-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathmain.py
112 lines (93 loc) · 5.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
author: Hugh Alessi
date: Saturday, July 27, 2019 8:25:00 PM
description: Use primitive underlying DCF modeling to compare intrinsic per share price
to current share price.
future goals:
-- Formalize sensitivity analysis.
-- More robust revenue forecasts in FCF.
-- EBITA multiples terminal value calculation.
-- More to be added.
"""
import argparse
import os
from modeling.data import *
from modeling.dcf import *
from visualization.plot import *
from visualization.printouts import *
def main(args):
"""
although the if statements are less than desirable, it allows rapid exploration of
historical or present DCF values for either a single or list of tickers.
"""
if args.s > 0:
if args.v is not None:
if args.v == 'eg' or 'earnings_growth_rate':
cond, dcfs = run_setup(args, variable = 'eg')
elif args.v == 'cg' or 'cap_ex_growth_rate':
cond, dcfs = run_setup(args, variable = 'cg')
elif args.v == 'pg' or 'perpetual_growth_rate':
cond, dcfs = run_setup(args, variable = 'pg')
elif args.v == 'discount_rate' or 'discount':
cond, dcfs = run_setup(args, variable = 'discount')
# TODO: more dynamically do this...potentially?
else:
raise ValueError('args.variable is invalid, must choose (as of now) from this list -> [earnings_growth_rate, cap_ex_growth_rate, perpetual_growth_rate, discount')
else:
# should we just default to something?
raise ValueError('If step (-- s) is > 0, you must specify the variable via --v. What was passed is invalid.')
else:
cond, dcfs = {'Ticker': [args.t]}, {}
dcfs[args.t] = historical_DCF(args.t, args.y, args.p, args.d, args.eg, args.cg, args.pg, args.i, args.apikey)
if args.y > 1: # can't graph single timepoint very well....
visualize_bulk_historicals(dcfs, args.t, cond, args.apikey)
else:
prettyprint(dcfs, args.y)
def run_setup(args, variable):
dcfs, cond = {}, {args.v: []}
for increment in range(1, int(args.steps) + 1): # default to 5 steps?
# this should probably be wrapped in another function..
var = vars(args)[variable] * (1 + (args.s * increment))
step = '{}: {}'.format(args.v, str(var)[0:4])
cond[args.v].append(step)
vars(args)[variable] = var
dcfs[step] = historical_DCF(args.t, args.y, args.p, args.d, args.eg, args.cg, args.pg, args.i, args.apikey)
return cond, dcfs
def multiple_tickers():
"""
can be called from main to spawn dcf/historical dcfs for
a list of tickers TODO: fully fix
"""
# if args.ts is not None:
# """list to forecast"""
# if args.y > 1:
# for ticker in args.ts:
# dcfs[ticker] = historical_DCF(args.t, args.y, args.p, args.eg, args.cg, args.pgr)
# else:
# for ticker in args.tss:
# dcfs[ticker] = DCF(args.t, args.p, args.eg, args.cg, args.pgr)
# elif args.t is not None:
# """ single ticker"""
# if args.y > 1:
# dcfs[args.t] = historical_DCF(args.t, args.y, args.p, args.eg, args.cg, args.pgr)
# else:
# dcfs[args.t] = DCF(args.t, args.p, args.eg, args.cg, args.pgr)
# else:
# raise ValueError('A ticker or list of tickers must be specified with --ticker or --tickers')
return NotImplementedError
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--p', '--period', help = 'years to forecast', type = int, default = 5)
parser.add_argument('--t', '--ticker', help = 'pass a single ticker to do historical DCF', type = str, default = 'AAPL')
parser.add_argument('--y', '--years', help = 'number of years to compute DCF analysis for', type = int, default = 1)
parser.add_argument('--i', '--interval', help = 'interval period for each calc, either "annual" or "quarter"', default = 'annual')
parser.add_argument('--s', '--step_increase', help = 'specify step increase for EG, CG, PG to enable comparisons.', type = float, default = 0)
parser.add_argument('--steps', help = 'steps to take if --s is > 0', default = 5)
parser.add_argument('--v', '--variable', help = 'if --step_increase is specified, must specifiy variable to increase from: [earnings_growth_rate, discount_rate]', default = None)
parser.add_argument('--d', '--discount_rate', help = 'discount rate for future cash flow to firm', default = 0.1)
parser.add_argument('--eg', '--earnings_growth_rate', help = 'growth in revenue, YoY', type = float, default = .05)
parser.add_argument('--cg', '--cap_ex_growth_rate', help = 'growth in cap_ex, YoY', type = float, default = 0.045)
parser.add_argument('--pg', '--perpetual_growth_rate', help = 'for perpetuity growth terminal value', type = float, default = 0.05)
parser.add_argument('--apikey', help='API key for financialmodelingprep.com', default=os.environ.get('APIKEY'))
args = parser.parse_args()
main(args)