diff --git a/bin/pygrb/pycbc_pygrb_plot_injs_results b/bin/pygrb/pycbc_pygrb_plot_injs_results index 1533104fa49..e44c56acecd 100644 --- a/bin/pygrb/pycbc_pygrb_plot_injs_results +++ b/bin/pygrb/pycbc_pygrb_plot_injs_results @@ -96,7 +96,7 @@ def complete_mass_data(injs, key, tag): if key == 'mtotal': data = mass1 + mass2 elif key == 'mchirp': - data = conversions.mchirp_from_mass1_mass2(mass1, mass2) + data = pycbc.conversions.mchirp_from_mass1_mass2(mass1, mass2) else: data = mass2 / mass1 data = np.where(data > 1, 1./data, data) @@ -260,7 +260,7 @@ all_off_trigs = ppu.load_data(trig_file, ifos, data_tag='trigs', # Extract needed trigger properties and store them as dictionaries # Based on trial_dict: if vetoes were applied, trig_* are the veto survivors -keys = ['network/reweighted_snr'] +keys = ['network/end_time_gc', 'network/reweighted_snr'] trig_data = ppu.extract_trig_properties( trial_dict, all_off_trigs, @@ -269,9 +269,25 @@ trig_data = ppu.extract_trig_properties( keys ) -background = list(trig_data['network/reweighted_snr'].values()) +# Max BestNR values in each trial: these are stored in a dictionary keyed +# by slide_id, as arrays indexed by trial number +background = {k: np.zeros(len(v)) for k,v in trial_dict.items()} +for slide_id in slide_dict: + trig_times = trig_data[keys[0]][slide_id][:] + for j, trial in enumerate(trial_dict[slide_id]): + # True whenever the trigger is in the trial + trial_cut = (trial[0] <= trig_times) & (trig_times < trial[1]) + # Move on if nothing was in the trial + if not trial_cut.any(): + continue + # Max BestNR + background[slide_id][j] = max(trig_data[keys[1]][slide_id][trial_cut]) +# Gather all values and max over them +background = list(background.values()) background = np.concatenate(background) max_bkgd_reweighted_snr = background.max() +assert total_trials == len(background) +logging.info("Background bestNR calculated.") # ======================= # Post-process injections @@ -340,7 +356,7 @@ if len(list(found_after_vetoes['reweighted_snr'])) > 0: """ found_quieter['fap'] = np.array([sum(background > bestnr) for bestnr in found_quieter['reweighted_snr']], - dtype=float) / len(background) + dtype=float) / total_trials # 3) Missed due to vetoes # TODO: needs function to cherry-pick a subset of inj_data specified by