-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_policy.py
executable file
·179 lines (142 loc) · 7.04 KB
/
train_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import torch
import gym
import argparse
import os
import ddpg_replay_buffer
import TD3
# Runs policy for X episodes and returns average reward
def eval_policy(policy, env_name, seed, eval_episodes=10):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
action = policy.select_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", default="TD3") # Policy name (TD3, DDPG or OurDDPG)
parser.add_argument("--env", default="Hopper-v2") # OpenAI gym environment name
parser.add_argument("--seed", default=1, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=25e3, type=int) # Time steps initial random policy is used
parser.add_argument("--eval_freq", default=1e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--expl_noise", default=0.1) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99) # Discount factor
parser.add_argument("--tau", default=0.005) # Target network update rate
parser.add_argument("--policy_noise", default=0.2) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--save_model", default=True) # Save model and optimizer parameters
parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name
parser.add_argument("--device", default="cpu") # "cuda:0"
parser.add_argument("--lab_server_save_dir", default="./policies_test")
parser.add_argument("--checkpoint_scores", default=[4000, 5000], nargs="+", type=float) # default= [],
args = parser.parse_args()
file_name = f"{args.policy}_{args.env}_{args.seed}"
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
model_save_dir = os.path.join(args.lab_server_save_dir, "policies", file_name)
results_save_dir = os.path.join(args.lab_server_save_dir, "results", file_name)
os.makedirs(model_save_dir, exist_ok=True)
os.makedirs(results_save_dir, exist_ok=True)
os.makedirs(os.path.join(model_save_dir, "latest"), exist_ok=True)
os.makedirs(os.path.join(model_save_dir, "best"), exist_ok=True)
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
"device": args.device,
}
# Initialize policy
if args.policy == "TD3":
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
policy = TD3.TD3(**kwargs)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
policy.load(model_save_dir)
replay_buffer = ddpg_replay_buffer.ReplayBuffer(state_dim, action_dim, device=args.device)
# Evaluate untrained policy
evaluations = [eval_policy(policy, args.env, args.seed)]
## parameters for saving intermediate policy
current_best = evaluations[0]
ckpt_score = args.checkpoint_scores if args.checkpoint_scores else []
ckpt_idx = 0
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
for t in range(int(args.max_timesteps)):
episode_timesteps += 1
# Select action randomly or according to policy
if t < args.start_timesteps:
action = env.action_space.sample()
else:
action = (
policy.select_action(np.array(state))
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if t >= args.start_timesteps:
policy.train(replay_buffer, args.batch_size)
if done:
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
print(
f"Total T: {t + 1} Episode Num: {episode_num + 1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f}")
# Reset environment
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Evaluate episode
if (t + 1) % args.eval_freq == 0:
evaluations.append(eval_policy(policy, args.env, args.seed))
np.save(results_save_dir, evaluations)
## save model
if args.save_model:
## latest model
policy.save(os.path.join(model_save_dir, "latest"))
## best model
if evaluations[-1] > current_best:
current_best = evaluations[-1]
save_path = os.path.join(model_save_dir, "best")
policy.save(save_path)
print("Found new best!")
## save checkpoint
if ckpt_idx < len(ckpt_score) and current_best > ckpt_score[ckpt_idx]:
ckpt_name = "ckpt_%d_%.2f_%.2f" % (ckpt_idx, ckpt_score[ckpt_idx], current_best)
save_path = os.path.join(model_save_dir, ckpt_name)
os.makedirs(save_path, exist_ok=True)
policy.save(save_path)
print("Checkpoint %d reached! Target %.2f and get %.2f." % (ckpt_idx, ckpt_score[ckpt_idx], current_best))
ckpt_idx += 1