-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParaTuGames.wl
1080 lines (882 loc) · 45.2 KB
/
ParaTuGames.wl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ::Package:: *)
(* :Title: ParaTuGames.m
: Release Date : 02.05.2023
*)
Off[Needs::nocont]
(* :Context: TUG`ParaTuGames` *)
(* :Summary:
This package provides some extensions to the package TuGame for
modeling and calculating solutions and properties for cooperative games with
transferable utilities in parallel.
*)
(* :Author:
Holger Ingmar Meinhardt
Department of Economics
University of Karlsruhe (KIT)
*)
(* :Package Version: 1.0.4 *)
(*
:Mathematica Version: 12.x, 13.x
*)
(*:Keywords:
Dual Game, Superadditive Game, Convex Game, Strong Convex Game, Average-Convex Game,
Kernel, balancing Maximum Excesses.
*)
(* :Sources:
Theo Driessen, Cooperative Games, Solutions and Applications, Kluwer Academic
Publishers, Dordrecht, 1988.
E. Inarra and J. Usategui, The Shapley value and average convex games,
IJGT, 22, 13-29, 1993.
M. Maschler, The Bargaining Set, Kernel and Nucleolus, Handbook of Game
Theory, Chapter 18, 591-647, 1992.
M. Maschler, B. Peleg and L.S. Shapley, Geometric Properties of Kernel,
Nucleolus and related Concepts, in Mathematics of Operations Research,
Vol4 Nov. 1979, p. 303-338.
J-E. Martinez-Legaz, Dual Representation of Cooperative Games based on
Fenchel-Moreau Conjugation, Optimization, pp. 291-319, Vol. 36, 1996.
H. I. Meinhardt, An LP approach to compute the pre-kernel for cooperative games,
Computers and Operation Research, Vol 33/2 pp. 535-557,2006.
H. I. Meinhardt, The Pre-Kernel as a Tractable Solution for Cooperative Games:
An Exercise in Algorithmic Game Theory, forthcoming in: Theory and Decision Library C,
Springer Publisher, Heidelberg. pp. 1-247, 2013.
A. Meseguer-Artola, Using the Indirect Function to characterize the Kernel of a TU-Game,
Departament d'Economia i d'Historia Economica, 1997.
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
R.E. Stearns, Convergent Transfer Schemes for N-Person Games,
Transaction American Mathematical Society, 449-459, 1968.
Hal Varian (Ed.). Economics and Financial Modeling with Mathematica,
Springer, 1992.
*)
(*
:History:
See ChangeLog.
*)
Needs["TUG`coop`CooperativeGames`"];
Needs["TUG`TuGames`"];
Needs["TUG`TuGamesAux`"];
Which[$OperatingSystem === "Unix", Needs["TUG`vertex`VertexEnum`"],
$OperatingSystem === "Windows", Needs["TUG`vertex`VertexEnum`"],
True, Needs["VertexEnum`"]
];
ParaAntiPreKernel::usage =
"ParaAntiPreKernel[game,payoff,options] computes an anti-pre-kernel solution by relying on
the anti of Algorithm 7.2.1 of Meinhardt (2013).";
ParaAntiPreKernelQ::usage =
"ParaAntiPreKernelQ[game,payoff,opts] checks whether the vector 'payoff' is an element of the anti-pre-kernel.
ParaAntiPreKernelQ checks also the efficiency condition in contrast to the function MinExcessBalanced.";
ParaAvConvexQ::usage =
"ParaAvConvexQ[game] checks the average-convexity of the game.
It returns 'True' or 'False'. Calling the function with the option will return
the sum of the marginal contributions for each coalition S w.r.t. to each
superset S union {j}. These values must be non-negative.";
ParaConvexQ::usage =
"ParaConvexQ[game] checks if the Tu-game is convex. It returns the value 'True' or 'False'.";
ParaSuperAdditiveQ::usage =
"ParaSuperAdditiveQ[game] checks if a game is superadditive.";
ParaPreKernel::usage =
"ParaPreKernel[game,payoff,options] computes a pre-kernel element by iteratively solving
a system of linear equations in parallel mode. (cf. Algorithm 8.2.1 of Meinhardt (2013))";
ParaPreKernelQ::usage =
"ParaPreKernelQ[game,payoff,options] checks whether the (pre-)imputation 'payoff' is an element of the pre-kernel.
ParaPreKernelQ checks also the efficiency condition in contrast to the function MaxExcessBalanced.";
ParaPreKernelElement::usage =
"ParaPreKernelElement[game,payoff,options] computes a pre-kernel element by iteratively
determining a direction of improvement in parallel mode. The iteration process stops whenever the
direction of improvement is equal to the null vector. (cf. Algorithm 8.3.1 of Meinhardt (2013)).";
ParaModiclus::usage =
"Modiclus[game,opts] computes the modiclus as the projection of the pre-nucleolus from the
dual cover game onto the player set T of the original game. Do not confound this command
with the function ModifiedNucleolus[]. The algorithm is based on a method by Peleg to translate
the definition of the Nucleolus into a sequence of linear programs on the pre-imputation set.
A simplex method is now used to increase its computational reliability. For its default value
'False' the function Kernel[game] will be invoked to avoid infinite loops. To increases the
computational reliability in cases of numerical issues the following methods can be used:
RevisedSimplex, CLP, GUROBI, MOSEK, or Automatic. Default setting is Automatic. This option
must be used in connection with CallMaximize->False. For getting more precise results one
can even set Method->{InteriorPoint, Tolerance->10^-10}.";
ParaIsModiclusQ::usage =
"IsModiclusQ[game,payoff,opts] checks whether the provided payoff vector is the modiclus of the game.
For its default value 'False' the function Kernel[game] will be invoked to avoid infinite loops.
To increases the computational reliability in cases of numerical issues the following methods can be used:
RevisedSimplex, CLP, GUROBI, MOSEK, or Automatic. Default setting is Automatic. This option
must be used in connection with CallMaximize->False. For getting more precise results one
can even set Method->{InteriorPoint, Tolerance->10^-10}.";
ParaModPreKernel::usage =
"ParaModPreKernel[game] computes a modified pre-kernel element as the solution
of the pre-kernel from the excess comparability cover game.
Do not confound this command with the function ModifiedKernel[].";
ParaIsModPreKernelQ::usage =
"ParaIsModPreKernelQ[game,payoff] checks whether the provided payoff vector is a modified
pre-kernel element of the game.";
ParaProperModPreKernel::usage =
"ParaProperModPreKernel[game] computes a proper modified pre-kernel element as the projection
of the pre-kernel from the dual cover game onto the player set T of the original game.
Do not confound this command with the function ModifiedKernel[].";
ParaIsProperModPreKernelQ::usage =
"ParaIsProperModPreKernelQ[game,payoff] checks whether the provided payoff vector is a proper modified
pre-kernel element of the game.";
ParaSMPreKernel::usage =
"ParaSMPreKernel[game] computes the simplified modified pre-kernel of the game.";
ParaIsSMPreKernelQ::usage =
"ParaIsSMPreKernelQ[game,payoff] checks if payoff is the simplified modified pre-kernel of the game.";
ParaBestCoalitions::usage =
"ParaBestCoalitions[game,payoff] computes the set of most effective coalitions that supports the claim of
player i against j, for all possible pair of players in parallel mode.";
ParaSetsToVec::usage =
"ParaSetsToVec[bestcoal,T,options] converts the set of most effective coalitions to a set of vectors
of length T in parallel mode. A vector reflects how the best arguments are distributed between a
bargaining pair (i,j) at a proposal. A plus sign indicates that the arguments are skewed in favor
of the player i, zero means that the arguments are balanced, and a minus sign indicates that the
arguments are skewed in favor of the player j. See also Meinhardt (2013).";
ParaDirectionOfImprovement::usage =
"ParaDirectionOfImprovement[game, payoff, options] determines a vector of improvement in order reduce
the maximum surpluses in parallel mode.";
ParaMaxSurplus::usage =
"ParaMaxSurplus[game,pi,pj,payoff] calculates the maximum surplus of player i over j with respect to the
imputation 'payoff' in parallel mode. Note that the efficiency condition will not be checked.";
ParaGameBasis::usage =
"ParaGameBasis[T] computes the basis of a |T|-person game in parallel.";
ParaCharacteristicValues::usage =
"ParaCharacteristicValues[unancrd_List,T,opts] computes the coalitional values from the vector of
unanimity coordinates in parallel.";
ParaProductGame::usage =
"ParaProductGame[wghs] computes from a weights vector the corresponding product game";
Options[ParaAntiPreKernel] = Sort[Options[PreKernel]];
Options[ParaAntiPreKernelQ] = Sort[Options[PreKernelQ]];
(* Options[ParaAvConvexQ] = Options[AverageConvexQ]; *)
Options[ParaBestCoalitions] = Sort[Options[BestCoalitions]];
Options[ParaSetsToVec] = Sort[Options[SetsToVec]];
Options[ParaPreKernelElement] = Sort[Options[PreKernelElement]];
Options[ParaDirectionOfImprovement] = Sort[Options[DirectionOfImprovement]];
Options[ParaPreKernel] = Sort[Options[PreKernel]];
Options[ParaPreKernelQ] = Sort[Options[PreKernelQ]];
Options[ParaMaxExcessBalanced] = Sort[Options[MaxExcessBalanced]];
Options[ParaMinExcessBalanced] = Sort[Options[MinExcessBalanced]];
Options[ParaExcessPayoff] = Sort[Options[ExcessPayoff]];
Options[ParaModPreKernel] = Sort[Options[ModPreKernel]];
Options[ParaProperModPreKernel] = Sort[Options[ProperModPreKernel]];
Options[ParaModiclus] = Sort[Options[Modiclus]];
Options[ParaIsModiclusQ] = Sort[Options[IsModiclusQ]];
DistributeDefinitions[Options[ParaPreKernel] = Sort[Options[PreKernel]]];
(* DistributeDefinitions[Options[ParaAvConvexQ] = Options[AverageConvexQ]]; *)
DistributeDefinitions[Options[ParaBestCoalitions] = Sort[Options[BestCoalitions]]];
DistributeDefinitions[Options[ParaPreKernelElement] = Sort[Options[PreKernelElement]]];
DistributeDefinitions[Options[ParaDirectionOfImprovement] = Sort[Options[DirectionOfImprovement]]];
DistributeDefinitions[Options[ParaPreKernel] = Sort[Options[PreKernel]]];
DistributeDefinitions[Options[ParaExcessPayoff] = Sort[Options[ExcessPayoff]]];
DistributeDefinitions[Options[ParaModPreKernel] = Sort[Options[ModPreKernel]]];
DistributeDefinitions[Options[ParaProperModPreKernel] = Sort[Options[ProperModPreKernel]]];
SetSharedFunction[ParaMaxSurplus];
SetSharedFunction[ParaAntiSurplus];
SetSharedFunction[ParaTIJsets];
SetSharedFunction[ParaW];
(* :Error Messages: *)
(* :One Argument: *)
ParaAntiPreKernel::argerr="One argument was expected.";
ParaAvConvexQ::argerr="One argument was expected.";
ParaConvexQ::argerr="One argument was expected.";
ParaGameBasis::argerr="One argument was expected.";
ParaModiclus::argerr="One argument was expected.";
ParaModPreKernel::argerr="One argument was expected.";
ParaPreKernelElement::argerr="One argument was expected.";
ParaPreKernel::argerr="One argument was expected.";
ParaProperModPreKernel::argerr="One argument was expected.";
SMPreKernel::argerr="One argument was expected.";
ParaSuperAdditiveQ::argerr="One argument was expected.";
(* :Two Arguments: *)
ParaAntiPreKernelQ::argerr="Two arguments were expected.";
ParaBestCoalitions::argerr="Two arguments were expected.";
ParaCharacteristicValues::argerr="Two arguments were expected.";
ParaDirectionOfImprovement::argerr="Two arguments were expected.";
ParaExcessPayoff::argerr="Two arguments were expected.";
ParaIsModiclusQ::argerr="Two arguments were expected.";
ParaIsModPreKernelQ::argerr="Two arguments were expected.";
ParaIsProperModPreKernelQ::argerr="Two arguments were expected.";
ParaIsSMPreKernelQ::argerr="Two arguments were expected.";
ParaMaxExcessBalanced::argerr="Two arguments were expected.";
ParaMinExcessBalanced::argerr="Two arguments were expected.";
ParaPreKernelQ::argerr="Two arguments were expected.";
ParaSetsToVec::argerr="Two arguments were expected.";
(* :Four Arguments: *)
ParaMaxSurplus::argerr="Four arguments were expected.";
ParaAntiSurplus::argerr="Four arguments were expected.";
(* Based on Algorithm 8.2.1 of Meinhardt (2013) *)
(* User interface to compute a pre-kernel element. *)
ParaPreKernel[args___]:=(Message[ParaPreKernel::argerr];$Failed);
ParaPreKernel[game_,opts:OptionsPattern[ParaPreKernel]] :=
Block[{pay},
pay = Table[v[T],{Length[T]}]/Length[T];
ParaPreKernel[game,pay,opts]
];
ParaPreKernel[game_, payoff_List, opts:OptionsPattern[ParaPreKernel]] := Block[{dimpay,rclim},
dimpay = Dimensions[payoff];
rclim=If[Length[T] > 11,1024,256];
Which[Length[dimpay]===2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), Block[{$RecursionLimit = rclim}, ParaPreKernelAlg2[game,#, opts]&/@ payoff //Union],
True, ParaPrintRemark[payoff]],
Length[dimpay]===1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), Block[{$RecursionLimit = rclim},ParaPreKernelAlg2[game, payoff, opts]],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]
]
];
(* Main Functions *)
ParaPreKernelAlg2[game_, payoff_List, opts:OptionsPattern[ParaPreKernel]] :=
Block[{rattol,sil, smc, meff, matE, vlis, alpv},
sil = OptionValue[Silent];
smc = OptionValue[SmallestCardinality];
rattol=OptionValue[RationalTol];
meff = ParaBestCoalitions[game, payoff, MaximumSurpluses -> False, SmallestCardinality -> smc];
matE = -ParaSetsToVec[meff, T, EffVector -> True];
vlis = ParallelMap[MapThread[v[#1] &, {#}] &, meff, Method -> "CoarsestGrained",DistributedContexts -> None];
alpv = ParallelMap[ReplaceAll[#, List -> Subtract] &, vlis, Method -> "CoarsestGrained",DistributedContexts -> None];
PrependTo[alpv,v[T]];
err=Norm[matE.payoff+alpv]^2;
If[LessEqual[err,1.5*rattol],Return[payoff],
xvec=-PseudoInverse[matE].alpv;
ParaPreKernelAlg2[game,xvec,opts]]
];
(* Based on Algorithm 8.3.1 of Meinhardt (2013) *)
(* User interface to compute a pre-kernel element. *)
ParaPreKernelElement[args___]:=(Message[ParaPreKernelElement::argerr];$Failed);
ParaPreKernelElement[game_,opts:OptionsPattern[ParaPreKernelElement]] :=
Block[{pay},
pay = Table[v[T],{Length[T]}]/Length[T];
ParaPreKernelElement[game,pay,opts]
];
ParaPreKernelElement[game_, payoff_List, opts:OptionsPattern[ParaPreKernelElement]] := Block[{dimpay,rclim},
dimpay = Dimensions[payoff];
rclim=If[Length[T] > 11,1024,256];
Which[Length[dimpay]===2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), Block[{$RecursionLimit = rclim}, ParaPreKernelAlg3[game,#, opts]&/@ payoff //Union],
True, ParaPrintRemark[payoff]],
Length[dimpay]===1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), Block[{$RecursionLimit = rclim},ParaPreKernelAlg3[game, payoff, opts]],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]
]
];
(* Main Functions *)
ParaPreKernelAlg3[game_, payoff_List, opts:OptionsPattern[ParaPreKernelElement]] :=
Block[{sil, smc, optst, doi, optstep, itpay,tol,brc,pinv},
sil = OptionValue[Silent];
smc = OptionValue[SmallestCardinality];
optst = OptionValue[CalcStepSize];
pinv = OptionValue[PseudoInv];
rattol=OptionValue[RationalTol];
{optstep, doi} = ParaDirectionOfImprovement[game, payoff, MaximumSurpluses -> False, CalcStepSize -> optst, PseudoInv->pinv,Silent -> sil, SmallestCardinality -> smc];
itpay = payoff + optstep*doi;
If[SameQ[sil,False],
Print["doi=", doi];
Print["optstep=", optstep];
Print["itpay=", itpay];,
True];
If[Depth[itpay]!=2,Return[payoff],True];
tol=Table[1.5*rattol,{Length[T]}];
brc=Apply[And,MapThread[LessEqual[#1,#2] &,{Abs[doi],tol}]];
If[SameQ[brc,True], Rationalize[itpay,rattol], ParaPreKernelAlg3[game, Rationalize[itpay,rattol], CalcStepSize -> optst, Silent -> sil, SmallestCardinality -> smc]]
];
ParaDirectionOfImprovement[args___]:=(Message[ParaDirectionOfImprovement::argerr];$Failed);
ParaDirectionOfImprovement[game_, payoff_List, opts:OptionsPattern[ParaDirectionOfImprovement]] :=
Module[{sil, smc, optst, meff, matE, mopt, varpay, mex, submex, setpay, grmex, doi, optstep,pinv},
sil = OptionValue[Silent];
smc = OptionValue[SmallestCardinality];
optst = OptionValue[CalcStepSize];
pinv = OptionValue[PseudoInv];
mopt= OptionValue[MaximumSurpluses];
{meff, mex} = ParaBestCoalitions[game, payoff, AntiPreKernel -> False, MaximumSurpluses -> True, SmallestCardinality -> smc];
matE = -ParaSetsToVec[meff, T, EffVector -> True];
submex = ParallelMap[{1, -1}.# &, mex];
varpay = x[#] & /@ T;
setpay = MapThread[Rule, {varpay, payoff}];
grmex = v[T] - Total[x[#] & /@ T] /. setpay;
PrependTo[submex, grmex];
If[SameQ[sil,False], Print["submex=", submex],True];
If[SameQ[pinv,False],
doi = LeastSquares[matE,-submex,Tolerance -> 10^(-10)];,
doi = -PseudoInverse[matE].submex];
optstep = If[SameQ[optst,True], ParaDelStar[doi, matE, submex], 1];
If[SameQ[mopt,False],{optstep,doi},{optstep,doi,mex}]
];
ParaDelStar[doi_List, matE_List, smex_List]:=
Block[{edvec,nrsq,tol},
edvec = matE.doi;
nrsq =Norm[edvec]^2;
tol=1.5*10^(-12);
If[LessEqual[Abs[nrsq],tol], 0, - smex.edvec/nrsq]
];
(* Computing the anti pre-kernel *)
ParaAntiPreKernel[args___]:=(Message[ParaAntiPreKernel::argerr];$Failed);
ParaAntiPreKernel[game_,opts:OptionsPattern[ParaPreKernel]] :=
Block[{pay},
pay = ParallelTable[v[T],{Length[T]}]/Length[T];
ParaAntiPreKernel[game,pay,opts]
];
ParaAntiPreKernel[game_, payoff_List, opts:OptionsPattern[ParaPreKernel]] := Block[{dimpay,rclim},
dimpay = Dimensions[payoff];
rclim=If[Length[T] > 11,1024,256];
Which[Length[dimpay]===2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), Block[{$RecursionLimit = rclim}, ParaAntiPreKernelAlg2[game,#, opts]&/@ payoff //Union],
True, ParaPrintRemark[payoff]],
Length[dimpay]===1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), Block[{$RecursionLimit = rclim},ParaAntiPreKernelAlg2[game, payoff, opts]],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]
]
];
ParaAntiPreKernelAlg2[game_, payoff_List, opts:OptionsPattern[ParaPreKernel]] :=
Block[{sil, smc, meff, matE, vlis, alpv,err},
sil = OptionValue[Silent];
smc = OptionValue[SmallestCardinality];
meff = ParaBestCoalitions[game, payoff, AntiPreKernel -> True, MaximumSurpluses -> False, SmallestCardinality -> smc];
matE = -ParaSetsToVec[meff, T, EffVector -> True];
Parallelize[vlis = MapThread[v[#1] &, {#}] &/@ meff;
alpv = ReplaceAll[#, List -> Subtract] & /@ vlis, Method -> "CoarsestGrained",DistributedContexts -> None];
PrependTo[alpv,v[T]];
err=Norm[matE.payoff+alpv]^2;
If[LessEqual[err,1.5*10^(-12)],Return[payoff],
xvec=-PseudoInverse[matE].alpv;
ParaAntiPreKernelAlg2[game,xvec,opts]]
];
(* Section Modiclus, Modified and Proper Modified Pre-Kernel *)
ParaModiclus[args___]:=(Message[ParaModiclus::argerr];$Failed);
ParaModiclus[game_,opts:OptionsPattern[ParaModiclus]] :=
Block[{mthd,ovls, dcvals, lt, t0, t1, DCGame, mdnc},
mthd=OptionValue[Method];
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = ParaDualCover[game];
lt = Length[T];
t1 = Range[2*lt];
DCGame = DefineGame[t1, dcvals];
mdnc = PreNucleolus[DCGame,Method->mthd];
DefineGame[t0, ovls]; (* Redefine the original game. *)
Take[mdnc, lt]
];
ParaIsModiclusQ[args___]:=(Message[ParaIsModiclusQ::argerr];$Failed);
ParaIsModiclusQ[game_,payoff_List,opts:OptionsPattern[ParaIsModiclusQ]] :=
Block[{ovls, dcvals, lt, t0, t1, dpay, DCGame, bcQ},
mthd=OptionValue[Method];
If[SameQ[Total[payoff] - v[T], 0] && Apply[And,NumericQ[#] &/@ payoff], True, Return[False]];
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = ParaDualCover[game];
lt = Length[T];
t1 = Range[2*lt];
DCGame = DefineGame[t1, dcvals];
dpay= Flatten[{payoff,payoff}];
bcQ = BalancedCollectionQ[DCGame,dpay,Method->mthd];
DefineGame[t0, ovls]; (* Redefine the original game. *)
Return[bcQ]
]
ParaModPreKernel[args___]:=(Message[ParaModPreKernel::argerr];$Failed);
ParaModPreKernel[game_,opts:OptionsPattern[ParaModPreKernel]] :=
Module[{pay},
pay = Table[v[T],{Length[T]}]/Length[T];
ParaModPreKernel[game,pay,opts]
];
ParaModPreKernel[game_, payoff_List, opts:OptionsPattern[ParaModPreKernel]] := Module[{dimpay,rclim},
dimpay = Dimensions[payoff];
rclim=If[Length[T] > 11,1024,512];
Which[Length[dimpay]===2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), Block[{$RecursionLimit = rclim}, ParaFuncModPreKernel[game,#, opts]&/@ payoff //Union],
True, PrintRemark[payoff]],
Length[dimpay]===1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), Block[{$RecursionLimit = rclim},ParaFuncModPreKernel[game, payoff, opts]],
True, PrintRemark[payoff]],
True, PrintRemark[payoff]
]
];
(* Main Functions *)
ParaFuncModPreKernel[game_, payoff_List, opts:OptionsPattern[ParaModPreKernel]] :=
Module[{sil, smc, optst, pinv, ovls, t0, dcvals, dcgame, doi, optstep, itpay,tol,brc},
sil = OptionValue[Silent];
smc = OptionValue[SmallestCardinality];
optst = OptionValue[CalcStepSize];
pinv = OptionValue[PseudoInv];
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = ParaECCoverGame[game,payoff];
dcgame = DefineGame[t0, dcvals];
{optstep, doi} = ParaDirectionOfImprovement[dcgame, payoff, MaximumSurpluses -> False, CalcStepSize -> optst, PseudoInv->pinv,Silent -> sil, SmallestCardinality -> smc];
If[SameQ[sil,False], Print["doi=", doi], True];
If[SameQ[sil,False], Print["optstep=", optstep], True];
itpay = payoff + optstep*doi;
If[SameQ[sil,False], Print["itpay=", itpay], True];
If[Depth[itpay]!=2,Return[payoff],True];
tol=Table[1.5*10^(-6),{Length[T]}];
brc=Apply[And,MapThread[LessEqual[#1,#2] &,{Abs[doi],tol}]];
DefineGame[t0, ovls];
If[SameQ[brc,True], Rationalize[N[itpay],10^(-6)], ParaFuncModPreKernel[game, itpay, CalcStepSize -> optst, Silent -> sil, SmallestCardinality -> smc]]
];
ParaECCoverGame[game_, payoff_] :=
Module[{exc, mexc, dv, sx, df, assg, dmexc, pvals, dvals, vals},
exc = ParaExcessPayoff[game, payoff];
mexc = Max[exc];
dv = (v[T] - v[#]) & /@ Reverse[Coalitions];
assg = MapThread[Rule, {Map[x, T], payoff}];
sx = x[#] & /@ Coalitions /. assg;
df = dv - sx;
dmexc = Max[df];
pvals = v[#] + mexc + 2*dmexc & /@ Coalitions;
dvals = dv + dmexc + 2*mexc;
vals = MapThread[Max[#1, #2] &, {pvals, dvals}];
vals = Flatten[{0,Drop[vals,1]}];
vals = Drop[vals, -1];
Flatten[{vals, v[T]}]
];
ParaProperModPreKernel[args___]:=(Message[ParaProperModPreKernel::argerr];$Failed);
ParaProperModPreKernel[game_,opts:OptionsPattern[ParaProperModPreKernel]] := Block[{ovls, dcvals, lt, t0, t1, DCGame, mdnc},
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = DualCover[game];
lt = Length[T];
t1 = Range[2*lt];
DCGame = DefineGame[t1, dcvals];
mdnc = ParaPreKernel[DCGame,opts];
(*Print["mdnc0=",mdnc];*)
DefineGame[t0, ovls]; (* Redefine the original game. *)
Take[mdnc, lt]
];
ParaProperModPreKernel[game_,payoff_List,opts:OptionsPattern[ParaProperModPreKernel]] := Block[{ovls, dcvals, lt, t0, t1, DCGame, mdnc,dcpay},
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = ParaDualCover[game];
lt = Length[T];
t1 = Range[2*lt];
dcpay=Flatten[{payoff,payoff}];
DCGame = DefineGame[t1, dcvals];
mdnc = ParaPreKernel[DCGame,dcpay,opts];
(* Print["mdnc=",mdnc];*)
DefineGame[t0, ovls]; (* Redefine the original game. *)
Take[mdnc, lt]
];
ParaIsModPreKernelQ[args___]:=(Message[ParaIsModPreKernelQ::argerr];$Failed);
ParaIsModPreKernelQ[game_, payoff_List] :=
Block[{ovls, dcvals, lt, t0, t1, DCGame, pmpkQ},
ovls = v[#] & /@ Coalitions;(*Storing original game values.*)
t0 = T;(*Storing original game values.*)
dcvals = ParaECCoverGame[game, payoff];
DCGame = DefineGame[t0, dcvals];
pmpkQ = ParaPreKernelQ[DCGame, payoff];
DefineGame[t0, ovls];(*Redefine the original game.*)
Return[pmpkQ]];
ParaIsProperModPreKernelQ[args___]:=(Message[ParaIsProperModPreKernelQ::argerr];$Failed);
ParaIsProperModPreKernelQ[game_,payoff_List] := Block[{ovls, dcvals, lt, t0, t1, dpay, DCGame, pmpkQ},
ovls = v[#] & /@ Coalitions; (* Storing original game values. *)
t0 = T; (* Storing original game values. *)
dcvals = ParaDualCover[game];
lt = Length[T];
t1 = Range[2*lt];
DCGame = DefineGame[t1, dcvals];
dpay= Flatten[{payoff,payoff}];
pmpkQ = ParaPreKernelQ[DCGame,dpay];
DefineGame[t0, ovls]; (* Redefine the original game. *)
Return[pmpkQ]
];
(* Dual Extension of the primal game *)
ParaDualExtension[game_] := Block[{lt, T1, cls, cl1, clset, vlset, dlext,vals},
lt = Length[T];
cls=Subsets[T];
T1 = Range[lt + 1, 2*lt];
cl1 = Subsets[T1];
Parallelize[
clset = Table[Join[cls[[i]], #] & /@ cl1, {i, 1, Length[cl1]}];
vlset = Table[v[cls[[i]]] + v[T] - v[Complement[T, #]] & /@ Coalitions, {i, 1, Length[cl1]}];
dlext = Flatten[MapThread[MapThread[List[#1, #2] &, {#1, #2}] &, {clset, vlset}], 1] // Sort,
Method -> "CoarsestGrained",DistributedContexts -> Automatic];
vals = Last[#] & /@ dlext;
{vals, dlext}
];
(* Primal Extension of the dual game *)
ParaPrimalExtension[game_] :=
Block[{lt, T1, cl1, cls,clset, vlset, plext,vals},
cls=Subsets[T];
lt = Length[T];
T1 = Range[lt + 1, 2*lt];
cl1 = Subsets[T1];
Parallelize[
clset = Table[Join[cls[[i]], #] & /@ cl1, {i, 1, Length[cl1]}];
vlset = Table[v[#] + v[T] - v[Complement[T, cls[[i]]]] & /@ Coalitions, {i, 1, Length[cl1]}];
plext = Flatten[MapThread[MapThread[List[#1, #2] &, {#1, #2}] &, {clset, vlset}], 1] // Sort,
Method -> "CoarsestGrained",DistributedContexts -> Automatic];
vals = Last[#] & /@ plext;
{vals, plext}
];
ParaDualCover[game_] := Block[{dvals, dexts, pvals, pexts},
{dvals, dexts} = ParaDualExtension[game];
{pvals, pexts} = ParaPrimalExtension[game];
MapThread[Max[#1, #2] &, {dvals, pvals}]
];
(* Start of the section related to the simplified modified pre-kernel/nucleolus of a game. *)
ParaSMPreKernel[args___]:=(Message[ParaSMPreKernel::argerr];$Failed);
ParaSMPreKernel[game_] := Block[{ovls, dv, av, AVGame, smpk},
ovls = v[#] & /@ Coalitions;(*Storing original game values.*)
dv = DualGame[game];
av = (ovls + dv)/2;
AVGame = DefineGame[T, av];
smpk = ParaPreKernelElement[AVGame];
DefineGame[T, ovls];(* Redefine the original game.*)
Return[smpk];
];
ParaIsSMPreKernelQ[args___]:=(Message[ParaIsSMPreKernelQ::argerr];$Failed);
ParaIsSMPreKernelQ[game_, payoff_] := Block[{ovls, dv, av, AVGame, smpkQ},
ovls = v[#] & /@ Coalitions;(*Storing original game values.*)
dv = DualGame[game];
av = (ovls + dv)/2;
AVGame = DefineGame[T, av];
smpkQ = ParaPreKernelQ[AVGame, payoff];
DefineGame[T, ovls];(* Redefine the original game.*)
Return[smpkQ];
];
(* End of the section related to the simplified modified pre-kernel of a game. *)
(* Selecting the set of lexicographically smallest coalitions. *)
ParaBestCoalitions[args___]:=(Message[ParaBestCoalitions::argerr];$Failed);
ParaBestCoalitions[game_,payoff_List,opts:OptionsPattern[ParaBestCoalitions]]:=
Block[{dimpay},
dimpay = Dimensions[payoff];
Which[Length[dimpay]===2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), Map[ParaBestcoalij01[game,#,opts]&, payoff],
True, ParaWrongDimension],
Length[dimpay]===1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ),ParaBestcoalij01[game,payoff,opts],
True, ParaWrongDimension],
True, ParaWrongDimension
]
];
paralistIJ[T_List]:=Flatten[ParallelTable[Table[{i, j}, {j, i + 1, Length[T]}], {i, 1, Length[T]}]];
ParaBestcoalij01[game_, payoff_List,opts:OptionsPattern[ParaBestCoalitions]] :=
Block[{anti, maxsurp, allc, plvec,sij,sji,plj,pli,payass,amax,ramax,exc,exvec,intcoal,selcij,selcji,sigcoal},
anti = OptionValue[AntiPreKernel];
allc = OptionValue[AllCoalitions];
maxsurp = OptionValue[MaximumSurpluses];
plvec = Partition[paralistIJ[T],2];
Parallelize[pli = Map[First[#] &, plvec];
plj = Map[#[[2]] &,plvec];
sij=MapThread[ParaTIJsets[#1,#2] &,{pli,plj}];
sji=MapThread[ParaTIJsets[#1,#2] &,{plj,pli}];
payass = MapThread[Rule,{x /@ T,payoff}],Method -> "CoarsestGrained",DistributedContexts -> True];
If[SameQ[anti,False],
amax = ParallelTable[ParaMaxSijSurpluses[game,sij[[i]],sji[[i]],payass],{i,Length[sij]},Method -> "CoarsestGrained",DistributedContexts -> True],
amax = ParallelTable[ParaAntiSijSurpluses[game,sij[[i]],sji[[i]],payass],{i,Length[sij]},Method -> "CoarsestGrained",DistributedContexts -> True]
];
exc = First[ParaExcessPayoff[game, payoff]];
exvec = Drop[Drop[exc, 1], -1];
intcoal = Drop[Drop[Subsets[T], 1], -1];
ramax = Map[Reverse[#] &, amax];
selcij = ParallelTable[ParaSelCoal[sij[[i]], intcoal, exvec, amax[[i]]],{i,Length[amax]},Method -> "CoarsestGrained"];
selcji = ParallelTable[ParaSelCoal[sji[[i]], intcoal, exvec, ramax[[i]]],{i,Length[ramax]},Method -> "CoarsestGrained"];
sigcoal = MapThread[{Flatten[#1], Flatten[#2]} &,{selcij, selcji}];
If[SameQ[maxsurp,False], sigcoal,{sigcoal,amax}]
];
ParaSelCoal[setsij_List, coal_List, redexc_List, maxexc_List, opts:OptionsPattern[ParaBestCoalitions]] :=
Block[{allc, smc, detpos, extval, poscoal, extcoal},
allc = OptionValue[AllCoalitions];
smc = OptionValue[SmallestCardinality];
detpos=MapThread[List,{coal,redexc}];
extval = Last[#] &/@ Cases[detpos,{#,___}] &/@ setsij // Flatten;
poscoal = Position[extval, First[maxexc]];
extcoal = Extract[setsij, poscoal];
(* Taking the coalition with smallest/largest (First/Last) cardinality if extcoal > 1 *)
If[Length[extcoal] === 1, extcoal,
Which[allc === True, extcoal, True,
Which[smc === True, First[extcoal],
smc === False, Last[extcoal],
True, First[extcoal]]]]
];
ParaSetsToVec[args___]:=(Message[ParaSetsToVec::argerr];$Failed);
ParaSetsToVec[mg_List, T_List, opts:OptionsPattern[ParaSetsToVec]] :=
Block[{effvec, zrv, pscoal, replzr,coasts, onesoft},
effvec = OptionValue[EffVector];
zrv = Table[0, {i, Length[T]}];
pscoal = Map[Outer[List, #] &, mg];
replzr = Parallelize[Map[ReplacePart[zrv, 1, #] &, #] &/@ pscoal];
coasts = Parallelize[MapThread[Subtract[#1, #2] &, #] &/@ replzr];
onesoft = Table[1,{i,Length[T]}];
If[effvec==True, Prepend[coasts,onesoft], coasts]
];
ParaMaxSurpluses[game_, payoff_List,dir_List] :=
Block[{pli,plj,maxpi,maxpj,res},
Parallelize[pli = First[#] &/@ dir;
plj = #[[2]] &/@ dir;
maxpi = MapThread[ParaMaxSurplus[game,#1,#2,payoff]&,{pli,plj}];
maxpj = MapThread[ParaMaxSurplus[game,#1,#2,payoff]&,{plj,pli}];
MapThread[List,{maxpi,maxpj}],Method -> "CoarsestGrained",DistributedContexts -> None]
];
(* We refrain from overloading due to its negative effect on the performance of the (Anti-)Pre-Kernel computation!!! *)
ParaMaxSijSurpluses[game_, sij_List, sji_List,payoff_List] :=
Block[{maxpi,maxpj},
maxpi = ParaMaxSijSurplus[game,sij,payoff];
maxpj = ParaMaxSijSurplus[game,sji,payoff];
Return[{maxpi,maxpj}]
];
ParaAntiSurpluses[game_, payoff_List,dir_List] :=
Block[{pli,plj,minpi,minpj,res},
Parallelize[pli = First[#] &/@ dir;
plj = #[[2]] &/@ dir;
minpi = MapThread[ParaAntiSurplus[game,#1,#2,payoff]&,{pli,plj}];
minpj = MapThread[ParaAntiSurplus[game,#1,#2,payoff]&,{plj,pli}];
MapThread[List,{minpi,minpj}],Method -> "CoarsestGrained",DistributedContexts -> None]
];
ParaAntiSijSurpluses[game_, sij_List, sji_List,payoff_List] :=
Block[{minpi,minpj},
minpi = ParaAntiSijSurplus[game,sij,payoff];
minpj = ParaAntiSijSurplus[game,sji,payoff];
Return[{minpi,minpj}]
];
ParaMaxSurplus[args___]:=(Message[ParaMaxSurplus::argerr];$Failed);
ParaMaxSurplus[game_, pi_, pj_, payoff_List] :=
Block[{payass},
payass = Which[Depth[payoff]==3, MapThread[Rule,{x /@ T,#}]& /@ payoff,
Depth[payoff]==2, MapThread[Rule,{x /@ T,payoff}],
True, Print["The input 'payoff' is not a list."];Return[]];
Which[Depth[payass] == 5,Max[ReplaceAll[(v[#] - x[#]) & /@ ParaTIJsets[pi,pj],#]] &/@ payass,
Depth[payass] == 4,Max[ReplaceAll[(v[#] - x[#]) & /@ ParaTIJsets[pi,pj],payass]],
True, Print["Wrong data format."];Return[]]
];
ParaMaxSijSurplus[game_,sij_List, payass_List] :=
Block[{z0},
Max[ReplaceAll[Map[v[#] - x[#] &, sij],payass]]
];
ParaAntiSurplus[args___]:=(Message[ParaMaxSurplus::argerr];$Failed);
ParaAntiSurplus[game_, pi_, pj_, payoff_List] :=
Block[{payass},
payass = Which[Depth[payoff]==3, MapThread[Rule,{x /@ T,#}]& /@ payoff,
Depth[payoff]==2, MapThread[Rule,{x /@ T,payoff}],
True, Print["The input 'payoff' is not a list."];Return[]];
Which[Depth[payass] == 5,Min[ReplaceAll[(v[#] - x[#]) & /@ ParaTIJsets[pi,pj],#]] &/@ payass,
Depth[payass] == 4,Min[ReplaceAll[(v[#] - x[#]) & /@ ParaTIJsets[pi,pj],payass]],
True, Print["Wrong data format."];Return[]]
];
ParaAntiSijSurplus[game_,sij_List, payass_List] :=
Block[{z0},
Min[ReplaceAll[Map[v[#] - x[#] &, sij],payass]]
];
ParaTIJsets[i_Integer, j_Integer]:=DeleteCases[Cases[ProperCoalitions,{___,i,___}],{___,j,___}];
ParaExcessPayoff[args___]:=(Message[ParaExcessPayoff::argerr];$Failed);
ParaExcessPayoff[game_,payoff_List, opts:OptionsPattern[ParaExcessPayoff]]:= Block[{dispmat,assg,li,res},
dispmat = OptionValue[DisplayMatrixForm];
If[Depth[payoff] == 2 || Depth[payoff] == 3,
li = If[Length[Dimensions[payoff]]==1,{payoff},payoff];
Parallelize[assg = MapThread[Rule,{Map[x,T],#}] & /@ li;
res = (v[#]-x[#])& /@ Coalitions;
res = ReplaceAll[res,#]&/@ assg,Method -> "CoarsestGrained",DistributedContexts -> Automatic];
Which[dispmat == False, res, True, ParaDisplayErgb[res]],
ParaPrintRemark[payoff]
]
];
ParaDisplayErgb[payoff_List]:= Block[{exc,coal,mpc},
exc = payoff;
coal = Subsets[T];
mpc = Map[Global`Co,coal];
MatrixForm[PrependTo[exc,mpc]]
];
(* User interface to check for (anti) pre-kernel element. *)
ParaPreKernelQ[args___]:=(Message[ParaPreKernelQ::argerr];$Failed);
ParaPreKernelQ[game_, payoff_List,opts:OptionsPattern[ParaPreKernelQ]] :=Block[{rattol,tolv,graval,dimpay},
rattol = OptionValue[RationalTol];
graval = v[T];
dimpay = Dimensions[payoff];
tolv=1.5*rattol;
Which[Length[dimpay] === 2,
Which[ (Last[dimpay]===Length[T] && Depth[payoff] ===3),MapThread[And,{(Abs[Total[#] - graval]<=tolv) & /@ payoff,ParaMaxExcessBalanced[game, payoff,RationalTol->rattol]}],
True, ParaPrintRemark[payoff]],
Length[dimpay] === 1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), MapThread[And,{{Abs[Total[payoff] - graval]<=tolv},{ParaMaxExcessBalanced[game, payoff,RationalTol->rattol]}}],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]
]
];
ParaAntiPreKernelQ[args___]:=(Message[ParaAntiPreKernelQ::argerr];$Failed);
ParaAntiPreKernelQ[game_, payoff_List,opts:OptionsPattern[ParaAntiPreKernelQ]] :=Block[{rattol,tolv,graval,dimpay},
rattol = OptionValue[RationalTol];
graval = v[T];
dimpay = Dimensions[payoff];
tolv=1.5*rattol;
Which[Length[dimpay] === 2,
Which[ (Last[dimpay]===Length[T] && Depth[payoff] ===3), MapThread[And,{(Abs[Total[#] - graval]<= tolv) & /@ payoff,ParaMinExcessBalanced[game, payoff,RationalTol->rattol]}],
True, ParaPrintRemark[payoff]],
Length[dimpay] === 1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), MapThread[And,{{Abs[Total[payoff] - graval]<=tolv},{ParaMinExcessBalanced[game, payoff,RationalTol->rattol]}}],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]
]
];
ParaMaxExcessBalanced[args___]:=(Message[ParaMaxExcessBalanced::argerr];$Failed);
ParaMaxExcessBalanced[game_, payoff_List,opts:OptionsPattern[ParaMaxExcessBalanced]]:= Block[{rattol,dimpay},
rattol = OptionValue[RationalTol];
dimpay = Dimensions[payoff];
Which[Length[dimpay] === 2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), ParaMaxExcessBalCheck[game, #,RationalTol->rattol] & /@ payoff,
True, ParaPrintRemark[payoff]],
Length[dimpay] === 1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), ParaMaxExcessBalCheck[game, payoff,RationalTol->rattol],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]]
];
ParaMaxExcessBalCheck[game_,payoff_List,opts:OptionsPattern[ParaMaxExcessBalanced]]:=
Block[{rattol,plpr,rvpr,asspay,sij,sji,msrplij,msrplji,msrij,msrji,lthij,tolvec,sysij,sysji,eqQ},
rattol = OptionValue[RationalTol];
plpr = Partition[paralistIJ[T],2];
rvpr = Map[Reverse[#] &, plpr];
asspay = ParaAssgPay[payoff];
Parallelize[
sij = ParaTIJsets[#[[1]], #[[2]]] & /@ plpr;
sji = ParaTIJsets[#[[1]], #[[2]]] & /@ rvpr,
Method -> "CoarsestGrained",DistributedContexts -> Automatic];
{msrplij,msrplji}= {ParaMaxExcess[sij, asspay],ParaMaxExcess[sji, asspay]};
{msrij,msrji} = {msrplij - msrplji,msrplji - msrplij};
lthij = Binomial[Length[T],2];
tolvec = Table[1.5*rattol, {i, lthij}];
sysij = Union[MapThread[LessEqual, {Abs[msrij], tolvec}]];
sysji = Union[MapThread[LessEqual, {Abs[msrji], tolvec}]];
eqQ = Apply[Join, {sysij, sysji}];
Apply[And, eqQ]
];
ParaMinExcessBalanced[args___]:=(Message[ParaMinExcessBalanced::argerr];$Failed);
ParaMinExcessBalanced[game_, payoff_List,opts:OptionsPattern[ParaMinExcessBalanced]]:= Block[{rattol,dimpay},
rattol = OptionValue[RationalTol];
dimpay = Dimensions[payoff];
Which[Length[dimpay] === 2,
Which[(Last[dimpay]===Length[T] && Depth[payoff] ===3), ParaMinExcessBalCheck[game, #,RationalTol->rattol] & /@ payoff,
True, ParaPrintRemark[payoff]],
Length[dimpay] === 1,
Which[(First[dimpay]===Length[T] && Depth[payoff] === 2 ), ParaMinExcessBalCheck[game, payoff,RationalTol->rattol],
True, ParaPrintRemark[payoff]],
True, ParaPrintRemark[payoff]]
];
ParaMinExcessBalCheck[game_,payoff_List,opts:OptionsPattern[ParaMaxExcessBalanced]]:=
Block[{rattol,plpr, rvpr, asspay,sij,sji,msrplij,msrplji,msrij, msrji,lthij,tolvec,sysij,sysji,eqQ},
rattol = OptionValue[RationalTol];
plpr = Partition[paralistIJ[T],2];
rvpr = Map[Reverse[#] &,plpr];
asspay = ParaAssgPay[payoff];
Parallelize[
sij = ParaTIJsets[#[[1]], #[[2]]] & /@ plpr;
sji = ParaTIJsets[#[[1]], #[[2]]] & /@ rvpr,
Method -> "CoarsestGrained",DistributedContexts -> Automatic];
{msrplij,msrplji} = {ParaMinExcess[sij, asspay],ParaMinExcess[sji, asspay]};
{msrij,msrji} = {msrplij - msrplji,msrplji - msrplij};
lthij = Binomial[Length[T],2];
tolvec = ParallelTable[1.5*rattol, {i, lthij}];
sysij = Union[MapThread[LessEqual, {Abs[msrij], tolvec}]];
sysji = Union[MapThread[LessEqual, {Abs[msrji], tolvec}]];
eqQ = Apply[Join, {sysij, sysji}];
Apply[And, eqQ]
];
ParaAssgPay[payoff_List] := Block[{vars},
vars = x[#] & /@ T;
MapThread[Rule, {vars, payoff}]
];
ParaMaxExcess[mgij_List, asspay_List] := ParallelMap[ParaMaxExc[#, asspay] &, mgij,Method -> "CoarsestGrained",DistributedContexts -> Automatic];
ParaMinExcess[mgij_List, asspay_List] := ParallelMap[ParaMinExc[#, asspay] &, mgij,Method -> "CoarsestGrained",DistributedContexts -> Automatic];
ParaMaxExc[mg_List, asspay_List] := Max[ReplaceAll[(v[#] - x[#]) & /@ mg, asspay]];
ParaMinExc[mg_List, asspay_List] := Min[ReplaceAll[(v[#] - x[#]) & /@ mg, asspay]];
(* Deriving a game from unanimity coordinates. *)
ParaCharacteristicValues[args___]:=(Message[ParaCharacteristicValues::argerr];$Failed);
ParaCharacteristicValues[coord_List,T_,opts:OptionsPattern[]]:= Block[{z0},
Which[ Length[coord] === 2^Length[T] , ParaDetWorth[coord,T] ,
True, ParaWrongCoordDimension[coord, T]]
];
ParaDetWorth[coord_List, T_, opts:OptionsPattern[]]:=Block[{tugb, cval},
tugb = ParaGameBasis[T];
cval = tugb.Drop[coord,1];
Prepend[cval,0]
];
ParaGameBasis[args___]:=(Message[ParaGameBasis::argerr];$Failed);
ParaGameBasis[T_] := Block[{mgsys,gb},
mgsys = Drop[Subsets[T], 1];
gb = ParallelTable[If[SubsetQ[#,mgsys[[i]]], 1, 0] & /@ mgsys, {i, Length[mgsys]}];
Transpose[gb]
];
(* Checking convexity and average-convexity *)
ParaConvexQ[args___]:=(Message[ParaConvexQ::argerr];$Failed);
ParaConvexQ[game_]:=
Block[{liste},
liste = Flatten[ParaIncreasingMargContributions[game,#] & /@ T,1];
Apply[And,Apply[And,liste,1]]
];
ParaIncreasingMargContributions[game_,i_Integer]:=
ParallelTable[(v[#]-v[DeleteCases[#,i]] <=
v[Union[Flatten[{#,j}]]] - v[DeleteCases[
Union[Flatten[{#,j}]],i]])& /@ Take[ParaW[i],Length[ParaW[i]]-1],
{j,1,Length[T]},Method -> "CoarsestGrained",DistributedContexts -> Automatic];
ParaW[i_Integer]:= Cases[Coalitions,{___,i,___}];
ParaAvConvexQ[args___]:=(Message[ParaAvConvexQ::argerr];$Failed);
ParaAvConvexQ[game_] := Block[{dispre, pwset, chsum,delmp},
pwset = Drop[Subsets[T],1];
DistributeDefinitions[pwset];
chsum = ParallelMap[ParaCheckSumQ[#, T] &, pwset,Method -> "CoarsestGrained"];
delmp = DeleteCases[chsum, {{}, {}}];
Apply[And, Union[chsum]]
];
ParaCheckSumQ[teilmg_List, T_] :=
Block[{supset, smarg, dispres},
supset = ParaOberMenge[teilmg, T];
smarg = ParaSumMargContribution[#, teilmg] & /@ supset;
Apply[And, Union[smarg]]
];