-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearner.py
226 lines (193 loc) · 11.4 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from typing import Optional, Sequence, Tuple
import jax
import jax.numpy as jnp
import numpy as np
import optax
import os
import policy
import value_net
from actor import update_gcrl as awr_update_actor
from actor import update_gcrl_det as awr_update_actor_det
from common import GCRLBatch, Batch, MixedBatch, InfoDict, Model, PRNGKey
from critic_gcrl import update_v_smore, update_q_smore, update_q_smore_stable
from functools import partial
def target_update(critic: Model, target_critic: Model, tau: float) -> Model:
new_target_params = jax.tree_map(
lambda p, tp: p * tau + tp * (1 - tau), critic.params,
target_critic.params)
return target_critic.replace(params=new_target_params)
@partial(jax.jit, static_argnames=['double', 'vanilla', 'args'])
def _update_jit_stable(
rng: PRNGKey, actor: Model, critic: Model, value: Model,
target_critic: Model, batch: MixedBatch,expert_batch: Batch, discount: float, tau: float,
expectile: float, temperature: float, loss_temp: float,alpha: float, beta: float, double: bool, vanilla: bool, args,
) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]:
# Set up combined batches for expert data and observation data
combined_observations = jnp.concatenate((batch.observations,expert_batch.observations),axis=0)
combined_actions = jnp.concatenate((batch.actions,expert_batch.actions),axis=0)
combined_achieved_goals = jnp.concatenate((batch.achieved_goals,expert_batch.achieved_goals),axis=0)
combined_goals = jnp.concatenate((batch.goals,expert_batch.goals),axis=0)
combined_next_observations = jnp.concatenate((batch.next_observations,expert_batch.next_observations),axis=0)
combined_rewards = jnp.concatenate((batch.rewards,expert_batch.rewards),axis=0)
combined_batch = GCRLBatch(observations=combined_observations, actions=combined_actions, next_observations=combined_next_observations,achieved_goals=combined_achieved_goals,goals=combined_goals, rewards=combined_rewards)
goal_transition_indicator = jnp.concatenate((jnp.zeros(batch.observations.shape[0]),jnp.ones(expert_batch.observations.shape[0])),axis=0)
is_expert_mask = batch.is_expert
key, rng = jax.random.split(rng)
for i in range(args.num_v_updates):
new_value, value_info = update_v_smore(target_critic, value, combined_batch,is_expert_mask, expectile, loss_temp, alpha,beta, double, vanilla, key, args,goal_transition_indicator)
new_actor, actor_info = awr_update_actor(key, actor, target_critic,
new_value, combined_batch,is_expert_mask, temperature, double)
# new_actor, actor_info = awr_update_actor_det(key, actor, target_critic,
# new_value, combined_batch,is_expert_mask, temperature, double)
new_critic, critic_info = update_q_smore_stable(critic, new_value, combined_batch,is_expert_mask, discount, double, key, loss_temp, args,goal_transition_indicator)
new_target_critic = target_update(new_critic, target_critic, tau)
return rng, new_actor, new_critic, new_value, new_target_critic, {
**critic_info,
**value_info,
**actor_info
}
@partial(jax.jit, static_argnames=['double', 'vanilla', 'args'])
def _update_jit(
rng: PRNGKey, actor: Model, critic: Model, value: Model,
target_critic: Model, batch: MixedBatch,expert_batch: Batch, discount: float, tau: float,
expectile: float, temperature: float, loss_temp: float,alpha: float, beta: float, double: bool, vanilla: bool, args,
) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]:
# Set up combined batches for expert data and observation data
combined_observations = jnp.concatenate((batch.observations,expert_batch.observations),axis=0)
combined_actions = jnp.concatenate((batch.actions,expert_batch.actions),axis=0)
combined_achieved_goals = jnp.concatenate((batch.achieved_goals,expert_batch.achieved_goals),axis=0)
combined_goals = jnp.concatenate((batch.goals,expert_batch.goals),axis=0)
combined_next_observations = jnp.concatenate((batch.next_observations,expert_batch.next_observations),axis=0)
combined_rewards = jnp.concatenate((batch.rewards,expert_batch.rewards),axis=0)
combined_batch = GCRLBatch(observations=combined_observations, actions=combined_actions, next_observations=combined_next_observations,achieved_goals=combined_achieved_goals,goals=combined_goals, rewards=combined_rewards)
goal_transition_indicator = jnp.concatenate((jnp.zeros(batch.observations.shape[0]),jnp.ones(expert_batch.observations.shape[0])),axis=0)
is_expert_mask = batch.is_expert
key, rng = jax.random.split(rng)
for i in range(args.num_v_updates):
new_value, value_info = update_v_smore(target_critic, value, combined_batch,is_expert_mask, expectile, loss_temp, alpha,beta, double, vanilla, key, args,goal_transition_indicator)
new_actor, actor_info = awr_update_actor(key, actor, target_critic,
new_value, combined_batch,is_expert_mask, temperature, double)
# new_actor, actor_info = awr_update_actor_det(key, actor, target_critic,
# new_value, combined_batch,is_expert_mask, temperature, double)
new_critic, critic_info = update_q_smore(critic, new_value, combined_batch,is_expert_mask, discount, double, key, loss_temp, args,goal_transition_indicator)
new_target_critic = target_update(new_critic, target_critic, tau)
return rng, new_actor, new_critic, new_value, new_target_critic, {
**critic_info,
**value_info,
**actor_info
}
class Learner(object):
def __init__(self,
seed: int,
observations: jnp.ndarray,
actions: jnp.ndarray,
actor_lr: float = 3e-4,
value_lr: float = 3e-4,
critic_lr: float = 3e-4,
hidden_dims: Sequence[int] = (256, 256),
discount: float = 0.99,
tau: float = 0.005,
expectile: float = 0.8,
temperature: float = 0.1,
dropout_rate: Optional[float] = None,
layernorm: bool = False,
value_dropout_rate: Optional[float] = None,
max_steps: Optional[int] = None,
loss_temp: float = 1.0,
double_q: bool = True,
vanilla: bool = True,
opt_decay_schedule: str = "cosine",
loss_type: str = "smore_stable",
alpha: float = 0.7,
beta: float = 0.8,
args=None):
"""
An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290
"""
self.expectile = expectile
self.tau = tau
self.discount = discount
self.temperature = temperature
self.loss_temp = loss_temp
self.double_q = double_q
self.vanilla = vanilla
self.alpha = alpha
self.loss_type = loss_type
self.beta=beta
self.args = args
rng = jax.random.PRNGKey(seed)
rng, actor_key, critic_key, value_key = jax.random.split(rng, 4)
action_dim = actions.shape[-1]
actor_def = policy.NormalTanhPolicy(hidden_dims,
action_dim,
log_std_scale=1e-3,
log_std_min=-5.0,
dropout_rate=dropout_rate,
state_dependent_std=False,
tanh_squash_distribution=False)
# actor_def = policy.DetPolicy(hidden_dims,
# action_dim,
# log_std_scale=1e-3,
# log_std_min=-5.0,
# dropout_rate=dropout_rate,
# state_dependent_std=False,
# tanh_squash_distribution=False)
if opt_decay_schedule == "cosine":
schedule_fn = optax.cosine_decay_schedule(-actor_lr, max_steps)
optimiser = optax.chain(optax.scale_by_adam(),
optax.scale_by_schedule(schedule_fn))
else:
optimiser = optax.adam(learning_rate=actor_lr)
actor = Model.create(actor_def,
inputs=[actor_key, observations],
tx=optimiser)
critic_def = value_net.DoubleCritic(hidden_dims)
critic = Model.create(critic_def,
inputs=[critic_key, observations, actions],
tx=optax.adam(learning_rate=critic_lr))
value_def = value_net.ValueCritic(hidden_dims,
layer_norm=layernorm,
dropout_rate=value_dropout_rate)
value = Model.create(value_def,
inputs=[value_key, observations],
tx=optax.adam(learning_rate=value_lr))
target_critic = Model.create(
critic_def, inputs=[critic_key, observations, actions])
self.actor = actor
self.critic = critic
self.value = value
self.target_critic = target_critic
self.rng = rng
def sample_actions(self,
observations: np.ndarray,
temperature: float = 1.0) -> jnp.ndarray:
rng, actions = policy.sample_actions(self.rng, self.actor.apply_fn,
self.actor.params, observations,
temperature)
self.rng = rng
actions = np.asarray(actions)
return np.clip(actions, -1, 1)
def update(self, batch: MixedBatch, expert_batch: Batch) -> InfoDict:
if self.loss_type == "smore_stable":
new_rng, new_actor, new_critic, new_value, new_target_critic, info = _update_jit_stable(
self.rng, self.actor, self.critic, self.value, self.target_critic,
batch,expert_batch, self.discount, self.tau, self.expectile, self.temperature, self.loss_temp, self.alpha,self.beta, self.double_q, self.vanilla, self.args)
else:
new_rng, new_actor, new_critic, new_value, new_target_critic, info = _update_jit(
self.rng, self.actor, self.critic, self.value, self.target_critic,
batch,expert_batch, self.discount, self.tau, self.expectile, self.temperature, self.loss_temp, self.alpha,self.beta, self.double_q, self.vanilla, self.args)
self.rng = new_rng
self.actor = new_actor
self.critic = new_critic
self.value = new_value
self.target_critic = new_target_critic
return info
def load(self, save_dir: str):
self.actor = self.actor.load(os.path.join(save_dir, 'actor'))
self.critic = self.critic.load(os.path.join(save_dir, 'critic'))
self.value = self.value.load(os.path.join(save_dir, 'value'))
self.target_critic = self.target_critic.load(os.path.join(save_dir, 'critic'))
def save(self, save_dir: str):
self.actor.save(os.path.join(save_dir, 'actor'))
self.critic.save(os.path.join(save_dir, 'critic'))
self.value.save(os.path.join(save_dir, 'value'))