-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbc5cdr.py
227 lines (204 loc) · 9.1 KB
/
bc5cdr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script was originally authored by Jason Fries"""
import csv
import json
import os
import bioc
import datasets
_CITATION = """\
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Jiao Li and
Yueping Sun and
Robin J. Johnson and
Daniela Sciaky and
Chih{-}Hsuan Wei and
Robert Leaman and
Allan Peter Davis and
Carolyn J. Mattingly and
Thomas C. Wiegers and
Zhiyong Lu},
title = {BioCreative {V} {CDR} task corpus: a resource for chemical disease
relation extraction},
journal = {Database J. Biol. Databases Curation},
volume = {2016},
year = {2016},
url = {https://doi.org/10.1093/database/baw068},
doi = {10.1093/database/baw068},
timestamp = {Thu, 13 Aug 2020 12:41:41 +0200},
biburl = {https://dblp.org/rec/journals/biodb/LiSJSWLDMWL16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
The BioCreative V Chemical Disease Relation (CDR) dataset is a large annotated text corpus of
human annotations of all chemicals, diseases and their interactions in 1,500 PubMed articles.
"""
_HOMEPAGE = "http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/"
_LICENSE = "Public Domain Mark 1.0"
_URLs = {
'biocreative': "http://www.biocreative.org/media/store/files/2016/CDR_Data.zip"
}
class Bc5cdrDataset(datasets.GeneratorBasedBuilder):
"""BioCreative V Chemical Disease Relation (CDR) Task."""
VERSION = datasets.Version("01.05.16")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="biocreative",
version=VERSION,
description="Original annotation files.",
),
]
DEFAULT_CONFIG_NAME = "biocreative" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "biocreative":
features = datasets.Features(
{
"passages": datasets.Sequence(
{
"pmid": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": datasets.Sequence(
{
"offsets": datasets.Sequence(
[datasets.Value("int32")]
),
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"entity_id": datasets.Value("string"),
}
),
"relations": datasets.Sequence(
{
'relation': datasets.Value("string"),
'chemical': datasets.Value("string"),
'disease': datasets.Value("string"),
}
),
}
)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir,
"CDR_Data/CDR.Corpus.v010516/CDR_TrainingSet.BioC.xml",
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir,
"CDR_Data/CDR.Corpus.v010516/CDR_TestSet.BioC.xml",
),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir,
"CDR_Data/CDR.Corpus.v010516/CDR_DevelopmentSet.BioC.xml",
),
"split": "dev",
},
),
]
def _get_bioc_entity(self, span, kb_id_key='MESH'):
offsets = [
(loc.offset, loc.offset + loc.length) for loc in span.locations
]
kb_id = span.infons[kb_id_key] if kb_id_key else -1
return {
"offsets": offsets,
"text": span.text,
"type": span.infons['type'],
"entity_id": kb_id,
}
def _generate_examples(
self,
filepath,
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
if self.config.name == "biocreative":
reader = bioc.BioCXMLDocumentReader(str(filepath))
for id_, xdoc in enumerate(reader):
yield id_, {
"passages": [
{
"pmid": xdoc.id,
"type": passage.infons['type'],
"text": passage.text,
"entities": [
self._get_bioc_entity(span)
for span in passage.annotations
],
"relations": [
{
key.lower(): value
for key, value in rel.infons.items()
}
for rel in xdoc.relations
],
}
for passage in xdoc.passages
]
}