-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchartstest.py
100 lines (89 loc) · 3.37 KB
/
chartstest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import customtkinter as tk
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
import numpy as np
import json
import requests
def charts(predicted):
# food_data = {
# "items": [
# {
# "name": "carrot",
# "calories": 34.0,
# "serving_size_g": 100.0,
# "fat_total_g": 0.2,
# "fat_saturated_g": 0.0,
# "protein_g": 0.8,
# "sodium_mg": 57,
# "potassium_mg": 30,
# "cholesterol_mg": 0,
# "carbohydrates_total_g": 8.3,
# "fiber_g": 3.0,
# "sugar_g": 3.4,
# }
# ]
# }
api_url = "https://api.calorieninjas.com/v1/nutrition?query="
query = f"100g {predicted}"
response = requests.get(
api_url + query, headers={"X-Api-Key": "your calorieninjas api here"}
)
if response.status_code == requests.codes.ok:
print(response.text)
food_data = json.loads(response.text)
else:
print("Error:", response.status_code, response.text)
dark_bg = "#1E1E1E"
dark_text = "#CCCCCC"
tk.set_appearance_mode("dark")
window = tk.CTk()
window.title("Nutrition Data")
window.configure(bg=dark_bg)
header_frame = tk.CTkFrame(window, bg_color=dark_bg)
header_frame.pack(expand=False, fill=tk.BOTH)
food_name_label = tk.CTkLabel(
header_frame,
text=food_data["items"][0]["name"],
font=("Helvetica", 38),
bg_color=dark_bg,
fg_color=dark_bg,
)
food_name_label.pack(pady=20, padx=0)
frame = tk.CTkFrame(window, bg_color=dark_bg)
frame.pack(expand=True, fill=tk.BOTH)
# Create Pie Chart
fig_pie = Figure(figsize=(5, 5), dpi=100, facecolor=dark_bg)
ax_pie = fig_pie.add_subplot(111)
wedges, texts, autotexts = ax_pie.pie(
[
food_data["items"][0]["fat_total_g"],
food_data["items"][0]["protein_g"],
food_data["items"][0]["carbohydrates_total_g"],
],
labels=["Fat", "Protein", "Carbohydrates"],
autopct="%1.1f%%",
startangle=90,
)
for text in texts:
text.set_color(dark_text)
ax_pie.set_title("Nutrient Distribution", color=dark_text)
# Create Radar Chart
fig_radar = Figure(figsize=(5, 5), dpi=100, facecolor=dark_bg)
ax_radar = fig_radar.add_subplot(111, polar=True)
categories = list(food_data["items"][0].keys())[3:]
values = [food_data["items"][0][category] for category in categories]
angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
values += values[:1]
angles += angles[:1]
ax_radar.fill(angles, values, color="b", alpha=0.25)
ax_radar.set_yticklabels([])
ax_radar.set_xticks(angles[:-1])
ax_radar.set_xticklabels(categories, color=dark_text)
ax_radar.set_title("Nutrient Values", color=dark_text)
canvas_pie = FigureCanvasTkAgg(fig_pie, master=frame)
canvas_pie.draw()
canvas_pie.get_tk_widget().pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
canvas_radar = FigureCanvasTkAgg(fig_radar, master=frame)
canvas_radar.draw()
canvas_radar.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH, expand=True)
window.mainloop()