-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpixel_analysis_checker.py
638 lines (573 loc) · 20.8 KB
/
pixel_analysis_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# File: main.py
import sys
import json
import pprint
import time
# from sqlalchemy import create_engine
# from sqlalchemy.orm import sessionmaker
# from sqlalchemy.ext.declarative import declarative_base
# from sqlalchemy import Column, Integer, String
from PySide6.QtUiTools import QUiLoader
from PySide6.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton
from PySide6.QtCore import QFile, QIODevice, QTimer, SLOT, QThread, QObject, Signal
from PySide6.QtGui import QPixmap, QImage
import math
import json
import sys
import os
from torch.multiprocessing import Pool
import pandas as pd
import numpy as np
# import nrrd
from PIL import Image, ImageQt
from functools import partial
import matplotlib.pyplot as plt
import pprint
from copy import copy
import torch
# torch.multiprocessing.set_start_method('forkserver')
import pycocotools
import detectron2.structures as structures
import detectron2.data.datasets.coco as coco
from detectron2.data.datasets import register_coco_instances
from detectron2.data import DatasetCatalog, MetadataCatalog, \
build_detection_train_loader, \
build_detection_test_loader
from detectron2.engine.defaults import DefaultTrainer, \
default_argument_parser
from detectron2.engine import launch
import detectron2.data.transforms as T
from detectron2.data import DatasetMapper
from detectron2.config import get_cfg
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
from detectron2.engine import DefaultPredictor
from detectron2.data import Metadata
from detectron2.utils.visualizer import Visualizer
import cv2
from skimage import filters
from skimage.morphology import flood_fill
from random import shuffle
VAL_SCALE_FAC = 0.5
class Worker(QObject):
finished = Signal()
progress = Signal(int)
def run(self):
"""Long-running task."""
gen_metadata_slot()
# self.progress.emit(i + 1)
self.finished.emit()
def init_model():
cfg = get_cfg()
cfg.merge_from_file("config/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 5
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "enhance_model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.3
predictor = DefaultPredictor(cfg)
return predictor
def gen_metadata_slot():
return gen_metadata(sys.argv[1])
def gen_metadata(file_path):
predictor = init_model()
im = cv2.imread(file_path)
im_gray = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
metadata = Metadata(evaluator_type='coco', image_root='.',
json_file='',
name='metadata',
thing_classes=['fish', 'ruler', 'eye', 'two', 'three'],
thing_dataset_id_to_contiguous_id=# {1: 0}
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
)
output = predictor(im)
insts = output['instances']
selector = insts.pred_classes == 0
selector = selector.cumsum(axis=0).cumsum(axis=0) == 1
results = {}
for i in range(1, 5):
temp = insts.pred_classes == i
selector += temp.cumsum(axis=0).cumsum(axis=0) == 1
fish = insts[insts.pred_classes == 0]
# print(fish)
if len(fish):
results['fish'] = []
for _ in range(len(fish)):
results['fish'].append({})
else:
fish = None
results['has_fish'] = bool(fish)
try:
ruler = insts[insts.pred_classes == 1][0]
ruler_bbox = list(ruler.pred_boxes.tensor.cpu().numpy()[0])
results['ruler_bbox'] = [round(x) for x in ruler_bbox]
except:
ruler = None
results['has_ruler'] = bool(ruler)
try:
two = insts[insts.pred_classes == 3][0]
except:
two = None
try:
three = insts[insts.pred_classes == 4][0]
except:
three = None
if ruler and two and three:
scale = calc_scale(two, three)
results['scale'] = scale
else:
scale = None
visualizer = Visualizer(im[:, :, ::-1], metadata=metadata, scale=1.0)
# vis = visualizer.draw_instance_predictions(insts[selector].to('cpu'))
vis = visualizer.draw_instance_predictions(insts.to('cpu'))
os.makedirs('images', exist_ok=True)
file_name = file_path.split('/')[-1]
print(file_name)
cv2.imwrite(f'images/gen_mask_prediction_{file_name}.png',
vis.get_image()[:, :, ::-1])
if fish:
try:
eyes = insts[insts.pred_classes == 2]
except:
eyes = None
for i in range(len(fish)):
curr_fish = fish[i]
if eyes:
eye_ols = [overlap(curr_fish, eyes[j]) for j in
range(len(eyes))]
# TODO: Add pred score as a secondary key in event there are
# more than one 1.0 overlap eyes
max_ind = max(range(len(eye_ols)), key=eye_ols.__getitem__)
eye = eyes[max_ind]
else:
eye = None
results['fish'][i]['has_eye'] = bool(eye)
results['fish_count'] = len(insts[(insts.pred_classes == 0).
logical_and(insts.scores > 0.3)])
# try:
bbox = [round(x) for x in curr_fish.pred_boxes.tensor.cpu().
numpy().astype('float64')[0]]
im_crop = im_gray[bbox[1]:bbox[3], bbox[0]:bbox[2]]
detectron_mask = curr_fish.pred_masks[0].cpu().numpy()
val = adaptive_threshold(bbox, im_gray)
bbox, mask, pixel_anal_failed = gen_mask(bbox, file_path,
file_name, im_gray, val, detectron_mask, index=i)
# except:
# return {file_name: {'errored': True}}
if not np.count_nonzero(mask):
print('Mask failed: {file_name}')
results['errored'] = True
else:
# print(mask)
im_crop = im_gray[bbox[1]:bbox[3], bbox[0]:bbox[2]].reshape(-1)
mask_crop = mask[bbox[1]:bbox[3], bbox[0]:bbox[2]].reshape(-1)
# print(list(zip(list(im_crop),list(mask_crop))))
# print(np.count_nonzero(mask_crop))
fground = im_crop[np.where(mask_crop)]
bground = im_crop[np.where(np.logical_not(mask_crop))]
# print(im_crop.shape)
# print(fground.shape)
# print(bground.shape)
results['fish'][i]['foreground'] = {}
results['fish'][i]['foreground']['mean'] = np.mean(fground)
results['fish'][i]['foreground']['std'] = np.std(fground)
results['fish'][i]['background'] = {}
results['fish'][i]['background']['mean'] = np.mean(bground)
results['fish'][i]['background']['std'] = np.std(bground)
results['fish'][i]['bbox'] = list(bbox)
results['fish'][i]['pixel_analysis_failed'] = pixel_anal_failed
# results['fish'][i]['mask'] = mask.astype('uint8').tolist()
results['fish'][i]['mask'] = '[...]'
centroid, evec = pca(mask)
if scale:
results['fish'][i]['length'] = fish_length(mask, centroid,
evec, scale)
results['fish'][i]['centroid'] = centroid.tolist()
if eye:
# print(eye.pred_boxes.get_centers())
eye_center = [round(x) for x in
eye.pred_boxes.get_centers()[0].cpu().numpy()]
results['fish'][i]['eye_center'] = list(eye_center)
dist1 = distance(centroid, eye_center + evec)
dist2 = distance(centroid, eye_center - evec)
if dist2 > dist1:
# print("HERE")
# print(evec)
evec *= -1
# print(evec)
if evec[0] <= 0.0:
results['fish'][i]['side'] = 'left'
else:
results['fish'][i]['side'] = 'right'
x_mid = int(bbox[0] + (bbox[2] - bbox[0]) / 2)
y_mid = int(bbox[1] + (bbox[3] - bbox[1]) / 2)
# snout_vec = find_snout_vec(np.array([x_mid, y_mid]), eye_center, mask)
snout_vec = evec
if snout_vec is None:
results['fish'][i]['clock_value'] = \
clock_value(evec, file_name)
else:
results['fish'][i]['clock_value'] = \
clock_value(snout_vec, file_name)
results['fish'][i]['primary_axis'] = list(evec)
# print(curr_fish)
results['fish'][i]['score'] = float(curr_fish.scores[0].cpu())
# print(results['fish'][i]['score'])
# pprint.pprint(results)
return {file_name: results}
def adaptive_threshold(bbox, im_gray):
# bbox_d = [round(x) for x in curr_fish.pred_boxes.tensor.cpu().
# numpy().astype('float64')[0]]
im_crop = im_gray[bbox[1]:bbox[3], bbox[0]:bbox[2]]
val = filters.threshold_otsu(im_crop)
mask = np.where(im_crop > val, 1, 0).astype(np.uint8)
# f_bbox_crop = curr_fish.pred_masks[0].cpu().numpy()\
# [bbox_d[1]:bbox_d[3],bbox_d[0]:bbox_d[2]]
flat_mask = mask.reshape(-1)
# fground = im_crop.reshape(-1)[np.where(flat_mask)]
bground = im_crop.reshape(-1)[np.where(np.logical_not(flat_mask))]
mean_b = np.mean(bground)
# mean_f = np.mean(fground)
# print(f'b: {mean_b} | f: {mean_f}')
# flipped = mean_b < mean_f
flipped = False
diff = abs(mean_b - val)
# print(diff)
# val = (mean_b + mean_f) / 2
if flipped:
val -= diff * VAL_SCALE_FAC
else:
val += diff * VAL_SCALE_FAC
val = min(max(1, val), 254)
return val
def find_snout_vec(centroid, eye_center, mask):
eye_dir = eye_center - centroid
x1 = centroid[0]
y1 = centroid[1]
# print(centroid)
# print(eye_center)
# print(eye_dir)
max_len = 0
# fallback = np.array([-1,0])
max_vec = None
for x in range(mask.shape[1]):
for y in range(mask.shape[0]):
# print((x, y))
if mask[y, x]:
x2 = x
y2 = y
curr_dir = np.array([x2 - x1, y2 - y1])
curr_eye_dir = np.array([x2 - eye_center[0],
y2 - eye_center[1]])
curr_len = np.linalg.norm(curr_dir)
if curr_len > max_len:
fallback = curr_dir
max_len = curr_len
if curr_len > np.linalg.norm(curr_eye_dir):
max_vec = curr_dir
# print(max_vec)
if max_len == 0:
# return np.array([-1,0])
return None
if max_vec is None:
print(f'Failed snout')
# max_vec = fallback
return None
return max_vec / max_len
def angle(vec1, vec2):
# print(f'angle: {vec1}, {vec2}')
return math.acos(vec1.dot(vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
def clock_value(evec, file_name):
# print(evec)
if evec[0] < 0:
if evec[1] > 0:
comp = np.array([-1, 0])
start = 9
else:
comp = np.array([0, -1])
start = 6
else:
if evec[1] < 0:
comp = np.array([1, 0])
start = 3
else:
comp = np.array([0, 1])
start = 0
# print(comp)
ang = angle(comp, evec)
# print(ang / (2 * math.pi) * 12)
clock = start + (ang / (2 * math.pi) * 12)
# print(clock)
if clock > 11.5:
clock = 12
elif clock < 0.5:
clock = 12
# print(evec)
return round(clock)
def fish_length(mask, centroid, evec, scale):
m1 = evec[1] / evec[0]
m2 = evec[0] / evec[1]
x1 = centroid[0]
y1 = centroid[1]
x_min = centroid[0]
x_max = centroid[0]
for x in range(mask.shape[1]):
for y in range(mask.shape[0]):
if mask[y, x]:
x2 = x
y2 = y
x_calc = (-y1 + y2 + m1 * x1 - m2 * x2) / (m1 - m2)
y_calc = m1 * (x - x1) + y1
if x_calc > x_max:
x_max = x_calc
y_max = y_calc
elif x_calc < x_min:
x_min = x_calc
y_min = y_calc
return distance((x_max, y_max), (x_min, y_min)) / scale
def overlap(fish, eye):
fish = list(fish.pred_boxes.tensor.cpu().numpy()[0])
eye = list(eye.pred_boxes.tensor.cpu().numpy()[0])
if not (fish[0] < eye[2] and eye[0] < fish[2] and fish[1] < eye[3]
and eye[1] < eye[3]):
return 0
pairs = list(zip(fish, eye))
ol_area = (max(pairs[0]) - min(pairs[2])) * (max(pairs[1]) - min(pairs[3]))
ol_pct = ol_area / ((eye[0] - eye[2]) * (eye[1] - eye[3]))
return ol_pct
def pca(img):
# print(np.count_nonzero(img))
moments = cv2.moments(img)
centroid = (int(moments["m10"] / moments["m00"]),
int(moments["m01"] / moments["m00"]))
# print(centroid)
y, x = np.nonzero(img)
x = x - np.mean(x)
y = y - np.mean(y)
coords = np.vstack([x, y])
cov = np.cov(coords)
evals, evecs = np.linalg.eig(cov)
if evals[0] > evals[1]:
evec = evecs[0]
else:
evec = evecs[1]
# sort_indices = np.argsort(evals)[::-1]
# return (np.array(centroid), evecs[:, sort_indices[0]])
return (np.array(centroid), evec)
def distance(pt1, pt2):
return np.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
def calc_scale(two, three):
pt1 = two.pred_boxes.get_centers()[0]
pt2 = three.pred_boxes.get_centers()[0]
scale = distance([float(pt1[0]), float(pt1[1])],
[float(pt2[0]), float(pt2[1])])
scale /= 2.54
# print(f'Pixels/cm: {scale}')
return scale
def check(arr, val, flipped):
if flipped:
return arr > val
return arr < val
def gen_mask(bbox, file_path, file_name, im_gray, val, detectron_mask,
index=0, flipped=False):
failed = False
l = round(bbox[0])
r = round(bbox[2])
t = round(bbox[1])
b = round(bbox[3])
bbox_orig = bbox
bbox = (l, t, r, b)
im = Image.open(file_path).convert('L')
arr2 = np.array(im)
shape = arr2.shape
done = False
im_crop = im_gray[t:b, l:r]
fish_pix = None
while not done:
done = True
arr0 = np.array(im.crop(bbox))
bb_size = arr0.size
# val = filters.threshold_otsu(arr0)
arr1 = np.where(arr0 < val, 1, 0).astype(np.uint8)
indicies = list(zip(*np.where(arr1 == 1)))
shuffle(indicies)
count = 0
for ind in indicies:
if fish_pix is not None:
ind = fish_pix
count += 1
if count > 100000:
if fish_pix is not None:
fish_pix = None
else:
print(f'ERROR on flood fill: {file_name}')
return (bbox_orig, detectron_mask.astype('uint8'), True)
temp = flood_fill(arr1, ind, 2)
temp = np.where(temp == 2, 1, 0)
percent = np.count_nonzero(temp) / bb_size
if percent > 0.1:
fish_pix = ind
for i in (0, temp.shape[0] - 1):
for j in (0, temp.shape[1] - 1):
temp = flood_fill(temp, (i, j), 2)
arr1 = np.where(temp != 2, 1, 0).astype(np.uint8)
break
arr3 = np.full(shape, 0).astype(np.uint8)
arr3[t:b, l:r] = arr1
# im_crop = im_gray[t:b,l:r]
# fground = im_crop.reshape(-1)[arr1.reshape(-1)]
# bground = im_crop.reshape(-1)[np.invert(arr1.reshape(-1))]
# mean_b = np.mean(bground)
# mean_f = np.mean(fground)
# flipped = mean_b < mean_f
# print(val)
# val = (mean_b + mean_f) / 2
# print(val)
# if flipped:
# val -= val * VAL_SCALE_FAC
# else:
# val += val * VAL_SCALE_FAC
# val = min(max(1, val), 254)
try:
if np.any(arr3[t:b, l] != 0) and l > 0:
l -= 1
l = max(0, l)
done = False
if np.any(arr3[t:b, r] != 0) and r < shape[1] - 1:
r += 1
r = min(shape[1] - 1, r)
done = False
if np.any(arr3[t, l:r] != 0) and t > 0:
t -= 1
t = max(0, t)
done = False
if np.any(arr3[b, l:r] != 0) and b < shape[0] - 1:
b += 1
b = min(shape[0] - 1, b)
done = False
except:
print(f'{file_name}: Error expanding bounding box')
# done = True
return (bbox_orig, detectron_mask.astype('uint8'), True)
bbox = (l, t, r, b)
val = adaptive_threshold(bbox, im_gray)
# print_arr = np.require(arr3, np.uint8, 'C')
# print_arr = arr3
# qImg = QImage(print_arr, print_arr.shape[0], print_arr.shape[1], QImage.Format_Grayscale8)
# qImg = QImage(im, im.shape[0], im.shape[1], QImage.Format_RGB888)
print_arr = np.where(arr3 == 1, 255, 0).astype(np.uint8)
qImg = ImageQt.ImageQt(Image.fromarray(print_arr, 'L'))
pixmap = QPixmap(qImg)
window.picture_frame.setPixmap(pixmap)
print('here')
time.sleep(.01)
if np.count_nonzero(arr1) / bb_size < .1:
print(f'{file_name}: Using detectron mask and bbox')
arr3 = detectron_mask.astype('uint8')
bbox = bbox_orig
failed = True
arr4 = np.where(arr3 == 1, 255, 0).astype(np.uint8)
(l, t, r, b) = shrink_bbox(arr3)
arr4[t:b, l] = 175
arr4[t:b, r] = 175
arr4[t, l:r] = 175
arr4[b, l:r] = 175
im2 = Image.fromarray(arr4, 'L')
im2.save(f'images/gen_mask_mask_{file_name}_{index}.png')
print('done')
return (bbox, arr3, failed)
# https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array
def shrink_bbox(mask):
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
# print(mask)
# print(rows)
# print(cols)
# exit(0)
# try:
# print(np.where(cols))
# print()
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
# except:
# return None
return (cmin, rmin, cmax, rmax)
def gen_metadata_safe(file_path):
try:
return gen_metadata(file_path)
except Exception as e:
print(f'{file_path}: Errored out ({e})')
return {file_path: {'errored': True}}
def main():
app = QApplication(sys.argv)
ui_file_name = "pixel_analysis.ui"
ui_file = QFile(ui_file_name)
if not ui_file.open(QIODevice.ReadOnly):
print(f"Cannot open {ui_file_name}: {ui_file.errorString()}")
sys.exit(-1)
loader = QUiLoader()
global window
window = loader.load(ui_file)
ui_file.close()
if not window:
print(loader.errorString())
sys.exit(-1)
# print("HERE")
# session.close()
direct = sys.argv[1]
if os.path.isdir(direct):
files = [entry.path for entry in os.scandir(direct)]
if len(sys.argv) > 2:
files = files[:int(sys.argv[2])]
else:
files = [direct]
window.show()
thread = QThread()
worker = Worker()
worker.moveToThread(thread)
thread.started.connect(worker.run)
worker.finished.connect(thread.quit)
worker.finished.connect(worker.deleteLater)
thread.finished.connect(thread.deleteLater)
# worker.progress.connect(reportProgress)
thread.start()
# QTimer.singleShot(1, app, SLOT(gen_metadata_slot))
sys.exit(app.exec())
# print(files)
# predictor = init_model()
# f = partial(gen_metadata, predictor)
# with Pool(4) as p:
# results = map(gen_metadata, files)
# results = p.map(gen_metadata_safe, files)
# results = map(gen_metadata, files)
# output = {}
# for i in results:
# output[list(i.keys())[0]] = list(i.values())[0]
# print(output)
# if len(output) > 1:
# with open('metadata_enhance.json', 'w') as f:
# json.dump(output, f)
# else:
# pprint.pprint(output)
# temp_name = ''
# engine = create_engine('sqlite:///temp.sqlite', echo=True)
# conn = engine.connect()
# Session = sessionmaker(bind=engine)
# session = Session()
# Base = declarative_base()
# class Record(Base):
# __tablename__ = 'results'
#
# id = Column(Integer, primary_key=True)
# file_name = Column(String)
# sci_name = Column(String)
#
# def __repr__(self):
# return f'User {self.name}'
# Base.metadata.create_all(engine)
def joel_correct():
pass
# name = Record(file_name='INHS_FISH_725.jpg', sci_name=temp_name.capitalize())
# session.add(name)
# session.commit()
if __name__ == '__main__':
# gen_metadata(sys.argv[1])
main()