-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.cpp
295 lines (270 loc) · 11.1 KB
/
Utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#include "LBF.h"
#include "LBFRegressor.h"
using namespace std;
using namespace cv;
Mat_<float> GetMeanShape(const vector<Mat_<float> >& shapes,
const vector<BoundingBox>& bounding_box){
Mat_<float> result = Mat::zeros(shapes[0].rows,2,CV_32FC1);
for(int i = 0;i < shapes.size();i++){
result = result + ProjectShape(shapes[i],bounding_box[i]);
}
result = 1.0 / shapes.size() * result;
return result;
}
Mat_<float> GetMeanShape2(const vector<Mat_<float> >& shapes,
const vector<BoundingBox>& bounding_box, const vector<int>& ground_truth_faces){
Mat_<float> result = Mat::zeros(shapes[0].rows,2,CV_32FC1);
int tmp=0;
for(int i = 0;i < shapes.size();i++){
if (ground_truth_faces[i]==1)
{
result = result + ProjectShape(shapes[i],bounding_box[i]);
tmp++;
}
}
result = 1.0 / tmp * result;
return result;
}
void GetShapeResidual(const vector<Mat_<float> >& ground_truth_shapes,
const vector<Mat_<float> >& current_shapes,
const vector<BoundingBox>& bounding_boxs,
const Mat_<float>& mean_shape,
vector<Mat_<float> >& shape_residuals) {
Mat_<float> rotation;
float scale;
shape_residuals.resize(bounding_boxs.size());
for (int i = 0; i < bounding_boxs.size(); i++) {
shape_residuals[i] = ProjectShape(ground_truth_shapes[i], bounding_boxs[i])
- ProjectShape(current_shapes[i], bounding_boxs[i]);
SimilarityTransform(mean_shape, ProjectShape(current_shapes[i], bounding_boxs[i]), rotation, scale);
transpose(rotation, rotation);
shape_residuals[i] = scale * shape_residuals[i] * rotation;
}
}
void GetShapeResidual2(vector<int> shape_index,
const vector<Mat_<float> >& ground_truth_shapes,
const vector<Mat_<float> >& current_shapes,
const vector<BoundingBox>& bounding_boxs,
const Mat_<float>& mean_shape,
vector<Mat_<float> >& shape_residuals){
Mat_<float> rotation;
float scale;
shape_residuals.resize(shape_index.size());
for (int i = 0;i < shape_index.size(); i++){
shape_residuals[i] = ProjectShape(ground_truth_shapes[shape_index[i]], bounding_boxs[shape_index[i]])
- ProjectShape(current_shapes[shape_index[i]], bounding_boxs[shape_index[i]]);
SimilarityTransform(mean_shape, ProjectShape(current_shapes[shape_index[i]],bounding_boxs[shape_index[i]]),rotation,scale);
transpose(rotation,rotation);
shape_residuals[i] = scale * shape_residuals[i] * rotation;
}
}
Mat_<float> ProjectShape(const Mat_<float>& shape, const BoundingBox& bounding_box){
Mat_<float> temp(shape.rows,2);
for(int j = 0;j < shape.rows;j++){
temp(j,0) = (shape(j,0)-bounding_box.centroid_x) / (bounding_box.width / 2.0);
temp(j,1) = (shape(j,1)-bounding_box.centroid_y) / (bounding_box.height / 2.0);
}
return temp;
}
Mat_<float> ReProjectShape(const Mat_<float>& shape, const BoundingBox& bounding_box){
Mat_<float> temp(shape.rows,2);
for(int j = 0;j < shape.rows;j++){
temp(j,0) = (shape(j,0) * bounding_box.width / 2.0 + bounding_box.centroid_x);
temp(j,1) = (shape(j,1) * bounding_box.height / 2.0 + bounding_box.centroid_y);
}
return temp;
}
void SimilarityTransform(const Mat_<float>& shape1, const Mat_<float>& shape2,
Mat_<float>& rotation,float& scale){
rotation = Mat::zeros(2,2,CV_32FC1);
scale = 0;
// center the data
float center_x_1 = 0;
float center_y_1 = 0;
float center_x_2 = 0;
float center_y_2 = 0;
for(int i = 0;i < shape1.rows;i++){
center_x_1 += shape1(i,0);
center_y_1 += shape1(i,1);
center_x_2 += shape2(i,0);
center_y_2 += shape2(i,1);
}
center_x_1 /= shape1.rows;
center_y_1 /= shape1.rows;
center_x_2 /= shape2.rows;
center_y_2 /= shape2.rows;
Mat_<float> temp1 = shape1.clone();
Mat_<float> temp2 = shape2.clone();
for(int i = 0;i < shape1.rows;i++){
temp1(i,0) -= center_x_1;
temp1(i,1) -= center_y_1;
temp2(i,0) -= center_x_2;
temp2(i,1) -= center_y_2;
}
Mat_<float> covariance1, covariance2;
Mat_<float> mean1,mean2;
// calculate covariance matrix
calcCovarMatrix(temp1,covariance1,mean1,CV_COVAR_SCALE|CV_COVAR_ROWS|CV_COVAR_NORMAL,CV_32F);
calcCovarMatrix(temp2,covariance2,mean2,CV_COVAR_SCALE|CV_COVAR_ROWS|CV_COVAR_NORMAL,CV_32F);
//cout<<covariance1<<endl;
//cout<<covariance2<<endl;
float s1 = sqrt(norm(covariance1));
float s2 = sqrt(norm(covariance2));
scale = s1 / s2;
temp1 = 1.0 / s1 * temp1;
temp2 = 1.0 / s2 * temp2;
float num = 0;
float den = 0;
for(int i = 0;i < shape1.rows;i++){
num = num + temp1(i,1) * temp2(i,0) - temp1(i,0) * temp2(i,1);
den = den + temp1(i,0) * temp2(i,0) + temp1(i,1) * temp2(i,1);
}
float norm = sqrt(num*num + den*den);
float sin_theta = num / norm;
float cos_theta = den / norm;
rotation(0,0) = cos_theta;
rotation(0,1) = -sin_theta;
rotation(1,0) = sin_theta;
rotation(1,1) = cos_theta;
}
float calculate_covariance(const vector<float>& v_1,
const vector<float>& v_2){
Mat_<float> v1(v_1);
Mat_<float> v2(v_2);
float mean_1 = mean(v1)[0];
float mean_2 = mean(v2)[0];
v1 = v1 - mean_1;
v2 = v2 - mean_2;
return mean(v1.mul(v2))[0];
}
BoundingBox CalculateBoundingBox(Mat_<uchar>& img, Mat_<float>& shape){
BoundingBox bbx;
float left_x = 10000;
float right_x = 0;
float top_y = 10000;
float bottom_y = 0;
for (int i=0; i < shape.rows;i++){
if (shape(i,0) < left_x)
left_x = shape(i,0);
if (shape(i,0) > right_x)
right_x = shape(i,0);
if (shape(i,1) < top_y)
top_y = shape(i,1);
if (shape(i,1) > bottom_y)
bottom_y = shape(i,1);
}
//bbx.centroid_x = shape(15,0);
//bbx.centroid_y = shape(15,1);
///*circle(img, Point(bbx.centroid_x, bbx.centroid_y), 3, Scalar(255));
//imshow("test2", img);
//waitKey(0);*/
///*float maxw = min(right_x - bbx.centroid_x, bbx.centroid_x - left_x);
//float maxh = min(bottom_y - bbx.centroid_y, bbx.centroid_y - top_y);*/
// bbx.start_x = min(img.cols - 1.0f, max(0.f, bbx.centroid_x - (right_x - left_x)));
// bbx.start_y = min(img.rows - 1.0f, max(0.f, bbx.centroid_y - (bottom_y - top_y)));
//float tmp1 = min(img.cols - 1.0f, max(0.f, bbx.centroid_x + (right_x - left_x)));
//float tmp2 = min(img.rows - 1.0f, max(0.f, bbx.centroid_y + (bottom_y - top_y)));
// bbx.width = 2 * (bbx.centroid_x - bbx.start_x);
// bbx.height = 2 * (bbx.centroid_y - bbx.start_y);
bbx.start_x = left_x;
bbx.start_y = top_y;
bbx.height = bottom_y - top_y;
bbx.width = right_x - left_x;
bbx.centroid_x = bbx.start_x + bbx.width / 2.0;
bbx.centroid_y = bbx.start_y + bbx.height / 2.0;
return bbx;
}
void cropBoundingBox(Mat_<uchar>& img, BoundingBox box, BoundingBox& newbox/*, Mat_<float> shape, Mat_<float>& newshape*/) {
RNG random_generator(getTickCount());
do{
float step1 = random_generator.uniform(-CROP, CROP);
float step2 = random_generator.uniform(-CROP, CROP);
newbox.centroid_x = box.centroid_x - box.width*step1;
newbox.centroid_y = box.centroid_y - box.height*step2;
newbox.start_x = newbox.centroid_x - box.width/2;
newbox.start_y = newbox.centroid_y - box.height/2;
newbox.height = box.height;
newbox.width = box.width;
} while (newbox.start_x<0 || newbox.start_x>=img.cols||
newbox.start_y<0 || newbox.start_y>=img.rows||
(newbox.start_x + newbox.width) < 0 || (newbox.start_x + newbox.width) >= img.cols ||
(newbox.start_y + newbox.height)< 0 || (newbox.start_y + newbox.height) >=img.rows);
/*float offsetx = newbox.centroid_x - box.centroid_x;
float offsety = newbox.centroid_y - box.centroid_y;
for (int i=0;i<28;++i)
{
newshape(i, 0) = shape(i, 0) + offsetx;
newshape(i, 1) = shape(i, 1) + offsety;
}*/
}
void adjustImage(Mat_<uchar>& img,
Mat_<float>& ground_truth_shape,
BoundingBox& bounding_box){
/*imshow("test",img);
waitKey(0);*/
float left_x = max(1.0, (double)bounding_box.centroid_x - bounding_box.width*0.8);
float top_y = max(1.0, (double)bounding_box.centroid_y - bounding_box.height*0.8);
float right_x = min(img.cols-1.0,(double)bounding_box.centroid_x+bounding_box.width*0.8);
float bottom_y= min(img.rows-1.0,(double)bounding_box.centroid_y+bounding_box.height*0.8);
img = img.rowRange((int)top_y,(int)bottom_y).colRange((int)left_x,(int)right_x).clone();
bounding_box.start_x = ((int)right_x - (int)left_x)*CROP;
bounding_box.start_y = ((int)bottom_y - (int)top_y)*CROP;
bounding_box.width = ((int)right_x - (int)left_x)*(1-2*CROP)-1;
bounding_box.height = ((int)bottom_y - (int)top_y)*(1-2*CROP)-1;
bounding_box.centroid_x = bounding_box.start_x + bounding_box.width / 2.0;
bounding_box.centroid_y = bounding_box.start_y + bounding_box.height / 2.0;
for(int i=0;i<ground_truth_shape.rows;i++){
ground_truth_shape(i,0) = ground_truth_shape(i,0)-left_x;
ground_truth_shape(i,1) = ground_truth_shape(i,1)-top_y;
}
//imshow("test1",img);
//waitKey(0);
float ori_height=img.rows;
float ori_weight=img.cols;
if (ori_height>MAXHEIGHT_POS)
{
float scale=MAXHEIGHT_POS/ori_height;
resize(img,img,Size(ori_weight*scale,ori_height*scale));
bounding_box.start_x*=scale;
bounding_box.start_y*=scale;
bounding_box.centroid_x*=scale;
bounding_box.centroid_y*=scale;
bounding_box.width*=scale;
bounding_box.height*=scale;
for(int i=0;i<ground_truth_shape.rows;i++){
ground_truth_shape(i,0) *= scale;
ground_truth_shape(i,1) *= scale;
}
}
/*rectangle(img,Point(bounding_box.start_x,bounding_box.start_y),Point(bounding_box.start_x+bounding_box.width,bounding_box.start_y+bounding_box.height),Scalar(255));
for(int i=0;i<ground_truth_shape.rows;i++){
circle(img,Point(ground_truth_shape(i,0),ground_truth_shape(i,1)),3,Scalar(255));
}
imshow("test2",img);
waitKey(0);*/
}
void getRandomBox(const Mat_<uchar>& image, const BoundingBox& old_box, BoundingBox& new_box){
RNG random_generator(getTickCount());
do{
new_box.start_x = random_generator.uniform(0, image.cols - 1);
new_box.start_y = random_generator.uniform(0, image.rows - 1);
new_box.height = random_generator.uniform(MINHEIGHT, image.rows - 1);
new_box.width = (int)(new_box.height*old_box.width / old_box.height);
} while (new_box.start_x+ new_box.width>=image.cols||
new_box.start_y + new_box.height>=image.rows);
new_box.centroid_x = new_box.start_x + new_box.width /2.0;
new_box.centroid_y = new_box.start_y + new_box.height /2.0;
}
float CalculateError(const Mat_<float>& ground_truth_shape, const Mat_<float>& predicted_shape) {
Mat_<float> temp;
//temp = ground_truth_shape.rowRange(36, 37)-ground_truth_shape.rowRange(45, 46);
temp = ground_truth_shape.rowRange(1, 2) - ground_truth_shape.rowRange(6, 7);
float x = mean(temp.col(0))[0];
float y = mean(temp.col(1))[1];
float interocular_distance = sqrt(x*x + y*y);
float sum = 0;
for (int i = 0; i < ground_truth_shape.rows; i++) {
sum += norm(ground_truth_shape.row(i) - predicted_shape.row(i));
}
return sum / (ground_truth_shape.rows*interocular_distance);
}