forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation_transforms.py
451 lines (342 loc) · 13.4 KB
/
augmentation_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transforms used in the Augmentation Policies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
# pylint:disable=g-multiple-import
from PIL import ImageOps, ImageEnhance, ImageFilter, Image
# pylint:enable=g-multiple-import
IMAGE_SIZE = 32
# What is the dataset mean and std of the images on the training set
MEANS = [0.49139968, 0.48215841, 0.44653091]
STDS = [0.24703223, 0.24348513, 0.26158784]
PARAMETER_MAX = 10 # What is the max 'level' a transform could be predicted
def random_flip(x):
"""Flip the input x horizontally with 50% probability."""
if np.random.rand(1)[0] > 0.5:
return np.fliplr(x)
return x
def zero_pad_and_crop(img, amount=4):
"""Zero pad by `amount` zero pixels on each side then take a random crop.
Args:
img: numpy image that will be zero padded and cropped.
amount: amount of zeros to pad `img` with horizontally and verically.
Returns:
The cropped zero padded img. The returned numpy array will be of the same
shape as `img`.
"""
padded_img = np.zeros((img.shape[0] + amount * 2, img.shape[1] + amount * 2,
img.shape[2]))
padded_img[amount:img.shape[0] + amount, amount:
img.shape[1] + amount, :] = img
top = np.random.randint(low=0, high=2 * amount)
left = np.random.randint(low=0, high=2 * amount)
new_img = padded_img[top:top + img.shape[0], left:left + img.shape[1], :]
return new_img
def create_cutout_mask(img_height, img_width, num_channels, size):
"""Creates a zero mask used for cutout of shape `img_height` x `img_width`.
Args:
img_height: Height of image cutout mask will be applied to.
img_width: Width of image cutout mask will be applied to.
num_channels: Number of channels in the image.
size: Size of the zeros mask.
Returns:
A mask of shape `img_height` x `img_width` with all ones except for a
square of zeros of shape `size` x `size`. This mask is meant to be
elementwise multiplied with the original image. Additionally returns
the `upper_coord` and `lower_coord` which specify where the cutout mask
will be applied.
"""
assert img_height == img_width
# Sample center where cutout mask will be applied
height_loc = np.random.randint(low=0, high=img_height)
width_loc = np.random.randint(low=0, high=img_width)
# Determine upper right and lower left corners of patch
upper_coord = (max(0, height_loc - size // 2), max(0, width_loc - size // 2))
lower_coord = (min(img_height, height_loc + size // 2),
min(img_width, width_loc + size // 2))
mask_height = lower_coord[0] - upper_coord[0]
mask_width = lower_coord[1] - upper_coord[1]
assert mask_height > 0
assert mask_width > 0
mask = np.ones((img_height, img_width, num_channels))
zeros = np.zeros((mask_height, mask_width, num_channels))
mask[upper_coord[0]:lower_coord[0], upper_coord[1]:lower_coord[1], :] = (
zeros)
return mask, upper_coord, lower_coord
def cutout_numpy(img, size=16):
"""Apply cutout with mask of shape `size` x `size` to `img`.
The cutout operation is from the paper https://arxiv.org/abs/1708.04552.
This operation applies a `size`x`size` mask of zeros to a random location
within `img`.
Args:
img: Numpy image that cutout will be applied to.
size: Height/width of the cutout mask that will be
Returns:
A numpy tensor that is the result of applying the cutout mask to `img`.
"""
img_height, img_width, num_channels = (img.shape[0], img.shape[1],
img.shape[2])
assert len(img.shape) == 3
mask, _, _ = create_cutout_mask(img_height, img_width, num_channels, size)
return img * mask
def float_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled
to level/PARAMETER_MAX.
Returns:
A float that results from scaling `maxval` according to `level`.
"""
return float(level) * maxval / PARAMETER_MAX
def int_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled
to level/PARAMETER_MAX.
Returns:
An int that results from scaling `maxval` according to `level`.
"""
return int(level * maxval / PARAMETER_MAX)
def pil_wrap(img):
"""Convert the `img` numpy tensor to a PIL Image."""
return Image.fromarray(
np.uint8((img * STDS + MEANS) * 255.0)).convert('RGBA')
def pil_unwrap(pil_img):
"""Converts the PIL img to a numpy array."""
pic_array = (np.array(pil_img.getdata()).reshape((32, 32, 4)) / 255.0)
i1, i2 = np.where(pic_array[:, :, 3] == 0)
pic_array = (pic_array[:, :, :3] - MEANS) / STDS
pic_array[i1, i2] = [0, 0, 0]
return pic_array
def apply_policy(policy, img):
"""Apply the `policy` to the numpy `img`.
Args:
policy: A list of tuples with the form (name, probability, level) where
`name` is the name of the augmentation operation to apply, `probability`
is the probability of applying the operation and `level` is what strength
the operation to apply.
img: Numpy image that will have `policy` applied to it.
Returns:
The result of applying `policy` to `img`.
"""
pil_img = pil_wrap(img)
for xform in policy:
assert len(xform) == 3
name, probability, level = xform
xform_fn = NAME_TO_TRANSFORM[name].pil_transformer(probability, level)
pil_img = xform_fn(pil_img)
return pil_unwrap(pil_img)
class TransformFunction(object):
"""Wraps the Transform function for pretty printing options."""
def __init__(self, func, name):
self.f = func
self.name = name
def __repr__(self):
return '<' + self.name + '>'
def __call__(self, pil_img):
return self.f(pil_img)
class TransformT(object):
"""Each instance of this class represents a specific transform."""
def __init__(self, name, xform_fn):
self.name = name
self.xform = xform_fn
def pil_transformer(self, probability, level):
def return_function(im):
if random.random() < probability:
im = self.xform(im, level)
return im
name = self.name + '({:.1f},{})'.format(probability, level)
return TransformFunction(return_function, name)
def do_transform(self, image, level):
f = self.pil_transformer(PARAMETER_MAX, level)
return pil_unwrap(f(pil_wrap(image)))
################## Transform Functions ##################
identity = TransformT('identity', lambda pil_img, level: pil_img)
flip_lr = TransformT(
'FlipLR',
lambda pil_img, level: pil_img.transpose(Image.FLIP_LEFT_RIGHT))
flip_ud = TransformT(
'FlipUD',
lambda pil_img, level: pil_img.transpose(Image.FLIP_TOP_BOTTOM))
# pylint:disable=g-long-lambda
auto_contrast = TransformT(
'AutoContrast',
lambda pil_img, level: ImageOps.autocontrast(
pil_img.convert('RGB')).convert('RGBA'))
equalize = TransformT(
'Equalize',
lambda pil_img, level: ImageOps.equalize(
pil_img.convert('RGB')).convert('RGBA'))
invert = TransformT(
'Invert',
lambda pil_img, level: ImageOps.invert(
pil_img.convert('RGB')).convert('RGBA'))
# pylint:enable=g-long-lambda
blur = TransformT(
'Blur', lambda pil_img, level: pil_img.filter(ImageFilter.BLUR))
smooth = TransformT(
'Smooth',
lambda pil_img, level: pil_img.filter(ImageFilter.SMOOTH))
def _rotate_impl(pil_img, level):
"""Rotates `pil_img` from -30 to 30 degrees depending on `level`."""
degrees = int_parameter(level, 30)
if random.random() > 0.5:
degrees = -degrees
return pil_img.rotate(degrees)
rotate = TransformT('Rotate', _rotate_impl)
def _posterize_impl(pil_img, level):
"""Applies PIL Posterize to `pil_img`."""
level = int_parameter(level, 4)
return ImageOps.posterize(pil_img.convert('RGB'), 4 - level).convert('RGBA')
posterize = TransformT('Posterize', _posterize_impl)
def _shear_x_impl(pil_img, level):
"""Applies PIL ShearX to `pil_img`.
The ShearX operation shears the image along the horizontal axis with `level`
magnitude.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had ShearX applied to it.
"""
level = float_parameter(level, 0.3)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, level, 0, 0, 1, 0))
shear_x = TransformT('ShearX', _shear_x_impl)
def _shear_y_impl(pil_img, level):
"""Applies PIL ShearY to `pil_img`.
The ShearY operation shears the image along the vertical axis with `level`
magnitude.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had ShearX applied to it.
"""
level = float_parameter(level, 0.3)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, 0, level, 1, 0))
shear_y = TransformT('ShearY', _shear_y_impl)
def _translate_x_impl(pil_img, level):
"""Applies PIL TranslateX to `pil_img`.
Translate the image in the horizontal direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had TranslateX applied to it.
"""
level = int_parameter(level, 10)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, level, 0, 1, 0))
translate_x = TransformT('TranslateX', _translate_x_impl)
def _translate_y_impl(pil_img, level):
"""Applies PIL TranslateY to `pil_img`.
Translate the image in the vertical direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had TranslateY applied to it.
"""
level = int_parameter(level, 10)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, 0, 0, 1, level))
translate_y = TransformT('TranslateY', _translate_y_impl)
def _crop_impl(pil_img, level, interpolation=Image.BILINEAR):
"""Applies a crop to `pil_img` with the size depending on the `level`."""
cropped = pil_img.crop((level, level, IMAGE_SIZE - level, IMAGE_SIZE - level))
resized = cropped.resize((IMAGE_SIZE, IMAGE_SIZE), interpolation)
return resized
crop_bilinear = TransformT('CropBilinear', _crop_impl)
def _solarize_impl(pil_img, level):
"""Applies PIL Solarize to `pil_img`.
Translate the image in the vertical direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had Solarize applied to it.
"""
level = int_parameter(level, 256)
return ImageOps.solarize(pil_img.convert('RGB'), 256 - level).convert('RGBA')
solarize = TransformT('Solarize', _solarize_impl)
def _cutout_pil_impl(pil_img, level):
"""Apply cutout to pil_img at the specified level."""
size = int_parameter(level, 20)
if size <= 0:
return pil_img
img_height, img_width, num_channels = (32, 32, 3)
_, upper_coord, lower_coord = (
create_cutout_mask(img_height, img_width, num_channels, size))
pixels = pil_img.load() # create the pixel map
for i in range(upper_coord[0], lower_coord[0]): # for every col:
for j in range(upper_coord[1], lower_coord[1]): # For every row
pixels[i, j] = (125, 122, 113, 0) # set the colour accordingly
return pil_img
cutout = TransformT('Cutout', _cutout_pil_impl)
def _enhancer_impl(enhancer):
"""Sets level to be between 0.1 and 1.8 for ImageEnhance transforms of PIL."""
def impl(pil_img, level):
v = float_parameter(level, 1.8) + .1 # going to 0 just destroys it
return enhancer(pil_img).enhance(v)
return impl
color = TransformT('Color', _enhancer_impl(ImageEnhance.Color))
contrast = TransformT('Contrast', _enhancer_impl(ImageEnhance.Contrast))
brightness = TransformT('Brightness', _enhancer_impl(
ImageEnhance.Brightness))
sharpness = TransformT('Sharpness', _enhancer_impl(ImageEnhance.Sharpness))
ALL_TRANSFORMS = [
flip_lr,
flip_ud,
auto_contrast,
equalize,
invert,
rotate,
posterize,
crop_bilinear,
solarize,
color,
contrast,
brightness,
sharpness,
shear_x,
shear_y,
translate_x,
translate_y,
cutout,
blur,
smooth
]
NAME_TO_TRANSFORM = {t.name: t for t in ALL_TRANSFORMS}
TRANSFORM_NAMES = NAME_TO_TRANSFORM.keys()