-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanimate_slam.py
84 lines (71 loc) · 2.58 KB
/
animate_slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import ast
def process_slam_output(path):
"""
reads the output of student slam implementation formatted as the following:
line1: particle pose list
line2: landmark poses list
line3: current features poses list
...
repeated for every camera frame
returns a list of x data and y data, formatted like:
x_data = [[[particle poses], [landmark poses], [feature poses]],
...,
[[particle], [lm], [feat]]]] <- one time step
y_ data is the same
"""
x_data = []
y_data = []
frame_data_x = [[], [], []]
frame_data_y = [[], [], []]
count = 0
try:
fp = open(path, 'r')
while True:
line = fp.readline()
if not line:
break
# this line has current features
if count == 2:
feature_list = ast.literal_eval(line)
frame_data_x[2] = [pair[0] for pair in feature_list]
frame_data_y[2] = [pair[1] for pair in feature_list]
# append this frame's data and reset frame_data
x_data.append(frame_data_x)
y_data.append(frame_data_y)
frame_data_x = [[], [], []]
frame_data_y = [[], [], []]
count = 0
# this line has landmark poses
elif count == 1:
landmark_list = ast.literal_eval(line)
frame_data_x[1] = [pair[0] for pair in landmark_list]
frame_data_y[1] = [pair[1] for pair in landmark_list]
count += 1
# this line has particle poses
elif count == 0:
particle_list = ast.literal_eval(line)
frame_data_x[0] = [pair[0] for pair in particle_list]
frame_data_y[0] = [pair[1] for pair in particle_list]
count += 1
finally:
fp.close()
return x_data, y_data
def animate(count):
X = x_data[count]
Y = y_data[count]
labels = ['particles', 'landmarks', 'current features']
colors = ['red', 'grey', 'blue']
ax.clear()
for i, (x, y) in enumerate(zip(X, Y)):
ax.scatter(x, y, 5, label=labels[i], color=colors[i])
plt.xlim(-0.25, 0.75)
plt.ylim(0, 0.6)
plt.title("DuckieDrone SLAM")
ax.legend(fontsize='medium')
fig = plt.figure()
ax = fig.add_subplot(111)
x_data, y_data = process_slam_output('pose_data.txt')
ani = animation.FuncAnimation(fig, animate, frames=len(x_data), interval=10, blit=False, repeat=False)
plt.show()