-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscratchpad.R
38 lines (34 loc) · 2.13 KB
/
scratchpad.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
rf.grid <- h2o.grid("randomForest",
x = x_names[!(x_names %in% c("pr_label0_drf",
"pr_label1_drf",
"pr_label2_drf",
"pr_label0_ensemble",
"pr_label1_ensemble",
"pr_label2_ensemble"))],
y = "fault_severity_factor",
training_frame = trainHex,
model_id = "tel_drf_grid.hex",
ntrees = 1000,
sample_rate = 0.99,
#balance_classes = F,
nbins = 100,
#max_depth = 9,
stopping_rounds = 5,
stopping_metric = "logloss",
stopping_tolerance = .001,
nfolds = 10,
seed = 2016,
hyper_params = list(
max_depth = c(21,22,23,24) #9,12,13,14,15,16,9,15,17, 19,
)
)
# Get grid summary
summary(rf.grid)
# Fetch grid models
model_ids <- rf.grid@model_ids
models <- lapply(model_ids, function(id) { h2o.getModel(id)})
m <- as.character(model_ids)
h2o.mse(h2o.getModel("Grid_DRF_RTMP_sid_9b4a_236_model_R_1456676148949_5463_model_4"), xval = T)
h2o.mse(h2o.getModel("Grid_DRF_RTMP_sid_9b4a_236_model_R_1456676148949_5463_model_3"), xval = T)
h2o.mse(h2o.getModel("Grid_DRF_RTMP_sid_9b4a_236_model_R_1456676148949_5463_model_2"), xval = T)
h2o.mse(h2o.getModel("Grid_DRF_RTMP_sid_9b4a_236_model_R_1456676148949_5463_model_1"), xval = T)