-
Notifications
You must be signed in to change notification settings - Fork 476
/
Copy pathtrainer.py
226 lines (178 loc) · 8.55 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import time
import torch
import datetime
import torch.nn as nn
from torch.autograd import Variable
from torchvision.utils import save_image
from sagan_models import Generator, Discriminator
from utils import *
class Trainer(object):
def __init__(self, data_loader, config):
# Data loader
self.data_loader = data_loader
# exact model and loss
self.model = config.model
self.adv_loss = config.adv_loss
# Model hyper-parameters
self.imsize = config.imsize
self.g_num = config.g_num
self.z_dim = config.z_dim
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.parallel = config.parallel
self.lambda_gp = config.lambda_gp
self.total_step = config.total_step
self.d_iters = config.d_iters
self.batch_size = config.batch_size
self.num_workers = config.num_workers
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.lr_decay = config.lr_decay
self.beta1 = config.beta1
self.beta2 = config.beta2
self.pretrained_model = config.pretrained_model
self.dataset = config.dataset
self.use_tensorboard = config.use_tensorboard
self.image_path = config.image_path
self.log_path = config.log_path
self.model_save_path = config.model_save_path
self.sample_path = config.sample_path
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.version = config.version
# Path
self.log_path = os.path.join(config.log_path, self.version)
self.sample_path = os.path.join(config.sample_path, self.version)
self.model_save_path = os.path.join(config.model_save_path, self.version)
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
# Start with trained model
if self.pretrained_model:
self.load_pretrained_model()
def train(self):
# Data iterator
data_iter = iter(self.data_loader)
step_per_epoch = len(self.data_loader)
model_save_step = int(self.model_save_step * step_per_epoch)
# Fixed input for debugging
fixed_z = tensor2var(torch.randn(self.batch_size, self.z_dim))
# Start with trained model
if self.pretrained_model:
start = self.pretrained_model + 1
else:
start = 0
# Start time
start_time = time.time()
for step in range(start, self.total_step):
# ================== Train D ================== #
self.D.train()
self.G.train()
try:
real_images, _ = next(data_iter)
except:
data_iter = iter(self.data_loader)
real_images, _ = next(data_iter)
# Compute loss with real images
# dr1, dr2, df1, df2, gf1, gf2 are attention scores
real_images = tensor2var(real_images)
d_out_real,dr1,dr2 = self.D(real_images)
if self.adv_loss == 'wgan-gp':
d_loss_real = - torch.mean(d_out_real)
elif self.adv_loss == 'hinge':
d_loss_real = torch.nn.ReLU()(1.0 - d_out_real).mean()
# apply Gumbel Softmax
z = tensor2var(torch.randn(real_images.size(0), self.z_dim))
fake_images,gf1,gf2 = self.G(z)
d_out_fake,df1,df2 = self.D(fake_images)
if self.adv_loss == 'wgan-gp':
d_loss_fake = d_out_fake.mean()
elif self.adv_loss == 'hinge':
d_loss_fake = torch.nn.ReLU()(1.0 + d_out_fake).mean()
# Backward + Optimize
d_loss = d_loss_real + d_loss_fake
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
if self.adv_loss == 'wgan-gp':
# Compute gradient penalty
alpha = torch.rand(real_images.size(0), 1, 1, 1).cuda().expand_as(real_images)
interpolated = Variable(alpha * real_images.data + (1 - alpha) * fake_images.data, requires_grad=True)
out,_,_ = self.D(interpolated)
grad = torch.autograd.grad(outputs=out,
inputs=interpolated,
grad_outputs=torch.ones(out.size()).cuda(),
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((grad_l2norm - 1) ** 2)
# Backward + Optimize
d_loss = self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# ================== Train G and gumbel ================== #
# Create random noise
z = tensor2var(torch.randn(real_images.size(0), self.z_dim))
fake_images,_,_ = self.G(z)
# Compute loss with fake images
g_out_fake,_,_ = self.D(fake_images) # batch x n
if self.adv_loss == 'wgan-gp':
g_loss_fake = - g_out_fake.mean()
elif self.adv_loss == 'hinge':
g_loss_fake = - g_out_fake.mean()
self.reset_grad()
g_loss_fake.backward()
self.g_optimizer.step()
# Print out log info
if (step + 1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Elapsed [{}], G_step [{}/{}], D_step[{}/{}], d_out_real: {:.4f}, "
" ave_gamma_l3: {:.4f}, ave_gamma_l4: {:.4f}".
format(elapsed, step + 1, self.total_step, (step + 1),
self.total_step , d_loss_real.data[0],
self.G.attn1.gamma.mean().data[0], self.G.attn2.gamma.mean().data[0] ))
# Sample images
if (step + 1) % self.sample_step == 0:
fake_images,_,_= self.G(fixed_z)
save_image(denorm(fake_images.data),
os.path.join(self.sample_path, '{}_fake.png'.format(step + 1)))
if (step+1) % model_save_step==0:
torch.save(self.G.state_dict(),
os.path.join(self.model_save_path, '{}_G.pth'.format(step + 1)))
torch.save(self.D.state_dict(),
os.path.join(self.model_save_path, '{}_D.pth'.format(step + 1)))
def build_model(self):
self.G = Generator(self.batch_size,self.imsize, self.z_dim, self.g_conv_dim).cuda()
self.D = Discriminator(self.batch_size,self.imsize, self.d_conv_dim).cuda()
if self.parallel:
self.G = nn.DataParallel(self.G)
self.D = nn.DataParallel(self.D)
# Loss and optimizer
# self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.g_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.G.parameters()), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.D.parameters()), self.d_lr, [self.beta1, self.beta2])
self.c_loss = torch.nn.CrossEntropyLoss()
# print networks
print(self.G)
print(self.D)
def build_tensorboard(self):
from logger import Logger
self.logger = Logger(self.log_path)
def load_pretrained_model(self):
self.G.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_G.pth'.format(self.pretrained_model))))
self.D.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_D.pth'.format(self.pretrained_model))))
print('loaded trained models (step: {})..!'.format(self.pretrained_model))
def reset_grad(self):
self.d_optimizer.zero_grad()
self.g_optimizer.zero_grad()
def save_sample(self, data_iter):
real_images, _ = next(data_iter)
save_image(denorm(real_images), os.path.join(self.sample_path, 'real.png'))