forked from htm-community/nupic.critic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nupic_output.py
203 lines (157 loc) · 6.05 KB
/
nupic_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
"""
Provides two classes with the same signature for writing data out of NuPIC
models.
(This is a component of the One Hot Gym Prediction Tutorial.)
"""
import os
import csv
from collections import deque
from abc import ABCMeta, abstractmethod
from nupic.algorithms import anomaly_likelihood
# Try to import matplotlib, but we don't have to.
try:
import matplotlib
matplotlib.use('TKAgg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.dates import date2num
except ImportError:
pass
WINDOW = 100
DEFAULT_OUTPUT_PATH = "."
class NuPICOutput(object):
__metaclass__ = ABCMeta
def __init__(self, name, predictedField, path=DEFAULT_OUTPUT_PATH):
self.name = name
self.predictedField = predictedField
self.path = path
@abstractmethod
def write(self, row, result):
pass
@abstractmethod
def close(self):
pass
class NuPICFileOutput(NuPICOutput):
def __init__(self, *args, **kwargs):
super(NuPICFileOutput, self).__init__(*args, **kwargs)
self.outputFile = None
self.outputWriter = None
self.lineCount = None
self.lineCount = 0
outputFilePath = os.path.join(self.path, "%s.csv" % self.name)
print "Preparing to output %s data to %s" % (self.name, outputFilePath)
self.outputFile = open(outputFilePath, "w")
self.outputWriter = csv.writer(self.outputFile)
self._headerWritten = False
self.anomalyLikelihoodHelper = anomaly_likelihood.AnomalyLikelihood()
def write(self, row, result):
row["anomalyScore"] = result.inferences["anomalyScore"]
if not self._headerWritten:
keys = row.keys()
keys.append("predicted")
keys.append("anomalyLikelihood")
self.outputWriter.writerow(keys)
self._headerWritten = True
predicted = result.inferences["multiStepBestPredictions"][1]
value = row[self.predictedField]
anomalyLikelihood = self.anomalyLikelihoodHelper.anomalyProbability(
value, row["anomalyScore"], row["seconds"]
)
rows = row.values()
rows.append(predicted)
rows.append(anomalyLikelihood)
self.outputWriter.writerow(rows)
self.lineCount += 1
def close(self):
self.outputFile.close()
print "Wrote %i data lines to %s." % \
(self.lineCount, os.path.abspath(self.outputFile.name))
class NuPICPlotOutput(NuPICOutput):
def __init__(self, *args, **kwargs):
super(NuPICPlotOutput, self).__init__(*args, **kwargs)
self.names = [self.name]
# Turn matplotlib interactive mode on.
plt.ion()
self.dates = []
self.convertedDates = []
self.actualValues = []
self.predictedValues = []
self.actualLines = []
self.predictedLines = []
self.linesInitialized = False
self.graphs = []
plotCount = len(self.names)
plotHeight = max(plotCount * 3, 6)
fig = plt.figure(figsize=(14, plotHeight))
gs = gridspec.GridSpec(plotCount, 1)
for index in range(len(self.names)):
self.graphs.append(fig.add_subplot(gs[index, 0]))
plt.title(self.names[index])
plt.ylabel('Frequency Bucket')
plt.xlabel('Seconds')
plt.tight_layout()
def initializeLines(self, timestamps):
for index in range(len(self.names)):
print "initializing %s" % self.names[index]
# graph = self.graphs[index]
self.dates.append(deque([timestamps[index]] * WINDOW, maxlen=WINDOW))
# print self.dates[index]
# self.convertedDates.append(deque(
# [date2num(date) for date in self.dates[index]], maxlen=WINDOW
# ))
self.actualValues.append(deque([0.0] * WINDOW, maxlen=WINDOW))
self.predictedValues.append(deque([0.0] * WINDOW, maxlen=WINDOW))
actualPlot, = self.graphs[index].plot(
self.dates[index], self.actualValues[index]
)
self.actualLines.append(actualPlot)
predictedPlot, = self.graphs[index].plot(
self.dates[index], self.predictedValues[index]
)
self.predictedLines.append(predictedPlot)
self.linesInitialized = True
def write(self, timestamps, actualValues, predictedValues,
predictionStep=1):
assert len(timestamps) == len(actualValues) == len(predictedValues)
# We need the first timestamp to initialize the lines at the right X value,
# so do that check first.
if not self.linesInitialized:
self.initializeLines(timestamps)
for index in range(len(self.names)):
self.dates[index].append(timestamps[index])
# self.convertedDates[index].append(date2num(timestamps[index]))
self.actualValues[index].append(actualValues[index])
self.predictedValues[index].append(predictedValues[index])
# Update data
self.actualLines[index].set_xdata(self.dates[index])
self.actualLines[index].set_ydata(self.actualValues[index])
self.predictedLines[index].set_xdata(self.dates[index])
self.predictedLines[index].set_ydata(self.predictedValues[index])
self.graphs[index].relim()
self.graphs[index].autoscale_view(True, True, True)
plt.pause(0.000001) # This also calls draw()
plt.legend(('actual','predicted'), loc=3)
def close(self):
plt.ioff()
plt.show()
NuPICOutput.register(NuPICFileOutput)