-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
317 lines (257 loc) · 11.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
from pathlib import Path
import json
import dill
import csv
import string
from collections import defaultdict
import numpy as np
import random
import nltk
import tiktoken
from gpt import GPT3
def build_placeholder_map(name_entities, convert_rule, props):
# breakpoint()
placeholder_map, placeholder_map_inv = {}, {}
for name, letter in zip(name_entities, props[:len(name_entities)]):
placeholder_map[name] = letter
placeholder_map_inv[letter] = name_to_prop(name, convert_rule)
return placeholder_map, placeholder_map_inv
def substitute(input_strs, substitute_maps, is_utt):
"""
Substitute every occurrence of key in the input string by its corresponding value in substitute_maps.
:param input_strs: input strings
:param substitute_maps: map substring to substitutions
:param is_utt: True if input_strs are utts; False if input_strs are LTL formulas
:return: substituted strings and their corresponding substitutions
"""
# breakpoint()
output_strs, subs_per_str = [], []
for input_str, sub_map in zip(input_strs, substitute_maps):
if is_utt:
out_str, subs_done = substitute_single_word(input_str, sub_map)
else:
out_str = substitute_single_letter(input_str, sub_map)
subs_done = set()
# out_str = out_str.translate(str.maketrans('', '', ',.')) # remove comma, period since sym translation module finetuned on utts w/o puns
output_strs.append(out_str)
subs_per_str.append(subs_done)
# breakpoint()
return output_strs, subs_per_str
def substitute_single_word(in_str, sub_map):
"""
Substitute words and phrases to words or phrases in a single utterance.
Assume numbers are not keys of sub_map.
"""
# breakpoint()
sub_map = sorted(sub_map.items(), key=lambda kv: len(kv[0]), reverse=True) # start substitution with long strings
subs_done = set()
# swap every k with a unique number
for n, (k, v) in enumerate(sub_map):
in_str = in_str.replace(k, f"[{n}]") # escape number
# swap every number with corresponding v
for n, (k, v) in enumerate(sub_map):
in_str = in_str.replace(f"[{n}]", v) # escape number
subs_done.add(v)
# breakpoint()
return in_str.strip(), subs_done
def substitute_single_letter(in_str, sub_map):
"""
:param in_str: input string can utterance or LTL formula.
:param sub_map: dict maps letters to noun phrases for lmk names (for utterance) or letters (for LTL formula).
Substitute English letters to letters, words or phrases in a single utterance.
e.g. input_str="go to a then go to b", sub_map={'a': 'b', 'b': 'a'} -> return="go to a then go to a"
Require `input_str` to be normalized, i.e. all punctuations removed. If not, "go to a. after that go to b." not tokenized correctly
Only work with letters, e.g. a, b, c, etc, not phrases, e.g. green one -> green room.
"""
in_str_list = nltk.word_tokenize(in_str)
# in_str_list = in_str.split(" ")
sub_map = sorted(sub_map.items(), key=lambda kv: len(kv[0]), reverse=True) # start substitution with long strings
# Record indices of all keys in sub_map in *original* input_str.
key2indices = defaultdict(list)
for k, _ in sub_map:
key2indices[k] = [idx for idx, word in enumerate(in_str_list) if word == k]
# Loop through indices and keys to replace each key with value.
for k, v in sub_map:
indices = key2indices[k]
for idx in indices:
in_str_list[idx] = v
return ' '.join(in_str_list).strip()
def remove_prop_perms(data, meta, all_props):
formula2data = defaultdict(list) # expensive: entire symbolic iter, meta in memory
for (utt, ltl), (pattern_type, props) in zip(data, meta):
props = list(props)
if props.count(props[0]) == len(props): # restricted avoidance formulas all props are the same
props_noperm = [all_props[0]]*len(props) # b, b -> a, a
else:
props_noperm = all_props[:len(props)]
sub_map = {old_prop: new_prop for old_prop, new_prop in zip(props, props_noperm)}
utt_noperm = substitute_single_letter(utt, sub_map)
ltl_noperm = substitute_single_letter(ltl, sub_map)
formula2data[(pattern_type, tuple(props_noperm))].append((utt_noperm, ltl_noperm))
data_noperm, meta_noperm = [], []
for (pattern_type, props_noperm), data in formula2data.items():
data = list(dict.fromkeys(data)) # remove duplicate utt structures per formula. same order across runs
for utt, ltl in data:
data_noperm.append((utt, ltl))
meta_noperm.append((pattern_type, list(props_noperm)))
return data_noperm, meta_noperm
def sample_small_dataset(data_fpath):
"""
Sample smaller dataset for testing, mostly full pipeline with GPT-3.
1 utt per unique formula (type, nprops). Permuted props replaced by non-permute props starting at a.
"""
dataset = load_from_file(data_fpath)
data, meta = dataset["valid_iter"], dataset["valid_meta"]
formula2data = defaultdict(list) # expensive: entire grounded iter, meta in memory
for (utt_grounded, ltl_grounded), (utt, ltl, pattern_type, props, lmk_names, seed) in zip(data, meta):
props = list(props)
formula2data[(pattern_type, len(props))].append((utt_grounded, ltl_grounded, utt, ltl, pattern_type, tuple(props), lmk_names, seed))
data_small, meta_small = [], []
for _, formula_data in formula2data.items():
random.seed(42)
formula_data_random = random.sample(formula_data, 1)[0]
utt_grounded, ltl_grounded, utt, ltl, pattern_type, props, lmk_names, seed = formula_data_random
data_small.append((utt_grounded, ltl_grounded))
meta_small.append((utt, ltl, pattern_type, props, lmk_names, seed))
dataset["valid_iter"], dataset["valid_meta"] = data_small, meta_small
save_fpath = os.path.join(os.path.dirname(data_fpath), f"small_{os.path.basename(data_fpath)}")
save_to_file(dataset, save_fpath)
def name_to_prop(name, convert_rule):
"""
:param name: name, e.g. Canal Street, TD Bank.
:param convert_rule: identifier for conversion rule.
:return: proposition that corresponds to input landmark name and is compatible with Spot.
"""
if convert_rule == "lang2ltl":
return "_".join(name.translate(str.maketrans('/()-–', ' ', "'’,.!?")).lower().split())
elif convert_rule == "copynet":
return f"lm( {name} )lm"
elif convert_rule == "cleanup":
return "_".join(name.split()).strip()
else:
raise ValueError(f"ERROR: unrecognized conversion rule: {convert_rule}")
def shorten_prop(prop):
return '_'.join([word[:2] for word in prop.split('_')])
def deserialize_props_str(props_str):
"""
Deserialize json string of propositions.
:param props_str: "('a',)", "('a', 'b')", "['a',]", "['a', 'b']",
:return: ['a'], ['a', 'b'], ['a'], ['a', 'b']
"""
props = [prop.translate(str.maketrans('', '', string.punctuation)).strip() for prop in list(props_str.strip("()[]").split(", "))]
return props
def props_in_formula(formula, feasible_props):
return [prop for prop in feasible_props if prop in formula]
def props_in_utt(utt, feasible_props):
return [word.strip() for word in utt.split() if word.strip() in feasible_props]
def save_to_file(data, fpth, mode=None):
ftype = os.path.splitext(fpth)[-1][1:]
if ftype == 'pkl':
with open(fpth, mode if mode else 'wb') as wfile:
dill.dump(data, wfile)
elif ftype == 'txt':
with open(fpth, mode if mode else 'w') as wfile:
wfile.write(data)
elif ftype == 'json':
with open(fpth, mode if mode else 'w') as wfile:
json.dump(data, wfile)
elif ftype == 'csv':
with open(fpth, mode if mode else 'w', newline='') as wfile:
writer = csv.writer(wfile)
writer.writerows(data)
else:
raise ValueError(f"ERROR: file type {ftype} not recognized")
def load_from_file(fpath, noheader=True):
ftype = os.path.splitext(fpath)[-1][1:]
if ftype == 'pkl':
with open(fpath, 'rb') as rfile:
out = dill.load(rfile)
elif ftype == 'txt':
with open(fpath, 'r') as rfile:
if 'prompt' in fpath:
out = "".join(rfile.readlines())
else:
out = [line[:-1] for line in rfile.readlines()]
elif ftype == 'json':
with open(fpath, 'r') as rfile:
out = json.load(rfile)
elif ftype == 'csv':
with open(fpath, 'r') as rfile:
csvreader = csv.reader(rfile)
if noheader:
fileds = next(csvreader)
out = [row for row in csvreader]
else:
raise ValueError(f"ERROR: file type {ftype} not recognized")
return out
def append_ids_to_path(pth, appends, id_trues, id_falses):
"""
Append identifier at the end of file or directory path based on `append`.
"""
if not isinstance(appends, list):
appends, id_trues, id_falses = [appends], [id_trues], [id_falses]
for append, id_true, id_false in zip(appends, id_trues, id_falses):
if os.path.isfile(pth):
base_pth = os.path.join(os.path.dirname(pth), f"{Path(pth).stem}")
pth = f"{base_pth}_{id_true}{os.path.splitext(pth)[1]}" if append else f"{base_pth}_{id_false}{os.path.splitext(pth)[1]}"
else:
pth = f"{pth}_{id_true}" if append else f"{pth}_{id_false}"
return pth
def remove_id_from_path(pth, identifier):
fname = [fname_sub for fname_sub in Path(pth).stem.split("_") if fname_sub != identifier]
return os.path.join(os.path.dirname(pth), f"{'_'.join(fname)}{os.path.splitext(pth)[1]}")
def prefix_to_infix(formula):
"""
:param formula: LTL formula string in prefix order
:return: LTL formula string in infix order
Spot's prefix parser uses i for implies and e for equivalent. https://spot.lre.epita.fr/ioltl.html#prefix
"""
BINARY_OPERATORS = {"&", "|", "U", "W", "R", "->", "i", "<->", "e"}
UNARY_OPERATORS = {"!", "X", "F", "G"}
formula_in = formula.split()
stack = [] # stack
while formula_in:
op = formula_in.pop(-1)
if op == ">":
op += formula_in.pop(-1) # implication operator has 2 chars, ->
if formula_in and formula_in[-1] == "<":
op += formula_in.pop(-1) # equivalent operator has 3 chars, <->
if op in BINARY_OPERATORS:
formula_out = "(" + stack.pop(0) + " " + op + " " + stack.pop(0) + ")"
stack.insert(0, formula_out)
elif op in UNARY_OPERATORS:
formula_out = op + "(" + stack.pop(0) + ")"
stack.insert(0, formula_out)
else:
stack.insert(0, op)
return stack[0]
def count_params(model):
"""
:param model: a PyTorch module
:return: the number of trainable paramters in input PyTorch module
"""
return sum(param.numel() for param in model.parameters() if param.requires_grad)
def count_ntokens(text, model):
"""
https://github.com/openai/tiktoken
:param model: GPT model name, e.g. gpt-4, text-davinci-003
:param text: English text to count tokens
:return: number of tokens by OpenAI tokenizer
"""
enc = tiktoken.encoding_for_model(model)
tokens = enc.encode(text)
return len(tokens)
def count_prompt_ntokens(prompt_fpath, model):
prompt_text = load_from_file(prompt_fpath)
print(f"ntokens for prompt: {prompt_fpath}\n{count_ntokens(prompt_text, model)}")
def count_lmk_ntokens(model):
"""
Count total number of tokens in all lmks in an OSM city
"""
env_lmks_dpath = os.path.join("data", "osm", "lmks")
cities = [os.path.splitext(fname)[0] for fname in os.listdir(env_lmks_dpath) if "json" in fname]
for city in cities:
lmks = list(load_from_file(os.path.join(env_lmks_dpath, f"{city}.json")).keys())
lmk_list = ', '.join(lmks)
print(f"{city}:\t {lmk_list}\n{count_ntokens(lmk_list, model)}") # https://platform.openai.com/tokenizer