-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExperienceReplayMemory.py
44 lines (35 loc) · 1.73 KB
/
ExperienceReplayMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
class ExperienceReplayMemory(object):
def __init__(self, memory_size, input_dims):
super(ExperienceReplayMemory, self).__init__()
self.max_mem_size = memory_size
self.counter = 0
# initializes the state, next_state, action, reward, and terminal experience memory
print(type(input_dims))
self.state_memory = np.zeros((memory_size, *input_dims), dtype=np.float32)
self.next_state_memory = np.zeros((memory_size, *input_dims), dtype=np.float32)
self.reward_memory = np.zeros(memory_size, dtype=np.float32)
self.action_memory = np.zeros(memory_size, dtype=np.int64)
self.terminal_memory = np.zeros(memory_size, dtype=bool)
def add_experience(self, state, action, reward, next_state, done):
"""
Adds new experience to the memory.
"""
curr_index = self.counter % self.max_mem_size
self.state_memory[curr_index] = state
self.action_memory[curr_index] = action
self.reward_memory[curr_index] = reward
self.next_state_memory[curr_index] = next_state
self.terminal_memory[curr_index] = done
self.counter += 1
def get_random_experience(self, batch_size):
"""
Returns any random memory from the experience replay memory.
"""
rand_index = np.random.choice(min(self.counter, self.max_mem_size), batch_size)
rand_state = self.state_memory[rand_index]
rand_action = self.action_memory[rand_index]
rand_reward = self.reward_memory[rand_index]
rand_next_state = self.next_state_memory[rand_index]
rand_done = self.terminal_memory[rand_index]
return rand_state, rand_action, rand_reward, rand_next_state, rand_done