-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrt1_dataloader.py
181 lines (126 loc) · 6 KB
/
rt1_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import sys
import torch
from torchvision.io import read_image
from torch.utils.data import Dataset
import h5py
from PIL import Image
from tqdm import tqdm
# from models.utils.data_utils import split_data
import pdb
#mainly for debugging
import matplotlib.pyplot as plt
import numpy as np
import re
import json
DATASET_PATH = '/oscar/data/stellex/shared/lanmp/lanmp_dataset.hdf5'
'''
train_keys, val_keys, test_keys = split_data(self.args.data, splits['train'], splits['val'], splits['test'])
'''
def split_data(hdf5_path, train_ratio=0.8, val_ratio=0.1, test_ratio=0.1):
with h5py.File(hdf5_path, 'r') as hdf_file:
# Assuming trajectories or data units are top-level groups in the HDF5 file
keys = list(hdf_file.keys())
total_items = len(keys)
# Generate a shuffled array of indices
indices = np.arange(total_items)
np.random.shuffle(indices)
# Calculate split sizes
train_end = int(train_ratio * total_items)
val_end = train_end + int(val_ratio * total_items)
# Split the indices
train_indices = indices[:train_end]
val_indices = indices[train_end:val_end]
test_indices = indices[val_end:]
# Convert indices back to keys (assuming order in keys list is stable and matches original order)
train_keys = [keys[i] for i in train_indices]
val_keys = [keys[i] for i in val_indices]
test_keys = [keys[i] for i in test_indices]
return train_keys, val_keys, test_keys
def sort_folders(test_string):
return list(map(int, re.findall(r'\d+', test_string)))[0]
class DatasetManager(object):
'''
NOTE: kwargs should contain a dictionary with keys {'train_split' : x, 'val_split': y, 'test_split':z} where x+y+z = 1
'''
def __init__(self, **kwargs):
train_keys, val_keys, test_keys = split_data(DATASET_PATH, kwargs['train_split'], kwargs['val_split'], kwargs['test_split'])
self.train_dataloader = DataLoader(train_keys)
self.val_dataloader = DataLoader(val_keys)
self.test_dataloader = DataLoader(test_keys)
class DataLoader(object):
def __init__(self, data_split_keys):
#stores the keys in the dataset for the appropriate split (train, validation or test)
self.dataset_keys = data_split_keys
def __len__(self):
if self.train:
return len(self.dataset_keys)
def __getitem__(self, idx):
with h5py.File(DATASET_PATH, 'r') as hdf:
traj_group = hdf[self.dataset_keys[idx]]
traj_steps = list(traj_group.keys())
traj_steps.sort(key=sort_folders)
#extract the NL command
json_str = traj_group[traj_steps[0]].attrs['metadata']
traj_json_dict = json.loads(json_str)
nl_command = traj_json_dict['nl_command']
start = 0; end = min(len(traj_steps), 6)
#return list of dictionaries with attributes required for RT1
data_sequence = []
'''
is_terminal
12:07
2. gripper openness (edited)
12:07
3. base displacement (coordinate)
12:08
4. image observation
'''
#build the dictionary for each sequence
while end <= len(traj_steps):
# dictionary = {
# 'observation': #300x300x18 (3*6 images)
# 'language_command': nl_command
# 'output_action':
# }
for i in range(start, end):
ith_obs = traj_group[traj_steps[i]]['rgb_{}'.format(i)]
end_step_metadata = json.loads(traj_group[traj_steps[end-1]].attrs['metadata'])
next_step_metadata = json.loads(traj_group[traj_steps[end]].attrs['metadata']) if end < len(traj_steps) else end_step_metadata
# dictionary = {
# # 'observation': ,
# 'nl_command': nl_command,
# 'is_terminal': end >= len(traj_steps),
# 'gripper_openness': len(end_step_metadata['steps'][0]['held_objs'])==0,
# 'body_position': end_step_metadata['steps'][0]['state_body'][:3],
# 'arm_position': end_step_metadata['steps'][0]['state_ee'][:3],
# 'body_orientation': end_step_metadata['steps'][0]['state_body'][3:],
# 'arm_orientation':end_step_metadata['steps'][0]['state_ee'][3:],
# 'mode': ,
# 'label_gripper_openness': len(next_step_metadata['steps'][0]['held_objs'])==0,
# 'label_body_position': next_step_metadata['steps'][0]['state_body'][:3],
# 'label_arm_position': next_step_metadata['steps'][0]['state_ee'][:3],
# 'label_body_orientation': next_step_metadata['steps'][0]['state_body'][3:],
# 'label_arm_orientation': next_step_metadata['steps'][0]['state_ee'][3:],
# 'label_mode':
# }
#insert the 'output_action' directly from the end index
data_sequence.append(dictionary)
start += 1
end += 1
# scene = traj_json_dict['scene']
return data_sequence
if __name__ == '__main__':
dataset_keys, __, __ = split_data(DATASET_PATH, 0.7, 0.2, 0.1)
with h5py.File(DATASET_PATH, 'r') as hdf:
pdb.set_trace()
traj_group = hdf[dataset_keys[0]]
traj_steps = list(traj_group.keys())
traj_steps.sort(key=sort_folders)
#extract the NL command
json_str = traj_group[traj_steps[0]].attrs['metadata']
traj_json_dict = json.loads(json_str)
nl_command = traj_json_dict['nl_command']
start = 0; end = min(len(traj_steps), 6)
#return list of dictionaries with attributes required for RT1
data_sequence = []