-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParameters_of_Different_Polymers.py
233 lines (193 loc) · 10.3 KB
/
Parameters_of_Different_Polymers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#Sanchez-Lacombe parameters for the pure POLYMERS.
#======================================================
#Characteristic Parameters
#======================================================
# Pstar = [MPa]
# Tstar = [K]
# Rstar = [g/cm3]
#############################################################################################
# Polymer_Type='PVME' #PS or PMMA or DME or LPP or BPP or PLA or LDPE
# Reference='Roland' #Condo or Kier
#############################################################################################
P_atm = 0.101325
M_infinity = 9E9
# global Pstar,Tstar,Rstar,Tg_atm,dTg_dP_atm,Pg_exp,Tg_exp,P_upper,T_upper
def Parameters_of_Different_Polymers(**kwargs):
for key,value in kwargs.items():
exec "%s='%s'" % (key,value)
print 'Polymer Type', Polymer_Type, 'Referenced from', Reference
if Polymer_Type=='PC' and Reference=='Zoller':
# For PC Ref: Zoller Paper, A Studey of PVT Relationships of Four Related Amorphous Polymers
Pstar = 574.4 #From huge List of SL EOS Parameters
Tstar = 728.0 #From huge List of SL EOS Parameters
Rstar = 1.2925 #From huge List of SL EOS Parameters
#Experiment Data PC; Zoller Paper
Tg_atm = 423.4 #Zoller Paper: Unit K
dTg_dP_atm = 0.530 #Zoller Paper, Unit: K/MPa , Linear fit value upto 60MPa given by Zoller = 0.530
Pg_exp=[0.101325,9.7,19.9,29.7,39.5,49.1,59.3,69.3,79.1,89.1,98.9,108.7,118.7,128.5,137.9,147.9,157.9,167.9,177.3]
Tg_exp=[423.4,429.3,433.4,436.8,444.5,450.8,455.5,459.6,464.8,469.5,472.8,475.8,481.0,484.3,486.9,490.0,490.4,494.9,496.3]
#Do not take more data linear fit is until 60MPa
P_upper=59.3
T_upper=455.5
if Polymer_Type=='PVAc' and Reference=='Sandberg':
# For PVAc Ref: Roland Paper, Dynamic properties of polyvinylmethylether near the glass transition
Pstar = 504.2 #From huge List of SL EOS Parameters
Tstar = 592.0 #From huge List of SL EOS Parameters
Rstar = 1.2822 #From huge List of SL EOS Parameters
#Experiment Data PVAc; Sandberg Paper #This data does not seems right to me. Shifted by 10K.
Tg_atm = 319.0 #Sandberg Paper: Unit K
dTg_dP_atm = 0.264 #Sandberg Paper, Unit: K/MPa, in low P limit. So take only low pressure values, linear fit value upto 80 MPa.
Pg_exp=[0.101325,26.142,79.299,162.381,241.831,353.225,493.251]
Tg_exp=[319.0,325.53,338.30,355.91,370.70,388.63,407.90]
#Take only low pressure values. Data has curvature.
P_upper=162.381
T_upper=355.91
if Polymer_Type=='PVAc' and Reference=='Roland':
# For PVAc Ref: Roland Paper, Dynamic properties of polyvinylmethylether near the glass transition
Pstar = 504.2 #From huge List of SL EOS Parameters
Tstar = 592.0 #From huge List of SL EOS Parameters
Rstar = 1.2822 #From huge List of SL EOS Parameters
#Use Experiment Data PVAc; Roland Paper
Tg_atm = 311.0 #Roland Paper: Unit K
dTg_dP_atm = 0.216 #My value=0.216 upto 150MPa, #Roland Paper value is 0.25 in limit of P=0, Unit: K/MPa
#Experiment Data PVAc; Roland Paper
Pg_exp=[0.101325,50.0,100.0,150.0,200.0,250.0,300.0,350.0,400.0]
Tg_exp=[311.0,323.0,333.0,343.5,351.5,359.5,366.5,373.5,380.0]
#My slope value=0.216 upto 150MPa
P_upper=150.0
T_upper=343.5
if Polymer_Type=='PVME' and Reference=='Casalini':
# For PVME Ref: Casalini Paper, Dynamic properties of polyvinylmethylether near the glass transition
Pstar = 463.0 #From huge List of SL EOS Parameters
Tstar = 567.0 #From huge List of SL EOS Parameters
Rstar = 1.1198 #From huge List of SL EOS Parameters
Tg_atm = 247.60 #Casalini Paper: Unit K
dTg_dP_atm = 0.149 #My Value=0.149 upto 180MPa #Casalini Paper=0.177 in P=0 limit, Unit: K/MPa
#Experiment Data PVME; Casalini Paper
#Curve has significant curvature even at low values of pressure
Pg_exp=[0.101325,50.16,111.50,177.70,249.75,309.13,375.32,441.51,497.96,556.36,622.55,657.59,687.76]
Tg_exp=[247.60,256.22,265.21,274.08,282.69,289.25,296.19,302.48,307.49,312.12,317.64,320.34,322.40]
# Pg_exp=[0.101325,250,375,690]
# Tg_exp=[247.6,282.5,296.0,322.5]
#Curve has significant curvature even at low values of pressure
P_upper=177.70
T_upper=274.08
if Polymer_Type=='PS' and Reference=='Quach':
# For PS Ref: Quach Paper
Pstar = 357.0
Tstar = 735.0
Rstar = 1.105
Tg_atm = 374.0 #Ref[54] of Quach Paper: Unit K
dTg_dP_atm = 0.316 #Value in Paper: 0.316 #Ref[54] of Quach Paper, Unit: K/MPa
#Experiment Data PS; Quach Ref [54]
Pg_exp=[0.101325,40,60,80,120,160]
Tg_exp=[374.0,388.4,392.7,402.8,413.2,428.8]
P_upper=160.0
T_upper=428.8
if Polymer_Type=='PMMA' and Reference=='Grassia':
# For P*T*R* are from Condo Paper
Pstar = 503.0
Tstar = 696.0
Rstar = 1.269
Tg_atm = 352.0
dTg_dP_atm = 0.3 #Given Value in Paper is: 0.3 #Unit: K/MPa, "It is straight line fit" upto 150MPa
#Experiment Data PMMA; Luigi Grassia: Isobaric and isothermal glass transition of PMMA
Pg_exp=[0.101325,10.0,30.0,60.0,80.0,100.0,120.0,150.0]
Tg_exp=[352.0,356.0,363.5,373.0,379.5,385.0,390.0,397.5]
P_upper=150.0
T_upper=397.5
if Polymer_Type=='PMMA' and Reference=='Olabisi':
# For PMMA Ref: Olabisi Paper
Pstar = 503.0
Tstar = 696.0
Rstar = 1.269
Tg_atm = 378.0 #Ref[53] of Olabisi Paper
dTg_dP_atm = 0.236 #Ref[53] of Olabisi Paper, Unit: K/MPa
#Experiment Data PMMA; Olabisi Ref [53]
Pg_exp=[0.101325,30,40,80,120,140,180]
Tg_exp=[378.0,386.5,386.5,397.5,408.1,408.1,419.7]
P_upper=180.0
T_upper=419.7
if Polymer_Type=='BPP' and Reference=='Hollander':
# For Brached PP Ref: Kier
Pstar = 356.4
Tstar = 656.0
Rstar = 0.8950
Tg_atm = 251.2 #Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
dTg_dP_atm = 0.158 #My Value=0.158 upto 100.4MPa #In P=0 limit value is given to be 0.158 #Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
#Experiment Data PP; Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
Pg_exp=[0.101325,0.4,50.5,100.4,199.5,500.3]
Tg_exp=[251.2,250.0,262.0,267.0,279.0,311.0]
#My slope value=0.158 upto 100.4MPa
P_upper=100.4
T_upper=267.0
if Polymer_Type=='BPP' and Reference=='Passaglia':
# For Brached PP Ref: Kier
Pstar = 356.4
Tstar = 656.0
Rstar = 0.8950
Tg_atm = 243.5 #Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
dTg_dP_atm = 0.204 #Note:It is straight line fit slope on whole data #Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
#Experiment Data Linear Polypropylene; Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
Pg_exp=[0.101325,15,30,40,50,70]
Tg_exp=[243.5,249.0,251.3,252.3,254.0,258.3]
P_upper=70.0
T_upper=258.3
if Polymer_Type=='LPP' and Reference=='Hollander':
# For Linear PP Ref: Kier
Pstar = 316.2
Tstar = 662.8
Rstar = 0.8685
Tg_atm = 251.2 #Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
dTg_dP_atm = 0.158 #My Value=0.158 upto 100.4MPa #In P=0 limit value is given to be 0.158 #Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
#Experiment Data PP; Ref: Actactic PP at High Pressure. Deturon NMR of Glass Temp; Hollander 2001
Pg_exp=[0.101325,0.4,50.5,100.4,199.5,500.3]
Tg_exp=[251.2,250.0,262.0,267.0,279.0,311.0]
#My slope value=0.158 upto 100.4MPa
P_upper=100.4
T_upper=267.0
if Polymer_Type=='LPP' and Reference=='Passaglia':
# For Linear PP Ref: Kier
Pstar = 316.2
Tstar = 662.8
Rstar = 0.8685
Tg_atm = 243.5 #Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
dTg_dP_atm = 0.204 #Note:It is straight line fit slope on whole data #Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
#Experiment Data Linear Polypropylene; Ref: "Variation of Glass Temperature With Pressure in Polypropylene,Passaglia,1962"
Pg_exp=[0.101325,15,30,40,50,70]
Tg_exp=[243.5,249.0,251.3,252.3,254.0,258.3]
P_upper=70.0
T_upper=258.3
if Polymer_Type=='PS' and Reference=='Kier':
# For PS Ref: Kier
Pstar = 421.8
Tstar = 687.8
Rstar = 1.118
Tg_atm = 374.0 #Ref[54] of Condo Paper: Unit K
dTg_dP_atm = 0.316 #Ref[54] of Condo Paper: Unit K/MPa
#Experiment Data PS; Condo Ref [54]
Pg_exp=[0.101325,40,60,80,120,160]
Tg_exp=[373.0,388.4,392.7,402.8,413.2,428.8]
P_upper=160.0
if Polymer_Type=='DME' and Reference=='Kier':
# For DME Ref: Kier
Pstar = 313.8
Tstar = 450.0
Rstar = 0.8146
Tg_atm = 1.0
dTg_dP_atm = 0.0
if Polymer_Type=='LDPE' and Reference=='Kier':
# For Low Density PE Ref: Kier
Pstar = 407.5
Tstar = 586.6
Rstar = 0.9271
Tg_atm = 1.0
dTg_dP_atm = 0.0
if Polymer_Type=='PLA' and Reference=='Kier':
# For PLA Ref: Kier
Pstar = 598.4
Tstar = 617.3
Rstar = 1.347
Tg_atm = 1.0
dTg_dP_atm = 0.0
return (Pstar,Tstar,Rstar,Tg_atm,dTg_dP_atm,Pg_exp,Tg_exp,P_upper,T_upper)