-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathparallel_jobs_manager.py
305 lines (254 loc) · 11.5 KB
/
parallel_jobs_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python3
"""Strategy pattern implementation to handle parallel jobs.
Provides implementations for nextflow and para strategies.
Please feel free to implement your custom strategy if
neither nextflow nor para satisfy your needs.
WIP, to be enabled later.
"""
from abc import ABC, abstractmethod
import subprocess
import os
import shutil
from modules.common import to_log
from version import __version__
__author__ = "Bogdan M. Kirilenko"
class ParallelizationStrategy(ABC):
"""
Abstract base class for a parallelization strategy.
"""
def __init__(self):
self._process = None
@abstractmethod
def execute(self, joblist_path, manager_data, label, wait=False, **kwargs):
"""
Execute the jobs in parallel.
:param joblist_path: Path to the joblist file.
:param manager_data: Data from the manager class.
:param label: Label for the run.
:param wait: Boolean -> controls whether run blocking or not
"""
pass
@abstractmethod
def check_status(self):
"""
Check the status of the jobs.
:return: Status of the jobs.
"""
pass
def terminate_process(self):
"""Terminates the associated process"""
if self._process:
self._process.terminate()
class NextflowStrategy(ParallelizationStrategy):
"""
Concrete strategy for parallelization using Nextflow.
"""
CESAR_CONFIG_TEMPLATE_FILENAME = "call_cesar_config_template.nf"
CHAIN_CONFIG_TEMPLATE_FILENAME = "extract_chain_features_config.nf"
CHAIN_JOBS_PREFIX = "chain_feats__"
CESAR_JOBS_PREFIX = "cesar_jobs__"
CESAR_CONFIG_MEM_TEMPLATE = "${_MEMORY_}"
DEFAULT_QUEUE_NAME = "batch"
def __init__(self):
super().__init__()
self._process = None
self.joblist_path = None
self.manager_data = None
self.label = None
self.nf_project_path = None
self.keep_logs = False
self.use_local_executor = None
self.nextflow_config_dir = None
self.nextflow_logs_dir = None
self.memory_limit = 16
self.nf_master_script = None
self.config_path = None
self.return_code = None
self.queue_name = None
def execute(self, joblist_path, manager_data, label, wait=False, **kwargs):
"""Implementation for Nextflow."""
# define parameters
self.joblist_path = joblist_path
self.manager_data = manager_data
self.label = label
self.memory_limit = int(kwargs.get("memory_limit", "16"))
self.nf_project_path = manager_data.get("nextflow_dir", None) # in fact, contains NF logs
self.keep_logs = manager_data.get("keep_nf_logs", False)
self.use_local_executor = manager_data.get("local_executor", False)
self.nf_master_script = manager_data["NF_EXECUTE"] # NF script that calls everything
self.nextflow_config_dir = manager_data.get("nextflow_config_dir", None)
self.config_path = self.__create_config_file()
self.queue_name = manager_data.get("queue_name", self.DEFAULT_QUEUE_NAME)
# create the nextflow process
cmd = f"nextflow {self.nf_master_script} --joblist {joblist_path}"
if self.config_path:
cmd += f" -c {self.config_path}"
log_dir = manager_data["logs_dir"]
os.mkdir(log_dir) if not os.path.isdir(log_dir) else None
log_file_path = os.path.join(manager_data["logs_dir"], f"{label}.log")
with open(log_file_path, "w") as log_file:
to_log(f"Parallel manager: pushing job {cmd}")
self._process = subprocess.Popen(cmd,
shell=True,
stdout=log_file,
stderr=log_file,
cwd=self.nf_project_path)
if wait:
self._process.wait()
def __create_config_file(self):
"""Create config file and return path to it if needed"""
config_path = None
if self.use_local_executor:
# for local executor, no config file is needed
return config_path
if self.label.startswith(self.CHAIN_JOBS_PREFIX):
original_config_path = os.path.abspath(os.path.join(self.nextflow_config_dir,
self.CHAIN_CONFIG_TEMPLATE_FILENAME))
config_filename = "extract_chain_features_queue.nf"
config_path = os.path.join(self.nextflow_config_dir, config_filename)
with open(original_config_path) as in_, open(config_path, "w") as out_:
out_.write(in_.read())
elif self.label.startswith(self.CESAR_JOBS_PREFIX):
# need to craft CESAR joblist first
config_template_path = os.path.abspath(os.path.join(self.nextflow_config_dir,
self.CESAR_CONFIG_TEMPLATE_FILENAME))
with open(config_template_path, "r") as f:
cesar_config_template = f.read()
config_string = cesar_config_template.replace(self.CESAR_CONFIG_MEM_TEMPLATE,
f"{self.memory_limit}")
config_filename = f"cesar_config_{self.memory_limit}_queue.nf"
toga_temp_dir = self.manager_data["temp_wd"]
config_path = os.path.abspath(os.path.join(toga_temp_dir, config_filename))
with open(config_path, "w") as f:
f.write(config_string)
if self.queue_name:
# in this case, the queue name should be specified
with open(config_path, "a") as f:
f.write(f"\nprocess.queue = '{self.queue_name}'\n")
return config_path # using local executor again
def check_status(self):
"""Check if nextflow jobs are done."""
if self.return_code:
return self.return_code
running = self._process.poll() is None
if running:
return None
self.return_code = self._process.returncode
# the process just finished
# nextflow provides a huge and complex tree of log files
# remove them if user did not explicitly ask to keep them
# if not self.keep_logs and self.nf_project_path:
# # remove nextflow intermediate files
# shutil.rmtree(self.nf_project_path) if os.path.isdir(self.nf_project_path) else None
if self.config_path and self.label.startswith(self.CESAR_JOBS_PREFIX):
# for cesar TOGA creates individual config files
os.remove(self.config_path) if os.path.isfile(self.config_path) else None
return self.return_code
class ParaStrategy(ParallelizationStrategy):
"""
Concrete strategy for parallelization using Para.
Para is rather an internal Hillerlab tool to manage slurm.
"""
def __init__(self):
super().__init__()
self._process = None
self.return_code = None
def execute(self, joblist_path, manager_data, label, wait=False, **kwargs):
"""Implementation for Para."""
cmd = f"para make {label} {joblist_path} "
if "queue_name" in kwargs:
queue_name = kwargs["queue_name"]
cmd += f" -q={queue_name} "
# otherwise use default medium queue
if "memory_limit" in kwargs:
memory_mb = kwargs["memory_limit"] * 1000 # para uses MB instead of GB
cmd += f" --memoryMb={memory_mb}"
# otherwise use default para's 10Gb
log_dir = manager_data["logs_dir"]
os.mkdir(log_dir) if not os.path.isdir(log_dir) else None
log_file_path = os.path.join(manager_data["logs_dir"], f"{label}.log")
with open(log_file_path, "w") as log_file:
self._process = subprocess.Popen(cmd, shell=True, stdout=log_file, stderr=log_file)
if wait:
self._process.wait()
def check_status(self):
"""Check if Para jobs are done."""
if self.return_code:
return self.return_code
running = self._process.poll() is None
if not running:
self.return_code = self._process.returncode
return self.return_code
else:
return None
class SnakeMakeStrategy(ParallelizationStrategy):
"""
Not implemented class for Snakemake strategy.
Might be helpful for users experiencing issues with Nextflow.
"""
def __int__(self):
self._process = None
self.return_code = None
raise NotImplementedError("Snakemake strategy is not yet implemented")
def execute(self, joblist_path, manager_data, label, wait=False, **kwargs):
raise NotImplementedError("Snakemake strategy is not yet implemented")
def check_status(self):
raise NotImplementedError("Snakemake strategy is not yet implemented")
class CustomStrategy(ParallelizationStrategy):
"""
Custom parallel jobs execution strategy.
"""
def __init__(self):
super().__init__()
self._process = None
self.return_code = None
raise NotImplementedError("Custom strategy is not implemented -> pls see documentation")
def execute(self, joblist_path, manager_data, label, wait=False, **kwargs):
"""Custom implementation.
Please provide your implementation of parallel jobs' executor.
Jobs are stored in the joblist_path, manager_data is a dict
containing project-wide TOGA parameters.
The method should build a command that handles executing all the jobs
stored in the file under joblist_path. The process object is to be
stored in the self._process. It is recommended to create a non-blocking subprocess.
I would recommend to store the logs in the manager_data["logs_dir"].
Please have a look what "manager_data" dict stores -> essentially, this is a
dump of the whole Toga class attributes.
If your strategy works well, we can include it in the main repo.
"""
raise NotImplementedError("Custom strategy is not implemented -> pls see documentation")
def check_status(self):
"""Check if Para jobs are done.
Please provide implementation of a method that checks
whether all jobs are done.
To work properly, the method should return None if the process is still going.
Otherwise, return status code (int)."""
raise NotImplementedError("Custom strategy is not implemented -> pls see documentation")
class ParallelJobsManager:
"""
Class for managing parallel jobs using a specified parallelization strategy.
"""
def __init__(self, strategy: ParallelizationStrategy):
"""
Initialize the manager with a parallelization strategy.
:param strategy: The parallelization strategy to use.
"""
self.strategy = strategy
self.return_code = None
def execute_jobs(self, joblist_path, manager_data, label, **kwargs):
"""
Execute jobs in parallel using the specified strategy.
:param joblist_path: Path to the joblist file.
:param manager_data: Data from the manager class.
:param label: Label for the run.
"""
self.strategy.execute(joblist_path, manager_data, label, **kwargs)
def check_status(self):
"""
Check the status of the jobs using the specified strategy.
:return: Status of the jobs.
"""
return self.strategy.check_status()
def terminate_process(self):
"""Terminate associated process."""
self.strategy.terminate_process()