-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlearning_netpipe.py
460 lines (384 loc) · 15 KB
/
qlearning_netpipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import subprocess
from subprocess import Popen, PIPE, call
import time
from datetime import datetime
import sys
import os
import getopt
import pickle
device = "cpu"
LSERVER = "192.168.1.201"
CSERVER = "192.168.1.200"
#linuxdef = {}
static_tput_watt = {}
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(0)
def runLocalCommandOut(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE)
print("\t"+com, "->\n", p1.communicate()[0].strip())
def runRemoteCommandOut(server, com):
p1 = Popen(["ssh", server, com], stdout=PIPE)
print("\tssh "+server, com, "->\n", p1.communicate()[0].strip())
def runRemoteCommandGet(server, com):
p1 = Popen(["ssh", server, com], stdout=PIPE)
return p1.communicate()[0].strip()
def runLocalCommand(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE)
def runRemoteCommand(server, com):
p1 = Popen(["ssh", server, com], stdout=PIPE)
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, inputs, outputs):
super(DQN, self).__init__()
self.affine1 = nn.Linear(inputs, 32) #state-action
self.affine2 = nn.Linear(32, 32)
self.head = nn.Linear(32, outputs) #output: q-value
def forward(self, x):
#x = F.relu(self.bn1(self.conv1(x)))
#x = F.relu(self.bn2(self.conv2(x)))
#x = F.relu(self.bn3(self.conv3(x)))
#return self.head(x.view(x.size(0), -1))
x = F.relu(self.affine1(x))
x = F.relu(self.affine2(x))
x = self.head(x)
return x
BATCH_SIZE = 128
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 2000
TARGET_UPDATE = 10
TIME_LENGTH = 10
STATE_STEP_SIZE = 0.1
num_episodes = 961
low_msg_size = 512
high_msg_size = 131072
n_inputs = 1 # msg size
n_actions = 50 # rx_delay == [0, 2, ..., 100]
policy_net = DQN(n_inputs, n_actions).to(device)
target_net = DQN(n_inputs, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
steps_done += 1
sample = np.random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
state = torch.from_numpy(np.array([state])).float().unsqueeze(0).to(device)
if sample < eps_threshold:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long)
else:
with torch.no_grad():
return policy_net(state).max(1)[1].view(1, 1)
episode_durations = []
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.uint8)
#non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])
non_final_next_states = torch.cat([torch.tensor([s], device=device) for s in batch.next_state if s is not None]).unsqueeze(1)
#state_batch = torch.cat(batch.state)
#action_batch = torch.cat(batch.action)
#reward_batch = torch.cat(batch.reward)
state_batch = torch.cat([torch.tensor([s], device=device) for s in batch.state]).reshape(len(batch.state), 1)
action_batch = torch.cat([torch.tensor([s], device=device) for s in batch.action]).reshape(len(batch.action), 1)
reward_batch = torch.cat([torch.tensor([s], device=device) for s in batch.reward]).float()
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
try:
state_action_values = policy_net(state_batch).gather(1, action_batch)
except:
print("*********** gather ERROR")
import pdb
pdb.set_trace()
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
def runBench(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE, stderr=PIPE)
time.sleep(1)
stdout, stderr = p1.communicate()
if len(stderr) == 0:
printf("*** len(stderr) == 0")
return 0
else:
print(stderr)
try:
lines=list(filter(None, str(stderr).strip().split('-->')))
lines2=list(filter(None, lines[1].strip().split(' ')))
return float(lines2[0])
except IndexError:
print("******* IndexError:", str(stderr))
return 0
def runLinux(msg_size):
runRemoteCommand(LSERVER, "pkill NPtcp")
time.sleep(0.1)
runLocalCommand("pkill NPtcp")
time.sleep(0.1)
runRemoteCommand(LSERVER, "taskset -c 1 NPtcp -l "+msg_size+" -u "+msg_size+"-p 0 -r -I")
time.sleep(1)
return runBench("taskset -c 1 NPtcp -h "+LSERVER+" -l "+msg_size+" -u "+msg_size+" -T 1 -p 0 -r -I")
def runStatic(msg_size, rx_delay):
runRemoteCommand(CSERVER, "pkill NPtcp")
time.sleep(0.5)
runLocalCommand("pkill NPtcp")
time.sleep(0.5)
runRemoteCommand(CSERVER, "ethtool -C enp4s0f1 rx-usecs "+rx_delay)
time.sleep(0.5)
runRemoteCommand(CSERVER, "perf stat -C 1 -D 1000 -o perf.out -e power/energy-pkg/,power/energy-ram/ -x, taskset -c 1 NPtcp -l "+msg_size+" -u "+msg_size+"-p 0 -r -I")
time.sleep(1)
start = datetime.now()
tput = runBench("taskset -c 1 NPtcp -h "+CSERVER+" -l "+msg_size+" -u "+msg_size+" -T 5 -p 0 -r -I")
end = datetime.now()
secs = (end - start).total_seconds()
return tput, secs
def getPower(s):
p = runRemoteCommandGet(CSERVER, "cat perf.out")
time.sleep(0.5)
sum_joules = 0.0
for l in str(p).split('\\n'):
if 'Joules' in l:
sum_joules += float(l.split(',')[0])
if s > 0:
return sum_joules/s
else:
return 0
def runNetPipe():
for i_episode in range(num_episodes):
state = float(np.random.randint(low_msg_size, high_msg_size))
done = False
mcnt = 0
for t in count():
# Select and perform an action
action = select_action(state)
ltput = -1
laction = -1
ltputwatts = 0
ctputwatts = 0
lsecs = 0
csecs = 0
if state not in static_tput_watt.keys():
laction = np.random.randint(n_inputs, n_actions) * 2
ltput,lsecs = runStatic(str(state), str(laction))
lpower = float(getPower(lsecs))
if lpower > 0:
ltputwatts = ltput/lpower
else:
ltputwatts = 0
else:
ltputwatts = static_tput_watt[state]
ctput, csecs = runStatic(str(state), str(action.item() * 2))
cpower = float(getPower(csecs))
if cpower > 0:
ctputwatts = ctput/cpower
else:
ctputwatts = 0
if ctputwatts > 0 and ltputwatts > 0:
mcnt += 1
# keep history of highest throughput seen thus far for some msg size (state)
if ltputwatts > ctputwatts:
static_tput_watt[state] = ltputwatts
else:
static_tput_watt[state] = ctputwatts
reward = torch.tensor((ctputwatts-ltputwatts)/ltputwatts) # % improvement over linux default
reward = torch.tensor([reward], device=device)
print("EP=%d t=%d MSG=%d Laction=%d Ltput=%.6f LtputWatts=%.6f Caction=%d Ctput=%.6f CtputWatts=%.6f REWARD=%.6f" % (i_episode, t, state, laction, ltput, ltputwatts, action.item()*2, ctput, ctputwatts, reward))
if mcnt==TIME_LENGTH:
done = True
# Observe new state
if not done:
next_state = float(np.random.randint(low_msg_size, high_msg_size))
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the target network)
optimize_model()
if done:
episode_durations.append(t + 1)
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
print("\t Saving target_net")
target_net.load_state_dict(policy_net.state_dict())
torch.save(target_net.state_dict(), "target_net810.pt")
torch.save(policy_net.state_dict(), "policy_net810.pt")
# log linux history
pickle.dump(static_tput_watt, open("static_tput_watt_8_9.pickle", "wb"))
def runNetpipe2(fn):
f = open(fn, 'r')
mdict = {}
for l in f:
tmp = l.split(" ")
msg = 0
action = 0
tput = 0
for t in tmp:
if "MSG=" in t:
msg = int(t.split("=")[1])
if "Laction=" in t:
action = int(t.split("=")[1]) / 2
if "Ltput=" in t:
tput = float(t.split("=")[1])
if msg not in mdict.keys():
mdict[msg] = [action, tput]
else:
if tput > mdict[msg][1]:
mdict[msg] = [action, tput]
f.close()
#print(mdict)
ldict = list(mdict.keys())
print(ldict[0], ldict[len(ldict)-1])
for i in range(0, len(ldict)):
state = ldict[i]
next_state = None
if i + 1 < len(ldict):
next_state = ldict[i+1]
next_state = torch.from_numpy(np.array([next_state], dtype=np.int32)).float().unsqueeze(0).to(device)
action = mdict[state][0]
reward = torch.tensor([mdict[state][1]], device=device)
action = torch.tensor([action], device=device, dtype=torch.long)
state = torch.from_numpy(np.array([state])).float().unsqueeze(0).to(device)
memory.push(state, action, next_state, reward)
optimize_model()
target_net.load_state_dict(policy_net.state_dict())
print("Training Complete")
print("target_net eval now:")
target_net.eval()
#adict = {}
prev = 0
for i in range(low_msg_size, high_msg_size):
state = torch.from_numpy(np.array([i])).float().unsqueeze(0).to(device)
with torch.no_grad():
action = int(target_net(state).max(1)[1].view(1, 1).item())*2
if action != prev:
print("Msg=", i, " Action=", action)
prev = action
#if key not in adict.keys():
# adict[key] = 0
#else:
# adict[key] += 1
#print(adict)
runNetpipe2("tmp.log")
'''
def runNetpipe3(fn):
f = open(fn, 'r')
mdict = {}
for l in f:
tmp = l.split(" ")
msg = 0
action = 0
tput = 0
for t in tmp:
if "MSG=" in t:
msg = int(t.split("=")[1])
if "Laction=" in t:
action = int(t.split("=")[1]) / 2
if "Ltput=" in t:
tput = float(t.split("=")[1])
if msg > 9600 and msg < 10600:
print(l.strip())
if msg not in mdict.keys():
mdict[msg] = [action, tput]
else:
if tput > mdict[msg][1]:
mdict[msg] = [action, tput]
f.close()
#print(mdict)
runNetpipe3("tmp.log")
if __name__ == '__main__':
try:
print("Loading static_tput_watt_8_9.pickle", end=" ")
static_tput_watt = pickle.load(open("static_tput_watt_8_9.pickle", "rb"))
print(len(static_tput_watt))
except FileNotFoundError:
print("static_tput_watt_8_9.pickle not found")
# runNetPipe()
try:
target_net.load_state_dict(torch.load("target_net810.pt"))
except FileNotFoundError:
print("qlearn_netpipe87.pt not found")
print("Training Complete")
print("target_net eval now:")
target_net.eval()
mdict = {}
for i in range(low_msg_size, high_msg_size):
state = torch.from_numpy(np.array([i])).float().unsqueeze(0).to(device)
with torch.no_grad():
key = int(target_net(state).max(1)[1].view(1, 1).item())*2
#print(i, key)
if key not in mdict.keys():
mdict[key] = 0
else:
mdict[key] += 1
print(mdict)
'''
'''
try:
print("Loading qlearn_netpipe87.pt")
target_net.load_state_dict(torch.load("qlearn_netpipe87.pt"))
except FileNotFoundError:
print("qlearn_netpipe87.pt not found")
try:
print("Loading linuxdef87.pickle", end=" ")
linuxdef = pickle.load(open("linuxdef87.pickle", "rb"))
print(len(linuxdef))
except FileNotFoundError:
print("linuxdef87.pickle not found")
'''