-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlearning.py
310 lines (247 loc) · 9.83 KB
/
qlearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import subprocess
from subprocess import Popen, PIPE, call
import time
from datetime import datetime
import sys
import os
import getopt
#plt.ion()
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cpu"
MASTER = "192.168.1.200"
def runLocalCommandOut(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE)
print("\t"+com, "->\n", p1.communicate()[0].strip())
def runRemoteCommandOut(com):
p1 = Popen(["ssh", MASTER, com], stdout=PIPE)
print("\tssh "+MASTER, com, "->\n", p1.communicate()[0].strip())
def runLocalCommand(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE)
def runRemoteCommand(com):
p1 = Popen(["ssh", MASTER, com], stdout=PIPE)
def runPingPong2(msg_size, rx_delay):
print(msg_size, rx_delay, end=' ')
#if msg_size % 2 == 0:
'''
#Option 1: doesn't work
msg_size, rx_delay = float(msg_size), float(rx_delay)
if msg_size > 10000:
if 1.5 < rx_delay < 2.5:
val = 1
else:
val = 0
else:
if 7.5 < rx_delay < 8.5:
val = 1
else:
val = 0
return val
'''
#Option 2: continuous reward structure. works
#return -torch.abs(msg_size - rx_delay)
'''
#Option 3: same as option 1 but recaled msg values. doesn't work.
if msg_size > 4.5:
if 1.5 < rx_delay < 2.5:
val = 1
else:
val = 0
else:
if 7.5 < rx_delay < 8.5:
val = 1
else:
val = 0
return val
'''
#option 4: continuous version of binary threshold. works
optimal_delay = 9. / (1 + np.exp(-(msg_size - 4.5)/0.1))
print(optimal_delay, end=' ')
print(-torch.abs(torch.tensor(rx_delay - optimal_delay)))
return -torch.abs(torch.tensor(rx_delay - optimal_delay))
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, inputs, outputs):
super(DQN, self).__init__()
self.affine1 = nn.Linear(inputs, 64) #state-action
self.affine2 = nn.Linear(64, 64)
self.head = nn.Linear(64, outputs) #output: q-value
def forward(self, x):
#x = F.relu(self.bn1(self.conv1(x)))
#x = F.relu(self.bn2(self.conv2(x)))
#x = F.relu(self.bn3(self.conv3(x)))
#return self.head(x.view(x.size(0), -1))
x = F.relu(self.affine1(x))
x = F.relu(self.affine2(x))
x = self.head(x)
return x
BATCH_SIZE = 128
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
TIME_LENGTH = 10
STATE_STEP_SIZE = 0.1
#num_episodes = 200
num_episodes = 20
low_msg_size = 0
high_msg_size = 9
rxd = [0, 20, 40, 60, 80, 100]
rapl = [60, 80, 100, 120, 140, 160, 180, 200]
n_inputs = 1
n_actions = len(rxd) * len(rapl)
policy_net = DQN(n_inputs, n_actions).to(device)
target_net = DQN(n_inputs, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
steps_done += 1
sample = np.random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
state = torch.from_numpy(np.array([state])).float().unsqueeze(0).to(device)
if sample < eps_threshold:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long)
else:
with torch.no_grad():
return policy_net(state).max(1)[1].view(1, 1)
episode_durations = []
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.uint8)
#non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])
non_final_next_states = torch.cat([torch.tensor([s], device=device) for s in batch.next_state if s is not None]).unsqueeze(1)
#state_batch = torch.cat(batch.state)
#action_batch = torch.cat(batch.action)
#reward_batch = torch.cat(batch.reward)
state_batch = torch.cat([torch.tensor([s], device=device) for s in batch.state]).reshape(len(batch.state), 1)
action_batch = torch.cat([torch.tensor([s], device=device) for s in batch.action]).reshape(len(batch.action), 1)
reward_batch = torch.cat([torch.tensor([s], device=device) for s in batch.reward]).float()
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
def runPingPong():
for i_episode in range(num_episodes):
# Initialize the environment and state
#env.reset()
#last_screen = get_screen()
#current_screen = get_screen()
#state = current_screen - last_screen
state = np.random.uniform(low_msg_size, high_msg_size)
done = False
for t in count():
# Select and perform an action
action = select_action(state)
#_, reward, done, _ = env.step(action.item())
reward = runPingPong2(state, action)
reward = torch.tensor([reward], device=device)
#print(state, action, reward)
if t==TIME_LENGTH:
done = True
# Observe new state
if not done:
next_state = np.random.uniform(low_msg_size, high_msg_size)
#next_state = state + (np.random.randint(2)-1) * STATE_STEP_SIZE
#if next_state >= high_msg_size:
# next_state -= 2*STATE_STEP_SIZE
#if next_state <= low_msg_size:
# next_state += 2*STATE_STEP_SIZE
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the target network)
#import pdb
#pdb.set_trace()
optimize_model()
if done:
episode_durations.append(t + 1)
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
def runMutilate(com):
p1 = Popen(list(filter(None, com.strip().split(' '))), stdout=PIPE)
output = p1.communicate()[0].strip()
f = open("mutilate.log", "w")
f.write(str(output))
f.close()
def runBench():
runRemoteCommandOut("pkill memcached")
runLocalCommandOut("pkill mutilate")
runRemoteCommand("chrt -r 1 perf stat -C 1,3,5,7,9,11,13,15 -D 1000 -o perf.out -e cycles,instructions,LLC-load-misses,LLC-store-misses,power/energy-pkg/,power/energy-ram/ -x, numactl --cpunodebind=1 --membind=1 memcached -u nobody -m 16G -c 4096 -o hashpower=20 -l 192.168.1.200 -t 8 -b 8192")
time.sleep(1)
runMutilate("chrt -r 1 numactl --cpunodebind=1 --membind=1 mutilate --binary -B -s 192.168.1.200 -T 8 --noload --keysize=fb_key --valuesize=fb_value --iadist=fb_ia --update=0.033 -d 4 -c 128 --search=99:250")
runRemoteCommandOut("pkill memcached")
runBench()
'''
def runMutilate():
rxd = [0, 20, 40, 60, 80, 100]
rapl = [60, 80, 100, 120, 140, 160, 180, 200]
# 6 x 7 == 42
# 0, 1, 2, 3, ... , 41
# 0 = rxd=0, rapl=60
# 1 = rxd=1, rapl=80
#action = np.random.randint(0, 41)
action = int(sys.argv[1])
print(action, rxd[action%len(rxd)], rapl[action%len(rapl)])
#runMutilate()
'''