-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathanalyze_results.py
219 lines (188 loc) · 11.2 KB
/
analyze_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
from pathlib import Path
import argparse
from collections import defaultdict
from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
from utils import load_from_file, save_to_file, deserialize_props_str
from formula_sampler import TYPE2NPROPS, sample_formulas
def plot_cm(results_fpath, cm, all_types):
print(f"plotting confusion matrix for:\n{Path(results_fpath)}")
if "utt" in results_fpath:
holdout_type = "Utterance Holdout"
elif "formula" in results_fpath:
holdout_type = "Formula Holdout"
elif "type" in results_fpath:
holdout_type = "Type Holdout"
else:
raise ValueError(f"ERROR: unrecognized holdout type in results file:\n{results_fpath}")
df_cm = pd.DataFrame(cm, index=all_types, columns=all_types)
plt.figure(figsize=(8, 6))
plt.title(f"Confusion Matrix for {holdout_type}", fontsize=10, fontweight="bold")
plt.xlabel("Prediction")
plt.ylabel("True")
sns.set(font_scale=0.5)
palette = sns.color_palette("crest", as_cmap=True)
sns.heatmap(df_cm, square=True, cmap=palette, linewidths=0.1, annot=True, annot_kws={"fontsize": 5}, fmt='.2f', vmax=1).figure.subplots_adjust(left=0.2, bottom=0.25) # change vmax for different saturation
fig_fpath = os.path.join(os.path.dirname(results_fpath), f"fig_{'_'.join(Path(results_fpath).stem.split('_')[1:])}.jpg") # remove results ID: "log"
plt.setp(plt.gca().get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
plt.savefig(fig_fpath, dpi=200)
# plt.show()
def analyze_errs(result_fpath, type2nprops, debug):
out_str = f"{result_fpath}\n"
formula2type, formula2prop = find_all_formulas(type2nprops, "noperm" in result_fpath)
if debug:
print(f"Total number of unique LTL formulas: {len(formula2type)}, {len(formula2prop)}")
print(f"Number of LTL type: {len(set(formula2type.values()))}")
# pprint(formula2type)
# breakpoint()
results = load_from_file(result_fpath)
formula2nutts = defaultdict(int)
y_true, y_pred = [], []
type2errs = defaultdict(list)
total_errs = 0
for idx, result in enumerate(results):
if debug:
print(f"result {idx}")
result = result[1:] # remove train_or_valid column because all results are valid
pattern_type, nprops, true_prop_perm_str, utt, true_ltl, output_ltl, is_correct = result
formula2nutts[(pattern_type, nprops)] += 1
if is_correct != "True":
total_errs += 1
true_prop_perm = deserialize_props_str(true_prop_perm_str)
if is_correct == "Syntax Error":
type2errs["syntax_errors"].append(result)
else:
if output_ltl in formula2type:
pred_prop_perm = formula2prop[output_ltl]
if formula2type[true_ltl] != formula2type[output_ltl]:
type2errs["misclassified_type"].append(result)
# print(f"Misclassified Type:\n{pattern_type}, {nprops}, {true_prop_perm_str}\n{utt}\n{true_ltl}\n{output_ltl}\n{pattern_type} {formula2type[output_ltl]}\n")
if is_correct == "True":
raise ValueError("not misclassified_type")
# breakpoint()
y_true.append(pattern_type)
y_pred.append(formula2type[output_ltl])
elif len(true_prop_perm) != len(pred_prop_perm):
type2errs["incorrect_nprops"].append(result)
# print(f"Incorrect Nprops:\n{pattern_type}, {nprops}, {true_prop_perm_str}\n{utt}\n{true_ltl}\n{output_ltl}\n{true_prop_perm}\n{pred_prop_perm}")
if is_correct == "True":
raise ValueError("not incorrect_nprops")
# breakpoint()
elif sorted(true_prop_perm) != sorted(pred_prop_perm):
type2errs["incorrect_props"].append(result)
# print(f"Incorrect Props:\n{pattern_type}, {nprops}, {true_prop_perm_str}\n{utt}\n{true_ltl}\n{output_ltl}\n{sorted(true_prop_perm)}, {sorted(pred_prop_perm)}")
if is_correct == "True":
raise ValueError("not incorrect_props")
# breakpoint()
elif true_prop_perm != pred_prop_perm and is_correct == "False": # diff prop order and not spot equivalent, e.g visit 2
type2errs["incorrect_orders"].append(result)
# print(f"Incorrect Prop Order:\n{pattern_type}, {nprops}, {true_prop_perm_str}\n{utt}\n{true_ltl}\n{output_ltl}\n")
if is_correct == "True":
raise ValueError("not incorrect_orders")
# breakpoint()
else: # correct classification
if is_correct != "True":
raise ValueError(f"Uncaught errors:\n{result}")
y_true.append(pattern_type)
y_pred.append(formula2type[output_ltl])
else:
if is_correct != "True": # repeating same clause, spot equivalent
type2errs["unknow_types"].append(result)
# print(f"Unknown Type:\n{pattern_type}, {nprops}, {true_prop_perm_str}\n{utt}\n{true_ltl}\n{output_ltl}\n")
# breakpoint()
formula2nutts_sorted = sorted(formula2nutts.items(), key=lambda kv: kv[1], reverse=True)
print(formula2nutts_sorted)
out_str += f"{formula2nutts_sorted}\n"
type2errs_sorted = sorted(type2errs.items(), key=lambda kv: len(kv[1]), reverse=True)
nerrs_caught = 0
for typ, errs in type2errs_sorted:
print(f"number of {typ}:\t{len(errs)}/{total_errs}\t= {len(errs)/total_errs}")
out_str += f"number of {typ}:\t{len(errs)}/{total_errs}\t= {len(errs)/total_errs}\n"
nerrs_caught += len(errs)
print(f"number of all errors:\t{total_errs}/{len(results)}\t= {total_errs / len(results)}\n")
out_str += f"number of all errors:\t{total_errs}/{len(results)}\t= {total_errs / len(results)}\n\n"
# errs_caught = []
# for errs in type2errs.values():
# errs_caught.extend(errs)
# all_errs = [result[1:] for result in results if result[-1] != "True"]
# for err in errs_caught:
# if err not in all_errs:
# breakpoint()
if total_errs != nerrs_caught:
raise ValueError(f"total nerrors != nerrs_caught: {total_errs} != {nerrs_caught}")
all_types = sorted(type2nprops.keys(), reverse=True)
cm = confusion_matrix(y_true, y_pred, labels=all_types, normalize="true") # y/rows: true; x/cols: predicted
return cm, all_types, len(results), type2errs_sorted, out_str
def find_all_formulas(type2nprops, perm):
formula2type, formula2prop = {}, {}
for pattern_type, all_nprops in type2nprops.items():
for nprops in all_nprops:
formulas, props_perm = sample_formulas(pattern_type, nprops, False)
if perm:
formula2type[formulas[0]] = pattern_type
formula2prop[formulas[0]] = list(props_perm[0])
else:
for formula, prop_perm in zip(formulas, props_perm):
formula2type[formula] = pattern_type
formula2prop[formula] = list(prop_perm)
return formula2type, formula2prop
def acc_osm_cities(env_dpath="results/lang2ltl/osm/", filtered=["boston_e2e"], holdouts=["utt", "formula"]):
def acc_one_city(df):
correct = df["Accuracy"].values.tolist()
return correct.count("True")/df.shape[0]
holdout2dame = {"utt": "utt_holdout_batch12", "formula": "formula_holdout_batch12", "type": "type_holdout_batch12"}
cities = [city for city in os.listdir(env_dpath)]
holdout_dnames = [holdout2dame[holdout] for holdout in holdouts]
city2holdout2acc = {}
for city in cities:
if city not in filtered:
city2holdout2acc[city] = {}
for holdout_dname in holdout_dnames:
holdout_dpath = os.path.join(env_dpath, city, holdout_dname)
result_fnames = [fname for fname in os.listdir(holdout_dpath) if fname.endswith("csv")]
city2holdout2acc[city][holdout_dname] = [acc_one_city(pd.read_csv(os.path.join(holdout_dpath, result_fname))) for result_fname in result_fnames]
final_acc = {"analyzed": {}, "raw": city2holdout2acc}
for city in cities:
if city not in filtered:
per_city = {}
for holdout_dname in holdout_dnames:
per_city[holdout_dname] = {"mean": np.mean(city2holdout2acc[city][holdout_dname]), "std": np.std(city2holdout2acc[city][holdout_dname])}
final_acc["analyzed"][city] = per_city
save_to_file(final_acc, os.path.join(env_dpath, f"aggregated_acc_{'&'.join(holdouts)}_per_city.json"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--result_path", type=str, default="results/finetuned_gpt3/formula_holdout_batch12_perm", help="fpath or dpath of holdout result to analyze.")
parser.add_argument("--split_fpath", type=str, default="data/holdout_split_batch12_perm/symbolic_batch12_perm_utt_0.2_42.pkl", help="fpath to split dataset used to produce results.")
parser.add_argument("--debug", action="store_true", help="True to print debug trace.")
args = parser.parse_args()
result_fpaths = [os.path.join(args.result_path, fname) for fname in os.listdir(args.result_path) if "log" in fname and "csv" in fname] if os.path.isdir(args.result_path) else [args.result_path]
analysis_fpath = os.path.join(args.result_path, f"analysis_{Path(args.result_path).stem}.txt") if os.path.isdir(args.result_path) else os.path.join(os.path.dirname(args.result_path), f"analysis_{Path(args.result_path).stem}.txt")
all_type2errs, all_nresults, all_out_str = defaultdict(list), 0, ""
for result_fpath in result_fpaths:
cm, all_types, nresults, type2errs_sorted, out_str = analyze_errs(result_fpath, TYPE2NPROPS, args.debug)
plot_cm(result_fpath, cm, all_types)
all_nresults += nresults
for typ, errs in type2errs_sorted:
all_type2errs[typ].extend(errs)
all_out_str += out_str
# Plot confusion matrix again on merged csv
df_list = [pd.read_csv(result_fpath) for result_fpath in result_fpaths]
merged_csv_fpath = os.path.join(args.result_path, f"merged_{Path(args.result_path).stem}.csv")
pd.concat(df_list, axis=0).iloc[:, 1:].to_csv(merged_csv_fpath)
cm, all_types, nresults, type2errs_sorted, out_str = analyze_errs(merged_csv_fpath, TYPE2NPROPS, args.debug)
plot_cm(merged_csv_fpath, cm, all_types)
type2errs_sorted = sorted(all_type2errs.items(), key=lambda kv: len(kv[1]), reverse=True)
nerrs_caught = 0
for typ, errs in type2errs_sorted:
nerrs_caught += len(errs)
for typ, errs in type2errs_sorted:
print(f"number of {typ}:\t{len(errs)}/{nerrs_caught}\t= {len(errs) / nerrs_caught}")
all_out_str += f"number of {typ}:\t{len(errs)}/{nerrs_caught}\t= {len(errs) / nerrs_caught}\n"
print(f"total number of errors:\t{nerrs_caught}/{all_nresults}\t= {nerrs_caught / all_nresults}")
all_out_str += f"total number of errors:\t{nerrs_caught}/{all_nresults}\t= {nerrs_caught / all_nresults}\n"
save_to_file(all_out_str, analysis_fpath)