forked from SlicerIGT/aigt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
120 lines (91 loc) · 5.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import girder_client
import numpy as np
import os
import pandas as pd
def create_standard_project_folders(local_data_folder):
# These subfolders will be created/populated in the data folder
data_arrays_folder = "DataArrays"
notebooks_save_folder = "SavedNotebooks"
results_save_folder = "SavedResults"
models_save_folder = "SavedModels"
val_data_folder = "PredictionsValidation"
data_arrays_fullpath = os.path.join(local_data_folder, data_arrays_folder)
notebooks_save_fullpath = os.path.join(local_data_folder, notebooks_save_folder)
results_save_fullpath = os.path.join(local_data_folder, results_save_folder)
models_save_fullpath = os.path.join(local_data_folder, models_save_folder)
val_data_fullpath = os.path.join(local_data_folder, val_data_folder)
if not os.path.exists(data_arrays_fullpath):
os.makedirs(data_arrays_fullpath)
print("Created folder: {}".format(data_arrays_fullpath))
if not os.path.exists(notebooks_save_fullpath):
os.makedirs(notebooks_save_fullpath)
print("Created folder: {}".format(notebooks_save_fullpath))
if not os.path.exists(results_save_fullpath):
os.makedirs(results_save_fullpath)
print("Created folder: {}".format(results_save_fullpath))
if not os.path.exists(models_save_fullpath):
os.makedirs(models_save_fullpath)
print("Created folder: {}".format(models_save_fullpath))
if not os.path.exists(val_data_fullpath):
os.makedirs(val_data_fullpath)
print("Created folder: {}".format(val_data_fullpath))
return data_arrays_fullpath, notebooks_save_fullpath, results_save_fullpath, models_save_fullpath, val_data_fullpath
def load_girder_data(csv_fullname, data_arrays_fullpath, girder_url, girder_key=None, overwrite_existing_files=False):
"""
Download numpy array files from a Girder server to a local folder. Then load them from the local folder to the
memory as numpy arrays and return them. Optionally, files can be overwritten.
:param csv_fullname: CSV file containing Girder IDs and subject IDs (e.g. patient) for all files.
:param data_arrays_fullpath: Local folder to be used. Must have write access.
:param girder_url: Internet address of the Girder server API
:param girder_key: (optional) API key for private Girder collections.
:param overwrite_existing_files: Set True to force overwrite of existing files (default False).
:return: Ultrasound and matching segmentation arrays, one for each subject (e.g. patient)
"""
csv_df = pd.read_csv(csv_fullname, sep=",")
n_arrays = csv_df.shape[0]
groupby_subjects = csv_df.groupby('subject_id')
n_subjects = len(groupby_subjects.groups.keys())
try:
gclient = girder_client.GirderClient(apiUrl=girder_url)
if girder_key is not None:
gclient.authenticate(apiKey=girder_key)
# Download
for i in range(n_arrays):
ultrasound_fullname = os.path.join(data_arrays_fullpath, csv_df.iloc[i]['ultrasound_filename'])
if not os.path.exists(ultrasound_fullname) or overwrite_existing_files:
print("Downloading {}...".format(ultrasound_fullname))
gclient.downloadFile(csv_df.iloc[i]['ultrasound_id'], ultrasound_fullname)
segmentation_fullname = os.path.join(data_arrays_fullpath, csv_df.iloc[i]['segmentation_filename'])
if not os.path.exists(segmentation_fullname) or overwrite_existing_files:
print("Downloading {}...".format(segmentation_fullname))
gclient.downloadFile(csv_df.iloc[i]['segmentation_id'], segmentation_fullname)
except:
print("Download from Girder did not work. Trying to load files from disc.")
# Load arrays from local files
ultrasound_arrays = []
segmentation_arrays = []
for i in range(n_arrays):
ultrasound_fullname = os.path.join(data_arrays_fullpath, csv_df.iloc[i]['ultrasound_filename'])
segmentation_fullname = os.path.join(data_arrays_fullpath, csv_df.iloc[i]['segmentation_filename'])
ultrasound_data = np.load(ultrasound_fullname)
segmentation_data = np.load(segmentation_fullname)
ultrasound_arrays.append(ultrasound_data)
segmentation_arrays.append(segmentation_data)
# Concatenate arrays by subjects (e.g. patients)
ultrasound_arrays_by_subjects = []
segmentation_arrays_by_subjects = []
subject_ids = groupby_subjects.groups.keys()
ultrasound_pixel_type = ultrasound_arrays[0].dtype
segmentation_pixel_type = segmentation_arrays[0].dtype
for subject_id in subject_ids:
subject_ultrasound_array = np.zeros([0, ultrasound_arrays[0].shape[1], ultrasound_arrays[0].shape[2], 1],
dtype=ultrasound_pixel_type)
subject_segmentation_array = np.zeros([0, segmentation_arrays[0].shape[1], segmentation_arrays[0].shape[2], 1],
dtype=segmentation_pixel_type)
for i in range(len(groupby_subjects.groups[subject_id])):
array_index = groupby_subjects.groups[subject_id][i]
subject_ultrasound_array = np.concatenate([subject_ultrasound_array, ultrasound_arrays[array_index]])
subject_segmentation_array = np.concatenate([subject_segmentation_array, segmentation_arrays[array_index]])
ultrasound_arrays_by_subjects.append(subject_ultrasound_array)
segmentation_arrays_by_subjects.append(subject_segmentation_array)
return ultrasound_arrays_by_subjects, segmentation_arrays_by_subjects