aUkB9vR/Ye+fzrhfaSAUjoUXpHlXF1CasPIuE60wAwtviMRO99xBWCp4Jg0RBSj5nl4RyobAcQl21h9PUcH5+H2+++SbO7p0BkrFxEcsw28073Nxe48mTx7i+vfGSQyvc3twBUBwfHeHVV1/FNK3w4Q99OEr+8DJ+HoWaceyJMWlwkV+wm3e4vb3F5dUVLi4u8OTRYzx69AhPHj/B48eP8eTJE1zf3mLuVipoN8/opZJGhwnzbgfc3t1FuPL27g4KDSO1Xtspi2f3znB8lOE9VmrQcQSgMajhM4Z1pslOQJ7n2d51exsemxShqSERTg8Fn/MYG3cpuEjvyuRI0WU8E8ray4X2XA+g8SNvTUEn3kcDVmxhJMSwQknwmWKA0KkgW/LpnhmDezYgZjnAiaRTGjybj0wESZ3qHsJidkx+PEzq90zTBF277uGcIZOYUGSOyQqmyBNrs8CvdnjRYXo3aVBFEEe2mKLl3sERfE7TBPiaVywH9H2FWD0+NmRrJijKtv9/5P1ZzK1bWhYMX2OMp5vt26219tpFgT/Kr0LEJmikNDEIBAqNB1InJERBiSakikQx0UA8EFErGhMTTcQTgx5ITExsEkxQbJCoZUdijKIm8gnFrr3WepvZz/m0Y4zv4L7vMcYz33dX7c33k/9b8lStvdY732c+zWju9rqvOyjqkSeVfC8U6DoHZQiNK+McjUQVmvCmefKRDZEYEdLzLP7uXM740TpP3RgZilRJhXdVgrgkOee47Y1WOpl7jPdMElmKSv7xCothUZmUeJrsIS+RLs0Fz78iPCkwbYiK4b7QhZb51EKJuge8t8kiIU/KOkAboUsR5REt7zD5SA2CdBOdO7ZyEGWK1hqLxQLvvvsS3U0PsizZQ+BnPBz2+MIX3sNms8H+cID3gNEZ6hMVyxZFgaZpcHN9EyGqj283EiZS9yX5jbC4PAnGWhTUdov1eo3Veo3Ddo/tbof94YDB2WCFeoG9pdYh38dai77rcDqd4AEMdkCWUS6iqkoYo3B1eQXMfLDgrCgpl7COIzoK0lhPJV4LWewUAm3qGm3X0pOkCiqZr2CBKhEw4tG4EBZOIl0joSWKyjPqLB6Pc02iGEWAy72DglOyFmLB6FPJ53OQQ3pPWptJSDLq9LD8wr1S2Sdm/iMjIDFavB6dI2E0iUaAz4WXJovEpRSdOyplsIHncLwn3MgwBKMYVYhuAAh0Tx5+pKS0jgwNOgmjKkHOyXdSJZUYCQABKGzSMmWcQ4zjJkJfxtqxkaeTTt7BYJEHD6xKFF0wEv5klGZsK6ODURFCyYmHKAsqeKi8mRWPr8KY0d+HtRufPRwjj0kHJR7XoxqNpeSZw7p6QvGFdYHzMUv3GhBDgPwoybnhnT3EnfyV4UkBJEA9L+YQytGxcDfmkjyGQSxBhE2nmTdOp4skWbhjiyupKg/Wkh0JbhEyBJmlxoaLxQJFUYTFJUSkGbeduL+/w5s3r0OOyFryBo+HI9qmIUh3nuN4PKJPSEw9qJGjdw7KUzXVWFHRpg/Ly9P50vpiuyEParVaYbNe45RwDSqtYXK6YqC38aK2PTE1O0YHdh2gFPphQNu1ISwymVTIMoNnN8+wmC8JGOCjQTEKvwTFD7Zi/ej3WmsURYEsy9BxLy8ZULFuRdnEgu3k0umYsBXreezE/BwlfM+UXhhx5+FV5ON96kg9u1S4CJRYarJEaYawdDIGMWwTa7lGRqxCeO5UGdOeSDwspOGp1JNiwa9F8STrl01pJc8Dsfz5/dlT0dKNFUi8RRU/Q6LsfaReEoAISccIm3fJdb14MPENY8din3iTaSgLKrCj24GUnTaE0nTp3Cdr4dHcaUBqfbyPOzsaO/K7uDJE9mTImFxAwcIG7yUOe3JPH70OpRCIBagpK3nt6Xunh0++K/8Vr0rWrKwbOcF7Vpbi1fAaky7LmqH8Mn2pMo+taKLh96EOftUglbwYGT6sjQ9zvP1KCgjCShaOKKg0rBatD7ZmRl5R3OhyxO9IyCm9IcKis9aiH/rwHenL5MGwYaMZNDGFhBP7ns7PshxKERVRVU3C7z2ieHTOww4WfT+gaVrUpxPVLQ2UJ+ot1Y5UeYEpUyuFzRRUCj2utaRQDgfyoB4eHvBwf09KarNBfTzhcDigbqhvU+7zoFgkhBDDYj4IlizLOGTZIm8ycEgeVVUhzzM8e/Yc89kCVVnFcQpjPz6iEGDBwxtEa41qUmEynaBtWzRNg67tUE0nYUJSQRnDHWqkID7Ieou1KFGppN6WfCYs1yJwPjCWH/4drdLU60qPsWUvz8NlBIbscJ8If4WIShvdO7XWR8mO1OKNz6dZOhJYAIkHJQokfHX0jNZaoO8Y3kzAFTtQe3sd8r/8R/J/CZlt2J+8r6SVSCLLw3lBDCdexrnjkO7PGAlJ83vpfCHMhSiIYKDwe4fyJtBuTD2px4dC2KxqPP/pekoPf/YOwcjQCDnN6NmKFxmLsaPXHkOewe0djcMYKDF6B35mUcRfPF+HJ36XKO3kHDHzouJM3yYdlw9/vP1KyktUWMIX5kkUz2hAg8XK20IWbLwonQ/JX4hgSnoQscvcDz2apgkWB7Wjz/lZ6DxjcqQQVzMyw6k31Ww2w2K5xGAtBku5jcxkqIoSRmlMqgmGYcD9/T26rkPTtaGQ0hiDZ5dXqG4ymLyEURlygIEFhk128l6apsF+t8cuCfPtdjscjgfUxxpN26C3A8TwFoi3PHtQoCJENYEZ9KBRNw363iBnYMh0OsVkUmK9WuNicQHD4wP+npj4Pg6F/CfZxh4SjphOp1jM5zjs92jbFofDAUVRxvm20UuTQl2ANrTA/cUrkW615yzRSpgCEskXFbKE7Z5WTtETHyPeUk8nFTQyDmOBQje1dgDAjCMq1TmKl6zndippbvT8maTHmHhlCF5a8JagE6sdY0ErkiYpJpV6N9u2PH/RK9Ra9h7PIXtGZNQ4eDcuhBZDMHqE0ZsYjevICxRPSOL4yXMHwa7OhyK+Dz8PzoQ3jSE9n9ax+SmgoXXq9UffLvVkPDCaR5/cNLEvRp9H4xghDBqukXhd54ov9Hbzct2xMgzKKHlUheTaCrFkxsci6zRsF0Vl/N1YIY0NuPiL+JIqffa4+EbP+mGOt1pJRe+IDqNjZ9lz7wkYbwyCz5oojJILpZMm9R9CVxQr9Cms0PdRSRljIC3WM5VxA73HLvK5VZJzHdDzZy+QFyUX7GbomgZDS32rJpMJ4IH333+F91+9Qtu1Qb9WZYkMCtdXVygUvVduBHnIC87Qoq/rmpTS4YDtboftdovT6YSu69B2Hayz5D2BasNcshqjZQv6nMfKWAvlLDFPwDHz+xG73Q6bzQzr9RrXl1eYTaeoygo+kynxI2WQtIV9NFbee0wnE1xcXmC1XqHvO+x3e8znC1TTKng9onTSbrmhHxY4xJoIgdCuQ0IbqedtRQh5+BBacuE+McdBCkHrsdKRNRqte4w2v7xfgKCLXPGeARUKxNvB3oAHKxtWHC7pNyYX53OCV8QP8aT1mgivsP6VDgaYla0BQPjxjMnQdQS8cVZCp7TmiqJM3jF2hQaPlxKOPxHMfHWiEiPlr03wp0aid0SCEfjtGHyjKDwmL6XiiMQXxZhRQvIjNP4cTk0KX00wdElxEWZDlKxMYsrGML6nFDKMnkIhGATn8xC7SSPMR/T84h4I4XJRtsHDGntRhIRUcb3gTNkhjldEpupE8SG5fxxD+pzHWSXjma6vsI2Tt/cyM1E2f1hl9VYrKTnkhY3JoBXYU4lKyvsza4aFixEl5c+CCOJpgZL8Ch6R1ocr6Q1NaNf3qOs6EMoSfQ1tWp3x/YOYe3pSjDZYLpd49913sbi4gGVPwNkBfrDcuh1o2xavXr3CdrdF27XUSt0oLOZzXC2XsMOXA5DFKKS48b/OWZzqE3b7PfaHAw77PQ6HA3HvDRbWDswEkYQ6E5QjRsJXLGup2geEsslai6ZpcTyKoiLE4M3NDXRG1ra3RLBLrUTE2vLiOEXFyP913mIymeDq6gpvXr/GMPTY7ba4vrkhJSWCMfGMRPlQny8XLFWjiOkihYBL2FeEFtkaYcHAw43oadIWHTLm0Xsbc/qlCpNyoGPPJFiqIkydxWAt5RDE8xKhypJPQo86WdcIMyUWOgsWDy5Ml+8maoCFohi4UUnH2jXx2kymkRmNxlGNXc8F3loZlEVFtX28c7wHl4SMx0vDBPJRcXg816ZpJS1qfHyZ0cv5sC4dt6ARD1Wn5wUlAki6TfZemhOSeRuFN1NvLL1e+Fml/5TRCcpedousp7RsF+MrJmIfozKYcB0vyjs+csw1x/TG+LoqeHXx0cVbjOsweIZqrPzEXkll57mCCor00Til4xXvLaMUDDF1/vZf/Hj7lRTPklYaylDBYCoUgrWONN4brdtHaDleANpw9T+jXwL/mHPI8xxKa1hr0bYNjqcjrKXPiX1BwegMmcnII3E2kj8ibhSZQK01lssLOOeJSd0jNMNTHvCDw+lwwhfe/wLu7+7xi+/9ItquRV4RkODq4gJf8WUfxzD0iEvqfAE4dF3LgIktDvtDAEn0fU9AD86hZRnVaFGe4aktxu+gQrQfIhQlh9X3PY7HA/b7KdbrNdbrNeq6ZqhuDhgFcLffaCTI4k7vyV6dt6gmFS4vL7BYLFAfT9jv9qhPNS6uLkbP5ZJNSAJNmlEyySuHWx8rKSQhF8TQSFDYLoT7AkggCK003JeEfbwPyfTYaTl6YSl/IC8/emamtUkjSz78GPNsOsDBk7lBKkhSTykKaMqBiyBj0ZZYckrF08ViFqFIc3sib8o5GJ3Bz0CclLyuaawsC2/J+RGPHgx7lhqABddqeSiGb6dCWCXvJAMQPGCADMLgSUXlRu8s7x0Wx8hTGA/YeM2dn5Aq7TA+YT+r0QdRSaUPz/dQ6c/0TEopeB0BEkGsn3lS8ln0osZrV/Gchv3P9zr37s/rpuI14mIbeZ2eQqDpc6Qe5aPcrIpXGo9BGs78IAX3+HjLldTIFqFOp2lny8RCABKLEekGHiObJH4OgY16QR9JE0Ky+DQUOmtxOtXYbnfEMZdlmEwmnFMiDjsivyULWiO1wClBK6Gi+XyOoigx2AEOVMCaGwOjFHzvsHpY4eHhAYfDAW/evEHTtSirEnmRw9uBC1wbuL6FKcpEypBJ5FqqZdputthsN9jtd2dKis7TGeWUFCjUqdhip32og8Uq0NXUzFPJ76ie6YSy3BEX4GqF3W6HruuRF0UqcdlTAaB8IhzjondMQ1WWJS4vL7FcLtDUNQ6HPUHfLaBMInxSSxERdh7425jhnE6NykyWkigpEd7BewpGj3xP1pFGmk+ga+jwDhJ+kWeR759TQ0kOLfxPBMdZS3ESAh7JYk5+KQNL6BXlz3MkbNWycZBsn5F1n8ocyM+sHJq6plq6uoa1FkVBnZLn83kQ1kHRwCNj0mQKKwmfn9xM9hs/Rih7OL8/e5KJoee9h5aoR6LN0tyeDKECt3vH6JXhvcNgAe0cVIZQQ5QOtkQZ8kIDMAilbT6WGlABLz1A5CxJVWwCDHnCiRBzT4FDhUERPX7nYDD48TwF3aeigpKfU48muenoMdLlFK8dPc30OTD6XtxvIcTMF6K95aLhxF6pGDMf5nirlVTqdgeBITGExKeQeLpSBkr50JhQXOCnlNhoUhCBFAoqLORhGIhWaL1G13XEDjGZoG17GGOo5XxRUvgxWNax/bXnmLbWGlU1QTWZkGenIis1AMo/WE95KaXQ9T26rgU0bYm2bUloHw+odgXKaQXFha+wDso5NE2N1XqF9XqF9XqNzW6L/Z6EvHMOdhgozAgEaiPjCHThoIPlrVVkFvA8CREhRP24hmEIZLhZlmG1WuFiscTDwwPefZf4CYssG4dI/Fk4NFFWghLXymA+m+Hi4gKrhxXqusbhcEDTtphMytGiTzfS2DARQXFmBSZKTWadNivV8KjRxhRlJR4XIGSkcs3Um0oTzzHUMX6mJ9d0qsg/4FDjUQvC8bG3kLhiHsyJd34xFQyzsCfkERTNb98N2G63uL+/x+l0grUUhi3yEpeXw/gdkArIWPA8eiwAgQZJSTkB/SYIYidrjQZD2rOAyXEDe/rjC4dREiUnv6J1R3nXWBJiQsEwVLwmkShbWOehdcZoyJi7C6Fdj8SLZxsgKIfxIyW+EQRBKB4IdQrw4cQQr0i8m3QdiVKOLVfGHpPkp4JHHuZWhfdMV5FPjMRUwT1eiE8sTH5vHy+U2JxRQT1euR98vNVKCukgy2IIhWKyWVLPKlk0ZxOVTop3YvU8npRUsfVDj+PxiPV6jbZtobRCVVbo+gFFUWA+n8NkOUzG3gxbl2JxEU8cX5P3RkgcJ1aO10AxKTGdzkInYG0UsiJHnmXIsgz9MGC33UHBozhWMIWBsx6wFnAO9emEh4cHbLdbHA4HgprXNXqucYobVxQGEtoiH8hBtTy6Z/oZ5xhEEVmqB1BIyDlHQI3tDpv1Gg+rB6zXa1RlhXw251AVMDhp4QEorvYSyzekh3kwirLAYrFAWRY47k84HY9o6hplQV7rOKQLSI7J+9hrJ5gvI8+HfhlyWnKB4D8/LWJkTaReG3313CL/MEdch0ZromwCztyaKDCkD1aqcJF6eCzw41oer30kHke4BqQIle4h64IEMUUONpstVg8rDnNbWpPzBYahH1vbQXnr4HWEe6euT/JXGHEW+tLziX6tR/NG6VLHxqcI8ieUbwhl8Y2SBTUMFm3bciQkUnVBerYpoO87BoF4aCMFywZGkyGaGYXB0thZG6MOEKXLiy7Ne4Zhl0dhhhwPkJefGFRiPD9SUCpdGjyXqSw8D8Mlxpp4agpq5M3LIXOeRgFSQyydwhCJSO/jI3Akzmn6wvjQ2+OtVlIigBQoDOWEwhqe2xrQ78k996PvWEtkoMTSDbaKpbcNkr0bF39062njDP1AITQOfQCeQnaDw2w6w83NDSaTabCwhK6FBIcLNxEqHfn53Cgk701hNp3ixfMXePnux7A/7KC0QpZlmE0mUPDYbtdo2xp5WaAoSxKt1sG7AfXxhNVqhcNhj7quQ/uN6KZLfyUBiyjKpWhFLNhcuKl8bA4pYTXZfIEzTUVhL8CS3X6P9WqNzXqDi8USs8kUJs+4+twSSjD1HHgDupHQJZDJbD7DpKqw2+xwqk+o6xrz+QxZkScIJRbNSoXxNdqwbUDPrhOlLIMe8ka8fiIruQjHyP4QLU5RhLEeyxg12sRpzinO9ZnBJApUKZgsI0qeJFQnYUiS/4opbqLHhlHXZlIxo9vx43qAMSo8h25MfSMhyVBADKIk6voep9MJ2+0Gq/UKxyN74dbh6upEheaJAKbyi4hcjLrRh3eVyIIPf8ZKJuYYQVRKjKL00HBDQlQcbiAeU+LNhv3LxiqoWJ5ylYRU7Pse0k4lhGI5d2m5X5q1HlnmAWWg4KByRe1GtEKGDP3Qw3pqV6OUAnRUqmLopMZzdFB0MmexjUg0lOJYICgV8UR8EoVIvB6fpBa87Kc0hBhD3PKeiXkX9k3oFOB98DLTPL7sgzRyAAhjzLlH7xFC14mM/VLHW6+kyLOJlgpxzHkmm4xJcP5GEF40mFJrEX0msSfH54MsVK1gwILOO/S8aXe7HYc+BgYdeFxcXKCuayyXBEmXjRLis+wXkyDkyWOafSQLTZ5JQ2M6m+Hlx97FsSVBQeguhSIjXrvdjmiN8iJHOSnJenUWfhhwOp3w8LDCfn9A17XBegyoKEXEsAAX6Cry0LRhJBxJaRJoQ1xfQyB3jQI1BSNYa9F1HU7HI1bsTd1cX+Pm6hpZWcIrBz9E5gUedfZwGcEGFT0kBUwnU0ymUygATdNQE8RhQF7mXAYQN5HWOijfkBficIqQoopQCgJa7idrRZ5JCfgmibX7ZLqCgE9ZL853YhQScVP7sNFFGWaspESwJSY3n0Ndb0M9lqwtFWH0cjsfnkMFz2zEJSehTk/5FFFSUuunFKAzA9c6HI8HbJjj8Xg8QULpdX3CMPRI1U3aT0oMoTMdNPYSffJM4edINxWdMOL+U8oiBCZUsu5oRBHDyZHWSw4Zj6Ef0DQNRUKSeSSFxQTGltgjisIizz20ztkw1pz6U4Tk7X2oW9TawAmVleLedMmrjpaFOvswOEpR4aeUW/S5RqoUfHIJCdkGJWX8yJODeNkhrRzXYuoRBQMjjJfcI+5vCdOmxpcYTNJjbGwuRdn6K0pJSZjKWRcIO02SSB9FNxAtZvp9Fqw6sW6idRAtDg8kbM1Ee9Szl7BnKDdZYwbeAzc3N2iamhFO4MJLF2o8PDzgJIziYC15ANY7ZIWGAWAR2w8opzCbzvBlH/syeOWxWj9g6Aeafu9Q5BmOpyPquoY2GuWkomcfBtihx/FwxGZDob62bYnhPGEPV4rgv1Ya1mUaZVEiywwsPCzI8yQGcwIy9EMPDJKjA5w9BwHQOIsyX69WeLi/x+75C3TvdCim09F8PnIyZGPJxgRZ/VL8rI2mvNTxgKGPze2iIqCLRUEZQyDKR6UlzyuhLsk7hn3p4jkidITV4Dz/JEoqtuCQtXcunVMvKuYb5Hp5nlEuxkbnEsl94jNqiJXu+L3CePpoSQczLPGkyIs6yxF5os6CB3XiVVFBD3Ygj3i9xnqzwel0AgBkeR6MnvC+ijwpbQzD5IUZfDzjpEyST4SEVGbRRwFNDkQMudOEumhMjMY4EYZ8JzHIoqftyTusTwTA4bEg2aCRZVQML+HvPO9RFA55XkLBjIhZZeyGwSIveK3o2OIlpW8K0lkUq8eIid9aS4hg5vak948dlvGoWHx8iEIYKXslTO0CWpBHiXyHIjsf2VXptZ44xrnWeO80QhGeio3wp4H5Tx//xygpcXutc5HKB4kSO5OAgpABZG0Q39UjINUZSksGXVgMpGngdrsj5gWO4+52W5xO9SOW6/AYIpQ4+Wu95Q6sHsoqwCj0vYWyQM5W/mQywTvvvIAuNOaLGbqmBYUde3Rtjd2GUHvOe5Q1IeiGrkPftjgeDtjtD0SvVNeo65oEu+fFy12AKdygUZUVZtMZ8iIn6xqeKHSsg+P6mLYjZeeVtGMgAEYYK4A9qRZ1XWO9XuP+/h7r1Rr16YTZfE5Vkk9ZVEolSx7hWkoplBU/W56jrmtsN9uQ/BZGBHYQAET2bFkjsWV9vDF54wrWc48d70c853FPn5vA6W+jNzU+56nXS7+TrA/+wRgDryVf54NgSezZYMVG50XY3RUQrF2R4RxtYC0VPfsk1IdkTXoywMlxo++0bYvtdovVek00WnUNpajQvOs7StQjCsnAogCpv4qCVTy6s+EL4yCHS8YkHdLoQUabRj4Y6wKf/JEP6Z2d91SWsT9gt9uFvSrzl2XE+gJFhk6eFSjKHnleUaG+d+i7JfIyC88acpJxloBkrNPf0fu7UT+03g5o247o1EJLnvF6iowmY6Us4TsZw5Fn6ccG1Wg4zzxM+W4a3UjHRa6fGgbpNQJHpfKRucnH7ygxTX4leFLnx/liDuEBHhCVLNo4yOz5OozyCHKmWONyveAhWMet11vqFssQcKWoqHi326OuGyoi5Q3x9DOnFg8vaHjqEBvIOWlhVlUFU+VAppAZQ0wXzqHvG+y3Wxx2O3Rdh67v0fcdeXqnE9r6hOP+gOOphvfAsWmIZaLtwP4AFCPxiMi1xHw2x+XFJcpJyUqULVbn4Ri5V9c1jvUJllvbd1pRF19WJiHc13Y46ROMMbi/f8B69YD9boflxQWKSYVQW4QgS3nikhARW50k7Awm0wnKssTDiuidhsHGjaIwLkIO4UIfBNGj2WDLlxAigvjDGQouGjjhVuo87i7zeq684p/H541/putLLie4cdDJOpR/PFJwngUAv36s4Yk6IdwrsGaAzyH1EtdqfAfnHIMmuK3Ldou6qZGZDMvlcmSMyV6LAAEBebDIlrEFEMEFyXsAX0KARQEXzL6RcJafE+UQ5iuOmbMOdd2ETgB93ydGhoIxGnlGIWRtDIzJUOQVymoCo3M4a7FcznHz/BoSyofCueoIzxEfP/EuPNUU9l0HOwzoHRm+VVWhqiqIjJKXDOG+dDSCkeFD6PPRAvfJGkm+kz7P+Tz0fT+KiAjdWMpMkeZTg/HPEYaQV4Mf/U8883OH4IOOt1pJhY0vLZOTCQhWoU89rnHibzwBzI7+SCFx3kg+dA6Ewnbs3g/Epdc0qOsGWms0DROgdm2ghYmxZH4+l0yb57p0RSAQ73xiO5HdYbSG0hl0ZjDzM/R9h6LIAQ/0fQXlPbabNbQxcG1LeaDTCbvtFvVxj8P+gKbpoJRGw2FKOwzUysA5KENovbIsUZUllhdL3NzcEIGr1iEnBefgmVT3dDoh2xf0/m0DDR4PJtClsbUYPJL83RabzRa73Q43dYOiqiisYS2HgyiEo5L5iUonyq6qqjCZTnGqCRAyEgI+birxslPBJtdJvR65HzXN400mcZIgFqLQcwFsMLZCx3Z9FPJCqSRWvCwn+p5YsI+ZLMDeEkV5oscDFuaDdWSxhjALuABdEGGRGsvJc8vcQBLpKjwHPV/i5PDr2MFSV+T9HvvjAccTFfPmeQbLbV201KEFizAqO8UtLMTbC/mRMKlRSYowlj0sYxu8AMUvGvVveH6x4hUPhjR1PA/1Kfb+25Y8qfV6g67rAIBLVKjPUp7nyJl9XymNPCtRVhPkGTXR2mxmqCYl8qKAkEvT2MY5QhjnM0XA5/R9i/1uh6Zt0Ttqo7NYLnF1fYUg+H26lqJnLWNAw+nj+jpTPHKNdJ9IDlSul3KKElFBh77vouKHT8pqJIdrE88uvljYP7SdE+PLk+H3AcbdU8dbraSidaCSQaDNAiBsSKUlj5AKpsd5BJng1OIUy15BcY8Z+kmAhCRYKBZNiEFCtg3DgL4fonBVGkp7wEUewGBhJDejZ3SMQIsL0EP4vYh/rihLKipWGtbmUN5hu1xiMqnQ9WSVdV2H4/GA456UVNsNUFqjZ9its0T5NFgLaFJWZVmiqia4uLjAzc0NpvMZVGaC0tQAHIfwdvs9lDE41TUJKYXAYxg2irNhjLu+x4m9zv1+j7o+YXGxhDIE5xU2bJ6J2PzNC9gB8NpwfiDHdDpF27bYbDYj2zJuSJpn5wgZFmxQdX6ebBoCxnibbuixcpPreq84uU71bjyBEZmVWL+i1JywKCT3p2ESlms3LlEQAykV0CDnitafg4eF15T/EaFOOkrWlQpzEUM+CJ4pgvCE2OHxPuINsfFRNzWOpyOapkE/9BhsD5NRuDbLM5g8GyFjxQCTcdFaw1k3eg4BNwAYAYhUaALHU6Ck6SNdPpgWqRESQmuRh847G76P0ZyQQdB1HQ5M39W2LX1uHSleKBRFQUXzeQHvPIzJUJYTlGUFrRRmsylmsynmiwVMniHTOrQUcSz8Qz5KYYwo5b87DqMeTkf0dsDxdAS0Ss6J+SiSL4m3HdCdDs4j1EoBxKBPQ/hEyBSIrXPYqImcpwR6GQZiFrHWhryutMzR2jDdmIUxCOMtLjyVlOjROhAPOajbXwlKKsTXRyzNEQkmA0MWMk2mFPICY+s1el3h4nwkSUE+VyU+vfCH0fWiwJEWG2GTKgXPikqUlFdyX5pYzTvQ8X2MMgQV9h4QYkoPKE/sGirPkRkDIEemgcvLSywWC/T9gLo+wXuPtm1Rn2o0dYOuJ4hw73yoY4L3CXSYktGTCSmpq+srzBcL6CIPgHnD3lTdNCjKkvpO7Xbw3sNohePhEDaTVgo2CU44Z9F0nB/b7XA8HjFYizzLQoKaJw4qhAW4s633cSxAPImz2YwJfvsY9kE0RJyTthESMlXsrbLR4dzIc1FawSgD5z11JeZxV8l1xSihjZwlFFwiRAiiHj8TY+axoJDnSj0H6iQdz4lhs/Mgj3iLlpCsWdB8keEaCh4aJgMrKc7HGWp5Ed488WSiUhNPRUUD43TCqa7R9T01ruT9ZdhoyvMMYuJLzke4/RQTHzse11RZjk1qD0BztCLOFRlorGyReqGpJ5uMsyK5YK0LnaKdjQoZijymrutxOtUhXA+oEMr3HiiKApMpFStTTlSjLFuUbCRWZYHFfI4sLzDLc1baaiRTPHzkqORieDEPvHdsaK2x2W7RO0tF+eUkrM0Y+UlGyXnAiMzgppFJk84ILsHTiorXq4cPbDnpoZRC23bY7/cYBkuhz5wQv9SCh1q8SGNXWjdR8QalFNa6AFw+TDh3fLzdSsrLYh1bbETOCqoQD5tGh40qLawl+Xjea2gkVNjao89ZAKhoyQjMNghmRlw558NGBhAsFfhESWlEJmmxgJSCtxSmEOg0kgUmAshoDaM0t8VQKPMMV1dXuLy8RNf37IYr9D3lzdq2RT9QoeHgHPqewAXkSXFbCGthTIbpdIblYonLy0vMlwtkRQHPCz7XJOCapkFeFjS2msaxzQ2OB+IElEPCPxLi7FuyXDdbCvn1XUchPwmzidWlENBrPgg7zd4GbarpfAbvPQFUhjOAinwnWKTj9ihI5liNNjatocEBcJ7aRiQeHbxAoqOHTMqIhG5EYyVhHR/XVIoETMdIXPbwMa8JcR3OMxHi0VGoTcODWU2cGG/yfR+uEd5XxiAZjkRHJUzlbDQxY8nxeMSpJri/hHKUUcjyDEVZIMvzeC32itPmiJST4r3kHI1rGA9+LyWvrQLLh2IFlQwT7dnEC5MoiIyNYn/LOQvDSDwHmxgOZIh0bUfe/e6ApqnZkPUhP5XnBfrBoih66gPnPcqyRlVNiBBXU1PTyWyGajZFYXJ4JPyRXoL642EWxWGdQ93UWK2I9qx3Aw7HIy6WF8wOLwsvHSspfmfqK+ZAjEqRwSoMuHpKQUmzSSCGxlOQBIXnCRHc9z2yzKAsCxhjWEkVYY+JwTH2pOIeOVdYHwXZByTMOx/2+Omf/mn8vt/3+/Cxj30MSin8w3/4D0e//+7v/u4wmPLnk5/85Oic1WqF7/zO78RySYLwe77ne3A4HD7qowRvRoSAeDKKBSotlvT8sWA4zyk85RKn43luEStF8E0qFk02Nrg9xGBDAl+FRaaDlZOKHVFQsgl9EDIcfkweVYGKPSVeXpUVptMZLpYXuLy4wnKxRMWC31pLidm+xzD0BKzoevTDEKxaUa5GaxRlweGLOWbzGWazGeaLBRbLJS5Ycd1c3+DZs+d4/pz+PHv2DDc3N7i6usZyeYHZbIbJZII8zymWz56t8w5t12F/2GO1Inqmmq1XJKEGWdJaLOhkMjwoXm4yg+l0yqS+FIpK5y8Np4y/Hf/92LtJ1q2cg+hJyRyl54vY8T5+/6kK/ifXFhC+J0pTDhdCPKLE+Pc+rtgYejyzYEdGl1yTfKcYYkS8PtRIkEjkQfZQP5Dg3O52OJ6OCZKP1o7JDPIiR5ZFQyAadow4ZOWn0iiHRzAeVepRpcpZIewb8aJS6iHxBkhJxdmVf3uM83nyfgDl2ZqmYSLkPXY7+kPh6APVHW732PEfAlhssFqtsFqv8LB6wO3tHe7u7rHdUmcCH57Gs8eUhPNlwOXJuLP18XjEw8MD3ty+wZvbW9ze3WK3343AKFGe0qIJ6YlwtUQ2iVf/BF1U2F9+/FlaOtH3PQ6HAzabDR4e7nF3d4eHhwesVqvAWEP5dnu2xvDEukvkWRiZ6El+mOMje1LH4xG/6Tf9JvzhP/yH8e3f/u1PnvPJT34SP/qjPxp+Lsty9Pvv/M7vxKtXr/CTP/mT6Psef+gP/SH80T/6R/FjP/ZjH/VxAIwtYqmHCRsfPnQF9YkgeAqKKQqBrhk3Ev8q3g9i2argSclzSAW+tRaDs9TePVww3AjR8ov/Ht0jua9LFiNAseZCFVBQyPOciu4ATKYzXFwscapPOJ6OwbINXp1zGJxDN1g455EZA5PnRGRrMpRVhaqaYDKZoqoqFDkljIu8gGY4bFXkKIscU+eRFQTPJYWZ4XjYo2lq1MwCUdc1uq7DwJxtUlt2PByxXq+wWq9xOlJ9itKa2B1kU4tFHRQBwt8eQMYW3XQ2g15tAoQ4FpDGOQmeEhL2iDDlyTpgD04+H60VpOuGPLp0rqLQj+E+eYOofKJhpFQaZvaj88ZhKwqj0Ho8a/Q3OqIAUGEBBSkvkZbwDmElpl5W/DCOi/fo+ha7PfUeO55OxKwg4T5+RpMZKC4n8HFZs2KJVrsgXZ1z0F4FQAV5P0+ILUWUYfL850aiQlTefLuRAk4uI3qP58yP0LmH/QGn+oQQBbG0R4zu4KxHURIYSUJjVdPAWwvb9bhgkMPV8xtUs0nYK5KTGk/T2FDq+x4HLnS/u7vD4BxOdY3D4fgBSkqdX2a0BkYyDpFEQK4RclDcpkh+J3l051zgI727u8fd3T3atkOeZ5hMqLN2lmWcu6afz42ydM+dT4A8tkvX25c4PrKS+rZv+zZ827d92xc9pyxLvHz58snf/ff//t/xEz/xE/iP//E/4rf+1t8KAPhrf+2v4ff8nt+Dv/yX/zI+9rGPfYSnGTnQST5KLDNQ3yLoJPQTva0oiGRDQsxlmmz32CrQSloDqMBmIH/CIhB0mDSmSxReRNQgEZZqtIGiNZ8CLOKzUZFkzPuIAMjzHIv5AvVFjf1hz8SfpGiopb0iaiZWpFpR24o8y5CXJarJhFz5IieUIEPLc2ehPLeU4MSpyTKoTMM6jyzLURQ5dlWJpq5xOhHiTurGxLNU4NBR27CVusHhcKB7lEUYF+8dlI+9UZWMCTenY2QAsizDxXKJ++oBDw8P2G32uLi6oAJky9RNiOME8AZ2IvzVaLy996HRISX56YFIQNIm04qgyYFxxkd6qyggo8ERhUn8LBhRGAvdNBzomC5KKcOFnswdF54XYQ0K51sUTgi5Cb5zkNjhvypeh9P7gQlfKdlL7Il3PXkW3BFZwlBKFFLyTKIsw3yJtSEKkuePFLQOxt7oUNHrVVAhLOi8AwQ0AtnHBDaxikvuxPPk+4WGkmEcZEJob3YdNS2tm4ZKSKADDZP3HgMoDzXYIVFShuvyPNxgibB5u8XxeMTicokqJ0aK0O/gkYL1rAxjoft+v8dmu8NgBzRtGxjmEd4z8aSS8YySiddAkp8Ps+EFECZhcA+j43oxnA+m/G4b6hnJg1oxitOwUvLI8xzL5ZLkAEPSJXeZIlgDyONsjsmUciFa8KWOX5ac1E/91E/hxYsXuLq6wjd+4zfiz/25P4ebmxsAwOc+9zlcXl4GBQUA3/zN3wytNf79v//3+P2///d/pHuRRUr/ThckQHNpvadNYVNlljIQjC2BEH4BwqYdKSnp4qli/kuUgFwvXYzS+4US/+IJjJWfGgkMhGtDJWEbFb45tv55QytPnYHnsxma7gKL3TaE3aqqQt916PoBg/NQiiwmDypYnEwmqCZTlBOqzciyDN57dF1HG00b5I6unxkN7ysURQGlNVfYFyiKDLnRQUm1bYPtbjvyaDSPUc+ch7sdM3V0PSkpGrFHVrV4L6EhnwgdrXB1dYXFgsIRt7e3uLi6CMaD90SRFVBLoE3suOB73HCQhRKjwTRLliAqVZB6MMn4CztBCsGldRBDv0AMTcmkaabTIYs9dgcWklyhZ8oyQjM6H3tMGUOfKaHu0SqsMXhAGTaEEAWbQrK++CHJixl7brL+pPW8rAMhJR64vEAopc49sTRYoJDWdjFdlNJwSlGEwccBUxCPlK8jikjHcXPecQsPuqeQMVtPmsuwV6YS4MhT1D7ieTnvqTaJQ+F9P8iGCp0OHCsy74U02QbAilIArMN2u8Vut8XheEDXd6gwCcYyhTkRWo+IUaNY2AhrzammnF9vLfqeQvLSTZreIbKXiOIXmyCIByQIUZqUqLB4PkSRpMaRMRkX3VNXgYeHB7x58wb39/fYbNZo2w5ZplGWBQCHoijw/PkzXFxchEiOHHLdFCkIjxHs0HvPxAX/f1JSn/zkJ/Ht3/7t+Mqv/Er83M/9HH7wB38Q3/Zt34bPfe5zMMbg9evXePHixfghsgzX19d4/fr1k9eUxL8cu92O/xXDZMFLUbFAVzaP9Z5qIpWgUFIr+iklJf+OiDLPRYfS5llCSpnJCH6bGQSKmtSSEatMAA+IUOFReEWP30OnlCpBQSXWMhenCns4CQCFyXSKxdBhNpthOiWOu8lkgr7roHSP3nnotoNSpGDLssJ8PsdssUBRlphOp8i4zUdd11AMyy2Yk0zBYzatoLVCURaYshIs8xxwFk1TBxLSPOOclAhgHjPrqOZmf6AOwW3XYupnUTj51CygIzUOINeDwvXNNS4vL7Fer3F7d4df/VW/BkSMaWCtB5jfMFh6bEGDPd8w90rBWSIcNSbj0JVLPCk6x0hoKlEwT7NInz+/ZoMqBfOPPSl5T601ht4ikhCzBWy5hXtGVF4aKii1EPKGCGN6gOBps/GlEtSe5PxEwYmyjF4QPW/bttgfDjidThjsEMYtDevI3CH8xI1IWTM67k2mEoJmDz9WUEASGIwhqtAVW4BIAkdnD1Fyz2l+NX43RjhEUMsic85hsEOYxxQQkzEi0TrqID0oQQbTczvhvXOeGonudowQbLFYStG5rAUKAQsTigBIvPfoux5N3XBtZYveDpB+bKGbsR43xkxCLryGovEhXiCNoA+TosI4UZhV1pQolGFgIugdtWG5vSUltd1u0XUdtNYoyxzU163CbrfHi3d6TCYTCHgISCmskjbxClBMG+B4KXpHoJ8Pc/z/XEl9x3d8R/j3137t1+I3/sbfiF/za34Nfuqnfgrf9E3f9Eu65mc/+1n80A/90Bc9J3gjYAp/sYaDi6uglEvw/lGKBMg6/1diufBniXOFIGiVjuG+zGTIDFm01p4rKV78iumaaCUlwkk9agFOEbLEVAJGVgi9q6DeSBArXtCTqkI3TFFWFcqyQlWWKMsKZdkCUGgHiqlLTdR8PsfV1RWWl5fIizK48dZa6jXlSQBU1sJkGeAd5rMpnPNEZFtV0JpChn3XoGtb1HWD+/s7agA5DGibBn3Xh4UrCpCS1VucTicsLy6IqDC1EsLkIm5SGQfeDDfX17i6usLP//wvYLVaoes65PkUEhWkFgjjdhbp5kzbvHvvuc28hwks6NEClzUmQjAqKRHWUSDESaM5Vuk7hGuxVZkoOmI2N/C+g7dJ3os9QGkKKB6G1gbQns71UTl45TmqGUwdlqpxoYkyIpntRutWBMwwDDRXuz2Op1NAUUpJxbjrKwl5CUaknotzlomCE682meow1hjXKQaXQSFRpEhKP1gQJsJYnl0M0DT8JzrKeR9ARZKLiYTBkmumdjfOe8Da8HvP+VXvHJT3OBwpdL3ZbHA4HnA9XEEVeXgenXj/6RrxDlR0X1OosWlbonXTothFSUWjQ1ZVnMYxaEcMVhnEsNYToygNZ0pEp+8ppLtarXB3d4s3b265yeoxMMTneYa+71GWJTabDZq6wXKxDEZAmnuVkp+UOMEj7pEguz7E8ZHRfR/1+NW/+lfj2bNn+F//638BAF6+fInb29vROcMwYLVafWAe6wd+4Aew3W7Dn1/8xV988rxU0KeGrHgyzkXFMJp02VBsSI1kzOhKMfGt2ZozRli2pSBTlCLH3c9ixLKZ0iT5CIXDj5bCdZWWl0ssI7mcWNmOFFdWFMjzIgEQZDDcc8rkOTKTIc8LFEWB2WyGq6srvHjxAu+++y7effkSz25uMJlOEWiPjkf6czjisKeQz6muMQxkUWdZhqooMJ1MMZvNsLy4wPXNDa6ubriL7pIKHxP3P7BP7PdYbzbY7ffo+m7kPil5txByS4aQ/xhjcHl5ievra1hrsWc2epdsllG+Sf6Mpz+ZmoSBQjyKEEgZr4X0feKGH6+TaEnHz0L0RX3AQ6hYd/XovROhEp4xrJO4fuS5lcSaeNDOdFSiwIBzBSUPIcWu290WxyORKMdC8xjujsonzph4cEEBPHnfp0Y3DGPQUfKMziXwbh7XUELCgz0Oq5rwXOkh+SBp0zEGsfDTJ3lrqa/0nj2rrkfbtYG7c71ZYbWifm1t2569a2JcJYXf3vvQykZyYgR9p+dO10q6nuL3o2yT+UiPFDSRfDjaCwKYoL54K9ze3uLNmze4vb1lNN9u9IcQf5QD3u/3BMtP5ic+rx7NQzQyn1jzX+L4Za+Teu+997gj67sAgE984hPYbDb4mZ/5GXzd130dAOBf/It/Aeccfvtv/+1PXqMsy0cIwceHhIBYCQWLKKn+f0Jxj/WHbC5yz6WYEFz9PraEY02U/BwWMSsoZ91o0QPi6YlAO89VRE9JwiDRi5B/03v45JqyCZTmHjgcmhjY0g+5BhAbR5ZTC47FYoHrmxu8ePkSz58/R56XmEwm0EajrZugjKA0BksIPGt7LOZztG2HyXRKiVNF6C4JHbZth2fPnuHZs2cAgN12h/pUh+LKru/hrKO81HaH/X6HtmuRFXkiZGhMpFFkGMfEUjTGYL6Y4+JiibIs0XZUuT+bz1GVZWSsQKwFkbkaJXJ9mluJIdcwxHj0z9FPIdTGz63UEwstWWui1AAJNbPho/WTe1jxM4tnHQyt6KjF9RF+QHwZ4JGQluukSpiXJP8sTP/EWnI47FGfavQ9h8e8gwEZaHlOzTeFH1H2nlzDJYXRYfwTgeVZgUYBHp4w+ZspdUKEI75eMDz4+c+Fu0c0UuXzwVq0XYe2bTEMPSf4k2FLBLxPIiqUG7QU9nQeg1I41TW22y0eVg/Ybjao2wbLxTzcazSHyZx67zH0A9qmRdu06LqeUges+OMai+OUTBE9l1NIFbZ04Q25oPTcM4Ulz0Ne1A53d3e4vb0NkPr9fo+27TAMA4hpIof3DrvdLjRQFSqp8+ueK2eKTqlgfH6U4yMrqcPhELwiAPjf//t/4z//5/+M6+trXF9f44d+6IfwqU99Ci9fvsTP/dzP4U/+yT+Jr/qqr8K3fuu3AgC++qu/Gp/85CfxR/7IH8Hf+Bt/A33f4zOf+Qy+4zu+4yMi+wBIToYPJwWCZxav9y5MSBpmoz+OJpouFwZYI4COeUORiyVIFcWWVngSWUCOCnStdZwcjv19gqBJhFXKFB03I90XoQhSJ94Wn8lBcaVAtDkaHCckz7RpGrQNWYl2cKGzqFIKeUbNARfLJW6ub/DixQu8fPkSeV4iyzKqHdkfAyWK9wpdNwAa6NoG89kM9anGYrlg1CCNqckyVNUE88UCz54/w/OHFxgGi7vbe2i9pVi7J+iv0x5t2+F4JA+tqRtMJhMab8lb8CCF0EqC8tKe2dqrCvPFAsuLJbz3WK9XuLi4QFnmYc4dJ5MFLZVC1GMxoswp4sYaux0IxK3xw9Gaiu3k1aNQRvSAyEAZ9QcKxtQYNn8eQiQBpOMjeG4uJ5RPbNiIxzYS8omQ8qxIHBwUopF1LgU9h4HqU01clD0JrEiHQ54U5R6pM7KE2WToJL9Cz2XCsEVhKvdKdwBfhDfl2NCLHnbodB2cy0j9NDZ2fHgWEeTOSc1gh8HKXoqtSYg/040E6tjW9fx/j2Egui+J9DR1zbmzxBP3yfri91YAvFCocchRKROM8pjrjBpY1pGMXVi/UHGNpGE/+aZLPFm+nqD6mqZhxXMf8lAn5mZs2wi711phGDI0DRmD280GTdNQrlTHtT/+G0ggoDx4wuD+4QJ5H1lJ/af/9J/wu3/37w4/f//3fz8A4Lu+67vwIz/yI/gv/+W/4G//7b+NzWaDj33sY/iWb/kW/PAP//DIE/o7f+fv4DOf+Qy+6Zu+CVprfOpTn8Jf/at/9aM+CoDoecjGV/DQJu43sVTFkosCBfF7YgmDhQELfuc1G3+y4MCaRXYi/SoWTyK026BaqQjV1Vr8qMTQBYNeRgrUQXlCXZGVTApIMTomPrOgyhQ1XvPMzmAtuqYldoDTCU3bEiv6YDlRqZAXOYqiwMXFBa5vrvH8+XO8ePEOiqIEoLBeryhv1DRhY3d9T8W4RYHFYo7D4YCL5gJ5mWOA4sJlB81gjKura7x48QJ1XaOaVAwGGODhMFiHDArDMHBNyIGU3sWSa75UmDOZV+88tAgO6+C5+Fgpjel0ipubm8BmfXPzDJdXF0SYqchoGBIUnQm5KAShJh2XQ9iWJ+7csRmBC5SCbDT5POa4Yq4gCskYEnTMbk/oPEFv+UfXEski5QIC5FHhOpY5HNOQcbxnMMqCgoqegYMk0cehzbA6PZg8uUbXtWEMpd+R95SLzfOcvHNG/NFbq/AuwzAQfZeKNVNCZipefsrwLsTt4m04L3moKOeCog9hPhkP+pw6GkQh70G92rSibtOWw31ROeiwXkT5BGOBPUTNEQqInNCKSzU8l1XssNtvcWpq5v6ToeR3TGWRrCePUMMIqMBJKcX4MhfjdUPvG0PNYhjQ2qZvMBRcxpTfR/gPPUciABAP526Lh4d7rFYroisbxgCOaNiTEbzf77HZbFGfalg3IDcxB5cab4GrMFlb4luqXy4l9Q3f8A2P3Mb0+Cf/5J98yWtcX1//kgt300O2moIB4APBq0GM5xpNPpF10SqSmilZxD6ZeEBCJxE+G0JBkLAZnxc2IgnRkJB0hMSijp4I1wiOf/DEPUKHTfiAAExTjIotvDTMKLkuUXCSnAWAgUlcD/sDjscjcfZ1ZAFLS+eyyDGdzTifc4ObZ8/w/PlzFEUZqvA9CCoO79HrPljQQ9/jsD9if6DrV66CtQOGnkICshkXiwWePXuG7XaL6XQKYzL0XQ9rORSqCTnVsJI6nmhjZFkFpYRAFaHWjJRJpEgi4UHCvaoqPH/+DG3bEBR4v6MQhYmhD8ebTbqmKq0pAe6iJx6bCMrGPysvFUNI+SBwUmRd9HqQXONMWfAKkghAVFBRqAuQIm2JIAIoMD0IQstRPzKVZcTVFl4m+G0h9JP6BJ6jEM4r5tZTMUzEzztw24i6rjkXxTV2zgbvyBiDouBwnzoLMynxpAaGUbN1r8YCOygmYLRfZE/ImIknEpQsWWvJTuS59h6GLbp0/pzzUAaA0kySTO1snCd5QAhdGjiJlESQh3grHlTaQPlo4bzr2haHwz5wUvbDgILzYZIjVZAIQWxG6SUt4ABpkzOdzjCZTBM+PVkzGI2vKPgwZhyFSA1x9gtD3k6pZLQUrcPT6YT1ehNCeHVNzVrlHnJupHxzOOwP2G43OB1l32bhvHFuTEWByXPokRIrf+njrebuE/d3JAhS99+zFwLEGqWwCdM/idWbTIoMsOK/vbNjoZUsnLQ5m4dsTpd0Pj2fPP6UrUbnY7Ajbko6QZ99Lyg0zRyEcm2u6Tgcj9jv9jgcj0T/PwwYBmqFoY3GZDLBcrnE9c0Nnj1/jhumNSryEl3XYbPdwphIngoWPkL1JO0NiDk6KsGiKEJOrKoqXF9dY3W1wny+oJxR08K7ISh1OxDKb7ffcb1Uh0nF/aXgRmOLsPH8aOMAdK+bZzdYrVdYrdY4HKn7sMkIii7s9WIZjxFmcc7CBgvWqUoHfawgg4GgEetOMFpbMo9insfC38RKT3KaZIDY4NkppROFRN60djqEu0JIh+R+4sWpuH5SKcZLXB4yjKWK4SI5rKVmmqfTicaT285454kl3pGgISBOjiLPyYpPBKaM16hZHp9AIbdk/4n1PRoxUbLEvCghpdTTie8W5y1Yd4n1HgQ8/2qwRNHVdV1EVypiOZc9pTWz8yPms4aBBLsghSXc3fc9Dvs9tpsN0wZ1KKoJ70vyfKUYnVj2pXvCwGS2jmHehLidzaaE3Ez3vczZ6Oc4sbEmMcm/IjVO4jqTa3Vdh/1+h9Uq0h41TTNq25F+l8bA4ng4YLuhAuahH4CKBj41/sN3eA8rRSjHUHL4KE7x9PF2K6mzdxShc754qTZkbOEBcdFKDC1MOm96MYlF+8uUx5YLMUwysiBFoCeusnhS0lYkPkg0u8XKTHY6nZGEAyFWcbpAJdThPdquxfFwxO5wwPF44sSwZaJPhSzLA6rvOYMbbq5vcHFxCa0UiiLHbDrHbEq8feKlSdhGc33R4XDA/d098iILjQ6rsoTOMmR5jndevMDy4gJXV9e4urjEdDLB6XBEz29nPSGbDscTttxfquUkrLSdUKHTbJwvKUIOS0ABZVXi8vIS0+kU9/f3OB2POB4PyHKibxFBLYI8zlm6eFiACdN2sJzHp6RGTmo1RmMnGhqiqAS8I15RepxbneQcEAM+FfUi0OtQaNdTYWjQiLJCnzCCQgSAzgs5rkRyhdC3XJ9zJ9YOqBvyTHdbyT3Y5B0RQmR5lofmgHFwJBTl+DGjBqe8WmJY8t8i0BIAXDwnjUQkRimkXumRwFMf/LfivG1LnaWttazXqH9UURTQiov0s4zCxcMApYC25c7PrQ16UIAU/qCZOHmLtm0wq6ow/gqxrs0p8oYHO4T6KIoCGeR5gdlsjul0Go3EsFBFPqUG0ZnZHO1sKPjxBzxOYswMwxCKd29vb7Fer7Hf79D3ZHCOwpIszyyvgYOz2DGPH/WcmiXPkDL5pLdPcqbysB/ieKuVVMxdRHdcXOiIzEssEHZ3Y3t5dmMVqMiMz3E+0s+EI1kLUeCoGGIR5SZhFhcVFZAQXqZItVi+k3hRcg+2hLQODl6gHUkElCSJydPzxOpc16hPJzR1k/S0og0iDBPLxQJXV9e4vLrCbDYLxcNas6d1scTV6RpSTuZsDEPlRYnj8UTIHkUhO6m7glKoJhMs5nNcXV7i8uoK1zc3mC+WjBZqocAQ4GFA09Q4HI84iEXGC1txuIbmiAcL0WtID2OIbHY2o5bybdfhsD9gMpmiKAqSSylDAo+3eEPnayp45MLSDfHoUrQmjSkpksSj5jqe82Q/zu6CIKRlUyd7NlGAwiAgcyMmU3Ji8Oyk6JXGLAUO0F/ETBE/V+JliUCBAjRdp+8loU6kq13bRFQqe4CxTtAgy0zIh4in6BJodOLAASpd53y+Co/BszPecNHzRBI5kHFWybUUkOSixsOuQp2ZeIqE7ItEy8YYJkcuiFIszwmB13a8Xjy6tsagY0Gy9wTKaZoax8MehwOtc7BtHJSKkidS3FF7QFO3gWpKKYXMZCjLCkWR5qTiWMXl6sOakzd9LPNl7iVC4APTitSI7fd73N3dYbV6wOFwIGOEvUYJEcb+eH00WgeF4+kUQ8FnPa9CaFHmVd5fBCSeMiyePt5qJYUwCFEBeUWJSM1IorQ+Ki706JlIAhSerHvpXqqdCt0dzq2VUf5Bx0kBEEIFdG8O+fHGFoveM9w18MlJ+AcqACaCVyX6iCvfhdY9xOy955YGQmFDFextQ/H2kOjljW2MIabz+RyLxYIEe1FEO1NRo7fLy0vun8PCl6vtjcnQDwO2my3u7vZo2xpNU8Nah6Is0A8DZrMZXr7zDp7d3GC5WOD6+grL5QLr1QTHw5GSzZyr6HpKzDfMVSZCiAwH9mQCqCAKSSSKQKmYcJ7NZpTYPeyxuFhiOpvye+vEm0D0rJQKoUBBbooHoKEDY0Ma0lMqjlX8OwrmtEX5k8tWiUctxkiC7OP1wK58EBJIPLsUqW24qBwqWqly20kc/wABAABJREFUSNKatwoLScUKG9AJ+wkNjlBP0Xprmgb7/R6H4wF9PwS8EEHNNdcgUbE0lSIYflZe0y7m3ch+jIl8moLk+aKugUdU2kop6gqdWiciCBFze9EbA7cukfsl7BNKs9FFSmUYBgaDxLCnNpTjnE5m3JIiR9t2MOYEALC2R+xxJvB6plBjVG1dn9B1bVhjCE8YTAE4L1x5xDYhoAZtDHUCzvOw0EKIT4wtNTBITIwQH64e7nNufNHEhbEjQ2TAbrfnXNQu1IsRIQF18QbOW3nQXvJGc1eFNoAs0nuO7+/5/ZLF+ISx+UHHW62kRPCO2sH7BJarVEDOeAm7GR0sTumuCkVkB9axUlOcUEbU9qmiOs+LCB0S2EuLbQ4QJl0siZBjAYhjDdFiES9PINNKAdARBSUCIF0AjpWUV0xh03UR0ddHjj7FSCTqLFpiNp1isZhjUp1bbFRZfnV1Re3pkXpRgMlybLd73N7e4fXr19jttmiamn5vNE51jcVigV/7a38t/r9f9VWYTqe4uLjAYrFAVZUwWQbDi1ostJbbzwv6EEpJz70geMUic94FYSv5SMnhzGYzLJdL7HY76kTMFfyZySi+7wFh6ggGi9bQqXfEUtQxUlFD5k1g41GaKpb8McaPR5s1jGrweFTyPtEaVqmU5nmQeZcQixSPS46U9AorCn6gCPZIjLHwDNImhtgiAG5C6KQza2Rfcd6jbRocDwecjidYDndRDyUTPDdRJFqTgnN8Q8rjOPbgUh63qNA9YhTCq0TU+vjUqXcZQpu858b+lswpcyuIl5gMacjz+Ri+ckmRLhwBrSaTCovlInjmp+NJ/F70QxdAAl7kCgAF2tf90KNuKE/rw2MkykrWrvPkSTU1urZjpcw94rj4fiTmPSlcGW/viXw4nV8Zg/QTWQMps4oAwbquw3a7CYW51lrq9I0BdrDQsm8A9rwGlnUGRhPSse87DEMf9lN6pKFw2VqJI/Whj7daSUU3lrwVY0xA1mluMy6IJJf4nDEMEvn4hOxQhFHYUGKcjDybONlCsxRc2ASp5RO4ruzEtFpeK4ZISzvthHkiJNn5vqmS0sac9eWhdyMyTFJSfddRnNw79kx0gAsLO8R0OqPuupC8B1G1mCyjhofzGQAPOxCc1RiNLC+g9Rt475jO/5Za0TMx6263w2KxwOrhAX3fI88pBzabTlGWJSGoWIk7T9DwruvQ1kSdJBta6IhkQxmtmXk6bjJSdNGAmE6nuFhekJI6HIhJehiQmyyQsgIEToDzIb8mITIJvYkyiuWHiIKMrxGeA+nmjHkoUbHR6zpXVHI+2/wuyZHx+8kRKXtMEFRi6ESjSKUuSljjHiBPW5SJ3B8KStM70ftSPxt5XjtY1Kcahz2VB5CXK2E+Q2tKZ1HxaQ0NArzIMxDzveKxV8m7+kSojZ9RhjfmcVXiK4ghCF5DY0XmPQIdT6A4klIOIEFv0p6UvRnzxh5ZZjCbzXB5eYHFYkmhTJOzB+9hhy40/7NuYHi8YiZ69o7qGm3bfSCBquL1NHQ9mppagMDTetTGIMuKUafc6MF7RHBEnNOnDOiRwki87HCuB5q2xmazCbBziAz1QO97LtQuknzUAGs1l2Nm8N6hH3oM1p49w/kbj/PnvPQ/9PFWKykZ+PCzOuMEU0n4JLHMYniGT9OgYjtF8NBx2of/xzmKEJLwMYadJuMlXCULMW6C+DxRWfJnKcw2cfHTdxspKS7qdGKRevLUBk52N02Dtu8wDJagrUpBGYMsy6n4dT7HYrnEfD5DWVBfqmEYYEDhmjzLcHFxEQSpHSikkecZ8qJA3VALjqaucWQkk/MUvttsNnDOYbvbUesD9uCKsgxks6kSd5bQgsfTCXVDwtALnDWZ4/R70jmW3l1IO2MuzbwyOB6PzJDQh5oTmRMkeUERsAK5Db5HuonI3Qm6Z7z/o9HjfarsUk8LOGdTIJ5HBTDru2MldB5aBp3BUHy2yFVc5CoVWslaCe1ovAs0tekYIqxTeQZR4WSwCfP5fr9HXZ/gBsu/Fd4+E2DyUneGdG69rOuxJ6X4l+OcRdywlHGT+WEGjjC+PD+K1eFI2onhQPca2LCCl6GKXZetRUDViYJyjgAuRVFguZQQ9SWyzBCQQmt47vS7225R10c4b8O9tVKAG5jr8EQFvVw8nvrI4uc669D2Peq2Qctel9EKJstRViV1GUhkwfgiUWE/FviP0xrwPqwTKWgfhgHHwxEPD4SIPZ1O8J4K8jXzkJbVBGVZhfNFBokRb9nAHLhjcfoMTx4eMTWRvM6XOt56JTX6WSuoD0FaGIVMPFdIZ51FCFnIKRSa8MmmHgvOUOUtEiTxfNIeK3StswQjfLJJPvjZQ1waPnoZ4TM6KHzQ4HSq0dYthr6H9Q5GZ4zcKzCfz3F5eYmrqyvMF0Qn5OHhBgfHBYB5nsNkJsaQz0Z9UhF9UlGUyHPaTM5bdD3dI8sy2J6QQ9ZaNHVDuTmMx0UphX6wqOsG+z0JxLZrUXDbjjhO516IDspdWrUL+8RsTiCQuqkDFH2+mEMSxzyC0XrWoRoOYeOnxsHZGhBm7+gN0QmikETgnv8dlRZGP6egnhT0kL6/PLM8pdzTeXBWSQXBNL6nQgiv4Wy/sOBOFWlQ4h5o6hq77Y5Ql3UDO1goY8L6NSrWCZnQqmbcbRo+GgGyduLfiecUdpeP463ip+n3ws9isKgznkvZV2dbSQwZrQFrfehSPXCHasDBGI3pdELI1+fPsVxewBiNsiiRZdSmwmigOR3QdlTEKhB2KAJDdD2xqJzqIxmJePwcJOAdurZD05An5Z2DMgTln01mqAS+jsTwEaM6GUWl0hFKQFkfcMg4dV2HzWYT2nGc6hPKoiSKq7yAdw6z2RxVNQlAi7Zt41q1kftwsPE9xUCT9xTLXIyTMPdIPP8vcbzVSspHMyl6MEpDKRuEgCxi584FSKKFIMpGwof8KwX2qgTogJG1OFZUKkyELCLPdD7i3omQjvcaz1MIKY3eia/DgjBNiyRbFt47DENPfGRdi5YTmnAeMGRhZnmO2WyO5cUFLhgWrpVm5cQLWBF4wzytoQAAJbOlP3t2A2sHKpT1llpuTKeYTakQcb3eYL3e4Pb2lsNvDdq24+ZxBMLwnkIkQo9U13VoF6KYzTtVxSNP7Cy0kWUZqrKCMSaQZrZtE02Ls9BIrI9R3IfoTEl4hHCiF9aDNGSWXE+EvTzXiDUiXbNJmCsNO8t3xOoPokhJwbB6dJ20wJkyPLH2a7Su5Goq+YDMWihIuw7+JVvJbdPiyEwgVPDKvaA4vxqACFrDaANzVu8VFWBYWTTOUIQg9GmBevKU4iV61lTqfE+KkXBuuMTP0kOphIIKUYFZFrJSXO69DyjRq6tL7lNGDCh5XiDPc3gQk0XT1DjVR9TNiUNgNuTyLBtdBCu3yQREb9B7YgqxA6ELAwSe+9NV0woTZmlJ0cDRoEneHQkAK9EU3vnYzsf5uKQU566bBtvNFuv1CsfjiXq65QW0orrDoihweXGJoiihlCJF6j333BKCXlHSNllc8gi0NnmxQHLHoR+Y/9IKVY63WklBPJxEaWgNbubGysNQ8RwhkNPJDpegQywyrag7a/CU/aM20OdJSNmwqSWtEMMdyeMGayJupnhlQgtxDYkixSKhxmA1qSiyg8BE3HTUvC22H6A70P2yLMNkOsFiscRiPid4djoGiIr4ix15Tv2/vuzjH8dsOoP3RDjatNRuoOS+VPd3dzieTnj96nVIzlJb+QZKa5Q8doMlZgMK0Z1gLy4J7KAUnIqFh8FrDeMpGpsEttY69PYiFneCyUchmAy5T1BLnJuSuYitWzy8NLnzUaCPgACI3rExUn9iR2stnX/avCp47oLyo867kTZIvAl5ZwmPiVmaeqTh7bSEBTGiRQur18d1JmpJaUWUWuS60Bq01EOqrk/ou1aGOCrS4HvSujch3M1GoUqh7hgJ6VS5K61CrjgqsXC7ZO0mdEupS5oYoor3y5OH572YRS1NQICk/Yb3XJ4xxXK5xMXFEvP5gvcNexeePKm6PmK33WC9XqM+1QD64OF7T2UgwcMIMooQlTGakEZa4hoxmUFVVkwjp0IhesiNCtIzjEHSdiisOQAhyDtecwCFGuu6wWa7wW635zonVhqalNTV1SVurp9Ba8rzSwdtUpD0TsI0I5ygZEiluX0XDX9es96Jh59M8pc43molJfmF4EXxBhYElHhR8NTmPP1eFFxRmFA4wMHKQCKx1nVi1fExaq5mpKmdWIFi6ab3FYtNGtXxMyT3CrQ3yeJLKXR88PujJUXhgwFdT0nMtOiOHpAUd5ZlmE5nWC4WmE5n1IEX8pwI5vYoXKLEVY/jnuU5bm5u8Ku/8itxev4CUB7WWTRtEyzSLMvxcP+A129e480bov3fszfVtC3KIrYTcdahaVuiRzoeMQw9yqLg8Uawus7zWeJjKR+9IrJ8qSlg0zRcl5WMNeKGd9bB6aikgvAUfjMkzCHeB/SbGEPp+ojzA2jtQwxfDllv9BlpEfHw5b4CPkmZBpRWMJkePTdL3bGSUoCSQvEkUiAEW97HTwSRJp1ttVbwLo5r3/VomwZ13YQiVviI8gQLXKgIgQ8mV7DwOdfn43OEJoh8HjSgXKpzJOA3fgcFDa84bybeGC9XmY/YXyoeqTET8mG0nNgDGoJHCoD3xwSLxQIL3iNKAUWRo+KweMae1Hq9wpvbN9hut/R2SoXeXP0wUGfdgYEV46dJDIwwKST8QcAFykmRByO0YMTnlKy1xHuE9D4T0QBSBl5IscMalX5ulDfbM8DIOSaIZU9uOiMuzBfPXwAgYNFuvwsREOcswOvV8r/DukQ0HjkKKvYJkW97Tmv4eP6XOt5qJSWKQCGGAABO1HIPJlIkFAyRcEqaF0qtdGEkd0mxYaihEXk/EmYxJ6UDVFwQPSkcVJTW2PviV4i+lE8JTBEsszR0ZKWjI+LzAFS93nYtMVVzCMKzhQMl9VElZrMZ5osFJtMJI5RiB9B4vQQ9BhWEmwimzGS4vrmh73c9WcTOom4b5FkG5z3evHmDL7z3Pl69/wq3t3dU3c8hEDtY+ByB7dxai5aZmHfbHZq6QVVWI6FzrqQ4y8cPzZve02YryxJZnjHLdRu9mmRTeHj2XEnZCfGm2AxaK1gXLV4A0Ts/q40brwXA2qgUxyGNmH8k9qgoaFxYO+KRI4SANLNVR2qvaNBEJUVedrTW4/iIBy8KTNrQi2APZLuOkJxt2+J0OpFXy33DhP8thdhrAEYbDs1Gy168Uq1Spo2oXDSvSep2nXpS6aRGFUWWd8pLmBQ/KyFpfsqTGo9XeuVhsBxtiHs7zzNMp1MsFgvM5/NAil0UJSYTWnGZ0ej7Fg8P91gs5sjzPDyj3H8YBnRJn6oYOYlF3xH5G+WFUuA27SWKIuc1liAEE1kkhlSkTJMJjwZv+I7UiUrkYrA4nWpsdzvUdQ2A9nSWUXnKYrHA8xcv8M47L2F5nDabDU6nEwMlyCi2jjs9YGzUK/GaRD4rE9/F4yN3MXy7lZQcKiocsQzDr1ScUBpHxxo+tWzighePSQ5ZFGmCO7UGjTHhjxaXXs51LrjnqYUrgindN2f788mQGylSBB3FjxwKA+uaWyow1YtY3yHUNxErcYnJZMpKyiHyXUZr01qi7tUsBMDs0pqtrauLCyxmU8AL0wEhfYqyYKXTMi8YeUfamNB8URvDbUUI7t0PA46nGpv1JvCHlWUZUHkSIkmV1ONhEgtTkyWaF6ibmmulLHJkUXInyuXxmDP/mCZG+TTnJGzj8t307/RZ0lCu/DNas+mfNLcSDRYlP7BRoJUGtIEOdEgCMCAhQEECHdfYuZaSO4pwZOZ07wBlDIK77GN+cL/b4Xg4oO/6xM7i/AZbwsRgQtx9Eu5OZ0cMKApwJIpdxd/5JHKgRk/LX5X6scfbge4hhsOIZSKYVeF66V7znuqZYj6F8o1ULjHBYjHHbDZLYOBx3WWZgbU9nj9/houLS0wmFXa7yJ/poaigviWDkVjqH/PgWWdDIaysDW0MioLWfSYglcTS8ECA9cfcaLoW8Wi90TPFSIOCkFDTHIuSynNB/i5wc3ODd955B++88wJdSzkz2ZfH45EM4IG6C1D36HOPKMrKELWSufdPnP4ljv8jlBSt47ipxXILtpiSVksqJMLThCsJKwXlpe6ELe1Qg0OLPG3TAJBwlk1qdMJblkxQCMk8IcziB/LhmYekFAuDyCpgkAiV5BgGaq1xPJ3QNG2Aq4tAKEpC9l1wt9yJgCakataNPY3wLkm8j6x3wBiF6bQCUH3gnCwWi5BwnkwmKMqSyF4l1MShIGFXV0oRh9ibN3j+7BnyPMfFxQUm0ym0IWJKzcLIw4eCbBk12aDCGFBNKpzqU4TIFmXiUSHUsCj5IBnPVGCOPGitR5OXhvoQrixrIxoyQQGdzVnqWaf3js9IYAhoRUADEVrspaU5H1qvLiDAUj0lf5zzgKxHBW7TERWm5/k47A9YrzfYc0F0AHREOyvsscB1lxCSJllTwAvcmP7npH5Jns9L1149noPkHUYH7wkJnSu59hObSpRqaljKuHeh4eHAni019ZtMJpjNZgxcSMKu/H1jNOzQ4+bmGa6urjCdzJhklt/HOa6VagInn8lMDFHyerDMTiEGpfee8lETWrtKyTvIMyMYJUiKeuM4JcZz2BXihfrk3ipw9u33QoPkkBdUz3hzc42XL1/ixYsXeP78OdqGEJCXl5e4u7uL9YZiIAWwTzL7XpwGubUK3wmGm/9Au+PR8VYrqbhH/QiOLUpHS53F+fk8qinyigY2WnnUJjr+LkV3pUqKIJs556TEyo6tqKUQ7pHxoGTjUhiHeNV0uL/WRDPjdcxPeSgo3jhC1xPfx6PtOpyaGl3fQdCA1PNGo5pUjOoT9ocKHhSukecUYafOlg+tqWgVf5hjxq1Anj9/jmpC9RaH4yFQ1ggNkoyTtVQcfHt7i2fPnyEvqGCynFQodMkUSRyegoLKSIk7SzHx8MQKKKsKk+kEeqOoZxC3uBbFFoqno3t9pjBkg8f51jqCVMQIcfBIQ6WSQJZ7yTyOvXwdSxbkkWV+fRIGDvcR+0UEjvQJikYW1FhhiuIdhTf5ecHevVNsXbvYu8wDQYBtt1ucGPXlrGWGCl5ziZLMshxFXgRPZmwt++CtikAlQ49YIby3VBDrLOXHpDhXZtPLf8ZKyMm7hD2ZTH4ypiktWZxX9qQ4FCyejNYUbSiKAnlewJinRSPlrYhF5fLikoworSlX4x0MEDoFdC0j/PIi7BvqiUVMOKSk2hD2y4xBVZUo8jyuGZYTkdoNiJwiYXLjvuQPBZgjY5FGf/q+x+FwwOl0Qt91nPfMMJ3NcHPzDC9evMD19TUWyyWKvEXTNNxItOTIRnwWHyyXdMriXkrz4nJG2CNPRIueHPMPddb/a49g7/JgIQyc8orD2Cns+LFAChrfeS4OlEJLBw/aUEAsglPKhTAfocnyEO4QC4awE2y1u5jgTtko6FoAQjdXzaENei4h66RnNOHpzRMTK5xaVCfVBvoSpTWUJ6+jmlRYLhfsRU1Ho2e0IWZmsTqToHHikD5hrX7wUVUTvHjxAl3Xoq5rmDzHdrcDFKH57u1AoSSeD9v32O12uL+/x5vXbzgPMMH1zTWgAKPGS1XDIDcKAwA32CioPAK6MMtyKjjsqdiYvF1umuiIp02zpSmba2zUyEaPDRYBbssCYYKIXrlz8TkMF0QaM4ZMp12BUy8s9o5K1qiiCgKiIlJQVgywWEguSl+mSYnnK4pLJXkQ9lqcJ4/LWQtnNLPN8zp3DofjEbvtjtjthwHWumCEBcSpJ0WZ5xl7Upz7FfSfF8GarB2F4P16Q2CbYRjowUc1gtF7J9qvmLsTr4G8xsjSolSEmsv9qPkowaPTMXfOs/HSBSUljO5ScP7FjsxkmE5mMSKhTSRy9tS7rO+ohsgl/Jdka+jQVYByyH2opRRezSzn/c7eFD23i2MXXBEVxggIJkTgbEwVk8ydKKnT6YSubclb9x6ZMZjPZnj+nJTUnCnTlFfcOmQWCozFKA7eXuKN0yKWSEcK2Bl7kueGxxcd7w911v9Lj3MXXoI59G/aNBF6nhY7xu9Ht9QFL4LaJFPsPs8Nb4C0SR0LCKUCz5bEexVYMQVPilFbeDqnIn5vTLxKfP6jZRe99+j7Dk3ToB96WqxsnYc+NQtqASCcfDIGOrkG5RzAiz29vnwh/hwM+5E1S0dZlnj33XdRVSVV1HuP1XoN6yzatsF+v+PmapHl+3A4YLVe4fbuFpMJFVXawYb1f34oMDqQDQewMC6KArPpjAqVvWeWactKimHPXgA2MZdDkYmk6SEEbh6LeEWRixflPYWAADCTNYLAMyZtioiRoACEfkuIO4VuRsUQnZfOuZyIDIqYBl8QXgnFKqTVRjRwY3xO+njRWgecU2w80TmUq7E4HI7M5N0FK19pUghaaVgfWcMFnq2VKCkPDwd46Xw8nj5nWdCy9+ysQJajN0wyLCpXwCf5F4lUOMA7eCRhRh/XYcjFWEs9onTc+8LoTXVS0ZMymYmQaZEmT0QOpNHmfD7HlHO71JE7vssQcl6OwUfBhGCDhmqV+q4jT9U5hp+nbePHRotzPtQvxncVcIWKgISglKKyCgaXUgSy4jCu0RrQQM6F/s+4t9xsOiMDfHCYTCaYTqcMEomyNhpxPH/ah6iWgNCsdbKZopzgv1PswBc73molJUfcjDHsQQs6XeiSlwqxiERpxPCcUSrUb1jrQPOS8ruN8xCZKKmEiSAmDckyJdimj0KIIhXRbQ4KjH4Pj9gyOwlTjN85xtqFWLZuGpzqOngocbN55HnGRXr56Hpyf9mN8f1kQ409TzonWq5ucGFBhjkAUBYF3n33XVxdXQZ+vvlygZYr8t+8eYP1eo1eCo69x+l0wmazxcPDCvPFAi+5tcdsNgueQZi3RJiLYhBBWxQFZjNisfbeo6lr9F2HPMvj3IBLDhSHdr2HxPrp9WkMgpLSOqQ9SSAJ43kMa0ibDikxSMlsI5N0XJNCxURrMypHWV7eI66bkVUN8iBYOSqfhLtVDJd5lmSKvyTelByOn0srEnLWER3S/nDAbn9A23Vn3hDf16ow8FmWIy/ywKUnY0lt7h8bWhSxiMAiyY/Js4tGS/eRSver9wCjDHVYt0lExcd95D115NbGB2PBWR+KUElJkQGpNbUbkdyarLU0hJsqUgEZTKdT5FkB7w6hu4H3LnrwnMeOoBkaN8e1gV3bBYRckWeoJtWo4WA0ar1MfPhR3lHWoXwc5JpWXKIjYWE2aiz3htOaaiU1MJ1OQnj+hpG7mTFwnFOuqioASSSCIK1aFHu9YZ2pKM+s2Jg+LuFoSDxaHk8e/0coqTD5IawRlUjcYGNzfBRWCTFWD2/iF4MbPfIoktg/e1QZW2pi2QLiTRGfXaS7EaHPzOgAnLdsZWkocC2E5TyWtxBCzzSP5gHYnpgeTGaodcaOGgceDwdiFGdyWZ9YeLJR+76Dc7FluLCuc8R0HD5KhGY4OH+fLnYYEyxy50hR3Dy7DuzzTduhnFQ4nk7Ybrf4+Z//eWrZ0baEgHQeTdtQQpdZzIWFYjabQmmyAKEUdQ2WwVQxZyfRnrIoMJ/PMJ1OCa12OuF0ItoXQTDGEAiDaZwHlAserBfhrIQrMZ1/lwiduDiikpIBY++Ei6u99zDGxdyYc0EgiZIKIavEePCeARssDELeUAQPI76Cs6u1uGIIUkGFXTI60jxHPwwETd5usd/vKanv0iaTUdhBERu65GSl4FaUTxDnidJMDaFYxErh5XN5pXhuo0HJewfkqYk3eL42U4UqcyI/eyds3hSK6xl9pxR5UXleIM+yYHCFcFVQWI6NUY2yJCUlXaeVIiCQKF7y1njvB0MBEGEutUpt2zDHn0cRwtQxj6lSqZ6+J8ZyKxq5bGCOEM681pPvG2O4G8IMMMDFxSVubm7w/NlzLOZzln0K4No7UVJk9/K8KVFSOob0Uk/Wj43cdF5EoX2Y461WUvHlxYJPJ+b87PSDuPjFEvng8UoS1OHb8WRhQRfBF+mOKDadFtZSqIc2jcShpfVE3MwedhhQ19RAzVqLvCjD/bIsh/OOwgSDRZZl6IYB9/f3WG+kdTqFEawlJgjqm0Pkly0XzVKoJgvUNkopaCVkuUjX25PS7SkjKCxM9twKLV6gR1lVgFbYbLe4f3jA8uICRVGgrmsIKMNah67rqSi5H9DUDVbrFXRG+bog6LMMWUG5kNlkiklBPGcangwGpTGbzbFYzLFeU33Hbr9DNalQFiVby+OWGpIz9DquC+s8tFFBUIjC9eFdk4HxqTCNHvUwDOi6NtDJSJhYBIsxMUel+AIqWdfRN308EfL0QQh5n9w7ni9rM5koABGeLNcY+gGH4xH7/R7H45GpcBDOE8GlONqgjSbevixjFvC4nxS4+DkIsLG1Ew09JsIN7uKTqnT0xtHT9MEwTb2pD9zrIOXY9z3PCbHuS/sR4a2Tdh7j68Zx0lqh0AWm3L26qtj7EQ/bxi62kkcKBgZtEAzWEhEtt6hRihC4k+kUJjPJs0fZIh6mFOXKM54b5Yrprjxr8ZH88j40diSi6QWUUbi+ucbz589xeXWFzFCRv/OAymkPl4zOpbXgQysho00i/2KUI0QkZE3wGKjkQUf754scb7WSShfg+RENvnTxnn07CcOMLklXCHFwQI1d8LOFGzacVN8rscTs6PqSOJduq1JIGoQKWyiDdTgdT3jz5pY8gGpCfY+0Cmi8YRjg7ABjDLphCOGzpqE2ARTrJm+q7wnJ1DR1QG4B4NbfBabTCapqQh4Kh6riuyFU0tO7IypVFd+XwgsI9Dpp2xFAITPU7+ni8gLX19dYLpcoqwrmeOCx0wFUYAwJvmHocXd7S20ENBVgWmeJumVS4eLiAh//2JdhVs6C5Z1psv7mszkuLi5xPJ5C877lYomypEZ2TscwTAwBuqAgnOOkOxEZAh6htQOFvaQ3kaxBQVMaRvRFqqq27Zi5QYW/lSKDI/XogkhMdzjPQQg1nXn1YYxVKswiyEAEBpHyOoDDlvQOJkyq1hqDtTidjjieTvTMVgwoxWALB88KRd4z9GiSrRMUH91EC2M9v0faEp0s8YwNJGapF3denh0+vLNY8dFIjNeNOlg8izGyV54pejl9mAutDZPl5qRwlQrecnj+VGHxui+KApPJlNaxhMKs4x52MeQvez8NpQv7f895qyzj61VlkDWk0Oh8qU/UQZmr8D5pZEcokACE3HhYX45YOvMsx3KxxMXyAvvDHipTuL65wc2zGwqth9H3oczGmGyUKwvF/jqWxwQlOrJHVFBI58p6JHe/yPFWK6nALs5H3K9PMVU/VlayYGlAo1ClIvGICBKLV6zKkVfFyWixTEMHWPakpDW1PF9KdktCkEN4YnEBZNEeDnj96jVW6xWqyQxZnoUcCgB4pidRRqMferx58xqb7YZ6SbFSotXiYL1DXdfYH/bYbjcMKACMyTCpJjBGU3FvxgoqNbrPxlzF/cHvw2OtWXkrILbvHn8x5149y+UyIKOyPIcCoRmLskRZEqpvOpnAe4/buzu42zdQmpgpBjvAeofpbIp3330X7zx7njxrdAHzjFou3N+XOBz22O33uKprXFxcUDsC5ZBaoQE8IUKEQ7VKZfA5QlsR4voTWisVus8Gizz8zo1CSyEsyusvy0widOLKJENbjZ0KEXZJKMuJJPARji4hGAUVimAlzENzpPl8sCJjnkgODxEpLyn1wVo4RPScE7Jkru4W0ElKIRUXCEU1RAGI1CJKHEZYegajcAgpCLrknUXoSfaRHKcoAaNzkOah0/BX6kHIPNG8ChuEUornk/qtibcQesrhzDNNNoTmkFlVTjhfowIQKO4e+gKBsUTxANYTAjA+h0FR5CjKghGbcX5FFkkeFUjzmmNS5HQ9C3grLUD31qIoClxdXuH6+hr74x4607i+vsbl1XXoQEB0R9Tz7pHB7yXkLZEkMcxV+Dv1aCVHCcThk67GH+Z4y5XU2ZsjCqrzRXruWsokR4hqFsMfXvIcqZIyQUlFaxAhBi2LLzZAZC/NJlXjPHfeewyW0D/aKGgYUMKXhFjbtthtd3j//ffx6vVrTGdzFGURNrxATZ2zUBro7YC7+3tsNxsK9fVUqGg0Wc9u8Dgej9huN7h/uIfEzzOTYz6boyorLJeXIaTwocbeAfBJ7DtYCKn3mo41XboqK8znM8znc0ymUxRFgR6EkqyqCpPJFLPZHLPZHFppPKwesDvsGczCoZqhx3wxR2YyNG3z5PMppTCZUHxfChYPxwMGa1HkCjhjlAC4eJYFcVo64D2i5xu8ZvJInE+FpjBSxAaURKhbU78uY8LGpJYm+ThU4yKFjlAgyXYPAJdkqEWxKmHgh4RaYtiVHFwFzyhGJUqNgR2WBTUU0HU9h/nawCGptYHSoFYu3kHBhDbn9DsdINFMrQdZRKQAyLO1jmi6tBZWFoa1mwxQsdQjLBi5ivD7pb9SvM8TOR6/mnq2ca+K0qG6xSHkiiX5T95Uxl2HIyAh0lc9XteKvamqqpBn1O49lCUg8Q59vIYoU2ctNwwcAFA5RJ7nyIuC1jp1EQvvQsajAH3knaKhJR60yK+gwMgapd/xz2VR4vqKlZR4UtfXuLi4COAI8jI1wEX3ArKJA81yUdq0pGFJRETraJ0mKzqAZj7E8VYrqdFiDlaYhDti2EoWyfmgxFCchrDD0PliicWQQQpeSEOIETGVfocXibUEL020lOMeNCK8lFbIioIROoT9Puz2uL9/wBfe+wI+/97nMZ0vUJYVjNEheZtpHQTJ4CzW2zU2mzWauqbuvE2LPDNQmhTx8XjAarXCbDrH0HM7cp3hcnmJ6WSKy6sr5HmBLBeSVJAQsAy+kwZ2hhXkIJY2PbO3oJYgTkEQDF4TZNty2CHLDcqywHRGSmo6naAoCnjvUeQFiqJEWVXU7oNpaY6nEx7u76HYk+36DnVbo25qXF9d43Q8fuDykDk/Ho84Ho/YbDbo2hbTySwYC6nlGX725yzVSXdcJBa+QiDNjNkjH1Byp9MJh8Mh9NUyRgfI82QyQZYZTKeTwP8m5K3Bck0YIQLAIQkIpGgzyZupRBSEBR2eV0Ex1F2zciFbg5QaedsH1MJYAmLl1kbDehcocMjzMSE8zI8T7kUDoxDDfSAeRO+RZ9I9mxF1xsALcCIJjHhehLS3E28XcQ9GxZXmN0RwS4v7FFDABiKDGqhAXwVFVRR5AAcEUIeKI3xuwUlpR1mWyDKZQwHcjI3Z9KvxGboQTTFZhqIs2BjViA00GUGqFYxXyXP4oHijEh3fQ4iE4xong7ksClxeXuHZs2c4nA5QRuHm5gbL5QJGmcAEQwAlyhULWW6a2sgyyuMZY0QIJ85wsl7lORPOS1KivwI8KSCMTThGbcf5DKUwUlCyaMWbiiHVRKlJyCWxCj/wGdLQYuItEQljYq17omM5Hg/YbDY4MgNDXhQcYiQBtV1v8OrVK7z33nv4/Od/EdP5IvDYOa73yYxha4vCeYfDAbvjHkPfM/t3A2cNtKHi2cPhgPv7e+RZgdOxhnUemc5wvDxiNpvh6uoaxuQoipxj5ER/YofxZsgMFQgPEqrMaCNqrWEEcmw9lCeLWQoqnfcockYUzWaYzWcsqLPgZZiMiinzYJ2ShTZYG3JF1loM/RCKJff7A+r2QPVUiNbdMAw4Mapvt9uhbVssl0scvuKIxXwZ5mh0+PQfMfx3npxOxRUpE4RzpUeRKEVByonVbm0PwKNpqKBaur5mGY27MmkTxrBY4SGoPl6LyZpiNRaeLNrfCOcr4vyKhbEcNtKai1s7F/KVdX3CYAd4eJgsR55nsI7YIeSZUi5GKVgWkzEiD6NnJcacUvGdiBFGA9w6JIzuaKzZ8vY+vFnY38IiHqNiyVx5fr9x4bRzFsPQYxi6QMcl41+WFResxhoveYrQKSBZMkTIWoVi5lHYM10tiegQj6TrO4b4Wwp15znKilp0iOJPl6KM23lfsUdhzfC9J4AJvOazPMNyucDN9Q2OzRFKkyc1ny7IAE29e1YmwzDADlyfxpElCc1nOYU6w4z5dBxU8q84FqJEP8zxViupKCgUojMZFUbMMY0FzThuinBuipgZ3+GDn0Cp2DpbNhPY8h6sHUF4nSOG6d1uh7u7O+z3xMBQlCUtPg73Pdzd47333sOrV69xd3uHad0gLwpuOjcgYySSwNcdPE5Nza0yHJqmJvZvx1awczidTlitVjA6w+FwBEW1DOq6wXKxwM2z58jZk7HDgCKn0Ie10c03xsBqQpFRgacmLkEFRr5pGESkWrBkPTcUVAo5N5abMj9anufo2o7zbTE3UPEGuLy8RN3UZFUrha7vUNVEe1SWJU6nE16/fo2u6wCAE9o5hsFivz9is9liu93icDjgYrnEdrvB5fICmclDTijkA8/MURVCRRZB6EnBR2Ida0XhtGEYMPQd6qbFdrfFer3Ger0eKSm51mTSQCkVmLansxkyk4+oYgiYwGMpFjOHygjBxc/sREVRjUpQwCI0JcKAsUATj8haQiDu93tsdzucas5JcUguLwsMzqK3HtzzEEIuS4TBiZAK+yhK7ODJnAvNRLB5VvTpx0GfJXuLwmjE5ZgahGlOKpyrpGA0jqn3DnaIyDvP2i3LDLOPF4/oeiT0x9CaUDNLiMCCIfgyvmdvmOgomj9C77YtcUp6T14UMXdQzZkxQo8WnmD0DkHO8DW1LBI+K81HJS8R/kkKhoBHz9pn8NpjuVgg0xwW9H60ToIssxbSXiQL4fkJMpOH50JQUE+o64T6UuTWhznebiWlVKyXQbLGk7AHHWdKKvmdoJNUQBfx+az2JHkqqKO4EUBuumaevVCkSXkFz4lBCcmIm9s01Gzs9vYWm80GUEBRVnQxReG8N69e4b1ffI8bBR4weI8szzn8ZpEZgzzLqfKfLeS2b0Pzsr7tMPQDvOOOoYp64Gy3WyhoTCYnWOuhoWH7HpcXF3j57j1msxn6gfrglEVBUFRPoRqlCBVktAo9a0xmoByBJpzkULRCpg2UUYG5Is8MrKPx1QAmrIDKquLeT4liYCu9LEtcXV3hyz/+cUwmE2ozoInSpW5OyIoMl5dXqOsav/ALv4C2a+EdQd8l13M61VitHlj4bvGwWmGz3uLm6oDpdIZpMSMhzYIqtHxA3PxKEWBDQ5glGHMmcXYlAAQAijqYikeyXq+xWq1CuI+selL4TdOGcBF58waLhYR6ZBw0YhSaPQkHKO60Gjx/Dv0It6AbsWfz94O2SvcFCVylFFou4hXoubUODqRY87yAtQ5tb2E5VEwhKoag61hzF0EcKuwjurNDWkgc3kqUjCN6HlGkMf9GrmrqiQms3fO+9KP9Pfak0lyXYmPKcX4sKrPoGeR5zoCQ9BkjUAAqIl21NtRk05gYDteG7ylKOson8SQGS6G+wVoorZAbIqnOOL+jOfcEFQvI6Z0oJxhSDIoIlUkuPWapkENyUfR8tKazjPpGXVxewHuHqqrSWaHICHvb0l4nlNPAIzc5qmoSwtZgiRlzUemeRjBezlMlH+Z4u5UUN+pKQyKADAp9IlZanGRO8CbhAOksCoAr9yV+kIYJfLJwRdnxQjUJc4GlOLdl6ysVZM4RqeRmvcGb2zdYr1bwHiiqCkqRFWPtgPff+wLef/99ClN1HXSToeu4N42zyHhRW26SpzJNQIy+J0ux7zE4yy3aSZB0bYf9bg/KPTSwA+W2vPNYLt/g7v4Oy8sLTJkuZlJW1HgQRG2itYYtLYzS0J4r+JGJbuXxUFB5AR8oooSWRaC8NDmZpiRxkRcwelzFLko9ZwRSWZa4efaMw7gaw9CjbhtAUWuD/XaDV+9/Aaf6BHgfLFsAaNsOd/d32B/22O32WK/WWG/W2O12oVV49CpIwEfeM3C7BD9KsHuQcCDvkufWCGEqwc33+z02mw1W6xXW6/VISYl13zTiSRErRllWmC+oE6zAhg0QgBgAgymUJ4UdQmoq5la1hoILzAdpN1j1JeRB6IzMII8wF1pRCNh7ZG3P3WzZSzERmiwAmhBKdHHf0VZM4nJ8iPNkWYgqSE4joiBlzUiTywAekDWDRNEFAYlH3kBqfkou13uM5rYoCuTZY6+IQvdpyQIPPXv/gArNDWUs5J2DI8jvoaBgBxtQfWknBepGLV2OxTsSz5iY4rVyIV8aC2k5d+Z98ozjkJ0MTDoeZVliMV/Aeos8i6pAKULbam1CKUY/9IHHEUDobjCZUOmKhBeFciyMX2Kkh3ufeZtf6ni7lZTwoHG1e1zY0UoTzyd6PwkSSp1DKKOiI0UVETkRrnpmiWoFnZkQ47fOBQJJF3r90BWHweJ4PGK9WeP29g6rh3s4FlASMhmsxes3b3B/f4/TqQ4oIO8989h55IYtG89J19zAeketnO0QABvODoFZQpiPvfdoMmohoKEA53G3WOD29hZXV9fE/df3mFZTVFJJ76h77aSvYBTlpEymUdgC+TBEphYP2IKgqwYU+4YmRofBWpiClpvl8UgLn6mBmkXKGj+dTnFxeYnBWaaJImHQdQ16a3E47PH6/ffxf/1f/xt1fYJzLljDAND3BKk+HIi5YrVe4+H+HuubGxRFgeXygjxUCcnIOvARGUbP0wO8aUk4skCE9Oih8NYwDDieCEUpob71eh168JDFToAeSrQDVUX9t2bzBW6EFd55KCM41biezwV3EKLSjBAeXiOwHCSxF/aoOH8VpS8UaK2eTiccjgfUTY0+dBWm4mgCtyhkWZ0YbiTIMkP9wYQ1gpSjko0XvK7ID+h4X0UqKcf8bmmNoefnjXsb0eBjxFl4R5zt8TBEca+G00G1TClgBkBUUnkelUpoMimeVGwQCXAnAqaDSrk9Y+2g2BFxFhW4KSJTTmltUDCqLy0z0VDMPC+sMeI9RaNEQC3ixcnYp6FA8cJUsqYBBrHk1J7DOgJJUACOHlozQfIwJAwdQ0+IYoCpx6aspEy4BxIlPlqrAmBRYrp++OMtV1LszkdT5dE5T7mUKahCs0WUuvejhR8sGdF44cLkbmsDo7Mw+d577rLKCDFmL5aamcPhgNVqjbu7W6weVhjswMWAOYzJYK3FlrtgWjsQ0qYnAMbALSecifVCSitkPoNjRgY79IFmaBgsvHfI8xxDP6BrOzjrYExDXhYLgGo6w+vXr3F5eYnpbIau7zCbzDCpJkFQmyzDdDIhJeU88oI2dVYUrGyo/1aZl2hnLbI8h2G0VM+dgi+uLqCVwv5wQNvUDAP2oS25bN6madA2DTyA+XwOk1FIjrw3H7ypruux3e3w8z//8zhyUXDFIURwJ+aB2ybs9zsUeY7b21tcX12hLCvc3DxDmZeUgFfSr4q8YAkBAcAw8KbXZOF6Z2FDHQ3VD/VDj7qm7sIPqxUeHh7w8PCA7WaLmtuSANR5lQRZxgCVDE3TYbFc4p133kGelxRehQe0oQ3qPbznliQBSQryMBDDQZ6VAFn1ioRsoqRo7Sf2HCvnruuwY1qtuq7DOjPaMMR6Ag/N7SuE7oaohEwWa4vEqxGhBBHuyb5K873e09wP1kHzvlHahG2Y7lxRQprDnDEsKzrs3HuIez16VVzMy/DzlJoqMxmqsiIeQsU5NVFqrCSCwesA4rUVxCSCws+MCZEZJeOQPI8HQoG3GC5ZnrNxVSRRHTFCNJynfUKmsw7MJwoq1Cee59xjagOjzyPAhZSUMhS9yYxh9B6tGwGcDMx+UzP/pbWWDFZmrJhOp6TgEi+W1mdcYJJHHIUhVRzfL3W85UpKrIVotciC/aARCPFycaWDN/YBX/MYTfijQwuhKBfZAYBnlmzvAjWSTPZut8NqveL8yBr90CNnCGtRlsQybYcQxnTWogPzv/UDFABrqDBUlFRhc0DTYhuGPtTCWGsBz5T5zqLretiBalKspXYNdhiQFyVevf8+0fNPJ+i6HvPpfKSkpI8OKSlqklYUObI8R9rvschLTKZT5EWOrCBwQs9J6uPpAJUZ3D+ssFqtUZ9O6LuWhKICepMFdoj1mpBxk8kUZVmGJD61qievsq5r3N/d4xd/8T0cj3torTCdzkK7Bak9c85it9sB3uP9V+/jYrnApJrg2bPnlGdTMTcT1hWkfYaLgiisnchIYK2Hd8QPuNvt8PCwwv3dPe7u7/HwsMKBSXLTxnYU66fQpdYKx2ON5cUlXr67RV6U1EdMKfS25zDyAG+pFiAzBnk+LgJOxfk49/ro1+N/80HEvhtG9lE/MiC2U59Op6Q4Q90g5UKMMWz9G0BpOE/5MO1ZmcElyoIFV8Jc7hiWbgduhKmYeT8JcQYtzG8UwrIgjzC0rUAaSRwDGFRyPaFFGgY7Qq3mRY5qIug+NRK4EGMV0SCQ6wbhq5gVIrCmaBhtiLAakXmfwFMd6rohjxXEPFJVTOKaM3hGJconzC2pKcFzhnMSOF2ICPkEPs/XGINyCKCUq5zKIkLej0phNGg+hUZtv9+jaepgsM7mcywvlqFUJB378d9RTo98CYURv+AXO95qJeWT2Gcshk2tqHiuJGAliCJjysTkQUd5nvyR6YNohaTuO51K91XJBgrPB8Ay84Dw5u0PB+x3xI1Wc2fOrO+RFQU8KKdSTSoslguqsTkdYZn23w4DNBQsW642tHnwUFwo6m2wrUNbBFGUwvrsvYIdJJnqsV6v8eb2DaYL6hnTDwMWsyUmnEz1jryx6XRK6D3vUeRZSBqbjN7dOerUWlYlhy9yJoal8N1iPYc2Buv1Fm/evMZ2u+W6rhZKKXRaB4F5e/sGr95/BXhqYui8Q2YymMxgcENQUPf35LGcTkeuQ3LRsveKrTyHuj4B8Li9vcXlxQUW8wVevnwX8+kMs+mUWCi46FF5am9EoM0MzuUJLRbV1DlL3GbOEdv18XjCdrvDarXGw2qF9XqD3X6P5lQHCh56h8hW4RzlqU6nBtfXN9hsNlguL1CWFaylgm/Kc1LjQQWFSVVCmypCq0VYhVBlsuYfbxaJYEELkS5ISY1IZQcqMM3yHJNqgsl0gpMUTfP6DxRWTI8EMCXQwKzjSsMGg9GzkgIxZANkHLIiE2GvjYEyVDyc9meDVshkk6r4nllmQv0iUZDZUahJPL7U+oxKKhIwE5AgY28mg3iq3qtQA6dGFx2Pbzoe0mzQaJ2wqkfDwXugCywkzO2nNDNXlKGYNuI1o7ccPz8T+vJIEmLF+Aj3Tq6jqFgOSgGZziGEvYNz4briZQvpc10Tz2CZFdzBeM71mxHeExV84g3KH0SoTww9funjLVdSgsITC08nC48nObF6RnQ9Yx1Ef39AdjlaTDr8W0ImYVMEI5snS5QnhxcG26NpG5xOR5yaUyC3tM7BdT08twfJixzL+RyZ1thtt3hYr9D3Hfq+ZQ9Nij4pP2OMRjYYTjX7+F8nieHYt8dZ4QykYlzvPZoaOOQHPKxWqKZU8zAMFsv5AVVZ8eb3yLOchLlSAIf7Qm+tTDPKSAfEU1EWMFkGB3pHKIX5YgZlNHa7Pd77xfewWa9wOh2pOyiP6+l0wnq9xqv3X2G5WOJ4OpEn5RyzNGSw3qJuG7x69T7WqxXqU436VCMvcgxDn9TEqcC31/fUY2u1esDd3SWuL6+wXq9wc3WN2XQKnWf8DQDKjASQwMTlZw8Co2jv0A8OHYdxt9st1psNNhsS+HVNCip403aAc8REQFgBysM0TYfVeoXNZoN33nkHVVkxSzaHWIYW1HeKirOLqkAWrCqGZZ9HvR8JhvG6l3P7YcCJSWWb+gRnBwzWIjOaWEAmVLtjxBgC18QF0JJYxIoVq0OmQehOB/5OjHSIAqD8noJ3VFxsNLPbB4rM6E3AA17Hxp9xHgCtaZ9rnWEYMJp7QDwKEZ708kOYC9rAEtqlDttmLBc8A63IdWMlL0ovDiZ5Tpq8cqX4ffSIeBeg/dgPA5MoWwwDKek8L1AWFTJlggeVzhx5TPHdRzn0NLQXDJWY7w1P66PnOEYAMkLVM8hBQPYKIUVxOB5DdwVtqMX9ZDKh0hhtgrIFPLROmOeRGPUqKlAhKP4wx1utpASzL1pCq9iMTgSoAB7Ek5LvSa4ptgNIzIczd4gsJPplhNhGhJccUueTbhTKixBirmkaCqd0HZz3jIzqwVksmMxgOq2YLn+GN7e30O9/gSHFYwVKcF5iy5AlqoBAIOpgIbDgAI9VUsMU4+vWUYfQ3W6L/JY8H+scTscaVVFSstRaFHmOaTUlZe09sozQR84Rk4TJKHnuOW5TFAV0ZkK9jTEZqlkFKIXj4Yj7+zs8PKxwPB7Rtg2MzqCgcFRUz/WFyRdgTIaHhxXynCDlVUEemvUW3dAR8/tqTZaxtcgQ4eyyOd0wwA4EJOm8x3a7xcPDPe6vr7F6eMDxnXdxdXMDahsmBsb4iBY5z6riDeYVuh5o2hbb3Q6bzRabDXlQx9MJXddTF2AEfUJ1Z8rC2QipbtsO6/UaDw8PaJoGy6VH13fEaF836NoaUJ4gysx/KIszwME5Nyvs1AESzoqKY0VnC1wxFdKJmxxSnZ13FipjVu7JZASggYrNIhUQ8njw4klZ+Ez44hIBGmxEVlKK2C4oX8GktSHPczYBZxGK8HEyZ3TdyBAj65v+LazhntkUCPkqNYyipGgda1IGwfNhwR3ozqI3E2DxQAjx0XgghEKNNokxS/M19BZ9PyR1lApZxm3rVfS8fAK1Fw+f8lAxqgMf81M0TnH+z9ew95RfM2LRSG5LjA16uTDW3lOphDTBJMZ2Fzg/q2oS0JDjPJoQFwsKlcOUiZer1a8QJZXKbdonKlgh54fEjSk8Qhs2giKQeFF+ZJGQ+mJ6F6kFEreaN34MBSZ8f4EOhpmwuxZ1U+NU12jZc8jyHNnQY3AD18zkWCwX+LKPvYu+7fELv/B5TCYVuoG6d0rBqyCyZMFQPytRQJoYcpWnUAw/k4KBLhR7Vw5OG2oRwN+ra6opGjxBXNumRZEVaNsW3lkUWYFJWbFAovyQkKiajCDlWmdkpTqHsiigjObW7dReo5yU8MqjPjY4Hg44nQ44HY8Y+gFZNm5hoqDQdz1mswU9vyfIrIT+ejtgf9hhu92G3AK9K4dCGSorPa8c18fs9zs8PDzg/uqeCqp3O1jODYTGgbJmeGGF+T5ff0BgtthuuQ5rs8F+v8fpVFN4NnFv0nyRsz5hVW+xXm+wWj3gcDjg+ppQlof9nvqD1ScoRbD8sqowjOhkmE5La3ivRg3n5L6JzR+em/aPR8v3OewPNNcSndAaVVViNp2iKEsW+rGpo3gJqVUujUJjPiS4e6yYktCT93BeYbBStgE4Z6B1WmczHvFzwfv0oWJQKURV4nedY0oiDvcB4NBcRmAfbrmBEKqkR4nRk/FISicDQeUpJdfTyLnTL51J1yS2iQFdT2Ai4fbMiwJFAG1ws8vYeCHxRiQnF2UQg/6C58KnAWeyUOrJ5ATLY6BhghxIX7HvB+6csMfhcEDXtgCAvMgxmU6oQSPnf9M/UgIh90myamFYlUoY8b/E8VYrKbB2RtgUQCpK0gkScMT5Boghw2RCJTQRgrgcUpSFIhYVe3ExHp3UW/FGsXYgBVXXOB6POJ1O6Lh1M/GfGXhFXlRZlVgsF3j57ksoD7x8+Q4uLy/h4dHkOaMIDV/XBo8xz3PyGhge6jUJeQ0uUixKZEaHRS3ftbLBMqq52u12aLqWrM22R2YypldyKLKcWlsjhlAch010RiwPxmS8AftQhd+0LaBAIIqC4v1d0xGyz1q0bRc427z36LseXdti6DqcjkcURUmj6T1bbxXVoHmLpqOaM1JCMbwrAtWDYOHSDsHaAfv9HlVZ4eH+Hrdv3pD3cjxhUlaA0XD8MMRtZ+KO9QTWoF4/Cv1gYW1UUPf393h4eAgME6e6JuHDTfQCDyBDiu1ASrPr6Bbr9Rp3d/fYbDa4vr7B4UC1VvvNBnV9IoBMVWG+nIeEuyxF8lIohCgfiKgWOqmRL8Jfttbx8++w223Zk6JfCjx5sVhgwpRcAj1XT655Fk5BwKceqQ9CFJAIhEXTWjQdeep5nmGwJPCIE85AwTNSlRBlPpXaZ4dlY0RBc25R6u7iC3vQ2u+6LoT7JOSa58T6oJNuyjFehZEGoMgH949ysaUHiRjq7i1KL9IysVFjiXWG0H1kEApRbVFUo0iAGxlGKgxoZJ6P4021ZdEgeuyNyjKOtYjS+wrsDXsoOOsBb2FMhoaBXpvNFofjEf3QUy+qaoLlQkATJlFQ8TkTGymEOz386PMPqaPediUlaDr5TxLqSRRX0PBhDtXoHPl3gJzzd7xCbMURArt0LxdceA4VZLHfiud7AKRMqFDyQBbJ8YCmbbmtNSfquVdMWZWYL+Z49vw5CpPhyz7+cbz7sXeRFTmauibggKHQlxQDytH1PfqeJR73/fEcZ5/NZiiLAoaFZVRSxKnntUbT9djtd9QQEYDtqXC3bRticjA5yjzn2DZJQ6lAV0YFpoeuH9C0LbE5A6ibBl5Rrk1nhgRFx6wZeRbqtZRSoSW7d44s/MORin09CdvJhKiQPAiQ0lviQey7nlprMIxdKarvAKg+TIg8B9ujbRps8xz39/d49foV3rx5jYfVA4VqMw2rxLoWZmyyrru+g+17qm9SCr216PuOywnucXt3R+HHNXlSTdfBKA3HeQ7H4BkPLknobWDids5hs9ng7u4Od3d3uLq6wnqzwf39PXabDY6nA1FFTSe4urnk64w9Pa00HCygEn4/IO6DEPZD2Cd932O/P2C9Xgf4uec8Z1WVuLi4wHK5RF4WzHQdlY3WKrS20Fw0nHoxCLcJwU4OmSnYnoyT7b7G8VTDe0+Kqcgol5MZVu6AtwPASkyImJ31nNNQ3OssErsWeQXCHqixgOdH6fseTdsyIwuF0YWGSxpikmftEVDUihF0KobN5LLkybjo1bDCyrMMeZGFsgkRIMPgUDcN2qZlhYDQhJDCqjJvItijvJJ5VeKd+CibHBy0QwBDRIdJjeRgDL35ODKeI1C8XoZ+gNaGgUArrNcrHA8HWEt1iPPFHJdXl1QeEiix5A+CTI2DxAaDwsgTfSLg9eTxkZTUZz/7Wfz9v//38T/+x//AZDLB7/gdvwN/8S/+Rfy6X/frwjlN0+BP/Ik/gb/7d/8u2rbFt37rt+Kv//W/jnfeeSec8/nPfx7f+73fi3/5L/8l5vM5vuu7vguf/exnA7Llwx+pUkr2xPmRWEZxKEXfJAoqnJd4Qhz+cp4sJB8UVFRm2hhkWbSa0ni2tZY9qQbH0wlN07Llb+G5PYjRlNMR8tXFYo5pNcW7H3sXX/7lXx446jKTIcsKSBsIUhIObUtsAUhi5Mg8vHWYVBUW8wVmsykxp7vY0t56R4W1WmOz3WK73YQcSn08ch6CSEWHoUffmaCkXPA5APRA1gBZnpGH4T1ahjHLIQSwcgxGASjJCNAGmbOwnpLaUpHftR2FsBzxZDd1Qx1+FTA4Ujr9QCSd/GDoOcRmLXmThKy08N6GGhmCue/wcH+Pu9tbPNyTkjI5kfYqDv8oaIKoZznR2AwDNyrU6Pk6qxXlklYPD1ivNzgcjmibFt3QUz4CgOHcA9XFcHdYrmcjg2PA6XjCZrOlUOT9PXb7PTbrNTbrDU6nA7LcYNJ1FEZ0VHqgyYpCLGpXwSomxRGFhdYacBQTEIvXDnTf3W6H0+mEvuvgneP+YhMsFgsslguAPQOV7B9hSqDuzpL/StqJBwkkAjEyr/SOygfWqxXWmz2NUa5RFBlfl+DRWgHeDYCjnGhRlsy2QOzsyqQegyE+xmUObXI4p0bvL/tdilPtYDkKw80/c6IB09AYPLjWbMweQReJOV5BEws7OO2rSDuUsRHqfFRwlqMHXd9H1aW4kJjDfaQwfEL0qoIXEgwON24T45k8INM5M34gfFf+GuVrnSO4vyEEotIamo2Q3g6wtcV2t8VqteJaP2p3U01KzGdzLC8uMJvNAuo1DcWOwWoyduzxJYrqcQD96eMjaYV/9a/+FT796U/jt/2234ZhGPCDP/iD+JZv+Rb87M/+bEjm/vE//sfxj//xP8bf+3t/DxcXF/jMZz6Db//2b8e/+Tf/BgBN0u/9vb8XL1++xL/9t/8Wr169wh/8g38QeZ7jL/yFv/BRHoddc4RBEO6o8yNYnWFwEgWlogURKD2C9UQC2TrAOB/c09AzhmPVRDSZcWPE8dA759B3Peq6RlM3waqXW2lD4YmcC/omkwmqyQTz2QwvX76DX/WrfhWqqsLhcGA6pBLWOu6RRKELycsQrJagylpRbmo6nXKTwQXKnApI7WDhPCkTrxSUISaFu7u7OGZ+zLXm4TH4QfbHo2MA4IeBYccf4pB163wIgQF+1LfJe7Ka/eC43oSnkDdSbzt4UFdTYuImCLpPLLlRvy8AVIzr0TQthekeHnB3fwcFwOQZvKb8WZ4RV2KWF8izghB6zpIhpTWzWRxC0e5ms8HhsEfXtcQYbol5Y1AKNvHWtUJkWUBkWej7HqfjEevVCnf3dziy8tjtdqhPR2RFhoFptbzzzO8GbuchnIIcbuLcJQl0z5BoBQdF3H8sT4bB4lQTUzyFwIiXLbQXXywwm80xcLFnLHonoUv5UBM4A41W3MQw1hmRHJUCZJoj56lv1f39A+7uHwBF3lOWE8WYMQThNloBzgJuQFEQS7nlPuRUiApAkdGYmQKz6Ryz2QxKVRilxGTdeB9ATJafyfN4FXnOoXSud3QeUA6aqb9EHwTAFZg8GSw7XOS2k+iKMDFQxIMMCGnjMvQDzZmKDCQSyhevNyDmeOF7JeUu5DkRywjJKsfGpcmy1JcNBklgx2AF5ZRPwrU6eOS0hyy6vsdmswm0Xn1P7P1FUWA6m2KxoM4MMfcYI1je+9iXS/noFSoK28e9+cugpH7iJ35i9PPf+lt/Cy9evMDP/MzP4Hf9rt+F7XaLv/k3/yZ+7Md+DN/4jd8IAPjRH/1RfPVXfzX+3b/7d/j6r/96/NN/+k/xsz/7s/hn/+yf4Z133sFv/s2/GT/8wz+MP/Wn/hT+zJ/5MyiK4kM/T6zmlhePvGcx9qqiezsK1MbYLFixeF6JgT+LARZUlOvhuRieFkeMzUu4TyXx7JCo5Rg4tc9o2aqPk2M0hTnKsgyswkWeo6oqvHjxHL/q/0NKar/bQ2vDNTQUQpSkvdYabdui61oMQ88bPAOcxXQ6xeXlJa6vLlGWBbyE+7wlJaw0TJZjcBZf+MJ72G6FPPVsrIHA/pzs/dG/A6faF/Pj2bjKcjMi5pQ5kbBQWOSWnlPKBxx7EdSyw0JpD5VnDB/WJPylu/DZY1AnWNqwfU8ce6vVA+5u7+BdpHHKizxwmWUmR1FUkL5ShimwhmHAdr/D/f09VqtV8EZCp2dPXrhipgn4SOkjipgEWQatCQFZ1+SZzRd3gQViv9+hbWpkHcH525YaEnJlXhBCwnICsHfPJQ3OO6ptUzQsjh0ueKAfepxOJyqqTjrVUk3cBAvu+VU3DbeiULJzoKBid2FWkEYUltacIwyvzs8FUBGzxeF4wP3dHd5//YaEpdEEwMkY3q4Ukxk7wBHhcVlVlMNRhsAcmoS190BVTuGvgZubmyeXnezLoedeUo5JeB0J1JyJctPzkwxCiNbI3AJS7O1DiYEdBlhucSONFMnwcgCj/Ihxvg/ksoq7HGc59+ZSMWTqvIdWFEVgNZcwefgghzKjQug+R8EnysOz8tFC6eTgueWGeFAiF2We+r7H8UBhYGopdIRzNuSjZrMZ5vNZkNVC1+QRx1nWSFgxPnpSAXnrnjJ3Hx//j3JS2+0WAHB9fQ0A+Jmf+Rn0fY9v/uZvDuf8+l//6/EVX/EV+NznPoev//qvx+c+9zl87dd+7Sj8963f+q343u/9Xvy3//bf8Ft+y2/50PePxbvRWvFICu+AIKxSJB7OhHBqdUczJA6wS1zrkKdib0uxkso5JyWKTp5psBZd26LWGnVTYxjIIpH7ZpkOCmo6mRKaqihQlCWePXuGX/UVX4GqrLDb7hgBOIG1NhCB7vd7WO4XdTwSCsxogyLLAe8xn89xfX2NF8+fo6oK2iiOUD1OAdAGeVGgG3pcXl5gv99jGGwAI0hoR3pvKtD3e7YYS66r8t5TyxGAaXVIUFlvwzzojJUPVCxc5LmR0IDSCpnKQhsNBQ2viMIptFsPOii2bJfxF0iv5t5JqZ6icBQhAG1vcTgc8fCwxus3bwjsweGmoiyIr86Rt1AUJQTiK0qq73usmc3+4eEhUgpJkSgcvAMGWZseyDS1S3fcCFLexxgDZx3qU43Vao1qQkpRir6bpkZR5PBaEXsFFwZrJUKVBUDSlI4XGHuSPsyBHMNAXtnhcMAxKFeyrouiwHRKjSmryQTdMPBciFEvnhQpWXFbjNZUH+WTBqNsSYt3ABhYa7Hb73F3f4fXr15BMU+cMQp5bmA0GUqZUdDew7OSqqoKJO8zlJOKvSja98vFBapqAmeTsDLbpQSKIsRcN/Sxlo4VdpaZ0NfrXCYopahHrueAWyo62Aiw7GUP1qLg7sOUP+aeaqBUgeNwdMc5MaUor5ex5y5jLIoqzKeKhLtie5F8AbQiWeQQ+7aZ5PliFJg9KcdGu0saZbhopA/DgLppsNlyqG+7Rd3U8F74+mZYLpeYzxekpHj/6rPc/mgNioIHgiflvczdlz5+yUrKOYc/9sf+GH7n7/yd+A2/4TcAAF6/fo2iKHB5eTk695133sHr16/DOamCkt/L7546CA3Thp93u138pbiSTqCzaqyk5DTxqj7Iyg/xibgJU88rjifzeAG8sSTUF5WU9HIRJNGprjFYi+PpxI3OXJxcTei76XSK+WKO+YK68JZlieubawyDQ1GU2F/soZRCVU0o+VoT991ms2H4+IrHxcGwx6XgsVwu8OzZDd59+RKTaRWUlPOO2Mq1RllV6LoONzfPcNgf0A892iZa1kbrYC0DBLtumoYSzpOSrXCLoqqInmmg93POR3JYzUKNYfEiFDyzLGvuvCs1MwRE4dorTZs8sBsobokAxfU17MkiUkEpcK5AhCULLAkRd10P4ICH1QPef/U+6vrE1iwl0Yuy5HbnBkVeBmWiMhPGYL3Z4PVrIgPebrck7Jn+SKDYFhwCAuANM76L1a2j522t5Z5fD1QcrTV1yt0f0HcNujKHV1Qq0LQt+mFAZiKDigO1gKBQjmar3TGDvYX3hnJS7EC0Xcvs8ASW6XhdSofa+ZyVVFnicDgghHRYSgfjhWuDgGgEuIFCcEgURNxJGv3QY7fd4e7uFq/evCbFr6ggucgNDFvbmbDLu4E4BMsK1lE4djKdsPJwMCYHvMbNdXsm+Dxb+PTMgvQkmirO3YILactq5EmJF6UlEuPiWIvCcJ7yicLSIUX21ECRjbAk9OycI4OVayUByYfx+UbEsRrJHtaN4d9BRp3JLwcf5VjiBgryLkbmWFGwQdd3xBFqHa3BHSsoMb6apoHWGtPJFFdXV7i6usJ8PidO0GE4ewx/9nMyoImCJ2P+l1lJffrTn8Z//a//Ff/6X//rX+olPvTx2c9+Fj/0Qz/05O841EzKAR7aj62hD6qtSHH9Eu9NvwcIfctZ3CicRosgywzVV/BG4wtACFPFWs2yDMfDAW3XER0KW2AAwX2nkykWiyWWiyWqyQRlUQb2aWMM5tM5PMDWpEfbNhgGi8mkwmazwZs3b7BaPcA5guES9b/CcrnEi+cv8O7H3sV0OgEAWE/3h1JQ2qCaTHA6nfDyxQuc9vSMRIHiQs5NKUX1V6DNXlbUzr4sctqkziLnrqLEMp1wszkLgCH3HAcXpvLBDkDHYQzqNhGFH1uWXoM8OWkwCQlpcd0Y//EeGHqi5YGP4UExYpwEf5khvut6rFYrvHr9GsfjMYRoJlVFAA3vWfBmgZJJZZS/s8OAzXaL2zvypLbbLcHtAQoHcn5HFJAC4Ay1YHc+ohA1hw7tYHFyxLZBrbkzCrscj+j7FuVAyLOmrlGfTmjaFmVesOAhRTAMAxELqwHGIxD3Uj2OeO+AdRZ1TdD5zYYg813bhZKGsqwwn8+xWCxQMuJMQB4kaCJLgwAqZKtoRSz3ziUdr8MWovP6nkOlqxUe7u+R5VloiFdkDJhgCimjFJwlJVWWJYaByY6nU1jOZVbVBIv5gppXyhZkxJ3scecGDrWxkuLOAlpr8tKkI664fRwlgVLwTkh1ad1J1pmIYpsAYoqeaImyrJDnBRf3k5aWMP3pdELbNuRdMx2TRBZiCUuUU2O5EwWRkt+HnBJ4zdkI/BAZJ5Og4jWttejbDofDiQuLSUk9PDxQhIB7oXVdjyw3hDx+9gzPnj3DjNvciGE+RvSlh7BYiLGSKtIPd/ySlNRnPvMZ/PiP/zh++qd/Gh//+MfD5y9fvkTXddhsNiNv6s2bN3j58mU45z/8h/8wut6bN2/C7546fuAHfgDf//3fH37e7Xb48i//chKEHP+UUPHo9cUbElNOjAv2qnRSoe4RQ4GEOJNzaOela0UpCSPJRjVhkuQZREm1bYvj6YQsMzid6iDQyZsidJ4SwTCbYz4nwUA9WkBU+gwHd96jKIhPr++nhGoDcHl5QVZvVSWL36DIMsxmM1xfX+P58+eYziYAVFBSFLKkJPlms8GL5y+w3+5QNy2HJjkJzN6PMGxY69C01A8pzygfNliLoixhjA5MIM5H7kLnuVU39wPKsoxi6KFmjN5PlFRoWcAhQdpfYlTIOSa2CQEVyA6DhRH2b2agB9jbtsQOD+8Zou6xPx5xv3pAXddB6U2qCSbVJAgjpSh8k+UZcSTCw/Y9dscD1psNdrsdjpzXkWe33o08auUBrx1cZvn+sWcT5TUcMACHwwEmy1CVJbGBtC1RYgGoeiL/besWXdtSby+lAtm5AF2cddCMkBDiY+fIw4YGPAvLw/6A3S7SNwEChyYlNZ/PiRIqCeXQqlec7M+IFNloSNN7n4SpPHsywlYhgn5gr5FKMvaEauOOz12mg5LKOQzorEXe9WjbHv0wUH+0oSciZqUgTPqRvBdRaYTcsA/8lQOj+2QdZTmxPUikRSGyxyhEmQAuYKY4OcL+FiUliptqnpjV3BgI4paQfS3zVQroJ0cpZM1CycQDJblxkTsjRcXjKl6SNoZCoyCj0LOBGVg4OOQGkCJ1yqMfKOS9WW+pxMI7HI/HAAba73aUA3UOeV6F1MH19XVokghEpXf+b8/IaIp4cIBekJH48MdHUlLee3zf930f/sE/+Af4qZ/6KXzlV37l6Pdf93VfhzzP8c//+T/Hpz71KQDA//yf/xOf//zn8YlPfAIA8IlPfAJ//s//edze3uLFixcAgJ/8yZ/EcrnE13zN1zx537IsR/xp6fPE2DFYQ6Xxd9Esib+cxJpTSCY4vyGkoT4MLnVHHRXqhptR4z3qxRIBA5KPkpqMuq6RGYOmbTD0fbBwvZICXMV5AOrPkmfSjpnyS1VVwg5UOEsszVQ8K+3oZzNKcAu3nbBTZBk19ru4WOLq6grTGXW4DUrKkwCuqgo319d48eIFdtsdW3oMlfdRaUjjOUEoeaZrKlpCtOV5HrrXipJyIETVMAwhl0RCjryNrCDQBtEtOaaLMuGe1BSRvDglyCvvkFmDwufwmnORnOch5a+IGipQR7HStAybZ+ACVKQ0apqWiGWhMKmmmE6mfFviLqTiTFJS1LuL5vZ4igXaAwsqrXXMG3hCfsEDTlkYa0BOaWzfkpkMSlEH5KZpkZ9OwaCy3ObEOmq7YgeqQ2ubDrnJqQ4nKCmq7XHOwikNpSL5q3WU41FsbIR81JEg88TQQUK2KivMplNMpxWyzASwTWgRwWHTLCNPmsJkKqAJ06JegaZz4gTQFIasmwZN26LrW0BzU0zv4R3zEAKA595siWfesSHgQbWCVNM1Ia++LAMk2jGpsRTZSuQioPscGQlKE1AkY+oty4afFk9eZIdnJK/ScJr2+cAtN7quo9otDvUVRYGyKAiMoQyd78n77roWbUsoX+9IsRZlwYwtJuwdpDInST2IIRwLqil/ZbSBz8gAo7nyUMYHtJN49RKm1dpTyHdPIe+mbeHgcTwcAhjoeDxysS8xYiwWC1xfX+Py8hJ5kYdnjAC0xJBE7LtG5RLU4iZ1Ij6sovpISurTn/40fuzHfgz/6B/9IywWi5BDuri4wGQywcXFBb7ne74H3//934/r62ssl0t83/d9Hz7xiU/g67/+6wEA3/It34Kv+ZqvwR/4A38Af+kv/SW8fv0af/pP/2l8+tOfflIRfbFDEpoAgsfkAS7aPau6jpE4Pj0dTMvhaw3AMkSY8iSaKJlpE3FMV2kVYvvEAm5GCpOuyf2R2hZNU8MYEwU/U//IxiOlU2AymaKqJty2XeLGxPGX5xTfFmgrQOdMJhNMpxNMJhVZY5lGz2EPk5GCWywWuLi4QDWlnNHAPYe8c1BeYTKZ4OryCu88fwf77T60EB+GgWtymJOQmZLl3ezQ80al4uQsNzE0yLF8x8Jk6PpH4YCu79AwZBvsfSkOgdC4Zig5H2QHUuYKOtA5mSwjWLyO1fMhtALH3puP3HICbxcuQ0OMFIfjEU3TAlxcOSlbtFNiZh/sgH7oQ/dUGB0Z5Z1FNwxoGWlpnRBrxpxCDDeSgrTKsuBUYS1UJSkDMWy6pqNEutHB6xbv1FqL0/GE06nmhoMaHo69fRoh5xS88TCmgFcaVoAanFvseyqC3u12NNd9F57dGB1Ca9SCwWMQFvcUys/3kk603kmeQdpSiOUuPlYfUhDDQO0quqGD8+xlU7dGgsl7btmhAS99wayDB7GZKEWNRru2DbyOtH+4AZ/lmjSd7nFi+LDDQO9iyZNW2iDLi6ikBhu8dKOloaUEY2LTQO88o3ZrtBIq5X0soXoClURBPgwD2oby60PfcUjTkEJjdJ9SkNaDzFROki7Ir5DYiY0JoUgO0TlScgEIJyiJRkEZMnWYpn253RJC9VTX8Ao4Hg6BOaVpGkDRfpxMKiyXS1xfX2OxWISmnWG9J/9WWngSaa8ZVqbW2cRJGKfdvtjxkZTUj/zIjwAAvuEbvmH0+Y/+6I/iu7/7uwEAf+Wv/BVorfGpT31qVMwrhzEGP/7jP47v/d7vxSc+8QnMZjN813d9F/7sn/2zH+VRACBY9iE2mx7Bk0qDgPLvWDcgi88jkl565+C1CDIN5UUAxLCg4gp0aZiWJimB2BJAKJG0MVRDYyXMQ88jkN/JZIrZbMbUQyqEyTyHwjKmPtLMriw9XKi2quIYOLEjDIqSmVprVGWJ2ZwKhMsJUf8Mngp5PfeUqqoKl5eXeOfFCxz3BxyOBybApA1NLRS4LxX/z1qHvmvRNjWHBKhbrygpqpEgRSVUR6PwluPK+6Fn+G7PU6RY2VIyeTadwWQZKSnCosNa4l7r+x5N15A1DlDhJ0+xBxdga5kvDXBBr3ecA1OGrPq6BqDgBgdlPbqiozi8Mej7Dk1HIJG8KOBZcZFnSGuI2mozWajkQTTlN6TQ0zOThoSEtNbMhN0jk3Cqp+7KXdch7wpkuQlet2OWkLZpsd/tsdlsAQeYTMMpguWbLCMSUgvkJkOWl1A6p/yYo/k2CoGxXeDFHVP0iHEhYSa53+lUk6c4CN+cH3kl9HyKQRpSyOuD4UfeiA67cBgssT7YgS18Rpp5mhuvAK+Jpgcc0icEGnWpBgDdavRdB+mLVFUVplNSUqKQjE4Jh8mwGjUG5bkoyxJFXoR9q7WmUGri2YgM0FoD7NHWTR0Jox3lXKXVTlFWMCYLnoV35H23TYOOIyrwHjmHTIsiD6FKFjLBY+QfaUi9A7wOz6KYc1RanPSDRBMwMgpFaRgYzmF5NE2Hzeb/Ju/NQnXbtrPQr/c+yr+exSp3dZJcEIIRfRCJQggIERSffBM0vqiEo6C+BCWCBRr0yZegb/qgeYwIIYgGNCIKgiBBg0Jyb3LO2XuvYs7516Puvd+H1lrv/Z9r7bP38XLhrptxsrLXmvMvRtF7K772ta9t8fbtWxID0Cr0/u33e/Q9BWpFWWKxWF6QJgITMZjVWMMPbT+SSXH9LE2j0ozr644fGO77uqOqKvzCL/wCfuEXfuErX/PZZ5/hV37lV36Qr37/+YSagTiI9//exx/EG8r1B4/YZHbx3gR/j1Ik7x6aMymBFaSwn9akDGcGfR9JEwBBJnlGpIn1as01gCp8v+OMSDIrWZh5ngd1jqqqUFVVGJsuowYAggpLFgmdz+fImH3n4KmR1zto55FlOdbrNZ4/e46+JdaXzMAaLTkpzTCX1BkIauzQctblvQ+kiABT8JiCcRhIBiZp0p0s9cqMngdCMsSlVaTky8YoijI0P0o2IVN8j+cjDsc9aQCqKUj0yOP0DJUoobM7qVWQM52cw9i1RAsfLPzo0OU9hp6KxeM4oOmawMISJ+Uc9ZnkRR5rkT5lfsZ1APiQxYGvP8syTCPNCRsLql1MfG5931P2bDNYN8JagriGYcDpeMLd3T2WixX6tkOWG6qfahIs1lDA5JCpDHlRQWcFDZ20Fu18BqOA/Z4kmO7v73HkoYxE0NHBEQ3DgPP5DKUa7He70EtFhp6y5/P5TGoEN0+pTuOpx4yMVEJMEnILY0/jONIstVEyKQ1lPeCpZki9NApak2amtaAmXqWYlUl1lXEYUHLtZz6fh0wq7b8JNWdPihCkNsHPjwPEiokySunQP6VMQjqQa4HiDE+j6xO4VNiCTN+Xc5Eak9Srp3FE2zbouhbW0nVkWYaqTDPXqC4h5x/6DjkjInmqeH4+qI4AwBBIE/IeKLCTT9AeD1ZMecDbt29xOB6hjWaG6QP2XI/K8xx1VWKzWePm5gZXV1eoqzqeHxRCm4F8nUp0HB8fPjmn/zec1P/XjhTqEy9+8XMgFK9Try91ETlS6A/8O/k9o4i0EHxyU5WkrCoM2dPaXBgn2uwjTNZRJsUpPsD4tuj1LRbYbDZYLpahiTSemw5Kw3KuAocBQFHkXKjNqLlSS++YgzJkuIqyRF6VREJQChrcSxHui8JiPsfNzQ36tsNiQSoD1lqMlgrVOjNhtIE4n75r0ZxOmFjihWjiOrCiZLrwOAw8ul6UNqi2sD8eMPDcpGkYQZNncy7cL3F7e4tnz56jrmdc2KfeJwkA2rbFw+6Butr3B/T9gMxkAU6lGgdBf2A4imoVCpojdMe1PjvZoOfWT1QML7Ic4zSgsxxRGqKBWzZkJs94vk6Uv3FJAT0wnjzXahIiB8CUaHZUmskFLnPc3GpgXQYPC5KmUjTZeb/Hm9dvUGQ5TscjijKnyQhMZNAewEROOM9LmLwMIyGWsxpaA4f9Dq9efXnhpAANkxkMw4C2a3E6HrF92GKyFnd39zidzhj6HkNP1Onz+YztwxavXr3Cen2FKq8wq+eoTAGtDJwG8oxgHgAwWQGoWB+TacWAZ6PqoRwHT9ygqzU17rKgPRxo/pWo8DtLDaZz7umq65oNvTRKR6av5ow31bxUHPBVNQkXkwJ6hDJ5i4RMXPag1hrjSMMAJZMSBmeW55jN5jzVWkZW0x9Zs/J6kYCK8GoqoPvIlokdksA82C0fCCk+OXelwkckts+H9wOepKl4RMzheITJTJgeTg28Ljjdq+sb3NzcYLlYBucrn3PJDXhXDCD2jrrgoy4t8Pc/Pmwnxf8NfQDukoUEIFJn+XUC10EJzJdkY2nB8mK0MVOY9bu3NhYwYwoOxEyIorcJmiGbcM7cd1Mx3Xe93mA+m0fJfMkGuBQmWmnxemXDqCAJFDO+2Cgnk0KRXE/YgjHMRJbnWC2X6K6vUVZs2EQKSGZDCbzK59j3HdrFgiBBdlBaZFwke9GKMgbG7eXoxxGz3QPOLUVup8OR5lYVFNmuVks8efIEH338ERaLJaZphHd85rzhT6cTiqpA23fouh7ZuYPONaZxgrUUj1puntaOZluN00jnZTVRmBUJ7VLNhWBS6x3ayWKwhtRGSPQuFNUVmPruLKZJwfAzEYFbeNIxDFNWBf7iQ5wsZS0Thn4IkHMOwGYkpUWTewUyHNC2LXa7Heqa5Kv2+z2qWQXNs72M0dAe8JZaMUxWwOQFrKPvXNQltFY4Hg948/o1drsdafZNIxQ0nKcm8dPphIeHB7x+/RrDMOLu7RucTycM44hhoIz4dDzi7v4e3/ve9zCfLXB78xRVNQvrzRtFqBIvYGXysGc9iOEHeO4JU2FSTpr5EMuNNoFkq0DsQxTSz2q1CnVxkxl4p1AUKrSFeCbjSJAie8gYgtGFmCWBRXAAYAUbkPpFuuenacK5oUGAkn1CKUYCCH4XeyP2hyjwDPmL3WGCU1EU4RwVwKQqR8K2qR3izEWLIwr3KrVHqVNNjEhiuyhj73A8HnE4HnE8HpHlGTomtIxc+1NGY86svs1mg7K65A2kCIKOHx4TAyWs4KTRXOz174ZMCsmDIXRJMYwVHVV6A/0jBxMYL5KBOWJHCRWZ3o/ABlOOCpnR6Eh2oy9qDfK98AiOSogO4kiEVVTXNTmp1Yp6oLyH4xQeSCOfGKVcFoP9O0ZQHGSg5ntH8kI647qaZ6JVdLlKKZQVja2n6bxTGOUhWdhoSchVrnEYevTzOZFMFHXPK67rCaZOTmqibCtZuMM4oqxLbHc7GkufGbgpC1HlcrnEk6dP8NFHH2G92RDc58lBKJCROBwOUEZhu99hv9vjlJ2IaekB7y2Uo6zHTRZGMcMLVNsyHlxIfn8vnQdpFT7+GUA9WyYT5pwKSzEonXsfZGhSFYM0uBAleoBUCKSORY7NM7NSgcYbEcmlbVvsDwdkeYFhGAjGXcyQFRkX22n9KsdwmcpgsoJ/4zErC2gFnJsz3rx9iwNDOtNkoeDgJ4+mMdjv93j79i3KqkTfD3jz9i2NahiIyTaMIw6HA96+vcPvfOd3iF2nczx98owM/HuCuTQgUkCstTJKoD0YJEzWs4p7m7Jo2mua20OyPMN8tsB6s8aKteTAhjVL2LgAWN1EHJ/UlwzyLOeaUMEN5LHNwfODVVpBw1xczjSNaFvKLoXuDnAduKpQlEW4Xrke50lY2DobbIBSsaFXM+EAYX9b8I2Rj4Ko3Mst9T5+h9II1yWiv/RCvn8qfBS89xiGPowPapoGeZEHOFTWsDGGqedXWK5WNBmbSTiy8GXCMYKYgdRmpbZpYf1EJRUlayNJ9b7m+LCdFOLGJ+hbh4ZTOYTVIkV8iZTS38uUUck+zMUCp5vuGO7TPs2+4vfLbKjHg7zEYUAR1KWVpsF0mmjks/kM69WKGicLGpNutcSMPtKlEd1Q6oDF2EnGKEX6tP4zch2hyAw8MliQEoJRChlofAY8MaQW8wU3kk7EutIaRV0FJ+UVwgIdxwHjfAbvHDItBBKCbMDPw+g4piI8L03DEHVu8Or1a8zmcxiTwRkbuu+XS8qkXrx8gevrGyYOeGgQg3AcR2y3WwzTgC9efYmyopqcgiIldz/BuwzWjnDKhkm6Rhlok7Fhd9EQQqHvQeSLrzgMx4rUH1SFIMdo6p16jLHHmgEFNAJ9BbiJYSRZIzqsZcVZrId3VOR2zsG3Hfb7AwCF5tyg4vuUVzmstzRR1wPa01wgGnNPLQtKk4SVAkFtu/0hCIc6roU550lx4HDAmzdvoTT1wN29fYvmfGLYtocDcDgc8fbtWxR5jrKosFps8EPfGsK1fr/DOspepddKYIMAw3sXVIwlq5G/SyuE1GZncxJQns/n0KybF+sdEbKX+qNNMilt6DMILi9ILDfZ+9LrRfv78qqGYQjCvAIvK0XtKFVVociLkDWKLJW1Nsw2U0qF5y3zrKSfTMawS01aARfwGV2AD2mp7F8hdwRk5cK7pc+FqPZ9R6Qu0RX1ITgS+0aN7IvFHOv1Gov5nKDOaYRiGadAfHFxPlRUiafzEfq/oC3p/vgmx4ftpNJIK9ngwKUhp8VG/SQhAVaJMjWQhCVgpxUx6WBEvAmQA/2hGy7ySObxIuf3O1ZUpmiGIqjMZKiqmhTK12ssF0sUmUE7DnA+smFk/lDKLrxkyTFF+SJ7dNHweMrkpmmEthlUpmBBxAWwArNEYkVRAHMPw5mUcw46MyhnNVF+LSusM9ZvpxGWR3LkJkOmCa6wzsHrCGl6F2EWzTWrcRrhFLC5usJsViPPc7gpOqnFYoHbmxs8f/YMt0+e8nUCRpGTmsYJdV3j1JyxWq1QlgXJGoHo6h4FcpXBGJotVeQlYElqJ8sKFHVFSvAszGltjjwrMPYj+qGDh0Wdz2AM1R+U0jCajEhRFijKItQdTWYI8oMKGbhh8dULSFrrMDSSlB3IscooElHaIOhwgncW8AZakyEaRwsPIrVkJqO61OqEvCpgPbHWlCdnaidWQDcZNBuU3JDIzzSOaLoOp3M0sjLSxDmL4+GAu7dvQ/Pp/cMDNSsPxOab2Mne391zo2eJZ09e4Hg84Mnt5qIW9L6ja1uMw0jIhdLw3iZGWNa2rHufrHnev7y/MpOjKkmUOctzttuOR6oUvIEsiMXJjbfjGFmWrFtJ5Is8wH1iN4LkYZJdydE2BItKs6v3QGao56muaxZfVWCuDO0XO9EIdjuFoNqIYo2J0HCa7bCxeucekgXy0UmASCbkkPk6gnZlRHDkI62lqbtN06AfevQDOSnnfbQ3jA5V9YxrfqQyMQojVVCjCzFhH2pQ4FOnPjuyJeGHSRDxdceH7aQgmaxETOy5kzqUHBJtpA4q/E4gNPYCKn5kAqcli4a/U14jkZAMPoxOygcDQO+XjnaFIs+xmFMtarPZhFEnEhk9driPo47oqOSZC36fODJedDJCwDO8FBZRgmkrpZEVpEGYlyXVgDyPrahKGifO7xHyqYOj6B2AVpHcAW+JMYnUWIUbR+/1DqOzWK/XmM3myIsCdpxYJqbAYjHH1dUGt7c3uL25Brhmo6BhNOAngknuHu54qGNJQ/h0BjtNMEahrHIovYL3ClVZwVuPtmmoDlHXsHZCw2wrynINnPVozw0mO2IxW8BkGgNPrBW2pjaUBQttW4gsZRkbMD1ENicqalC2HkVcZb1M48jsRYQ6lqhqKwDeMDvMWozWBvKC0Rrn5oy8LDD5CU6clDJEBJkclDEwWR5INZrX5DBO6Icx1FOkRuYcaUw+bLfoGd47HY/0vczuGzmA2e126PoORVbg45ef4MtXX+Lm5hqZyeHsSDUhOChnibSjc3hPU4jbhsV42YDBOSjvoeDgbKwPwitYC3gOEClYscGQyr333tP4Gk/U+KqmoHAaB1R1TbW24xHN+RygZ2MylEWJqorMWCWZYGI+YoBIPxyHEcfTEfs9NYHL/i6KgkkcS2YLCjxPAYNkX6LuobVCkReoeC08zuAC3IjHRwLvJ07BKZfYn0ef9cgeCmu1ac+USUlGmLxGgyC/Is95KnYJozV6RwNGzaOySji7JDOmmV6IiVywY9xi8A2OD9pJKfbIabT6GG5LD89A8+MbKtFLzFXkd/G/jx+ywBAUFZtAC4/wY8xQSBqEW/T4YwSqWK/XrCh8WZDUSsFrHaic4tzIEcVFqlSyYJMTJykWuippqvPe0yaUKOfRBSmtgUwjtzSwzcNDZYZ6MFRC0+eFpqEAFbH66KT4mQT8+d1DeYV5NUNdz1AU1CcydiaIxVZVidmcqPOpAkc42QJYLpekGp/nDNUQ1GEygzIrsNmssFguQp3LTdT3k2UZyrrGZCfcvX2L+7t75HmOxWKJPCuCbM1sVkNrha7rMA4DDSbc7zhSzwBYKCXwH0nrSK9OPwzYbrc0OXgcuWeG5JgybrLerDekQN/36BqWJuIRG6LyYLmrlfT+LOwwoFfkNI3iXqE8IxURO0JDsaO2LGulYfKcRJBV7IEapwkDN656T42dxDhTGAZNUOAwBNUUADTexXHfFlPU+77H24rUzL/7ne8SIpAXsNMEbRSM9lCe9PagcwAq9OX0/QDLmnpwxPCDd3B2hBOlfudBHAsNwFB9w1kYQ9qIYGiUpl+f4dyEyXLdByo4pNP5hOPxGJyEcw5FrlEm9G/NkkcSsGoPeCWcIw5KPWWCxyM1vfdMJAGAsqywXC6xWNAk7LgfqEdvGkd0bctTAjyMViiL/EIpA1DBsbwfDYv4H7XKS0Du4LkXTfTqQ7YVMh1xXDb0b3Ydnc84DNHgJXaUxonIOKI8np/jpvi0zhR+HpGfNItD+ucHOD5sJ8XQUYDtuFM88IBCyqkujOU7WZbzDE8peGJGPPLyIQygDEqKkCFSUhdwwTuwY+Ks5Hwy7o9aLpaYzWfJ63GBVQts5x0VRmPkEu4Cn6E4H4nBpFDKPTo+atgBknTxNaXZIUCUZpBRRTJH6F0MWTbM4x9/Pb1UscEUuaEsz2kcODwZN2OC43n/d5M+YdD4EwOsqcF1Nq9x++QWL1++pLpNXnDGQjJERUWZ1P+V5xi6AYvFAi8/eonlcoWu69F3HeqqAuBxPp/RsvCm9w7HMxE0KGs3QZJnsVji5uYaeV7gcDjgeDhSw3M/MKxHMKrRNeq6xu3tLRaLOdqmjXJUY4+e+868o+GIUX/OURbD9HqjNNxk4Y2ifiNnYbRGbnK4yYWGY5MTIUXGnZATHTEMYxCQjQP7TJgeKxJe1tlkkKQKGeHERfbj8YQ3b97gO9/5HWpmLUsmC3nkhuYdKWMAZaCUwds3b3A6n1ipRGBNB8UEEee4TuYcjHHkpEDv9S6Ox5D13Hd9EAi2lvrKiJ1GNHXHz/B0OsU6EjceSwsHzXLSMvOQrjKpQyl2VM45NE0T+6N4wq9ScZpxPZshy6QVRcFrygYnlrQiBmhUmimKIjxjEaSNQansU7ZBYR84FmlxIVNS77wGlGH5ZDiik+kMPbq+pSGsoSbpAtKU7lMJTFSy3aVhWikVleKTMkSwjXz21OQfFYd9Yna+7viwnZSKRWaAFhapSETHBSAZAf0epV550J5Wp8AhlDHT0DJwBpOiqKkjksmaaSaltQpOSRyBzHCh+VPkpObzOcqy4loOfZ1mB6W8h1dkqLz28D7N9OKsmJAh8v8kq05ZgJ5nQwWqb3ItgPg3T2Ej4wxeXQJ26RGGsL33l/Yb4c5yJUbHeVDpGBQPHxiG73N73uNCh4+K26QDV89q3Nzc4Id+6Ifw9OlTEiXte3jurSnKilQz+gEPdw+4ubnBD//wD+PJk6eYphFd11FGYC2OxwP2uz3yPEfftxjsQGfkOFc1GnVVYbNZ48WLF6iqCm/e5Pjyyy9Cf5QQR6ZpBBQNjnvy5BbX19doTmcUWY5dnuFwPGAYR3BgytEqguFxjtRCpM9tsAMsHCwJCiHTBshU1NsjJgWmiTJzpdgQMsSX5TmxYpmhFoxxopxOX0VrV2uS4/H8eu/Bdat7/M7v/A6sdWGuk3MTilyjKnOO6kmR4fXr12hEM9BbwLNEkWeoz470fT6DsdFJGZ1D2LrGEORopwnnpsFut2OY38LaCUXXU++Zp5luh8MBh+Mx1Na8s9RMn4tuXkKWSv/zaNlZ+8hJWRaqVaQhuFgsUQn93INbCBiunSxGVmAHr1PJ8mUzEEOZn4URWSQqFaiwDxKFjoClxUA2nrQPa8hzIOfhYRm2HseBphAgkU5KrlWQGOkvs0yQArjH0NMIHaUVldzxCKVyVIIgRmbMSOXT/Vebhovjw3ZS0jibpKlk4PQFiycpMMUIxUcjS6KyHsZoeCW9EUm6LZFVWMTRQcl3yPh4+TfRL+2FIafUG4Bh+vlsFmb2OEeqxOH9SJyd9UHGJS6jJEtUAgPG85XoyyUkCrAj4twk7j9e595Rp7r3wnRU8N6Ey7bJywkaAjKVyqN4+HHC5CxgWKZHmfc7GLnvibCp1HJCdshSMqRA/c5H0EwmVlMgejIARb03dV3h6voKn332GT799FNoo9F3HYCoamGtw/b+Ad/9zndxe3uLb336KT759FN4gPUWM4zDiN1+h/u3d7DjiN3uAfvjgbTkQvaugtr8y5cvMJvN4eEDXHh5KORZhtVigSdPnpAU1elEES8c+qHHqTkHuCQuQWkWN/CeBihmymAYR5pdxdBX6JfTGk67+HBF3ZXXizxDT5Y0OChtqHblgSBUTEMZCV7TimuCwRgp2GnCfrfDd77zHbRth6qqAe8wjgPKIsNsVjK5h3qI3rx5jebcoOu7QMNXyjHUx7U1Hn5ltYGdPJTK4DM2uh6whvre+r7H8XjA/f0913qo3cLkWWCS9cOA3WGP/W5HzrHvgn14HyM3BU4eH+M4hCx56AceyUK2iDKpBUqmnzPiHwYCEnTK7/Fkpwp2krQ1fchcPKi2CBVZx/Ts+LRC3SrWnNKJEPJs6KUOsW+KnE7PUC4UwjMWKO/iHniqpbVtSwofWR5LGWyTFDuci8SAP8R7Tk6NjvdUSf/YN/NSH7aTSiE1kBPQeNeByBHNu2Qc0RgqiaR4kUArRJOpYhYtDuvReaTj44Ve6uJT4e+JCzHPqcg6n89RFCURHCbL2UCkLiuwzE9ynSHS42zpUqE9/hEFBGfFOePRH87wxKE5D81RmmRKcqe897DsCAOrzStoHrznufjtJnZSnhZuzoszsBH5GoyhRtkobCrGQqIv+m5rLY+9kDNWwETfKUwkts/hqWgNlFWB1XKF58+f41vf+hZ0ptH3HQxvVsqSPL743uf4P588ISbh8+f41mefISsz9P0ArQyGfsDD9gF1WeGw3+OLLz+nyHcY4D24FmmwWq2o+fijj7BYLGDthKurK56BNIW6xzRNmM/nWG82uL25oREqdU3D8PoO+8P+gooerpkNSV4UyLxFmedEieeAwish8HBG7ynrsd6GBltZLymzVSGOpdCaHKgxGTyrVKSIgQJ4cjLXh1h+x1mHw+EA7z0OhyPqugZAVPeqzLFYzHh+k0JVz7DdHdA2DfpOJHw8lKZV56YRzk5h72ntMY0OSlELgswN04bmbYlqQlVVBPlpRVmSofYHYzTK0xm7Iw3yOx2PlMFNNlyPBxOkrCORYSjAqPcGRk1D3yekCSG8GEMTB8J4k2gdwp7pu47EiEfKXkzyvMJwThX3umLx2DSojCzDGHQG2yaZEKMqsn+d96REkpwLTSe2IcCW6dqwnKWxg6KZeNxP1bao6zrG/JxJa15X7sJB0UHXocO1iBOVP9/k+KCdlPde2ino387DJzWMd6C9izfjAhcNUUz4t6TSKsKF/D6JBuQQqqZEZFprOK2BgJvT6wiOUCGSn8/nmM9pDhS9RnokokNKkuNwAhRNev5eHrwohd/wLqKnh254Lz1i6r0whrwtxMecxoPvo3sEKcomSUMAz6M2JCtz1sJpByZeh9oaQZ607TyPdqB6kgkLWkYlaL73keEoDE0JBmT2lOYiL+A5aCjLEqvVGldXV3SKy/U7l/zyo5d4+eIlN1SvcXN7g2pe03d4oO8G1LMadpzwve9+l5mERRCTrSpSK7i+vsKzZ09DDWwcR7x8+RLf+c53UNd1KI5PdsLNzQ2uWaxzs9mgyDIcDwfMdjvkXHAXg0RNmXRvcq1hePZSzTp9SgFq4IK5IS1IYwy08nDWYJxGeLB4rOJaghelbPLumgWLRaLH6Awjj92wilhcsvYVDSGD1h5+8gFupzH3HXa7AypmtnVdg7oqsFjMME0jrPWY1XP0Q5QHct6xHh45KW9HlpaiQMVoRhg8wedGZRReqhF91+NwOqG6v4f3NBHA6AiLGd4XRVVifzrh9Zs32O8PaLuO+wqptkeqMAMGncGNpJ4OrQBjuL+OMyKjsT/scXd3x6SYqFuptcZsRo35RD+XfUT/naYJTUNM0mmaAsknL3LqLwwOh9OvsN7jfhZHFerl6jG7LiFLeB++PAJNXB5x0g/lgtrFNBHL0vspmDjHr2uaBsfTEafjCcvFAloZ3uMeTnteo3wOYmdS+wjK8D2Pug+L6RseH7yTogiEIwTvoBLO/kUWlaaiApslkF94z6PXC57qESMBYbLEvmH13u+g9BmQBSbrRnpkZrMZ6qqiGVCsHhEZQeDs7ZL0Ea+N/2hi3aQ9HhJsEcNrCnCBfFIY9516JX6jT78guS4aNx/PTTLWJI672AxO3uNl8IAP+9AnG84mFH2jmfzA1eswBkKRwyVihUIK6wZ1kJjmxlOXvz9aC+mxWq3w7PkzxuNdqAFoNurVrMTabTBf3pNDqkrqxxooa87zHLPZDBvOjG6ur7FcLdF1LV6+fImPP/4Yx+MBGcMkzjlcXV9hvVkHvbaLZlIVnzZlySY0RWtjkJUZ8jJHmeUAD6XMhoGuVWuWpuJM3k/QQ8ckhgivOA4UJAAJ2b9MTlZxcCC8h8uiMK6sJcmmyZkQlOWsgzYNiqKEUkDfdWiqHP3QYhh6eAc0dQfvFfpuoF45z0oJ4qScBdwEpTwcz0qS+UjeeZqZBA0MCk1D4rdaU12M7iENTYQHB285dJHjeKY5SafzCUPfXxAUpsli6EcY39HwRK3hDcleKWtYV9HD9RaH/QHb7RaH/QFt27HgLaA1ZVKr1RJV9e7IIWstO2ZiFhpDGavAfUTcUGEqs1dknL0gMhIoK8Ws2mhPpJcsxI4cxKZ7IkLBourhWJSY1t84Wng/xrowNxYP/YC2bXA6nXA8HXE73qAqS0JKRETgkVN6Z78FYxVMCmK69vXHB+2kLPP1RU7EWWIhGRXhr5RxIpi6pMxE83z3Bsv7nHc8lZajgASHl8yHX80LIwqIvp8KTxuMpneSRl2eFxz9EUeGKMEkwmkMG+SL81NpEgejFfdoRSV2+SoZNhgcOdcq+GMu4IKwiELxVAWnZRmW09CMPSOodFBDZrxnknmC74Vl6BSIDiqN/uxkue9GAoKAbyTPhggUFMFn8fwRsw3xrgHisDSYUSLdr3JSi8UCt0+fYHu/xfnUoG3b0OMiR1GSrppIHRlmHVrnkWU02XjN+nHzxQLz+QI3Nzf46KOP8Nlnn+FwOMQ16jwpjPC4A4FZUgjOIwYzlBWRMy7KAvPlHLP5HIXRmPqBZv1MI5EiIBCxZ+IO0cDHke6B5XlZ4EArHc4YYWMdgpgQnCTPy1ty5ELM0Br8XY4IH8MY+seGvoNzI6AcJoZHaTnQ+BBRN1AaIGKSDbmADusQIdshp6IgorNN02C338N5i+Z8ZgIOC8s67vHLc3itcGobbB8e0DQNbD+gKAqis0+WtSV7CnAd6Vh6qwhizRyPinHoB5Kl2u8POJ6OzO4j8d8I9y3fmYtH954UHkQ2SySZ0j8SnuRFNMsUVNIkXbLxvN5DNCWkKJXElZ4tjQoOQoJdLYr0imTM8qxAUTj0/YRpcgTf+wjr932PtiXF9+PhgHEYMKtnUAAmJ8NbiZST7lkZVSPXkITFIUj9pscH7aREDkhlNM+JhDI9kBlkPEtGisNCHBBDE2o0qRNIfgaGppTxQYtMdAEDJsuYfeqgLiVv3j1nrVXoMo+0dSAVhbTWsaExIbq6zI55uSoEaRdjsmBk5PwnHs4n5yw1N4nI+JaEfwdoL6TsnNJbIl9ExwbOXhKqLHjxKfCIbTZyLvZr0S2OuZdnzHscpuiEUiIG30cHjuq5kTe9r7LpLm4NgHEa0bLEz/l8xnK5DC+J2S4wn81wc3OD3cMW290DttsHLFdLKJUnjio2ZYvRkC/S2mBW11it1litVqhZUXuz2eCjjz7C9uEBh8Mh0KY9QKzOxQLOOXRtG6Anx06MRpXROs1MxkMnae7Rer3GZr2GMRpDQzWCyTqevwQ4bsg1htZ+lpmgcjCN1ODrHALEJ/XMLDPIM25IB2duWtitlFk6pUKdSh6iQoS6BaGggIMbyZ3jLGuC98AwTMhMHPluZbqAIvIE6fL5xJDRd1mmvkrTuGgZ7vY7WDvilGeAc8i5cRnJNGULoOlaNOcTurYDHA0btJZqMzK80I4j4IHSlWx4FYzNkDui1B+PNIfrcDigaeIcNYDqS0VRoKyKR2uM9lTf9wlRhAOQjMhWQePxK+y2hmKVjRgkaxh4RWo5TjEbGQrSo+gTWyWKGQoIfU+aEZiyKmEtPRdioEYB34kHejZNQ9fOWo+SrVueGuCYiZxCffInSrqljkmu5XdBJhWdAs15EQ0tozX3mHLGJA+M30cLx3FUFp0SkoVFR9ygnuaR80s4HkjrJN6H73//wVmGIjmWzGSxy9yL7pUO8KDIqUTnkkCNySHilDJ+Oi4OT8KunKUQjs9yT8Hnefm/kJHLApfs0CHVLuRoibMlzc7Zp7eLYQXKNl10evISHxen9z70LgUHkET3wUFDejJMOF/5Oi0Ql76c3TOONHF3u91it9thsVgk2Qo9J60zVHWNq6sNoBS2Dzvc3d3j6uYGm/UmrANriak2jANk8q/Uw7IsY5hnheVylUxlXePly5c4nWgCrig6ACBR05walLuuIweQKJuE7JANGcA1toqc1O2TJ8i0Rs8K5s4BXmtSYR+pv8kYEvYsqxxNc+aJsDTufBwtj6zXYeJwZkqaa1SU5Pg9MdmsnWJjJ+8RrahW4wsVKNxyryYRy1WiBvG4BsrXmEoN+eTn0CCmHwd6SV1U9pgxGtZ6WNuxUyQB4WmcUHDjsncemTHIihyDteiGnlRUrIX2QJHlsNOErh9wOp9xOBxI6gcKY1XBaw0HGsdSVSPGccJut8MDBx0NU9n5gcVMFGJvEIIEUexvmoYzKYR95LwPQzQz/6hpXTJaqTRxdhn3mwD40SZcZL2yJZPfC2OY0JwCs7oGvMHQTxiGMQT2AsP7YUDXtjidjjjs9+j6Tj6JXuuj7qQEwMFJgW0n2Lyyon24Ad/w+KCdlIiqkg1POqEFdhLjHhxQTHulTnLhzX3qeAAgyawuIC3/zn2WhRl/LhBO+Ggo5d+rjg0gcR7sHNgBB1Vm+siLiISMtApOKjYTE/Ysw+sC1VilC1rcVIzO5N+ex6PK78LIdTbQUNLVzpCo1wHKU0oRvCd89fT+yPexo3GeprSOTKMmqFCHzC6wLUF1FK0jK1M2Km22MsBiUi+04xRGYd/f3+Pq+gpzpoaP0wA7WeSZRZYVWLC68+l8wna7xelMeoAacTbYwMoLk52CARV5o8Vyic1mQ0rcdRUkj54/f45hGILa+DgS5g8PHoBHE28VN9hKA7NI/Sj4oP+nefrserXG7c0tyjzHwFRqz/dpmqhJcxp7RgssjqdZiP61bsmhuQGuAEpWSqHaKE14LrIcGhpN2UBrjbZrkmAD8Maj4HHrShFbL8syNA29vus6Xq+SITiq6fIaEShIK4VMHLOmRlqlLLKMoSxnERADAAqS4fNnwGO0E1zrQtAxdj07qZxEj00Gk2foxgH9OMBoBaMUcm0w5RPGYUTTnLHbbnF3d0cCqEqjqmvQcAlSWq/rGuM44u3bt3jz+jUetjucTmf0wwAhTZEiyIimofqN1jRAcD6bYxgHmtl0OARlD4HC+74P9R7PcL82BibPOEBTEP1O7z3Vf3SsHUc1Gdq9wtgTlEdsiux42f1a03pazBcwusc42Iv5Zp4RGLpHhEhsdzs054afWYI4PTKGsm/5HwmMHRGhhML1tccH7aRSamz4bzDEySORiO0iQ4q1KnlNGsnKAmEPmNj3uCCSM4EKL3jMKlQBavQeoagd2YfJa8WPQJEQtIubkpxMdGZi6SkazomazMbNGJJTmqaot5ayfcCfJX+98NNg+rmP2PRFPSf6KTpk3Dc4wovp6sWzihBE6iZpDH3UFZRbmODayTOT96dZqQjSEnRFhh2gaFDowvf393j+4hmquuRgBsnm8oF9N00TzucGYz9cPBaKLqkBcrKxhqS5N2a1WpGTWq0wq2dBkf329hbOuQsnBVBv2Pl0CpBKlucoqypAheLkLBwbQJ+oWixwdXWF1WIRpgyDobhp5HMcB3YMDqfzEXd3bzko0pgmrmEYGoo4m81wdbXB1WaN+WxG9VyvcT6fMZvNsN0+oGnPYbAl9YTNsFiuUNczzOcLKK2x222p9sLtB7QuDQBLdRNYeEJ0YbRGZnJI35aMM1faIC8oA3dTktWLY1K03qlfDFATWE+RxI6HtsMgdSjrSeQ3M2iHHsM0Ic8NEU7ynGpEQ49jouauQfuzrCpqwFUIz0ac1BdffIn7uzscjycMQ09TAvKcpkQfj3jz5k0gArVti/l8jnEc8fnnn2O73YZ1MAwj93gdcXd3h6qqMJvVDMVpVPMZZssFirKgLeBlqoGCleDJ+6hIkyBGgeDCEH1qjyRfNcagrmdYrdfI8wHWIshLAXHeFwnRdjgcDtg9bHE+NyxwHIla7wb3/DMJNGWveUak/MXJfO3xwTspyVaUJpydJOOl3iL1IUTDp9KGUamZpI5ABSjHK6kryTvEqfh3zkGK/tH5yHfw4qEhS5Tl6DieQXS1HkcjlD04rrlERxGiIg9QAy/J6Wcm49qA/PGsfj5xJkX3wCsA6XdKhsNwnlQD0oUnOoIRseE8NGREEqlJYTS9Nwj3PDgppS4+i5hbLnyCR4QlxO9pjp69MCD5meZFgaIsSUVaghaGz2hI4B4PW4JolsslirKkLEOaF0GK5VlBoxXEET0+Ru7SH/o+1GWE5j6fz7FYLtjZFaFGI7WpLMt4bhPBfZRRETutbdvgaKuqCsroeZYBfqL6uOMeKP6+2WyG2ydPUBUFrXVFDLBxGDH0Hcaxp5XiHbq+RVEWPMhuoh4ha2EcUM8WWK9XePHiJV6+eIrlYgE4QHmF86nBerVGlhnc3dG99AB8nmG5XOLps6e4uXmC1WoNay2+LAu0XYu2a2Gt5ym3HjSixgKwcJMLzt1kBpksRaUA7WGMQ57T8MWJMwepaUoPXQjQeWOLY5ymCdM4BZYsnIexGtpmGIYRo6PeK6Mom5pY+ml/OOD169c8S44+vygKajRXCjnLJo3jiIeHB7x5Q8Mi27blQYckepvlGe7v7/E7v/Pb2G7JYfd9jzkPBf3e59/DbrdjuJVgVwqidvjyyy/h4Yk1x8fqeoOnL19gc7VBkWe4DMejfSDbp5EZQRsYoeF9Iv1zRseBjsYYlEWB5WKJ66trNCUxL611yJlpLFkiwLOzmgbn8wk9iy2DbV4ajCqARyIl/w77XmxNRJe+6fFBOynRbZOsQuuko54hq+BwtA/q3VKfio4gcV5JlCxJRlrsD+9PnJ6QHsQ4STEV/H7SYXRsbAmScgkUp0CsJ0r3JRFmzT0l4y1ivphCjkoWoaE5SdqwQoDz8AMCvkxvTaT1FbhniaMwFx0PQI5HeY9MRWhSKx3EI8VBeZ+8STIqxAzwndEl8vA8LkQyBCoV8gV08kyUGCl1kQUqRRNwiyDQyQELKJPs+54iwO0O+/0e19c3ARaNX0p/zXLDc67GoGEmh/MuNI72CXxqDGnizWYzVFWFrIgEFlmfVVXBORfaDLynDn47TszuJHgqzaTkZ9a6kDXTczahBnl9fY2bqysYQ7UT68FOiuA+0c6bLKkK3N3fozk3OJ8aGsnhFSvNX+Hjjz/GD//wZ1ivlpiGCXAazanBZrMhA9U1pO8GD20M1qsVXjx/gU8//Raurq/Rti0Aj+32AYf9HtPkuN5KgaLzA9TgMGGCVhnynLIdqsFywKE9TAZkuYZ3E9xkwwwxKLCai2ckAnBMQIJlCF0RTEakimR/E3xB0K2KhA3niP15ZCclAqvKUwY2OVpgeZnzfLURh+MJb+/ucDwdA2tUFF2yLMObN2/wm7/5m5jNZgSVceO2cw6ff+9z7PcHZpyOUJoaZO/v7/H555+jHwiqdM5hshOevHiKvC4xm9co8iyiKMlGYx9JaxcKSlG9TgGwKgaNSidQOEhHrygrhqmvUBbkpCZLUGHbdaEkYQzph/Z9j67rIxELipvEU9IS7U8HQLmo/E/lC2nYBi5mJn2D44N2UkZqO2zcZBon9TUwLJPUdKRuBY9g9J2jaV0GCAV+JQ8neqkkOwAEbgoF5dCxbwJz8IKuLj1QELo0kRqGvudeEQQDplScueKdg1PE3NIQ5QZ6urFAys4gzLOiwWuiu2YdsfyCtIpHuAdpnYgclQtYnrcseaJpfpNQJlzAlb14KPZRtPC8CspikW2oNRQrQ4jrvhRAQsjc0vusdFzJRtNYcJ84FqRwX55TZCdaGR7oe4Jgttsddtsdzk/PmM1q6ivTCFI/4kTyIid1DmGt8P211vEm7UgRfRzpuzNyUlSHKsOwzLDeuF6REgskOx7qgTIn1m6zzlFtqK5RFgX195gR4AZIUY2QqHi1XOH5sxfIcg3rPSbvMbIorJ3GIBEE5dENPZa//TvY1XuURYlxnOBBUk5X19f4+OOP8CM//MO42qzRdT07qRar1Qr7/Q5v7l7zOBOPvCiwXq/x4vkL/Mj/8X/g9vYJDocDur7Dl6+/wMP2AeNoUeSiAm5h3YDWKEzZBA0akpjnFYy20HqCh4MygMnJSVk7EOGH161RJLGlteeRI7zOswzO57T3FclEyb7QAhdrBZ1lBENCeoRinfFwPEJnGdq2Ja1MrulMjuCZoqQepmEY0XU9trstEyAow5vsGMglr1+/gtJAVZW0bpxjhQaNh4d7HI9UkxLY93Si3q2yyHE6H5EZIll0Q49Te8LNk1vc3FyjqgpkOot7TRGSNw6UkQfNUNngjDR4J3OuUuidAp48yzCr51iu1sizDtNkg/htXhSPnJQLNP2hH1i4GHRvE6p5+Aa2qdEGcp3bKYQmth8gm/qgnZTWMukxOg3Dg/eEVWYQHQdBu2LgKTKPBcZHNSnFFhfRiMtxQelGzBikLhIih/AGXDhM5x3rYTWBxmotGXwdJq1FeCzN42IKnfxME/5/MXiRMw+ZFRSyKTmfABv6APER8kKQX6BDQ+jHiTxTcFB0RlI3iPAmKPvhLFMKeuEWKiFDuAQ6DEBjqEfJNRDNWcOKg+WLUAz3VTXDZFnOxIaolXY6n4mVtd0S5LdYoCxKvk7axM47/pyaDUC8V975sEFlgikNOsx4pEhF40bK4oJGHIylvqR6iyBpzZmT1MOgFJaLBWk51jXyIofuRYePGi9NUnOc1TNsrjbIMgPrHSbnqFF0IlhrGsnBKaPwsN9iNp+hKAqeREtZzGw2w/XVFV68eIFPP/0U19cbtOcO3ik0pxZ1VeF73/su5rMZDscczjvUVYUVw33f+uxbePbsOR6299gfd/ju957g4WGLcZhQFDwRWFlMtkfZ5mRUVY4ynyHLCoyDQz+MnKF56FzBZMAwxPERniEsnVGjc5FXyLICHmTwPIjF6CYLO0ysmsAqCJpqdc47jHbCNA5wrAzvHK2Pnmu2op/o7cSMO5JKK0pyguNIn02BSg8FcpQj32cPjzdv3uDcnILT8ADKqoIxGY/3OLGTov1oTmfcm3t4Z7HbbWkY6Djg3JwxuRGf/tC38Oz5MxSl9FERKqNh4Ceg77uIvCiCPY0zoW9tmkjT0WUGqtCAoYBsZJZqluWoywreguZF1TXKpknGhlCg6CeLYRzQ9V2Y5LtcLAMMK+iKWCSB+JSP/X9hTyTs2G96fNhOinuCBO/UbKAlgkhhOUAMvDDEgIuMBBEGBDg7YkfhgPAd7zskYjZcFwK/3isVIS0fMzk3WXRdi9PpTMKN4wiqV0X9KznSulFyEUjcDDGlshx5XkAUCmST2MmSmOQwhVqUnE9yaklgIyl5vN4AmTJkCY+LEdFyyrGGB84aNTuDy5MnuNOHuT7SJySZlMyvoT4x6RPhhurw3OiL8oLYafP5HFVVo+86Hv8ATG5Ccz5jt9vi/u4eD/cPWC6XqKr6QroGAKq6xmK+QNd3GCcZXQBMk+M+GtJdEzVoI989n2O+mKOqqgg3JZm0ZFJyryxDKs5azOdzNKz1VpQlmqahhuD5PBkfQVl0lmUocqKuC208zwuYTBHBRbL1LCN4iLNcpRXm8yXyoiQnlxnkeQbAoK4rrNcbPHv6DM+ePcNiMcd8NgJOoa07KA+sVytUZYU8y+GcRVWVmC8WuL66xosXL/DsGRFS7h/u8PLlSxwOBwz9iDwvGaIjJ9W2NCJDI0eRVzCmwNCLk3LQmYfOFKAszmeC07q2g3W0rwu+/tlsgbKooRjeVpoEU91k4UYXmHNCfbYgFmDXtWhbhcFTH5oEMT2Lpx6PR3ICXMedrINi2SKRF0Nge3rkWQVjqFbpvYX3Dvdjh/sHLjswBJlzVgxPFPmBB03Csj1wDn3fUvYFOqfj+QCTG7z68gs8f/E8DB5UoEm/GgbeAl3bUZbXD9DipHIDbRSNdRkpeyyKHFXdERlnsuhaghoJursMtKUtQCBR75kl3HVozk1gim7WG+R5dlEWEduZ2lECWaSUIqEq24nfDXAfgGAUFB55Z8FwOUsi45qa4vffodRwC8b6/u+9zKSy7HIyrwcunYJ8LmPVbUvjpxteLOLg/KP3yCW9j1gBzrRo6GJBaTrXZuQ1k7U0H2kYYsSTftSjxXLhDFWSRcrCkzSOC2IXdP309iuV1NEurggAMFkXoIPQMCxEl1Bj00yY4PqU4hk6Pn5HlpGa/HK5IvzfWrjehubbtiVm0v39Pe7u7rFerTGfLbiGqMP3zeYzLFdLuD3RbodhBDzBL8MwEGliGAK7D+BJrPN5yH5CBM1OSiCTx/CfYih3Pp+j7/tQrxqGAdfX19FJsbGDAvI8Q8XkijzPMVmHtu2gNTB5h8nT/SzzDFVZsCOiQyc1uHgOGYqixGq1xHpDjpH6xjI6d29wqmeBaZgZDcuU9bqqsFgssFzOSeHcr/Ds2VN8/PFHaNoGQzcgywoO2CzGqUM/dBiHEQoZMlMhMzn6jsgLBPd5qMzDuhEP2wzn5ozz8UQECGOQFznmswWur26wWKygmdGqNI0zp1oayFmxgr/zDsM0oe1aHI4HeO+oAZVrXdaNAeKS0TjOkQKKNJfnueGeISF9MFpS0hodhgHOTazuMmBKJxloRZOuixx5VsBoqhUL29Zbh6HvcT4fmQkpTuqI+WKBL1+9wrMvv8Q4jcFJeVbsgFNo2xbGaJwWcygFODchy2nfUKZIdcmyLFBVJbTRpJzRD+hbIdIMaJsuDPakyQITxmkk3Ueux/aKBmFKS8fTJ0+RF0uyWaKXCgSB2sc7X1pDpCwQe7y+/vjgnRQQnUUKXb0vnbyw8/z34FQuHFhykx85qvdlqWJUBWqLo8JJJRqIWZT0LrVti/P5FDKpjJs2A+nCswqFjteWkgaSSwhOMs+yMBZAmkNpgB0ZXaIey/UCpOMl2Q0Y8pRIiL/Xkbis4p9Jvwp9FrMag3uJN06yL/jYwR6CBUXjHcaBhuYFwVMKtcI9DOKqvLCVVlQRlmfJ111VFRbLBWazGalr97G3K1Bo9wc83D+QqOvVFaqqgskIZtNao57VWK1XRA0eBux3B6yWKhjBYRgCO08uMs9zzASyE6ci6/BizTyChZN5YuNyZKILOdXNZkPTiPMsvJ7UzTMUJWVSWmucTkd8+eUrAB4W4qR6LOczlEV0UrLexnFiwoQLcKpQ6Klu8u7CDnXdJFAQ+DLj84ACyrLEZrPBi5cvOOskBXljMgATJtthnEaaFOw1jC6hVYa+m9D3lElBO3jjME09oDweHh5InogDK5Edurm9wfX1E2R5gbIqYTJDjqafQNM+fCAqTdzES9JJDuMw8AwrBDUM6Q0CQ4TeWYzWhjY/6yakSLlSFlpnDPdpnswrTbDTpY0BADUgGzKUhUXOdTrLWYqdJsgMLOm2sNai7QfsdlvcvX2LL778Am3XJpmUR6YLKG9CJrWYk+q8cxPygrJlgvUmKChUVYm8zKE1YCeHcZgwDsT4nUaSazoejzidTmi7jtbLQHCr9H8NitioDw8PuL+/R993WKkVYFSwcWCI73GPJDX+K47Zo4TTN0X8PmwnldQopK4hBAHNtZWL+8DGQ15LjiAabf7Ii3SVPlulXiv5ONnAuHBQsnmdk3krkZ1nLRllclJNcFJ1PYMxOrBnqEhO/SAAwowZUeRhQjadUZLJiaNzPCzPWmKTDTIenDXolMj5QT4rZqXwCJAh9VsQM1LqrzREjRwwqXFoKG8TpwlSSgZlYjQZODooBWri7TmTcs6yBljUlBMSik4cG9XGxAnQz3XSPzSfz3HY7WNNkHcB9T9RbWq73eJ4PGK1WqGqq2B467rCcrVC05Bo6Ha7Q55XKMs8QDQxO6LPNawCUbFIsDDLUlLLO+sV5KyNMSirEku/DIGQUgrr9Rqz+YxncakAH0eIj6DD7XaL/W5P8JbysPAY+h7XVxts1mvM6hpKKzRdh+PpxMzEZJIsnxJBxBpdRxJLhJEpdG2H81lqpvYdp+s5u5CWj9lshqdPngIO6Loe3tO5ez/Bup6nvwJwGkplZGQ7iuS9cvDKwimLfmjR9R3quuZ+JxuGgNZ1jdubWzx/8RJFWaGe1dQH1bXspBiWhsJkJwzjiKZtYbIMbdegbRu0TY7eyoy1S3UYKp2KNp5nKSIK5oJ98J4VSMgxjeOAqOH5nsMjOCWpf8vfHSuEOEfBj9K0aLwjKG+73eLLL77E4XBkGrpiJY0SRuU8Tgao6wqeJzMXZY4sNzw5eaJhjHUFk1Ht3jkPO1rYyUErA2ep7eLcNDgcD2hZ7mkYes4SLSwPiGy7LvQddl3/7rUqsSa4KLMQuxqAfXS/v/quXRwftJMKRlqifnZSKT08vFIcVJJ1AakQbJJJJXAWf8FFqeZxBBB6PxjKMWltAp6NGjkVax38RDBU0zQ0zrrv+VyibA9g4oA558JAM+VlE11+vzGkxQV2LEEzi2EgGdCWA0FRWeo7cv+0pomtYoyVZqPLi0tnslxi34M2BqJ07hVbP7n/QJhlJZm+Zs84hemg3NsSBrtxJmUSHUIlC18GVUcHoHkE94JJB0UhrDIPkUwSBWqStaFZQDc3t5gv5vSsjEZZUVPu+dTgeDhit9thuVxDaZCKw0QjDGKmLFJFFcsgycRS7tNJ15SX2qYLf1egDERIPQAFOssVNcmazCRZJYkIl0XBBA2F3XZHTcLDQIxKRed5Pj3Bxy9e4mqzQV7kOByPeHjY4XQi3bpxHEnl23MPkpahhXs4N0ErAz9q7Pd7YkSez0EINhCSWLy3ObfolwO0IfHbJ7e3KIsCbduHXinvJzg/sEVS8E5DgZiaXTui74mF6NSE0Q1o2hN2uy2qsiJKNhNBsjzHfD7H7ZMnePnyI1R1jdl8hiw3aNoGYzdBe24SVgrDONIAyfMZ1lns9luczifkRQE7TRgGUd7XcMZwoEmQn7ETKU6EgMgF9MB7xX/A+/TrCyuizwcgTsjmHSgELwDQ7PABkko6HA949eoV8qJEnungpIqsRmYKljECSq6beT+hYKiXyB8WhtsglI5EJWc9vAVlul5hGMiZN01DSijsqPp+oIZxBWht0bOTevv2LZqm+b7XnGbmxD6muWMMgHxjBwV84E5KMiOJbFP9M8lmUspyKPAFeM9HI5GsNRoSxqnrewp8KRtQHkYqsnkBISpZeBHSIQMdhRubpoGzsTs81FxCr5C7zKTCI46PWgrrZICiE7bWoe16NA3N76EFSwXtxL1Hx55co3w3Sa08oppKHRAIAx7lVkmnVxocgOcQpQ2CXUs4uLOUrXkW8hVdQ1EbTx8CqY8j3luleG4UqZDPZjPkWY5xGgMl3DmHtmmx3+1xf38fZgGtNysau6E5G1uSozvsDjgcjmiaE7QG+rQ/hJ8vuE5UlmVwUmL4BS5N/x3mN4WFSMzEPM+pORgIzraqqyA8TOr2NOa8Ymguy3JsDzu8evUKTdsRy00D49hDeY/twwM++ugltNF4eHjA3ds7HA9H0pubRqgsh1aOad4Obdeh7xp0HY3Z8KPCw8MWDw/3OJ2OdO3JdUyWaqr7/Q71rMZsRsSKq+trLBYLdG2PYbTBSXmMPB+MnJNzmiL4lppalfaY3Ih+6rA/FFgsqCaX5TlydlJVWWG1XuPJk6d4+dFHNKp9OUOWkyTT2I3Q0CjyCmAYrmNFh6Zt8Or1l6j2NfK8wJgN0Ox4szwPQZCM+XAug1NUUnbeERzJGZRzGvBEg4cCzEQjUWR9KplEoCSgZZTDCFxHGYzWgGY0YBwVPCxyo5HlBiPXyA6HI6Bec7Muk7AcUOQ18ryMwxOzjAV8LUpxUiDo0BjDquwEfSsFEhbwVM/VMFSb6nv0fQ/vPZqmCY3r3juqZRmDvu+x3W7x5s0bHA8HmtycMAFlcadJAgVCWmLXi4z8mx4ftJNKe5EU/YAhvuQmea51SPgdHEhUIw5RJTeZCQXbABcOSiJ0xfCMB0LGkkJ9oR5DZ0kLlcddC/uo73vWxNrjeDxiGAfUqC++UCdGXWDI949cpo1QsDxQ6AcD4d9t0zLe3GM+t8gy6RRnaO/i+pA4IMUb1UMlIxvC+dCbkifwGF595HQFSvHU49G0DfphiAbc0zXneY4i5/EYPMLk4vzCtytojaDscHN1hberFR4eHjBMffiuaZzCWIf6bob7+3tq7r29YqzeIDca85qGUGpj+Nmc4LwnMgA38cp5EGuvYIUIOtdQEE+y3pR+G4Ia3rF5Ruw0z0V5D2A+n3G9zITsPMvI0CwSZYsHv0XbtmjODWA0YBTGaaAZS4cDzqczur7Hq1ev8ebNW3K6LVG7M5NBeR/qMefTCX3X4HwuUZU1YDUe7re4f7jH6XSOslqgvSHwqUzE1eYai9UCtanga49p4TCNE5Q28JgATORskdGe8Rp28ui7kURaFTmptj/BuwllUQZVdl8U0EpjsVzi+uYWT58/x/MXL1BXNeaLGnlu0DQtxn6ChkFZkJPqhj7o4m33W5qYWxTIcqqnRZknHRjBxmgYqQGzk7LOgryD595DA2NKlDkRESY7wrmR1r6W4I7uk/dxFhZA1wwARrO4tCaWp51GWD8hz6iVxHmLrMhxPB7Rdj2tc8X70kcnZacpoBnWTvCOnFRWZME2ib6k946dlISQFPgYlQX4UrLsM9PMqWHZIS9yTOMEO07Ybrd4/fo1Xr95je3DNkzq9c6HEkEI5KJ5CuFwYs3YW3798YE7qcualDgP8drBpLHRkMhbDAIlRPRCxYKqXNsLn/0+n8BfEwyrRM5UQ9GBei0qCVqpINsjEbmdKH0+HA7Y7/cYhiFeA08lFYfp5WJV+pAD+gt4EVotYEwerlmozk1LdPemaeCuNuH36X1M72HKu1FyP8K1q/AahHPxFx8S8p7LBBWB8ce6gj0zimQEvNzbPChzR30wycbI0QXBKygFFEWO5XKJq+vrkE2d2hONQLcTLMMz5nTCdkeY+m6/Q9u1mC3mQTKmKHLUdYWyKLG3e1ZPGELd0DobBDxNRjPB8oJGQ9CaijCfBBWP7zWUipqITFP2GcOtUBRocHYnMB9FwwXmizmWrJkn/VXjZAm+zUhqSBuD87nBmzdvMXmLzz//And3lEm1bUMNq1UFz06q7VoaZ3I8oCgzVNUM2hlqgN7tuHGV60kMN43jGJxUXdeYLWZYrRYE0ULBGASVd6gcAVLmoAFQ8LlHVeSYJg8oT0b6rLHdPvDmEtYq9QitVmvc3N7i5uYWN9c3qKoS9axClmmURYlptKRmwWSYjiFaCWBms1lQGxHih8iTUcRvYTQFkzLOQsgV4MGO0+SQmRKzmhXvywKTHeH9BKUjbO5ATeKeGXht22EcLAaMsFYhz6QBXJAPB+dGGEP7GMqjGwecjidYR/UFaTA3SiPPSmSs4q4AaJPxvC3LvXCG5Ik4i6Hx9FJbIrKT4XlWmcm5T9PC8sDHfujRhdYYz9A7jeU4Hknr8PPPP8d3v/td1HUdyg8lsz7n83mCVoktSh4/QA7qd4OTEsNIsBw7BvoJLlBPzqLSDCtJH7gPJ4l4Ic7BR4wQkjRIjsF4MvyF7pxi70LOyog4GRkym8giMUX0fDpTJjUMABDgrUjmiA4gODH2BOHBexo7Hw17VJx23qPvepzPDbquD029dEtcMKaSiQY4FOk1yzuElSMN1DEASG4T/dzFYWw0DisK6ypFmevQjwRZsKGQTxGSgPRJAZfK9kqp0H+mQJnXbD7Her3GarkiVYmdwTCNmBwV1BWAfqD+kP2eHFDX0CRWlTEJQ1NfSz2rYYzB/rBH17ekDZcoV0MhzCrKGJaL7dB0I3wijXXRpMwBjrtw6vHOSS1Q1CUyY0Lj8Gw2x3K1RF3NsN5scHNzg7Ks4TWgOQKvqxpd3+OLL77AuWvwxRdf4OH+AWeuSeWZCWt8HCc05wa73Q7Hww5ZZlBVLYw32G8POBz2RErgOUMczGMYBspQtlvUsxk21xuuw6mwZmLW+yjKU/EvJlOgkWkezikMA7H5hmHgEfJUNymrGsvlGpvNNTnp2QxVVaAsC1J48IDNHLTKYHROhAdNKIrSirIorv9JgJEl8lhaa6ahE7xquJVEnJTW9Ay1nlCVM1xdXePp06dYLZckOwWZGk3Zy2gHdlLAbr/HdrvD+diywK5CURY8IHGOuq6QGcPkCWb5aY377QMett9D2/XQJqMmZM/jR0wHrQ3sNFGPZF4wQmOZQEVz6IQ4RvaAmJ1aaxh2UlmWwWiqSzmG0LWmuXwkrzUCGjCWbIrl1pndbofPP/8Cv3X9W6y0QsjCerPBy5cvMV/MQyQvAXZg93KZhdCrdzUy33d80E4qjdZFwTg6ETpC5pFATjETiOE7kQQQHEKopQQjQj+X6bc+ybbSWhh/HENCmokcIGMGmiUlkbt3Fm3b4Hg8ome2jJbeHYHsBC6TjE/OnR86AFg28lTHyYKBELZZzyOgSRQzEiqCofQx8pfh7dQZLlppsuA8REiXgt10cuslFOicC31ikvFFMgvXNqYRE9N2tVKwvKmyjJo3TULlJ6JkjMjSQ2uDuqqwXC6xWq8ChXvoKWOlvhFWeW4pc9gf9mjaJkB4slgyk2E+m6MsCrx9+xbnRqGuSxrQZy3L6yAofIRML8haqbAwxXnLvYqCnFyM58beaLcVs+DiWjOG1kue56hmNdesaFBjeyaGKBSgi4whJhIH/d7nn2O7e8CXX3zBBIiG2WAFryuSujmdjnh42OJ02LHSegODDKfjGcfTEV3XRYFiXpOi+L19eMBsPkfTnKmXxxdQjx/OVx0X2y+ui67r0J6bME3YmAxVWWG5WnNGNKdgLMtoPXh27BkRMoT1qrRCpjOUrkTFor1iDWKDtUDGDFOB5LGKooAKRBjSnPPwMGbCYj7Hze0NPv74E9w+uYGdaPJwltNaHacJw9DxCA3gzdu3dN+cxjRaKK1QViXmizmub65xtd6wjNIE56i5PcszWOfwW//nb6NrOxRlhbFn6C3LMRmqYZKT0iiE0u4s91warjvTeiAzkgxblD9GE53eJ7qYADEjGeEgO4TA8hvHEafTCV988QXqquL1STXd58+fY7Va4Yl7ihiaIQTxvMQRFN3d75pMKnopwVqROAy59x7J6Hj+eQoxKa2hvLvAqoLjCZnURa6AuAgkawg2iJyU5umZSiPPcmhNM24yk4U5MG3b4nA8ou1aOJfIubj4+fEBC1Tp+XOjvBA5qRxZLqoXlNY77zEMPTMJW1huNkx7eR7Ti8Vg0HXoiG+Ko9HxHsfP8XyfSD4pKFEbUZ24LCg7azGOA6ZxYuNOtSfFtZosy0OzrUg00VBHcPYbUCForQINfb1aYbFcoKoqtE0DcRY0RdhhGAeceYDb+XQO8Cs4czXGYD6fo65rtB1BHlqtMVlR2Kagw2SURUHFYZsX7NGQW0VnJb3NQsu31sFk4GidhUE5IgZiM7DhKbp1XWO+XKKuaiin4K1H27Rw8FSH0ArN+YzXX36JV6++xBdffsn1qANrDg4ociLwOO1Ju+5wRFXeozkdGPIskOsc7bnF6Uiq19FJ8UjxYcDpdERRlFisljg3DYZxwMzPAjwuDDilkuycn5eYJk9ImiDWsOOE5nTC+XSiWpWnjLWq51it1livrwKpRO674lYLaRMRVpv3DkZxtpuL6C89EWMMUBC8qpTCGPrbLPejlYEQQOuLznHMJ6zWGzx9+hSffvopXrx4Rs9KOeQFNeOSxl8DUSjP8oKa6bsJfdtBaYWqqrBcrvDk9gmePSP1eQ+LaewxTQPyosCpOQcWZhRXVkHPkhQhqO4npQAJmAHH0519opbB9Xft+Y+FtQpaTezced96Qg0s9y2GEMoTOmBh0TYtXn35ZXAyWmss5nNY5/DpZ59Fx8j32/mINEmG52Xa9zc4PmwnBcR0imMo8TFpVCswxTsKCHLDBKZL0q/4GQhOR36ZBMvhTzTuosQda1QZM2ysc+gL6j+ApU3WNE00mNOIPDeRFZVEIEG5IHGu4fy5eFqUJcqCNOwMU8OdpQ5zqUmJuOU7LBsuygLM1kugPxkdLl5YdO8Az6zDcELyf9ynxSk+FEKDFz80GVcgzDGlCXY1rJ5RJrRu6T0K9UeBI5NIPB0+eLXZYLFY0ETasRPxd8pShh7HE1HM94c92rbFcrFgAg05qdl8hnpW09yn8xlFSaM2LDupzLBWIuvJSUAjdc+Qvz++x3wv0ixUFNUlAxBiDVQK/VG9sZ7N6NyqGQpTwCiNruvhPEXfMAYPD/d49cWXeHt3h+9+93s4HI7kbLoBk51gHRkgxbDabreDgkfXnAEFFHmBwhQYuh7H0yFoFcrzdc5j6AnuMzrDerMJNTtSJ3BQijJMaz20BoxWXHfxsI53qSbIVitqvnV2Isr48YTT6YhpHJlEU2Axn2OzucZ6c4WqqqEzbo8Ic8gUtM45E2UmJQiVyPXjlhAVJgUQ9C7rybNiQx4EVgMJwGhoQ++/vb0lrcPPPsVHH72EcxbaAGVBgWffkwSUXO/kHB62W+x3J5yKIwCFuq6x2Wzw7PlzfPLxR9is14ByGPoWw9ChKEvcb7eYzeY4tx3qqoaBgbMORZmFLMpOUovOSdNPUzAYCVdioMhmSe+hCRM2eGip0sGs0F6TiQ2XUwxkTXd9h1evX+N8PocAebPZYL5YoOs6Rmg4iA37QFh/8d94vD++4vjwnRQgd4KG73G49thASKSFxOlEo/JVHyvZBH+CUulvLhxU2ngamFzQgdBQ1zWc82ibDsZ0sBNFOKKHtT/s0XUd8nzO3ecq9KaIeQ/r7vG1g0aS1xVRlGV0RcokPJ3OOJ1O6Ln29VXLIzjbFIphyZhw/Tx5l4glSRbG0R5U/AYxAvxhgKMGY9rMbYQVlIxjp1k3RVEgM7Q8XeKkOPCOl8/3P88zLBhCuX1yg+vXV2jbM4apC/dhHMkhnE5HbLcPobF3s7mCyXJAASbTKKsSs7pGURYYHsiQn06nkOGkgr6xeTtm6JfndwkFQ+BKFX8vLCz6N2VltKaonpcZjbIoMJvVmM1mKMsKyEoYpTH0BBHpXENlWZD4OR5PuLt7i9OJmljtxIQdVllQIBr4fr/DNA7ou5YEXIuCRqsPNPKcmnkjLOMcwX3n8xlKmfga7oFx3iOouYUBd+K0+Q/fI82xi1LU5C5jypumCY3nlHWscXV9jc3VFWbzOTJDiujOKXilYJQBuA6jvQg5A8ZQQPB4MkFgTipNGYeSAEGH+VGhtYRrPHmRIS9KPH/xHJ988jE++eRjfPTRR8FJFUUG70mAtm0pg3cOOJ7P+O53P0ddvSUFDVDj8/X1NT766CU++eRTXF2tAZCGX9+1KKsKr9+8xc3NDcbJYrFcY+xHOGthMg0FR4xAO0LDIM+rMIZejBxdKkHq0m9IY2SIEasV14S8QqYLbuzlPFfRvXQAk3ukRk73b+gH3N3dYfewxcQK8F3X4bPPPqOszUfndIG06LAFvtL+vO/4sJ1UdNiUUTgfZiTB4iIaoj1zaXxDypRalQBtBYQrLf+8++WKoT3GgcXoOOdDNFcUBeqqSubsqBBFd12L4+mI0+lIUiOrRTg/cYQenAUqRWMwfEwPCY7gPpqyQlXVROE1GbOJRHGdm/U49U8XHQBIlU6Fv8f/aQrDLt7ngYT5GG9itNWRCCH3WfGp2wmhL4MUmQn7VjxmJM/yi7lPAh8EKyf3JVH/1xo0JXe9ws31Da6vr3E6HUlpoGvRdh1rmQGN1KX2OxyPB3RdgzzP2PjRcMF6VmO5XEK/VthuH3A8HsKwQ4EwL9oOdFLrVNHwRcIHwpoKE0txuZHlmfsQdUaVfqG7F0WBTGsgJ+p9nuWYnIUypBRe1zVTjj3atiOW1jCGp+xdYsy8w+Fw5NcMyNgpVEXBIshdpNXLk/bEClT9gD7vMIqKBS73DOTJBwMn64R/x85J2rOnieSrTqczurYjuE4TGWg+n2O1XGO5WDIBIoGjedHJ/dRGQTue9Ctrlc9ZMlSoiHII/Z8CIiYmsJYiwHXejGouy9Uaz549w/Pnz3F7+wSbzYbO0ygUJcGobduinlWEPjhgtd6gns2Ql6SB6L1HVVW4utrg2bPneP78GVarJZRyGPoOfU+Z1NOnT/H82XN4rzBfrDANpKkH5aFAU3etHeEd6QlaZuhBaZ7qTZDnOA3EHOZ5dwCgtYdhQVo4IDMFlKepzUoD1o2A0rBMrEqdvPOePvNAz53WJ90fQWlk/YPXssQrEvGHgPv7JAjp8WE7qeQgzS53OZICiKk+y+nLpk8L1pfG+pGXF4fw6EchWIQooBtemOKkuMBuSCmgrCoYbnAk2MQFXbWOxWb7vg8PV9LxSN9kEgFDgBo62GtJ+cuyis2lrOM3WgvlFc2CedTrE7LKkCVGp+TTzFMrKJ9mkul9i8Ky0a3RVFOJotOajPeexCvHIYwtcNZBwbPCBt3LzGTQiphHiV9K6mgqOC+lSQUgy6ietLna4Pr6Grs9QXriCCdmQ00sl3M8nagXpW1J5UHLJlYoywo3Nzf4zndLfOc7W+z3+6AjlzZtX+gMJsZSDLPzMl05ZuEKCN910QB88czp9TIUUwYFijK6Uj6qclgdJrAWRY56Voe6irDuSF2AjMwwTrAW0LCkH6k0vJ1If5CzEWcpCpdzURKYcN3DOu75kzUQnrzA5BINIq43SIN78mrlAUdromkatA2RJsC1mCzLieY+n6OsahZilTqgTXB38H2RgC6u08lOoYUgfa33EV4N0J424b7F50D3b7Va4cmTJ7i9vcVyuUBRloB3MJkI0XItzFAd0VoayVIk7RRakzrHcrnE7S0FU/NFDXiPcaww9D3yPMfNzS0++vhjmCxHWc1oci6L2NJe8bBuogDBkYMhkpaBtY7H80yYpoElnGiCt3MWWtP7p2kAnEJuCnhHyhNm0JgsDVkcJyJLZFkWIV/vg2xT2uA+DAPt2zwSt9L9GkotHMWQqsw381IftJN6DKs462LzLh+pQUmj1sdioKkBlmTqcfYUnZn8VwUGVlTAvtTpMpxJVWWJXo3M7IubfWJHdTqf0HXdxTlcXis/eMekCY2w4Sn6z1GWRRj7kGfEZrLWQbGSsah4y33xoHsWnDY7pQsGpE+0tyQ7CG7n3achzl+mIYeCuXh2B5rPNNDmEZFNOqc4E0tqBvG+63DP0ggZ3vOcKR10ytbrDa6vr/Cw3eDh4R4tF7KtnaAyUnjo+g7n0wnH4wHn5ozlanUxvqMsSzx9+gTz2Qz7/Q6n0zHAclrHLnutFBfZdbxnbCi9JXIMiXBeZq7a6ABLiyyUBhXB06zKWtJEzLIsvMd6B2V5HSvSM7TewXs6l7qeEQuwrHDKTqBAQmPkdrRxHOH42YyTJciLv7OwVDj3NkpryTOVac1B+kkhUOXTBSsZ5CU4Kxl1RCD4BoRazvl8osbcMRb685ykp0j93TD5hJyLt44INCrOJYuRVczsSMW+4+nC8WxCVijrXeugjiB7WA6TZVguV7i5ucHmaoOqrumbmCmXQtpZIP44pnmLGg3dyzzLsVgssNlcYblaoSpzeDgUE6vGZBmur6/xySefIM9LGnuiDUkWdWfq3TYazk08jdkSlA1QVsVDOic7BGV2zYxi6vNz0MpjHHvAAbmp4KznaQkd+rGHdzQscxinALvHsoYOSFBYH0rxEM8yCdbiGo3Lg4MxHTO7rzt+ICf18z//8/ilX/ol/M//+T9R1zX+8B/+w/gH/+Af4Pf8nt8TXvOTP/mT+LVf+7WL9/3Fv/gX8U/+yT8J//7Od76Dn/mZn8G/+3f/DovFAj/90z+Nn//5n2eB1B/gSCCTuLBsgMFVYjjldaRMztCA1qFwfVnDuryp6a9CJC81FxV1+7SJtE8bDBo5qZLliPIij2oUnnDhYSSMv2nOLGWSxWtLLpW64F3YggIlGWMAQzI7ZVmiKkXwVIdrlpETJIiJUGcSvT0xsNHIXo6YAEsBebYzSTIZzi98hlLQ2oVePS8QpUeAHwnqG+PUYBX1B43JA5Ve7n0apQvUQzRWwtE9ZyxlWWK5XOD6+hrX2y3u7t/idD5CdBEpQHAhMDiwOsM0jEDtw3eUZYGnT59isZjjdDrhfD7TBOAsf9RNry4K8FDsuKBYDFoU5hGgaOqhowAgqDk4Yl3JfC2599NENHUZA+PhqHZgyeErJUM2HTDRmp7NaiwXS8znMxyPBSat6fFNCpMjNXJxnHYa4KxHbqgWSFkSNVo+JqqEmhI/g8eZpDwnqlW+n17sQUocsm4cZzMtDwVsWlK4gJaGaarnVlV9gUJM0wQkgq3GOXhjwrmljrJnGM2lRlVrwot53dIoegSH450Lwy8JbqWG4uvrG6xXaxR5ngQTVH9ylqIAUYqfJpf0+tHdERLMfD7Her3CYj6j2hkcPKtsKK2xWW/w6aefUnO1zlDkBaZxwPF0gFZAWeZwdkLX9WjbHsMwsS3IMU0ObdtgnPrQ5EuBlcI0kVai1g4TE7gyU2CaPNqmQTf26PsOk7XQpxOgOs7ekUiVaZg2g9ZT2AtlUWK5WJICSQgu2Tbz+vA+dWrJCJmvOX4gr/Brv/Zr+Pa3v40/+Af/IKZpwt/4G38DP/VTP4Xf+I3fwHw+D6/783/+z+Pv/J2/E/49m83C3621+BN/4k/g+fPn+E//6T/hyy+/xJ/9s38WeZ7j7//9v/+DnE6ImYBotMkWshFTl4wweaFg/gjvSb1Q8lrgwkHFn/nwugsnpanpzTlPulagjCIvCpK6MRnqqo4pMRuuoe9xOh6pX6rvUBRLCPgWLzZGJt4DRsozjL1rpXko3Ax1XYWxAOJNBPNv2xbjRN31pIauGOd+dG8TeCpgzHIOF5lUEin7+EwIYkX4frlndqICuZAmpFageBNE0kRUcRDHl8JhYjU9d657aOicGiWXqyWurq5wc3uDq7sr7Pc7Gi1hSLjWg2pip6NQ0U88O0eyU88NlzXmiwV6HhtfFPkFpAfJwAUqlUyKbhgb7EsYkJ6ZCtFoumY9By0SoXqP0DcVHYGPjdIeABtBuic07K8syjCCoyhKcopGUYPrIN9DTn2aJkyjBfI8Nixby0MUoxPwfK+9VwytRxgn6ivG9fA+JOJ9BzECB5xPJ+z3+yDDJMLBdU0Ot67r0DjtvKUeM+/gWbHBewvlo5OSY7IWfd+h40xKc7aUZRmUoX0qWpGjnbjtgWF7DgKzjHrnNpsr3NzcYLVaoiiKMMAyOGZEbUeTZdRDhShGS2vcoOJ2CWlMBgju9lImUMSW+/jjj1HXc3ivUFc1pnHAbr+F0UBdlbDWomlaEvrtR76ugpq0mzMGVlj33gUnNU4D4C0USIEdFsizEsMwUS/d0KHt2iAuIMLW4EypKGgu1tD1gPehzjabz7BYLjgYT7NqMAyruNcxsZvfZIHgB3RS//pf/+uLf/+zf/bP8PTpU/zX//pf8RM/8RPh57PZDM+fP3/vZ/ybf/Nv8Bu/8Rv41V/9VTx79gy///f/fvzdv/t38bM/+7P4W3/rb70zMfX7HTHZeRd8ir+Kv7nIqBJGlfws4O9IjQr995KBxUBGesODo2JJfHkNb4iqqlBVKvTwCAw52RF93+NwPAS22XK5QLB9yZWG/XeBc/IfeOQ5dbKLBEy8PkXqFs0Z+8MBbdNgPpvF3z/+TMTv9nLfVLxuyVTlP3KuSkLtABXGiBagwHUcRu7ZOgd6s9z3LMtRVTVmFYmoJrkwAtEl3Ij0+ul7tdbQmcJ8TqPVn5yf4P7+Lbbbh9D3pLWm7HUg8dH9bofz6UiZlKesTCmPoiBWV11XNJ59kn6qZB2F+5Osr8f3MX1UISCKI17gY01PelpoLpEP6wi8jsRROfGDmunR8EQWMDpAVkZIKHkOKOpXgwast2HMhFIIWYnRGnayGIcB8AQRiwSU92BpJHKSdqKmVOeTGs+jDRjXb8xOw/1Ibor0XR2Px8CiHKcRxmhUFZFXNps1FotFQqSJ6Akky3MeUNSg7nyczCv7axxkBA6RMaqqQqYNypxYpMYYdMMADxso7AR1K1R1jc3VFW5vb3F9fY3FYg6jNcZRsZOOq8GzHTAwUGoMZQbLgVieEylnsZijLDPkmQGQZhR0n9brDV68eImK61Gz2QzTNGKxmBHbsxQn1UQnxY59HCeczmeM0wCZGhyc1DjAuREKHnYcoLyC0QWmyQYndW7PaM4NqH48keCtIUX12WxGDn0cQ8boHA3wXK1WKKsywPFhUaQxzONF8g2O/0c1qf1+DwC4vr6++Pm/+Bf/Av/8n/9zPH/+HH/yT/5J/M2/+TdDNvWf//N/xo/92I/h2bNn4fV/7I/9MfzMz/wM/sf/+B/4A3/gD7zzPcIEk+NwOIS/S7AOROjtcfbkEvgEiE4q/DtkKNEgSMNqiq3Goj1Z9fQz5YHRoDcVJ+wqhFEGWVZgsVyw3lsGpWgTCdy3P9Bo5qdPn4Qal3xGmr+Ea2bDbZ2DMiaws0iqxAQHSvg1Cc0eDwc0TYNZXfNHx5H1j9l+Pl1kyb3iNDL8KtrmgAcJIhcgLgXAO8d05y40l0Z1cGrirQSuNBl/RdqrEeE/glVIJcSzRRGfKyPlr6+vcH19g5Xo+Z1PvB4spmlE2zY48eBJISgIG8kwpTnL8ygzk2TQcvHvbLMkK6K1pELg4n28P7KFJQiQdWZZhDjMOvIyZDKoFfI6FzILWBuSJqR652GniRl8tPa0Iz04zXCqTI+Nz5OfzWTR9RR9a4WgGCJwIjV2E8nCT5ckJLn2WJOM60aYchLUyYeSk/QYB+rj2++pb81OVKyvygqLxRKr1Zo04h7BrHIf6OMoow7riefJWWsxjSMFGRxoZhmp19dlCbgZMp0RvNg2DA324Tu0NpjPZri+vsEVT002QnHPdMzuIc9ZkdRQclhrA9SY51Q7LsoikGcuD7qeqq6wXq1odIrzmM3nsHZCkWWQ5nU7TWjrFt0iMviKoiSH05y5Ad3C2YnmyCmFcexZmJZqegoKmckxjqyG37c4nY84nyiIPJxOQNvCgJijq9WKnNQwss6hhrUT5os55gtSagk1Y+eT9aEEbIlr730w1XuO/20n5ZzDX/krfwV/5I/8Efze3/t7w8//9J/+0/jss8/w8uVL/Pqv/zp+9md/Fv/rf/0v/NIv/RIA4NWrVxcOCkD496tXr977XT//8z+Pv/23//b3PR+JkgILCXFcQuq0UscFkBGB57TWk4y+pKIePBoiSAnFor3CpYI6QDpj4nwuIkjOEmazOo4GN9ynoRQs031PxxP2PCNIahCS5oiBU+Ki2Eg7T5CFY5y94PEP4kQ0a3R5T5Izx+MRzbmBu7rie8KGyiG5T+EXwYhdREfBRgudVDG9XMZU+BDthgCB79U0UdNm3/ccncfXGqNRlSXKsgwbWAUnRY2KsEnGqzSoBz5xkrwZhEG12WywXC4xm89QHAoqlFs6177vAuwoyh4+QJZRoklGtl8AnSrmeY/X4eN6pVKI9Tm+XvhLEo9Wmg2KjfObFOCVwuRoyqx3sclS1q08MK0NjZdwDn3XY+gpADDG8HRZH7P9oO5xObvLOiLxeKeRG17fTrIonj/EJAVwn418Bt0xySZV7N0WaDJAoghRlvirieGp8/kc+rK00ijKEvP5AvMFMemkNhb2suY1EFRfJAvyABInZYV+rgIDrawqzOcLlCw7NVmi0U92gu86iEKK0grz+QI3t7dYrS/JNcFB+bjPSTkkOm1rLU2hZtV10aU0XOf5qsNog6qqYVn/cjab0/1OssFpGJFnBWbTRFN4tUZd1bDO4tzMQ8AzTUOoHY7TQD1zzgVJKaMMrAM6HnZ4PB5wOByw3e/x+u1bDMOATGvMF3NcXV1xvW0KHIJpGrFarTCfL0KZQbLRiDrEgJdiysc8gK8+/red1Le//W389//+3/Ef/+N/vPj5X/gLfyH8/cd+7Mfw4sUL/NE/+kfxW7/1W/iRH/mR/63v+ut//a/jr/21vxb+fTgc8Mknn4QsMhotKfDGixeaqWzQUJC2Fgaeoih2As6RTlfYaArUiIN34T7JpCJjEHHwoDgVhkq8I7pwVdcUbVQV8jwjyvVg4LiQfzwesd/v0Pc95rNZiErle1yAm2LPErxnxh6dp0xvFaNgjOZ/U0Z6PBypUzydkukR6iMqGJtwcwnmUQmyqGIGH6BRzjKIxBA3aWDEMfw3MmmC6PBxDg/4/pVFGUaxiwE3YcqvglWSmSkYTUoYAiGlBBqtdShOL5dLGnGxq9G2LRWPrcU0TlFIM6wZBs75W4wxmC8Ia5dsSjacE6eVrjfEmg8QG30vYM9H71OKMndq0CSj5qyFkFgc9zalgZX2kkXKnDEma3DA03cdvPfI8gyTm2C9DZp1U0bqEErRDCutNAzS1ohIm6c2iYmvTpHYqXccLETiAe0LIM2YlPKwoHPUEOp84qVABIWhH9CcG5zPDYaBaoNK09iNxZxUtfMsgyC7FCCyQzCGmYie62iRwee9x8QTqZ04eDbwZVXSuqhnpNzRd7BwaPvuAmJVitbR9dUVFvMF9ULyxUqdxXH7i9EqIBDy32maMIwD1zx9FE8O9yxBL0IgSBtQiCNGkwo+vAesJTjXZBh0TwQj0CRiKFKz8J56sQhmpFlRwkKe7ERjSnggYsbvd57aVYahw3xfo64rvHr1ClVV4XQ+I8+Ign99c83MYaAsCh7zMWC93mCxmCPLs5BFweNS5SdFZHyEsr/u+N9yUn/pL/0l/PIv/zL+w3/4D/j444+/72v/0B/6QwCA3/zN38SP/MiP4Pnz5/gv/+W/XLzm9evXAPCVdaySo+v3HemDvXQi7KCSiFVeL0ZZORWMboiRE8gixtOPU1N/8VfqqYijBcQwkY13cCBjSyPKl6hnNUmvcCQDT7UaUZZu2wa4uoqOQiFcQ4xMFDsroYJGJ1UUOXfVqwvH2XMd5nigQXYVqnBt4Y8i9lVyR2JmFPMIBGOEuDFDtqd0CBaic6eha8PQkxEdpB6FUL/IM6oVVCXV7Lz1pMmY1M5ClKoESlNwNglWAFI+1wqzWY3Veo3VeoX1ao2H+T2sHTFNBhPP1xEqfHDabAUFojRZhvWa4CYRPZVmbccZTpgqnFwzrYcE3pJ1lt5rDnaoOZgdwjgG+SIqxNO1W+mlAjcvKxU0DQG+D55e13OrAY2or+CUg+8s8qwAMsBbD+8slAaJmY60FxyL+AZ1PRVrVgBgTB7O20nTPK+JEOQoncC/dD9p8F2U2ZG14aEIYuxoVH2kn1NzrVDpZzN2Ul7xXqO1L0QlWhOW5JWcDfp2BGGOUZ+Rn2deUO12s9ngarmCUopqOI6m4UoGII66rmfYbK4w48CRmvI1B3CRrq6V9C5KgOoxjDQVW8ZeZHmGvOA5YhxAw9PgQvm3MSY4wTwnOnue56Tk4Wq+x4bo45r0OiUTpFHynsfH6IAYaK1gclKhGQdSryiyPKGX054YhwE1s1iXyyWjGsRKXq1WuL25JbQmyzGrZ9TaMg64vrnGfLFg4V5Evb7HdXxeMfBJXPg1xw/kpLz3+Mt/+S/jX/7Lf4l//+//PX7oh37oa9/z3/7bfwMAvHjxAgDw4z/+4/h7f+/v4c2bN3j69CkA4N/+23+L1WqFH/3RH/1BTufSACDCebIgnfdAkjFc1Hh8ZONcOKB0g32DI6EScH9EBhELBRLnoimTWq/XWK2IrWRZsXhimOVwPPCguVM417RIT/9mCFCcLkejDlTkripidpVFESij1ABJIzv2+z1j/x2W62VMZFLDGS1M4pQeOSn1+C75kE1559/9vaf+nLZtqIG0bdnoc12DqbmzuiYmpBamVvpMfXD+USpKXSq1e4qataGx2avVEpurDTbXGywflqHmQP1ZFmM/oO/6SIxIrlWBosWrqyvM53PsdwM7BorYx3EkCrl7325L8Hgvn8dAYrJBCS6j5zOOA4aBivxCKNHMwpRnJDCj8pcwCgVW9MHeeWSsDG/KDKag5tIyL6GgkPP8IRkpbicHP4Enz07wboLR1JTa+yifE6BZyPMlRyBwlrUesYvEx2cm60b2lo/IRd8NOJ1oQnXbNoHZR5p9C6xWG8znM1rDnqje4XqTKbgAuIGeMlgiJdlE1cQGuI/aFCgruN1cQ4Pg4WEacP/wwE5A832nGV+LxRwV18WstdwfR/fgYuoyZEt5WNY5pPVmg9MpeTipFxTEU71QnFREQUzI/IoiD5mggia0ggU0ijKnAZZuoqm8zsG5jJid2vBgSqqzOucw9RSUUW08J4eoDTyIfZtn5MzqhIBVliU26zWePHlCzdWzGZarJYaB6mHUrrGATKiWtaqVDsEODUYEBRnv2TFfdfxATurb3/42fvEXfxH/6l/9KyyXy1BDkkjzt37rt/CLv/iL+ON//I/j5uYGv/7rv46/+lf/Kn7iJ34Cv+/3/T4AwE/91E/hR3/0R/Fn/syfwT/8h/8Qr169ws/93M/h29/+9ldmS9/vSGtEqdN6DJU9ehOAi3yIf85OgEP7KPB6mZLLrnicqguccjHCgf8oTsXlfs3mM7Snczi/cRpxPB5x//CA4+kUvlJIA2km+E4Ewti44UbO+XzBNPRIu554RPThcAgsqpvxGqkxvcjWJHMK1jT9dwAF+RqTOgtw8buYazGz73zG6XgkiuzAxgNUhK6qCvPZnJhXEk3yp4iBTI0SQM7KBajXh2cmGeRyucL11TVurm/wdv2GteHOmAbFWQdldsT+Evgqro6yKkk8cz7Hfr8LhmTkLKzv+4tM6n1HHGcSYVJ5lqJyThJZHdqmC9R8CW5i8GNiJhkgMwTITfN6yVkxfb1eY4JFNZREqMlLGGh0VQtrRzYY5KTs6Om/doIdW1g7wHkbiAn0DATujc52nEZ0XYeu6zGGkfGAgwtxSto+kJIspnFC2zQ4HA40ObhpMU2sRF6UWCyXWK/XmNekNBEyb88O3yPsWWHlpd/nrEXXdxyE0DymnJm26/Uat7e3eHJ1QxlznqMbBtT1m9DzKJCcYeixZE3M0Y4ggeXHxIcIe3p4WG5S7vshlBzyPOeBlUXM+EJ2GlsStKaWEkg2xUSoLMtCICj9ZlllYEYD13lWmyAoXesaVVWiLPMwyBHewRYTnPVMw79sxAYA7yxOpxM1FrMty3Oq8T558gSLxQKr1QrH4zGIBDx//pxIJcY8eg5iV+Ta1OOv+9rjB3JS//gf/2MAwE/+5E9e/Pyf/tN/ij/35/4ciqLAr/7qr+If/aN/hPP5jE8++QR/6k/9Kfzcz/1ceK0xBr/8y7+Mn/mZn8GP//iPYz6f46d/+qcv+qq+6ZESIaLDUODpYmwQLvtUIkc/StnIoVmP7XEW9I6P0+oR0SB+ZqShJwe/ThzYer3GrK7RNU14iRMdv8MBzfnMEieXbMV38X/6mRRrJWqSEeShOZrhzXEk+vfxdMT5TIroZZFffsfFtcciNFx0Uol5TP4b3HF6p4LUkVLgoWkdy9+0GIY+wBSGM6mqKlHkRaDMekafrI0MzYDnB6UKJicIFo5YzK/KCqvVKhAoSp6BI59lOdomwoALUi2C2pRFydN+a4oIvQsyOwRbDhcZTrhyhukECkrrpumRQtRk0EhuZmKISgKfPM95vpZkjDFaFeq7AonRVpwpbNoGEyZUU41Z1yHPCiivMNYzWEtj2z087OhgB2oSdn5C357QttSzp1n9wzE07pwDNN1j6nnrcD6f0HUtNY2aaISUZAMMO9F9AT8rhdE6mhp9pGbpYRgDizDPc8xncyzmc+RFRprGPq60dNXFTNNdUPWttZTJDH1gNIrgM/XSXWNztZHLweF05H5G7nlEep9JoT9m7D7Zh3LN4oAZBrQO4zAGTTvqnzKsDFOEUTSyTlISkVKkHqI0fe+jbUVsRJMxpIwwin4YSYVdRAGKsgijTei9GibLYTQYjnjXYxRSE5bgWDGBqCb4/Pr6Cl3XYbFYUAY3jri5uUHFddu4B+L9oKkIDl5mV6m4R77u+IHhvu93fPLJJ++oTbzv+Oyzz/Arv/IrP8hXv/cIBAdEowJp4A0bOHE+fNMFG7+ktMbXAVxb8P5imF3qjLyS6CA+DJV8bpr9SJRkRNV5taQmvvuHAJ14H3uI2paEPSXVDlTfC+grLmaJXjVTUGuGzILOGc+ucqz2cD43ODcnqkvxIr6ALDhrCo18AtmEf4uhSXJMR932SdwdNprJDI+Mjw3FYowJk48F7VxgSq3DenfS/c+GQtoDrI3FcDk/J2K0kOw2w3wxx2q5xHxOFFnN1FnDihwjK3FQf03GSQpdTFHkWC2pk14BTPG2GEe6lqHv38GHU6cvzbFKibGJN+0x21RaLaaJNdk81TILVhIxGZN8IGuP1VOS9UcTfGfYrNcYxh6DnzBYqokYZSiDGUZ4N8GzUsc0Wkw96b4BDudTid1WxpJ0yPIc1l4yW6FIE69pKegJyuX8Oxr1QrAZDOB8CouSurudJrRNS6KyPFwRAGWPeY66npGmIvdHyZrjkgYRndRlxC50fAXaN+M4YBiHMKxSM5FoMV+Q4sNiQYQT5zCfzXmCQBZmOXnvMU0E7Qr54rI2K31uMXiUJmD6fgo4CJ7UYYBlXpCTkmGfwd4k60hmrNEFK1wM3xL0m8/HWYeubXE8HXA4HtgpU69ZVVeJwwh4afysR+uXrnkK10z703DgMMPV5grDOGI+a0PNcrlcEgOWHbowVhV4HpzlGlXQdHw3YPuq44PW7gsXKtENfOiGN3yzgmNJHJIoAotyNZBEfWmhz7l3Ulf5LMv6ZVrw6+R3sa8HtL68dPjLwLMlZvUsQHeibTVZGs/ctsRyEieVEiYii9ExPEXGz3nPTooFOWc18oJYfTKPyfHQv5YFbSkamgen7ay7cIAhitQ+wn9yURDGIcN7ieEVKyb1IqXpHMZhRNu2gTgxjcxiY0irKAoUeYGMRymI8SWWErOaQNGsZ/keo6ihVSLQ6FjZiWuCWZfipJjeLpsI3rPQLRWTVZ7T/idcieZULagBWzFNfJomjKws3/X9RU3qou7J04CJxKCRKZaqguNbFNelczTmoespQJFalygvlCUp28t9jqSULPluIkLM5wtcXV3BeovO9sTucw7KK3jr4aYJ3lt4ppGP/YRpsMhNAa0VDnUGO1Htjtho1OAs0uUioAqANffOaAPpgfegs/CZAnharhhjvjUAEDL70/mMvh9CwJeOtymr8qIpXfY5/Z+Dcyr0sQHcM6ZFNcJGjUgWlw3K6osFK1nMYBQROGazGU0QyDISmbWW6mY9QcJ2nOLaCHC4PPMYbJAfIJbkOEwkbaUjypIXOYo8D+0u4X3yuRxsy45zzsFowPtk7pOV+iA5mrEfcTwdcXd3h/uHexqoqTOslqukJ4tmZomcVjozhS5BxecSehljE7QM3lwulwSV1zXDqi5AoWnpRQLraEtckEwSRus3OT5oJyUbXZ5cuBkswirK3erCaXB/iLm8SQEC5M/0zgUhzRCtQTaChoPjXhYubidO7HLIWsSblaImvNVyhfliDpOZIE2kFM/U6Tqcz2d0XYu6rsIGfSfq4OvVrDqgnA8wyWw2w3wxR1WVLAPE0zGdxjiOpDyxP+B0PmOzWRM2LaaDN1xkn4GhGoWEWc7qEqxETr+NAUPi+AOsNlm0XYtzcyYn3NMQPuc9cq0ujJIx2YVqcmBPQQEZWLwVITtlLwjvcaGCT6wyCgwWiwUW8znrGhrOmqlYPE6Eq7sEUhQ2Up6TzlpV1fS93MQqcB9R2qfwnQH284qNKI2Jv1BJ5xupknUjBptkq6bA+iKjVlCDNmfG8IlRSyBgKCA3Bos59bN47dEOXegkc87DjTTmgQj0PHK8n2AHR6xKo1FVGm1zwPF4pCGAFgB/hs4ylFWOosyQ5wUAmi/V9R2RPiYH50ZMdgDgkGclZOpkDHEI/um6HsfjCccjBUweNC6e0IAZKZ+XJTl2cc5JQER70wOIxp7gPoKKiT7fBxgRCoHWvWAZn7qsYBganM1moSfOGBOC1L7v0ZzZCfvoPCQwArixHDEgpAx1DPVFGX4qDlggNQpwY7+grD1ZI955OGWhwKLSDL27Sb6HUIq2bbHf7fH6zRu8efsG8KRS8bR9hqVdwmR0PeM0QTkgC9O/6Z54o2hPK4V+GNBw4CG1URk5NJsR4xIgZ6Z5uKqgUDTAVAfYNQ12vQO8pmsj2/C7wEmlxlCcQXQMiRPjI9AglYIhIBfRNkcWlbw2YAtibJPXhtcAsUnSxCzqfZJLpFAtDL9VgBY8CLMWQ7U/kIFYLBbfl0ySwloUldODr2fUGU4U0oLYW87BgvuxTkfcbx+w2+9wc03U2hhRqQCZXrD0YiwAiRvl7+E+JOciFUEoooiTgOgRB3aOw9BzMyjRcuu6ZrrxDDmPGXHJdUak2cdv98zB42cpunKCOVF/ToYyL7FaLLFarlDVNYzJw3NynkZ+DwI98pk7jmrzjKChuq654ZZlhIxB13VouAE1ZJKQjJdPUbLxiKSGtaVVLLy3POPqfGqY3RfrbQWrFAjs5S7uBzizpq8wGU0Wvrq6gso02qGlgE1r2MnBjeSgtNSj7IRxICdVV3OYTKHMgf3uDnd3d5xJAd4xA7MssFgtUM9LVBVBclorDEOP0+mE2ayGcwPGqUdZUsBU5GWEefj5DeOI84mCpcP+gLaljJTgynT98vyoCyg5LgzKOuLepHol0/YZmRiGniN8FSTK5osF7a8sZ/FTYDafMzO2RGZIddw5h47rqBfBCFL2okrOh4K1aaKm6r7rYKcJSsWROnVVcS9gsk8C0Md1WB8v2HkP5bjXjFEJL0J4oEymaRrstju8efMGr1+/hjEGt7dP6NpdhJ4dq0xIhuYBaK+gHJcV8oxtxAkNK7F4IGRRIrumlHqndzSVOLuwkZ6DtrBuVfLn64//XzgpOYLUkUKYH0UR7SWERW/VwWBIFiWH94+twGUmI9NoU/w1y0QFHQHyu4DMQKq/RH9dYrVaBY096yijGMcRaJtAE7++vg5OKiVphJMCr2V+3jTpVKGuKqzXK6zXK9RVhfOpgfMW3gLDOOB4POH+4R4PDw949uRJKMyT+GYcrREWXHrL+f+/azBATk5Hp6E4+5p6Ygvtdzvs9zs0zTnOotHEXprNZtRcOV8gLwoklcYAH8TvihCs5tlBNEE0ENMZZuDMVhMEtlysUFc18iwnuAOsys5wH6l/S0Ss4HXcnGVRhvqgNIcOwxCyn/QZxYfCK88nWcR7HAw80DDL7XQ+c63Ohfsc52tF9fyL58F2Up5XWZVYrpZQmUI91JTtG4NpcvDTBFGb8NxjN40WfvKoK3I4GhNevVqjLCuYzMBMDiYzLOu1xM3tNVarOcqKHEpd15imCfv9Dkp5WDfC2h5FTvXA5XKFuq5Q5iWfKDD2Pc6nMw77A46HI/pOnFSO+XyBzdUVFssliiK/CFhicJQqsyfkJhVXaXRSA681IDNEXJixAG+uDTRnmXVVo65oaGQYTuoc+n5A23ahJhXXYtzb0cnQYSeLrm2DPiU8fXfBYtM5N1ET3K9hfZSqYs8b9g/SNSPXC1bHAWVVTdNgt9vh7u4ODw+kVdmz6ojUlWM9OWbwwtYNDhYEUZ8bGhYqdsAYExzUpepGCnNeKuc/LlGkxzdzT3R82E4qOQQrTmE5wXa9R5D1v6ACM6wXMi5PIEh6KBmroESShR1PguEqHiugH8GHYV35KFef8dTXxXJBfQhFjq7vOBJx8AONNz8cDlSUDzFyYgTlisUQunBFUKBi/2KxwHK1RFVXOJ+bUJQeR6BtG+x2ezxstziejlFRga8lJVGETflooTFV4cI4KK0BdnQS3SpQhng6nbDb73A4HiITTIMhygz1rMJyueCeGB5VwtcVGFtSv/EiQ8X3nG975jNoR3WRFGpUrHU2n81QlTUyk0MaHa2lhtzRWlgnTkWF204wjchd6bAZFcNJfUdRtnVT3LA+PrPEZvIzjFqFclhr0TbcK8Q07HQZ6sQZxyCb4RKJUBFJPkJBhwbysYCHhzIaznp4S9AR+TsaKWNHB1igKmtAeUxjgyVn8cTMpEF5ojD/5Mktrm82qKoCVV1gPl/BOYeHhweczyc4P8H5EZnRWCwXuB1GPH/+FFUxD1H8OI5omxbnU4OmkRYAEmClwZVXmM8XNM5BIUE1LgO1x4FgepCD6XjEOe2VwJYsqAmWXJSoO+RBVixk2hyMUOZ/+f3xez1l8V6eF9Uuu67nNgvaJ5QVFyiLErnJINAwqYVoZsBxA4eXTaaCXRMXHRun6XfTNBECs99jv9vjeDoRQpOsM5laHlAhmYLgZX9H++KcYwHoDkLSITGCmuHX97sYCcDScfN0nuCat2YYU0Ldb3b8/8ZJgWE+MJEBAQJEFOdMnJTMMpH0UykxICpxMAyhaVkePu4Vn6IMKkB9LsjUaChOpz1/t4iNFnlBmDtnUnQesvgcmvMZx+MePcMU3ouqxaVyu5x/WpB0oK76xWKOZcJKE0ze83Czw/GA7W6Lw+GA65ubS7gzidxSViEEnvDxflhIBKjiZ7DqAPh+j6I4vt8z1XiAhw9TZvM8R13V3N8143pANDrUOKnjNbKTMFkWi75QQAaYKWN1bt6c/CSzLENZUUZEUjI61LqsJWPtQi1AUSaVGB1pWZCagwQ4fU/4/TD0tIGRsi8521OxgByH6cXrG0fKyKgW2cc5Ru/ZxsFUKwWd/tTz0E9uZC6KHF7RWqCeJWYcesdOir7fOgc3eWhP69J5i34xT5T0GZBSJJK8Xq3w5MlTPHt2i9msRFkX0DpH3014eNgStR0W0PQ9y9USgMf19QaYRVh+6IlE0zZt0HEEw3Gz+QKbzQbVrH5kEGVXxghd6lvvc1Lee/QD3U/NCAGx+7IwCkZep0AZd57nyLOc6pWe1to4kZJ6sB0BXRAHRTYmjF1UlKF3XYcpqWPFxlximCKsrxjURfMivWD0bNOGbhJtZjILPIklNw1OJ6rv9V0Ht5R5dvShXti3kkVB1iYAHdc1IEFTi74fIPAjZehVyKIeIztCNJMboCB6qJGBbPkZ82m/95m97/igndRFXsFOSnlAmXjjgFhkvjDw4vZDlELYrufFJA80SNskkQbSB8R7SOpQ7PMuWYLJIoMiBlaU66fIxDFbzzP0s98fgjq3Z8zoccSYYsvK8Dk6UgqYzWZYLQlSJOhRZH80+n5gCaYd9gfObLxDprJwHwEhjMRNFOA0oVEn0ZzixU4ZF52d3OK263DYH7Df7XE+nzCMA2P0GspolFVJ82gWcxR1CaV1aPKlTAowSnpUHCbnkCl6L8FdShJJkIKdg2KtOO8QxmoXGY9l0KJT54Nzct6H8w0QGmPp4E1mtOE1g2D0hp5qMV3bocgL0nbzPOsJUQg3RJaP1QmcD89DBFalHkVQYIr1yDpIo1VwgBbXOWX2GQoxDuy0FV+YghMuA0GcDjAqQ2ZyTNOAqqqDvqTiCE1poCpLrNcrPH36BC9fvsB8UaGqaBbRq1d3OB4fcDweAGVhDJ3PuTmjKHJ8+tmn4Qqk1eJ8OqNpiERjnYXhwZ2LxRzr9Yb058RIJmsyuCmVGuCkURhybZaFdm2Aag2z1JS0LTgEqEsbaoTO8+yi924cx2SsjBj61IYAQi4SWSjrbGDH8WML7QR5XrCiChh6paGU8J70IJNHfpmTx8ZYiRS980yGanA8HkO/GYDQAC6IgXOxLcDDk+RYEgiJlt7ImVk/9GEzGENzsIwxAb703kEzmiG112BjOdB3nhiVWouwsVxHuLCvPT5oJyWLC0BIzT2i4YwRbdSQS38m/9NQIeonKI/yBImCoaWQLnCQZG0R0qPBcnFCq+JRCt67S0UCxYyx2QyLJcFxsoHk+5vmjP2ORpYPw8gSKonDS6A372IPFkAG2RiD2XyOzWZDBI0iY3UBHzbd6XzGbrejGVYnchyGm39TmECyqPC/xBDYgDnz/5M/fJ3wHuNA9aiH7QN2uy3O5zPNLAKpnlM/TIXFkoVEmTEmm1+ereHN7ywZJceBiLWUgWZGw8p01OR8pUdDojmtZWIxOy8vgUV8lsI+ku/WSiPL8igezIZFmF+HwwHH05GyjyI6bcX3L0TesiZ9hEmnaUJzPtNnMMttmmQEhpa0KZyPrIPg+IKGHoIDlPYKzf1v1lt2bAgqE5qFlK3zUF4j0+S8hx4oSx73YmRcDCEKor7x9MlTPH/xHMvlDGVZ4Hg64+HhgL7vsN/vobWDyTWPDBmxXq9wPp2Bp0THPh4O2G132O32OB9P6PqOpgPnBlVVYrVaYb1Zs6hvzIY5fU/AohReRThXOaZxIkq/nUIQmWU8ot3I1GqQUjsb4rIsg0q57JeB2w1Ef++ifwkJwhICAW507tropOCpHlaUsVmWPF4geyjtoCwg2olBqDm51kjWIGajg4tjZzjQmRxR57XWTMdHsI0iU+TDlpU968NEBWoLOIWRJYbbQ0QggIZist1xHjAGMiTyAueR9S5ogtYX13IZfH318WE7KVymjO9kVkmk//i1imse3nkgwN4xu7p4HRtcScP5N/ydnMGxmKvm2hRBfz7RenNhYeQF9WkIecJkkUkEeJzPZzbqO/R9C2Pm1JtlHz/UJLtKfmUMzcC5utrg6mqDuq6QGY2R2TcDz+/Z7ra43z7gYbfFk/NTmCxHkaV9N4lTSmACIaOIQxaIVNae44x2miyatsV2u8X9/T22uy1nUj076wwVq1Fv1jTYLmO16/Qeh83EPwoZibMYxgl9T0P7HPclFUUOlV9uBA0S5VQAq4d7WOtBSRUx12QciEo2UoBnK1KGNsaAbJVnlZAOu+0O+/0eV5srlq3xkFRF8PgQVMQFCgDoe8oydw87GqPSdEz7VWGUOZE/TISxwzUxocB7BAwFlKFKpO58lGXSDI16OGgWfLWOsk6jDT/PMhjqtPBtuCaxXq9x++QWz54+xXwxo6zD5DzIU8F7EnoV3XqqR1JAdL+9R98OeHi7xevXr/H29Rvsd3u0DdUojSHV881mg/V6jaoqY1ab7keooLKd3tR4nynICs5lGEKmlRd50M6T13r+3KKg6yBGYTS3Q98zi7NLVuX74Kp4QlInImYhOZ2MBZSLvITSsZ0ASUBDQIWQvdILj+smIBdsl6aJCCLH0xHnpoEHAhMxbeWI/6bgWdi8cse892ibFofjEceTtAUgjLuXgYeWaekX9UAfJcwEykt/rtUlOe3x5X2/44N2UungwhDCILlBiDDc++mRMXt5h/QgCzDBbx8TFySokewty7Iw5VNrDe24MM1sMKkvifLEYsHUZqPhhzhRtO9JCPbAQrCz2eJCxSKtHz3uUgcQot71eo3NZo2KjeswTfDwmNwE9B0x7g57bLdb7A8HgngyEYmkmkLo00K81osIiCMkme1D95Xe0A9EM97udnh4eKCpwF2LyU0cqRKrkOCdVWLowt7leyZspHjvRZ5oGHqczx0rNACZybjmwMKW0ITda1or1jLEx5Gg8z4QMwiqQzBaCgh9SlQ0rkLGKsZiGAbKgg5HDMOAuq5ZFUMgDQcwaYY2q6ZeEQDeEk35cDxgt99xTepSeUEpioa1kaiY4R6vg3HzF9AiCZ9KLUJ7wHlmkWnOpBgUBQBlzMX6znITSCKSJ4RaallgvpDxJ2vUNfUwVeVAvXnzORbLBbRWyHPNhpIi/bu7O2hotOcW2/s9Xn9xhzdv3mC326Nve3hunF6ulsTsm89RGA2Jy8K9A6hPKNnj4CCGoCcFEZmVuWUDz3IyWiPPchJfZtTDK4Q9JdlCwU3wYHhxYDit4/EnF8QsRP8BRMclWozCYvUeYZAjNfIKqnO5e0PuFH6VrnvZcsxtVIISkbRX25JOodKK770PvViyb6gkQUGzCS04PvTstW2L3W4XoGfDAyJjQ7u6PI9H/w43xj96jYoTH0Jw8LshkwoLlQ3YBU08cVLSCS1HqBeBIBKI7AoAzx7fwSXr53KVKEWLO4z7CHpxJqqgB0foo4KARMCasPeqYsVvE+E+bUxgwx2OR/R9HxztBaUTKrJ8Hj1rpWjK7WIxw3K5QF1V0EYab+kzJmvR9T1FuUx5X61WWMzmXODNSMtORdiDBfxiZhrujIp4M9dRPIjVdz6fcdjvsd/v0LYNRlYfJxiUJrDOuUEw51k0MVmN9zCAjxxBeh7p3vUDTuczzqczlFdYLhZYrZdQhgAZrQieGUcXZjXZiYbBWeeR83oQxfgU5lMqar1VZYVahG8RZ+HYyeJ8PuN0OvF0VBWGCJIzAeBEzTzCLwJP9z2RSqSuNTH93PsoLWN0bD7W4PlFOpU3ZQYVBwyiYCLBQlp3CEyx8PNL1CDkApz9OzYqOjNh7HpV1UyqoDPIMmLk3dxcA4rOJcs1nLXoB6qrvn79Bg/3W7THBqdDg+3DAW/evMHxeMAw9MhLynDW6w2RJngMuUK8BsUFfpciCLwGRUk+ZlI0kmIYBkIprKUAhmtOJslkopPKUZUltSggEgYsw2lEnkiSmgRNgIpEG4AU2cdxSGrKLC1UFNTEL4iAV+9Bb+RHUhdOg78IvxNETQGb5WGZVC9SF3JjIvEUnrGjmhktRUOBJwdCTdtifyDSVj8MKOBRs1pLyK6VouecrKvL4D+SKHRYiPE1SVL4jY4P20mFHgD17k16dGNSDbyUXnoRkbERFBUIn9SSgoNIIhtRo5BzkAGDQcBUyRA5G/5wKMH9GmWY0su7hYuQHl3b4nQ6outayOaTa5DzoYnZVLCNGZ+cow7kDHKEmVxiOKbJcuRETurm5hZ241jZIKGScxYK4KIGIvckjpMQs+fhmEUo1PPj6UQzpJyF9xbeEnFBtObmsxk5azvhgrcmTkvweT4lZx1GnkV0PB6xfXgAPNWuqAk5ZhmSJaRGy1qBYIl+nCVGVwyP0tToKMrVpFYRh2RSTYMaKcVJkWExvEYMGwIXgwyRjlEKI8M0p9OJ39/TLCnrQtAlw/20NsHBPSbQyCEMSCJc0LUHsEH5WJfgz4QSXUew6jwtQ2stxslSQJEIHWeZ4flGkXgA0O/mixmePn2Celaxc9cAHA7HPUn13N/hsD3gfDyjbwa0zYi3b+9wOp0x2RFlXaAoc6xWCyyXCxRsEAXVkn0WonCugch9Ukx0CG0C3Lg+DiMpeIRRHRn3yV3S1xXXHQvW1IvkITL4Xduh60iBIU+Em0MdTKAG3hvS9O1cHOwZBh6m4smeh60KMiO7SCWFBWH2sVOkLPkif0tYo/SZ1tpwv6T04IXhC55i7DW5KDJJ0FrjzLXqnhVhjNUB9cmy1F28mxg81j2l60gcJFPtQyD7u8FJ+aTOk1rfxwSD9xn48Dr+nyy4sOiRFNI5OFPhv8EUAzyITYFUyLPUSYkhcw7TZOMkSo5wqqpEVUnkFrM+5x3arsPxeELTtO/0Z/A/IHReoQnH13hoBW4cXmC+nKMsifbqgZDaO0c1o91uh4ftFk+OR4zjgCKbhesOsbZHMMoB8nisoqxogAFljizVwlna+RyNeMDUkeDdc+pit+MEGmYXiSDa6TBASsgblvtQpD/kzZs30DCoyxp2jMoAYowsZ45932OcSMtNgow40jvmJoHIqKOTqmfU6JkaOGstq2mcgkQSkT/kzr2feOKco1oHs7KahpUmJtZkhGJtN8rKxFElixzwiqRsIBl6Uij3FChYcdiKonuKvBUy5aGhYSe6D3Ce5HGso4nF44BxnPge8UiRLIvrGwI105DB+XyGp8+e4up6w2uSvvPhocbpdMbn3/sCv/3bv43T/oShn+Cdxm57QNu0UJni7CtHNSN0QSTLUlOsoJIWtmhcY+DJGaq1GKYJfT9gnCZMozh+FceehIyfa8qyDop4fbJ+JOPteAZaJr2AiEEalGJWZrrnp6TnkB1knk4diHs4wiGc5XoEPc7YPpCWK9TFfQlRCduFMI1YgWpPIlChJHiJzbe0n8k2nE7UKkIzuMjx1TOSkMqyS51IIQXJZpZ9QVCiClmf3BMFKQuwagq+2fFhO6kUqkDMmh5nUbKI058BaZSepO7y8NMUPPxdIqa4QGLjJn1HnkVjJxEFZVEkpiofk2UZZvUMs/mM9OoyAzWpoBnWdR32+0OY2SJ4cMzocIH7xrPga+EG1uVqic1mhcVijsPpRBg/s9uk4Lrb7RJiwzNUZclSMbSyHUMKck1eMI/gsBE0xqbJou8H9P2Ew+GI7XZL86vOZwyBHUXvy7MMs7oOCuXaUB3DZCrUdaT+IGpHShGEME0Tzucz9vs97u/v8ebNGxiVYTlfoGkbXPlVuCHee9Zfa9C0LQaGf2S0Q57ngfGVOha5z1lG8j7LxSLU97yn2tY0TQTNHvY4Ho/ouo6j8TyuG15fnteLd3Fsyn6/D/O9RHVasr/UQQX1d1n7aT2Do4iQRYG1J51FUM9JmrQVAOcUoDkCnxwmGYrHMOrA033pueskk8oZrmItQB5DP5vNWB2F1g0FXLQnXr16jaEf8PbtPfYPOwz9CKMKNCciiRRVAShSMM+MCVkf2BHZAHPFnecutKEukRTnPM/6oiZhchZMnMhzHgUjMHb8GEFCijBdm76PxrlQ03bf96iKkmp6yXOKgQB9Fg3EHJO5YPzdBbVYBMuVGOuYSXGixAEGTZ++ZCKHuXf8+GU9KkjwNAUnSSea7NUk8/KcyWkDDP2A3Y7W4zCMofywXC6xWq+Dk5JMPUB/iIFCylIOI3USb5RYr298fNBOSg56qCqMcPgmRwqZiLNKDW5cwBKdXL5XvvkikdAaJjfcKCzjvZk8kTRxKoCmfS4XpIjOUiPjOEJrjZFHWhwOOxwOe3Rdi+VyeZENpnAEwlqJgLnSChlyrFZL3N7e4vr6Grv9Af00YXI04E5qX1DAmzdvcHN7g6dPn6DIs6Atpqnh5StufHT2ltXB+3FE23RomwEP91vc3d1ju93i1BDNHZB+EaKer1crrNdrLOZzYg6NlnTKpIHae6qDi3cHPadxHHE47nF/f4e3b9/gzZu3MEpjvVzhsN/jafsEFjTfCIoYkzJSYkqK2TTQjgQ/jU5hG/4PR9+LxQLr9Qbz2Tw6KXbyeZZhx874cDiQqkhFAy7tlPY88Twqft9+v8fDwwO2Dw84Ho+sTiCvjzVIam9Ionu5/+ljuVyg7KRCFBPOwadWEeJHyRHJMU4ThmEMGYhhYonM+8rzPAzQgycEoSxJvzLTWVyb0OiveiwWSxRFST1hHYm1KtVjaEllwuSa1eIHDH2Pvm3RDz2yPEcQFuZ1kxo+7xXrRUj/zWXm0zQtCRkHEoFBzooPmb40fV7WJU/BzbhuRAmKZYLOCW3TYLVYAklmrC4ejLR50EDMiQMzmZdWFCWMzt6ZrJweslYunjVicHhRS1QeYHkrZyduOXBhvEhwksGGybMBo26c9Y00Gfzt/R22uy33SNFU4qurK2w2myA8kJ6n3G/4lO2bwqiSSfH3AYxRRQf3dccH7aRC5sSpu2h8fRVr5L01Kwi054NRdNaGsRWyiARjlfRcWGH0ITqsGRkD4YFY9/BRzJG/lDvriTAwm8+ooNp3oRlU5j4djke0bRceeKoJKFGWDvAjQwLhmxTmsxmePLnFzc0VXr1+Dd/1cP0AC4T5TgDwsH3A3VsSFa2rEktWoM4Vyw/5uKEomZSslZ3UZNEPpHF2Op1xOrZ4eLjHdvsQCCBSrBVihsj+r5JhhHa0SIMAukx/sVmVInrxdrfD27dvcf/2DrvtFpnJ8LB9wHa7w/F0hDIKRZUD8BfjSYTp6TkLyPM8QkDhW7wQ86C1Ql3VWK2WqGdxhLhzDn3X4WwMDkfKGvf7PUGCoAwsjO9BNAgDq0zvdztsmfXYJWrqVGOhTUy3IqptAEy15oxFsqiUdUlr1AGelCYEHFKKWX2pbfD8VFW0ijRtlQkcMlFA0eC7YMDpSfAepNqbRhJp80H3bYWbm1vcXN+iazoMvWX4m26OcxPGsUfbNNjttnh4uMeTp09D86iClngBUDTF2RgF7wzNZJL+G/a/znlSIO+HqIPIVpkgvSJhmgl0RX8MN/TKuBhZK9aOaBpiX0ptO9iPYHzpfloeijmOlI1675FlNOut4pErIkkEGOmBT10PZSLJs5ZnBbkPYVdw06yjkTBib2ge1IBxGuG8p+b32GcLxYMdtVZwjvbTfr/Hbrsl1QombNVVhdV6jeVyGfookZyjuEzHXkjuwUWKylfmJKiRNfi7wknpKIga4ADHkWEMFQA8clw+Zku0wCLeK05KFrb2OsA19GLF7DQkw9hU3OzM4vLehyK4T/4nR5aTGvNsPkdV1zTzpTHBOFnnaLTFmbry7WSR5VkskDpaHpGaLlmfOCoAihozb66vcX19jdlshmGy6IcJAF2jRO+H/QF393d4e/cWc1Y5FuWCnBuV41aUP0CM4qjG0rKSwG53CP1DbduEzQoVo3JSuyaoryg4OlcqzoSSyFSeN1shrRXGccBuu8X93R3u7+9xOp2QZzllJ9xjVs8qaEN9WyQ7dArOUiJTBXWhQhHcvXypo+usKqbhltR8PU0E33bGwGQZNeQydCcDJ+syqnRIcDNNEwaewST1uhM78TDcUqnAPouNqjpoNOrA9koyPh/VsiO7KqqGCJzmfZxnRY4T4XW8ZOgchzGocSguuEtdKhhoBYiKo6y3x3BOnhdYr9b4+KOP8eZbb2n/WOBwOFEg6KjZfRh6HI8HvH3zCq9fvcLz5y+wXq+RZyR665LgWxnK3pQmncJILLDhvkxTZLt5zuoAel/OTM5wxQlspqBY0NfQnClHNULnaX1Tr5QoN4hRjpfs4amux1CftSSLZLRBkefI8yheqxTLEoVnFGMFeA+vpPcrBtaef54y6+BwAd95T1AvCSdHuFE5Di20Qm641UAbGAMcTz22ux32hz31dzGqU9UUZMzm84uSiRBqlLpM6CWAjeszCfy8I/g5tZvf4PignVSIoCTCv0i9ORUFwsZNi9ZxfAJHYJIpsSGxzvEwvQj7yWcHwUiTcZOagrVT+Ayhr06TqE1w1JP4SZNRI2vNasykOM0yNPxgpW5xPp8xjAMylmuJRVGFGGBzAZgNvPeAURZ5keH65ho3N9eYz2Zo2g5aD8EhS3H8dDri4eEeb9++xXKxQFHmLMRZosjFpF3qBvKNBiB9IT3OzRnH4wH73Q673Y4UrnsZsU5sNdLRKzFnKaR6VhOcpYRmHIMwsqH+IsyUTGq/3+Ph/h77/Q5d28LmFsfTgbKp3RYWK5iC6izn5oxTc0Y3dPRM2LpoTbWxMAmYv8cR0B9g1CL0ipTIMoO+9wGezfM8wHfb7RazukZZFDDqkklGsArNoTqfTgEebJsoAEx6hsmE6HAvVGCzaaMAexl4yRoV6EUERVWQvvFhT1h3cXPDPZVVNE4ThmkM69zxSWgedkhG0wEySUAla09dUI6gtcZqtcKnn3yG87GFgkLfDbDMTB3H/sJJvXr1Cl988T188ukneP7iGWZ1jZAiQbI3UAClDGAk4ySiCLVaUGZvhbgABLKQjNWRfRZqWUruJylPSCuJZO4KwMB9V6KDqVJXIYGh96wsP3Id2oWANs84Yxc9xK/eToDSEK6p/Chmy0k2rGIARC0mPsDvw0BTieV8wQG5VjQXTBrYlSKkYbsl2LkfekzWIstzzOZzLJZL1FVFexOXay79x2MHRfYwGSniPKB43pSgBd/g+KCdVMikpIiaCJuGB+tj46YcIuQqC5BfGBa7tVFWROpVTjBXyLAwFh3VlwuVoqJYjwp1r4vHSxI1RVFgNieh2aqu8X+T9y6hum1pefAzxrx89+9bl732PqV10V+NSRkLg414OiEkUfEvREg1AgGrGiEhYtJQECmw4YVSsZPYMEUaEmykCCixY5RSA9qIipLfQlEQNKVVKc85+7au333OMf7Gex1zrV1VJz+Bf6fmYZ+917fmN+e4vOO9v89bN5Llx8yC64wkM246nfJrsmlHPg6n7klajz5l1FWNk5MVzs/PsFwucLveoN7ucTySlkfB9R7r9QaXl5d4+vQdLLjIeDQaox21FCgOYkmZu0GsEQos77HZrHF7fYPra7Oibu9uKRYVqH6oriu03GdosZyTC208LtAV8sCC0ks9UoHjabe4urrE7TW1y04p4eb2Fi9evsCLFy/I3dfW6FPPtUi3ChQaWLmQZIBai1qFGRiQLQIw4izEyWSKtmmxAfUX0lTy3Q7XNze4fPkSU85Qq6sGuWVwV5CFvt/vsb67w83NDa6uxNLcqpCqYkU1KwooyjMOUucGc/l2qaBfqkagvZfyCbGkSCtnZvGAN1wfAypN6A6kvFAGLTH0SrIHhf7ER4XAgr9DzFHdUPTciPlsife+t8Xx0GO/2+PFi0vcrTdI3RG7XcbuuMOxO2KzucPzZ0/x1ltv4fmLZ1jf3WE2naOqA47HRC6z2pDfzUdG1kvf94rk0PU907gAq1KxdlURRqGvV1O645SzmpHSKQacVShSh15GQ+dzbqZUVkEnnZ5717yyqizzV5DNfRq5HSnPLyQ1PYBqFLPxIUE0wSARjA9JTolqnXY7tuZaJzhMwSePD0GXvXjxAjc3t+R2zlxcvVhQXy9O3EoF8XDYIUv4wUoGjO9BeVSfpBMF4HTxL3m93kKq2By30XoD1EqitFjBO7NWzcG5ywITiVhZebgJUHJECFalrS4iHlPmMSmbzYJuYHGpAGgX3cViifl8rskTYiTvDwfcrYmhabW7WIicXhoDu0JgY6TBk2ldVzWWyxXOzs9xenqK2/UGd5udMvXEWWCbzRpXVxVZUosFdfadjFE3hHU2HgkTrREV9CZpG3VqaHiNy8srvHx5iRcvKWHi9pay1hBYm2wIvWG5XOD05BSr1cpQN3Jg6pWVM5esaP3iBkycASnCJyDSYVuTkHr2/BnqtkbdVOi6I1l1t7c47PdUpBxJQI2aVuMEYC09s1JCB5LulTbyy+USk8kE6/Vare7uSCjU19zPhwpex6irGt1oqhq5pKtfMQLH5cuXuL6+pr1l95wgX/gUZ7IApI6JM7vQE/xU4U5hJibuPm8duvOihOw+t9+xS/J4ZFR1WoMQwPVk1GKCcNqchZMp5kBdZCOQSZjEEAmJYrbEftfh6dNnWK5WmEwn2O1GSPmIYz6iTx2OhyNubm/w4vkzPH/2DC9fvkA7GqOqRjgeE5q6xmo5Q1NXpCBUQOwI9LfrqRaqbggO6nigmJQgkYRASUBaq8TF5yWT5xhlS8kTFfVsVw/Nfr/Ddrux5BZwlLowbjJnR+45W5PAfasoAMWUqp466bTLfEesKl7vXqCsyAtt/Cer6NKtlD5wtr3Eb3bbHdabNQ77PUajlveoZ8U6IuSe0dq3uLy6xNNnz3B7d4uup3b3s/lc8T+tRUep4WT3J6jiEorfi3pLY5fTHb8yhJRcw0SJ0hOK4bqql0Pz/O8/kF0ZkqniPtabgv4xwQWu8QnsWhHEYVgxrxtLADCZTLHiwORoNHIwKoyxd3uHmxvKSuv7vqjlUYHH0pmIQDJt6Lc0nhHOz87w6NE57jY73K53VKx53KPrEgfJKU7zfPacMw5nlC4bAqpACNgAqEts27LG3WG72WO32+Hy8hLPnz/Hs2fPcHl5jZcvXuL6+kqtl9gANSOez+cLnJ2d4fzROU5WK7akagI7jQEhSXyw3E11d0TTWHfbLTbrNWKsUfcdqnWFFy9f4unTp2hHLWIVcDju8eLFc1zfXBOYaSak+Io7JU8mE4ptFLEWYfiMoD4irfL09ASr1RI3NzeqLHRs8V5dXWkq9mg8QhUqzCZ7zQYUPLcXL17on5urK3UhGQ2VNUKxqqnAml07Q0VM9FdJPxYlLDoGawI4OwVMBFeZpdr1nVohAswcYkBTW/o2xarga6xph3jPJLYSY4WKwYAli7WqKDGhrivUTYWmrxB7oo+cemzWa7x49gxvvfXX6BMQWUi1TYP97gzT8Rh9nzBqWuSuIW8AeuQAjJjbHw4HhSVKiUsNuFi3bdqiuF3T9jPFjkajlnppcTq8CIndbqct1YlOTLB7V9eRXbr7PSFOUDq+oYUf9gfsaquXChGoKnaT5h597tEz06mbmlu0m5AibMyg76wELcVtYt/32O4Ih+9uvUY7ajl+z21LCGkY2/0e19e3eOfpUzx79gw3NzdIKaFpKDP47OyMhdQYOfUlb/VeKOaTlGTjSoGyiaVize5ZFK++XmshZb5Y7yflBfOnzikApUup1C7lKYR87tIrAcBBKflNkM6ZiTkMEQJtTFVHBBiDkmI/f404IE+wIzWnrPeICDgcyUqRgL+gnRfvZ7dfZg3MZ3wFRwjz+Rzn52e4vl3jxcsr3N2tAUg9DVlTCMDd7R0uLy8xk5qgmrTxMWesjUYjjEdjABnHA6VSb7c7vHz5Ei9e0J+rq2uOtWy1eHbUEEpB2zaYzWc4PT3BGXdfbdoWCBXAfY/EFWCWKJjYrZDYMh0plT6EhISM5nig+NrlJWbzGWIdsN/v8PKSENi77gip42kb7tDKSBIhiCVsFqkgUVd1hclUFIqlMjGJX1I2JiVDTCcTzGZTtHWL4/5AYK+g1O41u1UkE3C92ahikjLVpUS2xkXRkTYhVIBangFxb0ftKAxrbhcDWfzel6drGZhGIjw4bWYtPPW9JgghGIK4oE3YuQsqXLM+++GLMhuP1pWZmXfbNoixtfokANc31/jC//yf2Gx2QByh6zLG7Qjr2zucnpxgPBqha0fompr2s4pox9Qqpa4b9F2v6ec5Z8RACS5N02hs15QScfdRTLBtqPGhwAnJ8h2OB+pPxZ6WgMJjp/f1jCkpBbEyzxDIDXnYH0yZRWLE+sDoDwl96tAjc8JIS+dDdowV0ZSAqid68Pvi79vt9twOZY35fIq6oUxX5ICUSWm+vbnFixcv8OzZc7y8vMRmswFAoYjlcomTkxMCwY4RPSzNPETrbC6XTzsPShBGEhb/+zJNKL5ebyElbjSpHcomtEgZzhT8gfnmhRGp/um0gSzWFRdOShYLK+98n/hYgzbJC7o5ZDlJLKOuG+IcCbwAAL97SURBVM6jAvojF/MOxt9wKrogbEv6e2Cti/zgOxwOpJX5zCBxQ0pKZ1IG5QUUvXE0GuHk5BRnp2vM58/RvLws0ppTomDzbr/D7d0dXr54qRhtIWe0/N7xeILpZEKWzOGIDQuiy8tLdWHd3BBSxuFITEJ6NYUQ1MW5OjnB6uSEXX01aIUTKwjmLxf/tVhRORNPjVXEaNSiqgnvL/UdYl2pG/Dm5gbXN9cIVcB2u1G3Ws97EENEOxphPJ5w7Qr7VZQy+GJNGsEOLrU/abmFimXtSbzp+uYG88trjJoRCSnW2o9dRxBOl5e4ub5mZO29+vOhyTzQfYuMrm+dn521wgIqxICYqeFmgJVLBO3fY8LX4qS2JwHR5JYIq5yLDFhKOIhUyCtnj7lPkO7XImiZmXkGnjMpQJLtKQpbrCJGkSzP6WSCuqZ2HZv1Gl/4whfw8vIaObTo+4DxaIzb6xts33iCs7MzdJMJ9oylOJqM0YyojqdpWqRESUF9l7hYNRbIItr7DSBhzisVuei2lqzBYDyiOx65W0GGP8iiO0hRb8/xsGN3RE65QKXvjkfqxC3fc5YUNQ/u0Un2cFNRJl8VUXOSQ+Lu0WJ5Z4CEKiOh0LoH9sTsOTt4jf1+qQXKOQCpSwyOfItn7AG5ubnB/nBADAHj0QjLBdH6qB1BuAncOuXsbSRyl4pSR7FcZ2kFUyxl7V+tzpTXay+kvCXlkyPE/ylad9a2xZwdBOjCAeYClNhJiJEgWJggfZo5afAgKwQmClQjYzWraWr0zFy7gbuPYh7UjG0ynmA6maKuak7a6Kn1RM44dkdqQ81aoe9F0ycBrRV3TVYGBHWXcUvxpsZqtcLp6Zpci+1IizSJaGhghOe3wdXVFWML1kh9h4YtuOlkyhlXVKG+2VDPHBFQV1dXWG+2OOw5McMVCpFgGWE2m2G1WqmvG0G0ejC+V9A1UnmRJWuRGGJTN5hMphr7OSRCeA8BOHZH3K1vyXWRqRX2zc0NxaN4PLGKGI9GnIk3IsUEwpBEAAg10T+oqHehcakRu0CDMqYjtrst7m5vcX19hbZpcRAhFaQAmTsi391SwgQnX1RVhY5driRo+M1sSdWVCKlgXVYFMzGIKIpIvO8xwjFZcsPkJHA4meDRAe4v5FhGFjriBCMYdl/FqfrKLDmBQMILpEhQYXAOhWMIh12Hl5zQcnt7y7SRFclisVjgZLlEO2qRMzXK/Ou//gIQavS5Qc50Tm6vr9H3HTH941ETXhYBmM4psUga8x0OB8aKJDQOBZflfltyniH7HkBxq7YpLRNe3z4ldoNy0z+Ik5UUVeEn0s1XWlpU7C5Nqcf+sOd9p9T4jKy1g1UgK6ljRappqTC6qipUbVQ3d+L9TX0PgWLzmKHCjw4Hqu26u6P6LslYzMg47skdeiW1hi9fYL2hZKBR22IynWC1pBrGuiYQ2qC8Uw6HZBTSISBLPiPHbKUXssa81+Q6pjP1FSOkUjKss8L0FIYdRHjQ55p4oMV00PiHHMiqqghGBpmTauy5ZGkFbraXERV3hhksE39kIQXeRLKQGGAWBJDa9R1iVSnA6qhpJDmL5pAyuiNp6NvdFofDgcFiqQivG2QtyrzJsuMahpQQY4e6rrFcLnF6ssFqucKMi3X71FlriEAFyNvtDiFfo64bNG2Njl1WMQZMp5SNiCTN4MjvL/BH1zfX2G73yFlqKaDxn5ZbXiyWC5ysTjCfLxjnjkYuEyd3UoBUwppbQQQVtMXHfDZDO2px7Ky9RdcdsVlvcHtzqwJLEB3EHVFXVEw8m80xEnRz5y9XRUYGABJSi8UCJycn1GZlOiVlgSv9qTh6j7s1WVN13WC/2+uzj11HGYBX17i7NRduM6JIypEFlnAZ0ljZ3VdJSjQpRwElNmUOZvQRjbkCYGYsOSdtkhlVmLGUcTVGoiGLVQ4+E2LRqauZaTmI0Msoin9VIUsZ19c3ePrsKZ4/f65QXwRLRW7X2XSK5Yp6n213W7x48QJX1zfY7Tv0qQICoXisb27R1jVWyyWQejScCVm3NY6M2ZhTxuFwxP4giRO8501TYGua14WFOQwaqW4aLoswC8IjjaeUtcbJLrLHuo4EZMetcSTV+niUvk93aKpaIdUCF4xXDEZ87Hq23ElI1Qzl5MsEUpazHRG5ULgWXEDOKDwc9gzZdYO7uztF+k8pYcux3JeXFL99+fIS2+0WAHldlnOmc8bsE+QPsZACK/BF081MTRgrbiMTQ1RPFAJYWLsOFF/ENeyv115ImcVUxqbui+kyODzMDNQvBPIPU1fU5H9TfDeEDPQJ2fm2BWNNUaYRkKI02rPGh/LevqcY02w2xWJO8Ege3FKSAzwIqTQek66tmkwQ5N80V7lSTogg9IPlcoXt9oCzszOsVitcvpyh74/OJZeRuh773Q7doWP/fsR+u0PF6fbT6YyFFMUXqJNsh5ubG1xy3c/h0KFiqzAEoG4o8WDChYGnJ6c4OTnFfL5gl5mk17JrtZAQUHebbQTBtSwWS8wX1Idqv6duvzknHI5UF3Vze4PNboP1RlDGj+r6adsG89mccAPZihUWIEwJodz7ummwXC5xdnaGk5MTLBYLRsjekvZ8PGK73VKx8ugGMUTsRltUsQZiQNf35Ia8usKWceASsiIgSBdXzaIKXFemhZdywDk2IDBOgenbK1OhdFWRQucyV/Vesf6F5hKkz5pYweJypDhNrfSl5RkhgxPhTMC5sRz3Pa6vrzip5iU26zX6RDTXcN1c21LN4HQ6xfHYYbPd4dnz57i926LvI0JsMBmNsdtssFwu8VVf9R7UMaKOhD7RjkfYbndIfcKOUemlmy4JFIE8GhXJR3qxwJDuvO1ohIYtDwHmJXT4I9NRQqzVhNQQQ86ZsCt3VOYhbXwSp4Tf3t2haUbcpJPLYGIgayoEBLGkWEilAIzHE+TplAREFi+J432Ben2NRiNULFByJggqws+8wmq1IqurbtB3HdbrO9zd3uH58xd4+vQZLi8vcdjvEUAJLicnJzg7PcNqsWRlOxe0ZP9GcUg0tqoWFyA2pyTgMLe+vwevuP6PEFJiOtLi+HRaFIxNNB06vFFdPxAPqRx2wFVol1cZ1yo/p8PMTeo4mcELHElq0G9ma1WxXC4xm801ewpZAs0WkL+9vcXJyQm/z1yLYk6bu8pZh6wZV3WD+XyO3e5ImX5nZ3j54jl2+y12hwNwPAKZ8Oj2u4yc9gAC6oqFFJvq0+kWk8kEuU+U5ss9c25vb1ljW2t9lrg/qpqaPC4W1NDu7Owcq9UJJpMpYqyQe+rmSojd5NYI2dKD78koAG1LQmqxIEso3t2hz9YWJaeE27tbxBix3twxyjjFf+q6xqglt+NyscSMcQPNGmerjWGFZMOapsFiMcf5+TnOzs+xfPYM2+1WBfXheOSC24CWQUh3zU7Tynuu47q9u0O332N/IOy6tqVAvWjfYvkHdpFWVcU9qu7TnCYBJRMMQwElTLToEO0FVQAkgJRysvuUCTKc0AA82VzMlOZnWXJgZYP0PHErXV5e4o5bttwzUyGGdEDH1vzt7R1ubjckpEKFXUPNLQnr8A7T8RhtVSFWQYvIb28WuOFGnuv1RlPpQwjkxhqPLRGB0cFVsIIyKdsR98wS+CRwFmdHPao0tTxUevbkrAu6vdCElDJIi/ebmxsgS+mIj/lx+DxTIS4pLw0QI5aLJc2hdcpbMCi3EEhpG42p47Akpuz3O9zcEADzYjEHQPG27njEzQ1Z88+fPcfzFy9wc3uLY9ehZZzK8/NznJ+fU2mM69KAzHw26ikpGKPEMpGz4ammXtdblOlhwtsXu15/IQWUgiC43lGmZpLlozoypZ6nYPVGfJP92wVTVfN0iiu5W4iwIjOEKIHBivrRC5xKgG/+xYyERswpr2PMZjPMpuS6kkaDEvyVwP/NzQ1nshHL1jiZuPwy1z8YtgqMDiq0HA86PTnBo/NzvPN0ieubK4S7W4ZaYk27I7ffbrPBbVOjP3Ya/O04a0oq+kUorNcbbCXll6cZqwqhYvRn6ep6Qk3tZvM5ufpC4GcQgkEVJWvPmEjheyOuqXVL8/mc2n1XFY4HioP1qQd6Yo4IwHZLrtIjpw634LYQY9LcZ5OpIjxTnCXL6ul+AeCU9SmWqxVOTk8xmy9QvXjBVjGtBzJwqI5U3FzVOFZHSOffPmdKNNnttPFiYIio0XiMLeMoagajxACqsuklk6qtS2bhkg1dgehP8CY5FsVYfO4BRo/8bLG2BFpMEjAobbwmF6IY76yISeJHBDULlQzbEMmtvdtvcXt7g5tbKgHouo6Bf+kkEDwXxV6rqqYWG8eOEFuSuZKoySXV/my3Gxz2e8S2RUjAdrPF5eUlmqYm/D/O5hSBEiPFQ6fTCcZa8xMQY0afRSiTUkB1Ui0aURjBOS28z0dWRoQZqIIMcTUeDCw4U+z5cDhgs93i5vYGfUcehuz5QQiI7OsXkNiKPRCPHz9hl7xCs2qckGJr7K3Q3nT07MPhgLu7NS4vr7BYLBACZVIe9ntcc/fdyytSfiWBJ1YVppMJTk9Ocbo6ocxXF68VJcbqGQ0Si+MLfE+mXrIuuCv8OGWJzX8lCCmI1li67sriRLlC8S/5vbikTFMN6uajVMugWioJJc8oLCYgFpxYU4GZb0r8/OjaLOj7uS039yuaTqYYtQy02tFGEkoBZeHc3Nyopp25ULJnYSbDipFdlZCDJ4QdUMUaoxFZNGdnZ1gtl2j5wOqBER6dgO7YYbfdIrD1UXHBa3fsKFuR3RWCONFxMBjgJBa2ouq2xmjUYjafUwo3112EKBpqh65PVO8RxYrguKFYFdzoLSfa77YhBIjZbEY1SRUFd7uuUwZN6eYGc0VZWaS8tHWDEbuYxhyTomSU5NAeeCH4qmJE05BwJEE7U+HW94nrvGg/esZO6460X9LLSwBPJeOxipE098kEo+0GiSF1HFnrelicJ6gAkXFalqsUmTstN2UuzE1QLgd3Twa0+6sIKWR9bwxWjKpYmZmtOBFK4H5OhTVqbdRvb2+xXt/RnoDbQ8TAyUE9Ntsd2ts7pJw5CzMxdNgEQMXwUMQQO07x7hiXD5kUko6R+C+vXuLly5fm7mNLqm1bTMYTTsWGMdfEaAiZ3IIUi221QaG4PjNbER13l5YqVbUKeJ2PhwOOh84EG4MvU3NMisdZN23O0BWzk+miSx0QA2bzOfa7PVJviDfioYiSANJzB+lRy7Vd4OQNioHd3Nzg8vKKrMSmwX63w9XlJbbbDW5vb7DlrFeBg5pMpjhld7bWD/J4c5azbSxV+ItY9Tkl7XiuVj1MJRLvzpd7vdZCSi6B3dCU2BiJfrKGdun/wofFDHWNwSirjC7SDuyQOvlWaEBqOakVRdAxDSNqe4w9EVz0VYPliYH8/ePRGNPpjAtLW/SdadUCASQBZ5t3QMgcEM9eaNqcxR0qg2+aGov5Amenp+Ry4+w4EbIVz6mKxLCO+yMFQFNGXdO4u65Ddziythw15Tbzz9KGIEQoTt90OsVyscBytdSEiZQyUtdhz72LWjByeCQAzxgC+mhjh7r/guKKzeZzKhIdtdjsCA0gVqRhSnsULUlghkDtOUYYj8eYjKnjbqyiMuhy7YRwoG6v6ZTadsznC079rYB8NMWQXTld35E7Cayk8FqJkhIrEnpi0W02axz3B8r4gxPQQoe68VArSg69CCmriwq69yIUBIvPewzEQxAhFgO1lRHrSN5dc+KEKGkyBHkG/RwhpQSydF1PnoCbuxusN2uN7xCuYKX0vV5vEEOFrk+MNA6MRhM0TUYMNXpuxihJD5IwFKsKyCQYNrst7tZrvHj5Ai9fvsRuR3BTgj1YM2JGob6KK7RPep7rqtZaKVEuhC7EdVckLGXDTJRasI7d5znTGuwPhFZxd0cJM0hZ+Za6ToW58xnrQ8Lp2Zlr4SJeoWCAz3xu67rivnS1Kgo9dzmgsocrstqbFrvtBlccg1rfrXE4HGCtWMaafTufzkgxMQ6iihxEcRRiYMsavVlbwg883QqtQj1LX/p67YVUUSCWkllJIv3FVZfh6jYGsSJkRCpIQADFRqLoB8wU9SDCNFRqk2FjiJwu3DYtt+Mm812sK9FwbNwkuKoYMR5T24r5bK7IE1K7Iw3+pEW5HtAQkQJZCOoCYMDIJP1qBnRQVzW5/E5PcXZ2SrGw6RTbzYbGyuNCDKzVdy6rLKuAPR6OJCzqmgE1pW8N12Iw9mEzajDjhoEnJyc4WZGrr6oqHI8d9rsdNltCee/G7P5CQF0Hrl+BcsQAbsvCwkIyBRdLKoa+W9/x2nKjuNQX6x1jhYyAUTvCdELu1el0inbcIsYKXepgvZWCMmpHbKg4G/OEe+zMZgZnFSR7KRBUVd/15GLLGaGqEGJFBxxSxApMJhNyWy5m1AqC685UN2JmoDBJwbRWkVISrJYiZcX2E4dldqnngNIdnQSWwYLrl5J6AHjSCHCFvK62rgieq3tSzAv6xWG/w93dLW5urrDZUMIEQBZJxd8liK4dco7oehLuOVPcMcaaSjO6ntclKop5U5MwydymYrfdYXfY4emzp7i6vlILQRM5MszdCXPTUewoaSfkuq7RcvJEVdXIOaglSgjxe8LD4/3hY67uwP1uz+c0mxW2P2DDQqpihUhiz6I85ZSIh4WIQ3fEMXV4crfWBIzgeI3FHWkMdVNT5+hRq4KhT7Rmt3d3aEdX6oHYbta4vnyJ7kgIKB13WJjOZlgul1ituIh3MkFduVYhMHcwAlAF4ZJQuhRB5M+MSjEmtpwTgoIlfenrtRZS2Zm+Ot1gdQKyYPInctHioITjQYGeUlLUiXtovRnwWf4hEFurqkANA0fiKjDU5agV2pJWbRkwtXSo5QaA0+mU3WedWi6S4ScFqRKjkACsMNPSzemYCE86cjYhgc5ScPTq6orqsI5HpK7nNGJQVXrX4cjP7GPP4JNUlCgoBKlP3LcmFa+OMWI8Him8ytnZOWf1kZDabDa4ubvDLbsxJ5MJUs6YzTLGY9JoicazLLteVUWuIMIlPMOLFy9xc3uNQ3ewQ8rxMrFm66pG1UTMZuR2XK1WmM/nlL3ElmNRbqBywOzxWFWYzqY4PT3FxcUFzk7P8GLxnDsKV0qLfc8xvp7WM/Q9YlUTLloAZ7S1WKyWODk9wXQ2JWZ+fV3SldKQgc5iSI5C4/w7cVFrSE28llkdM/ceIoyo5zYTPXcuBsA1Rhyj8dDdYmiqH0ciabb+290WV9eWNNF11ARQYkA5s8u3T8jY6R5TTINbW1Q1unDUfWxHpPGLqzalDh0jpmx3O00y8ojlEhe6W6+x3mzQtq0m/SiSS6Tz0bQtJhPGX2QU+54TJw6HA7a7LToRUsVGcAxut2MgWu6XxeC32+0Wd+tbBAT0qScrRd1oZM2BywN2xwOOqWc4tGSKgPeWhEDp/oCi9E/GVBCd+oS+SzjggLvbNaqqQUpA2zbYrte4ubxESj12xyO6vkPTtFguFjg/P8ejRxcEVzaZQPrVBacQSZlBjgPGGYyuymwBoT2nLHyZAgp4zYWUrkEIBm7oL9EyBSXdLWqRCeUD5CGbSZtJCPrqdHlwdhoQxGUSuf1023Jnz8AxInpHYnNeEx34qmKF8YRiRcvlEtPpFLe3t2rBiF9feksdDgfyP7v4jcyFrI3sNMagvnTRwEds0p+dneHJkycKvLpZb7C5W+N4EFcFPSf1Cd2xR4gUNM7MfKXmIvWJquQjCsujbsnaOTs9xeOLCzx6dE7zm0w5jrDH9RX1fzoyyjtl5kELR2UfdY/0+eSeWK1I2D4/e4HnL57jeHtUl4KgdEjtW13VVAOyWOL09BSnp2ckMKUtNmwtidmXyQqZFaDxeIyTkxNcXFzg4uICT58+xWazUQGVc0bXH5FYA1ewV7aq6kgQPZPxGCcnNI7xeISry5eWwKE0xRmjVSyZk6NhDRIJDYTAqAMwK0KnERQYWaWLeh4kWUeyNq3VhaA1hILmsvuq1RxRIXpC3xEO3/U1tW25W99pIoMkZ+Qc1FI55iMi73nfO8ULYgkz3uJ4jOVyicWSygdS6hBiwKE7UpYal0aI1yHESOC1Nzd45523ccpQP/vDHjFGzvJcaFuVdkTxzul0irqpkTOdQYEpkzM4vAIokYSE1E5jeynT+djvqZA3c+fcKJ4PkKDOHdFKCBH74x7H1OOwP5rV5Pc3gy0S0pDHkzHmiwVBmVWVWn7pSOOpGAataWrs1mvc3tyQFclx3PFkgtVqhcePH+Pi4gLz2VzRZkQlF68AncbE3e3FUBAL3/gQAgohbHFvT7df+nq9hRTAh48PqLpaWGoDWp8kgd6YqdBVBIyAZXqrQ/2m2oOmclZC1r/lXtm4KnLPmKZWXy49M6vGps8GCuun5YD8YrHAeDyGdV/NWmOx2W6w4fqauq5RhYr0VlcZL/5+aZBnWVvkCq04XtM0DZaLBR5fXOD29hbbzRYRL7Hf7HBIe+ReGuOJZUr9eiRLjJ+OPlCRsuDOCfOkIs2GMoVOT/Hk8WOcnZ1hNp2hrlrqxLolLfvlixfY7XaYTqcUG4g1xpMJxu1Y9yn5LrRZ0nYrFbYnp6eYzqa4Xd/iyFouBc17wsOLBOkzmUywXFAxsTAryYiSNGpxaQmMjOy6WM8Vlw2cPzrHxePHOPnCF3D18pJQBpJ0Ru3pq31WgQ8+5LGlmIJYZNSam+ZM7iVJ687KnCOXNagbMIOUkSxOPccg1B2UTfdSV5zTxpUGzfsg9V6C4k190pIW8wrUkneBRwYrpcxIUsxyb4C61zfXFKDfbpDVnchFxa64k+I9vVougbN0ewjzptiLuKtPTk4wbhp0qUc9aoAYcLu+Yxd0UiBYIGO/2+HFixf4q7/6K3XZppQwmUzwvve9D/XpqY5lPCKGP51OWXCRS3K/JytKsliVBYkFEYJrjrhna5RdZH1C3x21v9PxcCAvSkUZk33fkxejJ560O+xxSJT1SriNfu9oTn3qTfHkzN3RaKTYinRmImfk7rGtKnTHGrvtFtsdZfOlSJmhbUs1gE+ePMGjR+eUMcv0kdmnmbK4I4PRtM6fWWiICCGp+1iFErtaszHFrxAhxc5QmWsUV5+mZOdCKMRsqRH6mfiFfdo2MkOfBK3ilsPu3UGUVSfxAK5qr2v2mXO/qWDWUGKIFh8ElcFLp97ZjFtkuOJNehe3Hd9usNvttPurWHpAGSOwYHZQYR2QFUcuxoj5fI6LRxdYrzdY397huD/i+vJarbAYqJo98nv6JDVIBPWCEDjZwCzJnjXvigOxk/GYUt4vLrBarjAatUAm9IUNp9a/ePEC290Wk7sJcgLa0RgnqxOkucRUEnLysRCxHAJZNRxfm81mFOvqLTVecBAB2svZdIYFA2euTlYYjyeQwugQwDE9WjPNyBRLLgeNKY3HY5yekMvv9OQE70wmSNuM1BHz0mwxcaRx3EiSe+qaYoMnpydYrVYIIWu7dLJ+kgofhZNxrrbslCTde9VmLdPK1sziWD4ZyOJbUDo9MjPtBNonZa3XMkFo50z6LuUgyQeEQdl1VIh+d3vLLSMObHUl67fG34/s+hNazewO7GNPqC/MHBuu9zvn1jN1COhSjxkoy/N2vcZkMoZlrNK12+/w7NkzfPazn0V37DCdUeH82ekpnjx5QgkYfDVNg+lkivF4wnVhgZMf9tiyldR1JqQk5CCM2aeg+3BDrwI6KfAtMri0o0PqEtBnpEi/7zMJ8bqx7sNe6ey7HqEium5HI0ymBNUlwLjIINzLTLBsh8MBOVGtV9915BGuyBIbjcZkST15jLPTM8owTiQgEaTPHidowRotkkHtrN4IIFJr+hDE7ZzVooRzNX9F1EkBULWSzF7R6Kz2STJNAmDQLSzVAdyLFcnv+yRCirHyXL2G3ZfVT56zd/eN+E+rcRsRphlgxuk2KgB1rDWIPpvNMB6PsN21FL9gyww547A/aMU7uVtCeSC964WtAhWMGeDsWwAZk8kE5+fn2O13uLm+xvpugxfPnmNd1RyopYMXK7I2RTMEW6BRXaVspQaqPUOmrJ6mbTAaj6jFxckJFvM5Ze/ljOPhQG3mL6/w4sULbDYbjEZjABGLxZLqNpJA9TjXBqBxjJwzuSlOVtpSoG1b6iorze5Agqeuaow5/f7k5MS1R2kREdDzAYqKhZcV58yPQRIKmqbBarXCxcUjnJ2fY76Yo0tkUfaZNX8RMJAmmIz8zcXEC0avWK1W6LoD2pbaKXhhJjEpsaTsoiaHakeJdcT0HISVZBN0lDXpYgzwwgtKj1LDpRlawaFeqBVmsEohBKaNjFjV6krs+h6b7Qbr9Uab70nbEvXUA+zii3qGcjKYs9QntQgFuWSxWODR+SOcnpwip566BjQVZvMZbm5vOXuUWFslkFTHDldXV/j85z+P4/HIZ2ysKCE+hBJCoD5qbavJIpktzN2Okf2PR/2O0D5YcB+7ToVQGKyxnM2UyWWeqoSKOyV49624TiV2Ka5vExAk8ESpakctNU9lUGgpIBe6EesegOIZgtc+NpWiTDy+eIyT0xOGF+sR2whpSyC1lDESIjopUqbw0PgiYpWdd4KsL+921tu/PBn1egspPVzM/KMKJnbOOHec6N5SVyGtuEN08EKwdUtc1CkHPsZIi00cQd1aSlzMuJuWUL6l0LTve0xn0kenskr/RAP22oSiMqxOsFyuSDtFxmxKZnzdNJx91RXf84LK/ogAtmJOEawSOB+Pxzg9O8WxO+Lq8gq313d4vniG7br0uedALQYQOrb8grp9ig7HjtkplE5dYzIeYTadMe4gCc3dfoe79R0ur6hB4ma9YTTyGo8ePSJNNEuc0cdVaPTCQAnd/QRn52c4PaOkjD71OHadAnyOGEiWhOUpTk9PsTohIdWOWjWUNNYSWO1xzFzQQqS7qHQtffTokSZQ9H2PLiWgOwIhoAmR0ONBLdsF53EymWC+mHOG5RlOTlbYbNYUA3D7KC5NcrXFe8IEQxpQ7yTHi9SJFxh6R7wGcpe7W70OJT1Lo8OmJcR5cQ8iBA7yM5oGY+SB5A0ywAJgR6n1XIQu3oa+J6teMAkju8VirJBCQlUlTQiiITM6y3iC1XKJ07MzrFYLHA8H9CmhnbRIOeHy6oqVlZG1gOdl2+/3uLq6Ql3X2G62mM6o9xe1cOlQMRKFuGwlHV2sKQKtPWK/31FheFaiobPM3xV8P0kVjykiZt8aBECQQthSSYi8/yFE7b9GxeqGwyh8KnNjUwRCOJnOZpjPZxiPJ5RwkaUzg4QNevSdKEskwOq2xXhKMdazszNcXFxguVxiv9mx56fWY63AxsFRGM9fKTECIUd/U0Gzwf385V7xS99i1yc/+Ul86EMf0nYFb775Jn7t135Nf7/b7fD93//9CqfxkY98BO+8807xjM997nP48Ic/jOl0isePH+OHfuiHnO/43V+qkQmD+bIuEVmmCXptQKwzEW4Fs/JPGZirVaR6p+VyifPzcw1CPjp/hNVqhfHI3BDCgMUsB0hIrVYrPDp/hMePH+PJkyd48viJujYWs4UG1nWoTkuTcYoQUgISIZ2pOJgOIMVnJPHg8eMnePyExnt+Ts0IZ9KkLhoUDo2Vnk9uUXFpQLPjNHOHXQGSmt/UDaNpcKbT3R11qX3xkrr5vniBq6srbLdbcqeIBawKh627rL0kT4iwePTokQLA2p8FlssVzvkQPnpE+zGZTgh/DSbYdeDBUB6oBskpJCGgqWrMZzOcn53jjSdP8OSNJzg9PaWWKzV3M56MMZlMqbHieMxdmMmSoyyqRzwWallSJE0A0F5Skh3qaJSUWt8uI5ir0lnV9DsRYmJplefEwgSm3LRsBY/HlEE3Ho2psBNlXIzWSRQJ91BnefiM1LYljLnxuKUGhPzziD0P0iajYWTvuqqobT0nvczmM6q1W4xRj6kGb8yp12NOqJDYTNs02iV5NB6phdH3vbqu9/s9obnc3uBus8btZo2rm2stnJceVFIkK4Kq68waUQdWhoLQSryt4tR9EpjO8yCn1FlvivnJtDfi4uPxWPAG2TtCu1WsdztqsWBQ2OVigfGI6x8VMYPG5QVozRBIZ+dnnNj0CGdnZ9QUUhUSdznLkSxy47liAFgihbn1lCfpuTX+++Vc78qSeu9734uf/umfxjd8wzcg54xf+IVfwPd8z/fgD//wD/FN3/RN+IEf+AH8l//yX/CLv/iLWK1W+Ff/6l/hH//jf4z/9t/+GwDawA9/+MN444038Du/8zt466238NGPfhRN0+Anf/In381QADgLwk1YTW8Ebhfg7uV/E691CxnABaguqBxi8Vy9nP+VftYXMMTRSLNkhMGNOS4znU41RkVuqKBCEAC5gBYLPLp4hA0DaaaUmMArrl2Yll04lR9ZixAENw8yC/T31MeHNbyqQgQwn5FWf/HoAldvXCL1PTXkW6+x2W6R9jtAykIk4y1YTU0GpdP3fVCmKX5Tqis5cB0VzbVPHXb7PTYsqG4ZDLSpGqwXaxwPB8qKg+Ga+eUWzR+wJIblaomLCxLuGcDdmpCmc8oYjUdYLU0wCCyTuK+y+y+ljCC1IaqBksspcIKAoosgYjaf4fzROZ48eUIdim+usTscUNcVpuMpRnWN3Cd0KSFUFcbjiY7j/NE5C9QZNuu7UsDAI6BXA1cfrYQXRopZyS6nh2hX4KaE/gofl9KSgKyOMZ1MkftMTH5kwKzZ8RizPgOCO2+9CilKIgAyu8IbkFWSCNlBkLszELWOi2MgiV1KiVBApDZuNp3pGRg2L5TC6KZpUDWUwh4qcoeN2hEp2KyAiXfi8uoK/+Ozn0XbNMigjtPX19fYbDaIsULbjtA0O84UDKqYWcJAYIy6pILAx7xljJJApUqxs0BSStQnLbLVLTHdydhAcUNQTS2wdSw97OpI52C1OsFiucTl5RW2uz23CBJg64QUA1LXIYD6UFHy1GM8fvIYp6enBB4NcpNmKTwXN53ExSC811n3OavrT86O0UhQ8GOJ38Px4y91vSsh9d3f/d3Fz5/4xCfwyU9+Er/3e7+H9773vfj5n/95fOpTn8I/+Af/AADwH/7Df8Df+lt/C7/3e7+Hb/u2b8Ov//qv40//9E/xm7/5m3jy5Am+5Vu+BT/xEz+BH/7hH8aP/uiPom3bh177yisGCSYnRpMgxigB5sDMWYnZZZx4144/cPR3JPOa8csAYfIG6qiXbAoyEKlQ9OTkBI8fPyaizxltO8J8Mcd8NrMGaypE+CEgwphNZzg/f0R9nTYbreEAqLvuYrnASKyb7AW001oGmgzNKagmiJyLdgXU9oKC0bdvvIGUkqJmdD1BuogRFVmzBVhr5Ey6HOSPMXdtBLimnjZnZx1S06I7UkHk4bDHjjOhDocDUsxaBEkPZbgYacrnWKtoZAGEwzebzXB6dobHjx+jT9Qccly36PseozE1fDw/P6cC5gWt4bDuSBhLpRYHjUESXTR/xikpTdPg5IRS7O9ub/H5v/5rxHiHyXiCxXyGOlbojkfUfULDMTFJXT87PXMZWWKxceYkxwLFihJrUq6cKSZtTgDZc7auHBOVMQtF6Pop7cqpIO28EZiu6QQ5A5PpBE3bFCjsSc8GfT8iIDnNWjDuKEPQrKiWG+j1vUFtSUzXfEHs8up79Mlc8xX3IxuNR0VSS3DjqGtSFBuOJ9V1jVhXXExOiS5LrkUU4XH58iXBf6nVQdl3V9fXCDFgPB5hvx+hT4mAk+XiYvMsynLO6I5Hjc8Jr9CebYmElLju5JzKvlfsggNIWJEl7i0pu0h5ixpTj4HmvVwusViQu1NiheSpknMZkPseNcMonZyc4MkbT/DkyRMsl0u15gn+yjw9Mg/Ra6i2PGqyFJW42P5LWAAMLhABMhpy5sJpz4+/+PW/HJPq+x6/+Iu/iPV6jTfffBP//b//dxyPR/yjf/SP9J6/+Tf/Jt7//vfjd3/3d/Ft3/Zt+N3f/V188zd/M548eaL3fOd3fie+7/u+D3/yJ3+Cv/N3/s6D79rvRRuj6+bmBgAcozcNVNwRAMBwmxZ49tXyeqjhGCAfOI6nILlD/opLMp30kDTUt+nx48eYcHPAtiGNaL6YF+3ffbaWPGs0GuPs9Ax1rKhWhRM4AGAyGXOG3NgOqY5fGvWJEIz35hci0B/pAA2JfjqeMMG+wb5jEhjr7caa54HaqFex4tooCWwDSAG5I45RNTVplccDdtstrq9vcHV1hYuLC4zaFvvDHofjgbLIuiOOfULfZ4TUa3KByYHgFUgnICwAHWPEaDzG6ekpHj9+jGN35DYZY3Rdh6ZtcXZ2ivOzM5yenjrUc30Fx+2sLCFUUOaZ+0QJIbLNg1jQYjHHxcVjXF5fa78vcu0tUYWA/W6PPiVMpjP1+4vLUQpGxbroEzc+DL6I1/YypUEs1NGeCDKLV/E6Oo2WLK2s1lDI6qThuQe0bYPZbIrZfA6gwmQ6Rd1yvEwIaqANG6J4BpJZ2dKrrGlaTCYZ4/EIOYPb1JCHQB4Xs5xXQ84IfYeeaa+ua4zHI7Rto2TQ9x2QKWZHNM6CrCXLiWJpFZbLFb76q78K733f+7Ulesedkt955x385V/9lcY55RxL8lDbUlwo5WTCWs9uUOFKRcncvwqk7IYYEXOZhAOAIaZEyBA/qCqK//WpB2LEjHu3eaBbr1FLc1ZRNdqmxZxrLceTsWYsCgxRRFQMxKqqMZ6McXp6gjeePMHFowvM53PeV1NsxMMAEL6pWohgdJUYnBsPOsYscWqGbouZsk27bHWDHgf1i13vWkj98R//Md58803sdjvM53P88i//Mj74wQ/iM5/5DNq21VYScj158gRvv/02AODtt98uBJT8Xn73quunfuqn8GM/9mP3Pi8tEcnqi5oMQRlaATmXBx2AQs2Yj5SeIxaWv99nljkL3ywW0VID1x8tl8g5Yz6f02fc5mA+mxfp4p4R89tpDTlGIUWPwjwpWD/nVGWBKoKOPziCH2ZtiTA/Ju5x0xJsj2T6tOymTFwDRV1kb/Hy+qpwa0hs6ZgHdSKZk00iEVXOlIm42W5xzXGn2ye3GI/G1N5iu+PWFNwMMlsNRVVXfMDItSbtsC0CYC7FlHuEYIW9FxcXOBwOCCFgt9mhOx7RNA3Oz85wfn5msaiqIkDYJBpfRuZ6nJSd8pAtg7NUDDJ6Poiz2Qzn52c4f3mmcbwJuyArBOyaLfo+Y75c4fz8Ebv6HmlnYkomSZoyT2tKqPPi7pN33lOZ7mlQXBKAjCpAXTASP5LniJafITBQ8qygCTz7/QF11WAxn2vtHrIJOcmElPGKuy+7dh8Ap3RzenTbtpB0ZlrPaMkaAHKmQuCu6xgJncFcQSn60+mUhRTVYvWcxRlTRGJxOxqPMZlOMZ3OKKbaVDg9PcVXf/V78fVf//U4PT3FeDLBbrvFX7/1Fj77l3+Jz372s6QI87mZz+dYMDKK9GrKOXMrnQFz5bUVoUzlFyNWoKhsoaoqdMliQYJe3lQN0NOatk2DSTumM9DUWC4XmM9naFopg+HYcgBCDlq3Jseirmss5nNqajqdkUK43ysvi4zRiUgJGfMFxaPeePIEFxePFPGlFwT8YAliAQGGsJ40czCEgA4Wn8v6HV4atrjUsZkz89MHwBdecb1rIfWN3/iN+MxnPoPr62v80i/9Ej72sY/ht3/7t9/tY97V9fGPfxw/+IM/qD/f3Nzgfe97n9k+bjFzyAoV5Jm19wsjo0gBV8UTgJjFJf5ZhtMZdRzqCxfhBqt/qesah8MBFWOBKXHqoeZ4kfpf6EmjdoSmZpTmyNqZWj8Ro1GrLRO8Rl0KpIgQifn6+QYEjlfQJYXOpC22lskUgM16jXfeeacIoIYADiTXyClRnVautYj62JOvW1pzH49H7LbUQuHZs2e4urrCeELZVHfrO2x3XDCaTMeMMaKtKWA+tFLdDGXBqGarNuXg8ePHOBwPCAD28z2OhyPqumZX3xlWqyWmU6p/kRovSZ7R1GCuUQrZMu0A4UWcLYmsrd/JRXuO88tLLJZLTMZjzGczrJZL1LHCbjxGnzJWqxOKm11c4JxT5iXWI9lXAhcUgvSSqgtmZBqr05b8xRxCU9M9WTNj1HRgpruUE+OwZVQVxXVOTk7J1TeZYrkk91hd1XR/z0/3llSApjpLoa4obYQkQi4nEVIE+SXYlBLjAaijM6VLd525C4GM5WrJazam+7rE2ZZch5ip9IH6s1E7FUF/ubh4hPe+9734mq/5GpycnmI0GuHu7g47Lrp98eIFNtyZNoSAw+GAht3IgiKTc2Z0EjtXmZVjwzxM1EZmMSeGn5IJXe7UK5m+AFCFCrnPaPctRk2LyWhMSSNtg7MzQkQRJAyfqIEYULE7TS2pmjJOT86o0PnFyxc4dp3yvor5T0TAcrHQOPTjx5T0Mx6TgBQ4NrGocqbifCnaJgQq+vle+EMHmJmOKVaZs31ufGr4xYevdy2k2rbF13/91wMAvvVbvxV/8Ad/gJ/92Z/FP/kn/wSHwwFXV1eFNfXOO+/gjTfeAAC88cYb+P3f//3ieZL9J/c8dI1GZG4Pr6K2ACThRR0Xt4daLmwWizYigWZv4gNQ07bIWhFlG8MkDfsWfwLpW9O2rRYgqi+fMbwKoZKdpsJ++6qqEJw3LhNXdO/0qeZOSDmudD+Dq7SsbG5Zu64CQDtugAxcvbzEbDpleCd5LqO21zWalJHTCE1NLoc+Z6Q9uQqkfkpiUjc3t3jx4gWeP3+Bpmmw2a1xfXWtiNB9z9ZdYJy4plFYKXNfWmJIKCdKoLSxwnyxQOoTAZFm4Mho1FVV4fTsDOfn51gurYA3B9lvY/jlmhqdaTYW3yuCrKoqjJoWJ6eneHR+jvOzUzx7Thlmi8US08kEh/0eOQMrjomcnZ9rBiK59OjJ3voAoDV2NReHF/sZoLSuGpLsqWo94hoyGlBlThA8MtfRMU1Rp2iyDJumwW63x3Q6o7YNbcOMi90/Qk5ipWVxe9Hf5PYkN/JoNNKsPRNSdCYJYNbQ23sWcsfjUbPRck6MN3mG2Xyq7jMhTdkzyVg7Pz/HG2+8wUkPFZ48eYOyMB8/xmKxVPfY8+Vz4i0h6Dny/MDcrhW0g3RPtVDHrieOkAx8lty/C1w8ekTWFff46hhWKaXE7ekpUzIicnuPI0Z1g1HbUhLRaITHjx9jtVwVWZ8FD+LzwfoC6qbGfLbAozNCQrm+uUGIEdvtVt2JklZ/enpK6/HkMR49OsdqsbTMR9CZyqC6qGFimv9bKct5lVDQoIulZuZD97jTF7/+P9dJpURM4Vu/9VvRNA3+63/9r/jIRz4CAPizP/szfO5zn8Obb74JAHjzzTfxiU98Ak+fPsXjx48BAL/xG7+B5XKJD37wg+/63RqToB+I0B0DB6yglTJM1GDRxfQFi2aReuFXHnZNkgB0U7LcRqfFLLhhsDNGoO+NoSRjKfKAoYCCDHUgtLTvjxdWyK79keNaxRhoHYinlEwMYKih+Qzz2Yx7TUUVFLoGkYodYxgDbPofmKFkJH1233U4Hg9Yb7ho9/lztG2D3YF63FD9TKcwVgBUYAqwp1jKrMTRnsIKh0VwhEBW6Jx7VvV9j/5ItVIxVlitlphzkXTTNJq+zVumbh7vErP9pjlXVUWuFt47y7DiuqnlQtvKE0zNFOdcP5UysFwutU8PxRoq3FMcnIAcpqB7i9K8Azx/tfpS8Sz11HqrHZyMkIEIie0lJ6SmODs7w2QywW53oB5kywUVG4fgNGRD59Azw2csBqslOz8/JxBTzuYTqyPGCimBO8ly9iEM3aDjWjdxSS8Wc5ydn2M2nal1IBluYG9GrUL2EXa7PScdBFxcXBB01nSqdTd1FbWI9eLiArPZTNdmMZ+jaVsSRmzN9YzasNvvCZC563T95E/bksLyVV/91YgxIoEUmr7vsWdAW0OU5zgRQ0jVVYW2qrHb79GORnjy5DFm8xm5F4UuxOWq9Gk2c1VRB+zVyQkeX1zg5vYGsYrYbDZ0trlucTwa4fzsDG+85w1N3qkGkFnkZo/IQYCATbEOwcbjlfogZRLMZLMxK6oxDZKty3wzDZjTK653JaQ+/vGP47u+67vw/ve/H7e3t/jUpz6F3/qt38KnP/1prFYr/LN/9s/wgz/4g1r9/6//9b/Gm2++iW/7tm8DAHzHd3wHPvjBD+J7v/d78TM/8zN4++238SM/8iP4/u///gctpS91SUqn5CinlCjLyDFwrdTPTrjA4kFyQCsIHA3uWVf0Hfq/3AN9Esx1Aqgm9pC/Nbv3I2ck11CvMIOFE+KBX/M0hpbU0M0jX8nMNcSFpJiCr6APcjNRO2qfXGCB+wzkgKqq0XKTwgwAkfDGeofM0XMLhf1uh+ubazx/8QJN2+CYDozltkXfdyoIYqQ2DFQvUxZiSpGjjIUC9QFqV7HAaVuqvD8ejqThMjOkIsexulmMBjhjk5l+zFGVAESbt2ZoyX4P1iWEoHVni8WC+2iNcXp2pu7n2XSG2WxOLt17AsosOnFBk/Yb7wkpsR6jix0g2Pf0iXngqs72maeLnDPDEHHB7HSKk5NTzGZzikvVDebzBbXO0NKMIJ4mhb7xClesKNvsZHVCmIZ9rzVQYklVVY2MgMOeskelaDZnMIRQpy60lBKmUwIrHo1HqlBEl4iUQOsymUzw6NE5AErUCBFkgc2mRXZeAGHePX78GF/39V+PHbv7jl2n4Ml3t7fYbqmb8rHr0LYj+jdnLlbRLMgQKJ736OICgRE6MkhIdT15FTrXXBAAFb5mUJo9CD/+cDxiNBrh7OIRZlMCY1Z+FjjLOGVKVImsmLOy0jS1ZpDerdeIMWK9Xqursm0bzKczPDp/RBl9qyV1yIbxFFWyo7S45w7jzEPVgOasvgwSngJLV9B0NksTkcZYxQoRAgTwpa93JaSePn2Kj370o3jrrbewWq3woQ99CJ/+9Kfx7d/+7QCAf/Nv/g1ijPjIRz6C/X6P7/zO78S/+3f/Tr9fVRV+5Vd+Bd/3fd+HN998E7PZDB/72Mfw4z/+4+9mGHqR/1uAUOVn84kDsIJMZeRQ11Vm7TGnjFxxbArSsjp7fx5UEVVryyU+5KyHXeY5FHIACs0hA5SqBcCpH/I4iGZIvCT7X+u8zYICu2FQ/CxZj8SoRNuyYk6bi1iOlgAijDFzywdLIiEibZoG47ZBU9ck/2PEfr/H7sjBYinyTQl7hkB6+fIlwdWEhNu7O+y2W1IsQgC4DqZpW7SjkSJuewYgEpoaVDKQJYCcE3r2tYvLdDqdCAqWMo+yWNa5P51ASIM4VAjQQ0uacXYt00sh1bQt1eEsFui7Dm3TYLVaomUm0LYj1A3FSAo3CHxcUd7PCkN0rV6UHImZJSm1cAqXd1mR8pIBtobN4jHhpJ6HZI0BpSiWXG7kllNUbLWkeF0Q2FVozwTIIp+MJwSxU5Ei0NSNIeenHlXVIGdgfyDkemrNIuCoQ1DmXhOzpChe9ow3gmg3UnsYKkptMJlOkHNi1JdRuT5Mx+95z3s0ZT7nrAjqz54/x/XVFXb7PY7HA7e4p98djge63zflzIRucn5+zgjqDcjl12u9oAhADUNkcvqRdZ6QjtRFWtq4jEZj7TpQhjayKmfmIiKlfDab4tGjR9jutohVxN3dnZayUOucJS7OH+HR+TlmsxnrGebyFTQZoW9JXPL8SugrZQKT1UQzhmsTN6R4fKyMw1LP/7dYUj//8z//RX8/Ho/xcz/3c/i5n/u5V97zgQ98AL/6q7/6bl77ykuYNcWXnJbIgkcPtfKirD8G/rm0mkzyEyRSNPcPoL5UOaSq+dJgCiKyOg7H1AaXogXYU3jzOZNGKvl7aEfXugpKHMOYnH4fxjz1c3Gnxcpp1t7qSYpYgMxjYmsoDTSeEEkDXcxnGI9aha/ZH/bI24SEBAHTzZk7C69JSMUqoK4j7m5usd3uKPGhom6+0hl0LEIqSIsUt5dZXFfimuACwZSQA/WXbZoGk+kUlXNfCESOKjZcYyeWZ4RZS31KBgEDE1CUYZW4NZNPpqGrqWssGI3l7vaWrZIZFpzlSQwaBZgpkNH3htyhkxTbPUR9d2Glh6LzDO2wc13nHNRSUhvMMzk1o+QcZMQIdRkJIyVkBWDCBbLUebmHnQboM7yrsqoixpMxTkCWT2YBWFW1uvsk9f7AdXjys4zPlE1DTJ9OJlZPGUgYyqwif9a2I23DMp2M0ede3ch9TgiBvtOlXoXUcrnUePFmQ8DHXdfhC//zf2oyS2LLnOqojhRPjWaRV4ESRU5PT7FcrWicXP/WJ+q5Jug6WnOUqcapihH9scNxvwcQUCvix5jXK3H/OZ4kn/OcM9MB7adY9Ofn59gfDgiRMhW7PqGqIibjEc5OT/Ho/BGWywW1zQFwOB7IMg2CIELvIvBgdvnBFCnkjD5LskqlzVJTyAWdgc+b8BcEcCuX/L9HSP3/7fKuF7UKIBI+38/Dz+a/zSg1P/CzxHxlNYWtEceUggUuLVvQnqGan6StJ39476eG+7GrKFHXi/TW6TkoC6TAbslXbHDOZvrLJRovpaFGQNCmeR4pg1KxQ0aszGJSRAmHBEAZWy3msxkhN0wnxOTrWvHZDv0eyNSaAKCmjdvtBpeXL4GQ0bYN1ps1dpsdcp9QBapzGTN00HgyQc0QSmCLJctBlD9q3fGBYTSAEKNq/E3k1hJkHtKBcYxUXKc8OV0jsWy0QWWxZ86idNYlQkBdN4Qrd3pK8YpIWI5zRrcAgMOhhAAj8knKCPwlgs3aZJCiGqLavIVgE4Euv/WPU7ofKjXI6sYBd+AVKKGqopYXGuzn7L4MRnMJ7h16lsiqEpcWdXydgOJdETHWahlVFe0T4UQGK+zlhRHGCAj2pCX56H5EskZkfgDY4lohBGA8GqHPvcaCcspIIVOiD6O5XFxc4PHFhe7lerPB06dP8eLlS0ynU6zv7tCz0BY3eNcdsV6v0QimYgCaqkZdEdxYw5BPQeqjAncR6Hr+2Ui5ijXqWOF4OOCw20My8SoGuVV3rBMeeihU6QospKjLd11VOHZHhBio+y67GSfjEc7PTnF+ds69p2orfQhAqGujoWDvM87JiiGgyneQz/lvParCZUShhssRyNL5+Utfr7WQ8qda3FTmftGbQGlcpbAYWj70jIFQ09dkZf62+KFkUve+BLXg7nGfB2/mccqxz1mfoY+RthiO/Qyzkezd5VwkCcFcQRgwOB/NYqDMvkPHiNiybrW4DFYrnD96hMVsSgy6bTk+COx2VMy7Y3ievuvQd4mDxRl102C/35G7rydLuK5rajO/mJtrLgRdB9H81T37oAWZIWnPPp1e1jOnDHQdEsf8bLVtP73LLbHPXaxiLwa8Oy2DFKIqRiyXS5ydnmK72Wi2VMVxNoA0/75PhaKSGIlAWyFIC3aU7j4dQwZnjGYV3n4/QwAhf+h4RRAJMdif4AhM3IuE3l9xoW3pihS4KhFKUhtlZ8G5KesaTWwBjEGt7ctaRVlniUc/FMfV/YUwxcGn2hsObv9rzOczLtVghUsUOxaCgmZf1zVGTYvGWbeTCQlVytY8ox5YnKk6nUwxm83Q9z1urq8pdspnqhHYptlMcQkRKLajrmYdOc8lQzHwUjfGcXwkMIG6oj3MhoSi3w+S7WrsSNz5saIz2rQVVt0J+pSoBCARtNRkPFJLT+Kzx8MBB4ZKguMJBWG8Ym/8dgiPUVWSx2WkJ4Q3/PcXv15vIQVbGDJVzS0S3SEWF50kGFjsaqApe3Na/xZCEZdTtt8MBIRpHqxXSAJEMPHnYxj+UGp6sCAuiK87y9wCUkbRukDGLN+3cZRCW5lDCErV4hryWo86WjK1EN8fCBWi6ynDKgQqtJ2Mx1gtFzg7PcNyMeNK+YZaGPRHhACFPco5U4fXviMfOcP9HA8HHPbkYqgYamk8HmM6o75AEhAXaBYqOs3smrQWHlESN2DWTUCgbMgHzoAK6weJydYPoAQcKSMABBkfdpAzlDkCxJipRmeJ6+trpNQzwvYRIxZSZSp5ZoZJ7hxBZyC3JLvUghVtikadQoWYjW9IbEkn4ZiKxJAAQyRRenGCKkRRYkiQBk4xFRoSK0lHrkqfravtAZSGRbgN0VX8fnw5VwBcbSOjg/B+CO2nJEWn5HoNup9UU5SrTGfIKaxSMO2vUdNiPpvj7PQUb7znPWjbFokz+9qm1ezRy8tLtG1DrV5SQlNXVMAfo3YsQAho2sYSJXQ+tv5yxTpiFEcl+8lAPlh/POj6RoQsNY8UIgjMEyJ7D8auEWLKXA/JkFe+MF2Tyxw9sQ2kvxfeyQvKtBIRkNwUxHKSbzvFLwRIpk1ma/xVgm94vd5CKlPzvRAiYuCusyEaGoNo3YTXogsdctCYCTAQHD4hAtADnnM2PDe6Wd1DGeV3pImeXFTk6H/P7+MqcrX+eYxSwyVaiQoalPVEFB8wCwLBqF7cXBK30XThZGgA4oagiULkMVJKiqnXuVoVgKFpJhRYPzldYbVYoGlbxLrGerPGdrdV995+V6PjtiKCqCCCqzt2moZMzSEJI03AQaHxKBpc6tn9lhNS71UFmFY5sI7LmIluZsHcdaOCO4P8zcQvEiad+t4aUWYA3BlXMRsCxdXmsxlms5mivO92O8ymM6MxtWbJUjRLqlcrxIOYDq0uhKQ0ZVmsspeepgPPy1nlQltRaIwFISdmmCXnL2aFPosvJ6REKBP33djG8Gzcrsno/+LlrUZlhikDUgydE0LicxWcJXDvOY5OVPH0CiMJudVqha/+qq/CYjZT4NgYK4yaEVJKeHl5icloxErZEVUVCe2Embpkp07Zsvqy5m5GtA0rlElagLVdoXnTzaroyjy4A3fFYQMEoI5RsTfh7iPUE35FIhgwpZEgoN0cSmDeFBnfTwar/+YxhRgIFinQfojCpLTwCsVleL3WQsoC2nTYqgjO1Y+IkawOWnBDZxDXUeZK8OEBk2dqrAtG1AGgyvxslldhFcMOvmiZ9ux8f+xBECAUPe1e6jNYAMYYkHoSriEEhNoqvsEN+zSmUgin8m/Vxr1w43/LPLq+x26/x47TbsWSosZ3FSYT6Xu1orYAHGi/vb3F3XpNre43d9huNwoNI9mQfSLwzr6j1tcxkOAnX/4Y09mEsqIg5zGwm5NQB8QNBwROQHB6XLZEmBAC1X7I2vcimKGf+QNd7LNYTh1b2twDq+s6wiWUt4p1Dhh9VBVD8kxxeUntR7abLXDmPCnI6vLzsT9RBCjBwnz2hZDiVODMzEoUAMs2NeEU7HVIoHrCQiGjD1jJjarIacxO15UEttSGafIJJzN4i0nic/IAWR9BARGAWVUQYYrY4IAUIka9H0Xzy4ScoJ1oqf9aIjdZHTAoN7SzP1BmtG0Oso4nVuS6fe9XfzXWJyc4Ho+WQNElvHx5iZubGxzHY4RMnX9jDFSXV1XWeTcAq+MRs/kcE0Z0uDcs5S98Rns+i1GU5mDnNGe2egUAOakSJl4R4SHilWkqzpSV+aVsN8NAcC3dPHOKeEAInOIfpRklbxoCl0HY2QluIFl4EtNHzFLCQc06qS3JvR168Hq9hRQsxTxkODwp+i3XkHHBHYqDLYgBPnOKHuqC5/yeDCLkmLO2/wjuP/1ZiakUSg/FrkQbSTFwFLL8E/W50OfLM8LwGeo3oD9qXYsFJtouiFlJM8WhoimMV/rs7PYHdH3H2X3SwoFcCKvVkmqC5nNKt61r3Nze4nZ9h91+h+1mg912gwCg644IoSdhxWnNqU9oGEusqSqMRi13JZ6jbmqyAAoLU/zy0u4gIsSywlmsQFnnGCmQnAHNygpVpYxIX6D7UzLMntc6BkMmid4k5i/RmiZUTEvj8VjjFi9fvsR6vVbBalYcWSI5kzLVu9ifr4kaYk4C0NhMCOwpgEsb4M0nd5LQezKmJJqxoy9SzIK5gFVB6xEYgZ4abRKMjygL1OYdhbDzdC8CP6XEtVCJWmeEQP3CMtO1t/TdGE2xsrop6QwbI8Fa5Z6sSN170HmKqQaiKR3qmcgoMmPJfZwsK43vCzFSvVtVaSdeUlR6bNYb3NxQ/ZQAt282G4je2rStCTUQ7zg7P1ch5T0EtP+EX1lFij0mXutYN0C08YtyTYqBJWSUa050FXk9QuDM1ooQJHJPynliq11oRDJXCUaTVBqvtInHiO52im9m5SYl0D+F1zK5SUcB5s+JFc4YawdZ8sWv11pIIRADiUro3gcO0sJZM7CDnpVwgPvuFDm0OZv4Me2A7xF5IN8Rt4ng4xX32niKYL8cBnCrkYfmp4wFegDMc+PGrVqWm4UwK1Fq9QGCDl8upCjhmRku1YEcSEBlYiLUwoGtqNMTyu6bzQg+qWlwfneHu80ah8MB+90O+/2WU7qpBoUOIFkNIXE78KbFZDIhYMyTFRbLBRcXSpTFXATWXI80WhFRqhSiFFIJATFInQ0nJQg3zy6gK0LKKxYsJfNgY7ySoN/JUOSTKlYqpFJKuL6+xu36Dl3Xa7GqPEdq98jdZx2XfSzxQSEFESSh+Lc3f0wxKkbqfmdYBQAUyLcX7oLMVjuAHFTIKqdHmbQhrhxP4roPKatlIZ/11IPDPBdS88aMVy00tdzYHZpl/NlqcFjZyBlUIJ+kLEHohrwtkcfkE2/MMrfxVuwSm02nmI4n6HvC3Qsh4Hg44urqGm/99VulQM9ybqgdvVjeGUDTNrhb32E2myIgaEyMlpPprE/kHYlWJxZy5joqOn+FpQtTUkv6ZCWGz7xkWVZ1hYwefaCuCn1KCEjcsbm6z3+UDtwVyr+J8w5Qb9z3xE4LbBGK3Wx3fAUIKWXUhUAwac4/6OEtDnsmk3joJ7aDDD18JY94xcIKwcG0bi8Yi1u91YashtdDT86D73nrTV/MVoTdPGRWwljd/0Mob3eTzCCN8dhz87ZA8b52RAJlPp9juVxhyWCqYw7Enp2eYrPd4nA44nDYY7/fIkTg2BNiesqJXGi8rnVdYzwaazr72ekpFos5FfzCj0dlbrFBMjfLeBzsr/5TCGRwS0raE+jegdR3eMUlv+pO1mBpTOPRSGNQd3d3lgIca32/WPai2Yu7zwupIrPPjxsFWRf7FnSSchZccSVrWj42EFg4yXyL9SpmmwtrzAtb+dtS6eNA+Ru62O5TOstCfZ0If/98+bz4L5d7rwxQFDKaKM9TPivr/sr50verEKmvWB0AtHoO0jgh9Rmz2UybQap7mPuY5UxtbjoGxt3udri6ujJgAY4JV1WF6WSCyZgAj2NVUWFsVWnhrK6Y6+80VJRourwn+vvIcUaCMJNC9QCGI8qJXMC8p1Jr+DB139+2eyEMFo5y7kTpJeytoG2PbM0N4/FLXa+1kKLLCySxBIYWixx6ySxhbc1bX/K5aAEFM5S/S6uLsmBsUygxIbP/Hqjr+4cx83224RJH4ueIllswWfpfgC8SLp9JBBZ1LK+mtaCaqh7m4ASfHOTUI3XWOiJWEXVDUD+UZjvFZDpBWzeIdYV2RLh5p6en2B/22O+2uLu7QZ86bgff4Xg4qAZZRcoIlLYQJycnWLFlJq2yM1uxqjU6ZUP+SJzCpha0pkbWTuIkXvtUBpeDFoEWMiyIqw36Tl9QqwkuCFqpj9RztlitOHf7HaXa912H0LagLD0zbFNOqtlTTVJWmojRGI0OS9PTje69O4h+NiVLqFMsfKNTJ6S4nY08XwWKWJz8IF1/fafQ532rpIjZDinQaeRBRufPBL9Xi92L8wJ5KZ+/e0/XXZQ97lkwx8pZKSgV1MIlL0LArbs2I6wJdmnJ9XBt0yKGgOlsip7biviYNgAcDge8fPkSG25iGkJAyoQq8eTiMaYT8kRookJdIWTu/aQ1ioSwIq17ikJuVV5d51tQ0XhwyrLElpCsKaOcD0FsB6B0DViNaIaUR7iD4vkuPy94moTRhtFn0PIJn1r/xa7XWkiJRihanggoiVkAju4DICilgkahwLNMNANzRN8RIhCT+LVtsb3V5TXLvu95k30fIK/RP7SB7n0goSNZQqJV0licQOXx6kFUl9g9u+LenDSIqZo7/85Zan58dVWhbamvjhR7ajO2TIQ9Zuy6/fGA7XaDq5tLHI573N3d4XA8oDseEUAWVFu1GLXs6lsscLI6wWq5xHg8Nn+7E5zkliDmSm6wivftgVICsIxi5UPnKExJjApA21oPHSc5Z8TKsjlFqIsiUtAHGFZG0L+DNSs8dh32DEbqaSVATEN7n1kiDkuQi3htHGWmqD2UtWhzKzDDlQB2oMLyIExL3HkBiZHQBW1AY2OV1BT53QimsHk6yQ9jXg7pyK+b0nQw5qdKALK2lamqChIHsXNW8Eh9ZoRbVmGeKaMPnMHGz5WuCBLr1DhgTsgcr37VKWq4senFxQVqTmHPmVzk5OamGFbg8oi+73B5eck9so4q8CbTKabjKS4eXWivJtm7EKgmTd3crHkoneTEfaWc0pDN0pQ5icKhcWieFQlqmp+0pxH0nlhVZjCLlcVJZkJruv5eWU5+nwOTpCkS4paNrKh9xQgpwA6JaHJUuIYBIxAmxxLfacb+GbrrAwspyL3BMbR77osMienYobLg42D0zEBKLUNQMiRRA0DBFKtYsUDNEDefMOoQAqJAqLvzxbeaIGLml9gvLSnv8h3qHWNQQIKpNxqNMR5PMB6PCWy0rojxMVNrmwbzxRyH7ojtZo3TyxPs9lvc3t4SbtnhoB1ZR/UIk8lUUctPT0+wWBBWmSgfQTHJXAJBIOEhEE6ZIYxkzEMXa3brX8ZpmKnf2xZiXAFBU3VJyEV2mXiXSFCFA1zrlHPWzMumJveegJHSnoIZgCuTyGIZGdxVgKFN3LekyhiKMHovHwJPVAVeiOhBdEPMC9x4MKhwjHVt5yj3iKjNvTSwZAUGh+jTYWA6oU+KVCmg7G8wM47KgNUy47GLJVW6CU0htQdBny3nVQV2ltR0i5mZEhDQdWUKfZ+gNZQVw/gkgIGKSTBHLtruOwJHrqsKsYo4HPa4ubnB9fW1DTcEHLsO19fXuL6+xm63UwT0+XyOx48u1IIZXhbnobEq/aakrmpZ6yI+xec4IqDPxD8SHBgxQMI5mOXY9z3xTe5Vp2g7EL5KSot4HfgXSrtEv5IcFFVZpj1kAZsSJM7a9wld/xUgpADZSJItckhMSDgXT+A0bj1EZkXp4RLVwJuy8IcyFAeAt8ZtJn0vC3YN7FDIWPXvYIelsLCI46mF6L8fRUi6tvYyBiEQn5XjVgk6qWCuJABWPCxCiudb1zXadoTJeIIEqlqfcv3PlLvPUgo8d9YNVJMxqyr0KWG33eDk9BS7/Rbr9Z3WmYQQERExHk2wWCxxsjrB6dkZTs/OqMVF2yqDhVirYn3woR8qF8LUvTVUzD7bvKXOTF5hB1vgXfTVlAmYpT6Krc/ClWyWEcCuuz5rlt9oNELbNIqAnfqEzO3SbQym6RI2XNIi0CpG7qvlCy+Dxr78vAplq5i7yIDy93pOXECeSRCSbFSsn/xSph5NqPjiWFl7jSnxJ0pvIvCIi0K8A6IASrwly3l23w08BhXaIbAi49bB7b95IbLLXJSv3l8z/3NKCbkiuiJYsiMnVBAG5GKxIAuqJySVdtRgv9uhilEVEplX3myw2+5weXlJUEoNddo9Ho+qwOXptFBGJBvVC9UhzcvhoHKksqjd5pi1P1eIUFd6wVsKUG7/HqPrlBMijA6dze4WHHom1Fp3CnpmEgoxIPewlPYvcf0fIaTEorA4gwkCv0DC9HLOhH+mrjHTumWx8+A9wR2CzFqB/dKN54HPivHK+13mkdcuPY/xAiqEQEFVBEekJSMprLWB9SQaGeDS9iXrZmDlxUDtr2fzGUH5j2pMpuTKk1YUo/GY1q8nTTOAWl5HAMuwwH67wfnZGY7HA3b7ne5J27SoqhrT8RQnyxOcXzzCo0cXODs7py6kTQNxQ+oi8HpmXgfpOzRY8WLN7zEguL1WxTzol+65pLJjZP0AZ6xgiIPYDO+NNA+cTSnLb7vd4HA4DOIg9Hfi9OqUMqdaJ1QVuV3qmhiaWMqeWcmUQ0Cxh0MlRWM+Q6KWe/UHQAqUjbbMArpP0gOmjmGykH3DC6n7MUK2BIsxCdcbrLsoFvqeYA6Qwpqws6w/y7iUtMRKhCo5Ifh75byapSiW/HQ6Rtu06LoOTV2jagh9/XA4YL3ZkvXG56znHnJHVdSIhg+HAxV8v7xEABXKp57w/aqqQtsStp7OfSiIslisbIlmqm9iea/CwokIv23GJx8iDIiQMV4q47AlLmnEC1Mdq79FBuVCEl/O9VoLqftao9MgHpISrKlJ/6gw1AxEsL3iHeqTddpoGHwhANpb5RWDpgMdQsFMPN/050nn4+ZkmqS/p3gJDAfBKFItBB5z8bdfphgIwXq1wtn5GTabEUaTMVarFU5OVixMahuLqeuIgRDSJwwPdDySm69ijf1uRAdvNpnh9OQUF48vcP7oHMvVEqPxGDFWBMEE8pmLUAcI5VwVjzzYG1mvgOKQ5OD+KFMSa9KYt8b9nDDTAz7YS/3MCQyzys2ltpgvsDo5QUbG3XqN7WZL7Sq0Txd9VzASU6J6KWJkNWJVKehqyhlViFQTlMsMUqGMUNDUwyzA09lQ4KnVoSrdgIZDyZjUWnJ0HCO1eSCAZ/siFW6apyNnlN4JpVFTNEUbl42Vs+XXPItQ9QgThd7iXYD8iT+yqry5tdQxBR3L8CLw4ECWLrMR6SE2nU6QMnkXpEh2Op1iNp0qTmWMVNKxWa/xhS98Adc316irSjtLr1YneP/7P4C6rcSRgFBXqI6M0s8CSaR7AMgyraKinxB9un3WJZDYY1LFRNZTd0KsTqal4vvejgoqJp0cCm7vRAm2MRQE9WVcr7eQcllcgP0zspVQfOhAZlNKqGqGgXEL7i0pudQl4rRl/0e0MH1VCIOMrPuCVHpgyfMjwygVrj9AhVBBZIXGH4yZBnGH0QSKx6jg48M+ZKxO2AEkpCYT6gX0aH2Ou8kITdtguVxisVhiNp1qrESXi90G4sJpmgbT6RTdcYW+66gVQZ/QtiMSUtM5zk7PcP7oEU5OT6i1BtdraOU6PzeJZh+ywv0XjFG67zkhBF0vWgCxGJSxc08q22iOVcZI8Ytkh5C+7xID/OHnfYqsmPQ8tqqm5nNnZ2dIOWkq+mxGwKd+gyj9vINARx2PR8SKXdQEo0LjqeDqhNw1+Lm0pIR1GCHkbHQQndvOLBjrnlownWwGitxPVMXrHiMkxk/jtcJ6CsYPAJILrZsFpCQu6NmKZgSochF1H817MpAk2QSOZUkaExXayjlr8owwY8luC34ts81TjfsgSh6UgQviCAIUnDiEgNPTU+rqu9tprDelhN1uh7/8q79U/ErkjPV6g6/5mq/F13zN1yqdyXpX7E6XPRwyfakHU6UN4Hht1HUiV2sF9NRqo0JU5ULPCluOllhlSrIudwgs31gIwfEhHZFTqKUjr/y7wLF89fWaC6lSk6Z1C5bFBc97ibj6JA246F7rlSILb/tOzJe1PmnA5whcv5BtI0LgbqHFQO25OVOigTIAFqYFw3RfVAKRQKRLSdW5OyGl8mZ4aIWR8HdNINrfaqCFiMl0grOzU2x3W7S3LWJFfvj5Yq51UYAd4pwJ7bxqG3I7xIDxaAwszLI4dp0iDsxnC5ydn+H0/AyLpSRMALlPfJB4zCDh14NrmjhyK8F+OphR5+eFlLJD5tM+wSRAYKXo1+JejMWblTtyqjh434IKY9HxBQUg9D3TC63Xo0eP8IJRJzabDbquw3g84u8Rw0h94r5NlHHXdR2aRBaU9P/SVvegOIMoHqHYt1DsiQgiETDeAg1BGlsKIwm8hs6tyERbusxZCQIgxy9nszwFrFXqgGQM0uxwuEeFFQURUk75CKUt5d1J1vRSlBiv5EUnYDkblNdK6cU3IZU1C0T/Uemn1Fql7kqaLWZ7gGYNTyZjxIoR8KsKTdviYr9Hze1s5Nrtdnjx/AXefvtt7Pd77hcVcHNzi7puhroHzapAx6H7ZYSKX+r2RfY9huj4Hiy7MbkiYraI5L6kvC8yHmJwNOBoLugPDu8PpCgEcB2eKNHUQRnB4uJf6nq9hZRzC4iLQ5rZqQYOs2hJO0iFCV+4RgYWhTyDFrwUfM4w8bfzgYzu+dCDLkWTPVtSIZA2n4I0HCzlIOC0WPmlWFKFpRgg8Ef+y174iAYr2pK9QOYkCSDEQKbTCWl/xwPaUYuUE5bLJebzuWbgCcOTdcp9D3TM3DLQtg3qaoG6qlFXNfqu58MXMJ3OSEidnmA2n6NpqUurgKwW+wwWLjk6Bya5baVhnGeAhqCeIIJe1kOZmDA6pzUac3ZKC5j5cXKNxvPMtFYmUFUV+q6jgw9gPp/j/NE5bm9vsdvtsNlsNKiuTDwAHrdP4lLCyGNVaSmC0YQjVtXOhkLK0Q5EmBKyA5diaY+qEIX2TIDE6OlxoEE7+vJWhLaYUPBmZ7VyE0ZKb08O5UCsIUC8DNILLjJj7MVjEv2cnEXEg1PXH6DeP3EpVjGavu/WyX9flrPIpMuODgBQhwBezQikPnNSDWVxInAX6KbB8XgklBbez9l8Rsoc7/XV1RWeP3uOt99+G5eXlwAo6eby5SWePHkDXdejGTXFUc3OnRqEFkyKsxeJ15WkAbUrkb0n5Feeo/CEQZPWbB4nWmeGa/I8jccjQkhYVOnqKxWcECKYDLho+StFSPFFfvvEVqUEU800z6JJQ7Rrz8zdQ4faizA23cOsBD0ch1ozVaUZM8N7/ObX0mY+QzOJSsmnKjIkLlFaCqbrx2D3ZX0nEELWQyauKv5JXTs6Nn6Hd/f1qUfTNjj2PeaLBQspsobg6mJypiw4AOoKbNsWFSLG7QhN3aBLPeGRAZjOpjg9O8Py5ATT6UyaEGs6+TBOkRIlm5j1x0xSUJZdWnbQ9TLakN+J209JwAlaWfHg1gjiAgFoviFoKrLRDDNNZiA5EeTPdDrF+ekZ3n7rbdxc3WC73eKwP2gdUobRrdaMOKUhxkqFupLcUJHyE5HniZBTK8mUJbL6k7P+bL6a/j4QBJoVK2dJ16YckLixukRo9XauRLs2AGBVop1GYK41VplkH0V5yuW6lzLKuzjlFDkBxfWFnj9kt5De1SnvCCChRJa90ZDUYgJUDhJ6QoPomP7b0QgtqIhX4k9VXWHVrxBCUIiouq5R1xVubm7w/Plz5EyIFZcvLnHJ1vdkNgClZeQLuLU1KcWKKi+A8iWIEInIWer1zHr2Vk3qe61PK2O+ZDH5dTZlzTwTqmzr4YvOFmWFmTcvfCVYUnKpJeWsDG8tebkj0p8IPLs/MGvF/VMY/f2XwhGKCQLZiFw8fzBWYUgspDLuP7/QEsP9Q2iv90FM+kOHi1wnaQBHIuNFNsY3fHsMAaPxCMvlEgBhjx27DpPpFIv5HFVdq2UabDGZ0YCZUIURCyfkjLqq0aWEuiGImcl0itXpCvP5AuN2jJR7pEOnCM1kqA2UAb9SPtirry+D314Q6NI54RcQuRleCWOl1lTOBfGUq19ewX+Px1rXDaXsz6a4ub4h4F2GjfIp3GaW09oLFFJVV2jbRjO8hlY2vfe+1FKLKIcHKMuYj1hLhbBmb4S42kQyBl7zYfxSXE5ifckzk5R1sKkV+ODdj5cVA9OHm1ZuCsj9ZS/3uSgP4MUKiCUyCPhssbWWgxN7KencLG5Vvi9ny8rVVzk69Z2Dg99LTjSqQkTX90g54XA4KCSSTp/35XA44OnTp1gsFthttwASmromGCa3nvfWJAS48kJ+bla68Uqst3zMhWgZ0O4JjPfpFHu3NPIcuDse3GGmBatAxpd1vdZCKgxOrDfL7ab735HqcjWKRGFWjUPudc/Lg+e696umH6jhWhQrR9GqHxhXMe6sDAJ4qPCXfyXB/SGxCNMRYiNluXDfDNcpO2DIIfcLMaKpqTkaWVYRh+6I0XiM0WhcVLJjQOQh0DjqqgJCoJbjCBhnYD5fAJE0/dFkrH12ECgmlxmypdw0YVq0ZwLkCohFc/+SJRAFQKGEOIU/QPght3IZVMoHkJZHGceZjalgc8V9g0b8+SGY+yqEgIYb6DVNg+7YYbPd4HggF6ouOSshPccqq0pq+CLquuFaKYcdOBASQkM2f6MDdfdludkUqhCgzQ41CSk4ehkybIjyQIOQs5QBRLXAWJmQ2JJ4M8Ra87BJg3GTpRN4DG5+brGJ7uyDwko2+4mFNM1PpLB37cv3rF4waSdc78olK8rWobQk3DJlFu7OCyBFuwAJJ/lSXVUAKoxHYyyWS5ydnWG/3yPnntyD4wnqpsbnPvdXOBwOXFgMnJys8PjxY8qCBVS4xdq8Bp4oSVmgWGqEE0SyJ0or9p3hnosHJyoyerlnmYt+JRHEFP3MCoCtfWDhFMBK/FeKkBLhDLCwEGLkgxidFi2LCdQGHySEqJsV1BUxbPMNeVfmpoN84AUSJ8YEwqsP+rnaOw8eeLP41A3FB1riQwBI4CAZIrl0o818uBQFoVIGlUIJseMFCR1IaE+pUkfiYx4FAHYEIGPU96ibBk1TF5qyPFeZFccRLFuI1ytGjEcjZFBn3WbUoq1bZaK0HpGJHl69Jz7lio8TcRJ91z1zUBiic0swhQCeKUGgZ1gwCmOPkdqyOHQScuX5+BYPOwTFDvTJCnLVNdVLTSdTHA9H7Bg2p2WNGLDmbxKPq+ta51vXNaehi2IgT3aMQpWs+4qbLCP92ziZDZ8oLcEUINnToesPCAgxIyRRThipnDbetHRV/pyQSuEePQ6vzPs8nIdaDryn2SEVFEJKGoIKRqduUlZlTpSHQuizMqmJOE74mLUQVfl0q6sbkENAVTkNd7gX3mLjz5umxunpCd73vvdhPJ4AOaFpqBfVqJ3gL/7if+Ctt97h2G7A17z//Tg5OcFkMdd1AcuEKOdZlJEAiA1Kyk9VzFsUM4ODMtpQvhqlTxeD0cZW11rXZ8ADhNy8zDQuY0X39MlXQDGvarcwEzXDfNsZdghl72Jlfvh7LrQglhSZIt6MdRQGVrf034mBQRUmBuDDaZbRQ8IiBnNBEKE7gRHA8Pb0xJToPd6XLAeGMtbcHGJESOb/r5iZm1adCwEFp00FdxBDJATlURijSQmB+90AUBeZBrh1eQw+SuNv3IqC+lGNkVKPqqkQKq7/gbfIwIfYMZfAbRZgjIXmKVZA6TLVVVOXT3AMkA6kZjBxMz9Nxc7ckC1H9IksghAqTeNFCNz8z/bfGwOeJpFJ253NZ5jNZ7h6SV1694c9FqbgazJG4l5JTduoRi7QSDF6eg3KbPXKWSdeasdBBVhBxrKOECZ/X4AIXRYFyJlXM8ClNjMNMSKHnj/i/OBY/QMYi9ys0a2megJkrGLJ8npmWKyruJ/hjKqKMtH6lLQ9hJzDoSUlf/rcMeICSGC78yqMw6xTL4SMzggNhpqtFt6LDMbYyy4JmJ5fVRVOT8/wf/1fX4dHjx4BIPSKKkY8fec5Pvs/PovD8YjVaoW2rjBuW3zN134tTh5QRGRNzEqmsWaYhV5Hyrb0sUc5d7ZnwjOhCTtdd0RKQNs6dbZQquHWyhkJju5sMVhZcmfwS12vtZB6KIVRGaOznoRIADAeG2/MA1Dxpm0Evk9/Y/8PQe8V3DoDpURhTr/q+SJMkETXAPyXyIfOXVgxiJsEcXkApaD1Y2SrIxuqhRCSpJYm7mJaWDOwwwUEji1F1XlCMODLEAJp0MLI+KDS8mTNYksdp7JWFdqKi3UrjhNwNT4J0gHjha1zCBxA12aVrLnlSLhkbnxei/NaeQYxk9QLaGZmd1/PYLJBrYkYAjoJ/rNSEzUITFq7Ryy5d2ADvy9GzKYzLBYL3FzdUDPJ3b5IlIhVVEHUtg27GnsOrNdFzCKxQC0uJ6BkDYolzExhA6BCtcDU6hAGZbTlBR8xnawhIgGkzTm4WiMlnkI4ZHU/OyElQiOYO9Kfrww6t3SGxSIzd6UE6YfjFSSUwi2liqt5TULwLqqyNcbQTa6Fx35d/TrCUtvJIqbygZRcs01NuMnqRj87O0MVI3a7PYCMhlHW/5//5zP4b//td/Hs2XM8fnyBybjFk8cX2O2oV5V6KWy1Cdmewa0rRO3Gm1JCzAkBNStGzBdgNZ0Z7BqEuAYFoBZIeY8+uTVxVpd3+YuSDVlnsZiYPwIRkd2DZOp+BQipwm0wkAoqMJiI6TwGC1hnAl1UpuaFRzABNUSdLjJm/NtEPvFQ5FBYZud9Dc60M/9dpyYqc0HhKrH7HLHw33oA3cElovZjNSZNAZ5y7cwfDVS1WU+JGYwU+VUyfi5ChNsPeWMvmWsZqJsGsa5R5U7XvO8TUnDM0TEoQopgBhhIGHphqWC6bsyD3S/nBRtfEuViqN3rPCgTSoQSjY3GIBVLKpWyvU80UFp7YoDSBLGpaxwPB21dQjyV4naCME9xugbH7ojJZIK2bTUmda/OSFdqME9niQqlFiuSZU7274eeMzxTfCr056iZlfJbQ5PQfRCFzRfoMrNXUndHWICCvaKBEBzCd3m2iDkO9hi2NrKlIuC90imKB3k0ZAzlOkHODtOnWhkPLJXQ0PF4hLi/+pTQp55qoLK5xUR5PFmtsFwsCZEeQFUFTGcLfO7zX8Dt7S3efvtt1HWFyXiEm9tbrNcb9Icjqqa2dWZLqOt79MeeLbUadSOlOInd88YLc5aGh+yi88quQ10PgcMZKnj8pKGdyoXSzHHsb5JnM6Zp1lHgy7leeyEFlAscBr8rv0BrH4MBzfrvAP5wl9le8p7hcy1OwMSbTdjIgRze7y2pkA0MV37vhyLWnmiAqoQM/blBGDxZWdn9Vw4ATDem7ahkdYshhylWFQd6A3rufcRqlXu104CDK6h0WjkC1fxUdUQFxucTdGZGUwBYMDEzUbejIGXz+rLmwfFGEw+y3tqZdLAubhN4XbObhwl/3yLeFALTIAdPU+1R10KtXPp927SYTWdo2xF22z22mw0HyrPF/sYTLOYL7A87tKMWh+MBi8Uck4nP/ird04MRDEaWlQblFoWHujc3Xjf+t/aZEiHs16CYuf1swsA/DwgerkhuVKURBR0Nn/vQOwPKnkkyTrJ+TeAF929bO1FIopKE9yLcW87BiHSPJY7jpqTCVwXu8CF8U5ZncSZgO9L99ddqudTEC2n70h2PhPV3eYlY13SGMhC5DjGEgO7YARkEYluNCqWbhkCoIL0TqnY83F55ZVF/V66p3GAeHgCSUer2KGXrVCAdBpDT/We94nq9hRQzWNWsCkvIJLxnLmFAkELkmn0CL3g8EYvGzAWdgwOpWh3oCAbWxu3Q3H9vDAEpCPHQO0RjEZ0wIVmfFjHNGaU6co+l4E6nMIaMDMnUCnwq1NqTsb+KSNQycFYlKMCfAvexccjV9wnb+f+ZMRKvMoag/5L98+jk8MI66DgUEsgLf9VwTfiTpThc96x/EiehiOVmBzXzwS9FuwhUqUWz06UcSfe9/DizUhTRti3G4zGurq6w2W6w3+3Q9aRN102N6XSKk5MTJPQYjUc4Hg9YrVaYTMao6rIvmZ+nafDDLcyQ2JHM3s8HoD0hgZQxZLBmsdl7JeCurl4YLQ2VrAeVRIjbzC+flyTyRywmGa0Tan7u8n2mZUmBB3xBrlM4REEEe0dC1qw34R33HFDu0Aiv9utv+wF9n/aB43EJH1BMPZm+8qr713wxx8XjC2w2Gzy+eIzRqEE7anFzc4O33noLgd3mKWdUVYPlaoXpZIr+SI1K06hHO6pRNzWjrlc2x1ghBcmi9eeD19vvt8zBcU4JG7AqwQqvuK8zK9FCCxyqSD1hb6akZ2XotX7V9XoLKZ6kSmrR/qPElMRi0G8Mvu813uw0wTLOEwKZxH1OnOJPXFe0cdOipMcRfa4CBFyz4jVATWYwRHLaXB6vysVsYJWcmtxzHCWEWufsdX9FLgZ0DDRF1+fKM/Fgxrc6DlVY0gJlMyTouZIg4TcCNn5xU4rvPDNDjDnC361MiVuNJPeE4PbI/xwGh0YPUfB7bgxJXoXMzgiXmRglQ02FW2L3oggjvj8mJAiu20OXuVPk6BM90Vo0DaX0hxCw2+6w3e3Q9x2aeoS6rjGdUvF0qCku1XVHrFbUBLKKEQUVDwfgGKTOP2cg8gHXwQzdaCakoigQmc/TgLkD0mfJWnzIubE4mZyH8OA4A9wZyWVcRWknG9wSramv9TIXfEq68dwI01L3gQF+p00EovBk2RyFS6LvRlg/r/KrwoxLRPcQoM8Uo0/cxpqNqzQj7+Y1zXjlNZ1O8bVf+7WYTKZ4cnGBtqmxXK5wd3uL/8mYe13foUtUj/fe974X8VEkgOJjh5QTpvMpRuOINrSsZNKzqyoi9aHYIDlboiRXzEd6gclSpBX7mp7MlJCC4zNCCRzTJSFFSnOOUuqArwwhJVdmPzj1e5EkAesoKm4Vp/gCME0mJcJbg1pQwrJNywJ/nFkoIXtNlqCYNKAth0Gr+UnT9/GE4N4fgwBOirZGG0o8IytQpXSKzX1CYlwwSpeuCu1HuouaOc/MNg98ynJo/KLAaUeZk1AEZoXvC0xhhRbIB9PW0WuSJHz6lFD5poGJBUIGEXE0DSyLkA9BBTwCYxz6WIQwBdjf0mk0AGVyQ6Z6DwWK5XYtml0Hc3XBweiIBSHKRPAn1RatWFe/XilnVHWFyZQwD3f7HXbbHbpjhzAeoa4rTKcznJ6eomlr1G2Nvu9wcnKC0XhEhz8ZxJPQlHdxC/MTGvBM1YEQuL95rVKHECjVHYHSlSWpwydoiLvMSg/ojCRtQ2/3mVXmNfXA1o63hPhsOUWE6Ef2zFlxTkDlTK3UA5vpiWmyqk1ZC6ycibZv3gGdEDHQKEqm1DdKY0u7T+al+I5cA1gogk5JINoMSkuiAAjZUO1SKgW0WmW0VuPxGN/wN/4G3njyBk5OVqhjxPF4wHqzwcurKxx76vLb9VQgP5mQuzh1VCQMQOGXqoE0IHo3ZVHPKS+6WUeWBEKdsG2dVH9FVq9EzHQ2c/EMSdRKfM5pf2MVUb3Cihxe/4cIKT6M0Qp1ARCGVS9M0VtNpVUQ5IPAqCPBCMbMeMAsLHa5MePQTfe1V7DUYk148JaU0zaDJ/Js1ozOLxuDFPkpmmAMATnawRJmIoJZLIXM6dQ5VMoUZG5mRdnYVdCkjD5zPyWtYTHLRUMOOjdz1XgNOIPqo7ousOYOiqMKsxB3XwBXt5MWLUxMBKwoG17THQopxWfUzCUxabL9W74rLiLiHmZN8e9MSHEb71wpLd27lEMqUXFdD9HIdDJFUze4u7vDdrfF4XhAxgxVrAhC6fwc48mYmG3usVqtMOai357XKcZyvsQI2IXlrR+h1WyKmmcgMgMRMCJYevhU8TIWpo0ZJWaVjd6cXs3Ps3IMca+J24v0mVzso7nYvRejXFbdL6eAiU4ZAlkIfS8GEpWalCgUQi+EuUdKC7sHgyGTP+iCy5m74UZUMSAjaOzU5gR+Fo2rz65EI5tl75usmkIhPctoPOPxGH/jb/wN9MeOAGsD8PZbb+Ev/vzP8fzZc+yPBxyOBxz7Hk0zwpM33sBut0PqEva7PQIMfskrMLLmMibaB1Oa6fSRAkhJHwTsXFWC3JGFAeiaKlxbDPICPf+JraggioJ0781O+f8S1+stpJzWDkDNUs/EzSbCgPi9PmkHRQ8QzAoyCpTVz7oBdsDZ0cOMUBTJIQPVcerP4ioIajkpAbv/EKGHqPhctPvEOqNq0FaE6udrs3XvHjCFoVUl60mEzIzGa+c533+Gv4IsHeH7xQBkKQIt3sQCU4VSLuSBWJ2SFOFlAoo1dfSgz842F5iQVfRyMwVUkKkLUWTcoGTBdOfyQxOgDqcx1hiPxwTWyy0aDpw8UVUkpM7OzjCdTRArUoJWqxXa0YiHZZTsz3bOWTPfiotNKJIFw1EGWPwVBQ3bu/ghSvZCW2XUJmdzA8q4xHrI/hF8lmIQxPryIeYJgLlb761vYAZrAkpiw1KSIJae1L31Q6UEsj+mhNExCoNziVKj5fdFTxPFFLK+QM8z7LkPHbEgpgt6FSgCozQajfCBD7wfIUTUnNp+2O/x5wA22w12+z0LqYSm6bDZbLDdbcmS2h0QYsBuu8dx3hM9sSJfRR8/s20WNgd3tkRhq0KtCjey8bYs/BBgxTggwKxZT0f2aD5bYdAp4otcr7eQ4kuZVMHR6C8vmB4K6ma+t7SW4BhBSeC+vsY/Ww6FHFg1iQdMVv72fvEwOJBsRyhjKGIrA4bix0ePSya8QlCQ0WFAWCwihMBp1SiYBS/pPQ1dhLow/HvC37k9sv6PhWWw9RVcFLEBSsFof2h85brZi+2dpgnCDpNYiaK5eibvEj8edFvyO4a04q2QV14m78xiiIQKP2YE+d1uh91+h5wSqqomQN/VCQ7dlFGsExYLay5pLSzCgD6hVk4hnJ2lU9ys3KIUsUPrwSybL/5ZSbW2hKQsSpCca6n858LckIsCYBMANhfbZlPsIiuj+obibNkeDenZXHNcc8coE8M9vU/Tdmb8mMp7aSwxuPMNvHIs8h2xIOWevid4pLYdFYrDckkxyrqqUdc9cgAi00/qe7WkjowNeXN7i7ptUNUV+r4DkNG2DUajFk1dM53ZGIW+hO61+NhZgzbPWKyZ51fys84VFqfVdcSXf73WQqpg4l5jcQoQYIdWAr5VVWqMwuBKYvF/fNA+FEIqZ8BnkCbWNjNKi04uH+PymzpUzTQeJBYRURECLIvJ3D3yJYZOCq8IHMtkaSD23AfWVYS+uhjd/AGuOUEu0vlfVVxNRB+LXk08BC/TnEUkAoG1ZRHMjsx1XTPU4jHhxKgivJHC4KNozAx7pMwKEsTn+SZnGfNa5gcE1kMMq7iHt1QsxqqqMBpTtt5+v8d+fyDaqggxfjqbou1bFVLj8bjIFCsViTIGRYk0oVgLFVJu6wtBL3NQtmHuq5JHP8RSgn5f5irfLb0E4LPHPyPA6szAllgJ4VVyMBMqcr+8V5DZYzBoKa+s6H1FmxUHDMtnzJpm2lt9zCi4v1UYqkWbdQ4hcnNHHohfBznflgbvJxkGdMM0PFj3yWSC5WKBk9MT7A8HZPAaBOryu9/tKbOvS9iHA66urnDsOtRN1Bb208mYYp8LyvjzKmEEELl8Q+kkuLPAyqRY59T6JSgNJbBV78CfIwLF/cRFq/wAX/b1egsp33fHqmaVkIvWFpADm0CBVyckQoCgLQ+tKHWdCRMDEWTvLCnvqvDutpQzKvcZ4BqI8XMw+K6+2TEjaQ2RRVOLUXsRmRvGuS+ijLUUxvIZ60sFIx6q53IgI+PpJalrYA6WOOkhVJW26BAEbOXgWQ6RJScgZUUNIDdbVhXVDgUDwgoD9EIIprXpWHUu4FYaAs8D1dozj4niShwjUJqhg0WaNqNKMLMU/724goMyM9Imi+vewcvFuoYYyeXXtBRTOByQebvqmiCj6tQhRGIaVVXTGiZnRel+GqNPOSEk03i1CyvMxUl7KtErN2SJWWZZ74Hy4rRp+4653O4rOrJ/7FLMIrmg8Ut1o8IERdmqxAtMUSRs70lRIxipnDJ3MZa08ldr6UFpy0g9sTCSAls7R0nPu6xJhLi8jObEBUrFuHS2NTXe00FAAd9l85ezFnU/TXCUz2mbBqdnZ9ju9zh2PXdtDuhTxng8oV5lHQvB4xFXl1e4vbtD1URCoogBi/kM48kY8/nMPZ/XO2bEKFwmFPssozIhFVTYyJqIQmgKjE86E0xEntu7kFKvtZBS9Gph/NkOpbYch2m7ZkkZMaSUEBmSpk+lNkV3MNHKYQwWSLcYllTZs9aeMkGEsFYihCyMVPvZOLQDY7rl4QU8UrMx0qqqVJPyQorgTgxMEoAmVQSjR9OQHFMAnIsilNX40jlYhFBKvdYtiZBC08ATKBC0gZ0WLGYHYhQCECICevb+BWaaGSGxQM1D5hrUmsgAYmnGAKwxZ1gDPS3cZYSEWAF+o0kDpBMn0EdJ3hWkaDhCbCbPQkyQomT/aubYPTEEjMcjjMcTSpxgSypn2tOmqVHlCIolJW3mqCgOTqHx7WMyF0VLH6+AgBwyeu6FlGFCXDV8plcpFCWLT7Rcyp6zZZU99f8O7ufw4L3i4oN/t187HltKgn3JTqQQlNnRUJ3ClbJlzWaLmTBZ8NpYPIxo2s6RZSzy2UjEnP1YADozMdscXzXXnAmIuu8TIZO7p+u55U8yEqTNhyg+cmm8uVB8SwWgrmucn58jxgpdSmhGZA0dux7rzQa77RYpJVSxRp/os2N3RKxpDWKscDjscX5+RmeiqCGmuYUojUU56SoI3iXNROLltoTMR1hpgCo7xkMQAqBJwhKf+goRUt50NsLMEDebukjuWVJGCF44DF0R0OdlVQNDCNq0Tn5ttxq6sPlooX8DJlCzy5LyrhlVPJwVqK69lDTIH7mYz8db1MJw1mNxyWdy8DA4dDoR06SUufGYgiwJv7fiueTBAYZq/fRvydLTRpAioLibsHfZek27OBBuH1UpGBC7MK8YIhdC834TVLcJ7+zXCyyMGMFdaUU0xsCMTIaUy9+75SUAVltHW2J6zng0xnQ6wdU19Qw6HI5o6oa6OYeacQg5CK2aetaHmUISirEIzI6sAbktoeskbjRhtqYvR7ceXoO+724CAiNgle6poVUw2BBe86y04IXdvXgUCwTLz/DuPlE43Nq4hA3qkmvCY3gNW6/T+zmbjTZdzw+yuL0M9knGxxLdzdtAXM0iRfH7IAsk+1MopubeE+FEnZutNUZARt00ODs7w3gyRQYwmoxQ1Q32+wP++q23sN/uEFghzDlhu93ibn3L9UtUBpGRsN5syjR7Qucl2stwyVYmoMHKv/JYF/cTQGsCTIQqByEE5g9yvyRdvDsx9XoLKf67cAVld5hhBOeJ4r6AoZVVGhRmlDNr8xnO+1QeKjca0XZNeSZm8lDszI/DE73/nRdSxIiyWgrCEB84i3YJ8/Enlj9TN5/9ovinFxRqZ+l83WGGI1z77b2hSBO9rPPTk8xM02nbDhk7ZxCz8CvNayHj0my/BziTuG6C06CJiaNQZmQeyiiLlWHCgDFU+c/Zd7q8w+MnmmgANZOczWZo2gb7wx63t7domxajUYMQK2RI4a5ZUIX2em+CUGVA6VRdcXYe/Bj9CIduVPnMj9tb10Pt3j63MyXvVaauby8zAE07Hz5r+Hzos+VvbbXjnqk6QbD18H9sruViZh27U6AG5+b+Otk4vbDxP3sl457rvfjuQ8/iOSAj99RPqmkarFYrTOczIAS0oxGoQeIRt7e3uHz5EjlmjNoWXd8jI2F/OChvqVKF/X6H9XqN3XbH5R+J60R7hBBRNS3VogHcYZq6Hwj9w9M/C2TP14wni9ofdFMUCGGgHH+p67UWUgCUglMuNRt/CTN56Peltori9/7AiM4+1CBLNx3nGgU4ppjL/RjsURaNDU4DdgdXNOCczP3nU6b9kdODdO93Gs3iz4M2KyuG5bhBISwHYocUpcE66AH2B4/day4IbDEGZYm2Vu6vANH2mQtH93z91+Bw+8VwHE002eC+JzEN/S5EKSlTbfV7IZj1IhX0saQz1fgdSQyFfds0mM2mmE4mOOwPePnyJRbzBUbjht3AkjkZgCqg79I9eh5ewphpdrqqvC+5EDRyl1vue+yioHvu7jxUykwA2jNJQJFrSfpfaYffQtFwAssJLbUmgHvvk3uKlQjyXl864iSaUzbVmhHmmuz3xXtEwjFTLaxDVl6SfFZYufevEIKCK2eJE/t3KbMPbv/KsyhgzhFAqKmLQMPvkySNDEKomIzHQAJG7QjHrsNoNELbNui5xq9uqC/Zer3G06dPMRmPkHOPvu8QY8BkMsVsscS4btCLQsZjqRAZ9zEpIgmtu3UvEAu9VNyE/oKLSUos+MsTVPfTsb7I9clPfhIf+tCHsFwusVwu8eabb+LXfu3X9Pd//+///UKqhhDwL//lvyye8bnPfQ4f/vCHMZ1O8fjxY/zQD/0Quq57N8MoJyBWBmfCKUsN7iAVxGjBTvk+wH2FCktrYG04OvQWji8eVuGmBaIwwgz+lMpn9kwRUBq4z95VaRpcEsQEWIFvcEFssbLuCd1CXRUh4D4Odoi8gJJ4gViktpbWviC6+WYXfJb1HTI3+VlwweABZEUZQKA4kT//wTQ4GQrdYm1B+r5X1ISQRcs2Rp084gV/V+ZpmrT+z79clRKNA7o99wfVC3CPJ5fBNVGTKeaLBY7HI54/f479fme0w3e+WtEU4e+Ya7DEIV17Gc9DD9J9DPqjvFbfIkwnlwj8nuZNmZPH+rV0Ma3CcjMaCAXNxZJWHLnlAe3Su+3nNNxXnQ5r/snoERna/w0weC9zNTsaZWsvDy0ARlAw1a10j3qVTs6sV3w9HXnrS/mOoyFPawgBoSLQ51iVHQBG4xFm8xnmi7n2L1sul1itVlgs5syzFxiPx9hsNvj85z+Pv/zLv8LnP/c5fO5zn8Pbb7+N65traqMDy8S1tSHhIqn/3ptQ3KenVwrhYQkpAAiaS9bxyxNS78qSeu9734uf/umfxjd8wzcg54xf+IVfwPd8z/fgD//wD/FN3/RNAIB//s//OX78x39cvzOdTvXffd/jwx/+MN544w38zu/8Dt566y189KMfRdM0+Mmf/Ml3MxS9YgzoErQnEJhBR6/5OobpzX8tCmRUhboiDY+SDxh+Rw+YxT+8QDA3AvhdBLcvvWVIaSw1JbiNVWshQMes2Hte6XLMOYSkfF1b1UOYlmNW+pk9Ra8AZ5bwfPiQytlRhuzHB3+4AUlEMDeeueICrJLfVFI6gAmBhYhpYMSVjB14Jprd+sua2c6AtdpU4PLp1L2CId12KxOA5u4pMev0u8Etl2N6pSXBa+gUFlFEqG+YfTaejLFcLvH06TM8f/4cu/1en9JzDzDfAcPoRIST30CmUZ+pWLhhHJN3lgXtoZ+/MWFPMn3KXMtV6X5LTZYxVdFhSsuikvNoU3nQaqNzlJzCl92e3p+3vEGECe2pzw60vfPjUj0rmxANlbWr4KMKjQeC9lqUpSBjy5kya3gLTDm0PfDKLbV/d8JQ6Yh7WcWsfCtnGpMoCNmtgc1LeIbFINu2wWK+QAwRTU2tXrq+Q1VH7A8HVFWFuq6Rcoe72zu8ePYcdUUehb7vsFjMEesa5xePi/0RXiqTFWs25QxNzAWfxhDVWS1ZfZq5yetVJmL8bxBS3/3d3138/IlPfAKf/OQn8Xu/93sqpKbTKd54440Hv//rv/7r+NM//VP85m/+Jp48eYJv+ZZvwU/8xE/gh3/4h/GjP/qjaNv23QyHNIsYkfLRMv0AIGd2idFtXkhZumsCQNXdfSbk4CzumwyUcAicZQZjTP5wyT30uaGTi5yRzDU5dKoVFRYGW0Q5IPSGR6aHJUOZAwIQkk8PVT0VMbpeUSoYBoxX5sRrZSJBNHPoWFPqtW7CXFFZs4AEKsjHhWyNBEvRRHzgueoB1LYJgiCQzZBw3I3ZogkKNxN6XVaXqAiDKpoYk+clzrKsBlocHTpq03FvtXQdvbJQaufGgYMVRwPONUtCNASokEqpx8uXL7Hb7ZRBpb5Hn/uiyZ5aHG7vfGwlRnL9UDYjg/h668Bl6jGH0bGCacuCdKZLiNUgCT5VJYDGlNFmY/FL5QXYvU1SUqW50cIJHp+VKehQdG9lkcUyzsLk1Crhsfh5+n3SPzBFBk6Jktnw/AMiW2jiYSEiVOM+i7rpYs2uLtHOLdNkzDY/GUPKCJU8D4MOCDxcUYjcOmYAqe9YQSTkhqZpsFjOUYUaVaQW9LGq0I5a7Pd7FlIVdvstLi8v8dZbfw3kjKap0HdHnJ6dYrFa4bAn3L+UevRdhwTpHScszGjG1pZR3pm/yvyRrZcV7Qd3i+D4Rk5fnpB6V+4+f/V9j//0n/4T1us13nzzTf38P/7H/4hHjx7hb//tv42Pf/zj2Gw2+rvf/d3fxTd/8zfjyZMn+tl3fud34ubmBn/yJ3/yynft93vc3NwUfwA4zDtLHRVm5tU2WdDSlUW/k8UUAE9/hfIBuimmOYkfXaBe5CBFxZgrnhjK+Je5B/wtQTi5geJmYdDmOvCuFrXs1GXiXzpkubn4pym+xghVOxK3RjaOYVq41UDEqnRp0ZKZYhCDIMfae7LxIllsW0PW0spxymG9L0TU3Zet5kZdotDlVA22XHDoeEvrKNsCGbfUsei7xWrhhwXZFPez18BDCBiNxlguFsg54+rqioUUKSE9CxppUmdPhio2zhtEvxu4yoYuGBsrivUz19pgTWDKj7nSy+/cc5H6/cgZ3t2nS3hv52QukQFM2Y04PLz87VIY0nqoJ8FZcHoPoPRUjMXNdxieKF2Qto/FQz1twFtStjY5ZwNGdmsnnhlv3d1bswBVCG1ubk4pIfUJXXfEsTsi5Yy6rjGfzbGYzzGbTjGbz3B6eoKLRxc4Pz/H+fkjnJ2fY7lcATnj6uoaL1++xOXLS1xdX+P6+ho3NzfYbDY4piMhoux22O/26LqjWzvhs97d5/iezjEU81JXMNN0TgH/W9x9APDHf/zHePPNN7Hb7TCfz/HLv/zL+OAHPwgA+Kf/9J/iAx/4AL7qq74Kf/RHf4Qf/uEfxp/92Z/hP//n/wwAePvttwsBBUB/fvvtt1/5zp/6qZ/Cj/3Yj33xgd2br3f5PMCV7hG0X2w7JHr3kNgeIOKHDkrxDtG+RGAWUCPls/2/k2jvDzxbXC2idfuFEKHpBctAKpRPHDBfUz6z3qvvKJgkKwpaLyZvcO4N9ybvpmP248Yr6qobq+v+OVxjZQju3zRQk8AmKIIdfXlOAGEFQjTZe6uiQyrGiHu38EZYUaYnSVWKYkDdVJiwG/z29hbb7RaAxVXh1uthxlkSe4jCIIZCw6wtdSXxYEtFht+nSgR/222BPbZce2tq+BDdZ6iCJfd6+mBr7f55sikazbmn8vilJY938ZbzKQWU0YW8360tP/ih95l19qozGLTkQeqg5Iv34lQPLlUuhkoehofeNPh9BiFiVxFNW6Opa1RsmtUpYYQR2lGLdtsSJmBFtNk0rQISJHaR7w9HrNdrXN9cY3Y5x267xaHrEOsKVYiI02F0M8DziKA0EyGuVzlTcqUMhCRnSVBIvvT1roXUN37jN+Izn/kMrq+v8Uu/9Ev42Mc+ht/+7d/GBz/4QfyLf/Ev9L5v/uZvxnve8x78w3/4D/EXf/EX+Lqv+7p3+yq9Pv7xj+MHf/AH9eebmxu8733vA2DB9+A0eXGP0WUMUFwk9/29zL6yWSaaCJDoqYAFkIf1FgEGvTK8VPt375JsHcATcULg6royQI0CJ9AHMun5g+ck5yyHaT6FYJHDIKYecXjHxPS0uBV0h1WtEpuLuDGKm+T/w4Pp1o5GawyleLVySB5fMMEmD/DWrY9vkd+bnukD4giDvXMMSpmUyS+UJp2fgrfKnSCQ+pHARaTZTSZAEdebpgFAXoKdS5ywmZX0ZQY27b22AxcLOnADTTc++b63DnMu78mSWuqUkaC/s3lBaXgw34FF4IUof4sVHVJgElxZBwv0Yu9UoYpO0FhyEmSv/HdYU1MvhL28XA9HyKpAhSHzLYW8z0z18VlPm+o1SeZOlj0cKhYBnAM8kFm6pmDQAS6hL8YNWK+6EOk54tGQvmgyplAhRCgah3h3xuMxZrMZFosF+r7HeNQgp4S6rbHb7fD8+XMgBxwOe/Q5ox21VAPFLTvapkXNtGsKGx184atqSQ32QBRe4alaM/klrnctpNq2xdd//dcDAL71W78Vf/AHf4Cf/dmfxb//9//+3r1/9+/+XQDAn//5n+Prvu7r8MYbb+D3f//3i3veeecdAHhlHAsARqMRRowGPbxyol4mlQscs1oLWTi911kUGd71Vt53z3XCfliBQpLKfq+9mUk7PLz2p/DX8jMsTkZqhhB2rKLikUmsQX/ngrRD16FcyghEixXXaLaEElklIaQksYpCeMOrSc5FxHMG431FqEVDsETlmMrxDeIYTttHYiaGgdsHMi6bn3yH5scuVrWschF7uKepu3VizcTmPrgvqwZoa100fdTDl/Ue+Z7QJ43DtHap80kpMfIETIhlp4zod4bWRimci3UuFAXfwsW7zAI8Y1FVLQAPLJM+QxS1++5R+a5k3rHQ52LZJHuS70cY7ilduRSSxXoOrB21pmwUdj9M4A3XaCicQgjFWZC3iJVKpMkZwTWhgiSFOWK3Y86lJQVL1gqyB8K8MdwrXvcsoYtk45az3lO7G1lnomuXAg4g5KD1dQERVaxYISLlreVaqzfe8x4kEVI5YX/Y43A84unTp9ist+j7DiFGTGZT6uDc94ghYrVcomlbIARVzMV7Ia08BrumQjqljBToDzJlWX451//nOqmUEvYuO8lfn/nMZwAA73nPewAAb775Jj7xiU/g6dOnePyYskh+4zd+A8vlUl2G7/r92WJEQKmRiAZKBbXEVAV4NRWZf5kL2LJBgQR5ftL8fkmtDaFFCAF96sm8RiigXV4lpNSSSpmC3ZHwAkmrMAyxEAKqQNlUClgrKbOcgkobL3EXm4vgAYbBeji7hi+vcjqNVy0ZY8ih4Fz0Nor/8HxiQsgG8xJjVFihDAt8kmLA/woSS0hcd2JrVI4MppW5z4TJ6rryOKMemoycuntzKHvYBJRF1MYpS1aYi7EMa79kYFJTpAoTiEkntYqEKQVVdmKMOB6POB47NE1NKcb86sK7H9w8gGIdh+5h+c9kRXbfkR2U7zjMymJtZcfg3lnGF3TqSivSFVsYMp0t6xRN3wei0poXUCLYZK5RaCrYmMySk++V85fHyGQDUJRo6H1uTnKjt2iQzZLRPnG9nNGG1qawlGX/h90RBHHBAAa892aovInwQ06ItWFJApzM0FPrjSpGRXERGsks4FLPfCFCy1okeaGqGpycnOL973sfcs4YtQ0CMp6/fI6nz57ixfMXuHxxiYyMpm2xXC5RxwpI5EEajVrMFwuIDaj7eE802f/lbGmMO2bKdv3fYUl9/OMfx3d913fh/e9/P25vb/GpT30Kv/Vbv4VPf/rT+Iu/+At86lOfwv/9f//fOD8/xx/90R/hB37gB/D3/t7fw4c+9CEAwHd8x3fggx/8IL73e78XP/MzP4O3334bP/IjP4Lv//7vf6Wl9MWuDE7vFNggR3DEY3ytk2NmMSIkHxQOapkAUCZT1DcgOIgdfn/KlLUTzGoB7gspTepwxEwMBrrJwtC8GwMAQraaDnXtcHKENG7zskfeVYVQHjpmBppRI2skK8laYQpBe/TQ12JxqIV5IkDbY2traHaFSEpv5rRrVc+V0zMLDUEzESuI5cFap3JmKO/iVYLXl0UgRVhJAK1Dj9zTdwMD9BZdYIUWZO8945L/OZ5nKj4KSxZuHNQfjlmzKCuMqyfKkWjPOVOwu21b9H2P3X6HWE3Q1PRsKbY2+i0ZurSEqarSKi1MoWLd7tOCMvrMDAQitJgBMaO7V4Pl/m10AkhPJ9qSnuiJIZ7k+WJRiXfCz08FUM4GelussfzeFNAAc3OWMSmeRbDWGXJpk8ucNQ4p7mHynAh5ZFSRFUJRymJAzUw3hOH4SktTznGsIuAKxzMtvQlPiIvaeJpY3LywQM7o+4475UaEmptvqjLNvKbr0XcE0UTdb0WZ4nhZFbE6OcH70vsRAqWuBwbWe/7iBa6uLrHb7VHFiPFkAgCYjCd6vlarlfEDdtuZ4DXRFGBejxgjkAJy7tnVSb9Lg/191fWuhNTTp0/x0Y9+FG+99RZWqxU+9KEP4dOf/jS+/du/HZ///Ofxm7/5m/i3//bfYr1e433vex8+8pGP4Ed+5Ef0+1VV4Vd+5Vfwfd/3fXjzzTcxm83wsY99rKireldXJsYeWCMVTL2gUj7oZpvGbRqnB4ktAt6FRsaLrgdpAHGSBwwAolFhcE95wOU9XktNidOJi9bsxgwkThWD02K47bq+G07x9MLG3SEarN7mNF9qYeEw4PhP5gPh+aEw76yE5zT7AA7ulmLFxhccnRuhG6mjsBJlDeG+X4xDDry6V0wDGCJeKKOQ54SSwemc5OHuAAbR8mVdsll+sgb3rIyUkIuiZvr9aDTCdDpF3/fYbDbUOr7hBnOiZTNHM7Ese09jKgQU/3bwkX0rux/g1sMreDJznbJ34wldP/QGXhe2HPoclFHx7gIgxlSpMuf0JPf2HKTVTCRYHifY9R5ksyRSKM+S7AVQ7Ls/3yEEzS5VKw9+qx0vCGax68wdzcj3ci4Ld4V+qZOAU1SzlJd4dQsFr5KKvYqxEiGutT4hV36uJuFT36NnayuE6Bo62t5XscJyscRkNEbNCRcAcLe503T125sb1DV9vt9Nsd1sSAEJkbxmQZpX9k6Bc/Sl57hcw2KPgeKcfLHrXQmpn//5n3/l7973vvfht3/7t7/kMz7wgQ/gV3/1V9/Na/+XLlPgfWW8+dzNBM3cZt20+geeBn+o6fnOPRWUsiFswjTVAIf77Z748AYJoxfKUgGSS9eOWl8Zg3RtoUp5x/0DLGfQE2/mk0aZbvZA+q4gc0MUYDfdgbBwH5PlRsqCZxIAwfbTIeYDKerl8Cplh43JbKmCfQ+5the0xYT9PbGkk0LQ3BuSCMMwUAKMyfu/X7V3IQTMZjOul0q4u7vDaNyibVtN2pGiaL+grzrYefA+iY09dL+6+zJUGJKr2pk0bv0MOdy97QFFS7+vktJq8ejvhJwCdxQwRat4sn+3zFs1QVOmvDu2pC1oF9ryQXK2+AOxVPQc+9mZpWbzYUEJEVZeycs2l/wQz7m/d17xU4HoZ+HGE+T9cqb970T4Q1D/k1sZexftYWS0/Qbz2aRY9+Vyiel0Si5nVjbqqkIVAvquw25LyT2H49EUKF1TOwt6hgSlRpY7Diz+copf9HqtsfsGApo/G+j6wcxpvkO1oKEvX/ocSfEi7BsIgKaZ0qONu5dWGvQglJaIYwJqHLhNdBvvn+97Cfn5kSuJ58jBUmAIEyX3swtHVb4AisW4uJXTpFUADMYv7xImEYq1xIBQ6RlaJOvW0u+fl5pBiBlBD5rKFvj75H1Z99OfTNsPZsfO6nmwQ/Hg0HlGX2i68grReB2zlkF45cG28mHlZz6f4/T0FKlPuLm+wXQ2wXw+hzQFSRwryoAJxcHRlq1TSzRnQ9WAzV/WW1hrsQ/3xmkKjVkxbs8wECaDM6feg+D32wlRyYCUxAMnG737mujOfe722pY9QDsUMI3nwXN5VJBHD3IFC0XQnksuQV1HpnNkCzGUZisRsrcaUk9uNI+k4RdRsTNEQQso9ssrmcI/VODJfJh3qIASQVyMy85oCEFbyPtrPJ1gsVzg5OQEfZcIzHa5xGKxQF3XOBwOSCmhOwqEnQle5RyiQDg6lH0RLwcy1JU7HMOrrtdcSAU8lOVmGjG7cwHtfSSM0QKiQy03USZLFR0N0r9ijFSgp+gW/C5pF69jKv8gBOkUoU+Tk2aEKGOHEh8JG0eMQn05W/GxCA1O2pB5JGnrIQSCUBxCz3SUSUHskoHwLhiDsXnRsMXtknkfpIcUEKynVgWdp9f0AoKWrhRrlp27JgiXzKz907ykC7EoIfJcEdIFcxHN3cX9jO+VCkIhVB5Q91gHUYFkj/eH31bT+97NqgIWiwXOTs+w2W5wc3uD5WZBOJYjcFwwacsKpbViHGINCC3QH02D5q2kfRLaMQVEhJXoCUHWjc+GWlzOUyDAsToG3TOac0oOSgtGP7KFmZFeRMiLYmOXfRYjQZEmpltL4M0g+5vEeXBTyr3g+NkuqLWRpD7RL2LQ3/lRhGhMmGQgxXhSprYcqkDpvtpaWKYfNwMN4jnw6QXMo3Dfc0FCLZqCku1zdV0LfQCoQkQWN1+W8877ITIQRgeZ+YYXEk3TYnVygsePn2DcTlDXFRbzBabTKQ7HA27v7tB19I4sXCJ4mnQC3iurvFAB1rw1MOpEqdy8+nrthVSMD6M40GFzN8dgDdVYMJGLDyj0vWy9YTTgymstfVoU9wvCF5LeL2NQ/zyAwMxGmJtYCqR10DilhbUFIH3GoGPpzOQTI3HfG0MRmyNrydKdTes3IcWasv7GlsO0Orkhw51/FoJw3Uihlmisoo01mxbr3yRarYcilXhMkoiBEwCqiBp7NiuJ1zNAaoh4XSUWFEjD7jlF2FxE4YHW8GYNGGnIrsG+N6A773KzteW1z/a7xNJxPp/j7OwMu7/e4e7uDtvtVsGWVeBzVhVtgSgjAbYt4mYyMOCATKjbiKqleyxLJ97sYuGGxEwyoUB0EUuGhFTZxy1wXzChXbH+qzqyQqDqg60f78d9K5N3Ud8nSqFqFMYEQagOgIpg2zsaIIx5ZkgjxZSjg7+yrDsxauz8Bk0zJyZbIXHyQgzQ+akCBem8zXveCwJ6RIgVxD6GvhewNbF5EJ8xa0lA8qg9fSzS3UMAUkXZe33fo461wqtlgLJLMxA4izWlhL6zxq8iaGJV4fT0FEjA6eoUsYqYT2domhpXV9dYM3KQpbcXu0Xr4HvbSU1pcN6MSMC1kXEzqbj4S1+vuZACAyRm1rwGGVeiX7MyKHh+YmpSll9fakQM8ElgtRWxJmZiFR/00vfKmvkAt+ueNRUBETI6OmcqS31M5ywnYbb+mUBATr258/hAp5RR6TiC1mv4AL8c/EJjdALJjjozZMdkecgFAyZBL5lxUAsopQRUwshVwYcPbQSQhirwSlZKwAXNmtHoxscD187G2ZQNOFeVpLVXMThXiwl3v97q0pMXiasqo9Bw/SXCVywYyWgTvFBgIKjkufJ5ovTm+WyO87MzvPPOO1hv19hutzgcDkIdkEC8tA+R4mDTlKEMXN18SWrXoloMMUgasmn80Lfc31+r9blfXyQp5v6zwIKIppZVwxfmJUI1u02UNcwu0UD3mT/X9wvjc+tpLtlS2A5dvaLF2VoyA8+2WaKQBE//nAFIJShZBQSSWWsVwwmb6y0wPUdGdOgdLYhI5HfKuIw09KJW9mV5hXzuazjJWwJE7glFGIFQLwZ4P1KmLFDhCzn1yCmibmj0x9whxICTkxNMRhN0+w4IwHQyQchAnxJeXF6i63ooUbHQRAr3+7nJ+UmZzV8bv/LdmAue+cWu11pI2ZWNEUZjtwUzjqFodKe1UP4QOu04c7opgjP3mdn33C5dmL8EUs3va4fJ/xswlwXAKe7CIIcDBpwlBWhqsDIjcV0Y88pZXG8DYaLqp1uxIROVNdD7nXYaHv6eCJgQjKEXa+6+QwK5ZIjwn2QuulRobhpzEO4mjMTPB7IGURlRdu8T5q4MMSXXRZhfyoET90nBVMpLrAK6M8MYOjFwWc/MAuxhlwbtacZkMsbJ6QlGoxFu7m4IfWK3w6E/spI0sHh1bm5xUZY4mKvbMcbBmpXKEmzd4LIiZcbF+AeKl34GHlBiBcFiM3LEvGB1bzbaEF4sFqlYGULPujuAWJCGrZKVYgVkOPD62azd2ojyKtaGzgT6vmJt2HSQdSRGH8RIFaK5tzavikX6cd1bD1jKdjeIR3t6os8TBPCV4I2SWi1yCZ5ljJVkspOnJSXE2CDHhGN3RFVVWK5WCHObT9u2SF2Pm9sbTMZjpJ7Q8EXcetUWQ9qTn43kOGuZlziGrywh5QldK9pVg0VJdEKgEE0ADxMSXwHGxO4xdPdU0TL9b/RNrA16gaVaes6qnRiD9XMqU8JlvuU4DC9L3n6fOTpCxwMHRDVPPe76fxHCNls7tPJxzu4Zg1dKTU+IYk2VmjNHFuyZ98bviF1mwMIiwiwxvVs5O6Cnwp40+Pcr9n4g0Gmq5Zr6bNAYgu6AREws1lWuHaVhk9K0mM8xn89wefUSh8MRd3d32Kw3mM4nRRvvVw3Q08kXvQJU+Mi2EcI1tOOzPg8gNHr/9eAFtH1mNO8Yk3ul/I4YE8iNyPuc3PjvfUNoX8fszTe7J4GZcyCa8B0AQs73tHzPK+7tfXAPh8EgFQqYKCGqJNFvsvzKlxr4c9x7uCSoVSjx2Oz2hg8Cso6hVPiG0r5Um+z+YMfkgbuhynjKGVVTY1Q1qEJdPD6lhOl0iul0ggxCHNJzEGScnk+U623rMFDYy2P5Ra/XXkj5xRi6opCdQBLBce9QiCVSWhaqEQdYMNKZ3QUytNs0/57SrAjlJmWnucKq9PWXGAbK5bn+kezKC+X8dPwq5IL7DtTqHNK7WEdBVNch03FjV9cIz0M1SQfrI6clZ0bZCMVOmJXAFKtWj5wy97cfLz3a+bplgHKgvaYvX8ADjDyX//AMf3jwRVnxX74HuwRZCxFslhkmz5LXiYuobVssFgtMplOkvsfd3R3u7m4xmozQxgbHYNlUMUSkkGyNYIjvw8u2POu7so7L9iexVf4qEVfS5QNnTN4ha8aMUeNxjg4sDghRvwfvMloVmrEzM0jrZsIiAUtJFIndnSlR8XSORFuEGzicobgnfRas0WZy3gl+Bbmo7lmSbl0YQ9FH/OS+nq0c7Z4AL6hkjwh9VZVVt65CW4VrMtynSTsosZACIvxEWETtAE70W8WICvU9RQwIGLUtZrMZqrrFeDzW96r65elj8G0akqLKDh79JRQrvv6XW3X8/+EqLahSAD1kdYi/XQhA9jklc5kUGTS4p1zps+WgmFvD/QyohpJUAHoN0zNRixmVcxloIwHF7/0v1J0S5Du5iNu4gfP9XhsczsuakpGmZSgbD7muZE2l/1XURA0v7M11qToo/09Yw0POIH6B3qv7ZlPRcTl2qcIWMsNQ0oZ+Dsech5aE23hZUxmr7cMDwL9AsZeOMpSHuNchVpG6pi4WyMhYr+9we3uLvuvI2nLrErigMrDm6rHT7guP4MYvY5WYlvEvFXKqGRRqC7xw92eMrCjBlnRWP4iGoqbQ2X7pWRHeqkfAFBS/70kaQOrveB/0zBhdWZsWtx6ihGUbh7xzyC+86xqgpAfK4nMChOcRq4ddVTQ99nrwOdM16vtSmQhur4IkQpjiI1bOkG6lM7etGydnSQNX3YfMsUiLy2ZZh4DSAtZxuHXiRQogZJTFbI6T1QrT6bTgXf7yqo4X+RqnFMELU9K+nOu1tqRsA0tNuNCi5QqeeXiN1phxZOSKLC0n9atGAADUYlA3A1AAiwICqUQvyfYg/r7wBGMmOQkWns3l/oRRCDw7vCZ4VFhEaUOfkLNlecnhHl4yJwtUs2arNwfHHEo7I6XEySVVCagJ0dhJiKUQkGNm5Zr2ofIC/1WCStbQydWhcPPnS/dHrBo/TxmT7kupxDy07uS8qwafDWhJNOJCOcpUJxMkO899X7WNgOVqiZOTE+yf7bHZbEhIcdzTkoGYriOJqPwKAaXz91Ypz1U7JjPZqYIxzISVtVKGbvvtm0rei73I8128QdWSwO5CL6z0HSZMZcxKu9zckxi5JQvFENFLQ0ZWLLLck9173bPlu34PUuKuw+IB4O/2jH8XQ+TU/KwxR4VKGlCErr3QQxClAtyWPaDStu9sjfBaiiKRcrD5CFPPUJgtSZaoUBFdSV5CkAxhTw/kDk/OEs3ZEmlk36LuFUf5mP2Rm7JHVVWYz+fIIWIymShd2Bl84Iy5T1XgApZ16BWHL3G91pYUwOa6X1R/aGEUbxqwv4cOVmZLAHAZNErMomHYpW4x97dnkJCxpKGboWT4ouWLBZQlAC6Eqb93loJnSPw7w5ILWsjotVyIBeK1N9wnEXmPKa1eQ76nOOmUDMW91B6NhCVlPmlJjzASYky+7bowcJNJpvWW61iMV1ZOhbRnku77ynndoxyTLV1Kbs1FcMtXc/kI8KODuyfzCkRtgJnhF1iwDRfzOU5OTtA0DbbbLW5vb3A8Hm2f+SXEnJnh6JxKpaYEUzVafBWairn7mLU8IHxKS+q+9eg9FHBWrH9GQFboquFVutDs9xLLFOsro3yv7LeAHQ9rnfz6hTB8D/T7gGviGYxePUq3WsYhcHmFnXkjj9IatHT0oMqAukVz6Sb2Zy0N11yUrUy1V9aeyNbMPBiwdxRrZcIfITh3H9T663OPPnXIfUcZgH2H7nhEFSvMZjOslitMJhNWGOT5UFosFHvli1npAw6c2HtFvtT1f4glBV0tkdq+q63c6/8GUBx007nw4EHy39P6oMAQLwUDtftJ6/GHwj/XfzawbhxhBs84lCAGT1AipAkX7kQduwgMvygPaUDyCyKiMoB+n/mIm0VOp2iRfFNxaKV7rgkkZfkDxujXm9dW7zWmMwQO1XMSgADCSysFSVarzV/3BJSMx6VbP3ic9OHleg4tMhLC97+berLe27bFYrnAaDTC8XjE7e2ttvG22zNKJm6KVvEuiNJi93ja1pUQuk92Xjx0zUPucsDX2qHQxkWEOCpw32f6EwtKtKBgwmO4pAGWmFJYdAOBlnNmbEQgl9Xy97Qq/6577iYWev4rNndTcM19ZmtbvsNWoOgJ5/kPz8OPtTj+OUNq2jIIm1YsKbuHSzH4OGuKfLYHymtsTpmFoxdach4NFCAn6myXErk8q6pC07RoRmPEuvQoiOkru6/jKReS/uI1Vv72lWJJFUIm0EL3ro4IYXhgHKE4ie4P19B9ct8Cw+CwCNE/9Af6rOzH8IoNMtOfNl0a2kXninP8274H99mAsZQM0998bzFLK+GBZw2FiWpKxQFS1bIQmL7uy70STNV8j9M4s1kbfhjuyUNxU4xRD57s20BXKFijG7PsrUhtOVC5/Pq9g3hPQDFT9MFyW8jy35PJBNPpFCknrNd32O13g3Uyhk1Dc65ep8hYHY3VxoXscEQySo3+3toZyv5Q2N47AxCNuZyTKTBlWw8S/p5sHxBU/uzJgPleb0np9+Q3ORdj8V4OWY+HLCk/cF1Hqe3Rs13ulbdYlAE7hSHpz2YpBVucgYfFOI9S9OBc01ryqzzJFQdVEClMCRjyIP0e8zzxWDx0CS2Te5Pw/hrGlTSeWcbB/KilRUix1jyWxPC5X56I+j/IkiK6CowqwP78yqFJQwiG6zB0I312D7TeoKpqvbc4aCwohsIvQ/zJRnTq5vDuCf0/a8dOAy2AN6VpYDDiU/oVhghv/aAkuGQ2kyquypxDcaClwp9w9pI7fBmSsTR8Pq0JWVB0MI1wc840F8j7ZAwe5ok+TTlROVqo1CrTAxSc8H+ApNWyyCbIQrD1lfWytvClO8ZrlJAVzcJMg85NeYH/ZjAG5N1dygCUodJ7crAUdVUU3Oa17Qjz+RxVjLi7u8VutzNqycIweBzM7aVlvDwjap8rv0c+I41Jgwt+H1JAiLEYw9U5CF3mYbaoWUhGG4I2UNkYlBIAOXdKvzEA2RheACiV21ltukXRPikFjo0/V5StRlZPQEqyX9K9VlztThnh4YnwDzEgJId56ZQWibcQ7JHFaFUJHfAU6BxtX4RYC11F6gQDtNZMlUJBvtBaQhM+hBpPa4YQuA2RZS768ybvT30aZHXaPonBQ2AHqVynDLO8g5032m/2GASpURyEY+RsqvL75Ymp11pIAXAaMvV+6VKPrqeK6VD54lA7UBS/NV86ICgGEkgmExehTF8lcz8WB58fTRp/yC6Bwijf6205JxVksl8UUHZtwDW12ZihZMz1Co/v/jixF0TgcBCU+I349O0ybduNTYg2OSZLNyOEshZJ0nzvW4gk6KkZpL0rhIiUe9Yi6UACGSn3HDyGKhgyd7jiaxOa0IkMtTQ5+DYSoZF077vFFqlV6Mcrh9pZSDBLBgjasj077di3Bpd3mJYMXdUQfIYVNDjdNA0OhwP2+x2OuVNxl7n5priPydXDY2CsU+1ZJeNVxmbvIxeOc896YQyjtTzIIvPXg+7MEHSsKZGuDH6OWG3SDIeUmP+3veuPseqo/p+59723LKXLQhfYpRaEUmmQH1G0uBqrCZsWNFp//FFr/8AfoWmliSa1sa1R1H8wMTExxvQfY/uPkagprVFqVChozRaFgJRW10JWUcOCQmAXgX3vvnu+f8ycM2fuew/WfhPeezqfBn373r1zz5w5cz5n5s6cUY6aRzq+QPCJu0AYqOjeZOuUILdZzHwWEXKHg/II1vg21e0KGJm6F/I1/PwUvCEbblQlejDKd+hchuTPy9I+w45GUrFj0nr1kaNrv9T1MwqO7PHBOL/rcd8lNpDkYJYXJuQ5EwRx4T4Qz+1ZdHzQKvsT7uusHwODJE1RV9sc2NY5SGIfQq6BCUYydHBGGYD8giJHrt5aro3uJylAIkI7/1tHVq+DD95LjB+eSkYDlWhOCMcZNNVJIs3idB8An26In63K0dkH4G1POgdH+znpuW8fERlpeHeajPFLSO1SU0/IPiKxD+HpBmMMSNlmOCUFESqIbNUpxVyu6EXcqytARYOWtJXj4f8KDsW+JzGSlkfAnZ0IJXdfvV73AQVHfnmRYJyDAROkPsPH24MtH04WSBvI4+E7DrOUEeX4yDkAR6XOKQTLsJlQlJLtqICDhUbHznVKEoM5N8xBT88s1Ov2OO9araaWD9sTfhNyswOJ/ZwDSHK/qk6/7/PTffw8mzlODtVjW02MP/k5SWCPcdKzFOFycj3tJ4t2jN0HxNsucsqR5EbOFGM75XJkxKT8NBzRGR0AKHsU84e3T72BXkgKaEJQie+H0o5QKwdJ8nYZKUuFFV5IkZ9nYXyzumDFBYradJI08UGgeHV/n1F9PVcZbbwP8im4TKI2zzqH70k4cXvHeIGFAUwSZH4nsjksc24TTahgfVh1JEmCjG0mz6UtdHI1a/NBA4t9S2CrgmTpbzPjqO5/JyWe2sANlUmWcwvRCGGEc9IyTIXviLnsJ9GReDjlF86/MmV4otLvJGDQ+Mwg0rLfmsJ13CF95/I+s4mNFxrdOSdoIxd+c7L57/kDE0YQ4bhnw0XmWiecKNWLQCCXGsdHl37fkkT4chunpcmFaDmtjUyzaceu83mCdcsPL6iD/1dGFPaGgLRZIWoYJcTsmwE8OiMKH6SDD3n/woToq+jbVjWZvFeBX4HZO7sXs3t7kaT2SPlqdTqwOTtFljc83y56SAJHLI2rghceZeVKXts2ScH+Gk8WKAymAvC9Ygsu2vbbMEKILo3WtyIB15eZaHzgo8sgCUJZx+zAeZqv2bSk9gH+/VOhTxvb7xpOYC7ooPFdjG+nIvxhpUy4vn8I+ZpEcgayzFA2xuUEOslVG/HKZJVQmjc4Q9rS9d1cTReKTEpg63wkyLcnXecgl1LJOhS1+RqhjXt9h20sQWXoZa6K/wKSAmRcUCAC9ZPvcHpkwFGIrNhxXwKBCouGWPyOpw6L/4z+T5FlaNwsq2niDEzYubwJhISjZVL8Khtz5ZhndxPxqMLlOnVlakOVjhQ4yWJU6ZyF+5NXY5F/jKtDuHnQsPcGpLMEpKL1LXWBXynJXEHGb1pvYG5PVrmMTL32ZKRGhbo11K9QXkEPWh4dSwbvarhdxfkwP5JEtQBQTkuYfcMNmDVrFvK8junqtFwfIiRK2Yjqv3UqoeAbjpKhVMV6bXxI6OB9mfwvjKT5Fk/uoRMKNUrgvQhStCJybgPO9SZ1adIPHUcFsvp/4fO5/j54aAweGQmvlpN2K+pHkUzxVwk8FbkYR3gFgiLVZ3Sfdpbi7YT/VpvtRWp5hieEUElaftfvtb275+r6S7AqAYgKMAmWHCVoLfhaQB9a4ElYX9vwuTW6mqTYpNkXkBve6lUlgSOSaBnwkXNjpmff2RqdcoMM6jlscH5lIZzlhPewURajN3+dCf5fl83EJZWGLt+fpcORM4yfZvQ18nIUpza9ftReHLUoQMrW17s2CEabnqXk+oQ3eYrjAfTEgVV9SOza6adBFKlqQyJ0c6IidY1pbA876vTOUei0OKpUToWbJ9SDIkDlJFmfuollarAQDd8wezZuvPFGEIBatQp2dr4cXTMuXy1uabjOXx+OllTgZvyqMD9anGmciwLRe5st9hsT3iLfcV4+HYhJW5iruagWgairZ9i/VL9Wkb0f3XBxfqRvpH3VNa1QZEQtpZJLCWi1nHuSYnswqhAvlipDsxlUmxX8GMteJC0bWHnjLNoDf5ZgWwXx8sZXj2xVEE3GT6eCCv20EBBcza9qdPc7KeONGTDioDVJBRESNTrYYooTYwqjKuIIzP/OCEYWBtJZpWyOelTZ+jrdAXzPaBaVqQCMyadenCZx17j3Nwnviic+HTcsD2BCJXfKKFfQPcMVqCM9MVhF7DJtAx6J+Q7tyc9nwZC+VCAAvtceU5C757jd8sTvSsIOZWCCMkJHYUKSacJNUHXj9vG2xDL5cnkuXRwySXPa8t25TwnrwnslBE6EuD3dAgbyGQ1m33AD5s2bhzRN/YZetUHXuOuLZOkdafP8clYcksUVek2zt3kDPvSwlUNu8CuaoMSEFN00GdXIjUpmud/Zng5c5HL5QOqTf653rP4pYQoh7m/kdabex7KeRIeJgcm1NPapTMbWVotlQ56nop2mOqXAllRw6+4noGV6O12WtnMKzmEz3l8E9xiJ1ZjGyEAWTPHozL7TSgK7C/pvnvsFGa7tvL/KvY3z84KTrg2aGEVTdDVJhUN7f4R66tIbARCb9g3poxh25olblGCdfoJUR2IGftmqcgDB9GGBuEJHEUjcEOHp361xsHEb940vUyfcpOKIgJ0d5UIidrGFf7+j+owlr9zONSepPYyMl8AnxqAuz83taiD3t11MFKZVMS71CxMP5w20B/DxiIigX3JrYrDX2s9pksDkfnrEuKgx3FHvZAs4KWwTNblZMJrC38L+0ppy7hF3NB4JsR3xqceid6OCG6OnUtjBeTYz6rk+brBpeHLY/VIDN92E6ayKmjsA0cAofTRmm/DnB+mQLCR061BSGKM24brn22Ssia+bsQs1ikQXqFGXTTodl5H+4s9vk+UchXYw3rHpYNsoooA9ZDGcjuO2JUf0CHTi7TLsj8KLBnaFrSIOT27kHSuY0LWpWGGlvXMVjPE/97eRNkEgP793CuS1HdI+SiUiKKZbYzk48JPpPicX7yu07WwcyfB5ZGwXbok4HHE4WXNVRz6TTWxbTbolsCmpbFq41Acjqt/lRFY3nOqN35lKYA/R1bXQ5dN9zhgKLz9LJU9SOjII36m4Dq5TIBmf14rL42folVwNchQi12b5zUTeINri732ELd8E0WGjUyq+85Br+dmF/GlCjIUo0xI7Gyok8uLISY4D546gHDLXjRNZEhGQe4fgScMTUDEbAoMDAl46rBN+clTr20BFzMQ8YYJyjCLCkJg8uQeOTbUj4FYFSmTppsKUY8nJZ7Pw05mJT6sVRNIFW3HPzZk8yJ7xU61W0dvbi3nz56NcKqOeZQCsg7DBg7e/wLmxfMqN++CWgxd2wn7a1HihpA/pzdQsr58CDEcLbFu8txAuQOE+lLhASey0AKPKYCVp5y7Ph7clCu51BKRHZCqnYa4X4chzGgPLcJQGVV+S9zxiE64fMNmHo1yry3Amx9sZlD8xypa43epkD0p0Laps3Bq5nh1yzkqVw0evqAUxwUIKlcrIzVKI7NIhrIysR5/XMRH7MAZ2NahqE5FN+yw+gNPl7dT2xHqaGUV1+UiKlePnlXPXOKXAKfuhvJ1SAYxbMOCXsJrcNr5tEHLRGTuAZtMnWuk+iggjubBzBgZhv1EdzApL1OgGALf6kwgAr8SCMgxnhFquJAmMhp8h5Of0JZvtEq9PeQ/gOgivjuOojjuAnqYxSEB5HUx4UicmGROOLrnz8SiLiPw0YqKPNLB15Ok+HfHmeY7UbZJUcYclAfW3/xYAH5+B0C6gCFFGJEyCzmakA4NgKBFyFNcn8/Z5k7aG1JtgHYpx7Qmy+8OyvIZZs2YhSebhwuQFf7gmTKAP74RzRziqnYlAPH2rHSWPAJLELmM3phCg+POd8rwxwFL+yOsSniztlDLr0Z0Qxs6YR9paCep+W6Lvaxw0JM7WCjlKgnIIJKOOIKmzblvw6IIDMe4Lbok82Dn7ytpAT9dZ68FPX+t3wLxvzbc7k6gqV64J9Ufwo9jUPZTlanDm7h5OZ8T9FGCSdquVebGG+AZXH7FV9Z5SHRHCPtOOvoGSm22Cy/GYWGXbliCS9EzSt2H8GWW8fQTeD4S72q+NriYpriKTgZ3Xt9GDbD5DaKzB/cbuigeAHLw3wU2HuIZgIgmmk9RnuUk5xWDKr4ncPt61leDMy3xKLDt2Nhi5S/qn7whFWeyBeggiFSYS+1nJQTy1oV5iqmCZjRCUu1GEen4D+fpYW55TUDlvSGaC8LJISwoRefKHiiJ5hEneyQjxGuUAtZsokn7jaKABBrYTMsnCt2/gBE0CCHEjaBOvn0JQYiAbWW35tuPzOUiVngoqlRLSNBWSkkApIAdfP6C5nXFNiw4KDe1ngwyA3+EYd9z4zBDMUnD9vTakzRSfeAGlHuS/NGJozlm3fq4UirCiRZLSC0ukHQq3Sl2gYj8KhBRSZNsMZ0q4/flyFSTA2yL7Kz2K98/2epA6GDRtX47M5C4K/ZyfbYE7SdinijPq/0O7UiQl7WrsFGROSl+6/wZCsaI8QWudqstaTSUX0dXTfS2ZuIUCPMmoC1uUqTtTs5EU9G+FkkJCLNwjXqO56K1ABQMMHtqyrXUI2PhRO6/ibZpsqOWF3kn6i4sU4VSqI/CCtXIEx5cFwQca9Vuojhb76tc0XECqggAHJHxv82ailm3npzE8qbZ6uIt7Pdk4h5CaFKWkDGPCZcLeMSo3UbQHKn5nlLELSwXdxqhLXzcCffhAK3SCV3uA1n+xvJk/mp21Dkz1lFQRrSXyLR+OHIPIoCFY5DpD2W1TSYuyaENzbDOT9mh1CSkxAvlJ3aeISu6TGQRPnvx+K3iaHqFzWQ0zB9TEHn0x/4m5deVIiis+OTmFWq2GtGRTGNkd+inK5bLsmE+SBPV6XbL5lkolGGPfARgDpIkbSdXrMuKwEb9dMGDyBIlJ7S5vNUKSCM2N2qq1Kupu/jvLMqRpimq1KlmDjRu+11FHVrMvxO0CjxSGDPLMpktKXPqUep3znxmUSimyzCbNLZe9/GmSIE1TO1VQr6NWnUa1WkW5XEZPltm6ZxmmL1+GMQalSg+ABDmsLFemp5FnGbKshnKpZNPypwlKaYL65WlkWWaNMHGLCYxBuVJGqVxGnufIssxmNU8S5IZQrdVsVu9yBXlGQB0opSlKqY2OeY+jSYAsy1Gr8RcEYwjltGQXbdTrsjExq9kUV6VySXKWVas15OTys7kpBMn7R4QkTQED1PLMpl2CsVMWbnVhArdYwGV5zrIMSBKkaQlpUkKGHLV6XV4cpzyHnxPyzK64S8slaztkdZ8kCcqVih0VuYwLIH8ERA6/rSTPc9SrGUAk0zHVWhVZXpP3RRcvXkQ1yzA5OYlauYYMGVKksAP8HFmthrxuz0Iql8pIDJDVbHuVymUAQD3LbBu6NiqVyk43BtPTtn3L5TIqFUuK1WrV9SGDNOV3EH5qt17PxS5Tl70dAGq1GrK8hlKphEq5gqxeQ051pKWSCuz4XYd/R5SaxKUIIwAJDNlp+tydMc+pyWpZzdkioVQuue+BPLdHS9gzpRKkSJ2N2YP6rMx1O4WWplIXziwBsot7ajVbRqVcdvdkKJdSpKUSQAb1uh615TDIOU0esrr1E0nCi5mcTbqgkkfDqRstW9ux7ZNlGfK63cWXw+cc7ZnugUlLqNY4ZRtgiJAaIE3t2VT1PEepZGd8avXM9rMkRb1mpzxLaYokKQEmBcG+LmAfYmCsTzN2SjMtARnVUK1N2yn33KDOdmMMatWqLStzuQoNcKVWRW4MSpWyLGAqJSXXn2pIiGDqBNTdK5hKCaUe27eqtQyJSXDp4qXAn7dCV5LU1NQUAGDZsuVtliQiIiIi4v+DqakpzJ07t+Xvhq5FYx2IPM8xNjaGVatW4W9/+xv6+vraLdJ/jMnJSdxyyy1R/jYhyt9eRPnbi06Qn4gwNTWFxYsXt1w5DXTpSCpJEtx8880AgL6+vq40EkaUv72I8rcXUf72ot3yX20ExejuhRMREREREf/ViCQVEREREdGx6FqS6unpwfbt29HT09NuUV4XovztRZS/vYjytxfdJH9XLpyIiIiIiPjfQNeOpCIiIiIi/vsRSSoiIiIiomMRSSoiIiIiomMRSSoiIiIiomPRlST1ne98B2984xsxa9YsbNiwAb/73e/aLVJTfOUrXwmS0xpjcPvtt8vvV65cwbZt23DTTTdhzpw5+OhHP4rTp0+3Td5f//rX+MAHPoDFixfDGINnn302+J2I8OUvfxlDQ0Po7e3FyMgIXnvtteCac+fO4f7770dfXx/6+/vx6U9/GhcvXuwI+T/xiU80tMemTZs6Rv4dO3bg7W9/O2688UYsXLgQH/rQhzA2NhZcMxObOXnyJN7//vdj9uzZWLhwIR599FGbn7AD5H/ve9/b0AYPPvhgR8j/5JNPYu3atbLBdXh4GM8//7z83sm6n4n8naz7q4K6DDt37qRKpULf+9736JVXXqGtW7dSf38/nT59ut2iNWD79u305je/mU6dOiX//vnPf8rvDz74IN1yyy20Z88eOnjwIL3jHe+gd77znW2Td/fu3fTFL36RnnnmGQJAu3btCn7/+te/TnPnzqVnn32W/vCHP9AHP/hBWrZsGV2+fFmu2bRpE61bt45eeukl+s1vfkMrVqyg++67ryPk37JlC23atCloj3PnzgXXtFP+u+++m5566ik6duwYHTlyhN73vvfRkiVL6OLFi3LNtWwmyzJavXo1jYyM0OHDh2n37t00MDBAjz/+eEfI/573vIe2bt0atMGFCxc6Qv6f/OQn9LOf/Yz+/Oc/09jYGD3xxBNULpfp2LFjRNTZup+J/J2s+6uh60jqjjvuoG3btsnf9XqdFi9eTDt27GijVM2xfft2WrduXdPfzp8/T+VymX70ox/Jd3/84x8JAI2Ojl4nCVuj6OTzPKfBwUH6xje+Id+dP3+eenp66Ac/+AEREb366qsEgH7/+9/LNc8//zwZY+gf//jHdZOdqFF+IktS99xzT8t7Okl+IqIzZ84QANq/fz8Rzcxmdu/eTUmS0MTEhFzz5JNPUl9fH01PT7dVfiLrKD/72c+2vKeT5CcimjdvHn33u9/tOt0zWH6i7tM9o6um+6rVKg4dOoSRkRH5LkkSjIyMYHR0tI2StcZrr72GxYsXY/ny5bj//vtx8uRJAMChQ4dQq9WCutx+++1YsmRJR9ZlfHwcExMTgbxz587Fhg0bRN7R0VH09/fjbW97m1wzMjKCJElw4MCB6y5zM+zbtw8LFy7EypUr8dBDD+Hs2bPyW6fJf+HCBQDA/PnzAczMZkZHR7FmzRosWrRIrrn77rsxOTmJV1555TpK3yg/4/vf/z4GBgawevVqPP7447h06ZL81iny1+t17Ny5E//+978xPDzcdbovys/oBt0X0VUJZv/1r3+hXq8HSgSARYsW4U9/+lObpGqNDRs24Omnn8bKlStx6tQpfPWrX8W73/1uHDt2DBMTE6hUKujv7w/uWbRoESYmJtoj8FXAMjXTPf82MTGBhQsXBr+XSiXMnz+/I+q0adMmfOQjH8GyZctw4sQJPPHEE9i8eTNGR0eRpmlHyZ/nOT73uc/hXe96F1avXg0AM7KZiYmJpm3Ev10vNJMfAD7+8Y9j6dKlWLx4MY4ePYovfOELGBsbwzPPPNMR8r/88ssYHh7GlStXMGfOHOzatQurVq3CkSNHukL3reQHOl/3rdBVJNVt2Lx5s3xeu3YtNmzYgKVLl+KHP/whent72yjZ/yY+9rGPyec1a9Zg7dq1uPXWW7Fv3z5s3LixjZI1Ytu2bTh27BhefPHFdovyutBK/gceeEA+r1mzBkNDQ9i4cSNOnDiBW2+99XqL2YCVK1fiyJEjuHDhAn784x9jy5Yt2L9/f7vFmjFayb9q1aqO130rdNV038DAANI0bVhRc/r0aQwODrZJqpmjv78fb3rTm3D8+HEMDg6iWq3i/PnzwTWdWheW6Wq6HxwcxJkzZ4LfsyzDuXPnOrJOy5cvx8DAAI4fPw6gc+R/+OGH8dOf/hQvvPAC3vCGN8j3M7GZwcHBpm3Ev10PtJK/GTZs2AAAQRu0U/5KpYIVK1Zg/fr12LFjB9atW4dvfetbXaP7VvI3Q6fpvhW6iqQqlQrWr1+PPXv2yHd5nmPPnj3BvGun4uLFizhx4gSGhoawfv16lMvloC5jY2M4efJkR9Zl2bJlGBwcDOSdnJzEgQMHRN7h4WGcP38ehw4dkmv27t2LPM+lQ3QS/v73v+Ps2bMYGhoC0H75iQgPP/wwdu3ahb1792LZsmXB7zOxmeHhYbz88ssB2f7yl79EX1+fTPu0S/5mOHLkCAAEbdAu+Zshz3NMT093vO5bgeVvhk7XvaBtSzZeJ3bu3Ek9PT309NNP06uvvkoPPPAA9ff3BytSOgWPPPII7du3j8bHx+m3v/0tjYyM0MDAAJ05c4aI7JLWJUuW0N69e+ngwYM0PDxMw8PDbZN3amqKDh8+TIcPHyYA9M1vfpMOHz5Mf/3rX4nILkHv7++n5557jo4ePUr33HNP0yXob3nLW+jAgQP04osv0m233XbdlnBfTf6pqSn6/Oc/T6OjozQ+Pk6/+tWv6K1vfSvddtttdOXKlY6Q/6GHHqK5c+fSvn37gmXCly5dkmuuZTO8jPiuu+6iI0eO0M9//nNasGDBdVlGfC35jx8/Tl/72tfo4MGDND4+Ts899xwtX76c7rzzzo6Q/7HHHqP9+/fT+Pg4HT16lB577DEyxtAvfvELIups3V9L/k7X/dXQdSRFRPTtb3+blixZQpVKhe644w566aWX2i1SU9x77700NDRElUqFbr75Zrr33nvp+PHj8vvly5fpM5/5DM2bN49mz55NH/7wh+nUqVNtk/eFF14gAA3/tmzZQkR2GfqXvvQlWrRoEfX09NDGjRtpbGwsKOPs2bN033330Zw5c6ivr48++clP0tTUVNvlv3TpEt111120YMECKpfLtHTpUtq6dWtDcNNO+ZvJDoCeeuopuWYmNvOXv/yFNm/eTL29vTQwMECPPPII1Wq1tst/8uRJuvPOO2n+/PnU09NDK1asoEcffTTYq9NO+T/1qU/R0qVLqVKp0IIFC2jjxo1CUESdrftryd/pur8a4lEdEREREREdi656JxURERER8b+FSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2LSFIRERERER2L/wN6ORkOA+pWfAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -780,13 +755,13 @@ } ], "source": [ - "test_image = test_dataset[np.random.randint(0, len(test_captchas_dataset))]['image']\n", + "test_image = test_captchas_dataset[np.random.randint(0, len(test_captchas_dataset))]['image']\n", "plt.imshow(test_image.permute(1, 2, 0))" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 132, "id": "fc2b6ed2", "metadata": {}, "outputs": [ @@ -796,7 +771,7 @@ "torch.Size([3, 384, 384])" ] }, - "execution_count": 41, + "execution_count": 132, "metadata": {}, "output_type": "execute_result" } @@ -807,7 +782,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 133, "id": "cf74bdfb", "metadata": {}, "outputs": [ @@ -817,7 +792,7 @@ "PreTrainedTokenizerFast(name_or_path='microsoft/trocr-base-printed', vocab_size=50265, model_max_len=512, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'eos_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'unk_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'sep_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'pad_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'cls_token': AddedToken(\"\", rstrip=False, lstrip=False, single_word=False, normalized=True), 'mask_token': AddedToken(\"\", rstrip=False, lstrip=True, single_word=False, normalized=True)})" ] }, - "execution_count": 60, + "execution_count": 133, "metadata": {}, "output_type": "execute_result" } @@ -828,7 +803,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 168, "id": "a668d382", "metadata": {}, "outputs": [ @@ -847,17 +822,17 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 169, "id": "35120ec7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['QKFG3UJ NYTMXOK6']" + "['KOSQ42RL3']" ] }, - "execution_count": 91, + "execution_count": 169, "metadata": {}, "output_type": "execute_result" } @@ -866,6 +841,14 @@ "generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)\n", "generated_text" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a3770814", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {