-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpretrain_qg.py
402 lines (346 loc) · 15.1 KB
/
pretrain_qg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import load_metric
from nltk.tokenize import word_tokenize
from transformers import (
AutoModelForSeq2SeqLM,
HfArgumentParser,
set_seed, AutoConfig, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer, AutoTokenizer)
from transformers.trainer_utils import get_last_checkpoint
from data_helper import read_data
logger = logging.getLogger(__name__)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default='t5-small',
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
cache_dir: Optional[str] = field(
default='cache/', metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_file_path: str = field(
metadata={"help": "Path for cached train dataset"},
)
valid_file_path: str = field(
metadata={"help": "Path for cached valid dataset"},
)
data_dir: Optional[str] = field(
default=None,
metadata={"help": "Path for data files"},
)
task: Optional[str] = field(
default='qg_agno',
metadata={
"help": "cloze2normal, normal2cloze, multi, qg, qg_agno"},
)
answer_aware: Optional[int] = field(
default=0,
metadata={"help": 'include answer during training?'},
)
qg_format: Optional[str] = field(
default='highlight_qg_format',
metadata={"help": "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"},
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "Max input length for the source text"},
)
max_target_length: Optional[int] = field(
default=48,
metadata={"help": "Max input length for the target text"},
)
is_debug_mode: Optional[int] = field(
default=-1,
metadata={"help": "training on local machine?"},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
def main(args_file=None):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if (len(sys.argv) == 2 and sys.argv[1].endswith(".json")) or args_file is not None:
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
args_file_path = os.path.abspath(sys.argv[1]) if args_file is None else args_file
model_args, data_args, training_args = parser.parse_json_file(json_file=args_file_path)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# set seed & init logger
set_loggers(training_args)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Load pretrained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
model_max_length=512,
# use_auth_token=True if model_args.use_auth_token else None,
)
train_dataset, valid_dataset = read_data(data_args, tokenizer)
if data_args.is_debug_mode == 1:
config = AutoConfig.from_pretrained('t5-small')
config.d_ff = 64
config.d_kv = 2
config.d_model = 16
# config.hidden_size = 16
# config.num_attention_heads = 2
config.num_layers = 2
config.num_heads = 2
config.num_decoder_layers = 2
# config.num_hidden_layers = 2
model = AutoModelForSeq2SeqLM.from_config(config)
else:
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id
)
metric_squad = load_metric("squad")
metric_bleu = load_metric("bleu")
metric_rouge = load_metric("rouge")
metric_meteor = load_metric('meteor')
def postprocess_bleu(preds, labels):
preds = [word_tokenize(pred) for pred in preds]
labels = [[word_tokenize(label)] for label in labels]
return preds, labels
def postprocess_squad(preds, labels):
preds = [{'prediction_text': p, 'id': i} for i, p in enumerate(preds)]
labels = [{'answers': {'answer_start': [-1], 'text': [r]}, 'id': i} for i, r in enumerate(labels)]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# F1 & EM evaluations
decoded_preds_tmp, decoded_labels_tmp = postprocess_squad(decoded_preds, decoded_labels)
result_f1_em = metric_squad.compute(predictions=decoded_preds_tmp, references=decoded_labels_tmp)
# Meteor evaluation
result_meteor = metric_meteor.compute(predictions=decoded_preds, references=decoded_labels)
# Extract a few results from ROUGE
decoded_preds, decoded_labels = postprocess_bleu(decoded_preds, decoded_labels)
result_rouge = metric_rouge.compute(predictions=decoded_preds, references=decoded_labels)
result_rouge = {key: value.mid.fmeasure * 100 for key, value in result_rouge.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result_rouge["gen_len"] = np.mean(prediction_lens)
result_rouge = {k: round(v, 4) for k, v in result_rouge.items()}
# Extract bleu
result_bleu = metric_bleu.compute(predictions=decoded_preds, references=decoded_labels)
result_bleu = {
'bleu': result_bleu['bleu'] * 100,
# 'bleu_precisions': result_bleu['precisions']
}
super_dict = {} # uses set to avoid duplicates
for d in [result_f1_em, result_rouge, result_bleu, result_meteor]:
for k, v in d.items():
super_dict[k] = v
return super_dict
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.max_target_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(valid_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(valid_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
valid_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(valid_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(valid_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
tmp_labels = np.where(predict_results.label_ids != -100, predict_results.label_ids,
tokenizer.pad_token_id)
else:
tmp_labels = predict_results.label_ids
ground_truth = tokenizer.batch_decode(
tmp_labels, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
pretty_results = [(grnd.strip(), pred.strip()) for grnd, pred in zip(ground_truth, predictions)]
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w", encoding="utf-8") as writer:
for item in pretty_results:
writer.write('ground: {}\n'.format(item[0]))
writer.write('pred: {}\n'.format(item[1]))
writer.write('-' * 50 + '\n')
return results
def set_loggers(training_args):
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Set project name
os.environ["WANDB_PROJECT"] = "qg-baselines"
# disable wandb console logs
logging.getLogger('wandb.run_manager').setLevel(logging.WARNING)
if __name__ == "__main__":
main()