-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchemprot.py
294 lines (242 loc) · 11.3 KB
/
chemprot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, Tuple
import datasets
_DATASETNAME = "chemprot"
_CITATION = """\
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Krallinger, M., Rabal, O., Lourenço, A.},
title = {Overview of the BioCreative VI chemical–protein interaction Track},
journal = {Proceedings of the BioCreative VI Workshop,},
volume = {141–146},
year = {2017},
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
doi = {},
biburl = {},
bibsource = {}
}
"""
_DESCRIPTION = """\
The BioCreative VI Chemical-Protein interaction dataset identifies entities of chemicals and proteins and their likely relation to one other. Compounds are generally agonists (activators) or antagonists (inhibitors) of proteins.
"""
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
_LICENSE = "Public Domain Mark 1.0"
_URLs = {"chemprot": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip"}
_VERSION = "1.0.0"
class ChemprotDataset(datasets.GeneratorBasedBuilder):
"""BioCreative VI Chemical-Protein Interaction Task."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=_DATASETNAME,
version=VERSION,
description=_DESCRIPTION,
),
]
DEFAULT_CONFIG_NAME = (
_DATASETNAME # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
if self.config.name == _DATASETNAME:
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": datasets.Sequence(
{
"offsets": datasets.Sequence(datasets.Value("int64")),
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"entity_id": datasets.Value("string"),
}
),
"relations": datasets.Sequence(
{
"type": datasets.Value("string"),
"arg1": datasets.Value("string"),
"arg2": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
# Extract each of the individual folders
# NOTE: omitting "extract" call cause it uses a new folder
train_path = dl_manager.extract(os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip"))
test_path = dl_manager.extract(os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip"))
dev_path = dl_manager.extract(os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip"))
sample_path = dl_manager.extract(os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip"))
return [
datasets.SplitGenerator(
name="sample", # should be a named split : /
gen_kwargs={
"filepath": os.path.join(sample_path, "chemprot_sample"),
"abstract_file": "chemprot_sample_abstracts.tsv",
"entity_file": "chemprot_sample_entities.tsv",
"relation_file": "chemprot_sample_gold_standard.tsv",
"split": "sample",
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(train_path, "chemprot_training"),
"abstract_file": "chemprot_training_abstracts.tsv",
"entity_file": "chemprot_training_entities.tsv",
"relation_file": "chemprot_training_gold_standard.tsv",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(test_path, "chemprot_test_gs"),
"abstract_file": "chemprot_test_abstracts_gs.tsv",
"entity_file": "chemprot_test_entities_gs.tsv",
"relation_file": "chemprot_test_gold_standard.tsv",
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dev_path, "chemprot_development"),
"abstract_file": "chemprot_development_abstracts.tsv",
"entity_file": "chemprot_development_entities.tsv",
"relation_file": "chemprot_development_gold_standard.tsv",
"split": "dev",
},
),
]
def _generate_examples(self, filepath, abstract_file, entity_file, relation_file, split):
"""Yields examples as (key, example) tuples."""
if self.config.name == _DATASETNAME:
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
entities, entity_id = self._get_entities(os.path.join(filepath, entity_file))
relations = self._get_relations(os.path.join(filepath, relation_file), entity_id)
# NOTE: Not all relations have a gold standard (i.e. annotated by human curators).
empty_reln = [
{
"type": None,
"arg1": None,
"arg2": None,
}
]
for id_, pmid in enumerate(abstracts.keys()):
yield id_, {
"pmid": pmid,
"text": abstracts[pmid],
"entities": entities[pmid],
"relations": relations.get(pmid, empty_reln),
}
@staticmethod
def _get_abstract(abs_filename: str) -> Dict[str, str]:
"""
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
:param filename: `*_abstracts.tsv from ChemProt
:returns Dictionary with PMID keys and abstract text as values.
"""
with open(abs_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
# PMID is the first column, Abstract is last
return {doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents} # Includes title as line 1
@staticmethod
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
"""
For each document in the corpus, return entity annotations per PMID.
Each column in the entity file is as follows:
(1) PMID
(2) Entity Number
(3) Entity Type (Chemical, Gene-Y, Gene-N)
(4) Start index
(5) End index
(6) Actual text of entity
:param ents_filename: `_*entities.tsv` file from ChemProt
:returns: Dictionary with PMID keys and entity annotations.
"""
with open(ents_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
entities = {}
entity_id = {}
for line in contents:
pmid, idx, label, start_offset, end_offset, name = line.split("\t")
# Populate entity dictionary
if pmid not in entities:
entities[pmid] = []
ann = {
"offsets": [int(start_offset), int(end_offset)],
"text": name,
"type": label,
"entity_id": idx,
}
entities[pmid].append(ann)
# Populate entity mapping
entity_id.update({idx: name})
return entities, entity_id
@staticmethod
def _get_relations(rel_filename: str, ent_dict: Dict[str, str]) -> Dict[str, str]:
"""
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
The columns include:
(1) PMID
(2) Relationship Label (CPR)
(3) Interactor Argument 1 Entity Identifier
(4) Interactor Argument 2 Entity Identifier
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
Unlike entities, there is no counter, hence once must be made
:param rel_filename: Gold standard file name
:param ent_dict: Entity Identifier to text
"""
with open(rel_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
relations = {}
for line in contents:
pmid, label, arg1, arg2 = line.split("\t")
arg1 = arg1.split("Arg1:")[-1]
arg2 = arg2.split("Arg2:")[-1]
if pmid not in relations:
relations[pmid] = []
ann = {
"type": label,
"arg1": ent_dict.get(arg1, None),
"arg2": ent_dict.get(arg2, None),
}
relations[pmid].append(ann)
return relations