-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimb_main.py
181 lines (157 loc) · 6.15 KB
/
imb_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import argparse
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
# from torchvision.models import resnet34
from dataset import DatasetGenerator
from models import *
from losses import *
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
import random
from utils import *
from data.cifar import ImbCIFAR10, ImbCIFAR100
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from norm import pNorm
parser = argparse.ArgumentParser(description='Robust loss for learning with noisy labels')
parser.add_argument('--dataset', type=str, default="CIFAR100", metavar='DATA', help='Dataset name (default: CIFAR10)')
parser.add_argument('--root', type=str, default="../database/", help='the data root')
parser.add_argument('--gpus', type=str, default='1')
# learning settings
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--num_workers', type=int, default=10, help='the number of worker for loading data')
parser.add_argument('--grad_bound', type=float, default=5., help='the gradient norm bound')
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--imb_type', default="exp", type=str, help='imbalance type')
parser.add_argument('--imb_factor', default=0.01, type=float, help='imbalance factor')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
gpu_ids = ['1']
device = 'cuda' if torch.cuda.is_available() and len(gpu_ids) > 0 else 'cpu'
print('We are using', device)
seed = 123
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
print(args)
def evaluate(loader, model, softsort=None, vector=None):
model.eval()
correct = 0.
total = 0.
for x, y in loader:
x, y = x.to(device), y.to(device)
z = model(x)
if softsort:
out = softsort(z)
# out = sinkhorn(out)
probs = out.permute(0, 2, 1).matmul(vector).squeeze(-1)
else:
probs = F.softmax(z, dim=1)
pred = torch.argmax(probs, 1)
total += y.size(0)
correct += (pred==y).sum().item()
acc = float(correct) / float(total)
return acc
if args.dataset == 'CIFAR10':
in_channels = 3
num_classes = 10
weight_decay = 1e-4
lr = 0.01
epochs=120
is_norm = False
tau = 0.5
p=0.1
lamb = 1
rho = 1.03
freq = 1
elif args.dataset == 'CIFAR100':
in_channels = 3
num_classes = 100
weight_decay = 1e-5
lr = 0.1
epochs=200
is_norm = True
tau = 0.5
p = 0.01
lamb = 1
rho = 1.02
freq = 1
else:
raise ValueError('Invalid value {}'.format(args.dataset))
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset == 'CIFAR10':
train_dataset = ImbCIFAR10(root='../database/CIFAR10', imb_type=args.imb_type, imb_factor=args.imb_factor, train=True, download=True, transform=transform_train, seed=args.seed)
val_dataset = datasets.CIFAR10(root='../database/CIFAR10', train=False, download=True, transform=transform_val)
elif args.dataset == 'CIFAR100':
train_dataset = ImbCIFAR100(root='../database/CIFAR100', imb_type=args.imb_type, imb_factor=args.imb_factor, train=True, download=True, transform=transform_train, seed=args.seed)
val_dataset = datasets.CIFAR100(root='../database/CIFAR100', train=False, download=True, transform=transform_val)
else:
raise ValueError('Not implemented!')
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True
)
test_loader = loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True
)
path = './results/' + args.dataset +'/' + args.imb_type + '/' +str(args.imb_factor)
if not os.path.exists(path):
os.makedirs(path)
times = 1
criterions = [nn.CrossEntropyLoss()]
labels = ['CE+SR']
for criterion, label in zip(criterions, labels):
if not label.endswith('+SR'):
is_norm = False
accs = np.zeros((times, epochs))
for i in range(times):
if args.dataset == 'MNIST':
model = CNN(type=args.dataset, show=False, norm=False).to(device)
elif args.dataset == 'CIFAR10':
model = CNN(type=args.dataset, show=False, norm=False).to(device)
else:
model = ResNet34(num_classes=100).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=0.0)
norm = pNorm(p=p)
for ep in range(epochs):
model.train()
total_loss = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
model.zero_grad()
optimizer.zero_grad()
out = model(batch_x)
if label.endswith('+SR'):
if is_norm:
out = F.normalize(out, dim=1)
loss = criterion(out / tau, batch_y) + lamb * norm(out / tau)
else:
loss = criterion(out, batch_y)
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_bound)
optimizer.step()
total_loss += loss.item()
scheduler.step()
test_acc = evaluate(test_loader, model)
accs[i, ep] = test_acc
log('Iter {}: loss={:.4f}, test_acc={:.4f}'.format(ep, total_loss, test_acc))
if (ep + 1) % freq == 0:
lamb = lamb * rho
save_accs(path, label, accs)
print('The validation accuracy is %.2f' % (100 * test_acc))