-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
149 lines (110 loc) · 4.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pandas as pd
from sklearn.model_selection import train_test_split
import sklearn
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
from matplotlib import pyplot as plt
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.feature_extraction.text import HashingVectorizer
import itertools
import numpy as np
# Import dataset using pandas dataframe
# df = pd.read_csv('datasets/real_and_fake.csv')
df = pd.read_csv('datasets/fake_real_final_dataset.csv')
# Inspect shape of `df`
df.shape
# Print first lines of `df`
df.head()
# Print first lines of `df`
df.head()
# Separate the labels and set up training and test datasets
y = df.label
# Drop the `label` column
# where numbering of news article is done that column is dropped in dataset
df.drop("label", axis=1)
# Make training and test sets 60-40 train-test split
X_train, X_test, y_train, y_test = train_test_split(
df['title'], y, test_size=0.6, random_state=53)
# Building the Count and Tfidf Vectors
# Initialize the `count_vectorizer`
count_vectorizer = CountVectorizer(stop_words='english')
# Fit and transform the training data
# Learn the vocabulary dictionary and return term-document matrix.
count_train = count_vectorizer.fit_transform(X_train)
# Transform the test set
count_test = count_vectorizer.transform(X_test)
# Initialize the `tfidf_vectorizer`
# This removes words which appear in more than 70% of the articles
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7)
# Fit and transform the training data
tfidf_train = tfidf_vectorizer.fit_transform(X_train)
# Transform the test set
tfidf_test = tfidf_vectorizer.transform(X_test)
# Get the feature names of `tfidf_vectorizer`
# print(tfidf_vectorizer.get_feature_names()[-10:])
# Get the feature names of `count_vectorizer`
# print(count_vectorizer.get_feature_names()[:10])
count_df = pd.DataFrame(
count_train.A, columns=count_vectorizer.get_feature_names())
tfidf_df = pd.DataFrame(
tfidf_train.A, columns=tfidf_vectorizer.get_feature_names())
difference = set(count_df.columns) - set(tfidf_df.columns)
print(difference)
# Check whether the DataFrames are equal
print(count_df.equals(tfidf_df))
print(count_df.head())
print(tfidf_df.head())
# Function to plot the confusion matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
See full source and example:
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# --------------------------------------------------------------
# Naive Bayes classifier for Multinomial model
# --------------------------------------------------------------
clf = MultinomialNB()
# Fit Naive Bayes classifier according to X, y
clf.fit(tfidf_train, y_train)
# Perform classification on an array of test vectors X.
# pred = clf.predict(tfidf_test)
# score = metrics.accuracy_score(y_test, pred)
# print("accuracy: %0.3f" % score)
# cm = metrics.confusion_matrix(y_test, pred, labels=['FAKE', 'REAL'])
# plot_confusion_matrix(cm, classes=['FAKE', 'REAL'])
# print(cm)
# Perform classification on an array of count vectors X.
clf = MultinomialNB()
clf.fit(count_train, y_train)
pred = clf.predict(count_test)
score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)
cm = metrics.confusion_matrix(y_test, pred, labels=['FAKE', 'REAL'])
plot_confusion_matrix(cm, classes=['FAKE', 'REAL'])
print(cm)