forked from jasonxyliu/Lang2LTL-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreg.py
147 lines (112 loc) · 5.73 KB
/
reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from pathlib import Path
from tqdm import tqdm
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from openai_models import GPT4V, get_embed
from utils import load_from_file, save_to_file
def embed_images(img_fpaths, cap_dpath, embed_dpath):
img_embeds = {}
for img_fpath in img_fpaths:
img_id = Path(img_fpath).stem
cap_fpath = os.path.join(cap_dpath, f"{img_id}.txt")
embed_fpath = os.path.join(embed_dpath, f"{img_id}.pkl")
if os.path.isfile(embed_fpath):
img_cap = load_from_file(cap_fpath)
img_embed = load_from_file(embed_fpath)
else:
img_cap = GPT4V().caption(img_fpath) # image caption
save_to_file(img_cap, cap_fpath)
img_embed = get_embed(img_cap) # embed image captioin
save_to_file(img_embed, embed_fpath)
img_embeds[img_id] = img_embed
return img_embeds
def embed_texts(txts, obj_locs, embed_dpath):
txt_embeds = {}
for lmk_name, txt in txts.items():
if lmk_name not in obj_locs:
txt_id = lmk_name.lower().replace(" ", "_")
embed_fpath = os.path.join(embed_dpath, f"{txt_id}.pkl")
if os.path.isfile(embed_fpath):
txt_emebed = load_from_file(embed_fpath)
else:
txt["name"] = lmk_name # add landmark name into its textual description
txt_emebed = get_embed(txt)
save_to_file(txt_emebed, embed_fpath)
txt_embeds[lmk_name] = txt_emebed
return txt_embeds
class REG():
"""
Referring Expression Grounding (REG) module. Use semantic description of landmarks and objects in text and images.
"""
def __init__(self, img_embeds, txt_embeds, query_cache_fpath):
self.sem_ids,sem_embeds = [], []
if img_embeds:
self.sem_ids += list(img_embeds.keys())
sem_embeds += list(img_embeds.values())
if txt_embeds:
self.sem_ids += list(txt_embeds.keys())
sem_embeds += list(txt_embeds.values())
self.sem_embeds = np.array(sem_embeds)
if os.path.isfile(query_cache_fpath):
self.query_cache = load_from_file(query_cache_fpath)
else:
self.query_cache = {}
self.query_cache_fpath = query_cache_fpath
def query(self, query, topk):
if query in self.query_cache:
query_embeds = self.query_cache[query]
else:
query_embeds = get_embed(query)
self.query_cache[query] = query_embeds
save_to_file(self.query_cache, self.query_cache_fpath)
query_scores = cosine_similarity(np.array(query_embeds).reshape(1, -1), self.sem_embeds)[0]
lmks_sorted = sorted(zip(query_scores, self.sem_ids), reverse=True)
return lmks_sorted[:topk]
def reg(graph_dpath, osm_fpath, srer_outs, topk, ablate, in_cache_fpath):
img_embeds, txt_embeds = None, None
if not ablate or ablate == "both" or ablate == "text":
img_cap_dpath = os.path.join(graph_dpath, "image_captions")
os.makedirs(img_cap_dpath, exist_ok=True)
img_embed_dpath = os.path.join(graph_dpath, "image_embeds")
os.makedirs(img_embed_dpath, exist_ok=True)
img_dpath = os.path.join(graph_dpath, "images") # SLAM
img_fpaths = sorted([os.path.join(img_dpath, fname) for fname in os.listdir(img_dpath) if ".jpg" in fname or ".png" in fname])
img_embeds = embed_images(img_fpaths, img_cap_dpath, img_embed_dpath)
if not ablate or ablate == "both" or ablate == "image":
txt_embed_dpath = os.path.join(graph_dpath, "text_embeds")
os.makedirs(txt_embed_dpath, exist_ok=True)
obj_locs_fpath = os.path.join(graph_dpath, "obj_locs.json") # avoid lmks with visual description
obj_locs = load_from_file(obj_locs_fpath)
txts = load_from_file(osm_fpath) # OSM
txt_embeds = embed_texts(txts, obj_locs, txt_embed_dpath)
reg = REG(img_embeds, txt_embeds, in_cache_fpath)
for srer_out in tqdm(srer_outs, desc="Running referring expression grounding (REG) module"):
grounded_sre_to_preds = {}
for sre, spatial_pred in srer_out["sre_to_preds"].items():
if spatial_pred: # spatial referring expression
spatial_relation = list(spatial_pred.keys())[0]
res = list(spatial_pred.values())[0]
else:
spatial_relation = "None" # reference expression without spatial relation
res = [sre]
grounded_res = []
for query in enumerate(res):
lmk_candidates = reg.query(query, topk=topk)
grounded_res.append(lmk_candidates)
grounded_sre_to_preds[sre] = {spatial_relation: grounded_res}
srer_out["grounded_sre_to_preds"] = grounded_sre_to_preds
def run_exp_reg(srer_out_fpath, graph_dpath, osm_fpath, topk, ablate, reg_out_fpath, in_cache_fpath):
if not os.path.isfile(reg_out_fpath):
srer_outs = load_from_file(srer_out_fpath)
reg(graph_dpath, osm_fpath, srer_outs, topk, ablate, in_cache_fpath)
save_to_file(srer_outs, reg_out_fpath)
if __name__ == "__main__":
data_dpath = os.path.join(os.path.expanduser("~"), "ground", "data")
graph_dpath = os.path.join(data_dpath, "maps", "downloaded_graph_2024-01-27_07-48-53")
osm_fpath = os.path.join(data_dpath, "osm", "blackstone.json")
results_dpath = os.path.join(os.path.expanduser("~"), "ground", "results")
srer_out_fname = "srer_outs_blackstone.json"
srer_outs = load_from_file(os.path.join(results_dpath, srer_out_fname))
reg_outs = reg(graph_dpath, osm_fpath, srer_out_fname, topk=5, ablate=None)
save_to_file(reg_outs, os.path.join(results_dpath, srer_out_fname.replace("srer", "reg")))